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1 Introduction

Within the inflationary paradigm, the present universe is mostly independent of initial
conditions. This forces us to consider a dynamical origin for the observed imbalance between
matter and antimatter. Planck data and models of the early universe’s evolution lead to a
highly accurate prediction of the ratio [1]

YB ≡ nB − nB̄

s

∣∣∣∣
0
= (8.75± 0.23)× 10−11, (1.1)

where nB and nB̄ correspond to the number density of baryons and antibaryons respectively,
s corresponds to the entropy density, and the subscript denotes present time.

An elegant mechanism to generate the baryon asymmetry dynamically is through
the decay of a heavy singlet fermion which carries lepton number, known as thermal
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leptogenesis [2]. Here the baryon asymmetry arises from a dynamically generated lepton
asymmetry via electroweak sphaleron processes, active within T ∈ [102, 1012]GeV. The
source of the lepton asymmetry can be elegantly linked to the CP-violating decays of right-
handed neutrinos (RHNs) in the type-I seesaw mechanism [3–7]. The out-of-equilibrium
condition, necessary for successful baryogenesis, can be naturally provided by the expansion
of the universe [8, 9]; as the temperature drops below the mass of the lightest RHN, the
RHN decays remain efficient whereas the inverse process becomes Boltzmann suppressed
(see for example [10] for a review).

A convenient, but naïve, parameterization of the generated baryon asymmetry in
conventional thermal leptogenesis is

YB = Y eq
N ϵCP κsph κwash, (1.2)

where Y eq
N ≡ neq

N /s is the relativistic abundance of the relevant RHN denoted by N , ϵCP
is the CP asymmetry in that RHN’s decay, κsph accounts for the fraction of the lepton
asymmetry which is converted to a baryon asymmetry by sphalerons (which has flavor-
dependency), and κwash ≤ 1 accounts for active processes which washout the final asymmetry
(typically dominated by the inverse-decay of N). We note however, that depending on
the temperature regime of asymmetry creation and the specific coupling structure of the
lightest RHN, eq. (1.2) should be modified with flavour effects to properly estimate the
asymmetry. However, it allows for a good qualitative description of the physics parameters
which affect the final asymmetry generated.

An estimate for the typical scale of thermal leptogenesis, ignoring flavor effects for
qualitative simplicity, can be derived as follows. The CP asymmetry parameter is bounded
from above [11] for a hierarchical spectrum of RHNs: |ϵCP| ≲ (3MN (mν3 − mν1))/(8πv2

h)
where vh = 246GeV is the Standard Model Higgs vacuum expectation value (vev). Taking
κsph = 28/79, eq. (1.2) can be rearranged to

MN ∼ 109 GeV
κwash

( 0.05 eV
mν3 − mν1

)
, (1.3)

where κwash cannot be analytically determined. The washout factor depends on the
parameter K ≡ ΓD/H(MN ) ≃ mν/10−3 eV where mν denotes the effective neutrino mass
scale related to the couplings of the RHNs to the standard model neutrinos. A weak-washout
scenario corresponds to K ≲ 1, where κwash ≃ 1, in which case MN is bounded from below
at roughly 109 GeV, famously known as the Davidson-Ibarra bound [11]. When mν is
taken to be the atmospheric (solar) neutrino mass scale, ≃ 0.05 (0.01) eV which occurs
for example with democratic couplings of N to ν, we have K ≈ 50 (10) corresponding
to a “strong washout regime” of thermal leptogenesis. Detailed numerical calculations
imply κwash ∼ 10−2–10−3 [12]. From this, we obtain the rough scale, MN ∼ 1011 GeV for
successful strong-washout leptogenesis. Accounting for flavour effects in the thermal bath
can change this rough estimation for some choices of parameters [13–15] with a special
role played by the possible Majorana phases [16, 17]. This is important in some models of
leptogenesis, for example for N2 leptogenesis scenarios, where detailed flavored calculations
are necessary, but usually weakens the washout effect by an order-one factor. However,
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the majority of the parameter space of type-I seesaw thermal leptogenesis requires RHN
masses much larger than what is implied by the Davidson-Ibarra bound, as can be seen in
appendix B of [18] or the numerical results of [19].

As a consequence of the high energy scales required, testing the minimal (hierarchical)
model is challenging to say the least. On the other hand, if B − L is promoted to a good
symmetry which is broken spontaneously and this transition is first-order, in principle we
may be able to indirectly test for leptogenesis by searching for gravitational wave signals
produced during bubble percolation. However, most of the parameter space (strong-washout
leptogenesis) remains outside the sensitivity range of future gravitational wave detectors as
the peak frequency is expected to be high, fpeak ∼ 105–106 Hz (T∗/1011 GeV), where T∗ is
the reheating temperature of the phase transition. Without modifications, one of which we
explore in this work, the prospects for testability are bleak.

We consider bubble dynamics during a first-order phase transition (FOPT) as a source
of a strong departure from thermal equilibrium on the RHN population. We show that, in
this scenario, the required value of MN is more than one order of magnitude lower than
that of the conventional scenario when requiring successful leptogenesis, and therefore it
is within the testable range of future gravitational wave detectors. The idea of utilizing
bubble dynamics for baryogenesis through a sudden mass gain, to be described below, was
first proposed in [20]1 and was applied to leptogenesis recently in [21, 22].2 We will provide
a complementary analysis by performing a numerically detailed scan of such a leptogenesis
scenario, specifically for the non-resonant case, to evaluate the final baryon asymmetry as
well as potential gravitational wave (GW) signatures.

The setup of the scenario we consider is as follows: we assume that the Majorana mass
of the RHNs are provided by the vev of a scalar field and the phase transition corresponding
to this spontaneous symmetry breaking is first-order (see ref. [38] for the study of the
second-order case). The relevant part of the Lagrangian can be written in the mass basis of
the RHNs as

Lint =
1
2
∑

I

yIΦN̄ c
I NI +

∑
α, I

YD,αIHL̄αNI + h.c., (1.4)

where Lα are the SM lepton doublets, NI are the three families of heavy right-handed
neutrinos, YD,αI are the Dirac Yukawa couplings between NI and Lα, and yI are Majorana
Yukawa couplings. After the phase transition, ⟨Φ⟩ ≡ vϕ/

√
2, and the type-I seesaw

Lagrangian is recovered with MI = 1√
2yIvϕ. As we assume that the critical temperature of

the Φ phase transition is much greater than that of the electroweak critical temperature,
we assume ⟨H⟩ = 0 during and after the FOPT but fix ⟨H⟩ ̸= 0 where appropriate.

With these assumptions, the typical temperature evolution of the conventional thermal
leptogenesis scenario can be modified in the following way (see figure 1 for the summary
of our process): RHNs are massless (ignoring thermal effects) until the phase transition

1However in [20], the mass gain mechanism was applied to a model using the decay of coloured scalars.
2There are various other implications of the strong departure from thermal equilibrium induced by

FOPTs. For example, [23] for the case of a supersymmetric phase transition, [20, 24, 25] for baryogenesis
scenarios without leptogenesis and [26–37] in the context of dark matter.
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Figure 1. Schematic picture of the bubble-assisted leptogenesis scenario during bubble expansion
(left) and after bubble collisions (right).

of Φ after which they suddenly become massive within the bubbles of the broken phase.
As soon as MI ̸= 0, the RHNs decay and generate a nonzero lepton asymmetry very
rapidly, owing to the strong-washout regime typically predicted in the type-I seesaw. If the
bubble nucleation temperature Tnuc is significantly smaller than the masses of the RHNs,
the inverse decays within the bubbles will be immediately Boltzmann suppressed and, in
principle, κwash ∼ O(1). We call this scenario “bubble-assisted leptogenesis”. A strong
assumption we require in our example setup of bubble-assisted dynamics is for all three
RHNs to have comparable masses which we explain in section 3, however this may not be a
generic requirement and we stress that we only require a confluence of scales for the three
masses. Similarly, a large degeneracy in their masses, à la resonant leptogenesis, is not
required nor problematic for the setup in any way but will simply introduce an independent
source of asymmetry enhancement. The enhancement of YB we quantify is specifically that
which is a result of the out-of-equilibrium effects catalyzed by bubble dynamics, and the
results we present throughout the paper will not depend on the choice of ϵCP.

Unsurprisingly, the scenario introduces new dynamics which can severely affect this
simple qualitative picture and must be properly estimated. During the bubble expansion, the
latent heat stored in the scalar potential ∆V , which is the difference in the scalar potential
energy density between the true and the false vacuum, is converted to a combination of
bubble wall kinetic energy and fluid bulk motion. After the bubble walls and fluid shells
collide, this latent heat reheats the background plasma, increasing the temperature to
Treh ∼ (∆V + ρplasma(Tnuc))1/4.

The reheating affects our scenario in two ways: i) as the asymmetry is generated during
the bubble expansions, it will be diluted by a factor of (Tnuc/Treh)3 due to reheating, ii) in
order to avoid a strong washout, we also require MN /Treh ≫ 1 along with MN /Tnuc ≫ 1,
otherwise the RHN inverse decays become rapid after the bubbles collide.

