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Abstract

Despite their huge success in many fields of engineering science, neural networks continue
to suffer from a number of shortcomings. For example, they exhibit catastrophic forget-
ting: they will forget the details of a task when learning a second task. They are also
susceptible to adversarial attacks: small input perturbation that make the network change
its prediction. These problems do not seem to hamper biological neural networks. One
difference between biological and artificial neural networks that could account for this dif-
ference is the learning rule: while artificial neural networks are universally trained with
(variants of) stochastic gradient descent, this algorithm is not a good model for learning
in biological neural networks. In this thesis, we therefore study the potential of a more
biologically plausible learning algorithm called Direct Feedback Alignment (DFA) to al-
leviate these problems. The key idea of DFA is to directly project the error signal via
dedicated, random feedback matrices onto the change of the weights. We first explore the
idea in the context of continual learning. We find that in fully-connected networks trained
on image classification tasks, DFA can alleviate catastrophic forgetting by constraining the
network weights to a particular region in weight space when using the same feedback ma-
trix across tasks, or by orthogonalising weight updates by using distinct feedback matrices
for each task. We then investigate the ability of DFA to increase robustness to adversar-
ial perturbations, and more generally to mimic the benefits of Bayesian Neural Networks,
by adding a dynamic on the feedback weights to sample network parameters. We find
that ensembles of networks sampled with dynamical DFA exhibit enhanced robustness to
gradient-based adversarial attacks. Furthermore, the test accuracy of the ensemble outper-
forms a network trained with backpropagation. We finally explore the potential of Direct
Feedback Alignment to train recurrent neural networks, which are an important model of
recurrent computations which are omnipresent in the brain. We show that DFA can be
used to train simple variants of Long Short-term Memory Networks (LSTM), overcoming
the bottlenecks of the standard backpropagation-trough-time algorithm. In summary, our
results highlight the potential of Direct Feedback Alignment in three different domains.
Our results raise the possibility that while biologically inspired learning rules for artificial
neural networks may not always reach the on-task performance of vanilla backpropagation,
their advantages really become clear once they are applied to complex, multi-goal settings
like continual learning.
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Chapter 1

Introduction

Artificial Intelligence (AI) [Russell and Norvig, 2009] aims to build systems that can un-
derstand the world and can learn to solve real-world challenges. An early formulation of
the AI concept was given with the Turing Test in the 1950s [Turing, 1950]. After that,
AI research has advanced especially with the rise of Machine Learning (ML) [Mitchell,
1997]. ML is based on training algorithms that are used to let parametric models learn
from data with very little human input. The availability of large amounts of data and the
efficiency of computations have been major factors in the success of ML, which is now at
the core of many modern technologies [LeCun et al., 2015]. In particular, artificial neural
networks (ANNs) have become indispensable tools for applied machine learning, achieving
human-level performance in a variety of domain-specific tasks such as image recognition
[Krizhevsky et al., 2012, LeCun et al., 2015, Simonyan and Zisserman, 2015, He et al., 2016,
Dosovitskiy et al., 2021] and natural language processing [Devlin et al., 2019, Howard and
Ruder, 2018, Radford et al., 2018, Brown et al., 2020, OpenAI, 2024]. The backpropa-
gation (BP) algorithm [Rumelhart and McClelland, 1987] remains the most widely used
training method due to its simplicity and demonstrated success. However, ”human-level
performance” often refers solely to accuracy metrics, ignoring key challenges where ANNs
lag behind human abilities. There is still a big gap between ”understanding the world and
learning to solve real-world tasks” and the learning that Machine Learning (ML) allows.
For example, neural networks lose previously learned information when trained on new and
different data (problem of catastrophic forgetting). This necessitates frequent retraining on
entire datasets, which is both time-consuming and resource-intensive. In practice, in many
industries, models need to be retrained daily [Lian et al., 2024] leading to costly downtime
and energy usage. In e-commerce and social media, this is the case as user preferences or
content trends change. Continual Learning (or Lifelong Learning) has emerged to face this
issue, working towards the adaptation of learning systems to adjust to new information
without forgetting previous knowledge—an ability that is common in the human brain.

ANNs do not only have limitations dealing with new training data, but also malicious
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test data can be an issue [Szegedy et al., 2013, Goodfellow et al., 2014, Biggio and Roli,
2017]. For example, very simple adversarial attacks can cause the network to misinterpret
images that appear identical to humans. Techniques such as ensemble averaging have been
shown to reduce this risk, but the problem remains a significant hurdle for deploying ANNs
in sensitive applications, including self-driving cars [Jung and Ho, 2022] and healthcare
[Finlayson et al., 2019].

Finally, the energy consumption required for training large-scale models is a growing
concern. For instance, training a state-of-the-art language model like GPT-3 is estimated
to consume 1,287 MWh, equivalent to the carbon footprint of 626,000 miles driven by
an average car [Brown et al., 2020]. This is far greater than the energy humans use in
acquiring and applying the same knowledge. In tasks such as training recurrent neural
networks with backpropagation, the computational cost increases further due to the need
to unroll the network across many time steps.

Exploit 
averages

Figure 1.1: Graphic representation of topic overlap.

In this work, we aim to address these challenges in ANNs by building on the approximate-
gradient training method, Direct Feedback Alignment (DFA), first introduced by Nøkland
in 2016. DFA offers a biologically inspired alternative to backpropagation.

The areas covered in this thesis are interconnected with each other following the scheme
in 1.1. These contributions represent a step toward making neural networks more adapt-
able, secure, and sustainable for future machine learning applications. Before we dive deep
into the necessary background on feedback alignment, let us review the standard method
to supervised learning with neural networks, from the architecture to the backpropagation
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algorithm.

1.1 Neural networks for supervised machine learning

Supervised machine learning requires three components: a dataset composed of input-
target pairs; a neural network consisting of interconnected computing units with parameters
(weights and biases), which is used to process the input to obtain the output; lastly, it
requires a loss function to indicate the difference between the output of the network and
the ground truth that we have from the dataset. The aim of the training algorithm is to
minimize a training loss, which is a function of the network parameters that measures the
performance of the network; in a classification task, this could simply be the number of
misclassifications. By tuning parameters to minimise the loss, the output of the network
will match the target values in the training data. If you adopt the perspective of the
output being an answer to the input, then matching the correct labels can be interpreted
as learning.

The network, also referred to as architecture, is a scheme that breaks down the non-
linear function that connects the input x ∈ RD to the output y ∈ Rd. The building blocks
of the networks are perceptrons: a mathematical function that processes the input first
through a weighted sum, and then through a threshold that is called activation function.
These two steps of integration and filtering were originally inspired by the behavior of
biological neurons: a neuron is a biological cell that receives a chemical stimulation to its
dendrites. Some chemical components can polarize (increase the voltage) the membrane
of the dendrite, other can de-polarize it. The different polarization of the dendrites travels
toward the body of the cell, where a physical summation of the signals happens. Finally, if
the body of the cell has a residual polarization over a threshold, a signal is fired from this cell
to the other ones connected to its axon. Even though the mathematical representation of
this process is not as rich as reality, it is a good approximation of a biological neural network
and is entitled to be called Artificial Neural Network. The Fully–connected architecture is
composed of layers of neurons, where the first layer processes the inputs and then neurons
from one layer send the outputs to the following layer, until reaching the last layer that
has as many units as the dimension of the desired output (see Figure 1.2).

1.1.1 The backpropagation algorithm

Backpropagation states the rule for computing the gradients of the network’s parameters
by propagating the error backward from the output layer to the input layer. Derivatives
(or gradients, if you consider the derivative of the loss by the whole matrix of parameters)
are computed by using the chain rule.

The update formula for the weights w is given by

wnew = w − η
∂L(w)

∂w
(1.1)
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Figure 1.2: Graphic representation of a 4-Layer FC architecture. Every green circle is a
perceptron. σ is the softmax function, f() is an activation function. (Image from Passerini
[2022-2023])

where η > 0 is the learning rate. The intuition for it is that a derivative is the change in
the output given a perturbation of the input, so updating every parameter in the other
direction is like adopting all the possible changes that would bring the loss to a lower value
of the loss.

Although BP is an old idea, it gained popularity with Rumelhart and McClelland [1987]
in 1986 when David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams presented
how effective BP can be at training the network to learn the representations. The number
of theoretical and experimental papers investigating backpropagation is legion, so we will
not attempt to give a review here.

The loss of a multilayer perceptron has several minima, and BP with Gradient Descent
(GD) is guaranteed to converge to a local minimum. To help with this, one can follow the
procedure of Stochastic Gradient Descent (SGD) instead of GD.

In this case, the training data is divided by the algorithm in mini–batches. In image
classification, for example, all the images belonging to one mini–batch are processed at
the same time. This procedure is inherent to the Stochastic Gradient Descent protocol, in
contrast to online learning where one input is processed at a time, and Gradient Descent
where all the data are processed together. The advantage of SGD is both regarding compu-
tational costs (for large datasets, processing all the data together can be infeasible for the
memory, online learning requires one update step for every entry of the dataset, requiring
extremely long training time) and for bringing stochasticity during training, which helps
with finding a global minima and in other words improving generalization: finding one
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solution that is not specific to the training set, but allows to predict well also the test set.

1.2 Drawbacks of Backpropagation and biological plausibil-
ity

For supervised learning, the Backpropagation algorithm (BP) [Rumelhart and McClelland,
1987] has few real competitors in training neural networks nowadays due to its simplicity
and proven performance. But, although it was originally inspired by biology [Rosenblatt,
1958, Fukushima and Miyake, 1982], and even though many studies showed that ANNs
trained with BP could capture similar information as biological neural networks (e.g.,
specific nodes learn the edges, corners), it is also clear that BP is not compatible with how
biological neurons learn [Bengio et al., 2015].

For instance, BP is a sequential process, and there are locking mechanisms (for-
ward, backward, and update) that require that none of the processes is executed before its
preceding completion. This makes BP infeasible for parallel processing because the com-
putation has to be precisely clocked to alternate between forward and backward passes.
Hence deeper and larger networks’ training can be not just computationally expensive, but
also slow. This is not the case in the mammalian brain, where the synapses are updated
asynchronously and the cost of computation is much smaller. In BP, not only each execu-
tion has to wait for its preceding process, but the computation of the derivatives themselves
needs the sequential computation of the chain rule to compute the derivatives of the loss
(at the end of the network) over all the parameters, including the ones in the early layers
of the network.

Biological networks such as mammalian brains instead operate based on local informa-
tion because synaptic weights depend solely on the activities of connected neurons [S. Qin,
2021, Tang et al., 2022]. This problem is closely related to the fact that BP assumes and
imposes the symmetric weights for the forward and the backward phases. This creates the
additional problem of using the transpose of the weights of the feedforward connections
to calculate the gradients of the loss. In the literature, this issue is known as the weight
transport problem, and it is one of the most discussed differences between backpropagation
and biological learning. Moreover, the computation of the gradients involves the derivative
of the non-linearities at the operating point used in the corresponding feedforward com-
putation. This means that information regarding the feedforward pass is needed for the
backward pass. This problem is called ”transport problem” [Grossberg, 1987, Crick, 1989].
Also, the ground truth label is not directly represented in the brain, for rendering it bi-
ologically plausible it should be modeled through a reward [Bengio et al., 2015, Lee et al.,
2015]. One characteristic of biological systems is robustness to parameter perturbations,
most of the time they are resilient in the case of over-expression or under-expression of
signaling molecules. In this sense, BP lacks of biological plausibility because it has strict
technical requirements, such as the need for interventions against vanishing or exploding
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gradients (gradient clipping) and the need for differentiable activation functions.

Biological plausibility is significant because of several reasons. We know that biological
neurons inspired ANNs. Hence, it is interesting to examine the dissimilarity or similarity
among them. Moreover, there is a field that is the intersection of neuroscience and deep
learning, so it is natural to investigate the biological plausibility feature of the algorithms.

As stated at the beginning, other drawbacks of backpropagation include the fact that
most of the time as new tasks are learned the previously acquired ones vanish. This is not
the case in biological brains, where knowledge consolidated at the synaptic level is retained
and sometimes new tasks can be acquired even leveraging on that. Moreover, biological
systems learn from continuous streams of information, allowing for real-time processing of
information instead of processing entire batches of data at a time.

Finally, the adversarial attacks can easily trick ANNs trained with BP. These attacks
consist in specifically designed inputs [Kurakin et al., 2017] that are misclassified by the
ANN, while there is no difference for the human perception.

1.3 Direct Feedback Alignment

The scientific community designed some alternative algorithms for addressing the lim-
itations of traditional artificial neural networks (ANNs) that most of the time rely on
backpropagation. Some of these methods are the biologically plausible algorithms, meaning
that there is some consistency between the algorithm’s principles and existing biological,
and neuro-scientific knowledge. These biological systems that these algorithms seek to
emulate the learning mechanisms are particularly the mammalian brains [S. Qin, 2021,
Tang et al., 2022]. Technically, these algorithms can be divided in three categories: self-
supervised learning mechanisms, where the update of the weights are based on current
neuron activities without extensive supervision [Tang et al., 2022]; Direct Feedback Align-
ment (DFA), which are methods that use fixed random connections for error propagation,
avoiding the need for symmetric feedback connections while still enabling effective learning
in deep models [Lillicrap et al., 2016b]; and layer-wise learning, where the layers are up-
dated either sequentially or randomly, facilitating a more flexible and biologically relevant
training process [Tang et al., 2022].

DFA was first presented by Arild Nøkland from the University of Trondheim, Nor-
way [Nøkland, 2016] and it belongs to the second branch, of the biologically plausible
alternatives to backpropagation that focuses on solving the weight transport problem. It
propagates the error through fixed random feedback connections directly to the hidden
layers, making the forward and the backward flows different from each other. On top of
this solution for the weight transport problem, the update of one layer does not depend on
the other layers, so it is possible to update all the layers in parallel. This is crucial to resem-
ble local learning, which is believed to govern synaptic weight updates in the brain[Bengio
et al., 2015]. Dellaferrera et al. [2021] introduced a version of DFA with one more biological
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constraint, where each neuron can fire only if receives more than one non-zero input. The
introduction of this feature regarding our application is left for future work.

Despite relying on random feedback weights for the backward pass, DFA has been
proven to yield comparable performance to BP to certain problems such as view-synthesis,
recommendation systems, and small scale image problems [Launay et al., 2020].

DFA has been successful in training fully-connected (FC) Neural Netorks [Launay et al.,
2020, Lillicrap et al., 2016b, Nøkland, 2016] and to fine-tune pre-trained convolutional
networks [Crafton et al., 2019], it has also been applied to complex architectures such as
transformers [Launay et al., 2020] and GNNs [Zhao et al., 2024].

Its application to Recurrent Neural Networks (RNNs) hasn’t been done cleanly until
the research described in chapter 4.

Moreover, until now, DFA does not perform as well in convolutional architectures with
more complex image datasets [Bartunov et al., 2018]. DFA is unable to train these kinds of
layers even though convolutional layer can be represented by a large fully-connected layer
whose weights are represented by a block Toeplitz [d’Ascoli et al., 2020]. The hypothesis for
this phenomenon is that CNNs don’t have enough flexibility to align [Launay et al., 2020].
This lack of alignment makes learning near to impossible [Han et al., 2020], and has led
practitioners to design alternatives. The simplest solution one might think of is using BP
for training the convolutional layers and DFA for the FC [Han and Yoo, 2023] and another
technique would be using sparse Weight Adjustments: by introducing sparse backward
weights, the algorithm can better manage the complexity associated with convolutional
layers [Han et al., 2020].

Up to today, DFA’s original paper has 398 citations1. It is gaining popularity in the
context of efficient parallelization - recently it has been programmed Physical Neural Net-
works [Nakajima et al., 2022, Filipovich et al., 2022].

Theoretical background on DFA

We revise here the algorithmic differences and similarities between FA, DFA and BP. Biases
can be modeled by an augmented dataset with an additional unitary pixel for every image.

Let us consider simple neural network model and a binary classification task where the
error to minimize is modeled by the binary cross-entropy (BCE) loss. The equation of the
BCE loss is the following, indicating the weights of the network W; the input x and the
output of the network a4:

L(W ) = −[y log(a4) + (1− y) log(1− a4)] (1.2)

BCE measures the difference of predicted probabilities and the actual class 2, which can

1Data provided by Semantic Scholar, 18th August 2024
2We can notice that the logarithmic nature amplifies differences when the model is confidently wrong. If

the model is unsure (predicting probabilities close to 0.5), the penalty is moderate, but as it becomes more
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be either 0 or 1. In the most common notation, it is generally found as:

E(θ) = −
∑

(x,y)∈D

[y log fθ(x) + (1− y) log(1− fθ(x))] (1.3)

This example is not chosen arbitrarily. Indeed some of the the classification tasks we
will adopt will be binary classification problems. It can be generalized to multi–class
classification using a softmax for output layer.

To state the DFA weight updates clearly, and to contrast them with vanilla backprop-
agation, we consider a FC network of depth (number of layers) L with weights Wl in the
lth layer. Given an input x ≡ h0 , the output ŷ of the network is computed sequentially as
ŷ = fy(aL), with al = Wlhl−1 and hl = f(al), where f is a pointwise non-linearity function.
For classification, the loss function L is the BCE and fy is the Softmax (turning the output
of the network into probabilities). Given the error e ≡ ∂L

∂aL
= ŷ − y of the network on an

input x, the update of the last layer of weights reads δWL = −ηehl−1. The updates of the
layers below are given by δWl = −ηδalhTl−1, with factors δal defined sequentially as

δaBP
l =

∂L

∂al
= W T

l+1δal+1 ⊙ g′(al) (1.4)

with ⊙ denoting the Hadamard product. In the case of FA the transpose of the network
weights W T

l are replaced by random feedback connections Fl.

δaFAl = (Fl+1δal+1)⊙ g′(al) (1.5)

DFA adds to this idea the fact that the error is propagated directly from the output layer
to each hidden layer, replacing the term δal+1

δaDFA
l = (Fl+1e)⊙ g′(al) (1.6)

To summarize, while the final layer is updated in the same way with both DFA and BP,
the weight updates for the other layers are all different. BP implements the exact gradient
for each layer by applying the chain rule to compute the derivatives of the loss; instead,
DFA keeps only the error term and substitutes the derivative of the following layer by an
entry of the feedback matrix.

[Lillicrap et al., 2016a] gave a first theoretical characterization of feedback alignment by
analysing two-layer linear networks. In this shallow setup FA and DFA are equivalent, and

confident and incorrect, the penalty is stronger - removing the saturation effect of the activation function.
In a statistical sense, BCE is closely related to Kullback-Leibler (KL) divergence and it can be interpreted
as the expected negative log likelihood of the model’s predictions, weighted by the true labels. On another
perspective, one can notice that BCE is closely related to mutual information,in fact it can be interpreted
as a way of measuring how much information is ”lost” when predicting a label distribution from the model.
If the model is perfectly accurate, the cross-entropy is low, meaning little information is lost.
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only one feedback matrix is involved: F1 ∈ RK , with K being the number of hidden nodes
in the intermediate layer, which backpropagates the error signal e to the first layer weights
W1. The updates of the second layer of weights W2 are the same as for BP. FA and DFA
are able to minimize the loss because the transpose of the second layer of weights W2 tends
to align with the random feedback matrix F1 during training. This weight alignment (WA)
leads the weight updates of FA to align with those of BP, leading to gradient alignment
(GA) and thus to successful learning of the previous layer.

