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Homogenization of discrete thin structures
Andrea Braides

SISSA, via Bonomea 265, Trieste, Italy

Lorenza D’Elia
Institute of Analysis and Scientific Computing, TU Wien

Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria

Abstract
We consider graphs parameterized on a portion X ⊂ Zd × {1, . . . ,M}k of a cylindrical

subset of the lattice Zd × Zk, and perform a discrete-to-continuum dimension-reduction
process for energies defined on X of quadratic type. Our only assumptions are that X be
connected as a graph and periodic in the first d-directions. We show that, upon scaling
of the domain and of the energies by a small parameter ε, the scaled energies converge to
a d-dimensional limit energy. The main technical points are a dimension-reducing coarse-
graining process and a discrete version of the p-connectedness approach by Zhikov.

1 Introduction
The object of the investigation in this paper is the analysis of discrete thin objects through,
at the same time, a discrete-to-continuum and dimension-reduction process. The main
focus of our work is the great generality of the geometry of our discrete systems, which we
essentially require to be a connected graph periodic in the dimensions that are maintained
after a discrete-to-continuum passage.
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Figure 1: A discrete thin object in three dimensions with a one-dimensional behaviour

An example of the structure that we have in mind is pictured in Fig. 1; in this case the
‘macroscopic dimension’ is one. The thicker black lines (both the solid ones and the ones
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dashed for graphic purpose) represent connections between nodes of a cubic lattice in R3.
Equivalently, we may think of the same structure as a network of conducting rods. Note
that this object cannot trivially be parameterized as a ‘subgraph’ of a function depending
of the vertical variable, as it consists of a double helix connected through horizontal bonds.
Nevertheless, it can be included in a ‘regular’ thin object; in this case, the cylindrical part
of Z3 whose projection on the two-dimensional horizontal plane are the four vertices of a
square. Even if no connection is purely vertical, the overall behaviour of such a structure is
expected to be that of a vertical one-dimensional object. Similar examples can be thought
of when the macroscopic dimension is two, for example stacking copies of this structure in
a planar configurations.

With these examples in mind, we are going to look at graphs whose nodes are a periodic
subset X of Zd+k of period T in the first d directions (in the example pictured d = 1,
corresponding to the vertical direction, with period T = 2), bounded in the last k directions
(in the example, k = 2, corresponding to the horizontal directions), so that we may always
think that it is contained in Zd×{0, . . . ,M −1}k for some M ∈ N. This graph is equipped
with a set of edges E ⊂ X ×X which makes it connected. This set of edges is supposed to
be invariant by the same translations as X.

We are going to show that we may define a continuous d-dimensional approximation
of this set. In order to maintain technicalities to a minimum, we consider only quadratic
interactions. The Dirichlet energy of such a set is defined as

F (u) =
∑

(i,j)∈E

(u(i)− u(j))2

on functions u : X → R. A discrete-to-continuum and dimensionally reduced limit is then
obtained by considering a scaled version of the energies

Fε(u) =
∑

(i,j)∈E

εd−2(ui − uj)2

defined on functions u : εX → R, where we use the notation ui = u(εi), and taking their
limit in a suitable sense as ε→ 0. Note that we may interpret

ε−1(ui − uj) = |i− j|
(
ui − uj
ε|i− j|

)
as an inhomogeneous difference quotient, so that Fε represent discrete versions of an (in-
homogeneous) Dirichlet integral, whose general continuous counterpart is of the form

1
εk

ˆ
εE

f(∇u) dx, (1)

with E a subset of Rd×Rk uniformly bounded in the last k variables. Energies of the form
(1) are the prototype of thin-structure energies on the continuum (see e.g. [8, 9]), which
have been treated extensively in the last thirty years. Among the many contribution to
the subject we recall the seminal paper by Le Dret and Raoult [25] which gives a general
dimension-reduction formula when E = Rd × [0, 1] through a lower-dimensional quasicon-
vexification process. Moreover, a general compactness and integral-representation theorem
has been proved by Braides, Fonseca and Francfort [15], who interpret lower-dimensional
quasiconvexification through a homogenization formula, and extend the analysis to general
thin films with varying profiles. In their approach they deal with E that can be seen as
a subgraph of a function defined on Rd. In our case, even if a continuum set E corre-
sponding to X can be constructed, it may not be a subgraph, as it might have holes or
even possess a more complex topology. Note that the assumption that the integration be
performed on the scaled εE cannot be extended to arbitrary Eε since in that case the limit
might not be simply d-dimensional if the complexity of the topology increased as ε → 0
(see the example by Braides and Bhattacharya [5]). We note that asymptotic analysis of
thin objects can be interpreted as an intermediate step in the study of structures with
very fast oscillating profile [11] (see also [4] for an example of application in a continuum
geometry). For other aspects of dimension reduction in variational problems we refer e.g.
to [6, 7, 23, 24, 26, 27, 29].
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Discrete-to-continuum analyses for lattice energies are usually performed after identifi-
cation of functions defined on (portions of) lattices with their piecewise-constant interpola-
tions. This identification allows to embed families of energies in a common Lebesgue-space
environment (see the seminal paper by Alicandro and Cicalese [3]). Using this approach,
a discrete-to-continuum analog for thin films of the Braides, Fonseca and Francfort theory,
has been studied by Alicandro, Braides and Cicalese [2] (see also [28], and the work [18] for
a connection with aperiodic lattices). Due to the great generality of our discrete set X, we
will not extend functions defined on εX but follow a dimension-lowering coarse-graining
approach: to each function uε : εX → R we associate the function uε : εTZd → R where
uε(εT l) is obtained by averaging uε on εX∩