In general, there is a close correlation between Tnuc/Treh and MN /Treh for a given scalar
sector. Since Treh ∼ (∆V + ρplasma(Tnuc))1/4 and MN = 1√

2yvϕ, requiring a large MN /Treh

means that the potential should be quite flat, i.e. ∆V/v4
ϕ ≪ 1. This kind of flat potential,

in general, results in a strong supercooling, so there is always a tension between the dilution
factor vs the washout factor for a given scalar sector.
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Another complication of the scenario comes from new processes which can lead to
additional suppression such as the unavoidable annihilation process NN → ϕϕ with ϕ the
radial mode of Φ.3 Due to these new annihilation channels, which are absent in conventional
thermal leptogenesis, these extra channels further deplete the population of RHNs, i.e. some
will annihilate instead of decaying. To distinguish this new effect from the conventional
washout process in thermal leptogenesis, we will refer to these new channels as ‘depletions’.
We quantify the impact that these depleting interactions have on the final asymmetry
through the parameter κdep.

In summary, we are utilizing bubble dynamics as a means to increase κwash, which
appears in conventional thermal leptogenesis, but this necessarily introduces a new sup-
pression factor κdep(Tnuc/Treh)3. Considering all these effects, we quantitatively study the
amount of enhancement that can be achieved in the scenario as described above.

A qualitative summary of the different steps necessary to evaluate the final asymmetry,
to be discussed in detail in section 3, is as follows:

1. Estimation of NI ’s penetration rate into the bubbles.

We first obtain the velocity of the bubble walls, for a given choice of parameters in the
scalar potential, and integrate the distribution function of RHNs which have enough
momentum to enter the bubbles. The amount of RHNs which enter the bubbles will
be reduced by a factor of κpen.4

2. Evolution of YB−L before bubble collisions

We solve the Boltzmann equations for YB−L and YNI
inside the bubbles including

the usual washout of NI as well as the depleting channels which now occur, e.g.
NINI → ϕϕ, f f̄ . The onset of leptogenesis is now T = Tnuc, and the time of this
process is limited by the duration of the PT: ∆tPT ∼ O(10−2)H−1, where H is the
Hubble rate. The suppression in this step can be mostly encapsulated by κdep, however
there will also be a less-dominant contribution from κwash.

3. Evolution of YB−L after bubble collisions.

We solve the Boltzmann equation again, now starting from T = Treh with boundary
conditions obtained from the previous step with a dilution factor of (Tnuc/Treh)3. We
estimate κwash as the suppression factor coming from this evolution as κdep will not
contribute due to the negligible population of RHNs. We take the asymptotic value
of YB−L and multiply it by the sphaleron conversion factor to obtain the final YB.

3In [21] the RHN mass was restricted to be large enough to totally avoid these annihilation processes, but
we find that their criterion was too conservative. On the other hand, ref. [22] studied O(10)TeV (and more
recently [39] for intermediate scale leptogenesis) scale right-handed neutrino masses where the annihilation
rate is typically much more dominant than the decay rate. In this case, there can be a sizable suppression in
the final baryon asymmetry compared to the estimation presented in ref. [22].

4We find that, in most of the parameter space, the bubble wall runs away and we can avoid a large
suppression coming from the reflection of N . This opposes to the argument made in ref. [38].
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Combining the result of each step, the final baryon asymmetry in the bubble-assisted
leptogenesis mechanism can be expressed as

YB = Y eq
N ϵCP κsph κpen κdep κwash

(
Tnuc
Treh

)3
, (1.5)

where Y eq
N is population of RHNs outside the bubbles. For our numerical calculation, we

solve the full Boltzmann equations from which each factor can be inferred.
Within this framework, in order to provide a concrete numerical example, we consider

the classically scale-invariant setup for the scalar sector [40–45], where the symmetry
breaking is induced by either an additional real singlet scalar field or from a minimal gauged
U(1)B−L (see section 4 for details).

Figure 2 shows a short summary of our results where the left and right panels cor-
respond to the scalar catalyzed case (SC) and the gauge boson catalyzed case (GBC),
respectively. Here, the grey bands show the amount of enhancement we obtain compared
to the conventional thermal leptogenesis, and the horizontal axis shows the strength of the
supercooling, αn which is defined in eq. (2.9). We obtain a O(20) enhancement compared
to conventional scenarios for MN = 5× 109 GeV.

We can understand this enhancement in terms of κpen, κwash, (Tnuc/Treh)3, and κdep
which are depicted by dashed curves. The amount of RHNs penetrating into the bubble,
κpen, mostly stays order one in this parameter space, but slightly decreases when αn ≲ 1. For
αn > 5, κwash ≃ 1, so the standard washout suppression inherent in thermal leptogenesis
is circumvented. We find that κdep causes a stronger suppression compared to κwash,
highlighting the importance of including these new annihilation channels. Both κdep
and κwash sharply decrease as αn decreases. In the gauged case, there is an additional
contribution to the annihilation κdep coming from the s-channel process NINI → qq̄, ll̄.

At large values of αn, the washout and depletion effects may be small, but the di-
lution factor from reheating, (Tnuc/Treh)3 = (1 + αn)−3/4, strongly suppresses the final
asymmetry. For large enough values of αn, the bubble-assisted scenario will in fact predict
a suppressed final asymmetry compared to the typical thermal scenario. The final asym-
metry is proportional to the all these factors and we find the enhancement is maximized
around αn ∼ 5.

We also investigate the possibility of testing this scenario via gravitational wave detectors,
as the collisions of the bubbles required by this scenario necessarily generate gravitational
waves. This has also been studied in the same context, but in different parameter regions,
in refs. [21, 22, 39]. As we find that bubble-assisted leptogenesis is viable for low values
of MN (and therefore low values of the symmetry-breaking scale), the peak frequency of
gravitational waves produced can be within the observable range of terrestrial observers
like ET [46], CE [47] and LIGO O5 [48]. Larger values of MN , which are still viable in
the bubble-assisted leptogenesis scenario, would require detectors that can probe higher
frequency ranges, such as those proposed in refs. [49–54] albeit with improved sensitivities.

This paper is organized as follows. Section 2 briefly reviews how we treat the FOPT
and introduces several effective parameters that are relevant to our leptogenesis scenario.
Section 3 provides the framework to estimate the net baryon asymmetry in a systematic
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Figure 2. Intuitive presentation of the enhancement for the scalar catalyzed model (left panel)
and the gauge boson catalyzed model (right panel) as a function of the PT strength ∝ αn. The
enhancement of YB in the bubble-assisted leptogenesis scenario compared to the conventional thermal
leptogenesis scenario is depicted by the grey band for different values of y whilst keeping the overall
RHN mass fixed. We also depict how the suppression factors within the bubble-assisted leptogenesis
scenario: κpen, κwash, κdep and (Tnuc/Treh)3 vary with the strength, eq. (2.9). For concreteness, we
fixed y to the largest value displayed on the figure, corresponding to largest enhancement, when
plotting these suppression factors. The timescale, eq. (2.8), of the phase transition is also displayed.
At small values of αn, for weaker phase transitions, a larger fraction of N are reflected against
the bubble (κpen begins to decrease) and the transition is less strongly out-of-equilibrium. This
implies that MN /Treh ≤ 1 so suppression from wash-out and depletion significantly reduces the
final asymmetry. At larger values of αn, corresponding to stronger phase transitions, supercooling
begins which leads to a strong dilution of the final asymmetry as Tnuc ≪ Treh. In between those two
suppressive regimes, we observe a peak in the enhancement for O(1) values of αn.

way based on these effective parameters. Section 4 shows numerical results for the case
of the classically scale-invariant scalar sector. We discuss gravitational wave signals in
section 5, and conclude in section 6.

2 Brief review on cosmological first-order phase transition

We remain agnostic to the tree-level potential of Φ until we perform the numerical scans in
section 4 as our formalism, particularly section 3, applies to an arbitrary scalar sector of Φ
provided that ΦN̄ cN exists. Here we summarize the general formalism used to extract the
effective parameters of a FOPT for a given scalar potential.

2.1 Temperature-dependent effective potential

For a given tree-level Lagrangian of Φ, the effective potential acquires quantum corrections
at zero temperature. The one-loop contribution from a particle i can be written as [55]

VCW (m2
i (ϕ)) = (−1)2sigi

m4
i (ϕ)

64π2

[
log

(
m2

i (ϕ)
µ2

)
− ci

]
, (2.1)

where ϕ is the real part of Φ, ϕ ≡
√
2Re(Φ), mi(ϕ) and si are the ϕ-dependent mass and

spin of a particle i with gi degrees of freedom. Here µ is the renormalization scale, and ci
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is a constant depending on the subtraction scheme. In this work we use the MS scheme
where ci = 3/2 for si ∈ {0, 1/2} and ci = 5/6 for si = 1.

At a finite temperature T , thermal effects can be captured by including the thermal
potential of the form

VT (m2
i (ϕ))=± gi

2π2 T 4JB,F
(m2

i (ϕ)
T 2

)
with JB,F(y2)=

∞∫
0

dx x2 log
[
1∓exp(−

√
x2+y2)

]
,

(2.2)
where the upper (lower) sign is for the bosonic (fermionic) case. In our numerical calculations
we use the full form for JB,F. For illustrative purposes, we show the expansions of JB(y2) [56]:

JB(y2 ≪ 1)≈−π2

45+
π2

12y2−π

6 y3+· · · , JB(y2 ≫ 1)≈−
20∑

n=1

1
n2 y2K2(y ·n), (2.3)

where K2(z) is the Bessel function of the second-kind. Note that bosonic interactions are
required to make the phase transition first order due to the y3 term in JB(y2 ≪ 1).

We also incorporate the resummation of the self-energy diagrams of bosons following
the so-called truncated-full-dressing procedure [56]. This can be effectively done with
the replacement

m2
i (ϕ) → m2

i (ϕ) + Πi, (2.4)

where Πi is the thermal correction to the mass of a particle i (see also ref. [57] for an
updated tool for the resummation). Theoretical uncertainties related to the use of the
perturbative method have been discussed in ref. [58] for polynomial potentials, however, we
expect them to be mild in the scalar potential that we use in section. 4.1. We find that
there are no significant changes to our results with this replacement, so our parameter space
is numerically stable.