DFA learning dynamics in non-linear networks was then studied by [Refinetti et al.,
2021]. It is worth going through the main findings of their analyses because there are key
concepts for the interpretations of our results. First of all, they study the generalization
error of ReLU 2-layers FC networks in the teacher-student setup. The second layer’s weights
of the student must retrieve the same weights of the teacher and align with the feedback
matrix at the same time, and they find that this is possible only in over–parametrized
network because larger networks have more global minima, and DFA is able to reach one
of these solutions after aligning to the Feedback matrix. Secondly, they showed that in
this setup, DFA proceeds in two steps: an alignment phase, where the forward weights
adapt to the feedback weights to improve the approximation of the gradient, and by a
convergence phase, where the network sacrifices some alignment to minimise the loss. Out
of the same-loss-solutions in the landscape, DFA converges to the one that maximises
gradient alignment, an effect we term “degeneracy breaking”3.

Figure 1.3: Refinetti et al. [2021],
cartoon of the alignment that they
showed in their experiments on
MNIST and CIFAR10.

Figure 1.4: Schematic representation of
BP, FA and DFA. from Nøkland [2016].

In the case of deeper linear networks, they computed the accumulation of the updates

3The term ”degeneracy” in physics often refers to multiple solutions to one problem. The inductive bias
of the algorithm breaks this degeneracy by selecting one of the solutions.
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from time 0 to the training step t, in a case in which the weights were initialized to
zero. This computation is useful to see that the updates of the different layers contain a
combination of the feedback matrices of the corresponding layer and the following layers,
plus one term called ”alignment matrix” that is a Hebbian term. For example, the updates
accumulated in the second layer read as follows:

W t
2 = −η

t−1∑
t′=0

F2et′(W1xt′)
T (1.7)

= F2A
t
2F1 (1.8)

The fact that the weight updates are proportional to the Feedback matrix or a combination
of feedback matrices is called weak alignment. This alignment impacts on the weight more
and more as the time steps accumulate. The strict GA arises for layers after the first if
the alignment matrices become close to the Identity (strong alignment). For this result to
hold, the feedback matrices should be left-orthogonal. This can be taken as a structural
choice for the feedback matrices, but also if they are sampled from a Gaussian distribution
this arises in expectation. In the case of strong alignment though, all the layers after the
first are completely sacrificed to be aligned, allowing only the first layer to learn.

This is not harmful for the linear networks as the first layer alone is enough to maintain
full expressivity. In nonlinear networks, instead, the alignment is only one phase, followed
by the convergence to the closest solution.

Furthermore, Empirical experiments show that also in non-linear networks (4 layers,
FC) there are the two phases of alignment and convergence to the closest solution. In
particular, the bottom layers (the ones closer to the input) loose gradient alignment first
(only the first layer deviates from GA at the end of training on CIFAR10); and WA is lost
subsequently for the second layer and then for the third layer.

The main take-away from the analysis of [Refinetti et al., 2021] s that weights learnt
by DFA carry the fingerprint of the feedback matrices. This can be seen as a byproduct of
the way the algorithm is formulated. In this thesis instead, we embrace this fact and ask:
can we explicitly use the impact of the feedback matrix to steer the networks in a preferred
direction?

Further related work

Bordelon and Pehlevan [2023] applies the limit of infinitely wide NNs and studies DFA
(together with FA, Hebbian learning and Gated Linear Networks) in the rich and lazy
regimes (where the feature embeddings at each layer are constant through time). They
determine the equations of the dynamics evolution through the Dynamical Mean Field
Theory (DMFT) approach. The convergence to this DMFT occurs at large width N with
error O(N−1/2). Regarding DFA, they confirm that the in the rich regime the alignment
between the true gradient and the pseudo-gradient (backward pass of DFA) increases during
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the training of the layers dedicated to creating representations (all layers except for the
output layer).

1.4 Continual Learning with DFA

The main challenge in Continual Learning is analyzing and addressing catastrophic for-
getting [Goodfellow et al., 2015b, McCloskey and Cohen, 1989], namely the performance
degradation of previously-learned tasks. Catastrophic forgetting is a significant drawback
of traditional Neural Networks and this limitation impedes their ability to continuously
learn and adapt to evolving environments, limiting their practical applicability in real-
world scenarios.

Initialize θ0
θ1 ← start from θ0 and minimize L1(θ) with SGD
θ2 ← start from θ1 and minimize L2(θ) with SGD

Table 1.1: Simplest scheme: Continual Learning with Stochastic Gradient Descent.

Biology offers an existence proof for successful continual learning in complex environ-
ments and also hints at the design principles and trade–offs of successful approaches. For
example, the main techniques proposed for continual learning using ANNs have a biological
equivalent [Hadsell et al., 2020].

1. Synaptic homeostasis is modeled by regularisation approaches such as Elastic Weight
Consolidation (EWC) [Kirkpatrick et al., 2017] and Synaptic Intelligence [Zenke et al.,
2017].

2. The modularity of the brain is reflected by dynamical architectural solutions where
the architectural complexity grows with the number of tasks; followed by pruning
procedures for keeping the network’s size contained.

3. Memory plays a crucial role in replay approaches [ROBINS, 1995], [Rolnick et al.,
2019] that alternate training on new tasks with training on some examples of past
tasks;

4. Context-dependent learning of representations is motivated from a neuroscientific
perspective given recent evidence that neural population codes orthogonalize with
learning [Flesch et al., 2022, Failor et al., 2021, Zeng et al., 2019]. Context-dependent
learning of representations is reflected by Orthogonal Weight Modification algorithms.

With the application of DFA to Continual Learning, we continue this line of thought to
explore whether this particular biologically inspired algorithms can mitigate catastrophic
forgetting.
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In particular, the degeneracy breaking ability of DFA can help in CL because it works as
an implicit regularization on the weights: as the feedback matrix is kept the same for all
tasks, the same-loss solution that the network achieves after training on different datasets
will have something in common: to be the closest one to the trajectory of alignment of the
weights to the (combination of) feedback matrix. Moreover, the same degeneracy breaking
can render DFA a convenient way for adopting orthogonal gradients during the training
on the different datasets. This is the case if the feedback matrix is set to be orthogonal
to the one used during training on another dataset. In this condition, the alignment
trajectories will be orthogonal to each other, thus driving learning in the directions that
are less relevant for the learning of the previous dataset.

1.5 Bayesian neural networks with DFA

Modeling uncertainty is a desirable feature in Continual Learning and beyond, to detect
when a new task has started (problem also known as out-of-distribution input detection).
Moreover, uncertainty is a key feature that NNs lack for a full reliablity. Reliablility
is essential for the integration of AI in robotics [Loquercio et al., 2020] and in critical
applications like healthcare [Kompa et al., 2021, Chua et al., 2022] and autonomous driving
[Shao et al., 2024] where understanding the certainty of a prediction can help evaluating
the risks and better prevent accidents. With uncertainties, practitioners could focus on
gathering more data in areas where the model is less confident and tuning the model to
improve robustness on top of the performances. Not only out of distribution data could be
found naturally exploring real-world experiences as in robotics, but some malicious attacks
could try to manipulate the inputs to change the outcome of the prediction. Adversarial
attacks are techniques used to manipulate the inputs of these models in a way that causes
them to make incorrect predictions [Bortolussi et al., 2024, Szegedy et al., 2013, Goodfellow
et al., 2014, Biggio and Roli, 2017]. These attacks exploit the vulnerabilities inherent in
neural networks, which can surprisingly be sensitive to small, often imperceptible changes
in input data. The most famous examples regard image classifications where an attacker
might alter pixel values in a way that is not noticeable to humans but significantly affects
the model’s predictions. This can lead to misclassifications such as identifying a panda as
a gibbon [Goodfellow et al., 2015a] or a banana as a toaster [Lee et al., 2024].

Bayesian Neural Networks (BNNs) are a type of neural network that incorporate
Bayesian inference to model uncertainty in their predictions. Unlike traditional neural
networks, which produce deterministic outputs after training, BNNs aim to estimate a
probability distribution over the network’s weights, allowing them to express uncertainty
in both the model’s parameters and its predictions.

The core idea behind Bayesian Neural Networks is to apply the principles of Bayesian
statistics, where instead of finding a single set of optimal weights, the network learns a
posterior distribution over the weights. This posterior is derived from a prior distribution
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(representing initial beliefs about the parameters before seeing the data) and the likeli-
hood (the fit of the model to the observed data). This approach enables BNNs to model
uncertainty more effectively, especially when data is sparse or noisy.

BNNs are particularly useful in fields where understanding uncertainty is critical, such
as medical diagnosis [Abdullah and Hassan, 2022], autonomous driving [Henne et al., 2021],
and financial forecasting. In these cases, having a measure of confidence in the predictions
is often as important as the predictions themselves. For instance, a BNN could not only
predict a possible outcome but also provide a distribution showing how confident the model
is in that outcome. Moreover, Bayesian networks have been shown to be more robust to
adversarial attacks than plain ANNs [Bortolussi et al., 2024, Cardelli et al., 2019, Li and
Gal, 2017, Bekasov and Murray, 2018].

One of the key challenges in Bayesian Neural Networks is the computational complexity
of inferring the posterior distribution over the weights. Traditional exact inference methods,
such as Markov Chain Monte Carlo (MCMC), are often impractical for large networks. To
address this, various approximation techniques like Variational Inference and Monte Carlo
Dropout have been introduced, allowing BNNs to scale more efficiently while still capturing
useful uncertainty estimates.

One approach to constructing approximately Bayesian Neural Networks (BNNs) is by
averaging the outputs of multiple independent networks, a technique known as ensembling.
In this method, several neural networks are trained independently on the same task, and
their predictions are averaged to approximate a posterior distribution over the model’s
outputs. This can be seen as an implicit Bayesian model, where the ensemble of networks
represents a sample from the posterior distribution.

Each independently trained network in the ensemble corresponds to a different local
optimum in the weight space. By averaging their predictions, the ensemble approximates
the variability that would otherwise be captured by the posterior distribution in a Bayesian
model. This approach captures both epistemic uncertainty (uncertainty due to the model,
which can decrease as more data is gathered) and aleatoric uncertainty (inherent noise in
the data). As a result, averaging independent networks can improve the model’s robustness
to adversarial attacks and to noise.

The limitations of Standard Ensembling is the lack of diversity: although ensembling
relies on training independent models, the networks can still learn similar patterns if they
are initialized similarly or trained on the same dataset using the same architecture. This
can limit the diversity of predictions, which reduces the ensemble’s ability to generalize
and capture uncertainties effectively.

The second limitation to Ensembling is the lack of guarantee that the average of samples
obtained by training from different seeds will sample the posterior with the right frequency.

Markov-Chain Monte Carlo (MCMC) is a principled tool to sample the posterior dis-
tribution because it meets the ergodicity condition:

Irreducible The chain must have the ability to reach any part of the state space from
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any starting point, so there are no isolated regions.

Aperiodic The chain must not get stuck in periodic loops and should move to new states
with some degree of randomness. Technically, the proposal should not propose the
same state periodically.

Positive Recurrent The chain should return to a given state within a finite expected
time.

Overall, ergodicity indicates that a system cannot be reduced into smaller components and
that a large collection of random samples can represent the average statistical properties of
the entire system. Samples taken from standard network averaging are not guaranteed to
satisfy these conditions, but the peculiarity of the degeneracy breaking of DFA can allow
to bring the sampling in different minima of the posterior, allowing a better exploration of
the space.

1.5.1 Main hypothesis

One hypothesis of this thesis, which will be central to the work presented in chapter 3,
is that the align, then memorise dynamics of DFA [Refinetti et al., 2021] can overcome
this problem: the fact that different feedback matrices drive the training trajectory in
different (orthogonal) directions, ensures a more rigorous attempt to the cancellation of
the gradients in non-relevant directions. Moreover, DFA is able to reach convergence to
different minima among the same-loss minima, so it gives a tool for reaching the different
modes of the posterior.

Once one minima is selected, one can still use DFA’s peculiar alignment to collect
samples in the region of the space. The practice of taking samples during training was
already used to approximate Bayesian Networks [Welling and Teh, 2011a], but we adopt a
dynamical sampling method for with the novelty possibility of directing the trajectories in
different directions thanks to DFA’s alignment. This makes the exploration of the weights
space more efficient and brings sampling during training one step closer to appropriate
sampling techniques. We will empirically show that these ideas improve the network’s
generalization error and robustness against adversarial attacks. Techniques that improve
adversarial robustness, such as adversarial training, often require significant computational
resources, this work contributes to the ongoing challenge of energy efficiency in AI.

1.6 RNNs with DFA

The adoption of backpropagation-based learning systems, with a few exceptions [Wright
et al., 2022], is still mainly limited to digital computers and simulations. It is well known
that backpropagation cannot be easily implemented and deployed in physical systems [Mo-
meni et al., 2023, Lillicrap et al., 2020] due to issues like the weight transport where
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the synaptic weights of the backward circuit need to be constantly synchronized with the
synaptic weights of the forward circuit [Lillicrap et al., 2016b, Akrout et al., 2019].

Physical deployment of backpropagation is even more challenging in Recurrent Neural
Networks (RNNs) [Elman, 1990], where credit assignment must be performed across time.
The most used algorithm to date is BackPropagation Through Time (BPTT) [Werbos,
1990], which extends backpropagation to recurrent architectures.

Over time, several backpropagation-free algorithms have been proposed (see Section
4.2 for a non-exhaustive overview), some of them with the explicit objective of being
compatible with the implementation in physical systems or on unconventional hardware
(e.g., neuromorphic, optical).

DFA has already been implemented in nonconventional hardware, especially photonic
[Filipovich et al., 2022]. The photonic co-processor introduced in Launay et al. [2020] scales
DFA to trillion-parameter random projections.

Here, we propose an extension of DFA tailored to recurrent neural networks. Our
approach is able to compute the update of the recurrent parameters in parallel over all the
time steps of the input sequence, thus removing one of the major drawbacks of BPTT. In
fact, BPTT sends the error signal computed at the end of the input sequence back in time
to compute the network parameters update. Instead, the update computed by our version
of DFA is local at each time step, as it does not rely on the update computed for other
time steps. Due to the weight sharing present in RNNs, the local update is eventually
aggregated at the end of the input sequence to compute the final update. The aggregation
operation includes information from all the time steps, thus enabling learning of temporal
dependencies.

Practical applications of DFA to RNNs have been explored by [Nakajima et al., 2022].
The authors performed physical deep learning with an optoelectronic recurrent neural
network. However, in their pioneering work, they do not explore the DFA algorithm in
the context of fully trainable RNNs, since they only provide a proof-of-concept using a
reservoir computing model with untrained reservoir connections [Lukoševičius and Jaeger,
2009]. In this thesis chapter, we will investigate the potential of DFA on fully-trainable
RNNs, which are much more powerful.

[Han et al., 2020] investigated a DFA-inspired algorithm for RNNs. However, their
version of DFA is restricted and cannot be applied to any recurrent or gated architecture,
like our approach. First, they implement an upper triangular modular structure. Second,
they use random projections as powers of the same matrix, which effectively resembles
an FA algorithm applied to RNNs rather than a DFA algorithm for RNNs. Overall, our
approach stems directly from DFA and closely follows its assumptions without requiring
any customization, thus remaining more general and targeting any recurrent model.

In summary, since DFA allows to train all the layers in parallel, this is appealing for
RNNs where the layers represent the input stream. The equations for training RNNs with
BP need to be unfolded in time because the gradients of the early layers depend on the
gradients of the following layers. Instead, with DFA, this problem is solved because the
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error is mapped directly to every layer independently.

1.7 Appendix A

1.7.1 Chain rule, the essence of Backpropagation

Chain rule for derivatives:
∂L(W )

∂wlj
=

∂L(W )

∂al
· ∂al
∂wlj

(1.9)

The term ∂al
∂wlj

can be computed based on the definition of al that we recap here.

a4(x) = a3(x)W4

a3(x) = f(a2(x)W3︸ ︷︷ ︸
h3

) = f(h3)

a2(x) = f(a1(x)W2) = f(h2)

a1(x) = f(xW1) = f(h1)

(1.10)

The term ∂L(W )
∂al

depends on the layer in consideration:

1. In the output layer, the fourth, this term is computed directly form the expression
of the loss (equation 1.3);

2. For the semi-last layer (l=3) it must be expanded with one step of the chain rule

∂L(W )

∂a3
=

∂L(W )

∂a4

∂a4
∂a3

where the first term can be computed form the expression of the loss (equation 1.3)
and the second term is W T

4 ;

3. For the layers before, the chain rule iterates: for l=2 it becomes:

∂L(W )

∂a2
=

∂L(W )

∂a4

∂a4
∂a3︸︷︷︸
WT

4

∂a3
∂h3︸︷︷︸
f ′(h3)

∂h3
∂a2︸︷︷︸
WT

3

where one finds the derivative of the activation function and the transpose of the
weight matrices.

After calculating the gradients, one can adjust the network parameters p using Stochas-
tic Gradient Descent.
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Chapter 2

Can DFA alleviate Catastrophic
Forgetting?

Real-world applications of machine learning require robustness to shifts in the data dis-
tribution over time. As we introduced in the previous section, one critical limitation of
standard artificial neural networks trained with backpropagation (BP) is their susceptibil-
ity to catastrophic forgetting: they “forget” prior knowledge when trained on a new task,
while biological neural networks tend to be more robust to catastrophic forgetting. This
chapter will start with the revision of various algorithmic ways of mitigating catastrophic
forgetting that have been proposed, but developing an algorithm that is capable of learn-
ing continuously remains an open problem. As we introduced in the introduction, we are
motivated by recent theoretical results on Direct Feedback Alignment (DFA) to explore
whether such biologically inspired learning algorithm can mitigate catastrophic forgetting
in artificial neural networks. We train fully-connected networks on several continual learn-
ing benchmarks using DFA and compare its performance to BP, random features, and other
continual learning algorithms. We find that the inherent bias of DFA, called “degeneracy
breaking”, leads to low average forgetting on common continual learning benchmarks in
the Domain-Incremental learning scenario and in the Task-Incremental learning scenario.
We show how to control the trade-off between learning and forgetting with DFA, and relate
different modes of using DFA to other methods in the field.

2.1 Background

CL also focuses on developing algorithms and techniques that enable systems to maintain
old knowledge, while also being able to learn new information. This requires resolving the
“stability–plasticity dilemma” Carpenter [1986], Mermillod et al. [2013]: a model needs
plasticity to obtain new knowledge and adapt to new environments, while also requiring
stability to prevent forgetting of previous information.
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Figure 2.1: Regularization effect represented in the parameter space. In white, the loss
is minimized without constraints and the solution is outside the previous task’s solution
basin. In the regularized case (yellow), the constraint in the loss allows to reach a common
solution.

Typical approaches to CL include the following strategies: regularization techniques,
dynamic architectures, progressive learning, episodic memory replay, Othogonal Gradient
Descent (OGD) and functional approaches De Lange et al. [2021].

Regularization Techniques

An algorithmic approach is regularization, that consists in adding a constraint in the
loss. This restricts plasticity by penalizing changes in the parameter space, especially for
parameters important to solve past tasks.

