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We present a Bayesian synthetic likelihood method to estimate both the

parameters and their uncertainty in systems of stochastic di�erential equations.

Together with novel summary statistics the method provides a generic and

model-agnostic estimation procedure and is shown to performwell even for small

observational data sets and biased observations of latent processes. Moreover,

a strategy for assessing the goodness of the model fit to the observational

data is provided. The combination of the aforementioned features di�erentiates

our approach from other well-established estimation methods. We would like

to stress the fact that the algorithm is pleasingly parallel and thus well suited

for implementation on modern computing hardware. We test and compare

the method to maximum likelihood, filtering and transition density estimation

methods on a number of practically relevant examples frommathematical finance.

Additionally, we analyze how to treat the lack-of-fit in situations where the model

is biased due to the necessity of using proxies in place of unobserved volatility.

KEYWORDS
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1. Introduction

Parameter estimation in systems of stochastic differential equations (SDEs) is a crucial

task in many practical applications and the ability to quantifying the uncertainty of the

parameter estimates is a key feature of modern estimationmethods. Inmathematical finance,

stochastic volatility models are used to describe both the movements of the underlying

assets as well as the corresponding latent volatility process. During the last two decades,

volatility has become an asset class of its own (see, e.g., [1]), and modeling it using

carefully calibrated SDE models is an active research area both in academia and practice.

As volatility is not directly observable, one has to rely on volatility proxies in order to

calibrate these models under the physical measure which is necessary, e.g., in insurance

risk management under the Solvency II framework: For the calculation of available capital,

market consistent evaluation of both assets and liabilities given both risk-neutral and real-

world stress scenarios is required (cf. [2]). This work is motivated by the necessity of feasible

parameter estimation given stock price time series and volatility proxy observation data. For

the well-known Heston system of SDEs, both filtering approaches and maximum likelihood

estimators have been traditionally used to estimate parameters (see, e.g.,[3–8]). However,

the volatility process can not be observed directly and these approaches can be quite
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sensitive to noise and modeling errors due to the use of volatility

proxies. Moreover, filtering approaches require some manual fine

tuning and maximum likelihood methods provide merely point

estimates without quantifying the inherent uncertainty. On top of

that, the computation of the likelihood function is model specific.

Therefore a generic model-agnostic estimation procedure with the

ability to quantify estimation uncertainty would be desirable. In

this work, we introduce such a method which performs well even

for comparably small observational data sets and biased indirect

observations of the volatility process via proxies. Moreover, we

provide a strategy to assess the goodness of the model fit to the data.

In order to demonstrate the feasibility of our method, we consider

test cases from mathematical finance. We would, however, like to

stress once more that the proposed method is generic and may

therefore be employed in various fields of application.

SDE systems are commonly written as a sum of a stochastic part

and a deterministic evolution model

dx = f (x, t; θ)dt + L(x, t; θ)w(t), (1)

where x ∈ R
n, f is a drift function, w is an n-dimensional

zero-mean white Gaussian process, θ is an unknown parameter

vector and the diffusion term L may depend on x, t and θ .

A standard method to estimate the parameter vector θ is to

approximate the maximum likelihood or the maximum a

posteriori (MAP) estimator, conditional on given observational

data. Such approaches are well-established in the case of

linear SDEs where the transition density p
[

x(tk)|x(tk−1), θ
]

,

as a closed-form solution of the Fokker-Planck equation, is

available so that the likelihood can be evaluated analytically.

This is of course an ideal situation, since in many practically

relevant applications the drift function f (·) is non-linear and

the diffusion term L depends on the state variables. In that case,

the transition density is in general not available in analytical

form. To solve such problems, many methods have been

implemented. The approach developed in [9] aims to solve

the Fokker-Planck equation by an ensemble of simulations

that is used to approximate the transition density. likelihood

approximation techniques include the simulated maximum

likelihood estimation [10] and Hermite expansions [11]. Also

filtering approaches have been employed for the estimation of

the parameters of such systems, e.g., Kalman or extended Kalman

filters, non-linear Gaussian filtering, or ensemble Kalman filters,

see for example [12].

In [13], we introduced a distance based approach called

correlation integral likelihood (CIL), first proposed by [14], which

enables the estimation of both the parameters and their uncertainty,

also in the case of non-uniform or sparse data. The focus of this

work was on computationally demandingmodels:We assumed that

a sufficiently long time series of data was available, thus allowing the

creation of a likelihood for a subset of observations, by subsampling

all the available data. The likelihood was computed off-line, and

the parameter sampling performed for a subset size data only,

thus saving CPU time. In the present work, we study a different

way of characterizing the stochastic variability of the state space

assuming an in a certain sense complementary setting: Supposing

that a sufficient amount of data for a subsampling approach is not

available, and that computational limitations do not prevent the

use of multiple simulations, we follow the basic idea of synthetic

likelihood (SL) by [15], later developed under the title Bayesian

synthetic likelihood (BSL) in [16]. In contrast to these works, we

employ the idea of [13] using the empirical cumulative distribution

function (eCDF) vectors of data as themain way of constructing the

statistics. Here the eCDF vectors are based on scalar data directly

provided by the SDE systems, unlike the data used in [13]. The

likelihood is given by the mean and covariance of the eCDF vectors,

which can be empirically estimated. Indeed, the distribution is

approximately Gaussian by the Donsker theorem in the case of

i.i.d. data, and by more general two sample U-statistic theory in

the case of weakly correlated data (see [17]). While the feature

vectors may require case-dependent constructions, the approach

is otherwise generic. It only requires numerical simulations of the

model under consideration, without any further in-depth analysis

of the model.