(
(εT l+ε{0, . . . , T−1}d)×ε{0, . . . ,M−1}k

)
. We

find coarse graining convenient in that it directly gives a function defined in a d-dimensional
set, without further scaling arguments. Moreover, this approach helps to separate the defi-
nition of a dimensionally reduced parameter, which is easily obtained from uε from analysis
of the finer behaviour of the functions uε at the ‘microscopic’ level, which is needed to use
technical arguments for the modification of boundary data. More precisely, we prove that
energy bounds on uε imply that the piecewise-constant interpolations of the corresponding
uε are precompact in L2

loc(Rd) and their limit is in H1
loc(Rd). In this way the dimensionally

reduced continuum parameter can be defined. In order to relate the original uε to this
limit, a Poincaré inequality must be used at scale ε, which shows that the original uε con-
verge to u in a ‘perforated domain’ fashion (see e.g. [13]). Both the coarse-graining and the
Poincaré-type inequality are very reminiscent of the p-connectedness approach by Zhikov
[30], and of its use in the homogenization of singular structures by Braides and Chiadò Piat
[10], even though in those papers p-connectedness is stated for local functionals depending
on the gradient. Here we deal with non-local interactions (that is, the energy densities
depend on finite differences of the parameter, and not on its gradient), even though the
non-locality weakens as ε→ 0, and some additional care has to be taken, similarly to the
case of the homogenization of convolution-type energies (see [1, 12, 17]).

The paper is organized as follows. In Section 2 we introduce the notation for the envi-
ronment X ⊂ Rd×Rk and for the energies that we consider, which are a little more general
than those described above in that a more general inhomogeneity is allowed by introduc-
ing interactions coefficients aij , and the energies are localized by considering interactions
parameterized on a set Ω ⊂ Rd. Section 3 is devoted to the definition of coarse-grained
functions, and to the statement and proof of the two-connectedness property and of a
Poincaré-Wirtinger’s inequality. Section 4 contains a compactness result for coarse-grained
functions whose proof relies on the two-connectedness property and the corresponding con-
vergence of the original functions. The limit defines a function on a subset of Rd. Section 5
contains a result that allows to consider boundary-values on ‘lateral boundaries’ of thin
films. A homogenization theorem for quadratic energies defined on εX is stated in Sec-
tion 6. Its proof is subdivided into a lower bound by blow-up and an upper bound by
a direct construction. Moreover, an application to the description of the asymptotic be-
haviour of boundary-value problems is also described. Finally, Section 7 contains some
simple examples illustrating some possible non-trivial shapes of the thin structures we
consider.

Notation
• The letter C denotes a generic strictly positive constant not depending on the param-

eters of the problem considered, whose value may be different at every its appearance.
• If x, y ∈ Rd then x · y denotes their scalar product. If t ∈ R then btc is its integer

part.
• The characteristic function of a set A is denoted by χA.
• For T ∈ N, we denote by QT,d the d-dimensional semi-open cube of side length T ; i.e.,
QT,d := [0, T )d. If T = 1, we simply write Qd = Q1,d. For l ∈ Zd, QlT,d := lT+[0, T )d

and for T = 1, we write Qld = Ql1,d.

• QT,k denotes the k-dimensional semi-open cube of side length T ; i.e., QT,k := [0, T )k.
For T = 1, we set Qk = Q1,k and Qnk = n+Qk if n ∈ Zk.
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• For any measurable set Ω and u ∈ L1(Ω),
ffl

Ω u(x)dx denotes the average of u on Ω;
i.e.,  

Ω
u(x)dx := 1

|Ω|

ˆ
Ω
u(x)dx,

where | · | stands for the Lebesgue measure.
• For any open set Ω ∈ Rd and for any δ > 0, we let Ω(δ) := {xd ∈ Ω : dist(xd, ∂Ω) >
δ}.