These methods need to introduce an estimate of the importance of parameters in solv-
ing problems previously encountered. And secondly impose a quadratic penalty on the
difference between the parameters for the new and the old task, thus constraining the
parameters to stay close to the previous values if this term is minimized.

θ2 = argmin(L2(θ) + λ||θ − θ1||2M ) (2.1)

Three highly influential regularization schemes and their regularization weighting are:

1. Elastic Weight Consolidation (EWC) Kirkpatrick et al. [2017]
mi=(FI matrix of previous taks)ij

2. Synaptic Intelligence (SI) Zenke et al. [2017]
mi ∼ ∆θi

3. Memory aware synapses (MAS) Aljundi et al. [2018]

mi =
∑

X∈Si

∂||F (x,θ)||2
∂θi

Benzing [2022] linked all of the three schemes to the Fisher Information of seen tasks.
These methods can also be considered as prior-focused because the penalty resembles

the prior on the weights in the context of Bayesian Neural Networks. These methods have
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been proven effective for over-parametrized models in the multiple epoch setting Chaudhry
et al. [2019].

Dynamic architectures and progressive learning

Dynamic architectures Razavian et al. [2014] limit interference among tasks by using dif-
ferent subsets of modules for each task. The simplest form of architectural regularization
in convolutional neural networks is freezing certain weights in the network so that they
stay exactly the same Razavian et al. [2014]. A slightly more relaxed approach reduces
the learning rate for layers shared with the original task while fine-tuning to avoid dra-
matic changes in the parameters Donahue et al. [2014] Yosinski et al. [2014]. This class of
methods are alternatively called parameter isolation methods or architectural approaches
and, in general, these methods require searching over the space of architectures and causes
the architectural complexity to grow with the number of tasks. Progressive learning
is based on dynamic architecture approaches with the addition of a pruning procedure to
counteract the growth in the number of parameters. Fayek et al. [2020],

Episodic Memory Replay

Methods based on episodic memory replay retain representative data for observed data
distributions and pass trough the retained data after future tasks. The replay data is
either obtained directly with stored samples (GEM Lopez-Paz and Ranzato [2017] , AGEM
Chaudhry et al. [2019] , ICARLRebuffi et al. [2017]) or generated using generative models
Shin et al. [2017] Kamra et al. [2017] Seff et al. [2017]. Such replay methods require more
memory at training time but show better performances in the online setting Lopez-Paz
and Ranzato [2017].

Functional approaches

Functional approaches, focus on minimizing the deviations from previous output patterns.
This differs from regularization techniques that focus on deviations in the weights. In
functional approaches, the output of one or more intermediate layers are used as features
for the new task and for this they are also known as feature extractor methods Li and
Hoiem [2018] . These methods are computationally expensive as they require to compute
a forward pass through the old task’s network for each new data point.

Orthogonal Gradient Descent

Making the gradients explicitly orthogonal to each other is known to help against catas-
trophic forgetting, and the idea is exploited in methods such as Orthogonal Weight Modifi-
cation (OWM) [Zeng et al., 2019], conceptor-aided backpropagation [He and Jaeger, 2018],
and orthogonal gradient descent [Bennani and Sugiyama, 2020], because the features of
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different tasks are learned along orthogonal manifolds, and the weights updates do not
interfere with the previous ones. For example, in the Conceptor-Aided Backprop [He and
Jaeger, 2018], for each layer of a network, CAB computes a conceptor to characterize the
linear subspace spanned by the neural activations in that layer that have appeared in al-
ready learned tasks. When the network is trained on a new task, CAB uses the conceptor to
adjust the gradients given by backpropagation so that the linear transformation restricted
to the characterized subspace will be preserved after the gradient descent procedure.

Theoretical approaches

Despite the empirical research is predominant in the field and many techniques developed
for continual learning are based on experimental validation, continual learning is not solely
experimental; it is supported by a growing body of theoretical research that seeks to
understand its principles and challenges. One of the primary theoretical concerns in CL
is catastrophic forgetting, and recent studies have provided theoretical insights into how
various factors, such as task similarity and ordering, influence forgetting and generalization
performance [Lin et al., 2023, Wang et al., 2024]. Some works have developed explicit
mathematical frameworks to analyze the expected forgetting and generalization errors in
CL [Saxe et al., 2013, 2018, Dominé et al., 2023, Hiratani, 2024].

Besides, research has proposed probabilistic models as a tool to break down the CL
problem into sub-problems, such as within-task prediction and task-id prediction. These
models help establish necessary conditions for effective continual learning, indicating that
improvements in these areas correlate with better overall performance in class incremental
learning (CIL) settings.

In this work, we adopt a dual approach: combining the theory of DFA with empirical
validation in Continual Learning.

2.2 Hypothesis

We focus on the potential of DFA not just because of its greater biological plausibility
compared to vanilla backpropagation. We are encouraged by the recent analysis of Refinetti
et al. [2021], who showed that DFA has a degeneracy breaking property. To learn with DFA,
the neural network has to first align its weights (to some extent) with the feedback matrices
to ensure that the error signal can be backpropagated efficiently [Lillicrap et al., 2016a].
This alignment has the effect that neural networks trained by DFA always converge to
the same region in the loss landscape, independently of their initialisation, and in contrast
to networks trained by vanilla backpropagation. In other words, DFA will drive a neural
network to a specific region in the loss landscape. The location of this region depends on
the feedback matrices, thereby breaking the degeneracy of the solutions of vanilla SGD. In
this chapter, we ask whether we can use the influence of the DFA feedback matrix on the
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weights learnt by a neural network to mitigate catastrophic forgetting. We formulate and
test two different hypotheses for how DFA can facilitate continual learning.

The first hypothesis is that using the same feedback matrix for different tasks in
a continual learning curriculum prevents catastrophic forgetting by implicitly biasing the
weights to a single region of loss landscape, as they always need to align with the same
feedback matrix. In this case, DFA would act as a an implicit regulariser, similar to other
algorithms like Elastic Weight Consolidation (EWC) [Kirkpatrick et al., 2017], a popular
implicit regularisation technique. We will call this approach DFA-same.

Our second hypothesis is that using different feedback matrices for each task will
effectively update the weight matrices in different directions for each task, thus preventing
catastrophic forgetting. This DFA-diff approach is inspired by various CL algorithms
that explicitly orthogonalise gradients [Zeng et al., 2019, He and Jaeger, 2018, Bennani
and Sugiyama, 2020], like Orthogonal Weight Modification (OWM)[Zeng et al., 2019],
Conceptor-aided Backprop [He and Jaeger, 2018], and Orthogonal Gradient Descent [Ben-
nani and Sugiyama, 2020]. This idea can also be motivated from a neuroscientific perspec-
tive given recent evidence that neural population codes orthogonalize with learning [Flesch
et al., 2022, Failor et al., 2021, Zeng et al., 2019].

2.3 Methods

Evaluatation metrics

Supervised classifiers require as many samples as possible in order to learn the complex
relations of the features that can be used as a model for prediction. The relation between
performance and number training examples is usually displayed through the learning curve.
The learning curve of a machine learning algorithm relates performance to experience.
In this work, we will adopt accuracy as a primary performance measure in all of our exper-
iments with balanced datasets (containing the same amount of examples for every class),
but we are aware that the performance of the classifier can be computed using different
kind of metrics, for example precision (fraction of positives among examples predicted as
positives), recall (fraction of positive samples predicted as positive), F-measure (harmonic
mean of precision and recall) or accuracy (fraction of correctly labelled samples among all
predictions). Experience is typically measured in number of epochs: every epoch is a full
cycle of training in which all the training data has been processed. Different epochs show
the data in a different order and multiple iterations are often needed for the algorithms to
converge to a solution.

In Continual Learning, performance is difficult to report by one single measure (Perfor-
mance) because there is the need to monitor performance over more than one dataset at
the same time. On one hand a method must generalize to the task on which it is trained,
but it is not enough to be considered as a good model in CL, especially if the process of
learning the new task erases the ability to perform on previous tasks. On the other hand,
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Figure 2.2: Illustration on Average Forgetting (AF) and Average Performance (AP) in
the case of back-propagation on the p-FMNIST task in the Task-IL scenario, where the
network has a separate head for each task. AP describes the test accuracy of the network,
averaged over the tasks, while AF quantifies the average of the difference in accuracy on a
given task after training on it and at the end of the whole training trajectory.

if a method like Random Features displays no drop in accuracy on previous datasets, it
can still be considered a limited method if it doesn’t generalize as well as other methods
on single tasks. This trade-off takes the name of plasticity-stability trade-off.

To properly evaluate all methods, we will summarize the performances of the algo-
rithms under study using the following evaluation measures. Consider T different tasks in
succession and Accij the accuracy of task j at the end of training on task i.

EA =
1

T

T∑
i=1

AccT,i TA =
1

T

T∑
i=1

Acci,i

1. TA: Average test accuracy: How accurate is the model on the single tasks?

2. EA: Average end accuracy: How accurate is the model on all the tasks at the end
of training?

3. 100 ∗ (TA−EA)/TA: Average loss in accuracy over the average test accuracy. Nor-
malized by the test accuracy and shown as a percentage. This measure can be
interpreted as a normalized negative of forgetting.

Other performance measures for CL have been surveyed in Veniat et al. [2021], Chen
et al. [2023].
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To summarize, some of the plots in this chapter will not display the learning curve of
the algorithms, but plots summarizing the final performances in terms of Accuracy and
Forgetting.

Similarity measures

In 2.3, panel B, we analyze the similarity of the datasets arising from the division into the
different tasks. We take in the rows all the images of one class in the dataset corresponding
to task1 (and their pixels in the columns) and we compare it to the matrix of images of
the same class in the next dataset. We average over all the couples of datasets and over
the different classes. The similarity measures we apply (described below) measure the
similarity from a merely geometrical perspective and we find that in this point of the
tasks have classes more similar to each other in the permuted dataset. By construction,
the reshuffle of the pixels does not change the mean and the standard deviation of the
distributions of the pixels. Nevertheless, the split datasets is easier because it has only
two classes and in the Task-IL learning the difference in distribution can be an advantage.
In fact, the average forgetting in the Task-IL scenario are overall much smaller than the
average forgetting on the permuted dataset. On the other hand, the permuted dataset has
only slightly more forgetting in the Domain-IL scenario in the case in which the models
are optimized for performance.

we use the following similarity measures:

1. Cosine similarity: Dot product of the matrices reshaped into vectors and subsequently
normalized by the L2 norm of the two vectors.

2. Canonical Correlation Analysis (CCA) [Hardoon et al., 2005]: Similarity measure
which is invariant to affine transformations (any linear invertible transformation in-
cluding scaling, rotations, translations).

3. Centered Kernel Alignment (CKA) [Kornblith et al., 2019]: Similarity measure which
is invariant to orthogonal transformations, which is a subset of the invertible linear
transformations.

CCA is 1 when the two matrices are linearly invariant (they are linked by any affine
transformation) and 0 when they are not; CKA is 1 in the case that the two matrices are
orthogonally invariant (can be linked by a rotation).

Data

The goal of each experiment is to measure the evaluation metric of the trained model on
the test set. However not all the data available can be used for testing, instead, part of the
data must be dedicated to training the network (train set and validation set). In fact, the
epochs in the learning curve iterate over the data in the training set; the validation set is
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used to test the method during the training procedure alongside with the learning curve
to understand how many epochs to use and finally, the test set is used for evaluation of
the performance of the experiment.

Classification can be performed on different types of data: audio, images, text, videos,
and in general, any digital data that can be gathered. Each element of such data can
be treated as a sequence or as a whole. For example, an image can be processed pixel 1

by pixel (sequence) or as a vector containing all pixels. In this chapter, we will use FC
networks that takes as input the image as a whole vector.

In our experimental evaluations, we use the classification benchmark datasets of MNIST
[Deng, 2012], FashionMNIST (FMNIST) [Xiao et al., 2017] and CIFAR10 [Krizhevsky,
2009].

1. Permuted FMNIST (pFMNIST), where we generate a sequence of learning tasks by
permuting the pixels of each image; the idea here is to test a model’s ability to
incrementally learn new information with similar statistics [Kemker et al., 2017].

2. Split FMNIST (sFMNIST), where we split the original dataset of 10 classes into five
smaller datasets with two disjoint classes for each. The resulting smaller datasets
will have different modalities, so a model trained sequentially on them needs to be
able to incrementally learn new information with dramatically different statistics.

We show an example of the split and permuted FMNIST int Figure 2.3, panel A. With
the plot in panel B of Figure 2.3 we show that the permuted dataset is composed of images
with distributional similarity among the tasks. A detailed description of the similairty
measures used is in section 2.3 (previous paragraph).

Architectures

In most of our experiments, we use 3-layer Fully-Connected Networks with 1000 hidden in
each hidden layer in our experiments. The choice of using 3 layers is that it is the simplest
architecture that allows DFA to express the flexibility of the first layer and the alignment
of the second layer at the same time. In Appendix 2.8.3, we show the results of the FC
network after pre–trained convolutional layers.

The architecture changes based on the different CL scenarios under consideration. As
displayed in Figure 2.3, in the Task-IL scenario, the output layer is not shared for all tasks.
In this case, we implement an architecture with separate output layers, each one updated
only during the training of the corresponding task and used whenever training/testing on
the corresponding task. In the Domain-IL scenario, instead, the last layer is shared among
the tasks.

1Every pixel in an image contains the information of the corresponding picture portion. It is 1-
dimensional in grey-scale and 3-dimensional in colored images (Red/Grey/Blue). Every value is between 0
an 1 (white/black in greyscale or indicating the amount of the corresponding color)
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Figure 2.3: A One example of the first three tasks in the split (Binary classification) and
permuted dataset (classification). B Similarity measures of the images in the same class
averaged over the different classes of the Split and Permuted datasets. The permuted-
FMNIST dataset is the one where the images have the highest similarity among tasks,
while split-FMNIST has very different images in the same class. C One example of a
three-layer architecture used in the Domain-IL and Task-IL scenarios. In the second case,
one output node is dedicated to training and evaluating one specific task.

Algorithms

We used the implementation of DFA contained in the package tinydfa2 [Rebuffi et al.,
2017]. We train the networks for 1000 epochs (to ensure DFA has converged), adding an
early stopping rule based on the training accuracy (as soon accuracy is larger than 99%, the
training is stopped). This choice is taken for convenience and it is related to the qualitative
investigation of the success of DFA in CL, so the quantification of the decimals above 99%
are superfluous.

All of the layers are initialized using the Xavier uniform initialization Glorot and Bengio
[2010]. When DFA is used, the feedback matrix of each layer (I will refer to the concate-
nation of all the feedback matrices of the different layers as a single feedback matrix) is

2sdascoli/dfa-dynamics/deep
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initialized with the same distribution as the weights. The variance that the matrix natu-
rally assume with this initialization if of 0.018. In the experiments in which the variance
of this matrix will be changed, it will be done simply by dividing the whole matrix by the
corresponding factor (0.1, 0.001 for smaller variances and 10, 100 for larger variances). In
the case of DFA-same, the feedback matrix is initialized and kept unchanged during the
training of all tasks. In DFA-diff, we use a different feedback matrix for each task, by
sampling the new ones from the same Uniform distribution used to sampling the first one.

Baselines and hyper-parameters tuning

To benchmark the performance of DFA, we consider the following baselines:

1. Backpropagation is the most important baseline: we train the same fully-connected
networks, adding a Dropout layer [Srivastava et al., 2014] after each layer, which we
find helps with generalization, in accordance to the literature [Mirzadeh et al., 2020].
We perform a grid-search optimization for the learning rate in the range between
1e-2 and 1e-4.

2. Random Features [Rahimi and Recht, 2008, 2009] are fully-connected networks in
which we train only the readout layer with BP. The first and the intermediate layers
are kept unchanged during the training phase. This model can be applied only in
the Task-IL scenario because it requires a different output layer for each task in the
testing phase. The motivation for using this model is to understand the performance
of a neural network that does not learn data-dependent features, akin to the lazy
regime [Chizat et al., 2019]. We use a learning rate of 1e-2.

3. Elastic weight consolidation (EWC) [Kirkpatrick et al., 2017] adds a regularisation
term on the loss that penalizes the change of the weights that are more important for
previous tasks. It achieves this by pre-multiplying the BP weight updates using the
inverse of the diagonal approximation of the Fisher information matrix of the model.
In our EWC experiments, we chose a learning rate of 1e-3 and an “importance” of
1000, which is another important hyper-parameter for EWC.

2.4 Preliminary experiments

2.4.1 Degeneracy breaking in different datasets

Gradient Alignment and Weight Alignment were previously measured on the same
dataset, starting from different initialization seeds. Here, we show the overlap of the weights
and the gradients among two networks starting from different initialization seed and the
same feedback matrix at the end of training on different datasets consecutively. We extend
the degeneracy breaking phenomenon to show the overlap of networks initialized at the
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Figure 2.4: A: Dot product of the weights at the end of training on the different tasks
(averaged over the first two layers, Domain-IL architecture structure) of two networks
trained with DFA-same or DFA-diff in contrast with a reference network trained with
DFA-same. Weight Alignment can be appreciated mostly by looking at the second row,
the case in which the networks are initialized from different seeds (seed 1 for the reference
network and seed 2 for the network in the second row): the weights at first do not overlap,
but thanks to the fact that the networks are trained with the same feedback matrix,
the weights overlap more and more. B: Overlap of gradients averaged over two different
checkpoints during the training on the same dataset (splitFMNIST, Task-IL architecture
structure) of two networks trained with DFA-same or DFA-diff in contrast with a reference
network trained with DFA-same. Gradient Alignment is more visible in the first and
the third row: the gradients in panel B become orthogonal (overlap equal to 0) starting
from the second task, as soon as the feedback matrix changes, irrespective of the fact that
the networks are initialized in the same way (first row) or if the networks are initialized
differently (third row).

same initialization point and trained with different feedback matrices after Task 1, where
all the networks have the same feedback matrix.

With this experiment, we show that the degeneracy breaking extends to the case in
which the dataset is changed, which is essential to our first hypothesis for which DFA-
same could alleviate catastrophic forgetting by keeping the weights of the network when
training on the second task close to the weights learned on the first task, etc. Let’s focus
to the second row of Figure 2.4.1 panel A, the case in which the networks are initialized
from different seeds: the weights at first do not overlap, but thanks to the fact that the
networks are trained with the same feedback matrix, the weights overlap more and more
for all of the different tasks.

Our second hypothesis is that the different feedback matrices may bias the dynamics
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of the networks in independent directions of the weight landscape for every task. Even
though sampling independent and identically distributed (iid) matrices from a uniform
distribution does not generally make them orthogonal, we empirically see that the gradients
of DFA training procedures with different feedback matrices have gradient overlap which
is extremely low (first and third row in panel B).

2.4.2 Preliminary experiment: Learning the same dataset with different
feedback matrices and different output layers

According to our second hypothesis, we expect that the combination of a dedicated feedback
matrix alongside a dedicated output layer can reduce forgetting in the Task-IL scenario.

Let’s focus on the performances of DFA–diff, in which there is a different feedback
matrix for every task: in 2.5, we show that in this setting the representations of one
dataset are learned in different manifolds.

