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We compute new exact analytic expressions for one-loop scalar effective actions in Kerr (A)dS black hole
(BH)backgrounds in four and fivedimensions. These are computed by the connection coefficients of theHeun
equation via a generalization of the Gelfand-Yaglom formalism to second-order linear ordinary differential
equations with regular singularities. The expressions we find are in terms of Nekrasov-Shatashvili special
functions, making explicit the analytic properties of the one-loop effective actions with respect to the
gravitational parameters and the precise contributions of the quasinormal modes. The latter arise via an
associated integrable system. In particular, we prove asymptotic formulas for large angular momenta in terms
of hypergeometric functions and give a precise mathematical meaning to Rindler-like region contributions.
Moreover, we identify the leading terms in the large distance expansion as the point particle approximation of
theBH and their finite size corrections as encoding theBH tidal response.We also discuss the exact properties
of the thermal version of the BH effective actions by providing a proof of the Denef-Hartnoll-Sachdev
formula and explicitly computing it for new relevant cases. Although we focus on the real scalar field in
dS-Kerr and (A)dS-Schwarzschild in four and five dimensions, similar formulas can be given for higher
spin matter and radiation fields in more general gravitational backgrounds.
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I. INTRODUCTION

The study of quantum field theory in curved spaces
has many important applications ranging from more
formal ones such as anti–de Sitter/conformal field theory
(AdS/CFT) correspondence to more phenomenological
such as the study of the production (and the propagation)
of gravitational waves by black holes (BH)—and more in
general heavy compact objects—as well as the behavior of
radiation and quantum matter in their vicinity, determining
for example the properties of their photosphere. In order
to obtain exact analytic results in this framework, the first
approach is to start from the analysis of BH linear
perturbation theory while postponing that of nonlinear
effects. These might be important to understand fine
structure effects in gravity and systems coupled to it.
The linearization of Einstein equations around BH sol-

utions has been a classical subject of investigation in parallel

with that of the study of one-loop effective actions in BH
metric backgrounds. As it is well known, the high degree of
symmetry of many BH solutions allows the reduction of the
problem to second-order ordinary differential equations
(ODEs), namely the Teukolsky equation [1], due to the
separationof variables. The relevant differential operators are
second-order linear operators related to Fuchsian equations
with four regular singularities on the Riemann sphere, also
known as theHeun equation.Notice that this holds for Petrov
type D metrics in general [2].
Recently an exact analytic formalism to handle spinning

(A)dS BH has been developed [3–6] from a powerful
technique arising in the context of supersymmetric quantum
field theory in four dimensions and conformal field theory in
two dimensions. This is based on the Nekrasov instanton
counting formulas in D ¼ 4 N ¼ 2 gauge theories [7], the
Alday-Gaiotto-Tachikawa correspondence with Liouville
conformal field theory (CFT) [8], and the link of these to
integrable systems developed by Nekrasov and Shatashvili
[9]. In this context, the semiclassical limit of Liouville
correlation functions concretely realizes the explicit solution
of the Heun differential equation, and crossing-symmetry of
2D CFT allows to compute the matrix of connection
coefficients in terms of the so-called Nekrasov-Shatashvili
(NS) function [10]. See also [11] for parallel speculations.
In this paper, we apply the above techniques to compute

the one-loop Euclidean quantum action of scalar particles
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in full four and five-dimensional Kerr-(A)dS backgrounds,
whose field equations separate in Heun equations. Let us
observe, moreover, that the same techniques can be applied
in higher dimensions, which typically give rise to ODEs
with more regular and/or irregular singularities.
A general formalism for the study of the quantum

effective actions in a black hole background in Euclidean
quantum gravity [12] was settled in [13], where a formula
for the computation of determinants in thermal spacetimes
in terms of quasinormal modes was proposed.1 However,
explicit calculations were so far restricted to three-
dimensional BHs or more in general problems reducible
to hypergeometric operators. The general structure of the
determinant was conjectured to be given as a product over
the (anti)quasinormal modes of the BH background. We
provide an explicit calculation and proof of this statement
in this paper, by making use of an improved computational
technique by which the relevant analytic properties of the
effective actions are manifest. We devise a method to
compute the one-loop determinants directly from the
connection coefficients of the Heun equations by general-
izing the Gelfand-Yaglom method [15] to differential
operators with singularities. These results are obtained
via simple manipulations in Appendix A and then applied
in the paper to the Heun differential operator. Similar
formulas appear also in [16]. The application of the
Gelfand-Yaglom method to higher dimensional differential
operators admitting separation of variables is not a novelty,
as it has been studied in the elegant analysis of [17].
Our computations make contact with previous results as

follows. As it is well known [13,18], the quantum effective
actions are parameterized in terms of the QNMs up to the
exponent of a polynomial function in the background
parameters (see also [19] for more recent developments).
In this paper, we give closed formulas for the determinants
leading to the one-loop effective action and the rule to
compute their spectrum from the NS function of the quantum
integrable system associated to the specific Heun equation
arising in the gravitational model in the above perspective.
An interesting feature of our results is that the formulas in

the full BH background, when computed at the leading order
in perturbation theory in the BH radius and for large enough
angular momenta of the perturbation, undergo a simplifica-
tion corresponding to the point-like approximation for the

BH in the sense of [20]. In this approximation, the one-loop
effective action can be obtained by approximating to a
hypergeometric problem with shifted parameters, which
explicitly change the arguments of the Gamma functions
[see formulas (5.22) and (5.23)]. The complete determinant
is instead computed by taking into account the full extended
structure of the horizon which is relevant to keep track of the
tidal properties of the BH and is given in (5.29).
Moreover, the formula for the determinant of the Sturm-

Liouville operator with two regular singularities at z ¼ 0
and z ¼ 1 has a clear physical meaning when specialized to
the near-horizon analysis as in [18]. We indeed get

det

�
d2

dz2
þVðzÞ

�
¼ 2π

Γð1þa0þa1ÞΓða0þa1Þ
C12
C̃12

ð1:1Þ

where a0 and a1 (supposed to have a positive real part) are
the indices of the two singular points, C denotes the Heun
connection matrix between two bases of independent nor-
malized solutions around z ¼ 0 and z ¼ 1, C12 being the
connection coefficient in front of the discarded local solution
at z ¼ 1, and C̃12 denotes the corresponding connection
coefficient in a reference simplified hypergeometric problem
whose singularities at z ¼ 0 and z ¼ 1 have the same indices
(see Appendix C for the derivation of the above formula).
The factors in the denominator coincide with the ones that
were used in [18] to normalize the effective action to extract
the physical single-particle density of states of an ideal
thermal gas of scalar particles in the BH background. This
physically correspond to the normalization of the effective
action due to the Rindler-like region, which is obtained by
zeta-regularizing the exact hypergeometric computation.
This gives a direct explanation and explicit proof of the
observation made in [18] that the Euclidean path integral
uniquely fixes the reference for normalization.
By applying the results of [10] for the connection

matrices2 in (1.1) and the proper dictionary between gauge
theory and gravity variables, one can use the above
determinant formula to compute the one-loop effective
action in Petrov type D BH (or their thermal counterpart)
backgrounds. Concretely, after the separation of variables,
the determinants of the radial modes at given frequency and
angular quantum numbers is given in terms of the
Nekrasov-Shatashvili function F as

detðDrad − Alm⃗Þ½ω� ¼
X
θ0¼�

2πΓð−2θ0aÞΓð1 − 2θ0aÞQ
σ¼�Γð12 − a0 − θ0aþ σatÞΓð12 − θ0aþ a1 þ σa∞Þ

× t−a0þθ0a exp

�
−
1

2
∂a0FðtÞ þ

1

2
∂a1FðtÞ −

θ0

2
∂aFðtÞ

�
: ð1:2Þ

1A related observation was done in [14] where the propagator in Lorentzian signature was proposed to have a similar structure, the
one-loop effective action being the integral of the logarithm of the Fourier transformed propagator.

2See also [21] for a mathematical counterpart of the analysis.
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These get re-summed in the quantum numbers [see (2.8)]
leaving behind the one-loop BH effective action

Γ1−loop
BH ¼

Z
∞

−∞
dω

X
l;m⃗

log ðdetðDrad − Alm⃗Þ½ω�Þ: ð1:3Þ

In the above formula, we used the fact that the contributions
of the QNMs coincide with those of the anti-QNMs (see
Sec. V for a detailed explanation), and the factor 1=2
coming from the functional determinant of the Klein-
Gordon operator for the real scalar simplifies. The concrete
dictionaries connecting the gauge theorylike variables
in (1.2) and the gravitational variables of the specific cases
we study are in (3.26) for the Kerr-de Sitter case, in (3.40)
for the Schwarzschild-de Sitter case, and in (4.8) for the
Schwarzschild-anti-de Sitter case. Note that the formula
itself also depends on the dictionary through the sign of
Reða0Þ and Reða1Þ [see Appendix C 2]. In Eq. (1.2), FðtÞ is
a new special function which is explicitly calculable and is
crucial for the solution of the Heun connection problem.
We briefly review its definition and calculation in
Appendix E. As anticipated, the above exact formulas
reduce to simpler hypergeometriclike ones if one of the two
channels labeled by θ0 and the contribution of exponential
factors can be neglected in the evaluation of the quasinor-
mal modes. This corresponds to the point-particle approxi-
mation for the black hole, while the neglected channel takes
into account the finite-size effects of the black hole itself.
After Wick rotation to the thermal circle, the one-loop

effective action can be computed via ζ-function regulari-
zation from

ζBHðsÞ ¼
1

ΓðsÞ
Z

∞

0

dt
t
ts
1þ e−βt

1 − e−βt
X

z∈QNM

dze−zt ð1:4Þ

the regularized physical QNM character of the thermal
space-time being given by −ζ0BHð0Þ. The QNMs in (1.4) get
explicitly computed via the associated quantum integrable
system as explained below, with dz being the associated
degeneracy. In particular, the zeros of (3.34) provide the
(anti)QNMs in the 4D Kerr-dS case and those of (4.16)
those in the 5D Schwarzschild-AdS case.
The content of the paper is the following. In Sec. II

we discuss the technique we use to compute the relevant
determinants via an extension of the Gelfand-Yaglom
theory to second-order operators with regular singularities.
In Sec. III we apply the above method to the computation of
the one-loop effective action in the Kerr-de Sitter back-
ground in four dimensions and we discuss its limits to
Schwarzschild-de Sitter and pure de Sitter cases. In Sec. IV
we consider the five-dimensional Schwarzschild-Anti
de Sitter background and discuss its limit to pure AdS5.
Finally, in Sec. V we discuss the thermal version of our
results via Wick rotation and compactification on the circle
of (1.3) and we compare the leading expression in the BH

radius expansion with previous results in the literature. In
the Appendices we discuss more mathematical aspects of
GY theorem and its applications and we provide a brief
account of the gauge theory formulas for the NS function
which are relevant to the computations in the main text.
Let us close this introductory section by discussing few

open points for further explorations. In this paper, we
obtained exact analytic formulas for the one-loop effective
actions of a scalar field in BH backgrounds. We remark that
these formulas display the explicit contribution of each
quasinormal mode in an analytic form and are therefore
amenable to single out the contribution of individual ones
to study their physical relevance. It would be also very
important to fully exploit the properties of the concrete
expressions we get and their physical content in order to
better understand the behavior of quantum matter in
presence of stationary BHs. Similar analysis have been
initiated in parallel for Kerr-Compton scattering amplitudes
in [20]. For later related developments see [22,23].
Let us also remark that the extension of the Gelfand-

Yaglom theorem to operators with regular singularities
presented in this paper opens the possibility to numerically
evaluate the determinants from the properly normalized
Heun functions, whose numerical values are available in
Mathematica. For example, the numerical implementation
of Heun functions is described in [24], where also QNMs of
Kerr-de Sitter black holes are computed.
It would be interesting to investigate higher spin per-

turbations within this method.3 Perturbations up to spin
two of the four-dimensional Kerr black hole were studied
in [10]. These results can be used to describe the one-loop
Euclidean gravitational partition function and complement
the analysis of logarithmic corrections to Kerr and Kerr-
AdS BH thermodynamics recently studied in [25,26].
We remark that one-loop effective actions in supergravity
were used to compute logarithmic corrections to the
entropy of supersymmetric BHs [27,28]. By comple-
menting the analysis performed in this paper with the
study of the zero-modes of the one-loop operators one
should be able to compute logarithmics corrections to the
entropy of Kerr-(A)dS BHs.
Our computations are performed in zeta-function

regularization, it would be interesting to compare with
direct MS Feynman diagram dimensional regularization
procedure, as done in [29] in the context of false vacuum
decay calculations.
Other gravitational backgrounds can be analyzed with

the same methods, see [5,6,30–40] for QNMs analysis, and
it should therefore be possible to extend our method to the
study of one-loop effective actions also in these cases (see
also [41]). Related parallel investigations on QNMs appear
in [42–47]. As the results in the realm of microstate

3See [19] for a discussion about one-loop effective actions in
this case.
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counting have been encouraging, these should also apply
to the framework considered in [48]. On the other hand,
effective near-horizon symmetries have been analyzed
in [49,50] and it could be interesting to consider them in
the light of our results.
We remark that the same methods have been applied also

to the study holographic thermal correlation functions for
five-dimensional AdS BHs in the large N limit [14,51–54]
and for four-dimensional AdS BH in the hydrodynamical
limit [55], while the one-loop contributions computed here
should allow to investigate the leading 1=N corrections.
Let us remark that the instanton series used to compute

perturbatively the Nekrasov function relevant for the
problems studied in this paper have finite radius of
convergence [56]. Although its Nekrasov-Shatashvili limit
is believed to share the same convergence properties, it
would be important to establish this rigorously via a
direct analysis. Let us also mention that other methods
exist to evaluate the NS function in terms of Fredholm
determinants and of TBA equations [57–59], and they
have been applied to the study of BH QNMs [60,61]. It
would be useful to use these methods also in the
evaluation of BH effective actions.
A relevant question in this context is about the com-

pleteness of the quasinormal modes [62–68] and also
about the pseudo-spectrum of these differential operators.
The latter is relevant to discuss the stability of BHs against
linear perturbations and the stability of the QNMs against
perturbations of the potential of the wave equation (see for
example [69–72]).
As the original results of [4] were giving also exact

information on the tidal Love number—see also [73]—of
the BH, it would be interesting to consider the analogue
computational problem for the spinning de-Sitter BH case.