The complete, temperature-dependent, scalar potential we consider is given by the sum
of all these contributions:

V (ϕ, T ) = V0(ϕ) +
∑

i

VCW (m2
i (ϕ) + Πi) +

∑
i

VT (m2
i (ϕ) + Πi), (2.5)

where V0(ϕ) corresponds to the tree-level potential.

2.2 Bubble nucleation

Once the temperature-dependent scalar potential is calculated, we obtain the bounce solution
and the bounce action using Mathematica based on the well-known overshoot/undershoot
method. Additionally, we crosscheck our results against CosmoTransition [59]
and FindBounce [60].

The bubble nucleation rate can be estimated as the probability to have a critical bubble
per unit time and unit volume, where the origin of this configuration can be either due to
quantum or thermal fluctuations. We approximate it as

Γ(T ) ∼ max
[
T 4
(

S3
2πT

)3/2
Exp(−S3/T ), R−4

0

(
S4
2π

)2
Exp(−S4)

]
, (2.6)

– 8 –
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where S3 and S4 are O(3) (thermal) and O(4) (quantum) bounce actions, respectively, and
R0 is the initial bubble radius. Since the bubble-assisted leptogenesis framework requires
the FOPT not to be too strongly supercooled, the O(3) bounce solution always dominates
so we ignore contributions from S4.

Now, let us discuss the timeline of the first-order phase transition. At the critical
temperature T = Tcrit, the two local minima are degenerate, and Γ(Tcrit) = 0. So in any
first-order phase transition there is a period where Γ(T ) is much slower than the Hubble
expansion rate. During this period, although bubbles can be nucleated, the expansion of
spacetime is more efficient and the phase transition does not proceed. The universe is
supercooled until Γ(T ) becomes comparable to the Hubble rate, H(T )4.

When Γ(T ) ∼ H(T )4, the average distance of two nearby bubble nucleations becomes
less than the horizon size and the bubble expansion can physically reduce the volume of
the false vacuum. We define this temperature as Tnuc, Γ(Tnuc) ≡ H(Tnuc)4, which can be
approximately calculated by solving

S3(Tnuc)
Tnuc

≈ 4 log
[

Tnuc
H(Tnuc)

]
, (2.7)

where H(Tnuc) should include the contribution of the vacuum energy that comes from the
scalar potential.

Around this temperature, new bubbles are nucleated and expand. The time scale of
this procedure (roughly the time scale between the bubble nucleation temperature and the
end of the phase transition) can be parameterized by

(∆t)−1
PT ∼ −d(S3/T )

dt

∣∣∣∣
T =Tnuc

≡ HrehβPT, (2.8)

where Hreh is the Hubble rate at the reheating temperature. Note that βPT is a dimensionless
quantity unlike the conventional definition that can be found in most references.

For the classically scale-invariant potential we consider in section 4, we numerically find
that βPT ∼ 50. Since βPT is typically large, the duration of the phase transition is much
shorter than the Hubble time scale. So, we can ignore the redshift of temperature during
the bubble expansion and treat the temperature to be approximately constant, T = Tnuc.

The strength of a FOPT is parameterized by

αn ≡ ∆V

ρ(Tnuc)
, (2.9)

where ρ(T ) = π2

30 g∗T
4 is the plasma energy density which has g∗ effective relativistic degree

of freedom at T . Since ∆V will eventually be converted to plasma energy after bubble
collisions, we can obtain the reheating temperature by

ρ(Treh) ≃ ρ(Tnuc) + ∆V, (2.10)

– 9 –
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where we assumed the time scale of the reheating procedure is much shorter than the Hubble
time scale.5 Since ρ ∝ T 4, the dilution factor after bubble collisions is simply given by(

Tnuc
Treh

)3
≃ (1 + αn)−3/4. (2.11)

3 Bubble-assisted leptogenesis

In the following, we assume that the masses of NI are nearly degenerate:

y ≡ y1 ≃ y2 ≃ y3 =⇒ MN ≡ M1 ≃ M2 ≃ M3. (3.1)

If there is a hierarchical mass spectrum of NI , y1 ≪ y3, the mass of N1 will generally be
much smaller than Treh, at the very least for the classically scale-invariant potential we
will assume in section 4. For a hierarchical spectrum, the asymmetry generated through
bubble dynamics will therefore be washed out by the inverse decays of N1 after reheating,
so the scenario approaches the predictions of conventional thermal leptogenesis (with
additional depleting effects from ϕ interactions) as the hierarchy amongst NI increases.
This requirement may be lifted if a different scalar potential is assumed so it may not be a
necessary prediction of bubble-assisted dynamics. We also only consider parameter space
where the three RHN decay widths are in the strong-washout regime, which is true for a
very large fraction of the total parameter space [18].

3.1 Penetration rate

How efficiently the massless RHNs outside of the expanding bubbles can penetrate the
bubble wall is an important ingredient, as their penetration causes a large departure from the
equilibrium number density of (the now massive) RHNs within the bubbles. An order-one
penetration rate, κpen, is desired for bubble-assisted leptogenesis.

The penetration rate is closely related to the bubble wall velocity. The fraction of
heavy particles entering the wall will grow with the boost factor of the wall, γw, and reach
an order one fraction when MN ≲ γwTnuc. The pressure also increases with the boost
factor, requiring a stronger release of energy ∆V , and thus favoring a larger αn. Those
considerations may result in a (mild) tension between κpen and the dilution factor ∝ α

3/4
n .

To estimate κpen in a consistent way, we take the collisionless limit [61, 62] which was
recently reviewed in [63, 64] and is valid for fast walls γw ≫ 1. In the bubble wall rest frame,
let us decompose the distribution of N as figure 3 depending on the momentum directions.
We assume that particles are thermalized far out of the bubble with the distribution
fincoming. When incoming particles reach the bubble wall, they can be either reflected
(→ freflected) or transmitted (→ ftransmitted(in)) depending on whether the longitudinal
momentum is greater than the mass inside the bubble or not. The transmitted particles get
thermalized deep inside the bubble, and some of them change their momentum direction
to escape the bubble with a distribution foutgoing. Denoting the distribution of particles

5If the reheating procedure instead occurs for longer than the Hubble time scale, Treh is suppressed
compared to eq. (2.10), which implies less dilution of the final baryon asymmetry.
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𝑓incoming𝑓reflected
𝑓transmitted(in)
𝑓outgoing

𝜙 ≠ 0

𝜙 = 0~ subdominant
~ subdominant(potentially dangerousback reaction)(thermalization) 𝑓transmitted(out)~ subdominant

Figure 3. Schematic picture of particle distribution in the bubble wall rest frame. The arrows
indicate the momentum direction of f ’s.

that have escaped ftransmitted(out), the total distribution outside the bubble with momentum
direction aligned to the bubble wall expansion is given by freflected + ftransmitted(out). In
the following calculation, we neglect the back-reaction of freflected + ftransmitted(out) to the
incoming distribution. This assumption is self-consistent if the reflection rate is small. We
indeed focus on the parameter space where the bubble wall velocity is mostly relativistic
(so foutgoing is negligible) and κpen ≃ 1 (so freflected is negligible).

In this limit, the thermal distribution of the incoming fluid (outside the bubbles) in the
wall rest frame is given by

fincoming ≃ 1
eγ(E+vpz)/Tnuc ± 1

, (3.2)

where ± signs are for Fermi-Dirac and Bose-Einstein distributions respectively, v (γ) is the
positively defined bubble wall velocity (boost factor), and +z is the direction of the bubble
wall expansion.

The pressure can be obtained by summing up the momentum transfer during reflections
and transmissions of a particle from the outside and the inside. Each contribution can be
written in the form of

P =
∫

d3p

(2π)3 (∆p)f =
∫

dpz dp⊥ 2πp⊥
(2π)3 (∆p)f, (3.3)

where the momentum transfer ∆p and the integral range depend on whether particles are
reflected or transmitted and from which side of the bubble wall they come from. With
these assumptions, using p⊥dp⊥ = EdE, we obtain the pressure from the reflections of a
incoming particle, X, as

Pr
X(v) ≃ gX

4π2

∫ 0

−MX

dpz

∫ ∞

|pz |
dE E(2pz)fincoming. (3.4)

The pressures from the transmission of incoming and outgoing X is similarly given by

Pt+
X (v) ≃ gX

4π2

∫ −MX

−∞
dpz

∫ ∞

|pz |
dE E

(
pz +

√
p2

z − M2
X

)
fincoming, (3.5)

Pt−
X (v) ≃ gX

4π2

∫ ∞

0
dpz

∫ ∞
√

p2z+M2
X

dE E

(
pz −

√
p2

z + M2
X

)
foutgoing ≃ 0, (3.6)
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2 5 10 20

0.05

0.10

0.50

1

Figure 4. Different contribution to the pressure as a function of γ normalised by the Bodeker-Moore
pressure shown in eq. (3.7) and MN /T = 10 is taken. The dotted lines show the contribution from
the reflected (green) and the transmitted (magenta) particles. Those two contributions add up to
the full pressure in thick blue. The dashed black line on the other hand is the fraction κpen of
particles entering the bubble as a function of γ.

where MX is the mass of the particle X inside the bubble. We numerically check that Pt−

estimated with a boosted thermal distribution at T = Tnuc is indeed negligible compared to
Pr and Pt+.