Figure 2.5: Cosine similarity of the change in activations due to the nth training vs the
change since the first initialization. Values Averaged over the first two layers of the network
and the images of the test dataset. The network is trained repeatedly on the same dataset
(FMNIST) while the output layer is re-initialized at the beginning of every session. The
overall change in activation in DFA-same is always aligned with the change taking place
in every single training, while in DFA-diff it is less and less aligned with the changes due
to subsequent trainings.
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2.5 Empirical results

2.5.1 DFA–same between the two ends of the plasticity-stability trade-
off

Catastrophic forgetting arises in Backpropagation [Rumelhart et al., 1986] due to the fact
that the weights of the network are updated in the direction of the minimum of the loss,
irrespective of the previous tasks. In this case the network is flexible to fit the task at hand,
but forgetting is high. Random features are at the other extreme, since only the weights in
the output layer are trained on the task it results in a more rigid method that retains pre-
vious performances. BP and random features therefore delineate the two extremes between
which we would like to interpolate: we would like DFA to be less susceptible to catastrophic
forgetting than BP, while being able to learn data-dependent features that allow it to beat
the performance of random features. We report the results of our experiments that we
obtain by optimizing the hyper-parameters for maximum AP or for minimum AF in 2.2.

When we train DFA and BP focusing on the performance of the single tasks, we can
see that DFA can reach the same performance of 100% accuracy as BP on the split dataset
(where the tasks are binary classifications) and almost reach it on the permuted dataset
(where the tasks consist of 10-class classifications), where DFA achieves 88.2 ± 0.1 3 and
BP 89.7± 0.1. Thus, DFA proves to be able to adapt the network to learn the new tasks
efficiently.

Regarding the comparison of Random Features and DFA with minimized forgetting,
we find that DFA can achieve a better Average Performance than a Random Feature
model, both in the split and permuted datasets, while maintaining zero forgetting, just as
RF. Specifically, DFA shows AP at least 2% higher than RF (see 2.2, column “Minimizing
forgetting”). One example is shown in 2.7, where DFA reaches 83% accuracy while Random
Features reaches 80.9%. The fact that DFA reaches higher performances than RF means
that the weights of the first two layers are updated, and the null forgetting values DFA
means that this weights update can happen in such a way that the information of the
previous tasks is conserved.

Overall, we find that DFA can embody different behaviors according to the value of its
hyper-parameters. It can almost reach the same generalization performances as BP while
displaying less forgetting in the majority of the cases; and it can achieve zero forgetting like
RF, while generalizing better than RF. It thus occupies a sweet spot between the plastic
BP and the static RF.

3We notice that letting DFA train for more epochs, it can achieve the same level as BP, but we decided
to keep a maximum of 1000 epochs for all methods.
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2.5.2 DFA–same in the Domain–IL and Task–IL scenario, testing the
first hypothesis

In terms of forgetting, DFA-same achieves 10% less AF than BP in permuted and 2% less
in split (binary classification). This trend is conserved when the experiments are performed
with the MNIST datasets (see Section 2.8.1). The advantage of DFA in the Domain-IL
scenario is in accordance to the hypothesis for which DFA learns close representations for
different tasks. In fact, the Domain-IL has a unique output layer shared among all the
tasks and this requires similar representations among different tasks in order to correctly
classify the previous ones.

In the Task-IL scenario, the average forgetting of BP improves with respect to the
Domain-IL scenario by 8% and 22% for the Split and Permuted FMNIST datasets respec-
tively. On the other hand, DFA improves only by 6% on the split dataset and becomes
worse, with AF from 45.8% to 50.1%, in the permuted-FMNIST. This trend causes DFA
to perform worse than BP on the split dataset and comparably to BP on the permuted
dataset4. The accuracy trend of DFA can be explained in light of our hypothesis: if the
output layer is specialized for every task, keeping the representations similar to each other
can bring a disadvantage, as the previous representations are “overwritten”.

2.5.3 DFA–diff in Task–IL and Domain-IL scenarios, testing the second
hypothesis

We showed that the standard DFA cannot benefit from the introduction of a specialized
output layer for every task (Task-IL scenario). We propose an extension of DFA in which
there is a different feedback matrix for every task: in 2.5, we show that in this setting
the representations of one dataset are learned in different manifolds. According to our
hypothesis, this phenomenon can be extended to the learning of different datasets and this
would allow to learn new tasks with less interference with previous representations. We
expect that the combination of a dedicated feedback matrix alongside a dedicated output
layer can reduce forgetting in the Task-IL scenario. In the remaining, we will denote the
standard DFA as DFA-same and this extension as DFA-diff.

We find that the main differences with respect to DFA-same are in the Average Forget-
ting measure and are in accordance with the hypothesis: when optimized for performance
and in the Task-IL scenario, DFA-diff has 9.8%± 2% AF. This value is around 20% lower
than the one of DFA-same and 5% lower than BP’s. In the Domain-IL scenario, on the
other hand, DFA-diff has at least 8% more forgetting than BP and 10% more than DFA-
same. When optimized for minimal forgetting, DFA-diff also achieves null forgetting in the

4The comparable value of AF between DFA and BP in the Task-IL permuted case hinders the advantage
of DFA for the forgetting of the earliest tasks. We show in 2.7 the trend of forgetting the first task and we
can notice a clear advantage. In 2.6.2 we report the forgetting trends of all the tasks, where one can see
that DFA forgets more tasks seen one or two epochs before, but is more stable for earlier ones.
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Table 2.1: Results in terms of Average Performance (AP) and Average Forgetting (AF) in
the Domain-IL for all the methods (DFA–diff, DFA–same, BP, BP–ablated, EWC). In the
first column, the networks are optimized for maximum performances, and in the second
column for minimum forgetting. We present the results visually in Figure 2.6. In the case
of minimized forgetting, we report here the minimum AP % values above the RF baseline.

AP AF AP AF

Optimized for performance Minimizing forgetting

Split FMNIST DFA-diff 100 ± 0 45.8 ±2.4 94.0 ± 0 35.56 ± 1.6
Domain-IL DFA-same 100 ± 0 35.5 ± 0.2 98.2 ± 0 32.1 ± 1.6

BP 100 ± 0 37.8 ± 0.4 94.5 ± 0.1 35.8 ± 0.6
BP ablated 100 ± 0 40.5 ± 1.7 98.4 ± 0.1 34.7 ± 0.7

EWC 100 ± 0 46.9 ± 4.8 98.7 ± 0.4 40.4 ± 3.1

Permuted FMNIST DFA-diff 88.3 ± 0 71.8 ± 1.2 82.3 ± 0.1 29.1 ± 0.9
Domain-IL DFA-same 88.2 ± 0.1 45.8 ± 1.9 85.8 ± 0 26.2 ± 1.9

BP 89.7 ± 0.1 57.6 ± 1.1 85.4 ± 0.1 23.1± 1.5
BP ablated 88.7 ± 0.1 49.4 ± 0.4 84 ± 0.1 26.2 ± 2.4

EWC 80.7 ±0.2 55.7 ± 2.5 80.7 ± 0.2 55.7 ± 2.5

Task-IL scenario, but it shows lower performances than DFA-same (up to 4.2% less than
DFA-same in the split Domain-IL).

2.6 Complementary results

2.6.1 Comparing DFA with Elastic weight consolidation

In the Domain-IL scenario, there is an advantage of DFA-same over EWC of about 10% AF.
This could be due to the underlying hypothesis that in DFA-same the implicit regularisation
given by the feedback matrix is kept constant. On the other hand, the regularisation factor
in EWC is different for every new task, as explained in 2.1. On the permuted dataset, EWC
has a performance that is intermediate between DFA-same and DFA-diff. In fact, EWC can
be considered a method in between DFA-same and DFA-diff because the “pulling forces” in
the loss due to the feedback matrices will not be parallel to the ones of the previous tasks as
in DFA-same, but not orthogonal as in DFA-diff, either. On the split datasets, on the other
hand, EWC tends to be better than DFA-diff. In the Task-IL scenario EWC is the best
method both when we evaluate on MNIST (see 2.8.1) and FMNIST. In the Domain-IL it
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Table 2.2: Results in Task-IL scenario in terms of Average Performance (AP) and Average
Forgetting (AF) in the different datasets for all the methods (DFA–diff, DFA–same, BP,
BP–ablated, EWC, RF ). In the first column, the networks are optimized for maximum
performances and in the second column for minimum forgetting. We present these results
visually in Figure 2.6. In the case of minimized forgetting, we report here the minimum
AP % values above the RF baseline.

AP AF AP AF

Optimized for performance Minimizing forgetting

Split FMNIST DFA-diff 100 ± 0 9.8 ± 2 93.9 ± 0.1 0 ± 0
Task-IL DFA-same 100 ± 0 29.4 ± 1.2 95.4 ± 0 0 ± 0

BP 100 ± 0 15 ± 2.3 89.5 ± 0.1 0.3 ± 0.3
BP ablated 100 ± 0 9.7 ± 1.6 94 ± 0 0 ± 0

EWC 99.2 ± 0.2 4.5 ± 1.5 99.1 ± 0.2 3.4 ± 1.8
RF 93.4 ± 0.1 0 ± 0 93.4 ± 0.1 0 ± 0

Permuted FMNIST DFA-diff 88.5 ± 0.1 44.5 ± 2.4 83 ± 0 0 ± 0
Task-IL DFA-same 88.2 ± 0.1 50.1 ± 2.5 83 ± 0 0 ± 0

BP 90.0 ± 0.1 49.5 ± 2.5 83 ± 0 11.8 ± 0.8
BP ablated 90 ± 0.1 47 ± 2 82.8 ± 0.1 0 ± 0

EWC 88.7 ± 0.1 46.5 ± 2.7 83 ± 0 8.7 ± 1.2
RF 80.9 ± 0.1 0 ± 0 80.9 ± 0.1 0 ± 0

is the best only in the experiments on MNIST. This might be due to a difficulty in finding
the correct hyper-parameters that would render EWC performative on FMNIST.

2.6.2 Ablation experiments

In order to investigate the reasons behind the success of DFA in some of the CL scenarios,
we look for the underlying mechanism that influences DFA’s stability to forgetting the
most. For achieving minimum AF, we performed a grid-search over the hyper-parameters
and we find that forgetting is reduced with smaller variance of the feedback matrix for
both DFA-same and DFA-diff, see 2.6. This impact can be easily explained by observing
that the entries of the Feedback matrix are a multiplicative factor in the update rule of
the layers 1 and 2 (see equation 1.7); thus the smaller the values in the matrix, the smaller
will be the update of the weights of these two layers. The output layer is updated exactly
as in BP, so this layer is not affected by the variance of the Feedback matrix. In the limit
of a matrix filled with zeroes, DFA approaches a Random Feature behaviour where only
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Figure 2.6: AF-AP plots for all datasets (by rows) and scenarios (by columns). In each
plot, the increasing size of the marker in DFA and DFA-diff indicates an increase in the
variance of the feedback matrix (from 1.8 × 10−3 to 1.8) and for BP an increase of the
learning rate of the first two layers (from 10−8 to 10−3); the learning rate of the third layer
is kept to 0.01 to match the value used in DFA. We can notice that for larger values of the
feedback matrix variance, DFA can reach higher AP at the price of smaller AF (smaller
dots moving towards the top-left part of the plots, which culminates in the RF regime).
The same trend is followed by BP when the learning rate of the first two layers decreases
(BP ablated).

the readout layer is updated.

We therefore performed an ablation experiment with BP where we reduced the learning
rate of BP in the first two layers to mimic the effect of feedback matrices with reduced
variance, while keeping the learning rate of the readout layer fixed and similar to the one
used for DFA. We show the results of the ablated experiment in all the datasets in 2.6. We
found that lowering the learning rate of the intermediate layer indeed brings BP towards
lower AF and lower AP, similarly to the effect of lowering the variance in DFA’s feedback
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Figure 2.7: Performance of the first task throughout learning all tasks evaluated on the
permuted-FMNIST (above) in the Task-IL scenario. DFA-same is more powerful than RF
(purple line). Compared to BP, DFA-same has less forgetting in both cases: when we
optimize the models for maximum performance and for least forgetting.

matrix. In fact, BP with reduced learning rates can surpass DFA’s stability in some cases,
for example in the Task-IL, permuted case. In all the other cases, BP-ablated can reach
AF similar to DFA, underlining the importance of variance of the feedback matrix for the
stability of DFA. Crucially, DFA still retains higher accuracy for old tasks in the long
run: As we show in appendix 2.6.2, figure 2.8, the accuracy drop for the case of Task-
IL p-FMNIST in DFA is bounded to a maximum of 59% while BP-ablated reaches 67%
forgetting.

Comparison between DFA and BP ablated at increasing number of tasks

In order to answer the question, ”Is DFA mitigation for catastrophic forgetting solely due
to the small learning rate in the first two layers?” we propose a deeper comparison with
BP ablated in the context of the permuted dataset. The same results apply to the split
dataset. In 2.8 below, we display the accuracy of all the tasks during the CL pipeline
(training one task at a time and always monitoring the accuracy of the other tasks; in the
case of Task-IL scenario, either for training and for testing one task, the corresponding
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output layer is used). We compare the case in which BP ablated has the most similar AF
to DFA-same and we find that DFA has the tendency of forgetting more than BP and BP
ablated after few stages but is more stable in the long run, for example after 6 tasks in the
Task-IL and after 1 or 9 tasks in the Domain-IL scenario; the black and the grey lines in the
plot of DFA-same visually show the point where the advantage starts. We conclude that
a small learning rate in the first two layers is not always enough to reproduce DFA-same
stability and this advantage in the long run might be due to the alignment of the weights.

Figure 2.8: Accuracy interpolation lines along the stages. On the left (red lines) we show
the results for the Task-IL scenario, we can notice that even though DFA-same has higher
average forgetting than BP and BP-ablated, it has lower forgetting for the first three (vs
BP, darker line) or four tasks (vs BP ablated): DFA-same retains the accuracy better than
BP and BP-ablated in the long run, while it forgets more in the shorter run. This is also
true in the Domain-IL scenario (blue lines, on the right) in which DFA has better average
forgetting than BP and worse compared to BP-ablated.
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2.7 Summary of results and discussion

By comparing the performance of DFA and various baseline algorithms on several bench-
marks, we found that DFA has the potential for continual learning. For example, we
found that DFA-same can alleviate catastrophic forgetting better than BP and EWC
in the Domain-IL scenario. This result is consistent with the first hypothesis, whereby
DFA-same imposes weight alignment in the presence of different datasets. We saw that
the networks are indeed able to exploit this to mitigate catastrophic forgetting. According
to our hypothesis, DFA-same works as an implicitly regularised method like EWC, but
with the advantage of keeping the same constraints on the weights, while EWC adjusts the
constraint of the weights after every new dataset encountered.

The empirical evaluation also shows that DFA with different feedback matrices
for each task in the curriculum has an advantage with respect to EWC and BP in the
Task-IL scenario. This is the architectural scenario in which the output layer is specific
for every task. This allows learning the features on different manifolds in weight space,
while still permitting an efficient encoding of the features for a successful classification
of the different tasks. In continual learning, when the features are learned on different
manifolds, the learning of the new tasks does not interfere with the separating hyperplane
of the previous tasks, so it can be an advantage in the Task-IL scenario. The drastic
improvements of DFA-diff in the Task-IL scenario in contrast to the minor improvement of
DFA-same in this setting corroborates our second hypothesis, whereby gradient alignment
extends to the case of different datasets, allowing DFA-diff to learn in different manifolds.
This approach can thus be employed for an effective mitigation to catastrophic forgetting.
Finally, we tested gradient alignment in two specific experiments, and we find it visible
in the case in which DFA is trained on the same series of datasets starting from different
initialisations with the same feedback matrices (2.4.1, panel C) and when DFA is trained
on the same dataset repeatedly but with different Feedback Matrices (Figure 2.5).

While backpropagation with layer-specific learning rates in the first two layers (BP
ablated) has a significantly lower overall forgetting than DFA-same in the case of Task-
IL and permuted dataset, DFA-same retained its advantage with respect to BP and BP
ablated for the tasks that were processed at the beginning (see 2.6.2 and 2.7). The design
of BP ablated itself was inspired by the impact of the scale of DFA’s feedback matrix
on forgetting. The advantage of DFA-same over this method is further evidence that
weight alignment is taking place and is beneficial against catastrophic forgetting beyond
the impact of the Feedback matrix on the learning rate.

In the future, it will be interesting to investigate how the architecture of the networks,
and specifically the width and the depth of the networks influence the plasticity-stability
trade off curves. A preliminary experiment with 5-layers architectures can be found in the
Appendix 2.8.4.

In the case of the split dataset, the forgetting is heavily dependent on the similarity of
consecutive tasks (see larger error bars in 2.6). On top of curriculum learning, it might
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also be beneficial to use convolutional layers before the Fully–Connected part to replace the
highly-variable distribution of pixels with more rationalized features [Crafton et al., 2019].
See appendix 2.8.3 for the preliminary experiments we carried out in this direction, and
more detailed results will be subject of our paper review, in the near future. We tested the
Continual Learning scenarios where the model is given the task–ID at test time (Task-IL)
or not (Domain-IL). The next challenge is the class–incremental learning scenario where
the model has to provide the task-ID when solving a task as is the case, for example, in
many reinforcement learning scenarios. We made some preliminary tests in this direction
and the results are that the performances of DFA in this scenario is poor: the test accuracy
drops back to the random accuracy level as soon as the next task is learned, or, if a masked
cross entropy is used, the first two learned tasks retain a signal. A detailed report about
these results will also be subject of the paper updates.

2.8 Appendix B

2.8.1 Results evaluated on MNIST

The plots displaying the results of the methods applied to the MNIST datasets in the
Task-IL scenario can be found in 2.9. The points in the circle indicates the Split-MNIST,
otherwise they refer to the results on the Permuted-MNIST.

We can notice that the results are consistent with the results on F-MNIST: In the Task-
IL split-MNIST DFA lays in an intermediate position between RF and BP, slightly behind
EWC; In the permuted Task-IL, DFA-diff has less forgetting than all the other methods
while achieving the same AP of BP. In Domain-IL (panel on the right), DFA-same is
comparable or equal in AF to BP while DFA-diff has the worst performances; EWC is in
an intermediate level between DFA-same and DFA-diff on the permuted dataset while is
superior to DFA on the split datasets.

2.8.2 Random Seed impact on the accuracy of the firstly learned task

We show here the Test Accuracy of the first learned task for all methods (Accuracy %
on the y-axis and stage number on the x-axis). The different figures display one method
at a time in the following order: DFA-same, DFA-diff, BP-ablated, BP, EWC; permuted
FMNIST above and split FMNIST below. The dotted lines are the ones optimized for
minimizing forgetting. In EWC permuted FMNIST, the blue dotted line coincides with
the blue solid line. These plots reveal that there is no significant difference in the impact of
the random initialization among the methods. On top of this, we decided to report them
to offer a visual illustration of forgetting of the first task in all methods.
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Figure 2.9: AP and AF of the networks trained on MNIST. In the circle, the results of
split-MNIST and the other points are permuted-MNIST.

Figure 2.10: Test Accuracy of the first task for all methods trough the stages of the
Permuted case. The errorbars display the standard deviation over 5 different seeds initial-
ization.

2.8.3 DFA performances after convolutional layers

One curiosity that might be left at this point is about how much DFA scales to com-
plex architectures and datasets, for example with convolutional architectures or CIFAR10
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Figure 2.11: Test Accuracy of the first task for all methods trough the stages of the Split
case. The errorbars display the standard deviation over 5 different seeds initialization.

benchmark dataset (An example of CIFAR10 input images are in Figure 2.12).