II. ONE-LOOP BLACK HOLE EFFECTIVE
ACTIONS AND GELFAND-YAGLOM THEOREM

In this section we apply the Gelfand-Yaglom theorem
(see Appendix A) to compute determinants of the second-
order separable differential operators which compute the
one-loop effective actions in the BH backgrounds. More
precisely, we consider the conformally coupled Klein-
Gordon differential operator in four-dimensional Kerr-de
Sitter black holes and the Klein-Gordon differential oper-
ator in Schwarzschild anti-de Sitter black holes in five
dimensions. In both cases, the action of the scalar field can
be written as

S½Φ;gμν�¼
Z

dDx
ffiffiffiffiffiffi
−g

p �
−
1

2
gμν∇μΦ∇νΦ−

1

2
μ2Φ2

�
; ð2:1Þ

where gμν is the metric of the spacetime, and the resulting
differential operator can be written as

�
1ffiffiffiffiffiffi−gp ∂μð

ffiffiffiffiffiffi
−g

p
gμν∂νÞ − μ2

�
Φ≡ ½□ − μ2�Φ ¼ 0; ð2:2Þ

where, for Kerr-de Sitter BH in four dimensions, we fix
μ2 ¼ 2, whereas, for Schwarzschild anti-de Sitter black
hole in five dimensions, we consider μ to be generic. In the
latter case, it is convenient to reparametrize μ as

μ2 ¼ ΔðΔ − 4Þ; ð2:3Þ

where Δ corresponds to the conformal dimension of the
scalar field living in the holographic dual 4d CFT. We
require Δ ∉ Z in order to avoid logarithmic solutions for
the radial function around the AdS boundary.
The Gelfand-Yaglom theorem provides a way to com-

pute the logarithm of the inverse of the partition functions
associated with the above Klein-Gordon differential oper-
ators. The computation of the full determinant det ð□ − μ2Þ
can be reduced to the computation of the determinant
of a radial 1-dimensional operator which depends on the
eigenvalues of the other separated problems and their
degeneracies. We use the following decomposition in
Fourier modes of the wave function Φ

Φðt; r;ΩÞ ¼
Z

∞

−∞
dω

X
l;m⃗

e−iωtSω;l;m⃗ðΩÞRω;l;m⃗ðrÞ: ð2:4Þ

In the spherically symmetric cases, the angular functions
Sω;l;m⃗ðΩÞ coincide with the spherical harmonics Yl;m⃗ðΩÞ.
Starting from the problem

ð□ − μ2ÞΦ ¼ λΦ; ð2:5Þ

and using (2.4), we obtain a system of coupled second-
order differential equations for Sω;l;m⃗ðΩÞ and Rω;l;m⃗ðrÞ, of
the form

DradRω;l;m⃗ðrÞ ¼ ðAlm⃗ þ λÞRω;l;m⃗ðrÞ;
DangSω;l;m⃗ðΩÞ ¼ −Alm⃗Sω;l;m⃗ðΩÞ; ð2:6Þ

for some second-order differential operators Drad and Dang,
and where Alm⃗ denotes the separation constant at fixed
values of the quantum numbers.
The expression of the separation constant is obtained

from the angular equation and then, when substituted into
the radial equation, gives the determinant in terms of ω
and the quantum numbers. In the Kerr-de Sitter case, the
separation constant is expressed as an instanton expansion
in terms of NS functions. In the Schwarzschild-(anti-)de
Sitter cases, the angular eigenfunctions reduce to the
spherical harmonics and the separation constant has an
exact expression in terms of the quantum number l.
In the asymptotically de Sitter black hole problems,

around the points in which the boundary conditions are
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imposed—which are horizons of the BH geometry—a basis
of independent solutions of the radial equation behaves like

Rω;l;m⃗ðrÞ ∼ expð�iωr�Þ; ð2:7Þ

where r� is the tortoise coordinate. When ω is analytically
continued to assume values in the complex plane, the
boundary conditions select the correct local solutions
according to the sign of the imaginary part of ω. In the
asymptotically anti–de Sitter black hole problem, this still
holds for the boundary condition imposed around the black
hole horizon, but the second boundary condition is imposed
at the AdS boundary which is a regular point, and the
selected solution depends on the value of the mass of the
scalar perturbation.
The full determinant has an expression of the form

logðdet ð□ − μ2ÞÞ≡
Z

∞

−∞
dω

X
l;m⃗

log ðdet ðDrad − Alm⃗Þ½ω�Þ:

ð2:8Þ

When applying the Gelfand-Yaglom theorem to the
1-dimensional radial operator, we introduce a new variable
z such that the radial differential equation can be brought in
Heun’s form

d2ψðzÞ
dz2

þ
�1
4
−a20
z2

þ
1
4
−a21

ðz−1Þ2þ
1
4
−a2t

ðz− tÞ2

−
1
2
−a21−a2t −a20þa2∞þu

zðz−1Þ þ u
zðz− tÞ

�
ψðzÞ¼0; ð2:9Þ

and z ¼ 0 and z ¼ 1 become the two singular points in
which we impose the boundary conditions. Let

ψ ðẑÞ
i;λ ðzÞ ¼ ðz − ẑÞ12�aẑ ½1þOðz − ẑÞ�; i ¼ 1; 2 ð2:10Þ

be the fundamental system of local solutions around z ¼ ẑ.
The solution selected by the boundary condition at z ¼ ẑ is
the one having in front of the exponent aẑ the same sign
of ReðaẑÞ. For the problems we consider, this condition
changes according to the values of the gravitational
quantities. In particular, around the singularities corre-
sponding to horizons of the geometry, the condition
depends on the sign of ImðωÞ, when this is analytically
continued to take values on the complex plane.

Let us denote with ψ ðẑÞ
1;λðzÞ the solution selected by the

boundary condition at z ¼ ẑ. Using the connection for-
mulas, we can write

ψ ð0Þ
1;λðzÞ ¼ C11;λψ

ð1Þ
1;λðzÞ þ C12;λψ

ð1Þ
2;λðzÞ; ð2:11Þ

where we denote with C11;λ; C12;λ the connection coeffi-
cients, which depend on λ (but are independent of z).
In order to apply the Gelfand-Yaglom theorem, we

introduce a reference problem whose differential operator
D̃rad is a hypergeometric one, obtained by simplifying the
Heun differential equation keeping the indices of the
singular points at z ¼ 0 and z ¼ 1 fixed. When computing
ratios of the determinants of the two radial operators (the
one of the original problem and the one of the reference
problem), we have

det ðDrad − Alm − λÞ
det ðD̃rad − λÞ ∝

C12;λ
C̃12;λ

; ð2:12Þ

where C̃ denotes the connection matrix of the reference
problem. The above statement holds since both the left-
hand side (lhs) and the right-hand side (rhs) (as functions
of λ) have zeros in the eigenvalues of Drad − Alm and poles
in the eigenvalues of D̃rad. The fact that the connection
coefficient C12;λ has zeroes in the eigenvalues is due to the

fact that, if λ̂ is an eigenvalue, then ψ ð1Þ
1;λ¼λ̂

ð1Þ ¼ 0 because

of the boundary condition, and ψ ð0Þ
1;λ̂
ð1Þ ¼ 0 if and only if

C12;λ̂ ¼ 0. Moreover, in the limit λ → ∞ the ratio (2.12)
tends to 1. We thus conclude that

det ðDrad − AlmÞ
detðD̃radÞ

¼ C12;λ¼0

C̃12;λ¼0

: ð2:13Þ

Finally, as described in Appendix C, we can compute the
regularized determinant for the reference hypergeometric
potential. This provides a solution for the determinant of
the radial Heun differential operator, which is of the form

det ðDrad − AlmÞ ¼ 2π
C12;λ¼0

Γð1þ 2θ0a0ÞΓð2θ1a1Þ
; ð2:14Þ

as obtained in Appendix C 3, where a0, a1 denote the
indices of the singularities at z ¼ 0 and z ¼ 1 of the Heun
differential operator, and where θ0; θ1 ¼ �, the signs being
the same of the ones of the real parts of the indices a0, a1,
respectively.
In the following sections, we concretely compute the

determinants for the gravitational problems, and in the last
section (see Sec. V) we discuss the results and rewrite the
previous formulas more explicitly.

III. KERR-DE SITTER SPACETIME
IN FOUR DIMENSIONS

The four-dimensional Kerr-de Sitter metric in Chambers-
Moss coordinates can be written as
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ds2 ¼ r2 þ x2

Δr
dr2 þ r2 þ x2

ða2BH − x2Þð1þ Λ
3
x2Þ dx

2 −
Δr − ða2BH − x2Þð1þ Λ

3
x2Þ

ðr2 þ x2Þ
�
1þ Λa2BH

3

�
2

dt2

þ ða2BH − x2Þ
a2BHðr2 þ x2Þð1þ Λ

3
a2BHÞ2

�
ðr2 þ a2BHÞ2

�
1þ Λ

3
x2
�
− ða2BH − x2ÞΔr

�
dϕ2

þ 2
ða2BH − x2Þ

aBHðr2 þ x2Þð1þ Λ
3
a2BHÞ2

�
Δr − ðr2 þ a2BHÞ

�
1þ Λ

3
x2
��

dtdϕ; ð3:1Þ

where

x ¼ aBH cos θ;

ΔrðrÞ ¼ r2 − 2Mrþ a2BH −
Λ
3
r2ðr2 þ a2BHÞ

¼ −
Λ
3
ðr − RþÞðr − R−Þðr − RhÞðr − RiÞ: ð3:2Þ

In the previous equations, M is the mass parameter of the
black hole, aBH is the parameter characterizing its angular
momentum, Λ > 0 is the cosmological constant, and we

have factorized ΔrðrÞ in linear terms, where Rh is the event
horizon, Ri is the inner horizon, and R� represent cosmo-
logical horizons, one of which is negative, R− ∈R<0, and
the other one is positive and bigger than the event horizon,
Rþ > Rh. In the following discussion, we fixΛ ¼ 3 and we
work in the small black hole regime, which corresponds to
taking the black hole radius small compared to the norm of
the de Sitter radius, Rh ≪ 1.
Using the decomposition (2.4), the conformally coupled

Klein-Gordon equation can be separated into an angular
equation and a radial equation which read

d
dr

�
ΔrðrÞ

dRðrÞ
dr

�
þ
�½ωðr2 þ a2BHÞ − aBHm�2ð1þ a2BHÞ2

ΔrðrÞ
− 2r2 − Alm

�
RðrÞ ¼ 0;

d
dx

�
ða2BH − x2Þð1þ x2Þ dSðxÞ

dx

�
þ
�
−
fð1þ a2BHÞ½ωða2BH − x2Þ − aBHm�g2

ða2BH − x2Þð1þ x2Þ − 2x2 þ Alm

�
SðxÞ ¼ 0; ð3:3Þ

where with Alm we denote the separation constant. Both
equations can be written in Heun’s form [74–76]. We first
address the problem of quantization of the separation
constant.

A. Angular problem

The singularities of the angular equation are

�aBH;�i: ð3:4Þ

The Kerr-de Sitter black hole solution is well defined if the
aBH parameter lies in the range 0 < aBH < 2 −

ffiffiffi
3

p
. Indeed,

the extreme cases in which two or more singularities
coincide can be obtained by solving the system

ΔrðrÞ ¼ 0;

Δ0
rðrÞ ¼ 0:

ð3:5Þ

Solving the system in r and M, gives the solutions

M ¼ r − a2BHr − 2r3; ð3:6Þ

and

r ¼

8>><
>>:

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−a2BH−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4BH−14a

2
BHþ1

p
6

q
;

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−a2BHþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4BH−14a

2
BHþ1

p
6

q
:

ð3:7Þ

These are consistent with the physical requirementsM > 0

and 0 < aBH < 1 if and only if 0 < aBH < 2 −
ffiffiffi
3

p
.