The rest of the paper is structured as follows. Section 2

introduces the BSL method and discusses the details of the

implementation with the eCDF as the main summary statistic.

Applications of the approach can be found in Section 3. We

first apply the method to a toy example, the Ornstein-Uhlenbeck

system, where comparisons with analytical solutions and existing

filtering methods are also provided. Then, we study the Merton

model, where the presence of random jumps renders prediction

difficult for filtering methods. Finally, we perform parameter

estimation for the Heston model, a common workhorse to model

and forecast volatility in the financial industry which is known to

reproduce many of the stylized facts observed in real markets. We

study parameter estimation for both the case of directly observed

volatility and the case of volatility which is indirectly observed

via a proxy and we compare our results to an ensemble method

introduce in [9].

2. Methods

2.1. Bayesian synthetic likelihood for SDE

The theoretical background of our approach is based on

a generalization of the central limit theorem. Instead of the

standard mean values we estimate the empirical cumulative

distribution function (eCDF) of data. According to the classical

Donsker theorem (see [18]), the cumulative distribution function

of independent and identically distributed scalar valued data

converges toward a Brownian bridge:

Theorem (Donsker, Skorokhod, Kolmogorov). Let Fn be the

empirical distribution function of a sequence of independent and

identically distributed random variables X1,X2,X3, . . .Xn which

have the distribution function F. Define the centered and scaled

version of Fn by

Gn(x) =
√
n(Fn(x)− F(x)).

The sequence of Gn(x), as random elements of the Skorokhod

space D, converges in distribution to a Brownian bridge G with zero

mean and covariance given by cov(G(s),G(t)) = E[G(s)G(t)] =
min(F(s), F(t))− F(s)F(t).
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The theorem guarantees asymptotic normality of the empirical

distribution function. For further details see [18] or, for more

recent presentations, e.g., [19]. In case of a finite-dimensional data

the empirical cumulative distribution function is calculated by

binning the data. The resulting vector tends to a multi-dimensional

Gaussian distribution, with the dimension equal to the number of

bins. The examples studied here do not, however, have independent

and identically distributed data. Nevertheless, theorems in the

U-statistics literature [17, 20] generalize the Donsker theorem

for weakly correlated data. In numerical examples the mean

and the covariance matrix that define the Gaussian distribution

can be estimated by repeatedly computed eCDF vectors. In our

examples, we carefully verify the Gaussianity using the χ2 test

for the set of eCDF vectors, and performing standard normality

tests for individual components of the vector. In the present

work this likelihood construction is combined with the synthetic

likelihood approach.

The synthetic likelihood, or Bayesian synthetic likelihood

(BSL), approach aims to approximate the posterior distribution

of a set of parameters using simulation-based model fitting.

Synthetic likelihood methods are based on the assumption that

summary statistics are approximately Gaussian. This allows the

construction of a likelihood by estimating the mean and covariance

matrix. Similarly to all the likelihood-free methods, this approach is

suitable in situations where the likelihood is analytically intractable.

The method selects a summary statistic s, which is assumed to

store most of the information contained in the observed data y,

and is assumed to follow a normal distribution. Depending on the

summary statistics, the Gaussianity may be ensured by the central

limit theorem, the synthetic likelihood is then asymptotically

normal; see [15, 16] for more details.

Given a stochastic model depending on a parameter vector θ

and observed data y = (y1, . . . , yN), one aims to estimate the

posterior distribution of the model parameters by the Bayes’ rule

p(θ |y) ∼ p(y|θ)p(θ). (2)

In cases where the likelihood is intractable, one constructs a

function S :RN → R
d, which maps the observed data y into a

summary statistic vector sy = S(y) corresponding to the data y.

The posterior distribution has the form

p(θ |sy) ∼ p(sy|θ)p(θ), (3)

where p(θ |sy) should be close to p(θ |y) in distribution. The main

issue with this idea is that in many situations where the likelihood

on the data is intractable, the same is true for the likelihood on

the summary statistic. The idea behind BSL [16] is to use an

auxiliary likelihood based on a multivariate normal approximation.

Under the assumption that the summary statistic is Gaussian, the

estimated synthetic likelihood is of the form N(sy;µn(θ),6n(θ))

where µn(θ) and 6n(θ) are the respective mean and the covariance

estimates. In general, the true mean and covariance µ and 6 are

unknown and therefore they are estimated by simulating the model

n times using the given parameter θ , each time producing a data

sample of sizeN. Based on this synthetic data, the sample mean and

sample covariance matrix of the corresponding summary statistic

can be calculated. This step can then be embedded in an MCMC

algorithm [16]. For each proposed θ , the estimates for µn(θ) and

6n(θ) are computed, and the proposed candidate is accepted or

rejected based on how well sy fits the constructed likelihood.

The central limit theorem which guarantees asymptotic

normality of the synthetic likelihood relies on the strong

assumption of multivariate normality of the distribution of the

summary statistics. This assumption may not hold in practice,

especially when the dimension of the statistics increases. The

normality of the summary statistics is naturally guaranteed if the

summary is given as a sum of the simulated model values with

bounded variance. This may, however, require a high value for

the number of repetitions n to ensure empirical normality. Several

studies have been carried out to weaken the normality assumption

on which the BSL method relies. For example, in [15] the author

suggests a transformation of s to achieve multivariate normality,

but this may not solve the problem in case of high dimensional

summary statistics. The normality assumption is relaxed in [21]

by proposing a more flexible density estimator called the extended

empirical saddlepoint approximation. The authors of [22] develop

a semi-parametric approach to approximate the summary statistics

likelihood involving the kernel density estimates for the marginal

distributions and a combination of themwith a Gaussian copula. In

[23], the problem of estimating the parameter posterior is framed

as a problem of estimating the ratio between the data generating

distribution and the marginal distribution.