Convolutional networks take as input the whole image, but the inherent property of
convolutional layers is to divide it in sub-sections and process them independently. In this
way, the information regarding which pixel is closer to which other is preserved. They
are inspired by the ventral pathway of the visual cortex of the brains, that processes
information in stages. This hierarchical structure allows each layer of a CNN to extract
increasingly complex features from the input data. The initial layers detect simple features
like edges, while deeper layers combine these features to recognize more complex patterns
and objects Celeghin et al. [2023]. Thus, convolutional layers are complex architectures
that are specialized for image classification.

As we discussed in the introduction, DFA fails at training convolutional layers, so we
will adopt 3 layers of DFA after convolutional layers pre–trained with BP. Since these ex-
periments are setting the ground to further experiments in Continual Learning, we include
the case in which the pre–trained convolutional layers are general ones and do not contain
information about the specific dataset. We attempt to achieve this using convolutional
layers pre–trained on Imagenet and transfered for the classification of CIFAR10. These
experiments are preliminary results that aim to reveal the qualitative behaviour of DFA in
this context.
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Figure 2.12: Example of the CIFAR10 dataset divided into 5 binary classification tasks.

Methodological setting

The convolutional architecture used is a VGG11 architecture which is a relatively small
convolutional network composed of: 8 convolutional layers ( 3x3 filters with stride 1 and
padding 1) followed by Batch Normalization, ReLU activations and Max-pooling ( 2x2
filters and stride 2). The convolutional part is followed by two FC layers (4096 hidden size,
dropout 0.5) and one Softmax layer (for a total of 3-layer FC network). The FC network
used when DFA is used has a hidden size of 1096 and 4 layers without dropout. These
choices are made arbitrarily, but the analysis of what happens with other architectures is
outside the scope of this experiments.

10-class classification on CIFAR 10

Figure 2.8.3 compares the Test Accuracy of BP (left panel) and DFA (right panel) in the
case of a 10–class classification of CIFAR10 benchmark dataset after fixed pre-trained
convolutional layers.

If we only train the fully-connected classifier (blue line) directly on the images, you
achieve ∼ 43% accuracy in BP and ∼ 55% with DFA. Training the fully-connected classifier
on top of fixed convolutional filters that were pre-trained on ImageNet, one has up to
∼ 63% with BP and random guess with DFA (orange). DFA and BP reach the same
accuracy if DFA is used on top of convolutional layers pre–trained on CIFAR10 and if
BP is trained from scratch ∼ 85% (green). These results are interesting because they
reveal that DFA is not flexible enough to use the features extracted by a general image
classification convolutional architecture to fit 10 classes.
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Figure 2.13: 10-class classification of CIFAR10 the shadow on the left panel is one
standard deviation over three runs with parameters lr=0.01, mom=0.9 and wd = 0.0001;
on the right there is one seed with mom=0.9, lr=1e-05, wd=0.0001. The hidden size is
1096 when is applied directly on the images and 4096 after convolutional pre-trained layers.

10-class classification without learning the output layer

This experiment is characterized by the fact that the softmax layer at the end of the FC
network is not trained. This doesn’t allow DFA to align its last–layer weights, and thus
the WA and GA don’t take place, leading to DFA to be stuck in a training trajectory that
focuses on the WA of the updated layers, without any connection with learning (dashed
and dotted lines in Figure 2.14).

While BP (solid line) updates the inner layers of the FC network in a meaningful way.
The result of the this experiment is making visible that the pre–training on ImageNet
offers DFA with features for which learning starts at 10%, which is the Random Guess
Accuracy. When pre-training on a different dataset, the model has learned more general
feature representations that aren’t specific to the target dataset. Therefore, when trans-
ferred, the model starts with some general knowledge, leading to random but non-zero
accuracy at the start. Erhan et al. [2010].

Instead, pre–training on CIFAR10 (the same dataset using in the experiment), the
Test Accuracy of DFA is stuck at 0%. This can be explained by the opposite argument:
the convolutional layers have highly become specialized for that dataset. During fine–
tuning, the weights are already adapted to the target data distribution, so the model’s
initial predictions might be incorrect for the new task (here, there are three layers of
random projections mixing the features), causing the initial accuracy to drop to zero. This
experiment is useful to prove that using pre-trained convolutional layers on IMAGENET
does not carry dataset-specific information about CIFAR10, thus they can be used for the
Continual Learning evaluation of DFA on CICAR10.
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Figure 2.14: Experiment of the pre–trained fixed convolutional layer followed by 3 FC
layers and one fixed softmax layer. The shadow is one standard deviation of models trained
with hidden size of 4096 and different lr, momentum, batch size computed in grid combi-
nations among the values of lr=[0.1,0.01,0.001]; wd = [0, 1e-5], mom = [0,0.5]; batch size
=[30,512].

2-class classification

For the interests of Continual Learning experiments, though, when the full dataset is
divided into 5 tasks, the classification task simplifies to a binary classification.

In this context, as we see in Figure 2.15, if we only train the fully-connected classifier
(cyan) directly on the images, DFA achieves ∼ 90% with DFA. If the data is turned into
grey–scale, this goes down to 80%. Training the fully-connected classifier on top of fixed
convolutional filters that were pre-trained on ImageNet, one has up to ∼ 98% with DFA
(grey). DFA reaches the same accuracy when is used on top of convolutional layers pre–
trained on CIFAR10 (yellow).

This experiment shows that DFA is capable of using the features extracted by the
pre–trained convolutional layers on ImageNet for distinguishing only 2 classes among the
CIFAR10 classes. The behaviour of the FC net directly on the images (cyan line) also
exhibits non trivial performances. With the additional test of evaluating this case on the
gray-scale version of the dataset made the accuracy drop slightly because the task becomes
harder. This might be useful in Continual Learning benchmarks in which one wants to test
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Figure 2.15: 2-class classification of CIFAR10 with hyperparameters [lr=0.1, mo-
menutm=0.9, wd=0.0001, hidden size = 1096, batch size=512].

different models on challenging datasets, in order to distinguish clearly the power of the
different methods.

Summary

We conclude that the performances of a 3-layer FC trained with DFA are enough for an
evaluation of this network on the Split benchmark dataset of Contintual Learning, which
is composed by 5 tasks of binary classification. Moreover, using convolutional fixed layers
pre–trained on Imagenet as a pre-processing of the dataset is another feasible experiment
that do not violate the principle for which the task has to be a novelty. These experiments
will be subject of the paper updates, publicly available in OpenReview. Moreover, it
would be interesting to understand what are the the performances of DFA between the
classifications of 2 and 10 classes, and what precisely influences the transition.

This Appendix was dedicated to describe some preliminary results on the application
of DFA to complex architectures (convolutional networks) and datasets (CIFAR10). The
aim is to understand if DFA can be used after pre–trained and fixed convolutional layers
(one can think of these pre–trained fixed layers as a transformation to the dataset). Ideally,
we would like that the features offered by this transformation were not specific about the
data distribution of CIFAR10, otherwise the principle of Continual Learning for which the
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tasks are novel data distribution would have been violated.

2.8.4 DFA with larger architectures

With this experiment we show what is the impact on the Test Accuracy of DFA with a
larger architecture like a 5-layer Fully Connected with respect to a 3-layer one that we
chose to use throughout the work. We stopped the training of the baselines to 150 epochs
and we report the Test Accuracy of all models in the legend of Figure 2.16. For DFA,
which is in our focus, we ran for 1500 epochs. The first observation is that DFA with 5
layers has a first plateau at around 50 epochs, and another one at 120. After that, the
Test Accuracy increases slowly. This pattern is not present in the 3-Layer network, which
follows the Random Feature performances until 100 epochs and afterwards detaches from
it and continues to increase.

The behaviour of the 5-layer architecture can be explained in light of the alignment
phases necessary for the algorithm to learn. The longer the architecture, the more time it
requires for all the layers to achieve gradient alignment.

In our experiments we chose the 3-layer architecture for its computational and perfor-
mance superiority, but in future perspectives it would be interesting to investigate how the
5-layer network in the different stages of convergence influences Continual learning.
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Figure 2.16: 3- and 5- layers FC DFA of CIFAR10 with hyperparameters as follows:
lr = 0.01, wd = 0.0001, momentum = 0.3. Dropout of 0.5 is used only for BP.
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Chapter 3

DFA for Bayesian neural networks
averaging

Bayesian Neural Networks focus on modeling uncertainty in neural network predictions by
placing distributions over the network’s weights. They must not be confused with Bayesian
networks that are focused on modeling the relationships between variables in structured
domains. Bayesian Neural Networks allow to quantify uncertainty in predictions. They are
applied in contexts where the goal is to model uncertainty in high dimensional unstructured
data, for which Neural Networks are suitable.

In general, parameter estimation can be approached from a Bayesian approach or via
Maximum Likelihood. The first approach assumes parameters θ to be random variable with
some known prior distribution. The Bayes theorem allows to use the observed examples
to obtain a posterior distribution. The predictions for new examples are obtained by
integrating the model’s predictions over all possible values for the parameters.

In the Maximum Likelihood approach, that is adopted in the other chapters, the pa-
rameters θ are considered to have fixed, but unknown values and they are computed as the
one maximising the probability of the observed examples D. The function that is optimized
in the classification tasks of our experiments is the Cross-Entropy. Inference is performed
using the obtained values of the parameters to compute probabilities for new examples of
belonging to the classes. Then the most probable class is elected as final prediction.

Despite the success of neural networks trained in Maximum Likelihood approach with
stochastic gradient descent, there has been continued interest in combining Bayesian meth-
ods with neural networks. One important motivation is to alleviate the notorious brittleness
of neural networks and their susceptibility to adversarial attacks, which is less pronounced
in Bayesian Neural Networks (BNNs) [Gal and Smith, 2018, Bekasov and Murray, 2018].
In this chapter, we will explore the potential of DFA to train neural networks in a Bayesian
way. Before discussing the DFA-based approach we introduce in this chapter, we give some
background information on Bayesian methods for neural networks in Sec. 3.1. We then for-
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mulate the research hypothesis for this chapter in Sec. 3.2; outline the methods in Sec.3.3;
present the results in Sec.3.4 and summarize the results and discuss them in Sec.3.7.

3.1 Background

In this section, I will clarify the difference between Bayesian Averaging and Ensem-
bling; then describe some of the methods currently used for obtaining such distributions
starting from the dataset and a prior distribution, such as MCMC methods and Langevin
SGD.

With Bayesian Neural Networks, each weight of the network is not a single value but is
considered as a random variable with its own distribution. Performing inference for a
new example x involves marginalizing over the posterior, a process referred to as Bayesian
averaging. The predictive distribution is:

p(y|x,D) =

∫
p(y|x, θ)p(θ|D)dθ, (3.1)

where:

1. p(y|x, θ) is the likelihood, computed with a forward pass of the input x trough the
network with parameters θ.

2. p(θ|D) is the posterior distribution over the weights. More details on this are in the
next section.

Since computing this integral exactly is not possible, one typically approximates it
using sampling methods. A common way to approximate this marginalization is to use
Monte Carlo sampling from the posterior. Instead of directly computing the integral, this
procedure samples several weight configurations θ1, θ2, . . . , θM from the posterior. Then,
inference is performed by averaging over the predictive distributions from these sampled
weights.

The approximate predictive distribution becomes:

p̂(y|x,D) ≈ 1

M

M∑
i=1

p(y|x, θi) (3.2)

where M is the number of sampled weight sets and θi are samples from the posterior
distribution. This in practice means output of the network feeding the input x and using
θi as parameters, then average the predicted probabilities across all the samples. The
output layer of the network has a final softmax operation, giving y as vector normalized to
1 containing the probabilities of the label to belong to the different classes. Finally, to get
the predicted class, the class corresponding to the maximum average probability is taken:

ŷ = argmax
y

p̂(y|x,D) (3.3)
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At this point, to quantify how certain or uncertain the model is about the
prediction, one can measure the variance of the predictions across different weight sam-
ples.

Ensembling is a popular technique to approximate even further the Bayesian Averag-
ing process and it is one of the oldest tricks in machine learning literature [Hansen and
Salamon, 1990]. With this approach, instead of sampling configurations of the weights as
to approximate the posterior, the samples are obtained by naively training networks with
different initialization seed and averaging their predictions during testing. These networks
are trained as if they were standard neural networks. There’s no direct Bayesian component
during training. However, the variability in their learned weights across the ensemble serves
as a proxy for the posterior distribution in a Bayesian setting. By combining the outputs
of several models, an ensemble can achieve better performance than any of its members.
Like true Bayesian methods, Ensembling provides a way to estimate uncertainty.

For what regards true Bayesian Neural Networks, the goal is to learn the posterior
distribution over the network’s parameter:

p(θ|D) =
p(D|θ)p(θ)

p(D)
(3.4)

where:

1. θ are the network’s weights (biases can be modeled as weights, if the input is aug-
mented with a feature containing 1).

2. p(D|θ) is the likelihood of the dataset.

3. p(θ) is the prior distribution of the weights.

4. p(D) is the evidence, that can be computed as the marginalization over the parame-
ters of the numerator.

However, computing the exact posterior distribution p(θ|D) is analytically intractable
for most neural network architectures due to the high dimensionality of the parameter
space and the marginalization required in the denominator. To address this challenge,
several approximate inference methods have been developed.

For example, Markov Chain Monte Carlo (MCMC) methods are a class of al-
gorithms used to sample from a probability distribution when direct sampling is difficult
[Brooks et al., 2011]. MCMC methods, such as Metropolis-Hastings and Gibbs sampling,
iteratively generate samples from the posterior distribution of the model parameters by
constructing a Markov chain that has the desired posterior as its equilibrium distribution.

MCMC methods satisfy three conditions that ensure the convergence to the true distri-
bution. First of all, ergodicity : Given sufficient time, the trajectory will explore the entire
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state space. This allows to ”forget” the initial state and, over time, the distribution of
states becomes independent of where it started. For the statistical analysis, ergodicity is
crucial because it renders time average equivalent to averaging over different systems. The
second contition is aperiodicity : the proposed move should not be the same after a regular
amount of steps and in general there shouldn’t be cyclic behaviors. The last condition is
irreducibility : Any point is reachable from any point, so there are no isolated regions.

Although MCMC provides asymptotically exact samples from the posterior, it is com-
putationally expensive for large-scale neural networks. The need to evaluate the full dataset
at each iteration limits its scalability, particularly for high-dimensional weight spaces and
large datasets. As a result, various scalable variants of MCMC, such as Stochastic Gra-
dient MCMC (SG-MCMC), have been introduced to address these computational chal-
lenges. These methods combine ideas from Markov Chain Monte Carlo (MCMC) methods
and stochastic gradient descent (SGD) to approximate the posterior distribution of model
parameters in a scalable manner. These methods aim to enable Bayesian inference for
large datasets and high–dimensional parameter spaces by incorporating stochasticity from
both mini-batch gradients (like in SGD) and noise introduced to simulate a Markov chain
(Gaussian noise). There are several variants of SG-MCMC, each with different strategies
to improve scalability and accuracy. The most popular ones include:

Stochastic Gradient Langevin Dynamics (SGLD) extends standard SGD by adding
a Gaussian noise term to the parameter updates, allowing the algorithm to sample from
the posterior distribution of the weights [Cheng et al., 2024, Zhang et al., 2022]. The root
of this algorithm is Langevin Dynamics, that is governed by a stochastic differential equa-
tion incorporating both deterministic forces (The gradient of the potential) and random
fluctuations (a Wiener process). While the evolution in the stochastic process is described
by a differential equation and time is continuous, the time in Langevin SGD is discretized.
In this context, every step of update is a sample.

The weight update rule in Langevin SGD is given by:

θt+1 = θt − η∇θL(θt) +
√
2ηξt (3.5)

where η is the learning rate, L(θt) is the loss function of the network evaluated on a
minibatch θt are the parameters as they are the time step t, and ξt is Gaussian noise. The
noise term ensures that the updates explore the weight space and approximate posterior
samples. Over time, as the network trains, Langevin dynamics help the model converge to
the posterior distribution [Welling and Teh, 2011b].

One of the main advantages of SGLD is its scalability. By operating on mini-batches
of data rather than the entire dataset, it significantly reduces the computational burden
compared to full-batch MCMC. However, SGLD introduces additional challenges, such as
the need to carefully balance the noise level and learning rate to ensure accurate posterior
sampling.
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Another issue with SGLD is that it is asymptotically exact only in the case of full–batch
gradients (using the entire dataset at every time step) and if the step size is small enough
(the variance of the Gaussian noise must be related to the learning rate to ensure proper
exploration of the parameter space).

So, in the case of Stochastic Gradient Langevin Dynamics, where gradients are esti-
mated using mini-batches instead of the full dataset, the method becomes an approxima-
tion [Nemeth and Fearnhead, 2019]. While still powerful and useful for scalable inference,
SGLD typically produces biased samples due to the use of noisy, mini-batch gradients. To
compensate for this, more sophisticated methods, such as Preconditioned SGLD [Li et al.,
2015, Chen et al., 2016], which incorporates preconditioning techniques to adaptively adjust
the step sizes based on local geometry, or Stochastic Gradient Hamiltonian Monte Carlo
(SGHMC) [Zhang et al., 2021], which utilizes the principles of Hamiltonian dynamics to
explore the parameter space. It simulates a physical system where parameters are treated
as particles moving in a potential energy landscape defined by the posterior distribution.
These methods to reduce this bias while maintaining scalability.

Adversarial Atacks

The robustness of BNNs to adversarial examples has been already observed by Gal and
Smith [2018] and Bekasov and Murray [2018] by empirically showing that, for BNNs trained
with HMC, adversarial examples tend to have high uncertainty, and deriving sufficient con-
ditions for idealised BNNs to recognize adversarial examples. Empirical methods to detect
adversarial examples for BNNs that utilise pointwise uncertainty have been introduced in
Li and Gal [2017], Feinman et al. [2017], Rawat et al. [2017]. Most of these approaches
have largely relied on Monte Carlo dropout for posterior inference [Carlini and Wagner,
2017]. Statistical techniques for the quantification of adversarial robustness of BNNs have
been introduced by Cardelli et al. [2019] and employed in Michelmore et al. [2019] to de-
tect erroneous behaviours in the context of autonomous driving. Furthermore, in Ye and
Zhu [2018] a Bayesian approach has been considered in the context of adversarial training,
where the authors showed improved performances with respect to other, non-Bayesian, ad-
versarial training approaches. One of the last works on this topic is Bortolussi et al. [2024],
where it is analyzed the geometry of adversarial attacks in the large-data, overparametrized
limit for Bayesian Neural Networks and demonstrate that in the limit BNN posteriors are
robust to gradient-based adversarial attacks. The key finding is that the vulnerability to
gradient-based attacks arises as a result of degeneracy in the data distribution, i.e., when
the data lies on a lower-dimensional submanifold of the ambient space.