Let us perform the following change of variables

z ¼ 2iðxþ aBHÞ
ðaBH þ iÞðxþ iÞ : ð3:8Þ

This change of variables maps

ðx4¼−i;x1¼−aBH;x2¼ i;x3¼aBH;∞Þ

↦

�
∞;z1¼0;z2¼1;z3≔

4iaBH
ðaBHþ iÞ2 ;z∞≔

2i
aBHþ i

�
:

ð3:9Þ
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We note that, for 0 < aBH < 2 −
ffiffiffi
3

p
, one has jtj < 1. Let

us define

ΔxðxÞ ¼ ða2BH − x2Þð1þ x2Þ;

θðaÞk ¼ −
ð1þ a2BHÞ½ωða2BH − x2kÞ− aBHm�

Δ0
xðxkÞ

; k ¼ 1; 2; 3:

ð3:10Þ

If we transform the angular wave function as

SðxÞ ¼ ðz − z∞Þ
Y3
k¼1

ðz − ziÞ−θ
ðaÞ
k wðzÞ; ð3:11Þ

we can remove the apparent singularity in z∞ and the
angular equation becomes a Heun equation

�
d2

dz2
þ
�
γ

z
þ δ

z− 1
þ ϵ

z− t

�
d
dz

þ αβz− q
zðz− 1Þðz− tÞ

�
wðzÞ ¼ 0;

ð3:12Þ

with

t ¼ 4iaBH
ðaBH þ iÞ2 ;

α ¼ 1− iωþ iaBHðm− aBHωÞ; β ¼ 1;

γ ¼ 1−m; δ ¼ 1− iωþ iaBHðm− aBHωÞ; ϵ ¼ 1þm;

q ¼ Alm þ 2aBH½ð1− a2BHÞωþ ðaBH − iÞmþ i�
ðaBH þ iÞ2 : ð3:13Þ

The dictionary that gives the parameter of the Heun’s
operator in normal form (2.9), is given by

a0 ¼
m
2
; at ¼ −

m
2
; a1 ¼

i
2
½ωð1þ a2BHÞ − aBHm�; a∞ ¼ −

i
2
½ωð1þ a2BHÞ − aBHm�;

u ¼ 1

2ðaBH − iÞ2 ½1þ 2Alm −m2 þ 2aBHði − im2 þ 2mωÞ þ a2BHð−1þ 8m − 3m2Þ þ 4a3BHðm − 2Þω�: ð3:14Þ

We impose as boundary conditions the regularity of the
solutions at θ ¼ 0; π, which correspond to x ¼ �aBH, and
so to z ¼ t and z ¼ 0.
For x ∼ aBH the original angular function has the

following two behaviors

SðtÞ− ðxÞ ∼ ðx − aBHÞm2 SðtÞþ ðxÞ ∼ ðx − aBHÞ−m
2 : ð3:15Þ

Therefore, we take S ∼ SðtÞ− if m ≥ 0, and we take S ∼ SðtÞþ
if m < 0.
For x ∼ −aBH the original angular function has the

following two behaviors

Sð0Þ− ðxÞ ∼ ðxþ aBHÞ−m
2 Sð0Þþ ðxÞ ∼ ðxþ aBHÞm2 ; ð3:16Þ

Therefore, we take S ∼ Sð0Þ− if m ≤ 0, and we take S ∼ Sð0Þþ
if m > 0.
The boundary conditions are satisfied if the following

requirement is imposed on the vacuum expectation
value (vev) parameter a (see Appendix E for the relevant
definitions and conventions) which parametrizes the
composite monodromy around x ¼ 0 and x ¼ t:

a ¼ lþ 1

2
; with l ≥ jmj and l∈N: ð3:17Þ

The vev parameter a is related to the parameter u of the
Heun differential equation through the Matone relation

u ¼ −
1

4
þ a2t þ a20 − a2 þ t

∂FðtÞ
∂t

; ð3:18Þ

where FðtÞ is the instanton partition function with four
fundamental multiplets in the NS limit (see Appendix E for
the relevant definitions and conventions). Using the gravi-
tational dictionary for u and the quantization condition
a ¼ lþ 1

2
, we obtain the following expansion of the

separation constant:

Alms ¼ ðaBH − 1Þ2lðlþ 1Þ þ 2aBHmða2BHω − aBHm − ωÞ

− ðaBH − 1Þ2t ∂FðtÞ
∂t

: ð3:19Þ

As expected, expanding this expression around aBH ¼ 0
gives

Alms ¼ lðlþ 1Þ − 2maBHωþOða2BHÞ: ð3:20Þ

B. Radial problem and expression
for the determinant

For the radial equation, let us perform the following
change of variables:

z ¼ Rþ − R−

Rþ − Rh
·
r − Rh

r − R−
: ð3:21Þ
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This sends

ðr4¼R−;r1¼Rh;r2¼Rþ;r3¼Ri;∞Þ↦
�
∞;z1¼0;z2¼1;z3≔ t¼Rþ−R−

Rþ−Rh
·
Ri−Rh

Ri−R−
;z∞≔

Rþ−R−

Rþ−Rh

�
: ð3:22Þ

We remark that t < 0, so that in the interval z∈ �0; 1½ there
are no singularities. Let us define

θðrÞk ¼ i
Δ0

rðrkÞ
½ωðr2k þ a2BHÞ − aBHm�ð1þ a2BHÞ;

k ¼ 1;…; 4: ð3:23Þ

If we transform the radial function as

RðrÞ ¼ ðz − z∞Þ
Y3
k¼1

ðz − ziÞ−θ
ðrÞ
k wðzÞ; ð3:24Þ

we can remove the singularity in z∞ and the radial equation
becomes a Heun equation (3.12) with

t ¼ Rþ − R−

Rþ − Rh
·
Ri − Rh

Ri − R−
;

α ¼ 1þ 2i
Δ0

rðR−Þ
½ωðR2

− þ a2BHÞ − aBHm�ð1þ a2BHÞ;

β ¼ 1;

γ ¼ 1 −
2i

Δ0
rðRhÞ

½ωðR2
h þ a2BHÞ − aBHm�ð1þ a2BHÞ;

δ ¼ 1 −
2i

Δ0
rðRþÞ

½ωðR2þ þ a2BHÞ − aBHm�ð1þ a2BHÞ;

ϵ ¼ 1 −
2i

Δ0
rðRiÞ

½ωðR2
i þ a2BHÞ − aBHm�ð1þ a2BHÞ;

q ¼ ðt − 1Þða0 þ atÞ þ tða1 þ atÞ −
tðt − 1Þ
t − z∞

þ tαþ 2R2
i þ Alm

ðRh − RþÞðRi − R−Þ
; ð3:25Þ

where the indices of the singular points are

a0 ¼
i

Δ0
rðRhÞ

½ωðR2
h þ a2BHÞ − aBHm�ð1þ a2BHÞ;

at ¼
i

Δ0
rðRiÞ

½ωðR2
i þ a2BHÞ − aBHm�ð1þ a2BHÞ;

a1 ¼
i

Δ0
rðRþÞ

½ωðR2þ þ a2BHÞ − aBHm�ð1þ a2BHÞ;

a∞ ¼ i
Δ0

rðR−Þ
½ωðR2

− þ a2BHÞ − aBHm�ð1þ a2BHÞ; ð3:26Þ

and the parameter u in the Heun equation (2.9) is given by

u ¼ −2qþ 2tαβ þ γϵ − tðγ þ δÞϵ
2ðt − 1Þ : ð3:27Þ

We distinguish two cases according to the sign of ImðωÞ.
Let us start from the case ImðωÞ > 0. In this case

Reða0Þ < 0 and Reða1Þ > 0. Then, the local solutions
of the normal form of the Heun equation [and normalized
as in (A16)] selected by the boundary conditions are

ψ ð0Þ
− ðzÞ ¼ t−ϵ=2zγ=2ðz − 1Þδ=2ðz − tÞϵ=2Heunðt; q; α; β; γ; δ; zÞ;

ψ ð1Þ
þ ðzÞ ¼ ð1 − tÞ−ϵ=2zγ=2ðz − 1Þ1−δ=2ðz − tÞϵ=2

×

�
z − t
1 − t

�
−α−1þδ

Heun

�
t; q − αðβ þ δ − 2Þ þ ðδ − 1Þðαþ β − 1 − tγÞ; αþ 1 − δ; 1þ γ − β; 2 − δ; γ; t

1 − z
t − z

�
:

ð3:28Þ

The connection formula between the two local solutions changes according to the position of the singularity t in the z-space.
The small black hole regime corresponds to the regime jtj < 1.4 The connection coefficient in terms of which we can
express the determinant is the one in front of ψ ð1Þ

− ðzÞ starting from the solution ψ ð0Þ
− ðzÞ in the connection formula (B19)

X
θ0¼�

M−θ0 ða0; a; atÞMð−θ0Þ−ða; a1; a∞Þt−a0þθ0a exp

�
−
1

2
∂a0FðtÞ þ

1

2
∂a1FðtÞ −

θ0

2
∂aFðtÞ

�
: ð3:29Þ

4The other regime jtj > 1, would lead to a simpler connection formula, more similar to a hypergeometriclike connection problem, but
still involving the presence of the NS functions (see Appendix B 3).
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In the case ImðωÞ < 0, the local (normalized) solutions selected by the boundary conditions are

ψ ð0Þ
þ ðzÞ ¼ eiπð−δ=2−ϵ=2Þt−ϵ=2z1−γ=2ðz − 1Þδ=2ðz − tÞϵ=2Heunðt; q − ðγ − 1Þðtδþ ϵÞ; αþ 1 − γ; β þ 1 − γ; 2 − γ; δ; zÞ;

ψ ð1Þ
− ðzÞ ¼ ð1 − tÞ−ϵ=2zγ=2ðz − 1Þδ=2ðz − tÞϵ=2

�
z − t
1 − t

�
−α
Heun

�
t; qþ αðδ − βÞ; α; δþ γ − β; δ; γ; t

1 − z
t − z

�
: ð3:30Þ

The connection coefficient in terms of which we can express the determinant is the one in front of ψ ð1Þ
þ ðzÞ starting from the

solution ψ ð0Þ
þ ðzÞ in the connection formula (B19)

X
θ0¼�

Mþθ0 ða0; a; atÞMð−θ0Þþða; a1; a∞Þta0þθ0a exp

�
1

2
∂a0FðtÞ −

1

2
∂a1FðtÞ −

θ0

2
∂aFðtÞ

�
: ð3:31Þ

C. Determinant of radial operator

We can finally write the result for the determinant of the radial differential operator, following the procedure explained in
Appendix C 1 and C 2. The reference problem we consider for the radial operator is a hypergeometric problem having the
same indices at the singular points z ¼ 0 and z ¼ 1.
For ImðωÞ > 0, we have Reða0Þ < 0 and Reða1Þ > 0. The formula for the (regularized) determinant reads

X
θ0¼�

2πΓð−2θ0aÞΓð1 − 2θ0aÞQ
σ¼�Γð12 − a0 − θ0aþ σatÞΓð12 − θ0aþ a1 þ σa∞Þ

t−a0þθ0a exp

�
−
1

2
∂a0FðtÞ þ

1

2
∂a1FðtÞ −

θ0

2
∂aFðtÞ

�
: ð3:32Þ

For ImðωÞ < 0, we have Reða0Þ > 0 and Reða1Þ < 0. The formula for the (regularized) determinant reads

X
θ0¼�

2πΓð−2θ0aÞΓð1 − 2θ0aÞQ
σ¼�Γð12 þ a0 − θ0aþ σatÞΓð12 − θ0a − a1 þ σa∞Þ

ta0þθ0a exp

�
1

2
∂a0FðtÞ −

1

2
∂a1FðtÞ −

θ0

2
∂aFðtÞ

�
: ð3:33Þ

We can summarize the two formulas together introducing η ¼ ImðωÞ=jImðωÞj as

detðDrad − AlmÞ ¼
X
θ0¼�

2πΓð−2θ0aÞΓð1 − 2θ0aÞQ
σ¼�Γð12 − ηa0 − θ0aþ σatÞΓð12 − θ0aþ ηa1 þ σa∞Þ

× t−ηa0þθ0a exp
�
−
η

2
∂a0FðtÞ þ

η

2
∂a1FðtÞ −

θ0

2
∂aFðtÞ

�
: ð3:34Þ

The (anti-)quasinormal modes are directly given by the zeroes of the above expression.

D. Schwarzschild-de Sitter spacetime
in four dimensions

In this subsection, we want to briefly comment on
how the previous formula also gives the solution for the
determinant of the same operator around the four-
dimensional Schwarzschild-de Sitter black hole, which is
a spherically symmetric spacetime. In particular, the
angular problem, in this case, is solved by the spherical
harmonics, and the only nontrivial problem is the radial
one, which can be solved precisely as in the previous
discussion, but with a simplified dictionary.
The metric describing the Schwarzschild-de Sitter black

hole in four dimensions (SdS4) is

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2dΩ2
2 ð3:35Þ

with

fðrÞ ¼ 1 −
2M
r

−
Λ
3
r2; ð3:36Þ

where M is the mass of the black hole and Λ > 0 is the
cosmological constant. In what follows, we fix Λ ¼ 3,
therefore requiringM to be in the range 0 < M2 < 1=27, in
order to have a physical solution with three real roots for the
equation rfðrÞ ¼ 0. We denote these roots by

Rh; R�; ð3:37Þ

where Rh ∈ �0; 1ffiffi
3

p ½, the smallest positive real root, repre-

sents the event horizon, and R� are real and given in terms
of Rh by

R� ¼ −Rh �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 3R2

h

p
2

: ð3:38Þ
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The conformally coupled Klein-Gordon equation in the
SdS geometry can be obtained from the Kerr-dS one by
sending the rotation parameter aBH → 0. This also sends
the singularity Ri → 0 and the angular equation becomes
trivial, giving an exact result for the separation constant

Alm ¼ lðlþ 1Þ: ð3:39Þ

The radial equation, instead, remains a Heun equation (2.9),
whose parameters can be deduced from the ones in (3.26)
and (3.27):

t ¼ Rh

R−
·
Rþ − R−

Rþ − Rh
; u ¼ −

2lðlþ 1Þ þ ðRh þ RþÞ2
2Rþð2Rh þ RþÞ

;

a0 ¼
iωRh

ðRh − R−ÞðRþ − RhÞ
; a1 ¼

iωRþ
ðRþ − R−ÞðRh − RþÞ

;

at ¼ 0; a∞ ¼ iωR−

ðRh − R−ÞðR− − RþÞ
: ð3:40Þ

With this new dictionary, the expression of the determinant
is given by (3.34), as in the Kerr case.