2 Setting of problem
In the following X will be a fixed subset of Zd ×{0, . . . , T − 1}k, with d, k ≥ 1 and T ∈ N.
We assume that
(i) X is T -periodic in e1, . . . , ed;
(ii) X is connected in the following sense: there exists E ⊂ X×X such that for all i, j ∈ X

there exists a sequence {in}Nn=0 of points of X, with i0 = i and iN = j, such that the
segment (in, in+1) ∈ E . Moreover, the set E is T -periodic; i.e., if the segment (i, j)
belongs to E , then, for any m = 1, . . . , d, the segment (i+ Tem, j + Tem) belongs to
E ;

(iii) the set E is equi-bounded; i.e., there exists R > 0 such that

max{|i− j| : (i, j) ∈ E} ≤ R.

Assumption (iii) can be also seen as an hypothesis on the energy, telling which bonds
are active (the other bonds having zero energy).

Note that it is not restrictive to assume that R ≤ T , upon taking a larger period.
Remark 2.1. In the notation above, we can include also the case of

X ⊂ Zd ×
k∏
n=1

{0, . . . ,Mn − 1},

with Tm ≥ 1, m = 1, . . . , d, and Mn ≥ 1, n = 1, . . . , k, and X Tm-periodic in em,
for any m = 1, . . . , d. In this case, we take T equal to the lowest common multiple of
T1, . . . , Td,M1, . . . ,Mk.

Let aij be T -periodic coefficients in e1, . . . , ed; i.e.,

ai+Tem j+Tem = aij for all i, j ∈ X, m ∈ {1, . . . , d},

such that aij > 0 if (i, j) ∈ E and aij = 0 if (i, j) /∈ E . It is not restrictive to suppose
that aij = aji. For ε > 0, we introduce the family of functionals Fε defined on functions
u : εX → R by

Fε(u) :=
∑
i,j∈X

εdaij

(
ui − uj

ε

)2
,

where ui := u(εi). Note that also the case aij = 1 if (i, j) ∈ E is non trivial. Note moreover
that, by the periodicity of aij , there exists a positive constant C such that C ≤ aij ≤ 1/C
if (i, j) ∈ E , so that Fε is estimated from above and below by the energy corresponding to
aij = 1 if (i, j) ∈ E .

More in general, we will consider ‘localized’ versions of energies Fε, limiting interactions
to i, j ∈ X such that εi, εj ∈ Ω× εQT,k for some Lipschitz open subset Ω of Rd; i.e.,

Fε(u) :=
∑

i,j∈( 1
ε

Ω×QT,k)∩X

εd−2aij(ui − uj)2. (2)

In order to study the asymptotic behaviour of Fε as ε→ 0, we need to identify real-valued
functions u defined on εX with piecewise-constant interpolations. To that end, let Ω be
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an open subset of Rd with Lipschitz boundary. For ε > 0, let uε be a family of functions
uε : (Ω × εQT,k) ∩ εX → R. Setting Iε = Iε(Ω) := {l ∈ Zd : εQlT,d ⊂ Ω}, we define a
piecewise-constant function uε in L2(Ω) by

uε(xd) :=
∑
l∈Iε

ũlεχεQl
T,d

(xd), (3)

where ũlε is given by

ũlε := 1
#[(QT,d ×QT,k) ∩X]

∑
i∈(Ql

T,d
×QT,k)∩X

ui, (4)

with ui = uεi := uε(εi). The set of functions Cε(Ω) is defined by

Cε(Ω) :=
{
u : Rd ×QT,k → R : u is constant on εQld × εQnk

for (l, n) ∈
(
Zd ∩ 1

ε
Ω
)
× {0, . . . , T − 1}k

}
, (5)

so that a function u : (εZd ∩ Ω) × ε{0, . . . , T − 1}k ∩ εX → R can be identified with its
extension belonging to Cε(Ω). Note that any interpolation is well-defined since we consider
half-open cubes εQld × εQnk .