3.2 Research hypothesis

Given this background, we now discuss how one might use DFA to train Bayesian neural
networks. The best achievement that one could aim for is the sampling of the posterior
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in an exact way, thus satisfying the three conditions of ergodicity, irreducibility and
aperiodicity described in the previous section. Could we apply the idea of Langevin SGD
and use a step of DFA as a proxy of noise? Since DFA is characterized by its alignment
to the feedback matrix (as described in Sec.1.3), a step would be driving the trajectory in
the direction of the feedback matrix (random direction), but still taking into consideration
the minimization of the loss. The second regime we take into consideration is to operate in
a further approximation for sampling the posterior, thus operating in an intermediate
level between Ensembling and Langevin SGD. This approach gathers the samples by letting
DFA run for some epochs and the networks sampled are used for Ensembling. The difference
with classical Ensembling is that instead of averaging over solutions of SGD starting from
different weight initialization, we average weights obtained by DFA after re-initializing the
feedback matrix. The network is kept in a not fully converged state, but retains memory
from the previous iteration. Finally, we will apply DFA in classical Ensembling, i.e.
starting from different initialization points in the weights. Many researchers demonstrated
that a good ensemble is one where the ensemble’s members are both accurate and make
independent errors [Perrone and Cooper, 1993, Opitz and Maclin, 1999], which could easily
be achieved by DFA thanks to its degeneracy breaking mechanism.

The three regimes will be analyzed separately against the results of the performances
of a single network. The tests will consist in measuring the Ensemble Test Accuracy and
the robustness to adversarial attacks.

3.3 Methods

Evaluatation metrics

Supervised classifiers require as many samples as possible in order to learn the complex
relations of the features that can be used by the model for prediction. As we discussed in
the methods section for the Continual Learning experiments, the relation between perfor-
mance and number training examples can be displayed through the learning curve. The
learning curve of a machine learning algorithm relates performance to experience. In
this work, we will adopt accuracy as a primary performance measure in all of our experi-
ments. Experience is typically measured in number of epochs: every epoch is a full cycle of
training in which all the training data has been processed. Different epochs show the data
in a different order and multiple iterations are often needed for the algorithms to converge
to a solution. Such epochs/performance relation can be used to understand the amount
of data needed for successful training and allow the comparison of different algorithms. In
fact, in this chapter, we will extensively compare the different algorithm’s performances
by means of their learning curves: using Epochs as a unit of measure for the information
processed.
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Data

In our experimental evaluations, we use the classification benchmark dataset of FashionM-
NIST (FMNIST) [Xiao et al., 2017]. It consists of 10 classes of images, each one containing
a different type of clothing or accessories (See Figure 3.1 [K V and Gripsy, 2020]).

Figure 3.1: FashionMNIST dataset used for the experiments. There are a total of 10
classes.

Architecture

We use 3-layer Fully–Connected Neural Networks with ReLU activation function and a
Softmax in the last layer. The initialization of the weights and of the Feedback Matrix is
drawn from a Xavier uniform initialization [Glorot and Bengio, 2010].
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Algorithms

We optimize the parameters of the Neural Network by applying DFA (see introduction 1.3)
without regularization. The loss function minimized is a Cross-Entropy loss.

The prediction can be either given by a single network or be the result of Ensembling
multiple networks. We will describe how to obtain the different networks in the specific
experiments, but we report the pseudocode of this protocol in Algorithm 1. Note that
averaging the network’s prediction doesn’t require to store in memory the configurations
of all the networks if the goal is only computing the average of the prediction. One can
update the average online, only by keeping track of how many samples it is computed from.

Algorithm 1 Ensembling Protocol given a burn-in number of epochs, the dataset (inputs,
targets) and the sampled network’s states. Returns the output (vector with probabilities
for each class), standard deviation over the batches and samples, prediction.

for Batches of the dataset do
For each sampled network, compute the output.
Average the output of the sampled networks excluding the first n-networks based on

the burn–in n.
end for
Use the average output over the batches for prediction.
return Average output, Standard Deviation, prediction

Adversarial Attacks

Adversarial attacks are techniques used to construct small manipulations of the inputs
of a neural network in such a way that they cause incorrect predictions. These attacks
exploit the vulnerabilities inherent in machine learning systems, particularly neural net-
works, which can be surprisingly sensitive to small changes in input data that are often
imperceptible to human observers.

Adversarial attacks can either have complete knowledge of the model architecture,
including its weights and parameters, or not. In the first case, more precise manipulation
of inputs can be done using gradient information to generate adversarial examples. In the
case of Black Box Attacks, the attacker has no access to the internal workings of the model
but can observe its outputs. This makes crafting adversarial examples more challenging
since the attacker must rely on trial and error or other indirect methods to infer how to
manipulate inputs effectively.

Two algorithms that were used by Bortolussi et al. [2024] and that we will replicate
belong to the first kind and are gradient–based where every image of the original dataset
is perturbed and then saved, obtaining an ”attack dataset”. The first way to compute
the perturbations is Fast Gradient Sign Method (FGSM) that computes the gradient
of the loss function with respect to the input image and adjusts the image pixels in the
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Algorithm 2 FGSM in Pytorch given a dataset, perturbation strength ε

for image and label in dataset do
image.requires grad=True
output = Net(image , n burn-in) #feed the image through the network or the net-

works ensemble
loss=CrossEntropy(ouptut,label) #compute the loss
Net.zero grad()
loss.backward() #compute the gradients of the loss with respect to the input image
image grad = image.grad.data #store the gradients
perturbed image = image +ε∗ image grad.sign()
perturbed image = torch.clamp(perturbed image , 0 , 1)

end for
return perturbed image

Algorithm 3 PGD in Pytorch given a dataset, maximum perturbation ε, step size α,
number of iterations n iter
for image and label in dataset do

original image = copy.deepcopy(image)
for i in n iter do

image.requires grad=True
output = Net(image , n burn-in) #feed the image through the network or the

networks ensemble
loss=CrossEntropy(ouptut,label) compute the loss
Net.zero grad()
loss.backward() #compute the gradients of the loss with respect to the input

image
image grad = image.grad.data #store the gradients
perturbed image = image +α∗ image grad.sign()
η = clamp(perturbed image- original image, -η, +η)
perturbed image = original image + η

end for
end for
return perturbed image
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direction that increases loss. See the pseudocode in Algorithm 2 and Projected Gradient
Descent (PGD) which applies FGSM iteratively multiple times with small perturbations.
See the pseudocode in Algorithm 3.

Initial run details and experiments protocol

Since our goal is to use the change of the feedback matrix to sample the posterior, it is
convenient to start from a network that is already at convergence. For computational time
economy, we trained an initial network and then loaded the final network’s state for starting
the sampling experiments. We save 8 networks trained with different pseudo-random states
of the weight initialization and feedback matrix initialization.

In Figure 3.2, we plot the learning curves corresponding to the initial run. We expand
on the choice of the rank of the feedback matrix in section 3.6.
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Figure 3.2: Learning curves of DFA used for initializing the Bayesian sampling protocols.
Parameters: [lr = 0.1, std(F) = 0.1]

3.4 Sampling the posterior with DFA

We attempt to use the peculiar weight updates of DFA as a tool for efficiently gathering
samples of the posterior. For this, we build on a first run that is almost in a converged state
(Black checkpoint in Figure 3.8). Importantly, in this first test we change the feedback
matrix every single epoch. The starting Test Accuracy is 88.89% ± 0.1% and the Train-
ing Accuracy is 98.55% ± 0.02). The stochastic nature of training with minibatches and
the limited size of the network renders this procedure an approximation of the posterior
sampling, but keeping the learning rate very small, in such a way as to make small up-
dates, thus ”adiabatic” and ”reversible” in a physical perspective. This brings the system
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Algorithm 4 Experiment protocol pseudocode

for seed in seed list do
Run a network with DFA until it reaches a threshold in Train Accuracy
for step in n steps do

Re-initialize the Feedback Matrix corresponding to each layer sampling it from
the distribution U(−a, a), a = 3 ∗

√
hidden size

Update the network with DFA’s update rule for n epochs
Save the network

end for
end for
return

to satisfy the detailed balance condition, and satisfying the three conditions of ergodicity,
irreducibility and aperiodicity described in the previous paragraph.

We perform an experiment following the protocol described in the Pseudocode 4. The
results, averaged over 8 seeds, are shown in Figure 3.3 for two different learning rates.
We can notice that, while making small steps in random directions, the system moves
toward a lower Training Loss. The maximum Test Accuracy of 89.02% ± 0.19 is reached
around the 30th step. After that point, the Train Accuracy reaches a plateau, and the
Test Accuracy decreases. One would normally think that overfitting is taking place, but
the Test Loss (lower panel of Figure 3.3) has a plateau, meaning that the system is not
going towards a lower generalization error. Probably, the decrease of the Test Accuracy
indicates fluctuation due to the sampling.

In order to check if the samples were de-correlating with the initial state, we performed
a simple overlap measure of the weights in the layer before classification (See the lower
panel of Figure 3.11 in Appendix ). The result is that with a learning rate of 10−5, the
overlap is fixed at 1 while with a learning rate of 0.001, the overlap diminishes only by
10−5.

The message we can take from this experiment is that even if we change the feedback
matrix every epoch the samples are extremely similar to the starting point, and what we
can conclude from the plots of Accuracy and Losses is that the samples do not escape from
the minimum in which the dynamics is initialized.

With this protocol, the random step might not be enough to escape the minimum for
two reasons: first of all, DFA by construction has small updates when the error is small,
which is exactly the starting condition because the Train Accuracy is 98.55%, which is
close to interpolation. Secondly, DFA requires on the order of 100 epochs to perform the
alignment phase and be able to find a new solution [Refinetti et al., 2021]. For this reason,
changing the feedback matrix every epoch doesn’t exploit DFA’s potential to find different
minima as it is instead essential for sampling multi-modal posteriors.

In Appendix 3.8 we show that using the same protocol with a larger learning rate the
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minimum can be escaped and the overlap with the initial point can decrease up to 65%
in 120 steps, but the system is then driven to a local minimum with a much lower Test
Accuracy. Therefore, even increasing the learning rate is not an adequate strategy.

In the next sections, we explore two related questions: how the number of epochs before
changing the feedback matrix influences the results and how the training accuracy of the
starting point affects the results. As we will see, starting the dynamics from a configuration
with low training accuracy will be the winning strategy.
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Figure 3.3: Learning curves of the samples (1 sample every epoch) averaged over 8 random
seeds. The numbers in the same colour as the curves refer to the last sample and outline
the values of the average and the standard deviation. The errorbars are omitted for better
readability: in all panels except for the Train Accuracy, the errorbars of the two curves
overlap. For a learning rate of 0.001, the average accuracy reaches a maximum of 89.02%±
0.19% while a lower learning rate reaches 88.96% ± 0.17%. The same plots including the
larger learning rate can be found in Appendix 3.8 and precisely in Figure 3.10.
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3.4.1 Changing the feedback matrix more rarely

In the previous section, we saw that changing the feedback matrix every epoch with a new
Feedback Matrix is not an efficient sampling procedure, as it does not allow moving from
the minimum determined by the initialization.

In this part, we investigate if we can obtain the uncorrelated samples by letting DFA
run for some epochs before changing the feedback matrix, in such a way that it has some
time to align to the new feedback matrix. Increasing the number of epochs for each step
of sampling.

For these experiments, we use a learning rate of 0.1 and the sampling protocol described
in Pseudocode 4, starting from the same point as the previous experiment (black checkpoint
in Figure 3.2, corresponding to a training accuracy of 98.55%) but with the difference of
using 5, 10, 50 and 200, 500 and 1000 epochs before changing the feedback matrix. As
discussed in Appendix (Figure 3.12), we decided to use a stopping rule as soon as the
Training Loss increased over a threshold. This results in a row acceptance criterion that
stops the movements in directions of high loss.

We compare the accuracy of Ensembles of networks collected in this way and we show
the results in Figure 3.4. On the left panel we show the Accuracy for increasing number
of steps, and on the right we rescale the values based on the computational time for each
step, i.e. the number of epochs.

First of all, we can notice that the average performance of the first samples is lower
than the accuracy of the starting point (red line). This is a good indication of the fact
that the system moves from the initialization state. Secondly, we notice that the steady
state performance of the different experiments depends on the number of epochs one waits
before changing the feedback matrix (a ”step”). The longer the step, the higher the Test
Accuracy of the Ensemble. For a step of 500 epochs and of 1000 epochs the two ensemble
averages both converge to the same level of Accuracy of BP, overcoming the historical gap
between DFA and BP.

We can conclude that the best length for the step is of at least 500 epochs/step. The
initial computational cost to reach 98% Train Accuracy is quite large, as it is visible in
Figure 3.2, so this approach is not optimally efficient. In the next section, we test if starting
from a shorter run still preserves the results.

3.4.2 The influence of the starting point

We now repeat the dynamics starting from a network that reached intermediate conver-
gence, the hollow checkpoint in Figure 3.2 which has 95.2%± 0.3 Train Accuracy. In these
conditions the algorithm of DFA has by construction larger updates. Indeed, the update
of the weights is proportional to the training error.

In this case we consider only the case of 200 and 500 epochs per step. The results are
consistent with the previous ones: the higher the number of epochs per step, the higher

61



2 7 12 17 22
Number of averaged networks

84

85

86

87

88

89

90
TE

ST
 A

cc
Ensemble averages 

DFA converged
BP converged
epochs/step: 5
epochs/step: 10
epochs/step: 50
epochs/step: 200
epochs/step: 500
epochs/step: 1000

0 2000 4000 6000 8000 10000 12000 14000

Epochs

84

85

86

87

88

89

90

T
E
S
T

A
cc

Ensemble averages, from 98% 

500 750 1000 1250 1500 1750 2000 2250 2500

Epochs

88.00

88.25

88.50

88.75

89.00

89.25

89.50

89.75

90.00

T
E
S

T
 A

cc

Ensemble averages, from 99% 

Figure 3.4: Test Accuracy of ensembles for a dynamics started at 98.55% of training
accuracy. On the left, the accuracy is reported as a function of the number of samples and
on the right as a function of the number of epochs. Recall that the computational time
is proportional to the number of epochs. The red horizontal line corresponds to the best
accuracy of a single DFA model. The gray horizontal line is the best accuracy of a single
model trained by standard backpropagation. The case of 50 epochs/step has a larger
errorbar shadow because in this case we didn’t use the stopping criterion as discussed
in the appendix (section 3.8). The case of 1000 epochs/step has only one seed due to
computational time.

the steady-state performances.

The steady state performance of 500epochs/step is consistent with the previous exper-
iment, in which the upper bound of BP is reached.

We can see in Figure 3.5 that the 200 epochs/step overcomes the maximum test accuracy
of plain DFA (horizontal line on the right panel, corresponding to the maximum of the red
line on the left panel) before 1000 epochs. In the 500 epochs/step this happens before 750
epochs (see the blue line crossing 88.9%).

We observe a marginal benefit in computational efficiency with respect to the results of
the experiment in the previous section. The benefit comes both from the epochs saved for
computing the initial point: here, 650 epochs while the previous initialization point was
obtained with a number of epochs of 1800 (more than double).

The Ensemble Accuracy of the 500 epochs/step after 2 steps (1000 epochs in total) is
above the previous experiment: 89.1% vs 88.9%. This is also an effect of a starting point
in which the training error is significantly different from zero, an essential prerequisite for
making DFA work efficiently.

We can conclude that the protocol we designed is robust with respect to the initial-
ization point. Starting the dynamical sampling at a non converged states is marginally
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beneficial for the Ensemble test accuracy and in terms of computational cost.
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Figure 3.5: Ensemble Test Accuracy of the Ensembled networks in comparison with a plain
BP and DFA run starting from the same point.

3.4.3 Averaging over different seeds

Classical Ensembling has been previously performed by averaging the output of different
neural networks trained on the same data set, starting from different initial weights. In this
section, we compare the cost of the dynamic sampling strategy with the naive sampling
obtained by training a totally different model for every sample.

We consider n independent networks of 200, 500 and 1000 epochs each. The results are
shown in Figure 3.6.

First of all, looking at the green line in Figure 3.6, we can notice that averaging 250
epochs from the same point yields an Ensemble Test Accuracy which coincides with the
convergence accuracy of DFA (even lower with 150 epochs, shown in Appendix Figure 3.16).
Instead, with the dynamical sampling, averaging runs of 200 epochs/step can bring the Test
Accuracy above this level (See orange lines in Figures 3.4 and 3.5). This comparison shows
that our dynamical procedure cannot be ”parallelized” by running the 250 epochs at the
same time from different starting point.
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The Ensemble accuracy using different seeds of DFA and 500 epochs (blue line in
Figure 3.6) reaches BP’s performances after averaging on at least 7 networks, so the total
’computational cost’ of reaching the threshold of BP (89.48%) is 3500 epochs. The same
level of performance is achieved by the Ensemble accuracy of the dynamical sampling with
larger computational cost, as it is at least of 7150 epochs (650 initial epochs + 13 steps of
500 epochs/step). Therefore, the dynamic sampling procedure described in the previous
section is less efficient than the naive sampling procedure.

Finally, we perform Ensembling over DFA networks that run for 1000 Epochs (orange
line in Figure 3.6). By averaging over the different seeds, in this case, the Ensemble
Test Accuracy is brought to levels as high as 90.17 (or 90.48 with 3000 epochs, shown
in Appendix Figure 3.16), which is beyond the accuracy that can be reached with plain
BP (or ensembles of BP, see Appendix Figure 3.16). This can be explained thanks to the
degeneracy breaking of DFA: the networks fully converged with different feedback matrices
end up in different minima, and this brings better performances than BP and dynamical
ensembles. This seems to be the best strategy so far. Note that we gathered limited results
with steps of 1000 epochs in the dynamical protocol, so a fair comparison cannot be carried
out with the current knowledge. This result can be taken as a suggestion for future research
on the dynamical sampling protocol.
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Figure 3.6: Test Accuracy of ensembles of different seeds of DFA compared to the Test
Accuracy of one DFA converged network and one BP converged network.
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3.5 Robustness to Adversarial Attacks

Bayesian Neural Networks have been shown to be more robust to gradient-based adversarial
attacks [Bortolussi et al., 2024]. This advantage, in certain theoretical limits, has been
explained with the fact that the gradients of the expected loss function of a BNN with
respect to input points can vanish [Bortolussi et al., 2024]. This result has been shown
to hold for various BNN architectures trained with Hamiltonian Monte Carlo (HMC) and
with Variational Inference (VI) on both MNIST and Fashion MNIST. In this section, we
test if an Ensemble of networks sampled via the dynamical procedure still has the property
of increased robustness to adversarial attacks. In Figure 3.7, we show that the ensembled
networks indeed have higher Test Accuracy than the single sampled networks. The Test
Accuracy gained on the ensembled networks with respect to the single networks in the
manipulated datasets are of 14.12% (FGSM) and 1.6% (PGD, mild attack). So, the gap
between the two cases depends on the strength of the attack but for a strong attack as
FGSM the gap becomes considerable.

Another feature we can notice is that the single networks exhibit a much larger vari-
ability along the steps. This variability reflects the original Test Accuracy for a mild attack
and becomes smooth for the larger attack, along with a decreasing trend. The ensembled
networks are equally robust along the steps and the strength has a growing trend in the
strong attack.

The standard deviation of the single networks has an increasing trend in the stronger
attack, reaching up to 17.87% in the last step while the standard deviation of the ensembled
networks is not increasing and is 6.11% in the last step.

3.6 Impact of rank and similarity on re-alignment time

With this experiment, we show how the re-alignment time is affected by: A) the rank of
the new feedback matrix and B) of the similarity of the feedback matrix with the previous
one.