Figure 4 shows the pressure coming from the fermions, N , as a function of γ for
MN /T = 10. We normalize the pressure by [65]

PBM ≡ 1
48
∑

i

giniM
2
i T 2, (3.7)

where particle i has gi degrees of freedom, and ni = 1(2) for fermions (bosons). Note that,
an estimation with a naïve γ2 approximation can lead to an incorrect conclusion.

Then, we estimate κpen as

κpen =
∫

pz<−MN
d3p fincoming∫

pz<0 d3p fincoming
, (3.8)

where v inside the expression of fincoming is fixed by

∆V + PLO(vw) = 0. (3.9)

Here PLO(vw) =
∑

X(Pr
X(vw)+Pt+

X (vw)+Pt−
X (vw)) is the total leading order (LO) pressure,

which includes the pressure coming from all the particles that are massive in the broken phase.
The next-to-leading order (NLO) contribution to the pressure (from 1 → 2 processes) is not
important in this context since the momentum transfer of PNLO is through penetrations,
i.e. κpen ≃ 1 when PNLO is important. However, PNLO will be important in the study
of gravitational waves since it can significantly change the energy budget of the universe
during the PT. We postpone its discussion until section. 5.
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3.2 Leptogenesis inside bubbles

Utilising κpen, we solve the Boltzmann equations to evolve the initial, non-thermal number
densities of N which penetrate the bubble, and calculate the generated lepton asymmetry.
In what follows, we will assume that the heavy neutrinos N are in kinetic equilibrium with
the SM thermal bath also inside the bubble, thanks to the efficient rate for ϕN → ϕN via
N mediation. This will permit us to use integrated Boltzmann equations. The Boltzmann
equation in this procedure can be written as

ṅNI
+3HnNI

=−
∑
A,B

(
2⟨σv⟩NINI→AB n2

NI
−2⟨σv⟩AB→NINI

nAnB

)
−ΓD(NI)nNI

,

(3.10)
ṅB−L+3HnB−L =−

∑
I

ϵIΓD(NI)nNI
+(wash-out), (3.11)

where ΓD(NI) is the total decay rate of NI and ϵI is the CP-violating parameter for NI

defined by

ϵI ≡ Γ(NI → HL)− Γ(NI → H̄L̄)
Γ(NI → HL) + Γ(NI → H̄L̄)

, (3.12)

where L̄ denotes the anti-particle of L. The initial population of NI within the bubbles will
be given by its massless equilibrium distribution scaled by a factor of κpen:

n
(0)
NI

= κpen
2 · 3

4 · ζ(3)
π2 T 3

nuc. (3.13)

The RHNs will decay before the onset of bubble collisions, i.e. ΓD(NI) > (∆tPT)−1,
where ∆tPT is the duration of the PT. To check this, it suffices to show that the lifetime of
NI is shorter than (∆t)P T ∼ (βPTH)−1,

tPT
tN→HL

= Y 2
DMN /8π

HrehβPT
∼ 10

(
MN /Treh

5

)2 ( mν

0.05 eV

)( 100
βPT

)
, (3.14)

where H2
reh ≃ 8πρpl(Treh)/3M2

Pl, MPl = 1.2×1019 GeV, and ρpl(T ) = π2

30 g∗T
4 is the radiation

energy density at T with effective relativistic degrees of freedom g∗ ≃ O(100). Here, we take
the effective neutrino mass around the atmospheric neutrino mass scale since Y 2

D should
be from the largest decay rate amongst the three (roughly) degenerate RHNs (see also
eq. (3.26) and (3.27)); if one of RHNs decays within the duration of PT, all three RHNs
effectively decay since they maintain chemical equilibrium via the efficient NINI ↔ NJNJ

processes, as we discuss below. Regardless, tPT/tN→HL > 1 is satisfied even for the solar
neutrino mass scale: mν ≃ 0.01 eV.

There are various reactions relevant to eqs. (3.10) and (3.11). At a minimum, the
reaction rate of processes involving ϕ must be sizable since we need y ∼ O(1) to ensure that
MN /Tnuc ∼ y vϕ/

√
2Tnuc is large enough to achieve washout suppression. We highlight the

two most important processes involving ϕ as follows:

• NINI → ϕϕ (model-independent) [38]: the cross-section is given by

σNINI→ϕϕ(s) ≃
3y4

I

128π

√
s − 4M2

I

M3
I

+O(s − 4M2
I )3/2, (3.15)
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where NI at this stage should be non-relativistic since MI/Tnuc ∼ O(10). The reverse
process is assumed negligible since a flat potential is required to achieve a large
MI/Tnuc. This implies a smaller curvature at the minimum, i.e. light ϕ, which, at a
temperature of order Tnuc, does not have enough energy to annihilate into NI .

With v =
√
1− 4M2

I /s, we estimate the thermally-averaged annihilation cross section,
⟨σv⟩, as

⟨σNINI→ϕϕv⟩ = 1
16M4

I TK2
2 (MI/T )

∫ ∞

4M2
I

ds s3/2 (1− 4M2
I /s)K1(

√
s/T )σNINI→ϕϕ,

(3.16)
where we have included a factor of 1/2 to account for the initial state phase space.
Plugging eq. (3.15) into eq. (3.16), we obtain

⟨σNINI→ϕϕv⟩ ≃ 9y4
I T

128πM3
I

≃ 9
√
2yIT

64πv3
ϕ

. (3.17)

Following appendix D of [38] we also verify that, in the case of an ungauged U(1)B−L,
the additional 2 ↔ 2 scattering process of NN into two majorons is subdominant
compared to NN → ϕϕ due to the derivative interactions involved in the regime
where MN > Treh.

• NINI ↔ NJNJ (model-independent): using FeynCalc [66–68], we obtain the following
cross section,

σNINI↔NJ NJ
(s) ≃ y2

I y2
J(4M4

N − 2M2
N s + s2)

48πs3 (3.18)

which gives the thermally averaged cross-section of the form

⟨σNINI↔NJ NJ
v⟩ ≃ 3y2

I y2
J

768πM2
N

. (3.19)

This is an s-wave channel process where the velocity dependence is canceled between
the initial and final states as MI ≃ MJ .

While the process NINI → ϕϕ depletes the population of RHNs which can decay,
NINI ↔ NJNJ does not. As long as the flavor-changing processes remain efficient, we
can assume that chemical equilibrium, nN1 ≃ nN2 ≃ nN3 , is maintained which allows us to
simplify the Boltzmann equations for NI by ignoring the number-conserving processes and
assuming the same number densities for all NI at all T .

Defining nN ≡
∑

I nNI
≃ 3nN1 ≃ 3nN2 ≃ 3nN3 and YN ≡ nN /s, we obtain

zHs Y ′
N (z) = −γ̄D

(
YN

Y
(eq)

N

− 1
)
− 2γNN→ϕϕ

(
Y 2

N −
(
Y

(eq)
N

)2
)
+ (model-dependent),

(3.20)

zHs Y ′
B−L(z) = −ϵCPγ̄D

(
YN

Y
(eq)

N

− 1
)
− 1

2(cL + cH) γ̄D
YB−L

Y (eq) , (3.21)
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Temperature (GeV) cL cH cH + cL

1011−12 6
35

95
460 ∼ 0.38

108−11 5
53

47
358 ∼ 0.22

≪ 108 7
79

8
79 ∼ 0.19

Table 1. cH + cL for different relevant temperatures.

where z ≡ MN /T , Y
(eq)

N = n
(eq)
N /(2π2

45 g∗T
3) with the equilibrium number density n

(eq)
N ,

Y
(eq)

N = ( 2
π2 T 3)/(2π2

45 g∗T
3), and

γ̄D ≡
∑

I

γD(NI) =
∑

I

n
(eq)
NI

KI(z)
K2(z)

ΓD(NI), (3.22)

ϵCP γ̄D ≡
∑

I

ϵIγD(NI), (3.23)

γNN→ϕϕ ≡ 1
9s2∑⟨σv⟩NINI→ϕϕ. (3.24)

Note that the definition of ϵCP allows it be factored out of eq. (3.21) by solving for YB−L/ϵCP
and reintroduced after solving the BEs.

Other possible 2 → 2 processes that can affect the final asymmetry are ignored as
justified in appendix A, where we show that these processes are subdominant. In addition,
following refs. [13, 69, 70], we neglect off-diagonal entries in the lepton-flavor structure
of the BEs, and simply define the effective wash-out coefficient cL + cH to account for
flavour effects, which can be obtained by tracking which flavour-dependent reactions remain
in chemical equilibrium at a given temperature. The relevant numerical values that we
consider can be found in table. 1.

The decay width, γ̄D, is simply given by

γ̄D ≃ 3
4

gN M3
N

2π2z
K1(z)ΓD with ΓD = Y 2

DMN

4πgN
, (3.25)

and we fix

Y 2
D ≡

∑
I

(
(YD)†YD

)
II

= 8π
ΓNI

MNI

= 2
v2

EW

∑
I

MNI

∑
i

mνi |RIi|2 (3.26)

To obtain the right-hand side, we have employed the Casas-Ibarra paramaterisation [71]
of YD. In section 4 we will specialize to a classically scale-invariant potential which will
require all three RHNs masses to be of the same order to prevent thermalization of the
lightest RHNs within the bubbles. In such a case the above equation further simplifies:

Y 2
D

MI≃MJ≃ 2MN mν3

v2
EW

(
mν1

mν3

∑
i

|Ri1|2 +
mν2

mν3

∑
i

|Ri2|2 +
∑

i

|Ri3|2
)

≥ 2MN

v2
EW

mν3 (3.27)
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where, for concreteness, we have assumed a normal ordering with the hierarchy: mν3 ≃
0.05 eV ≫ mν1,2 . We stress that moving from the first line to the inequality in the final
line above requires no approximation and is a rigorous lower bound in the case of exactly
degenerate RHNs due to the positivity of each individual term. The above equation therefore
implies that the atmospheric neutrino mass scale (∼ 0.05 eV) will always enter into the
expression due to orthogonality of R in the case of three similar mass scale RHNs. However
if some different scalar potential would allow for a hierarchical spectrum of RHNs, Y 2

D will
no longer be the relevant quantity within the BEs but (YD)2

11. In what follows we take
the lower-bound for Y 2

D implied by eq. (3.27) in our numerical estimates. We typically find
that for a given choice of parameters, assuming MI ≃ MJ , that Y 2

D is a factor of O(5− 10)
times larger than this lower-bound. Larger values of γ̄D can only increase the final net
asymmetry generated, therefore our numerical results serve as a conservative lower-bound
on the enhancement that can be obtained through bubble dynamics.