We say that the family of function uε in Cε(Ω) converges to u ∈ H1(Ω) if

uε → u in L2
loc(Ω). (6)

Now, we state the main result of this paper regarding the limit analysis as ε → 0 of
the family of functionals Fε given by (2). This is done through the computation of the
corresponding Γ-limit with respect to convergence (6).
Theorem 2.2. The family of functionals Fε : Cε(Ω) → [0,∞) given by (2) Γ-converges
with respect to convergence (6) to the functional Fhom : H1(Ω)→ R defined by

Fhom(u) :=
ˆ

Ω
Ahom∇u · ∇udx,

where the symmetric matrix Ahom is characterized by the cell formula

Ahomz · z = 1
T d

min
{ ∑
i∈(QT,d×QT,k)∩X

∑
j∈(Rd×QT,k)∩X

aij(ui − uj)2 :

ui − z · id is T -periodic in e1, . . . , ed

}
. (7)

In this formula we interpret ui = z ·id as the discrete interpolation of the affine function
z · xd, with xd ∈ Rd.

The proof of Theorem 2.2 will be given Section 6 after proving some technical results.

3 Two-connectedness and Poincaré-Wirtinger’s in-
equality
In this section we prove two technical lemmas, which will allow to use some compactness
results for systems of nearest-neighbour interactions. To that end, for any real-valued
function u defined on X, we introduce a coarse-grained lower-dimensional variable ũl, with
l ∈ Zd, given by (4) with ui = u(i). In other words,

ũl := 1
#[(QT,d ×QT,k) ∩X]

∑
i∈(Ql

T,d
×QT,k)∩X

ui.

The first result of this section states that a nearest-neighbour interaction energy on the
coarse-grained variable is (locally) dominated by the energy on X.
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Proposition 3.1. There exist C = C(X) > 0 and M > 0 such that

|ũl − ũl
′
|2 ≤ C

∑
i,j∈[(Ql

T,d
∪Ql′

T,d
+(−M,M)d)×QT,k]∩X

|ui − uj |2 (8)

for any l, l′ ∈ Zd such that |l − l′| = 1.

Proof. Using definition (4) of ũl and the change of indices j = i + Tem, for some m =
1, . . . , d, combined with the Hölder inequality, we deduce that

|ũl − ũl
′
|2 = 1

[#((QT,d ×QT,k) ∩X)]2

∣∣∣∣ ∑
i∈(Ql

T,d
×QT,k)∩X

ui −
∑

j∈(Ql′
T,d
×QT,k)∩X

uj

∣∣∣∣2

= 1
[#((QT,d ×QT,k) ∩X)]2

∣∣∣∣ ∑
i∈(Ql

T,d
×QT,k)∩X

(ui − ui+Tem)
∣∣∣∣2

≤ 1
#[(QT,d ×QT,k) ∩X]

∑
i∈(Ql

T,d
×QT,k)∩X

|ui − ui+Tem |
2. (9)

The connectedness of X ensures that for all i ∈ (QlT,d×QT,k)∩X, there exists a sequence
{jn}Nin=0 of points in X with j0 = i and jNi = i+ Tem such that (jn, jn+1) ∈ E . Let γ be
path joining i and i + Tem through the points j1, . . . , jNi−1. Such a path γ is contained
in [(QlT,d ∪Ql

′
T,d + (−M,M)d)×QT,k] ∩X, for some M > 0 large enough independent of

the point i. For any i ∈ (QlT,d ×QT,k) ∩X, we write that

ui − ui+Tem =
Ni∑
n=1

(ujn−1 − ujn),

so that, due to (9) combined with the Hölder inequality, we have that

|ũl − ũl
′
|2 ≤ 1

#[(QT,d ×QT,k) ∩X]
∑

i∈(Ql
T,d
×QT,k)∩X

∣∣∣∣ Ni∑
n=1

(ujn−1 − ujn)
∣∣∣∣2

≤ 1
#[(QT,d ×QT,k) ∩X]

∑
i∈(Ql

T,d
×QT,k)∩X

Ni

Ni∑
n=1

|ujn−1 − ujn |
2

≤
max{Ni : i ∈ (QlT,d ×QT,k) ∩X}

#[(QT,d ×QT,k) ∩X]
∑

i,j∈[(Ql
T,d
∪Ql′

T,d
+(−M,M)d)×QT,k]∩X

|ui − uj |2,

where in the last inequality we have used the fact that [(QlT,d∪Ql
′
T,d+(−M,M)d)×QT,k]∩X

contains the path γ joining i and i + Tem for all i ∈ (QlT,d ×QT,k) ∩X. This proves the
desired inequality.

Remark 3.2. In order to reduce the number of parameters, we can choose M = T , up to
substituting T with a multiple and taking a slightly larger M .

We point out that in the following (4) and (8) will be applied to functions u : εX → R,
where ui stands for u(εi) as in the notation introduced above.