In the setup we used in this experiment, we control with the parameter β the similarity
with the previous matrix (larger β meaning larger component of the new sampled matrix
over the previous matrix). The FM was re-initialized according to the following variance-
preserving formula:

Fnew = Fsampled ∗ β +
√
1− β2 ∗ Fold (3.6)

In Algorithm 4 we outline the experiment protocol and in this case, the FM is changed
every 400 epochs after a first training period in which DFA reached 94.79% ± 0.12 Train
Accuracy and 88.80± 0.2 Test Accuracy corresponding to 400-450 epochs according to the
different random seed with a learning rate of 0.1, std(F) 0.1. as discussed in the paragraph
above. We used 8 different initialization seeds, which set the pseudo-random state of the
weight initialization and of the feedback matrix initialization.
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Figure 3.7: Test Accuracy of single sampled nets and their Ensembles. The dataset under
test has been attacked by FGSM with ϵ = 0.1 or PGD (ϵ = 0.05, α = 0.01, niter=10) the
last hyperparameters are for PGD a mild attack. The original dataset is sub-sampled to
500 images in this case.

Consider that the Feedback matrix is a rectangular matrix with dimensions [number of
classes, number of hidden neurons] and its rank corresponds to the smallest dimension. In
our experiment, the number of classes is 10 while the number of neurons in the hidden layers
is 1000, so the maximum rank is 10. In this experiment, we use the Feedback matrices of
both layers with a rank of 5 and 10.

The influence of the Rank of the FM on the Train Accuracy ad Train Loss is
clear: higher the rank (green and orange lines in Figure 3.8), higher is the recovery time
necessary to restore alignment in the first switch. What influences the steady–state, of the
Train Accuracy, instead, is the similarity between the previous FM with the new ones.

Focusing on the plots for the Test Loss, we notice how the full-rank cases (orange and
green lines) display overfitting. This is a confirmation of the fact that the re-alignment
has been completed, and the training loss is minimized by overfitting the dataset. Despite
this overfitting, the separation of the green and orange line in the Test Accuracy is still
present, indicating that a more similar feedback matrix (orange line) can bring a better
generalization.
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Figure 3.8: Train Accuracy, Test Accuracy, Train Loss and Test Loss of DFA with the
Feedback Matrix re–initialized every 300 epochs (vertical gray lines) with different rank
and different degrees of similarity with the previous matrix (lower beta, larger similarity).
The color bands are the standard deviation over 3 runs.

Regarding the Test Loss with a smaller rank (blue and red lines), we can notice that
there is a monotonic increase. This could indicate either overfitting or a slow realignment.
By the Test Accuracy, we can notice that the first four switches (until 1600 epochs) the
performances are the same for the blue and the red line. One interpretation of this can
be a that this corresponds to a phase of pure re-alignment. After 1600 epochs, the Test
accuracies of the blue and red lines becomes different, while keeping a monotonic decrease.
This might indicate a transition from pure re-alignment to a blend of re-alignment and
overfitting.

The fact that the first switches have a stronger re-alignment than the others is prob-
ably due to the fact that the initial point might correspond to a deeper minimum. One
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observation from this point of view is that a full–rank matrix directed the training to-
wards a completely different minimum, overcoming the loss barrier between the minima.
The matrix with a reduced rank, probably, had enough degrees of freedom to re-align the
weights while staying in the same minimum. Further experiments should be required to
confirm this scenario, but we can already learn something from this experiment: a reason-
able choice seems to be a Feedback Matrices with Rank=5. This choice has Test Accuracy
comparable or better than the case of the Full Rank. In this way, the space of parameters
to be sampled is restricted to a smaller set, rendering the sampling more computationally
efficient.

3.7 Summary and discussion

The weights of a network trained by DFA carry the fingerprint of the feedback matrices.
This property can be seen as a stronger “bias” in the sense of the classic bias-variance
trade off of classification models. This alignment between weights and feedback matrices is
the natural result of weights being subject to the gradient alignment constraint in order to
fit the dataset. This “degeneracy breaking” [Refinetti and Goldt, 2022] between equivalent
solutions among the same-loss solutions of the optimization problem means DFA converges
to the solution that is closest to the feedback weights. This solution is not found by follow-
ing solely the steepest descent direction, as it happens in BP, but the directions spanned
for the steepest descent search are only the ones that satisfy the alignment constraints.

The dependence of the trained network on the feedback matrices is usually seen as a
weaknesses, and DFA is usually taken into consideration due to the biological plausibility
it was inspired by. In fact, in the brain, it is impossible that the error feedback is commu-
nicated to every synapsis precisely rescaled by the value of the derivative of the error of the
mathematical function of the forward flow of information from the synapsis to the error.
Despite this, neurons still receive a feedback from deeper layers in order to modulate the
strengthening of the connections to allow learning [Williams and Holtmaat, 2018]. DFA,
as we already underlined, implements this strategy.

In this chapter, we tried to leverage this degeneracy breaking to obtain independent
samples for Bayesian Averaging, which is difficult to achieve with vanilla BP.

First of all, we sampled the posterior of Bayesian Neural Networks starting from the
same idea applied in Langevin SGD: with small enough steps, one can explore the posterior
by injecting a noise in SGD. When the injection of noise is replaced by the iteration
through different feedback matrices with DFA, ideally one is driving the trajectory to
explore independent directions while maintaining a low loss. We found that in this way
we can gather samples of networks with comparable training error. This was indicated
by a slowly oscillating Test Accuracy in coexistence of a plateau of Train Accuracy, Train
loss an Test Loss. Moreover, the ensemble Test Accuracy of the samples obtained in this
way is monotonically increasing with the number of samples, meaning that the samples are
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adding information if averaged with each other. The minimum at which the system was
initialized at the beginning of sampling was not escaped because the overlap of the initial
state and of the samples is decreasing only by a constant factor, and did not decay to zero.

Sampling after letting the system evolve for a fixed amount of epochs, instead, allows to
go deeper in one minimum and to catch up with the performance of a single run of BP. In
fact, the Ensemble accuracy of the samples collected in this way reach the Test Accuracy
of BP.

The oscillations of the performances of the raw samples are in the range of ±0.2%
Accuracy. In order to observe this behaviour, we had to adopt a stopping criterion that
stops the moves in a very high loss region. This prevents the system to jump to another
minimum, unless there were more minima connected by a low-loss path. This was essential
to prevent excessive loss accumulation especially in the cases with a number of epochs per
step in the range of 50 and 200 due to the incomplete re-alignment and fitting phases. We
noticed that also the 500 epochs per steps case, when these phases are completed, the loss
accumulation phenomenon becomes more rare, so more investigations could be dedicated
to finding alternative solutions in these cases rather than re-initializing the system. The
goal with the dynamical protocol would be to find a way to reach neighbouring minima
without going trough the high-loss directions. This aim is shared with the ones of continual-
learning, in which one would like to find a minimum close to the previous one in such a
way that the two solutions are close. Alternatively, any other kind of rejection criterion
can be implemented, as re-initializing the system to a configuration obtained by a run from
scratch with a different initialization seed and different feedback matrix.

We tested this idea in an extreme case: the naive ensembling of different solutions of
DFA and we found that averaging among runs from scratch in this way, the Ensemble
average can achieve better performances which are higher than BP and of Ensembles of
BP. This suggests to increase the time periods between sampling solutions. The intuition
is that the degeneracy breaking characteristic of DFA allows to explore different minima,
and this is an essential feature in ensembling because different minima will be a different
realization of the ”systematic error”, or bias, of the network. Averaging the predictions
among those samples, the bias cancels out, improving performance. Investigating the trade-
offs in terms of accuracy and efficiency of such an approach will be an interesting avenue for
future work. One could also incorporate this finding in the dynamical sampling protocol,
by allowing much larger steps and letting the network reach interpolation before taking a
sample, or using the solution of a different seed after encountering a barrier, combining the
two frameworks.

We didn’t perform an analysis on the uncertainties of the models, but we expect that
the uncertainty would be larger in the case of increasing ensembles, especially if they are
composed by samples from different minima. This diversity in predictions obtained as
averages is likely related to an increased entropy of the system. Testing this hypothesis is
an interesting direction for future research.

Another promising direction for future work is to explore the effectiveness of manipu-
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lating the rank of the feedback matrix when encountering a high-loss barrier. The feedback
matrix that maps 10-outputs to the hidden-size for every layer has a maximum rank of
10, and only 5 out of these are ”independent” feedback directions. In our current imple-
mentation, this is achieved by sampling two rectangular matrices and taking their product.
What would happen if we reduced the rank by rendering the last 5 dimensions being a
linear combination of the first 5, and in the next step constraining the first ones? One
could alternatively think of reducing the variance of the feedback matrix, in such a way
that the updates are on another scale in expectation. Probing the robustness of the en-
sembles we obtained with DFA sampling to adversarial attacks, we noticed that they are
more robust and stable than the single instances. With the integration of ad-hoc rules, one
could improve further. One of them regards a careful selection of the samples: it is possible
that that not all the samples are likely to bring a benefit to the average, for example if the
samples themselves have very low test accuracy. Indeed, there exist practices such as the
so-called ”super learner” approach [Laan et al., 2007], in which one can assign weights to
every sample and give more importance to a subset of samples. The weights are usually
learned by trying ensembles of subset of samples and monitoring which subsets yield best
test prediction when ensembled together.

3.8 Appendix C

Additional plots for sampling 1-epoch/step

Here we show the details of the runs with three different learning rates, including a larger
learning rate of 0.1. In this case, as you can see in the blue lines in Figure 3.10, the Train
Accuracy decreases from 99.55% to a range between 85% and 89%. The system is not
anymore in the minimum of the initial state, and the decreasing loss indicates that the
steps of sampling bring the network towards a new minimum. The Test loss in this case
often goes below the test loss of the samples with lower learning rate, indicating that indeed
a minimum could be found, but it is not an optimal one due to the lower Test Accuracy.

The Ensemble Test Accuracy of the samples gathered in this way has an average of
85.84%. which is much lower than the value obtained with the smaller learning rates. This
is shown in Figure 3.9.

In plot 3.11 we show the correlation of the samples with the initial state. It is clear
that only a larger learning rate allows to take samples which are deviating from the initial
state. These deviations though are not desirable samples because the Test Accuracy is
much worse than the starting point.

One interesting experiment would be to take more samples beyond 120 epochs and see
if the Test Accuracy reaches optimal values again. But in this case, one would not need
to sample every epoch, rather one should wait for the system to be re-optimized. This is
what we show in Section 3.4.1.
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0.00001]. The right panel is a zoom on the curves around 89% Test Accuracy.

Additional plots for sampling with more epochs/step

Looking at Figure 3.12, in the 50 epochs/step case (green line) it is visible that the loss has
an increasing trend. This is due to the sequential nature of the alignment and memorization
phases of DFA. Alignment brings the weights to a random direction and after it begins the
dataset learning. By re-initializing the feedback matrix every 50 epochs, this dynamical
system does not have enough time to return to the initial performances, thus the network
is every step at a higher and higher loss. Moreover, we can exclude that the test loss
increases due to overfitting because the training loss increases in the same way. The same
phenomenon is present with steps of 200 epochs even more drastically, so we decided to
add a stopping criterion: as soon as the Train Accuracy drops below a threshold we restore
the initial state. In this way, we are letting the system move in the new direction unless
it is in a high-loss direction. As we discuss in the Appendix, the overlap measures confirm
that this procedure allows to obtain samples which are overlapping less with each other
even though they maintain an average overlap of 0.6 with the initial point.

We measured the overlap of the samples with respect to the starting point and among
themselves with a window size of 2 and 10 and we show the plots in Figures 3.13 and 3.14.
From the first measure, we get that the 200 epochs/step case has an oscillating overlap
with the starting point around 0.6 while the other cases have a monotonically decreasing
overlap with the starting point, which is faster for increasing number of epochs per step.
The oscillating result of the 200 epochs/step case is a reflection of the stopping criterion
that we introduced. More insights can be gathered from the overlap among the samples
distant 2 or 10 steps. From this measure, we get that the 200 epochs/step case has less

71



0 20 40 60 80 100 120

Epochs

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

A
cc

0.9952

0.9955 0.997

Train Acc

0 20 40 60 80 100 120

Epochs

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.8896

0.8896 0.8902

Test Acc

lr = 0.1

lr = 0.00001

lr = 0.001

0 20 40 60 80 100 120
Epochs

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

Lo
ss

Train Loss

0 20 40 60 80 100 120
Epochs

0.0008

0.0010

0.0012

0.0014

0.0016

0.0018

0.0020

Test Loss
lr = 0.1
lr = 0.00001
lr = 0.001

Figure 3.10: Learning curves of the samples (1 sample every epoch) averaged over 8 random
seeds. The errorbars correspond to the standard deviation.

overlapping samples.
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Additional plots of Ensembling over seeds

In the main text we show the Ensemble Test Accuracy of DFA runs with different seeds
that run for 200, 500 and 1000 epochs. In Figure 3.15, we report the Train Accuracy and
the Test Accuracy of these runs (without Ensembling over seeds, but instead showing an
errorbar of the standard deviation over the seeds).

0 200 400 600 800
Epochs

0.92

0.93

0.94

0.95

0.96

0.97

0.98

Train Acc
250 epochs
500 epochs
1000 epochs

0 200 400 600 800
Epochs

0.860

0.865

0.870

0.875

0.880

0.885

0.890

0.895

0.900

0.881

0.888 0.889

Test Acc
250 epochs
500 epochs
1000 epochs
DFA converged
BP covnerged

Figure 3.15: Train and Test Accuracy of the runs that we average.

Moreover, here we show in Figure 3.16 additional Ensemble Test Accuracy obtained
by the average of DFA-trained networks that generally reached a certain Train Accuracy,
regardless of the number of epochs or the parameters used to reach those points. We
notice that averaging networks that converged up to 95% Train Accuracy does not yield
to Ensemble Test Accuracy that overcomes BP’s performance;instead, averaging networks
in overfitting (above 95%) did overcome BP’s threshold. Moreover, we show that the
Ensemble accuracy of BP-trained networks is not as high as the one of the Ensemble of
DFA (green line).
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Figure 3.16: Test Accuracy of ensembles of different seeds of DFA compared to the Test
Accuracy of one DFA converged network and one BP converged network.
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Additional plots for Adversarial attacks

Guided by curiosity, I wanted to visualize the effect of the stronger attack on the images.
Precisely, the aim is to inspect if the attack produced by the gradient of one single sample
is different by the attack produced by the gradient of the ensemble. The results look
indistinguishable to visual inspection.

Burn-in effect in ensemble averages

It is known that burn-in is useful in averaging, especially if the Test Accuracy jumps out of
the initialization minimum. Nevertheless, in the context of our experiments, each sample
can be computationally costly to obtain, for example in the case in which every step consists
in 500 epochs of training. We plotted in Figure 3.18 three learning curves of DFA with
different discarded samples (0, 5 or 13) in the context of the networks initialized at 95%.

We find that the Ensemble Test accuracy is higher when there are more discarded
samples, but after averaging over 20 samples the same Test Accuracy is recovered in all
conditions.

For reducing the number of variables in our experiments, we will use no burn-in and
future work will be dedicated in clarifying the effect of this on 1-epoch/step simulations.
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Figure 3.17: Visualization of 25 images sampled randomly from the original (upper) dataset
and the corresponding attacked datasets with the FGSM algorithm in the two cases of single
(central) network and Ensembled network (bottom).
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Chapter 4

Training recurrent neural networks
with DFA

4.1 Introduction

The publication of the Backpropagation algorithm in Rosenblatt [1958] included a section
about the application of BP to recurrent networks. For DFA’s original paper Nøkland
[2016] neither the words ”recurrent” and ”time” appear. With the collaboration of Andrea
Cossu and Andrea Ceni, upon suggestion of Claudio Gallicchio, we found that DFA can
indeed be applied to Recurrent Neural Networks. Moreover, DFA in this setting overcomes
some of the traditional limits of RNN which are intrinsically sequential structures. DFA’s
update rules can be implemented parallelizing the computations with respect to the time
(lenght of the input sequence). The parallelization opens the path to implement RNNs
in neuromorphic hardware (e.g., photonic accelerators). In this chapter, I will show the
technical details for extending DFA to Vanilla Recurrent Neural Networks (RNNs) and the
Gated Recurrent Units (GRUs) [Cho et al., 2014, Chung et al., 2014]. Then, I will show
the results of applying these equations to several time-series classification datasets. We
find that DFA can achieve non-trivial performances in all of the tested datasets but cannot
always attain a performance comparable to BPTT. Finally, I will describe my efforts in
trying to parallelize the code as enabled by the peculiarity of the equations.

4.1.1 Motivation

Backpropagation [Rosenblatt, 1958] is the long-standing algorithm for credit assignment in
artificial neural networks. Its efficient implementation in digital computers has supported
the surge of machine and deep learning techniques as one of the key advancements in the
field of artificial intelligence. However, with a few exceptions [Wright et al., 2022], the
adoption of backpropagation-based learning systems is still mainly limited to digital com-
puters and simulations. In fact, it is well known that backpropagation cannot be easily
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implemented and deployed in physical systems [Momeni et al., 2023, Lillicrap et al., 2020],
for example due to issues like the weight transport, where the synaptic weights of the back-
ward circuit needs to be constantly synchronized with the synaptic weights of the forward
circuit [Lillicrap et al., 2016a, Akrout et al., 2019].
Issues like the weight transport are even more challenging in Recurrent Neural Networks
(RNNs) [Elman, 1990], where credit assignment must be performed across time. The most
used algorithm to date is BackPropagation Through Time (BPTT) [Werbos, 1990], which
extends backpropagation to recurrent architectures.
Over time, a number of backpropagation-free algorithms have been proposed (see Sec-
tion 4.2 for a non-exhaustive overview), some of them with the explicit objective of being
compatible with implementation in physical systems or on unconventional hardware (e.g.,
neuromorphic, optical).
We focus on Direct Feedback Alignment (DFA) [Nøkland, 2016], a backpropagation-free
algorithm for credit assignment that removes the weight transport issue and also allows
parallel computation of the weight update. DFA has already been implemented in non con-
ventional hardware, especially photonic Filipovich et al. [2022]. The photonic co-processor
introduced in Launay et al. [2020] scales DFA to trillion-parameter random projections.
We review DFA for feedforward networks in Section 1.3. We propose an extension of DFA
tailored to recurrent neural networks. Our approach is able to compute the update of the
recurrent parameters in parallel over all the time-steps of the input sequence, thus remov-
ing one of the major drawbacks of BPTT. In fact, BPTT sends the error signal computed
at the end of the input sequence back in time to compute the update of the network’s
parameters. In our method, instead, the update at each time step is local, as it does not
rely on the update computed for other time steps. The local update is computed in parallel
for each time step and, due to the weight sharing present in RNNs, ultimately aggregated
to compute the final update. The aggregation operation includes information from all the
time-steps, thus enabling learning of temporal dependencies.