From eqs. (3.25) and (3.27), ΓD ∝ M2
N whereas

ΓNN→ϕϕ = ⟨σNN→ϕϕv⟩nN ∼ y4
(

T

MN

)4
MN . (3.28)

The ratio MN /T will be fixed by phase transition properties at Tnuc, therefore the relative
size of the annihilation rate compared to ΓD will grow as the value of MN decreases. For
fixed choices of MN /T , there will be a lower-bound on the size of MN where bubble-assisted
leptogenesis will provide an enhancement in the asymmetry. For smaller values of MN , the
depletion from annihilations will dominate, suppressing the asymmetry but for larger values
of MN , the desired enhancement will occur.

The model-dependent processes in eq. (3.20) which we account for are as follows:

• NINI → ff

(model-dependent): when gauging U(1)B−L, the biggest obstacle comes from NINI →
ff annihilations where f corresponds to the SM fermions. This process is important
since it is not Boltzmann suppressed. Using ref. [72], we obtain

σNINI→fifi
≃

(QB−L
i )2g4

B−L

12π

√
s − 4M2

I

MI(4M2
I − M2

A)2 + O
(
(s − 4M2

I )3/2
)

, (3.29)

⟨σv⟩NINI→ff ≃
∑

i=SM

(QB−L
i )2g4

B−L

4π

MIT

(M2
A − 4M2

I )2 , (3.30)

where ∑i=SM 3(QB−L
i )2 = 1

9(2× 3× 3 + 3× 3 + 3× 3) + 12(2× 3 + 3) = 13. Note
that the cross section must be properly regulated as MA → 2MN as in ref. [72].

• ss ↔ NINI , AµAµ → NINI (model-dependent): generally, there will be additional
bosonic fields, such as the scalar s or the B −L gauge boson Aµ, required to make the
PT first-order. In order to provide a sizable contribution to the thermal potential, such
a field requires a large mixed quartic coupling or gauge coupling with ϕ. Therefore,
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it is natural to assume that these bosonic degrees of freedom are heavier than NI ,
which is the case in our numerical examples in section 4, which implies the processes
NN → ss or NN → AA are Boltzmann suppressed. Of course, the inverse of these
processes will therefore not be suppressed. Accounting for these inverse processes in
eq. (3.20) can only further enhance the final asymmetry as the population of N which
can decay will increase. However, we do not expect this to be a sizeable effect, due
to the other possible annihilation channels of s or Aµ, so we do not include them for
numerical convenience.

With all relevant model-dependent depletion processes included, we solve the Boltzmann
equations of eqs. (3.20) and (3.21) with initial boundary conditions

YN (znuc) =
3n

(0)
NI

s(Tnuc)
, YB−L(znuc) = 0, znuc =

MN

Tnuc
. (3.31)

Here, z ∈ [znuc, zcol] and zcol ∼ eH∆tPTznuc ∼ 1.1znuc. This corresponds to evaluating the
total asymmetry generated at the onset of bubble nucleation, znuc, and evaluated up to
(slightly before) the temperature at which the bubbles collide, zcol. Note that the definition
of n

(0)
NI

in eq. (3.13) includes the factor of κpen which accounts for the number of RHNs
which penetrate the expanding bubbles.

The final abundances of YN and YB−L just before reheating from bubble collisions
occurs is therefore given by

ỸN ≡ YN (zcol), ỸB−L ≡ YB−L(zcol). (3.32)

These values are then used as initial conditions in the evaluation of YN and YB−L after the
FOPT ends, as explained below.

3.3 Wash-out process after bubble collisions

The end of the phase transition occurs once the bubbles have collided, which results in
a temperature increase from Tnuc → Treh. A detailed modelling of reheating may affect
the previous estimation, but we do not expect sizeable changes compared to our naïve
assumptions. If the bubble wall runs away, the energy budget during the bubble expansion
is mostly dominated by the kinetic energy of the bubble wall, i.e. the scalar configuration.
A collision of the scalar configuration produces, as a first step, a dominant population of ϕ,
which are much lighter than the RHNs. The annihilation and decay of the ϕ population
reheats the universe. The reheating process induced by the decay of ϕ into SM particles
will not affect the number density of N beyond the overall dilution factor (see appendix B
for the case where ϕ couples to the SM Higgs). If the bubble wall does not run away, the
shockwave formed around the bubble wall already has an increased temperature ∼ Treh since
the boost factor of the bubble wall velocity is still order one. Therefore, there should not be
a procedure that drastically changes the number density of NI beyond the aforementioned
dilution factor.
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We quantify the effect of bubble collisions by solving the Boltzmann equations (3.20)
and (3.21) a second time, with new initial conditions for YN and YB−L:

YN (zreh) = ỸN

(
Tnuc
Treh

)3
, YB−L (zreh) = ỸB−L

(
Tnuc
Treh

)3
, zreh = MN

Treh
, (3.33)

for z ∈ [zreh, zf ]. We choose zf ≫ 1 such that the final asymmetry no longer changes for
larger z, where ỸN and ỸB−L were obtained from the previous step. Then, the final baryon
abundance is taken as

YB = κsph YB−L(zf ), (3.34)

where κsph = 28/79 is the usual weak sphaleron conversion factor.

4 Numerical results

4.1 Classically scale-invariant models for a FOPT

As the simplest example of strong FOPT, let us consider a classically scale-invariant potential
of Φ, which is equivalent to the conformal symmetry at the classical level [73–75],

V0(ϕ) = λ(µ)|Φ|4 = λ(µ)
4 ϕ4, (4.1)

where ϕ is the real part of Φ = 1√
2(ϕ + ia) that acquires vev.

To develop a nonzero vev of ϕ and make the potential bounded from below, it is
necessary for the ϕ4 log ϕ term of the potential generated from the quantum corrections
of eq. (2.1) to be positive. Since NI produces a negative contribution, and is necessary for
leptogenesis, new bosonic degrees of freedom that couple to Φ in a sizable way are required.
We consider two possible options:

• Scalar catalyzed (SC): spectator scalar field s

The gauge-singlet real scalar field, s, contributes to the effective potential via m2
s(ϕ) =

λsϕϕ2, i.e. −∆L = λsϕ

2 s2|Φ|2.

• Gauge boson catalyzed (GBC): gauged U(1)B−L

The B−L gauge boson, Aµ, contributes to the effective potential via mA(ϕ) = 2gB−Lϕ,
where gB−L is the gauge coupling and we assume Φ has a charge of 2 to allow
for eq. (1.4).

One may possibly consider combining both models simultaneously as in ref. [21]. In this
work, we consider them separately for simplicity6 but for notational convenience, we write
both contributions from gB−L and λsϕ in some expressions.

6In ref. [21], it was argued that MN /Treh cannot be large enough for bubble-assisted leptogenesis in the
gauge boson catalyzed case without introducing additional scalar fields. We find that this is not the case as: i)
MN /Treh required to avoid a strong wash-out of YB−L is only ≳ 7, and ii) the effective potential difference is
loop suppressed, so the argument made in ref. [21] should be modified to MN /Treh < MA/Treh ∼ (a few)×10,
where MA is the B−L gauge boson mass, which cannot rule out this model. We similarly find that depletion
effects are sizeable, but by numerically solving the relevant BEs we still find a possible enhancement in the
final asymmetry compared to the conventional scenario.
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At zero temperature, the effective potential of ϕ is given by

Veff(ϕ) = V0(ϕ) +
∑

i

VCW(m2
i (ϕ)), (4.2)

where the field-dependent MS masses can be written as

m2
ϕ = 3λϕ2, m2

a = λϕ2, M2
NI

= y2
I ϕ2/2, m2

A = 4g2
B−Lϕ2, m2

s = λsϕϕ2.

(4.3)
This leads to an expression of

Veff(ϕ) =
1
4 [λ(µ) + βλ log ϕ/µ + δλ(λ, yI , · · · ) ]ϕ4, (4.4)

where βλ ≡ dλ/d lnµ is the one-loop beta function7 for λ, and δλ(λ, yI , · · · ) includes a
function of coupling constants and does not have any explicit dependence on ϕ. For instance,
in our model, we have

16π2δλ(λ, yI , · · · ) = λ2(10 log λ + 9 log 3− 15)−
∑

I

1
2y4

I (log y2
I /2− 3/2)

+ 12g4
B−L(log 4g2

B−L − 5/6) + λ2
sϕ(log λsϕ − 3/2). (4.5)

The µ dependence in δλ(λ, yI , . . . ) comes only via the RG running of coupling constants,
so its effect on Veff is at two-loop order. This would be canceled if the effective potential
was calculated at two-loop order but we calculate only up to one-loop order which implies
that Veff(ϕ) is µ-independent only up to one-loop order.