E. Pure de Sitter spacetime in four dimensions

An additional simplification can be obtained from the
previous problem in the limit in which Rh → 0. This leads
to the determinant of the same operator in the pure de Sitter
spacetime in four dimensions. In this case, the radial
problem reduces to a hypergeometric differential equation

�
d2

dz2
þ 4lðlþ 1Þðz − 1Þ þ ðω2 þ 1Þz2

4ðz − 1Þ2z2
�
ψðzÞ ¼ 0: ð3:41Þ

The indices of the singularities z ¼ 0 and z ¼ 1 are

a0 ¼ −l −
1

2
; a1 ¼

iω
2
: ð3:42Þ

The sign of Reða0Þ is always negative, whereas the sign of
Reða1Þ depends on the sign of the imaginary part of
the frequency. Therefore, the local solution selected around
z ∼ 0 is the one behaving like

ψ ð0Þ
− ðzÞ ¼ z

1
2
þðlþ1

2
Þð1þOðzÞÞ: ð3:43Þ

The selected solution around z ∼ 1 is

ψ ð1Þ
− ðzÞ ¼ ðz − 1Þ12−iω

2 ð1þOðz − 1ÞÞ; if ImðωÞ > 0;

ψ ð1Þ
þ ðzÞ ¼ ðz − 1Þ12þiω

2 ð1þOðz − 1ÞÞ; if ImðωÞ < 0:

ð3:44Þ

Redefining the wave function as

ψðzÞ ¼ zlþ1ðz − 1Þ12−iω
2wðzÞ ð3:45Þ

we can rewrite the differential equation as in (B1) with

a¼ lþ 1; b¼ lþ 1− iω; c¼ 2lþ 2: ð3:46Þ

Using the connection formulas (B4) and the results in
Appendix C 2, the determinant can be written as

2π

Γðlþ 1ÞΓðlþ 1 − iηωÞ ; ð3:47Þ

where η ¼ ImðωÞ=jImðωÞj. The zeros in ω of the previous
functions are given by the quasinormal mode frequencies
ω ¼ −iðlþ nþ 1Þ and by the anti-quasinormal mode
frequencies ω ¼ iðlþ nþ 1Þ.

F. Reduction of the determinant from Schwarzschild-de
Sitter to pure de Sitter

In this subsection, we want to comment on how the result
of the determinant in the pure de Sitter geometry can
be obtained from the Schwarzschild-de Sitter case in the
limit Rh → 0 (or, equivalently, sending to zero the mass of
the black hole M → 0). We already stressed that starting
from the determinant in the Kerr-de Sitter case and sending
the rotation parameter aBH → 0, one obtains the determi-
nant of the Schwarzschild-de Sitter case, which has the
same expression but with the reduced dictionary. This is a
smooth limit, in the sense that the result can be obtained
simply by looking at the limit of the parameters for
aBH → 0. In the reduction to the pure de Sitter case, the
equation becomes a hypergeometric equation in a nontrivial
way, namely by a collision of singularities.
Let us start by rewriting the determinant of the

Schwarzschild-de Sitter case written in the following form

2π
P

θ0¼�M−θ0 ða0; a; atÞMð−θ0Þ−ða; a1; a∞Þt−a0þθ0a expð− 1
2
∂a0FðtÞ þ 1

2
∂a1FðtÞ − θ0

2
∂aFðtÞÞ

Γð1 − 2a0ÞΓð2a1Þ
; ð3:48Þ

where we took the ImðωÞ < 0 case (the ImðωÞ > 0 case is analogous).
By considering the limit Rh → 0, we have to implement the limit t → 0 in the Heun differential operator (C1). Comparing

the reduced operator with (3.41), we can see that the new index ã0 at z ¼ 0 is given by

ã20 ¼ −
1

4
− uþ a20 þ a2t

			
Rh→0

¼ ð2lþ 1Þ2
4

: ð3:49Þ
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Note that this is not obtained smoothly from a0 by sending Rh → 0 because of the collision of singularities. Moreover,

a2jRh→0 ¼ −
1

4
− uþ a20 þ a2t ¼ ã20: ð3:50Þ

Indeed, when 0 and t collide, the monodromy parametrized by a becomes simply the monodromy around z ¼ 0. Therefore,
in (3.48), the first connection matrix M−θ0 ða0; a; atÞ trivializes and reduces to the identity matrix.5

Let us now fix, consistently with the previous subsections, the signs ã0 ¼ −l − 1
2
and a → lþ 1

2
. Then, the

determinant (3.48), in the limit Rh → 0, reduces to

2π

Γð2lþ 2ÞΓðiωÞ
�X
θ0¼�

Γð1 − 2θ0ðlþ 1
2
Þ þOðRhÞÞΓðiωÞ

Γð1
2
− θ0ðlþ 1

2
Þ þOðRhÞÞΓð12 − θ0ðlþ 1

2
Þ þ iωÞ ð−2RhÞlþ1

2
þθ0ðlþ1

2
Þ
�
· ½1þOðRh logðRhÞÞ�

¼ 2π

Γð2lþ 2Þ
�

Γð2lþ 2Þ
Γðlþ 1ÞΓðlþ 1þ iωÞ þ

Γð−2lþOðRhÞÞ
Γð−lþOðRhÞÞΓð−lþ iωÞ ð−2RhÞ2lþ1

�
· ½1þOðRh logðRhÞÞ�

¼ 2π

Γðlþ 1ÞΓðlþ 1þ iωÞ ½1þOðRh logðRhÞÞ�; ð3:51Þ

which is the result obtained in the previous subsection,
(3.47). Passing to the final result, we used the fact that the
choice of the sign θ0 ¼ þ forces the corresponding channel
to go to zero, as can be seen from the dependence on R2lþ1

h
and noticing that the ratio of Gamma functions
Γð−2lþOðRhÞÞ=Γð−lþOðRhÞÞ gives a finite quantity
in the Rh → 0 limit.

IV. SCHWARZSCHILD ANTI–DE SITTER
SPACETIME IN FIVE DIMENSIONS

The metric of the five-dimensional Schwarzschild-anti-
de Sitter black hole (SAdS5) is

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2dΩ2
3; ð4:1Þ

where dΩ2
3 is the volume element of the 3-sphere and,

normalizing the AdS radius to 1,

fðrÞ ¼
�
1 −

R2
h

r2

�
ðr2 þ R2

h þ 1Þ; ð4:2Þ

where Rh is the radius of the black hole horizon. We again
work in the small black hole regime, 0 < Rh ≪ 1.
The wave equation satisfied by (the Fourier modes ϕl;ω

of) a massive scalar fieldΦ in this black hole background is
given by

�
1

r3
d
dr

�
r3fðrÞ d

dr

�
þ ω2

fðrÞ −
lðlþ 2Þ

r2

− ΔðΔ − 4Þ
�
ϕl;ωðrÞ ¼ 0; ð4:3Þ

where Δ is the dimension of the scalar-operator dual to
the scalar field in the bulk, related to the mass μ of the
field by μ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΔðΔ − 4Þp
. The problem is symmetric

under Δ ↦ 4 − Δ. We assume in what follows Δ > 2
and Δ ∉ N in order not to be in a log case.
Defining a new variable

z ¼ r2 − R2
h

r2 þ R2
h þ 1

; ð4:4Þ

and redefining the wave function as

ϕl;ωðrÞ ¼ ðz − 1Þ2−Δ
2z

− iωRh
4R2

h
þ2wl;ωðzÞ; ð4:5Þ

where

t¼−
R2
h

R2
hþ1

; γ¼1−
iωRh

2R2
hþ1

; δ¼3−Δ; ϵ¼1; ð4:6Þ

the differential equation becomes a Heun equation (3.12),
where the complete dictionary is given by

5This can also be seen from the Liouville three-point functions
by considering one of the three insertions to reduce to the identity
insertion, see Appendix A in [10] for the detailed definitions and
conventions.
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t ¼ −
R2
h

R2
h þ 1

;

α ¼ ð4 − ΔÞð2R2
h þ 1Þ þ ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
h þ 1

p
− iRhω

4R2
h þ 2

;

β ¼ ð4 − ΔÞð1þ 2R2
hÞ − ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
h þ 1

p
− iRhω

4R2
h þ 2

;

γ ¼ 1 −
iωRh

2R2
h þ 1

; δ ¼ 3 − Δ; ϵ ¼ 1;

q ¼ −
ð2R2

h þ 1Þðlðlþ 2Þ þ ðΔ − 4ÞðΔ − 2ÞR2
hÞ þ 2iRhωððΔ − 2ÞR2

h þ 1Þ − R2
hω

2

8R4
h þ 12R2

h þ 4
: ð4:7Þ

We remark that again t is real and negative. The parameters of the equation in normal form (2.9) are

a0 ¼
iωRh

2ð2R2
h þ 1Þ ; at ¼ 0; a1 ¼

Δ − 2

2
; a∞ ¼ ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
h þ 1

p
2ð2R2

h þ 1Þ ; u ¼ −
lðlþ 2Þ þ 2R2

h þ 2

8R2
h þ 4

: ð4:8Þ

In the z variable, the black hole horizon is located at z ¼ 0 and the AdS boundary at z ¼ 1. The main important difference in
this case with respect to the problems in an asymptotically de Sitter spacetime is the fact that the choice of the local solution
near the AdS boundary does not depend on the sign of the imaginary part of ω, but just on the parameter Δ. This is because
the corresponding boundary condition is imposed at the AdS boundary and not in a horizon of the geometry. With the
assumptions we made on Δ, the local solution of the Heun equation in normal form selected at z ¼ 1 is given by

ψ ð1Þ
þ ðzÞ ¼ ð1 − tÞ−ϵ=2zγ=2ðz − 1Þ1−δ

2ðz − tÞϵ=2

×

�
z − t
1 − t

�
−α−1þδ

Heun

�
t; q − ðδ − 1Þγt − ðβ − 1Þðα − δþ 1Þ;−β þ γ þ 1; α − δþ 1; 2 − δ; γ; t

1 − z
t − z

�
: ð4:9Þ

For the choice of the local solution around r ¼ Rh, we again divide the cases according to the sign of ImðωÞ. In the
case ImðωÞ > 0 we have Reða0Þ < 0 and the local solution of the normal form of the Heun equation [and normalized
as in (A16)] selected by the boundary condition is

ψ ð0Þ
− ðzÞ ¼ t−ϵ=2zγ=2ðz − 1Þδ=2ðz − tÞϵ=2Heunðt; q; α; β; γ; δ; zÞ: ð4:10Þ

Considering again the regime in which jtj < 1, the connection coefficient in terms of which we can express the determinant
is the one in front of ψ ð1Þ

− ðzÞ starting from the solution ψ ð0Þ
− ðzÞ in the connection formula (B19), namely

X
θ0¼�

M−θ0 ða0; a; atÞMð−θ0Þ−ða; a1; a∞Þt−a0þθ0a exp
�
−
1

2
∂a0FðtÞ þ

1

2
∂a1FðtÞ −

θ0

2
∂aFðtÞ

�
: ð4:11Þ

In the case ImðωÞ < 0, the local (normalized) solution around z ¼ 0 selected by the boundary condition is

ψ ð0Þ
þ ðzÞ ¼ eiπð−δ=2−ϵ=2Þt−ϵ=2z1−γ=2ðz − 1Þδ=2ðz − tÞϵ=2Heunðt; q − ðγ − 1Þðtδþ ϵÞ; αþ 1 − γ; β þ 1 − γ; 2 − γ; δ; zÞ: ð4:12Þ

The connection coefficient in terms of which we can express the determinant is the one in front of ψ ð1Þ
− ðzÞ starting from the

solution ψ ð0Þ
þ ðzÞ in the connection formula (B19), that is

X
θ0¼�

Mþθ0 ða0; a; atÞMð−θ0Þ−ða; a1; a∞Þta0þθ0a exp

�
1

2
∂a0FðtÞ þ

1

2
∂a1FðtÞ −

θ0

2
∂aFðtÞ

�
: ð4:13Þ
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A. Determinant of radial operator

We can again write the expression of the (regularized) determinant according to the sign of ImðωÞ, remembering that we
always have Reða1Þ > 0.
For ImðωÞ > 0, we have Reða0Þ < 0 and the formula for the (regularized) determinant reads

X
θ0¼�

2πΓð−2θ0aÞΓð1 − 2θ0aÞQ
σ¼�Γð12 − a0 − θ0aþ σatÞΓð12 − θ0aþ a1 þ σa∞Þ

t−a0þθ0a exp
�
−
1

2
∂a0FðtÞ þ

1

2
∂a1FðtÞ −

θ0

2
∂aFðtÞ

�
: ð4:14Þ

For ImðωÞ < 0, we have Reða0Þ > 0 and the formula for the (regularized) determinant reads

X
θ0¼�

2πΓð−2θ0aÞΓð1 − 2θ0aÞQ
σ¼�Γð12 þ a0 − θ0aþ σatÞΓð12 − θ0aþ a1 þ σa∞Þ

ta0þθ0a exp

�
1

2
∂a0FðtÞ þ

1

2
∂a1FðtÞ −

θ0

2
∂aFðtÞ

�
: ð4:15Þ

We can unify the two formulas above by introducing η ¼ ImðωÞ=jImðωÞj and get

detðDrad − AlmÞ ¼
X
θ0¼�

2πΓð−2θ0aÞΓð1 − 2θ0aÞQ
σ¼�Γð12 − ηa0 − θ0aþ σatÞΓð12 − θ0aþ a1 þ σa∞Þ

× t−ηa0þθ0a exp

�
−
η

2
∂a0FðtÞ þ

1

2
∂a1FðtÞ −

θ0

2
∂aFðtÞ

�
: ð4:16Þ

B. Pure anti–de Sitter spacetime in five dimensions

As in the asymptotically de Sitter case, sending Rh → 0
simplifies the problem, reducing it to the pure AdS5 case,
whose relevant differential equation is again of hyper-
geometric type. Following the same procedure of the
SAdS5 problem, or reducing the dictionary in the limit
Rh ¼ 0, we can write the radial differential equation in
normal form as

ψ 00ðzÞþlðlþ2Þðz−1Þþz½ω2ð1−zÞþz−ðΔ−2Þ2�
4ðz−1Þ2z2 ψðzÞ¼0;

ð4:17Þ
which is a hypergeometric differential equation.
The boundary conditions are imposed at the origin z ¼ 0

and at the AdS boundary z ¼ 1. We notice that both points
do not represent horizons of the geometry, and the indices
in these singular points do not depend on ω

a0 ¼ −
lþ 1

2
; a1 ¼ 1 −

Δ
2
: ð4:18Þ

Assuming again Δ > 2 and Δ ∉ N, the determinant can be
written as

2π

ΓðΔþl−ω
2

ÞΓðΔþlþω
2

Þ : ð4:19Þ

We notice that the zeros in ω of the determinant are real and
given by the normal modes of AdS5