4.2 Prior work

Practical applications of DFA to RNNs have been explored in Nakajima et al. [2022]. The
authors performed physical deep learning with an optoelectronic recurrent neural network.
However, in their pioneering work, they do not explore the DFA algorithm in the context
of fully-trainable RNNs, since only a proof-of-concept using a reservoir computing model
[Lukoševičius and Jaeger, 2009] (i.e., untrained recurrent connections) is provided. In this
paper, we investigate the potential of DFA on fully-trainable RNNs.
In Han et al. [2020], a DFA-inspired algorithm is derived for RNNs. Nevertheless, they
do not implement a genuine version of DFA for RNNs. First, they implement an upper
triangular modular structure. Second, they use random projections as powers of the same
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Figure 4.1: We propose DFA applied to recurrent networks (right). The error is projected
through random matrices BW and BV . We also show backpropagation (left) and DFA
(middle) applied to feedforward networks. Grey arrows denote the forward phase, black
arrows denote the update phase. Note that in the RNN, the matrices W ad V are shared
across time-steps (layers), while in feedforward networks each layer has a different matrix.
Also, the RNN receives a different input xt at each time step (here, the input sequence has
3 time steps), while the feedforward network only receives one input x.

matrix, which effectively resembles more an FA algorithm applied to RNNs rather than a
DFA algorithm for RNNs. In this paper, we derive a plain version of DFA for RNNs.

4.3 DFA for recurrent networks

We develop a version of DFA compatible with RNNs for sequential data processing (Figure
4.1, right). Each example x is a sequence of T input vectors: x = (x1, . . . , xT ), where
xi ∈ RI . We consider the sequence classification task where each sequence x is associated
with a target class y. The RNN keeps an internal hidden state h ∈ RH which is updated
at each time step. We first focus on the “Vanilla” RNN [Elman, 1990], whose state update
of reads:

ht+1 = σ(Wht + V xt+1 + b), (4.1)

where V ∈ RH×I is the input-to-hidden matrix and we call at (pre-activations at time
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t) the terms inside σ. In RNNs, the same layer is applied to all time steps (weight sharing).
The output ŷ of the RNN is computed from the hidden state: ŷ = σ(W outht+ bout), where
W out ∈ RO×H and bout ∈ RO. The nonlinear function σ can be different from the one used
in the hidden layers. For sequence classification tasks the output is computed at the end
of the input sequence from hL.

Due to the weight sharing, the forward pass of an RNN can be interpreted as the un-
rolling of the state update function over time. At each time step, the matrix W and V
(and the bias as well) are used to compute the next hidden state, much like the matrix
Wl is used to compute the layer’s output in a feedforward network. The backpropaga-
tion algorithm applied to RNNs, called backpropagation through time (BPTT) updates
the hidden-to-hidden weight W via ∇WJ(ŷ, y) = ∂J

∂ŷ

∑T
t=1

∂ŷ
∂ht

∂ht
∂W . The term ∂ŷ

∂ht
hides a

dependency between hidden states
∏t−1

j=1
∂hj+1

∂hj
which is due to the sequential propagation

of the error over the time steps.
Our DFA-based algorithm for RNN removes this propagation and updates W via ∆W =
∂J
∂ŷ

∑T
t=1

∂ht
W . The error signal e is projected via a random matrix B, randomly initialized

and kept fixed.
The equations for the update of W and V via DFA read:

W ←W − η
T∑
t=1

( Be⊙ σ′(at) ) h
T
t−1, (4.2)

V ← V − η
T∑
t=1

( Be⊙ σ′(at) ) x
T
t (4.3)

The bias is updated by omitting the outer product.

DFA for gated recurrent networks. In addition to the development of DFA for
“Vanilla” RNNs (Equation 4.1), we also developed a version of DFA for gated recurrent
networks, focusing in particular on the GRU network [Cho et al., 2014, Chung et al., 2014].
The state update for a GRU reads:

zt+1 = sig(Wzht + Vzxt+1 + bz),

rt+1 = sig(Wrht + Vrxt+1 + br),

ct+1 = tanh(Wc(ht ⊙ rt+1) + Vcxt+1 + bc),

ht+1 = (1− zt+1)⊙ ct+1 + zt+1 ⊙ ht,

where tanh and sig are the hyperbolich tangent and sigmoid functions, respectively.
Our DFA update for all parameters of the GRU is provided in Appendix 4.4. The output
ŷ of the network is computed from the hidden state ht as previously discussed.
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More details on DFA GRU equations

4.4 DFA for Gated Recurrent Unit network

We provide the update rule of DFA for all the parameters of the GRU.

Wz ←Wz − η

T∑
t=1

(Be⊙ ht−1 −Be⊙ ct)⊙ (rt ⊙ (1− rt))h
T
t−1,

Vz ← Vz − η

T∑
t=1

(Be⊙ ht−1 −Be⊙ ct)⊙ (rt ⊙ (1− rt))x
T
t ,

Wr ←Wr − η

T∑
t=1

(Wr(Be⊙ (1− zt)) ∗ (1− ct ⊙ ct)ht−1)⊙ (rt ⊙ (1− rt))h
T
t−1,

Vr ← Vr − η

T∑
t=1

(Wr(Be⊙ (1− zt)) ∗ (1− ct ⊙ ct)ht−1)⊙ (rt ⊙ (1− rt))x
T
t ,

Wc ←Wc − η

T∑
t=1

(Wr(Be⊙ (1− zt)) ∗ (1− ct ⊙ ct)(rt ⊙ ht−1)
T ,

Vc ← Vc − η
T∑
t=1

(Wr(Be⊙ (1− zt)) ∗ (1− ct ⊙ ct)x
T
t .

As in the “Vanilla” RNN, all the bias vectors are updated by omitting the outer product
in the corresponding W or V update. The matrix B can also be a different random matrix
for each parameter.

4.5 Preliminary Experiments

The first test is performed on a synthetic dataset comprising two classes: y1 is a sinusoid
with period 1, y2 is a sinusoid with period 2. The inputs are presented as a series of 50
points.

The results on the first experiment show that DFA is successful in training the RNN.
It does so via its characteristic alignment phase, in which the error increases, followed by
the learning phase.

4.6 Experiments

We benchmark DFA to four time-series classification datasets:
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Figure 4.2: Inputs of first experiment

Figure 4.3: Results of first experiment

1. Libras Dias Daniel and Helton [2009] which contains 15 classes referencing to a dif-
ferent hand movement type in LIBRAS 1. The hand movement is represented as a
bi-dimensional curve performed by the hand in a period of time;

2. Row-MNIST [Deng, 2012]: each image of the MNIST dataset is presented to the
recurrent model one row at a time;

3. ECG200 Olszewski et al. [2001] where each series traces the electrical activity recorded
during one heartbeat. The two classes are a normal heartbeat and a Myocardial In-
farction;

4. Strawberry K. Kemsley consists in the classification of food spectrographs, a task
that has obvious applications in food safety and quality assurance. The classes are

1LIBRAS is the acronym of the Portuguese name ”Lingua BRAsileira de Sinais”, is the oficial brazilian
sign language.
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strawberry (authentic samples) and non-strawberry (adulterated strawberries and
other fruits).

4.6.1 Methods

The datasets are divided into Train-Validation-Test sets according to the proportions 60%-
20%-20%. The hyperparameters have been selected based on a model selection over a
restricted range of each parameter, see Appendix 4.6.1 for the details. We run the ex-
periments for a number of epochs sufficient for the learning curves to stabilize and use 5
different Random Seed initialization2. Nothing prevents to update the parameters with
other optimization algorithms, like Adam. In our PyTorch implementation, we computed
the DFA update and used it as the “grad” attribute of the respective weight tensor. In this
way, the framework uses the computed update as if it was a gradient, and all the available
optimizers can be used out of the box.

Hyperparameters are selected based on the best performances on a validation set among
these possible values: hsize∈ [50,512], lr∈ [0.0005, 0.001,0.005,0.01], bs∈ [10,100,256],
clip=2. The values selected by the model selection are:

1. Libras: Learning rate = 0.0005 (except for BPTT GRU: learning rate= 0.01), Hidden
size = 512, Batch size = 10, Epochs= 900.

2. Strawberry: Learning rate = 0.0005 (except for BPTT GRU: learning rate= 0.005),
hidden size = 50 (except for RNN DFA: hidden size= 512), Batch size = 10 (except
for RNN DFA: bs=100 and for RNN BPTT: bs= 256), Epochs= 300.

3. ECG200: [ Learning rate = 0.0005 (Except for DFA GRU, lr=0.01), Hidden size =
50, Batch size = 256, Epochs= 500.

4. ROW-MNIST: [Learning rate=0.0005 (Except for RNN DFA and GRUDFA, lr=0.005),
Hidden size = 512 ( Except for RNN BPTT, hs= 50), Batch size = 100 (Except for
RNN BPTT, bs = 10)].

2code available upon request
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4.6.2 Results
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Figure 4.4: Left: Visualization of the first five movements in the test set. Right: Results on
the Libras-Movement benchmark dataset obtained on a simple RNN architecture (orange
and red) and on a GRU (blue and cyan). We benchmark DFA (darker colors, full line) and
BPTT (lighter colors, dashed line). Error-shades: one standard deviation over at least 5
repetitions .
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Figure 4.5: Left: Visualization of the test set. Right: Results on the ECG-200 benchmark
datasets obtained on a simple RNN architecture (orange and red) and with a GRU (blue
and cyan). DFA is indicates by lighter colors and full line; BPTT is in darker colors, dashed
line. Error-shades: one standard deviation over at least 5 repetitions.
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Figure 4.6: Results on the Row-MNIST and ECG-200 benchmark datasets obtained on a
simple RNN architecture (orange and red) and on a GRU (blue and cyan). DFA is denoted
by light colors and full lines; BPTT is in darker colors and dashed lines. Error-shades: one
standard deviation over at least 5 repetitions.

Figure 4.4 shows the learning curves obtained in the datasets Libras movements dataset.
Libras is a quite challenging dataset because has a multi-dimensional input (2-d), a se-
quence length of 90 steps, a limited dataset (360 samples) and 15 classes. It reveals that
DFA is capable of training both RNNs and GRUs to non-trivial Test Accuracies. In this
plot one can appreciate the fact that RNN DFA (orange line) has higher average accuracy
than RNN BPTT (red line) after 150 Epochs. and that DFA has the same learning slope
of BPTT either with vanilla RNNs (for the first 150 epochs) and for GRUs (for the first
50 Epochs). The learning curves on the other datasets can be found in Figure 4.6.

We report in Table 4.1 the maximum Test Accuracy that each DFA and BPTT achieved

Table 4.1: Summary of datasets statistics and average test accuracy and standard deviation
over 5 repetitions for all datasets and models.

Strawberry LIBRAS ECG200 Row-MNIST

Input size 1 2 1 28
Number of classes 2 15 2 10
Sequence length 235 90 96 28
Dataset size 983 360 200 70000

DFA GRU 79.73 ± 1.23 67.50 ± 3.68 80.6 ± 2.25 72.49 ± 1.1
BPTT GRU 92.05 ± 2.54 80.83 ± 9.19 82.10 ± 1.14 99.23 ± 0.03

DFA RNN 67.84 ± 2.66 47.92 ± 3.3 78.2 ± 1.47 87.48 ± 0.74
BPTT RNN 79.08 ± 4.18 54.30 ± 18.32 83.30 ± 2.1 96.69 ± 0.24
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and the test accuracies of the two algorithms ovelap if considering a tolerance of 1 standard
deviation, except for the cases of RNN ECG200 (Figure 4.6) and of GRU Libras (as it can
be seen in Figure 4.4) and both on the Strawberry dataset (see in Appendix 4.6.1, Figure
4.6). In the ECG dataset, which is the one with the smallest amount of data, In the
Strawberry dataset, which is the one with the longest sequence, DFA’s Accuracy is above
Random performances of at least 12% Test Accuracy. In this setting, BPTT is performing
better than DFA up to only +1.53% RNN Test Accuracy.

In the Strawberry dataset, which is the one with the longest sequence, DFA’s Accuracy
is above Random performances of at least 6% Test Accuracy. In this setting, BPTT is
performing better than DFA up to +8.55% GRU Test Accuracy.

Overall, DFA effectively learns three datasets showing strength in a dataset with 2-
dimensional inputs and 15 classes (Libras) and in a dataset with a reduced number of
examples (ECG200). DFA shows less accuracy than BPTT in the Strawberry dataset with
the longest sequences. The latter weaknesses could be solved by extending the range of
the hyperparameters of validation.

4.7 Parallelization efforts

Figure 4.7 shows the time required by DFA and BPTT to compute an optimization step
in the different settings (CPU or cuda; RNN or GPU).

The sums in the update equations of DFA are computed with a dedicated for loop after
the forward pass of the algorithm. Figure 4.8 shows the time dedicated to the computation
of this component. In the case of n-jobs=3, we used the python function Parallel of Joblib
to parallelize the for loop over time that computes the weights update to sum, but it did
not yield to faster code because of the time spent in creating new processes. Nevertheless,
Figure 4.8 shows how much time could be saved by computing efficiently the for loop
dedicated to the summations in the weights updates.

4.8 Conclusion

Unlike backpropagation, the update rule of our DFA can be applied in parallel for each
time step, thus removing sequential processing during the update phase. Time series and
sequential data are widespread in many real-world environments. However, implementing
physical and adaptive dynamical systems remains a challenge.

DFA brings research one step further in this direction, this is why this work has been
submitted to the workshop ”ML with New Compute Paradigms (MLNCP) at NeurIPS
2024”.

90



DF
A 

3

DF
A 

1

BP
 1

0.00

0.02

0.04

0.06

0.08

0.10

0.12
RNN CPU

DF
A 

3

DF
A 

1

BP
 1

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

Op
tim

iza
tio

n 
up

da
te

 ti
m

e 
(s

)

RNN cuda

DF
A 

3

DF
A 

1

BP
 1

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040
GRU cuda

DF
A 

3

DF
A 

1

BP
 1

0.00

0.02

0.04

0.06

0.08

0.10

0.12
GRU CPU

DFA 3 DFA 1 BP 1
0.0

0.1

0.2

0.3

0.4

0.5

0.6
RNN CPU

DFA 3 DFA 1 BP 1
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Op
tim

iza
tio

n 
up

da
te

 ti
m

e 

RNN cuda

DFA 3 DFA 1 BP 1
0.0

0.1

0.2

0.3

0.4

0.5

0.6
GRU cuda

DFA 3 DFA 1 BP 1
0.0

0.1

0.2

0.3

0.4

0.5

0.6
GRU CPU

Figure 4.7: Timing of optimization step with (bottom) and without (top) summation loop.
Errorbar indicates one standard deviations over 6 Epochs.
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Chapter 5

Concluding perspectives

In this thesis, we investigated the potential of direct feedback alignment as an example of
a biologically plausible learning rule to improve neural networks in the context of super-
vised learning, and classification tasks in particular. As an alternative to Backpropagation
(BP), DFA offers improved biological plausibility. Biological networks such as brains have
evolved to optimize the energy available and analyze, memorize, and extrapolate infor-
mation. DFA reflects the fact that there is no explicit backpropagation of errors in the
brain. The brain deals with this constraint and it is able to plastically change synapses
to allow learning Kennedy [2013]. From an optimization point of view, BP is effective;
but optimizing solely for test accuracy does not always bring benefits to other aspects,
like catastrophic forgetting, vulnerability to adversarial attacks, waiting time due to se-
quentially of weight updates, etc. There is a possibility that the mechanisms that DFA
employs to learn with approximate gradients, which for now are known to be the phases
of alignment and memorization, together with its technical advantages as parallel updates,
will offer mitigation to such problems.

In this work, we expand the evaluation of DFA in a more holistic way that goes beyond
optimization performances and evaluate neural networks along several dimensions. Our
thesis explores three areas to evaluate DFA comprehensively. The starting investigation in
this thesis looks at Continual Learning, where alongside the performance of the training
tasks, the forgetting rate is in focus. The second investigation direction is ensembling,
where robustness to adversarial attacks is enhanced. Finally, we described DFA’s behaviour
in the context of Recurrent Neural Networks, where the time for the unfolding of the
gradients is an issue. With the combination of these points of view, we get an interesting
picture of the comparison between DFA and Backpropagation.

Our results are promising. We found that that in fully-connected networks trained on
image classification tasks, DFA can alleviate catastrophic forgetting by constraining the
network weights to a particular region in weight space when using the same feedback matrix
across tasks, or by orthogonalising weight updates by using distinct feedback matrices for
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each task. In the second perspective, we discovered that the characteristic degeneracy
breaking mechanism of DFA allows to obtain samples for Ensembling in such a way that
robustness to adversarial attacks is increased and the Test Accuracy reaches levels above
Backpropagation. In the third chapter, we dealt with sequential data classification and
we showed that DFA can be applied to Recurrent Neural Networks. In this context the
parallel weight updates of DFA can solve the most challenging bottleneck of training time
in RNNs: the computation time of the backpropagation trough time algorithm.

Looking forward, combining these directions offers an intriguing plan for future re-
search: for instance, using DFA in Bayesian neural networks to address Continual Learn-
ing. Bayesian methods for CL are an emerging research field, as allow for uncertainty
estimation and enables the detection a new task [Zeno et al., 2020, Kessler et al., 2023,
Li et al., 2020]. Moreover, a recent approach of Uncertainty-guided Continual Learning
(UCB) [Ebrahimi et al., 2019] leverages the uncertainty in parameter distributions to reg-
ulate learning rates. This method allows BNNs to selectively freeze or update parameters
based on their importance, thereby preserving critical information while accommodating
new data.

The existing advantages of DFA can be extended, starting from the foundations of the
biological realism of DFA. For example, adopting spiking Neural Networks [Lee et al., 2020,
Zhang et al., 2024], that operate via discrete ”spikes”, akin to biological neurons, following
the direction of Skatchkovsky et al. [2022].

Even in the non-spiking Neural Networks, the integration rules of DFA can borrow
neuro-scientific features, as suggested in Dellaferrera et al. [2021]. In this case, the firing
of each neuron is allowed only if it receives at least n positive inputs, while in the current
implementation it is enough that one pre-synaptic neuron delivers a strong signal. This
technique has been shown to be beneficial to Continual Learning.

Moreover, the synaptic adaptation is based on environmental feedback instead of a
precise computation of errors. Biological brains do not have access to labels (real–world
concepts) in the same shape as predictions (neural activation). In this perspective, a
reward-based learning approach such as Reinforcement Learning (RL) reflects the biological
mechanisms better. In RL, the network is required to take actions based on the input, and
the feedback is received in terms of penalties or rewards. The goal is to learn a policy
that maximizes the cumulative rewards over time. Solutions to Continual Learning have
already been extended to Continual Reinforcement Learning with success, even with the
means of small networks as the one considered in our work [Kirkpatrick et al., 2017].

While these applications explore DFA’s immediate potential in neural networks, the-
oretical perspectives are also feasible directions. For example, the combination of the
teacher-student setup for DFA [Refinetti and Goldt, 2022] with continual learning [Lee
et al., 2021, 2022] may deepen our understanding of its underlying mechanisms, the trade–
offs between DFA-same and DFA-diff and enhance their applicability offering new sugges-
tions for practitioners.

Finally, another goal is to apply DFA to fine-tune pre-trained language and vision
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models in the context of transfer learning. Low-rank adaptations (LoRa) techniques are
popular fine-tuning adaptations for large-scale models where weights are fine-tuned by
training a low-rank weight matrix on top of the fixed weights obtained from pre-training.
This allows adaptation without modifying the entire network. A natural avenue for further
work is studying the relation between DFA and LoRa adaptations: DFA can approximate
learning in a way that may resemble lower-rank updates by reducing dependencies on
precise weight matrices and gradients, and rank constraints can be applied directly to the
feedback matrices.
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