One can use the minimization condition V ′
eff(ϕ) = 0 and express vϕ ≡ ⟨ϕ⟩ in terms of

coupling constant defined at a given RG scale µ. For example, if we take µ = vϕ, one can
find the minimization condition λ(vϕ) + δλ = −βλ/4.

We fix the RG scale at µ = µ∗, which is defined as λ(µ∗) ≡ 0 for simplicity. This allows
us to ignore all the λ(µ∗) contributions. For µ = µ∗, we obtain

vϕ ≡ ⟨ϕ⟩ = e−(δλ/βλ+1/4)µ∗, (4.6)

where

βλ|µ=µ∗ = 1
16π2

(
−
∑

I

y4
I +96g4

B−L+2λ2
sϕ

)
, (4.7)

δλ|µ=µ∗ =
1

16π2

(
−
∑

I

1
2y4

I (logy2
I /2−3/2)+12g4

B−L(log4g2
B−L−5/6)+λ2

sϕ(logλsϕ−3/2).
)

.

(4.8)

The exponent (δλ/βλ + 1/4) is not large since both δλ and βλ are at one-loop order.
7We should have also included the running of ϕ through γ, the anomalous dimension of ϕ; ϕ → ϕ0eΓ(µ)

where Γ(µ) =
∫ µ

µ0
γ(µ′)d lnµ′. However, its contribution in eq. (4.4) is always multiplied by λ(µ) while λ(µ)

itself is numerically one-loop order unless we take a pathological RG scale. Therefore, we simply ignore its
contribution in this paper.
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Figure 5. Parameter scan for the scalar and gauge boson catalyzed case. For both cases is the
region of αn ∼ O(1) in the (effectively) runaway regime.

The temperature dependence of the potential can be obtained using eq. (2.5) with the
thermal mass corrections to the bosonic states given by

ΠAT
= 0, ΠAL

= g2
B−L

T 2

3 , Πs = λsϕT 2

3 , (4.9)

where AT (L) corresponds to the transverse (longitudinal) components of Aµ. Here, Πϕ and
Πa are omitted since their contributions are suppressed: λ(µ∗) = 0.

Based on the formalism presented in section 2, we obtain values for MN /Treh and αn

as a function of y = yI and λsϕ (gB−L) in the SC (GBC) case. Figure 5 shows the variation
of MN /Treh together with αn, indicated by the black solid lines for αn = 0.1, 1, 10 and 100,
in the SC (left panel) and GBC (right panel) scenarios. To minimize the suppression from
κwash (as well as κdep), one needs MN /Treh ≳ 7 as can be seen in figure 2. On the other hand,
αn should be kept to be order one to avoid a large dilution: (Tnuc/Treh)3 = (1 + αn)−3/4.

Therefore, we find viable parameter space compromising these conflicting effects at
y ∼ O(1) and λsϕ ∼ O(2) (SC) or gB−L ∼ O(1) (GBC). Around this region, the penetration
rate κpen is close to one since the bubble wall runs away as indicated by the white dashed
curve. This is the boundary of the bubble wall running-away and reaching a terminal
velocity, which is determined by using eqs. (3.4) and (3.6).

4.2 Comparison with conventional leptogenesis

The values of MN /Treh and αn obtained from the previous section determine the initial condi-
tions when solving the BEs before and after bubble collisions, eqs. (3.31)
and (3.33) respectively.

As an illustrative example, figure 6 depicts the evolution of YB−L in the scalar catalyzed
scenario. Here, λsϕ = 2.5 and we vary the Majorana Yukawa coupling y = yI . We
have intentionally fixed MN = 5 × 109 GeV for all choices of y, such that conventional
strong-washout thermal leptogenesis does not generate sufficient asymmetry. The solid-blue
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Figure 6. Numerical solution to the BEs presented in eqs. (3.20) and (3.21) assuming MN =
5× 109 GeV and λsϕ = 2.5 for different values of the Yukawa couplings, y = yI , in the ungauged case
with a real singlet scalar (SC). The black lines correspond to the usual thermal scenario (without
any additional B − L scalars), the blue lines to the asymmetry produced from RHN decay before
bubble collision (between znuc and zcol) and the green lines track the evolution of the asymmetry
after Treh with the required asymmetry indicated by the dashed-red line. The gray arrow indicates
reheating of the bath from zcol to zreh from bubble collisions. For small values of y, MN < Tnuc, Treh,
and the RHNs thermalise within the bubbles before decaying, recovering the usual thermal scenario
(plus the additional depleting interactions NINI → ϕϕ). For values of y where αn ∼ O(1), the
condition MN > Tnuc, Treh is satisfied so washout and depletion are suppressed, and an enhancement
compared to the thermal scenario is observed. For larger values of y however, where αn grows
sharply with y, Tnuc/Treh ≪ 1 and reheating drastically suppresses the final asymmetry generated.
For concreteness, ϵCP ≃ Y 2

D/8π was assumed in both cases.

lines denotes the evolution of YB−L for bubble-assisted leptogenesis during the time scales
between znuc and zcol. After zcol, the universe is reheated up to zreh and YB−L is diluted by
a factor (Tnuc/Treh)3, which we indicate by the grey arrow. The solid-green line tracks the
evolution of YB−L from zreh onwards.

We contrast these results with the conventional thermal leptogenesis scenario, denoted
by the solid-black line, where: we have turned off all ϕ-related annihilation processes (which
could only reduce the asymmetry further), we have assumed a hierarchical spectrum of
RHNs but assumed that γN1 = γ̄D from eq. (3.25), and used the initial conditions

YN1(zi) = Y eq
N1

(zi), YB−L(zi) = 0 (4.10)

for z ∈ [zi, zf ] = [0.1, 200]. For both the bubble-assisted and conventional leptogenesis
evolutions, we have assumed ϵCP ≃ Y 2

D/8π for concreteness. Smaller (or larger) values may
change the overall asymmetry obtained in both cases, however the relative enhancement
provided from the bubble-assisted scenario should not vary significantly. Similar behaviour
will be obtained in the gauged scenario where the only significant difference is the additional
presence of the NINI → ff depleting processes which can slightly decrease the final
asymmetry within the bubble-assisted scenario.

We repeat this procedure by scanning the FOPT parameter space, and summarize
our results in figure 2 as a function of αn, again assuming MN = 5 × 109 GeV. The left
and right panels correspond to the scalar catalyzed (SC) and gauge boson catalyzed (GC)
scenarios respectively, and the grey bands denote the size of the enhancement compared to
conventional leptogenesis. The grey band boundaries are obtained by choosing y ∈ [0.85, 1.4]
in the scalar catalyzed case and y ∈ [1.0, 1.13] in the gauged case. Larger couplings lead

– 21 –



J
H
E
P
0
9
(
2
0
2
3
)
1
6
4

5 10 50 100

5

10

20

Figure 7. Scatter plot of MN versus the enhancement for y = 1.4 for SC (Left) and GBC (Right)
cases. This scatter plot suggests that, due to stronger depletion at low T , the enhancement disappears
around MN ∼ 107 GeV. The upper thick lines represent the maximal enhancement (at the peak)
and is thus an upper bound. This upper bound for the enhancement can be roughly analytically
fitted by the dashed yellow line with expression in eq. (4.11). For fixed mass MN , we scan over
different values of αn. The patterns appearing in the above figure are spurious artifacts due to the
method of scanning.

to a larger enhancement, for a fixed αn, as indicated by figure 5 where the ratio MN /Treh
grows with y, λsϕ and gB−L. The horizontal axis of figure 2 shows the strength of the
supercooling, αn, which corresponds to scanning λsϕ for the SC and gB−L for the GBC
respectively for the given value of y and MN .

In figure 2, we also depict the various suppression factors we have defined, κpen, κwash,
κdep and (Tnuc/Treh)3, by the dark red, bright red, yellow and blue dashed curves respectively.
For concreteness, we fixed y to the largest value displayed on each figure when estimating
these suppression factors, which corresponds to the largest possible enhancement compared
to the conventional scenario. The penetration coefficient, κpen, remains close to unity in
our chosen parameter space but begins to decrease for αn ≲ 1. Smaller values of αn imply
a large washout, κwash and κdep, as the ratio MN /Treh decreases. Much larger values of αn

however, suffer from a large diluting effect: (Tnuc/Treh)3 = (1 + αn)−3/4. The enhancement
is maximized around αn ∼ 5, since YB is proportional to the combination of all these
factors: eq. (1.5).

The maximal enhancement factor can be as large as ∼ 20 for MN = 5 × 109 GeV,
however the enhancement decreases as we decrease MN . As shown in figure 7, we roughly
find that below MN ≃ 107 GeV bubble-assisted leptogenesis cannot provide an enhancement
compared to the conventional scenario. This conclusion should be insensitive to the choice
of ϵCP. This lower-bound arises as the ϕ- and Aµ-induced depletion processes, which we
quantify through κdep, grow as MN decreases, as discussed in section 3.2; Γann ∝ z−4

nucMN

while ΓD ∝ M2
N . Due to the additional depletion channels which occur for the gauged

case, we observe a slightly larger depletion effect compared to the scalar catalyzed case in
figures 7 and 2, as expected.