Now, we show a Poincaré-Wirtinger inequality. This will be used to recover information
on the original functions u from their coarse-grained versions.
Proposition 3.3. (i) There exists C = C(X) > 0 such that, for any l ∈ Zd,∑

i∈(Ql
T,d
×QT,k)∩X

|ui − ũl|2 ≤ C
∑

i,j∈(Ql
T,d
×QT,k)∩X

|ui − uj |2;
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(ii) there exist positive constants C and M such that, for any l ∈ Zd,∑
i∈(Ql

T,d
×QT,k)∩X

|ui − ũl|2 ≤ C
∑

i,j∈[(Ql
T,d

+(−M,M)d)×QT,k]∩X

aij |ui − uj |2. (10)

Proof. (i) Using definition (4) of ũl and thanks to the Hölder inequality, we deduce that∑
i∈(Ql

T,d
×QT,k)∩X

|ui − ũl|2

= 1
[#((QT,d ×QT,k) ∩X)]2

∑
i∈(Ql

T,d
×QT,k)∩X

∣∣∣∣ ∑
j∈(Ql

T,d
×QT,k)∩X

(ui − uj)
∣∣∣∣2

≤ 1
#[(QT,d ×QT,k) ∩X]

∑
i,j∈(Ql

T,d
×QT,k)∩X

|ui − uj |2, (11)

which concludes the proof.
(ii) Since X is connected and due to the boundedness and periodicity properties of the

coefficient aij , there exists M > 0 large enough such that if i, j ∈ (QlT,d ×QT,k)∩X, then
there exists a path γ joining i and j which is contained in [(QlT,d+(−M,M)d)×QT,k]∩X.
From (11), we deduce (10) as desired.

4 A compactness result
In this section, we show that sequences with equi-bounded energy are compact in L2 with
limit in H1

loc(Rd). More specifically, we show that from convergence (6) we obtain that
ˆ

Ω̃ε
|uε − u|2χ

(∪i∈XεQi
d

d ×Qi
k

k )
→ 0, (12)

where we have set i = (id, ik) ∈ Zd × {0, . . . , T − 1}k and Ω̃ε is given by

Ω̃ε :=
⋃
l∈Lε

εQlT,d ×QT,k, (13)

and Lε := {l ∈ Zd : dist(εl, ∂Ω) > 2ε
√
dT}. The next proposition provides a compactness

result for uε given by (3) using the analysis of nearest-neighbour interactions in [3].
Proposition 4.1 (Compactness). Let Ω be an open set of Rd with Lipschitz boundary.
Let uε be a family of functions defined on (Ω× εQT,k) ∩ εX such that∑

l∈Zd

∑
i∈(Ql

T,d
×QT,k)∩X

εd|uεi |2 ≤ C (14)

for all ε > 0, where uεi = 0 if i /∈ [( 1
ε
Ω ∩QlT,d)×QT,k] ∩X and∑

l,l′∈Lε,|l−l′|=1

∑
i,j∈[(Ql

T,d
∪Ql′

T,d
+(−M,M)d)×QT,k]∩X

εd−2|uεi − uεj |2 ≤ C (15)

for all ε > 0. Then, up to a subsequence, the family uε, given by (3), strongly converges
in L2

loc(Ω) to some u ∈ H1(Ω).
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Proof. First, we show that uε weakly converges in L2
loc to some u. Indeed, from (14), we

deduce that the norm ‖uε‖L2(Ω) is bounded which implies the weak convergence of uε.
Moreover, thanks to assumption (15), an application of [3, Proposition 3.4] ensures that
u ∈ H1(Ω).

Now, we prove the strong convergence in L2
loc(Ω) of uε. To this end, the key tool is

the Compactness Criterion by Fréchet and Kolmogorov (see, e.g. [19, Theorem 4.26]). In
other words, we have to prove that, for any Ω′′ ⊂⊂ Ω′ and for any η > 0, there exists
δ > 0, with dist(Ω′′,Rd \ Ω′) > δ, such that for every h ∈ Rd, with |h| < δ, then

‖τhuε − uε‖L2(Ω′′) < η, (16)

where τhuε(x) := uε(x+ h). Assume that h = λem, for some m = 1, . . . , d. The inequality
(16) for every h ∈ Rd is obtained by triangle inequality. Fix Ω′′ ⊂⊂ Ω′ and set

Iε := {l ∈ Lε : Ω′ ⊂ ∪lεQlT,d ⊂ Ω}.

Take x ∈ εQlT,d. Hence, we have that x ∈ εQlT,d and (x + h) ∈ εQl
′
T,d, for some l, l′ ∈ Iε.