In the present work, we avoid such issues by employing the

likelihood function based on the eCDF vectors. The Gaussianity

is then asymptotically guaranteed by the Donsker theorem—not

just an assumption. In our numerical examples we verify the

Gaussianity by normality tests, the χ2 test for the eCDF vectors,

and standard scalar-valued tests for the individual components

of the vectors. The so-called ABC methods provide another

well-known simulation-based approach for intractable likelihoods,

or likelihood-free situations. Our approach differs from them,

as we actually do have a well-defined likelihood, that is even

normally distributed.

In a nutshell the BSL algorithm proceeds as follows: We

simulate the model n times for the proposed parameter value,

calculate the eCDF vector of the selected (scalar valued) simulation

results, concatenate the vectors (if more than one eCDF is

computed) and calculate the mean and covariance of the emerging

set of vectors. The synthetic likelihood is thus constructed, and the

accept/reject step can be performed as a part of a standard MCMC

sampling algorithm.

The basic steps used to find the posterior distribution of

the parameters by MCMC sampling are summarized in the

Algorithm 1 below. As the likelihood is stochastic, no numerically

exact maximum of the likelihood function can exist, but we assume

that a robust estimate for the model parameter vector is available,

from which to efficiently start the MCMC sampling. In our test

cases this is simply the reference value of the model parameter

vector used to create the synthetic data, otherwise an optimization

step is first performed tomatch themodel to the data. For simplicity

we shall call this optimized value the MAP point estimate in the

following. However, when fitting a model to real data a bias can be

expected, and a test for goodness of fit (or lack of fit) is needed. See

the Algorithm 2 and the discussion below for more details about
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Initialization

Given N observed scalar data points yN = (y1, . . . , yN), map the

data into the summary statistic vector s(yN), select the bin values

xi, i = 1, 2, ..., nx according to the scale of the data values. Select the

number n of the BSL simulation repetitions. Find the parameter θ̂

that minimizes the model-data difference from which to start the

chain.

MCMC steps

Step 1. For a proposed candidate θ̂ , simulate n samples

y1N , y
2
N , . . . , y

n
N

Step 2. Compute the nx dimensional eCDF vector s(yiN) for each y
i
N ,

i = 1, . . . , n

Step 3. Collect the vectors in a matrix S and compute the mean and

the covariance

µ = mean(S) 6 = Cov(S)

Step 4. Compute the negative log likelihood:

log
(

p(θ |s(yN)
)

= +1

2

(

s(yN)− µ
)T

6−1
(

s(yN)− µ
)

+1

2
log(det(6))

Step 5. Accept / reject the candidate θ̂ using an MCMC algorithm

Algorithm1. MCMCsamplingof a Bayesian Synthetic likelihoodwith eCDF

summary statistics.

how we perform this test. Before launching the MCMC sampling,

we verify the Gaussianity of the synthetic likelihood at the initial

point of the MCMC sampling.

Note that as the likelihood is re-created at every sampling

iteration, the log(det(6)) term needs to be included. When using

eCDFs for summary statistics, one has to select the bin values at

which the cumulative sums are evaluated. Too dense bin values

produce noisy histograms and CDFs, resulting in close to singular

covariance matrices and low acceptance rates in MCMC sampling

in our situation. On the other hand, too few values tend to loose

information of the data. Earlier experiences [13, 14, 24] have shown

that the sampled parameter posteriors are not sensitive with respect

to the specific selection of the number nx of the bins, as long as

the above extremes are avoided. Unless otherwise stated, all the

examples of this paper are computed using nx = 10.

Remark: For the sake of readability, Algorithm is formulated

assuming only one eCDF vector is used as the summary statistics.

More typically we employ several feature vectors. In such a case,

the above steps are repeated separately for each feature vector

and the resulting eCDF vectors are concatenated to get the final

vector. The concatenated vector of Gaussian vectors is Gaussian

again, and the mean and covariance of that vector provides the

likelihood function. The normality of the combined feature vector

is numerically verified in the same way as described earlier.

Initialization Phase

Given N observed scalar data points yN = (y1, . . . , yN), map data

into the summary statistic vector s(yN), select the bin values xi,

i = 1, 2, ..., nx according to the scale of the data values. Select

the number n of the BSL simulation repetitions. Fix the level of

significance α and compute the value χ2
α of the χ2 distribution

with degrees of freedom given by the total number of bins. For

confidence level of 99% select α = 0.01

GOF test

Step 1. For a given parameter θ̂ compute Step 1-3 of Algorithm 1

Step 2. Compute the un-normalized negative log likelihood:

NLL
(

p(θ̂ |s(yN)
)

=
(

s(yN)− µ
)T

6−1
(

s(yN)− µ
)

Step 3. Repeat the previous two points for a sufficient number of

times to obtain a robust estimate of the NLL
(

p(θ̂ |s(yN)
)

variability

and compare these values to χ2
α

Remark

Values mostly smaller than χ2
α will indicate good "fit" between the

data and the model with the given parameter θ̂ .

Algorithm 2. Goodness of fit test.

2.2. Assessing the goodness of the model
fits

Above, we assume that a robust estimate of the region of the

parameter space at which to start sampling efficiently is available.