Interestingly, from figure 7, we find that the maximal enhancement is well fitted by

nFOPT,max
B

nthermal
B

∼
(

MN

107GeV

)1/2
. (4.11)
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SC GBC

MN /108GeV nF OP T
B

nthermal
B

αn MN /108GeV nF OP T
B

nthermal
B

αn

P1 62 26 4.4 60 22 4.8
P2 34 21 6 37 17 5
P3 26 18 6. 25 15 9
P4 10 12 10 10 10 9.6
P5 4.2 8 25 4 5.6 15
P6 1.4 3.5 25 1.4 2.9 33

Table 2. Benchmark points for the GW signal in figure 8 where all MNI
≡ MN .

5 Gravitational waves

As bubble-assisted leptogenesis relies on bubble dynamics, it is an important question
whether gravitational waves produced during the FOPT will be detectable in future gravi-
tational wave detectors such as LIGO [48], ET [46] and CE [47].

In general, there are three sources of gravitational waves during a FOPT; collisions of
bubble walls (scalar), sound waves, and turbulence effects in the fluid (see refs. [76–78] for
nice reviews and also appendix C for the semi-analytic expressions we use in our estimations).
The scalar contribution is the dominant source when the bubble walls run away while the
sound wave contribution becomes important when the bubble wall has a constant velocity.
This results in qualitatively different regimes in the gravitational wave spectra between
the SC case and the GBC case. As we discussed, at the position of the enhancement peak,
the plasma pressure on the wall via the 1 → 1 process cannot reach a balance with the
potential difference ∆V . Meanwhile, in the GBC case, 1 → 2 processes, e.g. massless N

outside bubbles to massive N and Aµ inside bubbles, can provide an additional source of
pressure as [79, 80]

PNLO ∼ 1
16π2 T 3γwg3∆mGB. (5.1)

Since it increases as γw, the bubble wall eventually reaches terminal velocity, and shock
waves can be formed around the bubble wall during the expansion. Accounting for these
effects in section 3.1 and figure 5 will not induce any appreciable change in the estimate for
κpen since, although γw is now finite, the terminal velocity the bubble wall reaches is so large
that κpen ≃ 1 as justified by figure 4. However, this implies that the scalar contribution to
the gravitational wave spectrum is less important compared to the sound wave contribution.
The difference between these two contributions appears in the high frequency tail where the
spectrum falls as f−1.5 for the scalar contribution and f−4 for the sound wave contribution.
On the other hand, both contributions have a peak frequency proportional to the inverse of
the average value of a bubble radius at the time of percolation multiplied by the redshift
factor due to the Hubble expansion until today. Therefore, the peak frequency is proportional
to the reheating temperature Treh where Treh ∼ (∆V )1/4 ∝ MN .

In figure 8, we show the gravitational wave spectra for the SC and GBC case for various
benchmark parameters of MN , the final asymmetry enhancement factor (compared to
thermal leptogenesis), and αn. Their values are summarized in table 2. These benchmark
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Figure 8. GW signal from leptogenesis for various benchmark points summarized in table 2. Future
sensitivity of LIGO, ET and CE are obtained by following refs. [81–88]. For the sound waves we
took Ω̃GW ∼ 0.01 [89, 90] for detonations.

points were chosen as they maximize the enhancement factor for each choice of MN , i.e.
MN /Treh ∼ 8 and βPT ∼ 50. Future sensitivity of LIGO, ET and CE are obtained by
following refs. [81–88]. We find a rather strong GW signal due to αn ∼ 1 and not-too-large
βPT, as expected from a pure CW potential [91, 92].

As can be seen in figure 8, the gravitational waves are detectable for MN ≲ 109 GeV.
This low-mass region of MN is perhaps the most motivated region for bubble-assisted lepto-
genesis, as in this region thermal leptogenesis cannot generate sufficient lepton asymmetry
without a tuning of parameters. Larger values of MN will move the peak frequency of GWs
away from upcoming experiments, preventing detectability, however in this region thermal
leptogenesis can occur without issue and bubble-assisted leptogenesis might be considered a
less interesting mechanism.

As shown in the figure 8, although the bubble wall runs away in the SC case, the sound
wave contribution dominates as PLO/∆V is not too suppressed. The difference between
these two cases will appear in the UV tail as we discussed above, but as this is outside the
sensitivity of future GW detectors,8 these two cases will not be distinguishable at upcoming
experiments.

In the case of spontaneously broken Abelian symmetries, cosmic strings can be formed
and produce an appreciable spectrum of gravitational waves [94, 95]. However, the amplitude
is typically small if vϕ ≲ 1011 GeV, which is the rough region of interest we consider, where
thermal leptogenesis may be insufficient without tunings. We have therefore ignored such
possible sources of GWs.

6 Conclusions

We have investigated the size of the enhancement possible within bubble-assisted leptogenesis
compared to the conventional thermal leptogenesis scenario, assuming a classically scale-

8It has been however recently claimed [93] that in the case of strong transition αn ≫ 1 and fast bubbles
γw ≫ 1, the spectrum of the sound waves induced GW might be indistinguishable from the bubble collision
component. The UV tail of the GW signal might change in future studies but we consider this beyond the
scope of the current work.
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invariant scalar potential as the source of the FOPT. Additionally, we have briefly explored
the GW implications in this scenario, specifically focused on those produced during the
FOPT itself.

Although we have a stronger departure from the thermal equilibrium compared to the
conventional scenario, such that a large wash-out suppression can be avoided, there are
alternative processes necessarily predicted which serve to dilute the final asymmetry yield
which are not present in the conventional thermal scenario. These include the dilution due
to reheating and CP-conserving depletion processes of the RHN population from 2 → 2
annihilation to other B − L fields. We have established a systematic approach to include
all these effects for a general FOPT potential and a step-by-step description on how to
evaluate the baryon yield from bubble-assisted leptogenesis.

We numerically find that the most favorable range for the mass, MN , in bubble-assisted
leptogenesis is roughly 109 − 1010 GeV and an O(20) enhancement of YB in this region
compared to conventional leptogenesis. For larger values of MN , an even larger sized
enhancement is possible however, conventional thermal leptogenesis can efficiently produce
the required asymmetry in this mass range so bubble-assisted leptogenesis loses some of
its appeal. An enhancement remains possible in the region MN ∈ [107, 109] GeV compared
to the usual thermal scenario but is insufficient in generating the observed asymmetry,
therefore a supplementary mechanism which can provide an additional enhancement of ϵCP
is required.

An important characteristic of bubble-assisted leptogenesis that we highlight is that the
enhancement rapidly disappears when MN falls below 108 GeV. This is because Γann ∝ MN

while ΓD ∝ M2
N . We cannot yet conclude that this is an unavoidable consequence, as

we have restricted ourselves to classically scale-invariant potential so there still remains a
logical possibility that a different phase transition model can provide a larger value of znuc
such that Γann is suppressed: Γann ∝ z−4

nuc. However, whether there exists a model such that
a larger znuc can occur whilst simultaneously allowing for αn ∼ O(1) is doubtful.

Bubble-assisted leptogenesis predicts gravitational wave signals with frequencies around
O(102)-O(104)Hz. Their spectrums are mostly given by the sound wave contribution during
the FOPT, both for the SC case as well as the GBC case, in the phase transition parameter
space where the enhancement of YB compared to the conventional scenario is large. The
parameter range of MN ≲ 5× 109 GeV is within the sensitivity of future gravitational wave
detectors like ET, CE or LIGO O5. As the favorable mass range for MN in bubble-assisted
leptogenesis is around 109 GeV–1010 GeV, where the observed baryon asymmetry can be
explained with a natural choice of ϵCP, these upcoming detectors can probe an important
parameter regime of the scenario. Gravitational wave detectors with the ability to probe
higher frequency ranges, which have been recently discussed in refs. [49–54], will complement
the terrestrial-based detectors, provided that an improvement in the sensitivity is possible.
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A Other wash-out processes

It is known that for thermal leptogenesis, ∆L = 1 interactions γ(LN → Q3t), γ(tL → NQ3)
as well as ∆L = 2 interactions γ(HcL → L̄H) can bring numerical modifications to the final
lepton asymmetry. In this appendix, we would like to show that off-shell 2 ↔ 2 scatterings
are subdominant and can be safely discarded.

The process γ(HcL → L̄H) decouples at temperatures below T ≲ 1013 GeV so will we
ignore it. The box-diagram-induced process, γ(tL → NQ3), can be written as [10]

γ(tL → NQ3) =
gtgLT

32π4

∫
M2

N

dss3/2K1(
√

s/T )σtL→NQ3(s). (A.1)

For σ = y2
t Y 2

D/8πs and defining z ≡ MN
T ≫ 1, we obtain

γ(tL → NQ3) =
gtgLT

32π4
y2

t Y 2
D

8π

∫
M2

N

dss1/2K1(
√

s/T ) (A.2)

≈ gtgLT

32π4
y2

t Y 2
D

8π

∫
M2

N

ds

√
π
√

s

2 e−
√

s/T (A.3)

≈ gtgLy2
t Y 2

D

128π5 T 4√zK1(z). (A.4)

Comparing Eq (A.4) with Eq (3.25) we see that

γ(tL → NQ3)
γ(HL → N) ≈ 0.1z−3/2. (A.5)

We then conclude that we can neglect the (tL → NQ3) in the Boltzmann equations. More
generally, we can neglect Higgs-mediated off-shell 2 → 2 processes, because the Higgs
propagator scales like 1/M2

N in this regime and is then subdominant with respect to decays.
Since the scalar field ϕ is light (and possibly the gauge field Aµ), it is also abundant
in the plasma even after the transition. As a consequence, another possible wash-out is
γ(ϕϕ → NN), (γ(AµAµ → NN)), which has the rate

γϕϕ→NN ≈ T

32π4

∫ ∞

s=(2MN )2
dss3/2K1(

√
s/T )σϕϕ→NN (A.6)