By definition of uε given by (3), we deduce that

|τhuε(x)− uε(x)|2 = |uε(x+ h)− uε(x)|2 = |ũlε − ũl
′
ε |2 (17)

Since l and l′ are not necessarily such that |l − l′| = 1, we need to re-write the two-
connectedness inequality in terms of non-neighbouring cubes. In order to show this, let
Sll′ be union of neighbouring cubes joining εQlT,d and εQl

′
T,d such that each two consecutive

cubes have one face in common; i.e., Sll′ =
⋃Nε
n=0 εQ

ln
T,d, with |ln − ln−1| = 1, l0 = l and

lNε = l′. Note that the number Nε of the cubes εQlT,d contained in stripes of cubes joining
εQlT,d and εQl

′
T,d is of order |h|T−1ε−1. Hence, thanks to inequality (8), we deduce that

|ũlε − ũl
′
ε |2 =

∣∣∣∣ Nε∑
n=1

(ũlnε − ũ
ln−1
ε )

∣∣∣∣2
≤ |h|T−1ε−1

Nε∑
n=1

|ũlnε − ũ
ln−1
ε |2

≤ C|h|T−1ε−1
N∑
n=1

∑
i,j∈[(Qln

T,d
∪Q

ln−1
T,d

+(−M,M)d)×QT,k]∩X

|uεi − uεj |2

≤ C|h|T−1ε−1
∑

i,j∈[(Sll′+(−M,M)d)×QT,k]∩X

|uεi − uεj |2.

Plugging the above inequality in (17), we obtain that

|τhuε(x)− uε(x)|2 ≤ C|h|T−1ε−1
∑

i,j∈[(Sll′+(−M,M)d)×QT,k]∩X

|uεi − uεj |2

= C|h|T−1ε−1
∑

i,j∈(S(x,h)×QT,k)∩X

|uεi − uεj |2,

where we have set S(x, h) := Sll′ + (−M,M)d which depends on x and h. Now, an
integration with respect to x ∈ εQlT,d yields

ˆ
εQl

T,d

|τhuε(x)− uε(x)|2dx ≤ C|h|T−1ε−1
ˆ
εQl

T,d

( ∑
i,j∈(S(x,h)×QT,k)∩X

|uεi − uεj |2
)
dx

≤ C|h|T d−1εd−1
∑

i,j∈(S(εQl
T,d

,h)×QT,k)∩X

|uεi − uεj |2,

where we have used the fact that

S(x, h) ⊂ S(εQlT,d, h) :=
⋃
{S(x, h) : x ∈ εQlT,d}.
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Summing over Iε, we have that∑
l∈Iε

ˆ
εQl

T,d

|τhuε(x)− uε(x)|2dx ≤ C|h|T d−1εd−1
∑
l∈Iε

∑
i,j∈(S(εQl

T,d
,h)×QT,k)∩X

|uεi − uεj |2,

which implies that
ˆ

Ω′′
|τhuε(x)− uε(x)|2dx ≤

∑
l∈Iε

ˆ
εQl

T,d

|τhuε(x)− uε(x)|2dx ≤ C|h|,

where we have used assumption (15) and the fact that the number of indices l and l′

such that S(εQlT,d, h) ∩ S(εQl
′
T,d, h) 6= ∅ is of the order of the ratio between the size of

S(εQlT,d, h) and the size of εQlT,d; that is, of |h|T−1ε−1. This concludes the proof of (16).
Finally, applying the compactness criterion, it follows that, up to a subsequence, uε →

v. Since we already know that uε ⇀ u, we conclude that v = u, which is the desired
claim.

The next proposition provides a convergence result in the sense of (12).
Proposition 4.2. Let Ω be an open set of Rd with Lipschitz boundary. Let uε be a sequence
of functions defined on εX such that

sup
ε>0

(∑
l∈Lε

∑
i∈(Ql

T,d
×QT,k)∩X

εd|uεi |2 + Fε(uε)
)
≤ C. (18)

Then, up to a subsequence, we have that
ˆ

Ω̃ε
|uε − u|2χ∪i∈XεQidd ×Qi

k

T,k

→ 0,

where u ∈ H1(Ω) is the strong limit in L2
loc(Ω) of the sequence uε and Ω̃ε is given by (13).

Proof. Set x = (xd, xk) ∈ εQlT,d × QT,k and recall that uε is defined on εQlT,d × εQT,k.
Hence,
ˆ

Ω̃ε
|(uε − u)(x)χ

∪i∈XεQi
d

d ×Qi
k

k

(x)|2dx ≤
ˆ

Ω̃ε
|(uε − uε)(x)χ

∪i∈XεQi
d

d ×Qi
k

k

(x)|2dx

+
ˆ

Ω̃ε
|(uε − u)(x)χ

∪i∈XεQi
d

d ×Qi
k

k

(x)|2dx.