ω¼−l−Δ−2n and ω¼lþΔþ2n; with n∈Z≥0:

ð4:20Þ

V. DETAILED ANALYSIS OF THE
EFFECTIVE ACTIONS

In the previous sections, we computed the determinant of
the radial differential operator in Heun’s form, which can be
written as

det ðDrad − AlmÞ ¼ 2π
C12

Γð1þ 2θ0a0ÞΓð2θ1a1Þ
; ð5:1Þ

where a0, a1 denote the indices of the singularities at z ¼ 0
and z ¼ 1 of the Heun differential operator, C12 denotes the
Heun connection coefficient between the local solution at
z ¼ 0 satisfying the boundary condition and the discarded
local solution at z ¼ 1, and where θ0; θ1 ¼ �, according to
the sign of ImðωÞ.
However, it is important to notice that the problems

we considered are PT-symmetric, and the full determinants
(2.8) are symmetric for the transformation ω ↦ −ω.
In particular, the contribution coming from the analytic
continuation for ImðωÞ < 0 gives the same result obtained
for the analytic continuation for ImðωÞ > 0. More pre-
cisely, our determinant for the radial part has the following
property:

det ðDrad − Alm⃗Þ½ω�

¼


detðþÞðDrad − Alm⃗Þ½ω�; for ImðωÞ > 0;

detð−ÞðDrad − Alm⃗Þ½ω�; for ImðωÞ < 0;
ð5:2Þ

with

detð−Þ ðDrad − Alm⃗Þ½ω� ¼ detðþÞ ðDrad − Alm⃗Þ½−ω�: ð5:3Þ
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We conclude that our final result for the one-loop effective action of a real scalar field is given by

logðdet ð□ − μ2ÞÞ ¼
Z

∞

−∞
dω

X
l;m⃗

log ðdetðþÞðDrad − Alm⃗Þ½ω�Þ: ð5:4Þ

In the above formula, one has to substitute

detðþÞðDrad − AlmÞ½ω� ¼
X
θ0¼�

2πΓð−2θ0aÞΓð1 − 2θ0aÞQ
σ¼�Γð12 − a0 − θ0aþ σatÞΓð12 − θ0aþ a1 þ σa∞Þ

× t−a0þθ0a exp

�
−
1

2
∂a0FðtÞ þ

1

2
∂a1FðtÞ −

θ0

2
∂aFðtÞ

�
; ð5:5Þ

where, for the analyzed problems, the dictionaries of the quantities are given in (3.26) for the Kerr-de Sitter case, in (3.40)
for the Schwarzschild-de Sitter case, and in (4.8) for the Schwarzschild-anti-de Sitter case.
One can see that the two summands in (5.5) have different behaviors, which are determined by the exponential factor tθ

0a.
Since we always took a to be positive, in the limit in which t is small (that in our problems corresponded to the small

black hole regime) we can argue that the term proportional to ta is subleading compared to the one proportional to t−a. In
particular, we can write

log ðdetðþÞðDrad − AlmÞ½ω�Þ

¼ log

�
2πΓð2aÞΓð1þ 2aÞQ

σ¼�Γð12 − a0 þ aþ σatÞΓð12 þ aþ a1 þ σa∞Þ
t−a0−a exp

�
−
1

2
∂a0FðtÞ þ

1

2
∂a1FðtÞ þ

1

2
∂aFðtÞ

��

þ log

�
1 −

Γð−2aÞ2
Γð2aÞ2

Y
σ¼�

Γð1
2
− a0 þ aþ σatÞΓð12 þ aþ a1 þ σa∞Þ

Γð1
2
− a0 − aþ σatÞΓð12 − aþ a1 þ σa∞Þ

t2a expð−∂aFðtÞÞ
�
; ð5:6Þ

where the second line encodes the correction terms to the leading result in the first line.

This suggests that, in the decomposition in (5.5), the
effects due to the presence of the black hole are subleading
compared to the ones due to the asymptotic geometry. This
is equivalent to saying that the contribution to the near-
horizon zone is subleading compared to the far-zone (for a
discussion on the distinction of these regions see [20]).
We add that, since the leading order of a in the small

black hole regime is determined by the angular quantum
number l, the previous decomposition is also significant in
the limit l ≫ 1. Indeed, for large values of l, the term t2a is
exponentially suppressed, and the first line of the previous
decomposition already gives a good estimate for the
(logarithm of the) radial determinant.
We finally remark that, in the Schwarzschild-de Sitter

case, this small Rh expansion gives purely imaginary
QNMs (see [55,77]), as it happens for pure de Sitter
spacetime. Analogously, in the Schwarzschild-anti-de
Sitter case, neglecting the second channel in (5.5), produces
purely real QNMs (see [51]), as it happens for pure anti-de
Sitter spacetime.
More precisely, in the small Rh expansion of the QNMs,

ω ¼
X
k≥0

ωkRk
h; ð5:7Þ

where the dependence on the quantum numbers is implied,
the first orders ωk can be found by looking at the zeros of

Γð2aÞΓð1þ 2aÞQ
σ¼�Γð12 − a0 þ aþ σatÞΓð12 þ aþ a1 þ σa∞Þ

× t−a0−a exp

�
−
1

2
∂a0FðtÞ þ

1

2
∂a1FðtÞ þ

1

2
∂aFðtÞ

�
;

ð5:8Þ

which is equivalent to looking at the poles in the Gamma
functions in the denominator.6 For the four-dimensional
Schwarzschild-de Sitter case this gives the correct coef-
ficients ωk for 0 ≤ k ≤ 2lþ 1 (see [55]), while for
the five-dimensional Schwarzschild-anti-de Sitter case
this gives the correct coefficients ωk for 0 ≤ k ≤ 2lþ 2
(see [51]7).

6This is justified by gauge theory considerations, since FðtÞ
can be expressed as a series expansion in t (see Appendix E), and,
therefore, there are no zeroes in the exponential functions.

7In [51] the small expansion parameter is μ which in the small
black hole regime behaves like μ ∼ R2

h. The near-horizon zone
starts contributing when the QNMs develop an imaginary part,
which behaves like μlþ3

2.
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For the higher-order coefficients ωk, the quantization condition involves both channels of the connection coefficient

Γð2aÞΓð1þ 2aÞQ
σ¼�Γð12 − a0 þ aþ σatÞΓð12 þ aþ a1 þ σa∞Þ

t−a0−a exp

�
−
1

2
∂a0FðtÞ þ

1

2
∂a1FðtÞ þ

1

2
∂aFðtÞ

�

þ Γð−2aÞΓð1 − 2aÞQ
σ¼�Γð12 − a0 − aþ σatÞΓð12 − aþ a1 þ σa∞Þ

t−a0þa exp

�
−
1

2
∂a0FðtÞ þ

1

2
∂a1FðtÞ −

1

2
∂aFðtÞ

�
¼ 0; ð5:9Þ

that is

Γð−2aÞ2Qσ¼�Γð12 − a0 þ aþ σatÞΓð12 þ aþ a1 þ σa∞Þ
Γð2aÞ2Qσ¼�Γð12 − a0 − aþ σatÞΓð12 − aþ a1 þ σa∞Þ

t2a expð−∂aFðtÞÞ ¼ 1: ð5:10Þ

Again, this is a manifestation of the fact that in the small Rh regime the contribution of the near-horizon zone is delayed
compared to the far-zone, and the order of delay is determined by the angular quantum number l.

A. Wick rotation and the thermal version

In this final part, we analyze the thermal version of the one-loop quantum effective actions, show how our results
generalize the ones already present in the literature [13,18] and reduce to the latter when the relevant differential equation
reduces to the hypergeometric one.
Let us Wick rotate the spacetime metric to real-time by defining t ¼ iτ, where τ has periodicity equal to the inverse of the

temperature T of the spacetime. We can introduce the thermal frequencies by setting

iωk ¼ 2πTk; k∈Z: ð5:11Þ
With these redefinitions, it is possible to connect our results with the one in [13]. In particular, the results for ω with a
positive imaginary part correspond to computation with k < 0, whereas the results for ω with a negative imaginary part
correspond to computation with k > 0.
Let us see the match in the pure de Sitter and anti–de Sitter cases, where the radial differential equations are of

hypergeometric type.
In the four-dimensional de Sitter case, our result, using also the PT symmetry, can be rewritten as8

logðdetð□−μ2ÞÞ¼
X
k∈Z

X
l;m

log

�
2π

Γðlþ1ÞΓðlþ1þ2πTjkjÞ
�
¼
X
k∈Z

X∞
l¼0

ð2lþ1Þ log
�

2π

l!Γðlþ1þ2πTjkjÞ
�
; ð5:12Þ

where we used that the degeneracy for each l ≥ 0 is equal to 2lþ 1 due to spherical symmetry.
Using Weierstrass’s definition of the Gamma function

Γðlþ 1þ 2πTjkjÞ ¼ expð−γðlþ 1þ 2πTjkjÞÞ
lþ 1þ 2πTjkj

Y∞
n¼1

��
1þ lþ 1þ 2πTjkj

n

�
−1

exp

�
lþ 1þ 2πTjkj

n

��
; ð5:13Þ

we can write the full determinant as (for the equality in the formula see the comment in footnote 8)

det ð□ − μ2Þ ¼
Y
k∈Z

Y∞
l¼0

�
2πðlþ 1þ 2πTjkjÞQ∞

n¼1 ð1þ lþ1þ2πTjkj
n Þ

l! expð−γðlþ 1þ 2πTjkjÞÞQ∞
n¼1 expðlþ1þ2πTjkj

n Þ

�2lþ1

¼
Y
k∈Z

Y∞
l¼0

�
2πð2πTÞQ∞

n¼1
2πT
n

Q∞
n¼0 ðjkj þ lþnþ1

2πT Þ
l! expð−γðlþ 1þ 2πTjkjÞÞQ∞

n¼1 expðlþ1þ2πTjkj
n Þ

�2lþ1

¼
Y
k∈Z

Y∞
l¼0

�
2π

l! expð−γðlþ 1þ 2πTjkjÞÞ
Q∞

n¼0ð2πTÞQ∞
n¼1 n expðlþ1þ2πTjkj

n Þ

�
2lþ1Y

k∈Z

Y∞
l¼0

Y∞
n¼0

�
jkj þ lþ nþ 1

2πT

�
2lþ1

;

ð5:14Þ

8In writing the equality, we neglect UV divergencies due to the infinite products over the quantum numbers in the rhs. These should
be cured by subtracting local counterterms, which can be analyzed, for example, with heat kernel methods or WKB-type
approximations. In [18], the authors also comment on the possibility of absorbing these divergences into the cosmological constant,
Newton’s constant, and local couplings to higher curvature terms in the gravity sector.
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where, in the final result, the first line is just an overall entire function (without any poles and zeroes in k, which corresponds
to ω). Notice that since the QNMs of pure de Sitter spacetime are given by −iðlþ nþ 1Þ, this result is consistent with
formula (2.10) in [18].
In the pure AdS5 case, the reasoning is analogous and, up to the overall factor, the structure of zeros can be seen from the

infinite product arising from the Gamma functions

1

ΓðΔþl−ωk
2

ÞΓðΔþlþωk
2

Þ ¼
1

ΓðΔþlþ2πiTjkj
2

ÞΓðΔþl−2πiTjkj
2

Þ
: ð5:15Þ

The infinite product contribution gives

det ð□− μ2Þ

∼
Y
k∈Z

Y∞
l¼0

�
Δþ lþ 2πiTjkj

2

Δþ l− 2πiTjkj
2

Y∞
n¼1

�
1þΔþ lþ 2πiTjkj

2n

��
1þΔþ l− 2πiTjkj

2n

��ðlþ1Þ2

¼
Y
k∈Z

Y∞
l¼0

�
2πiT
2

�
jkj þΔþ l

2πiT

�
−2πiT

2

�
jkj−Δþ l

2πiT

�Y∞
n¼1

2πiT
2

�
jkj þ 2nþΔþ l

2πiT

�
−2πiT

2

�
jkj− 2nþΔþ l

2πiT

��ðlþ1Þ2

∼
Y
k∈Z

Y∞
l¼0

�Y∞
n¼0

�
jkj− i

2nþΔþ l
2πT

��
jkj þ i

2nþΔþ l
2πT

��ðlþ1Þ2
ð5:16Þ

where we used that the degeneration for each l ≥ 0 is given by ðlþ 1Þ2. This again coincides with formula (2.10) in [18]
using (4.20).
For the cases considered in (5.14) and (5.16) we can also give the explicit formula for the ζ-function regularized one-loop

action as in (1.4). We have

ζdS4ðsÞ ¼
1

ΓðsÞ
Z

∞

0

dt
t
ts
1þ e−βt

1 − e−βt
X∞
l¼0

X∞
n¼0

ð2lþ 1Þeiðlþnþ1Þt ð5:17Þ

in the four-dimensional de Sitter case, and

ζAdS4ðsÞ ¼
1

ΓðsÞ
Z

∞

0

dt
t
ts
1þ e−βt

1 − e−βt
X∞
l¼0

X∞
n¼0

ðlþ 1Þ2½eð2lþnþΔÞt þ e−ð2lþnþΔÞt� ð5:18Þ

in the five-dimensional anti–de Sitter case.
In the black hole problems, extracting explicitly the relevant factors as in (5.16) from the Heun connection coefficients is

complicated, since the zeros come from requiring the sum of the two channels in (5.5) to vanish, and it is no longer possible
to look only in the infinite product structure of the Gamma functions.
However, if we consider the small Rh limit and the decomposition (5.6), the leading contribution of the determinant is

given by

detð□−μ2Þ∼
Y
k∈Z

Y
l;m⃗

2πΓð2aÞΓð1þ2aÞt−a0−aQ
σ¼�Γð12−a0þaþσatÞΓð12þaþa1þσa∞Þ

exp

�
−
1

2
∂a0FðtÞþ

1

2
∂a1FðtÞþ

1

2
∂aFðtÞ

�
; ð5:19Þ

where again the substitution iω ¼ 2πTk is implied.
In all the considered cases, the leading order of a in the expansion in Rh (and also in the small aBH expansion for the Kerr-

de Sitter case) depends only on the angular quantum number l, and both indices a0 and at start with higher orders in Rh,
therefore, neglecting the corrections in the last line in (5.6), the factors