In case of synthetic data sets there exists, by construction, a region

of the parameter space for which the model can quantitatively

and qualitatively re-produce the statistics of the reference data.

However, when fitting a model to real data a bias can be expected,

and a test for goodness of fit (or lack of fit) is needed. Standard

criteria, based on residual sums of the fit, are not available in the

stochastic setting discussed here. We discuss here how to employ

ingredients used to perform the Gaussianity tests employed in the

initialization phase of Algorithm for a goodness of fit (GOF) test.

Given a set of parameters, this will tell us how appropriate a model

is in representing the underlying dynamics that produced the data.

Note that for any fixed set of parameters (as in this GOF tests)

the likelihood’s mean and covariance are fixed as well and the
1
2 log[det(6)] term is not used for the negative log likelihood (NLL)

calculation. The procedure is a version of the classical χ2 tests used

as a standard tool since [25], only the construction and evaluations

of the likelihood function are done in a different way.

In a nutshell the goodness of fit test proceeds as follows:

This procedure can help in several crucial aspects. It can be

helpful in understanding whether the model is or is not appropriate

to represent the underlying dynamics that generated the data,

and indicate possible needs for further model selection. Moreover,
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before starting the MCMC sampling, it can be used to see if the

optimizer has already found an appropriate region of the parameter

space. If this is not the case, it shows how far from the data the

model is at the initial parameter value. The latter case may be due

to a genuine lack of fit, or it may indicate that the optimizer has got

stuck in a local minimum. In Section 4, examples of lack of fit are

given when using a proxy for the volatility process.We demonstrate

how this may result in biased estimates, and show how to avoid it

(see Figure 8).

2.3. Kalman filter and kernel density
estimation methods

We will compare our results with those obtained by the

basic Kalman filter (KF) approach, see for instance [26]. In a

more demanding situation, where KF runs into difficulties, we

employ a more advanced ensemble approach as an alternative

to produce kernel density estimates that approximate the SDE

transition probabilities.

Given an infinite number of simulations for SDEs, one could

theoretically construct SDE model transition densities to obtain

the solution to Fokker-Planck equations. In practice, we are

limited to a finite number of simulations which we can use to

approximate the transition densities p(yn+1 | yn). We can use a

kernel density estimator to approximate the transition densities in

order to numerically evaluate the likelihood function
N−1
∏

n=1
p(yn+1 |

yn). An ensemble of simulations is computed for each pair of

consecutive data points (yn, yn+1), starting at the data point yn.

Given more accurate model parameter estimates, the simulated

trajectories should follow the data more closely. This results in

higher likelihood values for more correct parameters values.

The simulations are then used to construct a transition density

which is evaluated at the next data point yn+1, yielding an estimate

for the transition likelihood for the given parameters. Such an

approach has been used for maximum likelihood estimation of

SDE parameters [9]. We follow the authors in using a Gaussian

kernel as the kernel. For more details on the density estimation

procedure, see [9]. Instead of maximum likelihood estimation as

used by [9], we use the kernel density estimates to compute the

likelihood of the SDE model parameters. This enables the use of

an MCMC method to estimate the posterior distribution of the

SDE model parameters. The BSL and the kernel density estimation

(KDE) share the similarity in their approach, that they both rely on

ensembles of simulations to construct a likelihood estimate for the

SDE parameters. The information provided by the simulations is

used in different ways, which results in a considerable difference in

the required number of simulations. We discuss this in more detail

in Section 4.

2.4. Noisy Markov chain Monte Carlo
sampling

As discussed above, we employ empirically Gaussian

likelihoods for parameter sampling and standard MCMC

sampling algorithms may be used. However, the likelihood values

are stochastic by construction, and need to be re-evaluated at

each MCMC step during the BSL likelihood sampling. Depending

on the data and number of BSL simulations n, the acceptance

rate may get low. In such a case, the acceptance rate can be

dramatically improved by using higher values for n, in the range

1, 000 < n < 3, 000. Essentially the same parameter posteriors

were obtained for high and low values of n by increasing the

chain length of sampling for low n. But this comes at the cost of

higher CPU demands. The possibility of low acceptance rate for

low n values is due to uncertainty in the estimates of the mean

and covariance of the BSL likelihood. Increased n values stabilize

those estimates, thus leading to higher acceptance rates. A remedy

is to use noisy MCMC sampling [27, 28]. A high rejection rate

of a stochastic likelihood function typically is due to the fact that

the negative log likelihood can get exceedingly low values simply

due to the stochasticity. The idea behind the noisy sampling is to

re-evaluate the likelihood function at the same parameter value

where the sampling has been stuck. In our examples, we perform

the re-evaluation if 200 consecutive rejections have taken place.

This allows us to achieve reliable posterior estimates with lower

values of n.

3. Test cases

The approach introduced in Section 2 is applied here to several

SDE models with increasing difficulty of parameter estimation. We

start with the well–known Ornstein-Uhlenbeck model that allows

for comparison to standard estimation methods. Next, the Merton

model is discussed as a situation where these standard methods

actually fail. Finally, we study a test case for the widely-used Heston

stochastic volatility model.

3.1. Ornstein-Uhlenbeck model

The standard one-dimensional Ornstein-Uhlenbeck model for

a mean reverting process is

dXt = −θXtdt + σdWt , (4)

where θ is the rate of mean reversion and σ the diffusion coefficient

for the Wiener process Wt . As the reference values for the model

parameters we will use (θ , σ ) = [0.5, 1]. The Euler-Maruyama

algorithm with a time step 1t is used for numerical integration to

compute the values Xi, i = 1, 2, ...,N. For simplicity, we take data at

every integration time step. This setting is used in order to allow for

a direct comparison with estimates obtained via a standard filtering

method. Filtering methods are based on prediction / correction

steps, and so the observation time step cannot be much larger than

the integration time step to enable the prediction. Figure 1 exhibits

an example trajectory.