(19)

With a slight abuse of notation here we let uε(x) = uε(xd). From Proposition 4.1, we know
that uε strongly converges to u in L2

loc(Ω), so that the second integral in (19) vanishes as
ε→ 0.

In order to estimate the first integral of (19), the key tool is the Poincaré-Wirtinger
inequality given by (10). Indeed, due to the fact that uε is constant on εQld × εQk and uε
is constant on εQlT,d ×Qk, we deduce that

ˆ
Ω̃ε
|(uε − uε)(x)χ∪i∈XεQidd ×Qi

k

k

(x)|2dx

= εd
∑
l∈Lε

∑
i∈(Ql

T,d
×QT,k)∩X

|uεi − ũlε|2

≤ εd
∑
l∈Lε

∑
i,j∈[(QT,d+(−T,T )d)×QT,k]∩X

aij |uεi − uεj |2

≤ ε2Fε(uε).

From this, combined with assumption (18), we have that also the first integral of (19) goes
to 0 as ε→ 0, which concludes the proof.
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5 Treatment of boundary data
In this section we prove a technical result which allows to match boundary conditions. The
proof is close in spirit to the method introduced by De Giorgi (see [21], [14, Chapter 11],
[20, Chapter 18], and [15] in the context of dimension reduction). For future reference we
prove it in a general form.

For any u ∈ H1(Ω), we define the sequence vε on εX by

vεi = vε(εi) :=
 
εid+εQd

u(x)dx. (20)

We have that vε converges to u with respect to convergence (6). For any bounded open
set A and for δ > 0, we define A(δ) := {x ∈ A : dist(x, ∂A) > δ}.
Lemma 5.1. Let A be a bounded and open set of Ω with Lipschitz boundary. Let uε be a
sequence converging to u ∈ H1(Ω) with respect to convergence (6). For any δ > 0, there
exists a sequence wε converging to u with respect convergence (6) such that

wε = uε, if i ∈ (A(2δ)×QT,k) ∩X,
wε = vε, if i ∈ (A \A(δ)×QT,k) ∩X,

and
lim sup
ε→0

(Fε(wε)− Fε(uε)) ≤ o(1) (21)

as δ → 0.

Proof. Fixed N ∈ N and δ ∈ (0, 1/4). For h ∈ {0, . . . , N}, we set

Ah :=
{
x ∈ A : dist(x,A(δ)) < h

δ

N

}
.

For h ∈ {0, · · · , N − 1}, let φhd be a cut-off function between Ah and Ah+1 with |∇φhd | ≤
2N/δ and let wε be a function defined by

wεi = wε(εid, εik) := φhd(εid)uεi + (1− φhd(εid))vεi . (22)

Since both uε and vε converge to u with respect to convergence given by (6), we also
deduce that wε converges to u with respect to (6). By adding and subtracting the term
φhd(εid)uεj + (1− φhd(εid))vεj , we get that

wεi − wεj = φhd(εid)(uεi − uεj) + (1− φhd(εid))(vεi − vεi ) + (φhd(εid)− φhd(εjd))(uεj − vεj ).
(23)

For h ∈ {1, . . . , N − 2}, we set
Sdh := Ah+1 \Ah,

so that A = Ah ∪A \Ah+1 ∪ Sdh. In order to estimate the energy∑
i,j∈( 1

ε
A×QT,k)∩X

εd−2aij(wεi − wεj )2,

we separately evaluate the following cases
i) i, j ∈ ( 1

ε
Ah ×QT,k) ∩X;

ii) i, j ∈ ( 1
ε
(A \Ah+1)×QT,k) ∩X;

iii) i ∈ ( 1
ε
Sdh ×QT,k) ∩X and j ∈ ( 1

ε
A×QT,k) ∩X;

iv) i ∈ ( 1
ε
(Ah ∪ (A \Ah+1))×QT,k) ∩X and j ∈ ( 1

ε
Sdh ×QT,k) ∩X;

v) i ∈ ( 1
ε
Ah ×QT,k) ∩X and j ∈ ( 1

ε
(A \Ah+1)×QT,k) ∩X;

vi) i ∈ ( 1
ε
(A \Ah+1)×QT,k) ∩X and j ∈ ( 1

ε
Ah ×QT,k) ∩X

10



as follows
i) In view of definition (22), we deduce that∑

i,j∈( 1
ε
Ah×QT,k)∩X

εd−2aij(wεi − wεj )2 =
∑

i,j∈( 1
ε
Ah×QT,k)∩X

εd−2aij(uεi − uεj)2

≤
∑

i,j∈( 1
ε
A×QT,k)∩X

εd−2aij(uεi − uεj)2. (24)

ii) We have that∑
i,j∈( 1

ε
(A\Ah+1)×QT,k)∩X

εd−2aij(wεi − wεj )2 =
∑

i,j∈( 1
ε

(A\Ah+1)×QT,k)∩X

εd−2aij(vεi − vεj )2

≤
∑

i,j∈( 1
ε

(A\A(δ))×QT,k)∩X

εdaij(vεi − vεj )2. (25)