2πΓð2aÞΓð1þ 2aÞt−a0−aQ
σ¼�Γð12 − a0 þ aþ σatÞ

exp

�
−
1

2
∂a0FðtÞ þ

1

2
∂a1FðtÞ þ

1

2
∂aFðtÞ

�
ð5:20Þ
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only contribute as entire functions and do not give any contributions to zeros or poles in ω, and all the analytic structure can
be written by the infinite products in the Gamma functions

Γ
�
1

2
þ aþ a1 � a∞

�
∝

1
1
2
þ aþ a1 � a∞

Y∞
n¼1

�
1þ

1
2
þ aþ a1 � a∞

n

�−1
: ð5:21Þ

Moreover, since t ∼ Rh, only the leading order of a contributes, and the reasoning proceeds as in the hypergeometric cases.
In the final analytic structure, there is also one important difference between the Kerr-de Sitter case and the spherically

symmetric cases, which is given by the degeneracies coming from the angular problem. In the spherically symmetric
problems in four dimensions, these are given by Nð4ÞðlÞ ¼ 2lþ 1, and in five dimensions by Nð5ÞðlÞ ¼ ðlþ 1Þ2, for each
l ≥ 0. In this approximation, the analytic structure in the leading order can therefore be read from

det ð□ − μ2Þ ∼
Y
k∈Z

Y∞
l¼0

�Y
σ¼�

�
1

2
þ aþ a1 þ σa∞

�Y∞
n¼1

Y
σ¼�

�
1þ

1
2
þ aþ a1 þ σa∞

n

��NðdÞðlÞ
; ð5:22Þ

with d ¼ 4; 5. In the Kerr-de Sitter case, instead, the formula reads

det ð□ − μ2Þ ∼
Y
k∈Z

Y∞
l¼0

Yl
m¼−l

�Y
σ¼�

�
1

2
þ aþ a1 þ σa∞

�Y∞
n¼1

Y
σ¼�

�
1þ

1
2
þ aþ a1 þ σa∞

n

��
; ð5:23Þ

and each pair of values ðl; mÞ gives a different contribution.
Although there are no closed expressions for the QNMs of the generic BH, we still can write approximate formulas by

expanding in the BH radius Rh by using the explicit power expansion of the QNMs (5.7). As these, to the first order can be
found from the zeros of (5.22) and (5.23), we get the following approximated expressions.
For the four-dimensional Kerr-de Sitter case in the small-rotating regime, one gets

ζKdS4ðsÞ ¼
1

ΓðsÞ
Z

∞

0

dt
t
ts
1þ e−βt

1 − e−βt
X∞
l¼0

Xl
m¼−l

X∞
n¼0

e½iðlþnþ1Þ−aBHmþOðR2
h;a

2
BHÞ�t; ð5:24Þ

where we used that the first order correction in Rh of the QNMs vanishes for any value of the quantum numbers. This
reduces in the aBH → 0 Schwarzschild limit to (see [55])

ζSdS4ðsÞ ¼
1

ΓðsÞ
Z

∞

0

dt
t
ts
1þ e−βt

1 − e−βt
X∞
l¼0

X∞
n¼0

ð2lþ 1Þe½iðlþnþ1Þ−ω2R2
hþOðR3

hÞ�t: ð5:25Þ

where, for l ≥ 0
9and n ≥ 0,

ω2 ¼ −
i½l3ð60n2 þ 60nþ 22Þ þ l2ð120n2 þ 122nþ 45Þ þ lð16n2 þ 19nþ 8Þ − ð44n2 þ 43nþ 15Þ�

8ðlþ 1Þð2lþ 1Þð2l − 1Þð2lþ 3Þ : ð5:26Þ

For the five-dimensional Schwarzschild-anti-de Sitter case one has, instead,

ζSAdS5ðsÞ ¼
1

ΓðsÞ
Z

∞

0

dt
t
ts
1þ e−βt

1 − e−βt
X∞
l¼0

X∞
n¼0

ðlþ 1Þ2fe½2lþnþΔ−ω̂2R2
hþOðR3

hÞ�t þ e−½2lþnþΔþω̂2R2
hþOðR3

hÞ�tg; ð5:27Þ

where (see Eq. (47) in [51])

ω̂2 ¼ −
Δ2 þ Δð6n − 1Þ þ 6nðn − 1Þ

2ðlþ 1Þ : ð5:28Þ

9For l > 0 the correction ω2 can be found from the zeros of (5.22). See Eq. (3.23) in [55] at s ¼ 0. The case l ¼ 0 is more subtle. The
full quantization condition (5.10) must be used in this case. However, in the expansion in Rh, the leading order of the vev parameter a
equals 1=2, and the NS function FðtÞ has a pole for this value of the parameter. To find the analytic expression for ω2, we first assume l
to be generic in (5.10), and only in the final expansion in Rh we send l → 0.
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The full result, rewritten in a form that makes explicit the analytic structure depending on the QNMs [see the quantization
condition (5.10)], is (for the equality in the formula see the comment in footnote 8)

det ð□ − μ2Þ ¼
Y
k∈Z

Y
l;m⃗



2πΓð2aÞΓð1þ 2aÞQ

σ¼�Γð12 − a0 þ aþ σatÞΓð12 þ aþ a1 þ σa∞Þ
t−a0−a exp

�
−
1

2
∂a0FðtÞ þ

1

2
∂a1FðtÞ þ

1

2
∂aFðtÞ

�

×

�
1 −

Γð−2aÞ2Qσ¼�Γð12 − a0 þ aþ σatÞΓð12 þ aþ a1 þ σa∞Þ
Γð2aÞ2Qσ¼�Γð12 − a0 − aþ σatÞΓð12 − aþ a1 þ σa∞Þ

t2a expð−∂aFðtÞÞ
��

; ð5:29Þ

where the substitution (5.11) is implied, and the structure depending on QNMs can be read from the second line.

We remark again that, given a fixed l0, the coefficients
of the QNMs expansion (5.7) up to order 2l0 þ 1 (for
the four-dimensional cases) or 2l0 þ 2 (for the five-
dimensional case) in Rh can be determined by the poles
in (5.21), where the additional complication compared to
the hypergeometric cases comes from the fact that a is
expressed as an instanton expansion and ω (or, equiva-
lently, k) appears in the coefficients of such expansion.
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APPENDIX A: GELFAND-YAGLOM THEOREM

1. Gelfand-Yaglom theorem for regular
differential operators

Let us introduce the setting in which the standard
Gelfand-Yaglom theorem applies. Let

D ¼ d2

dz2
þ VðzÞ ðA1Þ

be a second-order differential operator defined on the
interval z ¼ ½0; 1�. Let us consider the eigenvalue problem

Dψn ¼ λnψn; ðA2Þ

with ψn satisfying the Dirichlet boundary conditions

ψnð0Þ ¼ ψnð1Þ ¼ 0; ðA3Þ
where fλngn is the set of eigenvalues of D, which is
required to be discrete, nondegenerate, and bounded from
below. Suppose we can solve the associated problem

Duλ ¼ λuλ; ðA4Þ
with uλ satisfying the boundary conditions

uλð0Þ ¼ 0; u0λð0Þ ¼ 1: ðA5Þ
We call this uλðzÞ the normalized solution of ðD − λÞu ¼ 0
at z ¼ 0.
Then, one has that uλð1Þ is equal to zero if and only if λ is

an eigenvalue of the operator D. Indeed, uλð1Þ ¼ 0 if and
only if uλ satisfies both the Dirichlet boundary conditions at
z ¼ 0 and at z ¼ 1, but then uλ coincides with one of the
eigenfunctions of D, that is λ ¼ λn for some n.
Let D̃ be some reference differential operator and ũλ the

corresponding eigenfunction satisfying (A5). D̃ is obtained
by D by considering a deformation of the potential VðzÞ. It
holds

det ðD − λÞ
det ðD̃ − λÞ ¼

uλð1Þ
ũλð1Þ

: ðA6Þ

Indeed, seen as functions of λ, both the lhs and the rhs have
zeros in the eigenvalues of D and poles in the eigenvalues
of D̃. Therefore, the two must coincide up to a constant.
Moreover,

lim
λ→∞

det ðD − λÞ
det ðD̃ − λÞ ¼ 1; ðA7Þ

assuming the deformation of the potential VðzÞ to be
bounded and not modifying the asymptotic of the spectrum.
Hence, we can conclude that

detðDÞ
detðD̃Þ ¼

det ðD − λÞ
det ðD̃ − λÞ

				
λ¼0

¼ uλ¼0ð1Þ
ũλ¼0ð1Þ

: ðA8Þ
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Remark A.1. As a consequence of the theorem, we
conclude that the ratio of determinants of two differential
operators only depends on the normalized solutions of the
corresponding differential equation.
We also comment on the fact that it is not restrictive to

consider differential operators in the normal form (A1).
Indeed, let us consider a second-order differential equation
of the form

�
aðyÞ d2

dy2
þ bðyÞ d

dy
þ cðyÞ

�
ϕðyÞ ¼ 0; ðA9Þ

with the properties that bðyÞ is differentiable and aðyÞ is
twice differentiable. We can first redefine the variable as

z ¼
R y
0 dȳ

1ffiffiffiffiffiffiffi
aðȳÞ

p
C

; with C ¼
Z

1

0

dȳ
1ffiffiffiffiffiffiffiffiffi
aðȳÞp ; ðA10Þ

so that the interval y ¼ ½0; 1� is mapped onto the interval
z ¼ ½0; 1� and the differential equation becomes of the form

�
d2

dz2
þ CβðzÞ d

dz
þ C2γðzÞ

�
ϕðzÞ ¼ 0; ðA11Þ

where

βðzÞ ¼ bðyÞ − 1
2
a0ðyÞffiffiffiffiffiffiffiffiffi

aðyÞp ; γðzÞ ¼ cðyÞ: ðA12Þ

Then, redefining the wave function ϕ as

ϕðzÞ ¼ exp

�
−
1

2

Z
dzCβðzÞ

�
ψðzÞ; ðA13Þ

the differential equation becomes

�
d2

dz2
þ VðzÞ

�
ψðzÞ ¼ 0; ðA14Þ

with

VðzÞ ¼ C2γðzÞ − C2

4
βðzÞ2 − C

2
β0ðzÞ: ðA15Þ

2. Gelfand-Yaglom version for regular singular points

Suppose now that the potential VðzÞ has regular singular
points at z ¼ 0 and z ¼ 1. We denotewith 1

2
� a0 the roots of

the indicial equation at z ¼ 0. Then, supposing not to be in a
log case, there exists a fundamental system of solutions of the
differential equation DψðzÞ ¼ 0 around z ¼ 0 given by

ψ ð0Þ
1 ¼ z

1
2
þa0 ½1þOðzÞ�;

ψ ð0Þ
2 ¼ z

1
2
−a0 ½1þOðzÞ�; ðA16Þ

and the Wronskian between the two solutions is (constant
in z) equal to 2a0.
Let us suppose Reða0Þ > 0. In order to apply the

Gelfand-Yaglom theorem in the regular singular case,
the standard vanishing Dirichlet boundary condition at
z ¼ 0 is reformulated by asking the function ψ to satisfy

lim
z→0

ðz12−a0Þ−1ψðzÞ ¼ 0: ðA17Þ

Analogous formulas hold at z ¼ 1.
Suppose that the points z ¼ 0 and z ¼ 1 are regular

singular points of both the equations DψðzÞ ¼ 0 and
D̃ ψ̃ðzÞ ¼ 0 with equal indices a0 ¼ ã0 and a1 ¼ ã1.
Suppose, moreover, Reða0Þ > 0 and Reða1Þ > 0. Then,

detðDÞ
detðD̃Þ ¼

C12
C̃12

ðA18Þ

where C12 is the connection coefficient relating the local
solutions around the two regular singular points

ψ ð0Þ
1 ðzÞ ¼ C11ψ

ð1Þ
1 ðzÞ þ C12ψ

ð1Þ
2 ðzÞ; ðA19Þ

and the same for C̃11 and C̃12.
Let us prove (A18). The strategy is to consider the

associated problem as in the standard Gelfand-Yaglom
theorem, but taking the normalized solution at a point
close to z ¼ 0 in terms of the corresponding local solutions
(A16). Then, using the connection matrix, it is possible to
analytically continue the solution close to the point z ¼ 1
and evaluate it there. Removing the cutoff, we get (A18).
The normalized solution at z ¼ 0 satisfying u½δ�ðδÞ ¼ 0

and u0½δ�ðδÞ ¼ 1 is given by

u½δ�ðzÞ ¼
ψ ð0Þ
i ðδÞ

Wðψ ð0Þ
1 ;ψ ð0Þ

2 ÞðδÞ
ϵijψ

ð0Þ
j ðzÞ ¼ ψ ð0Þ

i ðδÞ
2a0

ϵijψ
ð0Þ
j ðzÞ;

ðA20Þ

where

ϵ ¼
�

0 1

−1 0

�
: ðA21Þ

Let us now analytically continue this solution to the
neighborhood of z ¼ 1, as

ψ ð0Þ
i ðzÞ ¼ Cijψ

ð1Þ
j ðzÞ; ðA22Þ

and evaluate

u½δ�ð1þ δ0Þ ¼ ψ ð0Þ
i ðδÞ
2a0

ϵijCjkψ
ð1Þ
k ð1þ δ0Þ: ðA23Þ
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By using the expansion of the local solutions around
z ¼ 0 and z ¼ 1, and denoting

ρð0Þ1 ¼ 1

2
þ a0; ρð0Þ2 ¼ 1

2
− a0;

ρð1Þ1 ¼ 1

2
þ a1; ρð1Þ2 ¼ 1

2
− a1; ðA24Þ

one finds

u½δ�ð1þδ0Þ¼ 1

2a0
ðδρð0Þi ÞϵijCjkðδ0ρ

ð1Þ
k Þ½1þOðδ;δ0Þ�: ðA25Þ

Consider now the ratio

u½δ�ð1þ δ0Þ
ũ½δ�ð1þ δ0Þ ; ðA26Þ

where the denominator is given by the above procedure for
the reference operator D̃ and with the same cutoff assign-
ment. As we remove the cutoff, in the limit δ; δ0 → 0 and
using the assumptions a0, a1 > 0, the leading order term is
given by

detðDÞ
detðD̃Þ ¼ lim

δ;δ0→0þ

u½δ�ð1þ δ0Þ
ũ½δ�ð1þ δ0Þ

¼ lim
δ;δ0→0þ

−δ1
2
−a0C12ðδ0Þ12−a1

−δ1
2
−a0 C̃12ðδ0Þ12−a1

¼ C12
C̃12

: ðA27Þ

Similar results were obtained in [16].