3.2. Merton model

A more complex example, when it comes to parameter

estimation, is the Merton model [29]. It is the Ornstein-Uhlenbeck
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FIGURE 1

An example Ornstein-Uhlenbeck trajectory with (θ , σ ) = [0.5, 1] in

the time interval [0, 10], computed by the Euler-Maruyama

integration with time step 1t = 0.01.

FIGURE 2

An example Merton trajectory with (θ , σ , λ) = [10;0.08;10], and
(µ, ǫ) = [0.01, 0.1] in the time interval [0, 10], computed by the

Euler-Maruyama integration with time step 1t = 0.01. The expected

time of arrival times of the jumps is given by λ1t.

process where a “jump” component is added via a Poisson process.

The model equation can be written as

dXt = −θXtdt + σdWt + dq; (5)

where (θ , σ ) are the same parameters as in the Ornstein-Uhlenbeck

system, and q(t) denotes an independent Poisson process for jumps,

with the frequency of the jumps given by a Poisson parameter

λ. Moreover, the size for each jump is randomly sampled from

Zt ∼ N(µ, ǫ). Figure 2 exhibits an example trajectory.

3.3. Heston model

Finally, we demonstrate the feasibility of our method by

applying it to a task from the field of insurance risk management.

The Heston stochastic volatility model has originally been

introduced to price options under the risk-neutral measure [30].

Under the corresponding risk-neutral dynamics, any traded asset,

such as, e.g., a non-dividend-paying stock must grow on average at

the risk-free rate. While this risk-neutral measure is useful for the

valuation of derivatives, it is also artificial, chosen in such a way

that pricing corresponds to taking the risk-neutral expectation of

the payoff and discounting at the risk-free rate. Risk management,

in contrast, requires actual probabilities, e.g., of losing more than

5% of the value of a portfolio of stocks over a given time horizon.

The physical measure gives the actual probability of occurrence

of events and the Heston model under this measure is commonly

used in risk management practice to predict future returns or

volatility from historical time series, for instance in Solvency Capital

Requirement calculations (see, e.g., [2]). Therefore, we concentrate

here on the Heston model for modeling a stock price S under the

physical measure, see Figure 3. As is common practice in parameter

estimation, we have to stationarize the data which is done by using

returns rather than prices. The corresponding system of Heston

SDEs reads

dSt/St = (r + ηvt)dt +
√
vt(

√

1− ρ2dW1
t + ρdW2

t ), (6)

dvt = k(θ − vt)dt + ǫ
√
vtdW

2
t , (7)

where S denotes the stock price process and v the unobservable

instantaneous volatility process. W1 and W2 are independent

Wiener processes. Furthermore we have the following

model parameters:

• r risk-free rate of return

• θ long run average price variance

• k rate of mean reversion to θp

• ǫ volatility of volatility

• ρ correlation parameter between the Wiener processes.

We require the Cox-Ingersoll-Ross process of the volatility v to

be strictly positive, therefore we impose the Feller condition 2kθ >

ǫ2. Under the physical measure, the expected return includes an

additional premium in excess of the risk-free rate. This so-called

equity premium η is the compensation for the diffusive risk and

can be estimated from the stock price time series alone. Note that

η could be further partitioned into the compensation for market

risk per unit of dW1 and volatility risk per unit of dW2, i.e., η =
λ1

√

1− ρ2 + λ2ρ. However, this partition can not be inferred

without including another class of observations, namely option

prices observed in the market and therefore we set λ2 = 0. While

both λ1 and λ2 could in principle be estimated by including option

price time series, this comes at a massive computational cost (cf.

[8]), and is therefore left for future research.

In practice, only the time series of the prices S can be observed

directly so that in order to estimate the corresponding parameters

of theHestonmodel, a proxy for the unobserved volatility process is

required. A number of possible constructions for proxies have been

suggested such as realized volatility measures [31, 32], integrated
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FIGURE 3

Example Heston trajectories with daily observations in the time interval [0, 500] with reference parameters [θ , k, ǫ, ρ, λ1] = [0.1, 3, 0.25,−0.8, 4],

computed by the QE-scheme. (Left) Instantaneous volatility. (Right) Stock price.

volatility proxies and Black-Scholes implied volatility proxies [6]

and more recently, the VIX index published by the Chicago

Board Options Exchange (CBOE), see [33], has been used as a

proxy for the S&P 500 index volatility (see, e.g., [2, 7, 8, 34]).

In our experiments we study the Heston system, first supposing

that time series for both S and v have been observed directly—

reproducing an experimental setup from [6, 7]. Next, we employ

the same data but use only the time series for the stock price S,

and create the observational data for the volatility by a proxy,

namely, the Black-Scholes implied volatility of an at-the-money

option with expiry in one month from the observation time. In

both cases, parameter estimation relies on the assumption that

the underlying system for the given data is the Heston model.

Last, in order to correct for the bias introduced by using the

proxy, we propose a model with Heston stock price dynamics and

volatility evolving according to the proxy dynamics for use in the

estimation algorithm.

It is well-known that the square root function in (6) increases

the bias for the standard Euler-Maruyama and Milstein scheme (cf.