≈
λ2

ϕy2T

128π5 × 4

∫
s=(2MN )2

dss
√

π
√

s/2Te−
√

s/T (A.7)

≈
λ2

ϕy2T 4

128π5 × 4Γ[4, 2z], (A.8)
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where λϕ is a loop induced quartic. Similarly

γAA→NN ≈ g2y2T 4

128π5 × 4Γ[4, 2z]. (A.9)

Requiring that this rate is smaller than the inverse decay, we obtain

γID > γϕϕ→NN , γAA→NN ⇒ (λ−2
ϕ , g−2) ≳ 1

103Y 2
D

Γ[4, 2z]e−z

z5/2 (A.10)

B Decay of the light ϕ

In all the parameter space we study, the scalar field is a light dof with loop-suppressed mass

m2
ϕ = βλe−(2δλ/βλ+1/2)µ2

∗ = βλv2
ϕ ≪ m2

N , m2
s, m2

A. (B.1)

The channel of decay ϕ → NN, ss, or AA is thus kinematically forbidden.
However, ϕ cannot be stable because we cannot forbid its Higgs portal interaction,

−∆L = λhϕ|H|2|Φ|2. (B.2)

Since it recieves quantum corrections from the box diagram of L and N , even if we assume
λhϕ = 0 at some RG scale, it becomes nonzero at other scales, so |λhϕ| ≳ y2Y 2

D/16π2.
However, this lower bound of λhϕ implies that there must be a fine tuning from the bare
Higgs mass term since eq. (B.2) gives a large contribution to the Higgs quadratic term with
∆m2

h = λhϕv2
ϕ. Therefore, we need a large tuning, anyway, so we give up setting λhϕ to

be small.
Taking λhϕ to be a free parameter, the decay rate of ϕ → H†H can be obtained as

Γ(ϕ → H†H) ∼ |λhϕvϕ|2

8π mϕ
. (B.3)

Comparing this to the Hubble rate, we obtain

Γ
H

∼ O(1)
(

λ2
hϕ

10−4

)2(10−2

βλ

)1/2 (
vϕ

109 GeV

)(109 GeV
T

)2

, (B.4)

so ϕ decays rapidly if λhϕ > 10−4, which is small enough not to mess up the phase transition
properties we obtained in the main text.

C Gravitational wave signal

In this appendix, we will quickly review the expressions for the gravitational signal induced
by the phase transition. Theoretically, two different sources of GW are well understood;
the bubble collision[96], dominating the signal in the case of runaway walls (theories with
no gauge bosons) [65], and the plasma sound wave[77], dominating in the case of terminal
velocity walls, (theories with gauge bosons) [79].
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C.1 Energy budget

As the transition completes, it releases energy, which can go into sound waves propagating
in the plasma, heat, and kinetic energy accelerating the bubble walls. To manifest the
conservation of energy, we define the following parameters:

κwall, and κfluid = 1− κwall. (C.1)

The parameter κwall can be understood as a measure of the ratio of energy going to the
wall kinetic energy

κwall ≡
Ewall
Etotal

(C.2)

and depends on the regime of the velocity of the bubble wall. As we have seen above, the
regime of expansion of the bubble results from the balance between the driving force ∆V

and the pressure originating from the plasma

Ptot ≈ PLO︸︷︷︸
(3.7)

+PNLO︸ ︷︷ ︸
(5.1)

, (C.3)

where the first contribution in the LO (leading order) contribution to the pressure and the
second term is the NLO (next-to-leading order) contribution to the pressure. The condition

∆V = Ptot(γ = γterminal) (C.4)

defines the terminal boost factor of the bubble. On the other hand, if eq. (C.4) is never
fulfilled, bubble walls get accelerated until the percolation, and we can estimate the boost
factor at collision as

γ⋆ ∼ R⋆

Rc
(C.5)

with Rc =
(

3
2π

S3
∆V

)1/3
∼ 1/Tnuc and R⋆ the size of the bubble at the collision. In our work,

there are two qualitatively different regimes as follows.9

1. Relativistic but with a terminal velocity (GBC)
The driving force is large enough to overcome the leading order friction but not the
NLO friction. As a sizeable γ is reached, the NLO order contribution to the friction
balances the latent heat and the acceleration of the wall ends, defining a terminal
value γterminal. The two conditions for this regime take the form:

∆V > PLO, and ∆V = PNLO
∣∣
γ=γterminal

. (C.6)

In this context, the parameters defined above become

κwall = 0, and κfluid = 1. (C.7)
9Remind that we take the benchmark parameters in the study of gravitational waves to have the

enhancement of baryon asymmetry maximized for a given y. Consequently, all the benchmark points have
∆V always greater than PLO, and therefore, in any case, we approximate vw ≃ 1.
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2. Runaway Regime (SC)
When the symmetry involved in the PT is not gauged, ∆mGB = 0 in eq. (5.1). Then,
the release of energy ∆V is large enough to overcome all the sources of friction and
then the wall keeps accelerating until the collision. Mathematically, the condition can
be written as

∆V >
(
PLO + PNLO

)
|collision (C.8)

In this case, the energy budget parameters introduced above become

κwall = 1− α∞
αn

, and κfluid =
(
1− κwall

)
(C.9)

where
α∞ = PLO

ρradiation
. (C.10)

C.2 From bubble collision

The amplitude and spectrum of the GW signal from bubble collision has been simulated
in [96]

dΩϕh2

dln(f) = 3.22× 10−3Fgw,0h2(HrehR⋆)2
(

κwallαn

1 + αn

)2
Sϕ(f, f̃ϕ), (C.11)

where Fgw,0 ≃ 3.5 × 10−5 (100/g∗)1/3 is the red-shift factor of the radiation until today
with h = 0.67 [97], g⋆ is the number of relativistic degrees of freedom at Treh, Hreh =√

8π
3

π2

30 g⋆T 2
reh/MPl is the Hubble rate evaluated at Treh and R⋆ is the average radius of the

bubbles at the percolation. The spectral function Sϕ is given by

Sϕ(f, f̃) = (a + b)cf̃ bfa(
bf̃

a+b
c + af

a+b
c
)c (C.12)

with a = 3, b = 1.51, c = 2.18, and the peak frequency

f̃ϕ = 3.2
2πR⋆

×
(
3.7× 10−5 g

−1/3
⋆

(100GeV
Treh

))
(C.13)

= 0.35× 10−5 βPT

(
Treh

100GeV

)(
g⋆

100

)1/6
Hz, (C.14)

where we approximate

R⋆ ≃ (8π)1/3

βPTHreh
. (C.15)

Remind that βPT is dimensionless in our definition.

C.3 From sound waves

The gravitational wave signal induced by sound waves is given by [89, 98]

dΩswh2

d ln(f) = 2.061Fgw,0h2 Γ2 Ū4
f (HnR⋆) Ω̃gw Ssw(f/fp,0)×min

(
1, HrehR⋆/Ūf

)
(C.16)
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where Γ = 1 + p̄/ϵ̄ ≃ 4/3 is the adiabatic index, Ūf is the RMS fluid velocity [99], Ω̃gw
is a dimensionless efficiency factor. The last term of eq. (C.16) takes into account the
suppression factor in the regime of HrehR⋆/Ūf < 1 as discussed in ref. [98]. We approximate
Ūf by following ref. [99]

Ūf ≃
√

3
4

κswαn

1 + αn
, (C.17)

where [99, 100]
κsw ≃ κfluid

αn

0.73 + 0.083√αn + αn
. (C.18)

We take Ω̃gw ∼ 10−2 from the numerical simulation [89, 90] in the case of detonations, and
depict the result in figure 8 by solid and dashed lines, respectively. The peak frequency is
given by

f̃sw = 2.6× 10−5
( 1

HrehR⋆

)(
zp

10

)(
Treh

100 GeV

)(
g⋆

100

)1/6
Hz, (C.19)

where zp parametrizes the actual peak position in the numerical simulation. We take zp ≃ 10
based on ref. [89]. The spectral shape of GW is given by

Ssw = s3
( 7
4 + 3s2

)7/2
. (C.20)

Since the numerical simulations of gravitational waves from the sound waves have
been only performed up to αn ≲ 0.3, we set a relatively large uncertainty range of Ω̃gw
in eq. (C.16) since we focus on αn ∼ 5. We find that, in terms of the amplitude at the
peak frequency, the sound wave contribution is more dominant compared to the scalar
contribution within the uncertainty of Ω̃gw, which can also be found in other literature [101].

C.4 Comments on other sources

During a FOPT, there are other sources that can provide additional gravitational wave
signals. For instance, turbulences made from bubble collisions can provide additional
gravitational waves [102], but we do not take it into account because the current uncertainty
in the numerical studies is large.

Another interesting idea was recently proposed in ref. [103] where the particles inside
bubbles freely stream within the time scale of the PT duration. In this case, the peak
frequency can be shifted to a lower value compared to the sound wave contribution. Although
this effect might increase the testability of our scenario, for MN ≳ 108 GeV, the decay of NI

dominates, and the interactions of their daughter particles do not seem sufficiently feeble
(because they are SM particles). On the other hand, when MN ≲ 108 GeV, we have a large
depletion from the annihilation NINI → ϕϕ, so the most of the energy density can be
transferred to ϕ which is long-lived and feebly interacting with the plasma at Tn ≪ MN .
In this case, we may be able to apply the scheme of ref. [103], but this parameter space is
less motivated in the explanation of the observed baryon asymmetry.

Open Access. This article is distributed under the terms of the Creative Commons
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