APPENDIX B: CONNECTION PROBLEMS
FROM z ∼ 0 TO z ∼ 1

In this appendix, we recall the connection coefficients
that analytically continue the local solutions around the
singularity at z ¼ 0 in the region around the singularity
at z ¼ 1 for the Heun and hypergeometric differential
operators.

1. Hypergeometric connection formulas

For the hypergeometric equation

�
zð1 − zÞ d2

dz2
þ ðc − ðaþ bþ 1ÞzÞ d

dz
− ab

�
wðzÞ ¼ 0;

ðB1Þ

a basis of local solutions around z ¼ 0 is given by

wð0Þ
− ðzÞ ¼ 2F1ða; b; c; zÞ;

wð0Þ
þ ðzÞ ¼ z1−c2F1ða − cþ 1; b − cþ 1; 2 − c; zÞ; ðB2Þ

and a basis of local solutions around z ¼ 1 is given by

wð1Þ
− ðzÞ¼ 2F1ða;b;aþbþ1−c;1−zÞ;

wð1Þ
þ ðzÞ¼ð1−zÞc−a−b2F1ðc−a;c−b;c−a−bþ1;1−zÞ:

ðB3Þ

The connection formulas between these solutions are

wð0Þ
− ðzÞ ¼ ΓðcÞΓðc − a − bÞ

Γðc − aÞΓðc − bÞw
ð1Þ
− ðzÞ

þ ΓðcÞΓðaþ b − cÞ
ΓðaÞΓðbÞ wð1Þ

þ ðzÞ;

wð0Þ
þ ðzÞ ¼ Γð2 − cÞΓðc − a − bÞ

Γð1 − aÞΓð1 − bÞ wð1Þ
− ðzÞ

þ Γð2 − cÞΓðaþ b − cÞ
Γða − cþ 1ÞΓðb − cþ 1Þw

ð1Þ
þ ðzÞ: ðB4Þ

Let us consider the normal form of the equation but
supposing the index of the singularity at z ¼ ∞ to satisfy
a2∞ ¼ 1=4 (as we do in the normalizations introduced to the
main part of the work):

ψ 00ðzÞþ
�1
4
−a20
z2

þ
1
4
−a21

ðz−1Þ2−
1
2
−a20−a21
zðz−1Þ

�
ψðzÞ¼0; ðB5Þ

where the dictionary with the a, b, c parameters is

a0 ¼
1 − c
2

; a1 ¼
c − a − b

2
; ðB6Þ

and with inverse

a¼1−a0−a1; b¼−a0−a1; c¼1−2a0: ðB7Þ

A basis of local solutions around z ¼ 0 is given by

ψ ð0Þ
− ðzÞ ¼ ðz − 1Þ12−a1z12−a0wð0Þ

− ðzÞ ¼ ðz − 1Þ12þa1z
1
2
−a0

2F1ð−a0 þ a1;−a0 þ a1 þ 1; 1 − 2a0; zÞ;
ψ ð0Þ
þ ðzÞ ¼ ðz − 1Þ12−a1z12−a0wð0Þ

þ ðzÞ ¼ ðz − 1Þ12þa1z
1
2
þa0

2F1ða0 þ a1; a0 þ a1 þ 1; 1þ 2a0; zÞ; ðB8Þ
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whose Wronskian is equal to 2a0, and a basis of local solutions around z ¼ 1 is given by

ψ ð1Þ
− ðzÞ ¼ ðz − 1Þ12−a1z12−a0wð1Þ

− ðzÞ ¼ ðz − 1Þ12−a1z12þa0
2F1ða0 − a1; 1þ a0 − a1; 1 − 2a1; 1 − zÞ;

ψ ð1Þ
þ ðzÞ ¼ ðz − 1Þ12−a1z12−a0wð1Þ

þ ðzÞ ¼ ðz − 1Þ12þa1z
1
2
þa0

2F1ða0 þ a1; 1þ a0 þ a1; 1þ 2a1; 1 − zÞ; ðB9Þ
whose Wronskian is equal to 2a1. The corresponding connection formulas read

ψ ð0Þ
− ðzÞ ¼ Γð1 − 2a0ÞΓð2a1Þ

Γð−a0 þ a1ÞΓð1 − a0 þ a1Þ
ψ ð1Þ
− ðzÞ þ Γð1 − 2a0ÞΓð−2a1Þ

Γð1 − a0 − a1ÞΓð−a0 − a1Þ
ψ ð1Þ
þ ðzÞ;

ψ ð0Þ
þ ðzÞ ¼ Γð1þ 2a0ÞΓð2a1Þ

Γða0 þ a1ÞΓð1þ a0 þ a1Þ
ψ ð1Þ
− ðzÞ þ Γð1þ 2a0ÞΓð−2a1Þ

Γð1þ a0 − a1ÞΓða0 − a1Þ
ψ ð1Þ
þ ðzÞ: ðB10Þ

2. Heun connection formula for jtj < 1

The analogous problem was solved for the Heun equation in [10], where connection formulas between semiclassical
Liouville conformal blocks were studied. In the main part of the work, we consider the regime in which jtj < 1. In the next
subsection, we show the analogous formulas in the regime jtj > 1.
The conformal block for small t around z ¼ 0 reads

F

0
BB@

α1 αt α2;1

α α0θ

α∞ α0

; t;
z
t

1
CCA: ðB11Þ

The conformal block for small t around z ¼ 1 reads

tΔ∞þΔ1þΔ2;1−Δt−Δ0ð1 − tÞΔ∞þΔ0þΔ2;1−Δt−Δ1ðz − tÞ−2Δ2;1F

0
B@

α0 α∞ α2;1

α α1θ

αt α1

; t;
z − 1

z − t

1
CA: ðB12Þ

In the semiclassical limit, these read

F

0
B@

a1 at a2;1
a a0θ

a∞ a0

; t;
z
t

1
CA;

ðtð1 − tÞÞ−1
2ðz − tÞF

0
B@

a0 a∞ a2;1
a a1θ

at a1

; t;
z − 1

z − t

1
CA: ðB13Þ

The connection formula between the two semiclassical blocks, written in terms of the connection matrices of the
hypergeometric functions

Mθθ0 ða1; a2; a3Þ ¼
Γð−2θ0a2ÞΓð1þ 2θa1Þ

Γð1
2
þ θa1 − θ0a2 þ a3ÞΓð12 þ θa1 − θ0a2 − a3Þ

; where θ; θ0 ¼ � ðB14Þ

reads

F

0
B@

a1 at a2;1
a a0θ

a∞ a0

; t;
z
t

1
CA ¼

X
θ0;θ00¼�

Mθθ0 ða0; a; atÞMð−θ0Þθ00 ða; a1;a∞Þtθ0a exp
�
−
θ0

2
∂aFðtÞ

�

× ðtð1 − tÞÞ−1
2ðz − tÞF

0
B@

a0 a∞ a2;1
a a1θ00

at a1

; t;
z − 1

z − t

1
CA; ðB15Þ
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FðtÞ being the classical 4-point conformal block (see Appendix E)

FðtÞ ¼ F

0
B@

a1 at
a

a∞ a0

; t

1
CA: ðB16Þ

We also need to relate the expansions of these semiclassical blocks to the local solutions of the Heun equation in
normal form

ψ ð0Þ
θ ðzÞ ∼ z

1
2
þθa0 ½1þOðzÞ�;

ψ ð1Þ
θ ðzÞ ∼ ðz − 1Þ12þθa1 ½1þOðz − 1Þ�: ðB17Þ

The semiclassical blocks’ expansions read

F

0
B@

a1 at a2;1
a a0θ

a∞ a0

; t;
z
t

1
CA ∼ t−θa0 exp

�
−
θ

2
∂a0FðtÞ

�
z
1
2
þθa0

�
1þO

�
t;
z
t

��
;

F

0
B@

a0 a∞ a2;1
a a1θ00

αt a0

; t;
z − 1

z − t

1
CA ∼

�
t

1 − t

�
1=2

ðz − 1Þ12þθ00a1 exp

�
−
θ00

2
∂a1FðtÞ

��
1þO

�
t;
z − 1

z − t

��
; ðB18Þ

where FðtÞ is the conformal block (B16).
It follows that the connection formula between the solutions of the Heun equation reads

ψ ð0Þ
θ ðzÞ ¼

X
θ00¼�

Cθθ00ψ
ð1Þ
θ00 ðzÞ; with

Cθθ00 ¼
X
θ0¼�

Mθθ0 ða0; a; atÞMð−θ0Þθ00 ða; a1; a∞Þtθa0þθ0a exp

�
θ

2
∂a0FðtÞ −

θ00

2
∂a1FðtÞ −

θ0

2
∂aFðtÞ

�
: ðB19Þ

3. Heun connection formula for jtj > 1

The connection formula between the points z ¼ 0 and z ¼ 1 in the regime jtj > 1 is simpler since the two singular points
are on the same side of the pants decomposition of the four-punctured sphere.
In the semiclassical limit, the conformal blocks around z ¼ 0 and z ¼ 1 read

t1=2F

0
B@

at a1 a2;1
a a0θ

a∞ a0

;
1

t
; z

1
CA;

ðt − 1Þ1=2eθiπaF

0
B@

at a0 a2;1
a a1θ

a∞ a1

;
1

t − 1
; 1 − z

1
CA; ðB20Þ

respectively. The connection formula between them reads

t
1
2F

0
B@

at a1 a2;1
a a0θ

a∞ a0

;
1

t
; z

1
CA ¼

X
θ0¼�

Mθθ0 ða0; a1; aÞðt − 1Þ12eθ0iπaF

0
B@

at a1 a2;1
a a0θ0

a∞ a0

;
1

t − 1
; 1 − z

1
CA:

ðB21Þ
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The semiclassical blocks’ expansions read

F

0
B@

at a1 a2;1
a a0θ

a∞ a0

;
1

t
; z

1
CA ∼ t−

1
2 exp

�
−
θ

2
∂a0FðtÞ

�
z
1
2
þθa0

�
1þO

�
1

t
; z
��

;

F

0
B@

at a0 a2;1
a a0θ0

a∞ a1

;
1

t − 1
; 1 − z

1
CA ∼ ðt − 1Þ−1

2eθ
0iπaðz − 1Þ12þθ0a1 exp

�
−
θ0

2
∂a1FðtÞ

��
1þO

�
1

t − 1
; 1 − z

��
;

ðB22Þ

where FðtÞ is the conformal block

F ¼ F

0
B@

at a1
a

a∞ a0

;
1

t

1
CA: ðB23Þ

It follows that the connection formula between the solutions of the Heun equation with the expansion (B17) reads

ψ ð0Þ
θ ðzÞ ¼

X
θ0¼�

Cθθ0ψ
ð1Þ
θ0 ðzÞ; with

Cθθ0 ¼ Mθθ0 ða0; a1; aÞ exp
�
θ

2
∂a0FðtÞ −

θ0

2
∂a1FðtÞ

�
ðB24Þ

APPENDIX C: DETERMINANT OF HEUN DIFFERENTIAL OPERATORS
AND GELFAND-YAGLOM THEOREM

1. Heun normalized with hypergeometric

In the main part of the work we need to compute (ratio of) determinants of differential operators of Heun’s and
hypergeometric’s type.
Indeed, the spectral problems in which we are interested are encoded by Heun differential equations with both boundary

conditions imposed at singular points. If we consider the normal form of the Heun operator

D∶
d2

dz2
þ
�1
4
− a20
z2

þ
1
4
− a21

ðz − 1Þ2 þ
1
4
− a2t

ðz − tÞ2 −
1
2
− a21 − a2t − a20 þ a2∞ þ u

zðz − 1Þ þ u
zðz − tÞ

�
; ðC1Þ

the simpler problem can be taken to be a hypergeometric operator, which can be obtained by modifying the potential setting
u ¼ 0, a2t ¼ 1

4
. For simplicity, we also set a2∞ ¼ 1

4
. This gives

D̃∶
d2

dz2
þ
�1
4
− a20
z2

þ
1
4
− a21

ðz − 1Þ2 −
1
2
− a21 − a20
zðz − 1Þ

�
: ðC2Þ

This simplification is such that the indices of the singularities at z ¼ 0 and z ¼ 1 are kept fixed. Using the connection
coefficients for the Heun equation and hypergeometric equation (see Appendix B), we can take the ratio of determinants as
the ratio of connection coefficients, distinguishing the cases according to the signs of Reða0Þ and Reða1Þ.
For example, in the case Reða0Þ > 0 and Reða1Þ > 0, we have

detðDÞ
detðD̃Þ ¼

P
θ0¼�Mþθ0 ða0; a; atÞMð−θ0Þ−ða; a1;a∞Þta0þθ0a expð1

2
∂a0FðtÞ þ 1

2
∂a1FðtÞ − θ0

2
∂aFðtÞÞ

Γð1þ2a0ÞΓð2a1Þ
Γð1þa0þa1ÞΓða0þa1Þ

: ðC3Þ
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2. Computation of determinant for hypergeometric operators