[35]). In order to simulate both, stock price and volatility data,

we therefore employ the QE scheme by Andersen (see [36]). We

consider a test setup from [6, 7], to be precise, we use sample

lengths of 500 transitions at daily sampling intervals 1 = 1/252.

We generate a sample path using the QE scheme using thirty

sub-intervals per sampling interval 1 where twenty nine out of

every thirty observations are discarded which yields observations

at the desired daily frequency. The simulation is initialized with

the stock at 100 and the instantaneous volatility v0 initialized at

its long run mean. The parameter values for the generation of

the data are [θ , k, ǫ, ρ, λ1] = [0.1, 3, 0.25,−0.8, 4] and the risk-

free rate is fixed at 3.0%. Figure 8C exhibits example trajectories

for both the stock price and volatility process. Note, however, that

we can not compare our results directly to the those obtained

in [6, 9], as these maximum likelihood methods do not allow

for uncertainty quantification out of the box, in fact the bias

and standard deviation reported there correspond to repeated

maximum likelihood computations with different data via a Monte

Carlo method, while in the present work we use merely one fixed

data set. However, the posterior distributions presented in the

next section roughly agree with the variability of the individual

parameter uncertainties reported in [6].

Remark: We would like to emphasize here, that our test

setting assuming the comparably small number of merely 500 daily

observations reflects the requirements of real-world applications.

On the one hand, stock price time series with significantly more

than 500 daily observations will most probably cover different

market regimens so that fitting these with only one set of Heston

parameters is in general not feasible. On the other hand, using

intraday data to increase the number of observations is also not

recommendable as the Heston model does not take into account

market micro-structure effects (see, e.g., [37]).

4. Numerical results and discussion

In this section we use the three test models discussed in the

previous Section to compare the numerical results obtained by

our method to those given by the other methods presented in

Section 2, as well as with earlier results presented in literature.

Additionally, we assess the goodness of fit for the models to the

given observational data.

4.1. Ornstein-Uhlenbeck

In order to use the BSL method with the eCDF summary

statistics, two features are extracted from the computed time series:

The solutions Xi, and the time differences 1Xi = Xi+1 − Xi.

The latter is necessary identify the diffusion parameter σ reliably,

see also [13]. Separate eCDFs are computed for both features,

which then are combined to build the final feature vector. To

further clarify the role of the selected features, Figure 4, shows

the impact of employing each feature separately. Using only the

feature vector constructed with the eCDF of the state values

Xi, i = 1, 2, ...,N, produces a posterior distribution which is

narrow with respect to the mean reverting parameter θ but wide
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FIGURE 4

Ornstein-Uhlenbeck posteriors with data in the time interval [0, 10], time step 1t = 0.01, using BSL with n = 100 simulations. (Left) Only the state X

used (blue), respectively, only the di�erences of consecutive points 1X used (red). (Right) Ornstein-Uhlenbeck posterior when the combination of

both (X,1X) is used (yellow).

FIGURE 5

Ornstein-Uhlenbeck posterior for the reference parameters (θ , σ ) = [0.5;1] obtained by (Right) using KF (blue), respectively BSL (red). (Left) Using

KDE (blue), respectively BSL (red). N = 100 data points on the interval [0, 10], with integration time step 1t = 0.1.

(though limited) in the direction of σ . On the other hand, using

only the time differences Xi+1 − Xi, i = 1, 2, ...,N produces a

posterior distribution that is more accurate with respect to σ but

wide in the direction of the θ parameter. The intersection of the

two posterior regions yields a “small“ set of sampled points. Indeed,

using both features, concatenating the respective vectors into one

vector, gives the posterior in Figure 4 that roughly coincides with

the intersection set.

As stated in Section 2 (and see [13]), the normality of the eCDF

vectors holds also in non i.i.d. cases, assuming the data is weakly

correlated. In our present situation the observations are taken dense

in time and clearly are not i.i.d. But the normality can be verified by

the χ2 test and component-wise scalar normality tests.

In case of the Ornstein-Uhlenbeck model, we can compare the

result obtained by with the BSL approach against the estimation

results obtained by the well-known Kalman filter likelihood (KF).

The comparison with Kalman filter is performed using the Example

11.5 from the textbook [26]. The KF data and posterior come

from [26] and for the same fixed data set we perform both the

KF and the BSL estimation for data values yt in the interval t ∈
[0, 10] with integration time step 0.1, N = 100 data points and

n = 100 BSL simulations. The sampled parameter posteriors

naturally move depending on the simulated data created for the

MCMC sampling experiment. The example in Figure 5 presents

a typical case, showing how the BSL posteriors generally agree

with the samples by KF. The result comes, however, at higher

costs in terms of CPU times: BSL here uses n = 100 simulations

for each likelihood evaluation, whereas the KF requires only one.

Concerning the comparison to the KDE method we would like

to emphasize that the computational complexity of that method

exceeds that of the BSL method. We observed that significantly

higher numbers of SDE realizations were required for the KDE

approach. In order to achieve proper MCMC convergence, we used

1,000 SDE realizations to construct the likelihood estimates. This

in clear contrast to the 100 realizations we use for one step of the

MCMC sampling with BSL. The problem is further exacerbated

in the Merton and Heston cases. For the Merton and Heston

models, we use 200 realizations with the BSL MCMC sampling.
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The KDE approach required 15,000 realizations for proper

MCMC sampling.

The two-dimensional posterior distribution obtained with the

KDE approach is illustrated in Figure 2. For the kernel density

results, we used an MCMC chain with 106 samples. In this case the

result shows clearly a wider range of possible values for the speed of

mean reversion parameter θ .

To further verify the robustness of the approach with respect

to the “tuning” parameters, the selection of the bin parameter nx
and the BSL simulations n, an extensive series of test runs was

performed. Both values were varied in a wide range, 6 ≤ nx ≤ 20

and 100 ≤ n ≤ 3000. For each selection, the MCMC sampling

of the parameter posterior was repeated 20 times, each time using

different data sets simulated by the Ornstein-Uhlenbeck model

with the same settings as those used for producing Figure 5. In each

case the outcome was compared with the result obtained by KF.

The overall conclusion was that the parameter posteriors obtained

by BSL and KF essentially coincide.

Note that the BSL estimation works equally well with arbitrarily

sparse (but pairwise, to get the differences Xi+1 −Xi) observations,

while the KF and other filtering methods need sufficiently close

data points to produce meaningful predictions, as they are all based

on the prediction/correction steps. In the next example we discuss

a case where this property—no prediction required—becomes

more crucial.

4.2. Merton

Next, we use the BSL algorithm with eCDF statistics for a

jump-diffusion system. Using the Euler-Maruyama integration for

Equation (5), we simulateN = 1, 000 data points; for the parameter

estimation we use n = 500 BSL simulations. In this case, it is natural

that the estimation may fail if the frequency of the jumps is too low

compared to the integration time interval—trivially so if no jumps

happen to occur in the measurement data set. Also, if the jumps

are too small and dense the Poisson jumps dq will be confounded

with the Ornstein-Uhlenbeck diffusion process. Figure 2 presents

the type of data we are aiming at: A set with sufficiently many

jumps, most of them clearly distinguishable, thus enabling the

parameter estimation. The number of BSL simulations n must

now be increased compared to the previous test case and higher n

values produce more stable estimates for the mean and covariance

of the likelihood function. Lower n values technically work as

well, but lead to more stochastic likelihood value evaluations, and

thus lower acceptance rates in the MCMC sampling. Figure 6A

shows the BSL parameter posteriors for all the five parameters

to be estimated. The two feature vectors are constructed in the

same way as in the previous test case, using the state values and

the differences of consecutive state values. We can observe that

all parameters are well identified, whereas the presence of jumps

render the prediction difficult for filtering methods. One way to

estimate posterior distributions for the Merton parameters with

the kernel density approach is to use two simultaneous models,

one without Poisson jumps occurring and a second with a Poisson

jump occurring. We used the maximum likelihood estimate to

select between these two processes whether a jump occurred

at the current increment. The kernel density estimates for the

processes were used to compute themaximum likelihood estimates.

Note that, this approach does not directly provide an estimate

for the Poisson rate parameter λ. However, λ can be estimated

via bookkeeping: During the simulation of each MCMC sample,

we can save the information whether a jump occurred and the

differences between these locations can be used to estimate the

Poisson parameter. For the Merton kernel density results, we used

an MCMC chain with 5 × 104 samples. Figure 6B shows that the

KDE method constructed this way is yields somewhat unreliable

results as the reference value for σ does not even lie inside the

posterior and is therefore outperformed by the BSL method.

Remark: Note that in this work, we focus on explaining the novel

BSL method and therefore keep the underlying financial models

as simple as possible. Nevertheless, it should be emphasized that

this method is model-agnostic and works equally well for more

sophisticated models that include jumps such as the long memory

Fractional Barndorff-Nielsen and Shephard model (cf. [38]).

4.3. Heston

As in the previous examples, we take the state components

and their time differences as the scalar quantities whose empirical

cumulative density functions give the feature vectors for the

likelihood. As our approach requires boundedness of these

quantities, we consider the returns (1St/St), with 1St = St+1 − St
rather than the state values St . The volatility evolves according

to the CIR Equation (7) and therefore remains bounded (which

is also the case for the volatility proxy introduced below), so

both volatilities and their time differences 1v : = vt+1 − vt can

be used to define features. Based on the structure of the model,

it is beneficial to add additional feature vectors: As the Wiener

processes W1 and W2 in Equations (6) and (7) are connected

by the correlation parameter ρ, it is a natural choice to compute

the correlation coefficient between the simulated stock price and

volatility. The estimation accuracy can be further increased by

adding more features extracted from the data, e.g., the mean and

standard deviation of the volatility can be used to further stabilize

the estimation. For this purpose, we divide the available data

into d subsets y(1), . . . , y(d) and compute the mean and standard

deviation for each of the subsets. An additional feature vector is

then constructed for the statistics of this subset data. For example,

given N = 500 observed data points, we can cut the data to

obtain d = 25 subsets of 20 successive data points each, and

compute the corresponding means and standard deviations. For

these 25 means and standard deviations, we can again compute the

mean and standard deviation of both to arrive at a 4−dimensional

vector. The final feature vector is a concatenation of all the feature

vectors created.

To sum up, given the stock price St and the volatility vt , the

feature vector used for estimating the parameter values of the

Heston model is the concatenation of the following:

• empirical CDF of 1S/S

• empirical CDF of v

• empirical CDF of 1v
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FIGURE 6

(A) Parameter posteriors of the Merton model for the reference parameters (θ , σ ) = [10;0.08] and (λ,µ, ǫ) = [10, 0.01, 0.1], obtained using BSL with

data size N = 1, 000 and n = 100 simulations. (B) Comparison with KDE. Parameter posteriors of the Merton model for KDE (blue) and BSL (red).

• correlation coefficient of 1S/S with 1v

• themean and the standard deviation of themean and standard

deviation of the volatility.