In this Appendix, we use a different method to compute the determinant of generic hypergeometric differential operators.
Using the result of the ratio of determinants (C3), this gives a prescription on how to compute the (regularized) determinant
for Heun differential operators.
Let D1 be the hypergeometric differential operator in normal form with generic indices of the singularities, parametrized

by the parameters a, b, c:

D1∶
d2

dz2
þ 2c½zðaþ b − 1Þ þ 1� þ z½−zða − bÞ2 − 4abþ z� − c2

4ðz − 1Þ2z2 : ðC4Þ

Let D2 be the hypergeometric differential operator in the form

D2∶
d2

dz2
þ ½c − ðaþ bþ 1Þz�

zð1 − zÞ
d
dz

−
ab

zð1 − zÞ : ðC5Þ

We have that if ψ1;λðzÞ is an eigenfunction for D1 with corresponding eigenvalue λ, then

ψ2;λðzÞ ¼ z−c=2ðz − 1Þ−aþbþ1−c
2 ψ1;λðzÞ ðC6Þ

is an eigenfunction for D2 with the same eigenvalue λ. Indeed,

D2ψ2;λðzÞ ¼ ½z−c=2ðz − 1Þ−ðaþbþ1−cÞ=2D1zc=2ðz − 1Þðaþbþ1−cÞ=2�½z−c=2ðz − 1Þ−ðaþbþ1−cÞ=2ψ1;λðzÞ�
¼ z−c=2ðz − 1Þ−ðaþbþ1−cÞ=2D1ψ1;λðzÞ ¼ z−c=2ðz − 1Þ−ðaþbþ1−cÞ=2λψ1;λðzÞ ¼ λψ2;λðzÞ: ðC7Þ

Therefore, the determinant of the two differential operators is the same, since the two have the same eigenvalues.
Now, thanks to the Gelfand-Yaglom theorem and the Remark A.1, the determinant ofD2 is equal to the determinant of the

operator

D3∶ zð1 − zÞ d2

dz2
þ ½c − ðaþ bþ 1Þz� d

dz
− ab; ðC8Þ

since the differential equationsD2ψðzÞ ¼ 0 andD3ψðzÞ ¼ 0 have the same solutions. Indeed, to apply the Gelfand-Yaglom
theorem and compute the determinants of D2 and D3, one can transform them in the normal form using the procedure
outlined in Appendix A, and finally, normalizing with respect to the same reference operator, one finds the same result for
the two computations.
Finally, in order to compute the determinant of D3, we can look into the eigenvalue problem

ðD3 − λÞwðzÞ ¼ 0: ðC9Þ

A basis of independent solutions of this differential equation around z ¼ 0 is given by

wð0Þ
− ðzÞ¼ 2F1

�
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2−2abþb2−4λ

p
þa
2
þb
2
;
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2−2abþb2−4λ

p
þa
2
þb
2
;c;z

�
;

wð0Þ
þ ðzÞ¼ z1−c2F1

�
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2−2abþb2−4λ

p
þa
2
þb
2
−cþ1;

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2−2abþb2−4λ

p
þa
2
þb
2
−cþ1;2−c;z

�
: ðC10Þ

The selected solution around z ¼ 0 is wð0Þ
þ ðzÞ. The connection coefficient in front of the discarded solution around z ¼ 1 is

given by

Γð2 − cÞΓðc − a − bÞ
Γð1þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − 2abþ b2 − 4λ

p
− a

2
− b

2
ÞΓð1 − 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − 2abþ b2 − 4λ

p
− a

2
− b

2
Þ : ðC11Þ
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Therefore, the λn that ensure the correct boundary con-
ditions for the solution are obtained by the quantization
condition

1þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − 2abþ b2 − 4λn

q
−
a
2
−
b
2
¼ −n or

1 −
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − 2abþ b2 − 4λn

q
−
a
2
−
b
2
¼ −n; n∈Z≥0;

ðC12Þ
that is,

λn ¼ ð1 − bþ nÞð−1þ a − nÞ: ðC13Þ
Hence, denoting with a tilde the regularization of the
previous infinite product, the determinant is given by

detD3 ¼
Ỹ

n≥0ð1 − bþ nÞð−1þ a − nÞ

¼ 2π

Γð1 − bÞΓð1 − aÞ ; ðC14Þ

where we used the Zeta regularization and the Lerch’s
formula [78].

3. Regularized determinant for Heun
differential operators

Comparing the differential operator D1 in (C4) with the
operator D̃ in (C2), we have that the two are related by the
dictionary10

a ¼ 1 − a0 − a1; and b ¼ −a0 − a1: ðC15Þ
With the result of the previous subsection, we have that

det D̃ ¼
Ỹ

n≥0ð1þ a0 þ a1 þ nÞð−a0 − a1 − nÞ

¼ 2π

Γð1þ a0 þ a1ÞΓða0 þ a1Þ
: ðC16Þ

We conclude that we can give a formula for the (regular-
ized) determinant of the Heun differential operator (C1),
under the assumption Reða0Þ > 0 and Reða1Þ > 0:

detD ¼
X
θ0¼�

2πΓð−2θ0aÞΓð1 − 2θ0aÞQ
σ¼�Γð12 þ a0 − θ0aþ σatÞΓð12 − θ0aþ a1 þ σa∞Þ

ta0þθ0a exp

�
1

2
∂a0FðtÞ þ

1

2
∂a1FðtÞ −

θ0

2
∂aFðtÞ

�
: ðC17Þ

Let us remark that this result is equal to the Heun connection
coefficient in front of the discarded solution at z ¼ 1, divided
by the two Gamma functions whose arguments depend on
the indices of the singularities where the two boundary
conditions are imposed. The 2π factor comes from the Zeta
function regularization. This normalization gives analogous
results as the ones obtained in the work [18], where the
subtraction of the Gamma functions is motivated by physical
arguments, introducing the Rindler-like region.

4. Example of equality of determinants

We show explicitly that the ratio of the determinants of
the differential operators where one is obtained by multi-
plying the other for zð1 − zÞ is equal to 1 in the simplest
case, in which we take

D1 ¼ −
d2

dz2
; D2 ¼ −zð1 − zÞ d2

dz2
: ðC18Þ

This is just a consistency check of the previous remark that
comes from the proof of the standard version of the
Gelfand-Yaglom theorem. For the determinants of these
operators, we can use the standard form of the Gelfand-
Yaglom theorem, and consider the associated problems

D1u1;λ¼ λu1;λ; with u1;λð0Þ¼0 and u01;λð0Þ¼1;

D2u2;λ¼ λu2;λ; with u2;λð0Þ¼0 and u02;λð0Þ¼1: ðC19Þ

The solutions satisfying these boundary conditions are
given by

u1;λ¼
sinð ffiffiffi

λ
p

zÞffiffiffi
λ

p ;

u2;λ¼ z2F1

�
1

2
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
4λþ1

p
;
1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
4λþ1

p þ1

2
;2;z

�
: ðC20Þ

Therefore, the ratio of determinants of the original oper-
ators is given by

detðD1Þ
detðD2Þ

¼ u1;λ¼0ð1Þ
u2;λ¼0ð1Þ

¼ 1

1
¼ 1: ðC21Þ

This could be seen more easily from the standard version of
the Gelfand-Yaglom theorem, since in both cases the
solution ψ̄ðzÞ of the differential equation DiψðzÞ ¼ 0
satisfying ψð0Þ ¼ 0 and ψ 0ð0Þ ¼ 1 is given by ψ̄ðzÞ ¼ z,
and we have ψ̄ð1Þ ¼ 1.

APPENDIX D: REDUCTION OF CONNECTION
COEFFICIENT

Here, we prove that in the limit in which the Heun
differential operator D reduces to the hypergeometric one,

10In (C15) the parameter a denotes the parameter of the
hypergeometric equation, whereas in (C17) it denotes the vev
parameter.
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the ratio in (C3) becomes equal to 1. Notice that we are not
taking a collision limit, but we are just fitting the param-
eters so that the singularity at z ¼ t becomes an appar-
ent one.
The differential operator D in (C1) reduces to D̃ in (C2)

by setting

at ¼ a∞ ¼ 1

2
; u ¼ 0: ðD1Þ

Using the instanton expansion

u ¼ −
1

4
þ a2t þ a20 − a2 þ t

∂FðtÞ
∂t

; ðD2Þ

we get

a ¼ �a0; FðtÞ ¼ 0: ðD3Þ

Let us choose the plus sign. In the hypergeometric connection matrices appearing in the determinant of D

Mþθ0 ða0; a;atÞMð−θ0Þ−ða;a1;a∞Þ ¼
Γð1þ 2a0ÞΓð−2θ0aÞΓð1− 2θ0aÞΓð2a1Þ

Γð1
2
þ a0 − θ0aþ atÞΓð12þ a0 − θ0a− atÞΓð12− θ0aþ a1 þ a∞ÞΓð12− θ0aþ a1 − a∞Þ

;

ðD4Þ

one can see that the choice θ0 ¼ þmakes one of the arguments of the Gamma functions in the denominator equal to 0 under
the dictionary (D1) (if we had chosen the different sign a0 ¼ −a, then the reasoning would have been the same with
θ0 ¼ −). Therefore, the determinant of D reduces to channel corresponding to θ0 ¼ −:

Γð1þ 2a0ÞΓð2aÞΓð1þ 2aÞΓð2a1Þ
Γð1

2
þ a0 þ aþ atÞΓð12þ a0 þ a− atÞΓð12þ aþ a1 þ a∞ÞΓð12þ aþ a1 − a∞Þ

ta0−a exp

�
1

2
∂a0FðtÞ þ

1

2
∂a1FðtÞ þ

1

2
∂aFðtÞ

�

→
Γð1þ 2a0Þ2Γð2a0ÞΓð2a1Þ

Γð1þ 2a0ÞΓð2a0ÞΓð1þ a0 þ a1ÞΓða0 þ a1Þ
¼ Γð1þ 2a0ÞΓð2a1Þ

Γð1þ a0 þ a1ÞΓða0 þ a1Þ
ðD5Þ

where we used (D1) to pass to the second line. The last
result is precisely the determinant of D̃ appearing in the
denominator of (C3) (equivalently, one of the hypergeo-
metric connection coefficients).

APPENDIX E: GAUGE THEORY CONVENTIONS

This appendix collects the notations and conventions
used when applying the gauge theory approach to the Heun
connection problems. The relevant theory is N ¼ 2 SUð2Þ
gauge theory with Nf ¼ 4 fundamental hypermultiplets.
If Y is a Young diagram, we denote with ðY1 ≥ Y2 ≥ …Þ

the heights of its columns and with ðY 0
1 ≥ Y 0

2;…Þ the
lengths of its rows. For every Young diagram Y and for

every box s ¼ ði; jÞ, we denote the arm length and the leg
length of s with respect to the diagram Y as

AYði; jÞ ¼ Yj − i; LYði; jÞ ¼ Y 0
i − j: ðE1Þ

We now introduce the main contributions crucial for the
definition of the instanton partition function of N ¼ 2
SUð2Þ gauge theory with fundamental matter. Let us denote
with Y⃗ ¼ ðY1; Y2Þ a pair of Young diagrams. We denote
with a⃗ ¼ ða1; a2Þ the vev of the scalar in the vector
multiplet and with ϵ1, ϵ2 the parameters characterizing
theΩ-background. We define the hypermultiplet and vector
contribution as [79,80]

zhypða⃗; Y⃗; mÞ ¼
Y
k¼1;2

Y
ði;jÞ∈Yk

�
ak þmþ ϵ1

�
i −

1

2

�
þ ϵ2

�
j −

1

2

��
;

zvecða⃗; Y⃗Þ ¼
Y2
i;j¼1

Y
s∈Yi

1

ai − aj − ϵ1LYj
ðsÞ þ ϵ2ðAYi

ðsÞ þ 1Þ
Y
t∈Yj

1

−aj þ ai þ ϵ1ðLYi
ðtÞ þ 1Þ − ϵ2AYj

ðsÞ : ðE2Þ

We always take ϵ1 ¼ 1 and a⃗ ¼ ða;−aÞ. Let us denote with m1, m2, m3, m4 the masses of the four hypermultiplets and let
us introduce the gauge parameters a0; at; a1; a∞ satisfying

m1 ¼ −at − a0; m2 ¼ −at þ a0; m3 ¼ a∞ þ a1; m4 ¼ −a∞ þ a1: ðE3Þ
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Moreover, we denote with t the instanton counting parameter t ¼ e2πiτ, where τ is related to the gauge coupling by

τ ¼ θ

2π
þ i

4π

g2YM
: ðE4Þ

The instanton part of the NS free energy is then given as a power series in t by

FðtÞ ¼ lim
ϵ2→0

ϵ2 log

�
ð1 − tÞ−2ϵ−12 ð1

2
þa1Þð12þatÞ

X
Y⃗

tjY⃗jzvecða⃗; Y⃗Þ
Y4
i¼1

zhypða⃗; Y⃗; miÞ
�
: ðE5Þ

The gauge parameter a is expressed in a series expansion in the instanton counting parameter t, obtained by inverting the
Matone relation [81]

u ¼ −
1

4
− a2 þ a2t þ a20 þ t∂tFðtÞ; ðE6Þ

where the parameter u appearing in the differential equation (2.9) is the complex moduli parametrizing the corresponding
SW curve. Explicitly, the expansion reads as follows

a ¼ �
8<
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
1

4
− uþ a2t þ a20

r
þ ð1

2
þ u − a2t − a20 − a21 þ a2∞Þð12 þ u − 2a2t Þ

2ð1þ 2u − 2a2t − 2a20Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− 1

4
− uþ a2t þ a20

q tþOðt2Þ
9=
;: ðE7Þ
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