For every newly sampled parameter, a set of n samples, each

consisting of N points, is simulated. The likelihood is computed at

every step by estimating the mean and the covariance matrix of the

feature vector as described in Section 2 and evaluated against the

given data.

First, we assume that the latent volatility process is observable

and we apply both the BSL method with n = 200 simulations and

a KDE method using an MCMC chain with 5 × 103 samples to

the observational data. The results are illustrated in Figure 7. Most

of the reference values lie within the posteriors for both methods

with slightly smaller estimation uncertainty for the BSL method.

However, the parameter ρ lies just on the tail of the KDE posterior.

Next, we consider the more realistic setting where we can

only observe a proxy volatility, namely the Black-Scholes implied

volatility of an at-the-money option with expiry in 1 month

from the observation time. Note that the example data used for

the following computation differs from the data used for the

previous example and as mentioned earlier, the sampled parameter

posteriors naturally move depending on the simulated data created

for the MCMC sampling experiment. Figure 8C illustrates the fact

that the proxy volatility systematically underestimates the true

Heston volatility process. Figure 8B shows the same issue but in

a quantitative way via the goodness of fit test, see Algorithm 2. It

suggests that we should not fit the Heston model to stock price data

simulated according to (6) and volatility data given by the Black-

Scholes implied volatility proxy. Figure 8B illustrates what happens

if we do so nevertheless: The goodness of fit test for the maximum

of the posterior (MAP) indicates a good fit, however, this fit is

severely biased regarding the parameters κ and ǫ. Thus, if we are

interested in these parameters in the standard Heston model (6),

(7), we should replace the true volatility (7) in the BSL simulation

with the Black-Scholes implied volatility proxy, thus correcting for

the unavoidable observation bias.

As expected, based on the goodness of fit test, the model

provides a reasonably good fit to the observed data. The posterior

distribution and the goodness of fit test for the estimation using

this “corrected” Heston model are illustrated in Figures 9A, B,

respectively. Summarizing, we have seen via the goodness of fit

test for the MAP estimate, that the observed stock price data

and volatility proxy data given by the Black-Scholes implied

volatility of an at-the-money option could in principle be fit by the

standard Heston model. However, both the posterior distribution

and another goodness of fit test for the reference parameter values

reveal that the corresponding parameter estimates will be heavily

biased. Our BSL estimation using the “corrected” Heston model

with the volatility proxy instead of the true volatility (7) does not

suffer from this bias. This underlines the importance of testing

against synthetic test data in order to validate estimation models,

particularly given the fact that it seems to be a usual practice to use

the standardHestonmodel in practical parameter estimation where

only proxy data is available.

We note that [6] also shows results for 5, 000 observations. This

case was repeated using the BSL method as well, again with similar

estimation accuracies as those reported in [6]. We skip these results

here, also since a comparison to the KDE approach turned out to

be out of reach, due to the computational complexity of KDE.

5. Conclusions

In this work we have introduced the BSL method for the task

of estimating parameters in systems of SDEs from time series data.

In principle, a correct way of producing the parameter estimates

is via integrating the Fokker-Plank equation and approximate

solutions of this equation can be obtained by kernel density

estimation methods. However, the parameter posteriors created

that way can be unreliable, e.g., for jump diffusion models,

and the required ensemble size easily leads to exceedingly high

CPU demands. Our approach is based on a characterization

of the variability of the data points by cumulative distribution
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FIGURE 7

Parameter posteriors of the Heston model with observed volatility for the reference parameters [θ , k, ǫ, ρ, λ1] = [0.1, 3, 0.25,−0.8, 4], obtained using

BSL with data size N = 500 daily observations and n = 200 simulations. (A) Posterior distribution obtained with BSL (red). (B) Comparison of the

posterior distributions obtained respectively by using the BSL (red) and KDE (blue) methods.

FIGURE 8

(A) Parameter posterior of the Heston model with observed proxy volatility for the reference parameters [θ , kp, ǫ, ρ, λ1] = [0.1, 3, 0.25,−0.8, 4],

obtained using BSL with data size N = 500 daily observations and n = 200 simulations. (B) Goodness of fit obtained with the Heston model for the

reference parameters [θ , kp, ǫ, ρ, λ1] = [0.1, 3, 0.25,−0.8, 4] (yellow) and parameters given by the posterior distribution MAP (red). (C) Comparison

between the instantaneous volatility and the volatility proxy for a trajectory obtained with the same parameter values.
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FIGURE 9

(A) Parameter posterior of the “corrected” Heston model with observed proxy volatility for the reference parameters

[θ , kp, ǫ, ρ, λ1] = [0.1, 3, 0.25,−0.8, 4], obtained using BSL with data size N = 500 daily observations and n = 200 simulations. (B) Goodness of fit

obtained with the “corrected” Heston model for parameters given by the posterior distribution MAP.

functions. The stochastic feature vector created in this way

is Gaussian which allows for the use of standard statistical

methods such as MCMC sampling. This estimator has been

shown to perform well even for small observational data sets.

In cases of theoretically known parameter posteriors such as

in the Ornstein-Uhlenbeck model, our results coincide with the

analytical ones. For the practically relevant Heston stochastic

volatility model, we have provided novel insights on how to

construct a robust estimator including uncertainty quantification

given proxy volatility data. These findings yield a promising avenue

for future research using the BSL approach coupled with the

empirical distribution as statistics. We mention the VIX index

calculated by the Chicago Board Options Exchange (CBOE) as

a volatility proxy. Moreover, the BLS method is model-agnostic

so that, e.g., studying the parameter estimation problem for

rough volatility models could also be an interesting topic for

future research.
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