In view of definition of vεi given by (20) and since εid + εQd = ε(id − jd) + εjd + εQd, we
deduce that

|vεi − vεj |2 =
∣∣∣∣ 
εid+εQd

u(x)dx−
 
εjd+εQd

u(x)dx
∣∣∣∣2

=
∣∣∣∣ 
εjd+εQd

(u(x+ ε(id − jd))− u(x))dx
∣∣∣∣2 . (26)

Since u ∈ H1(Ω), we have that

u(x+ ε(id − jd))− u(x) =
ˆ 1

0

∂u

∂t
(x+ εt(id − jd))dt

=
ˆ 1

0
∇u(x+ εt(id − jd)) · ε(id − jd)dt.

This, combined with (26) and the Fubini theorem, implies that

|vεi − vεj |2 =
∣∣∣∣ 
εjd+εQd

ˆ 1

0
∇u(x+ εt(id − jd)) · ε(id − jd)dtdx

∣∣∣∣2
= 1
εd

∣∣∣∣ˆ 1

0

ˆ
εjd+εQd

∇u(x+ εt(id − jd)) · ε(id − jd)dxdt
∣∣∣∣2

≤ ε2−d|id − jd|2
ˆ 1

0

ˆ
εjd+εQd

|∇u(x+ εt(id − jd))|2dxdt

≤ ε2−dT 2
ˆ 1

0

ˆ
εid+ε[0,T+1)d

|∇u(x))|2dxdt, (27)

where in the last inequality we have used the fact that the nodes i and j interact at most
at distance T . In view of the assumption of finite range along with estimate above, from
(25), it follows that∑

i,j∈( 1
ε

(A\Ah+1)×QT,k)∩X

εd−2aij(wεi − wεj )2

≤ C
∑

i∈( 1
ε

(A\A(δ))×QT,k)∩X

ˆ
εid+ε[0,T−1)d

|∇u(x)|2dx

≤ C

ˆ
A\A(2δ)

|∇u(x)|2dx, (28)

where the constant C is due to the fact that a fixed node i ∈ 1
ε
(A \ A(δ)) × QT,k) ∩ X

interacts with a finite number of nodes j ∈ 1
ε
(A \A(δ))×QT,k) ∩X.
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iii) First note that due to the assumption of finite range, if εid ∈ Sdh, then εjd ∈ Ŝdh :=
Sdh−1 ∪ Sdh ∪ Sdh+1. This combined with (23) and the Jensen inequality implies that∑

i∈( 1
ε
Sd
h
×QT,k)∩X

j∈( 1
ε
A×QT,k)∩X

εd−2aij(wεi − wεj )2 =
∑

i∈( 1
ε
Sd
h
×QT,k)∩X

j∈( 1
ε
Ŝd
h
×QT,k)∩X

εd−2aij(wεi − wεj )2

≤ C
∑

i∈( 1
ε
Sd
h
×QT,k)∩X

j∈( 1
ε
Ŝd
h
×QT,k)∩X

εd−2aij(uεi − uεj)2 + C
∑

i∈( 1
ε
Sd
h
×QT,k)∩X

j∈( 1
ε
Ŝd
h
×QT,k)∩X

εd−2aij(vεi − vεj )2

+ C
∑

i∈( 1
ε
Sd
h
×QT,k)∩X

j∈( 1
ε
Ŝd
h
×QT,k)∩X

εd−2aij(φhd(εid)− φhd(εjd))2(uεj − vεj )2. (29)

Due to the fact that |∇φhd | ≤ 2N/δ, the last integral in (29) can be estimated as follows∑
i∈( 1

ε
Sd
h
×QT,k)∩X

j∈( 1
ε
Ŝd
h
×QT,k)∩X

εd−2aij(φhd(εid)− φhd(εjd))2(uεj − vεj )2

≤ N2

δ2

∑
i∈( 1

ε
Ŝd
h
×QT,k)∩X

j∈( 1
ε
Ŝd
h
×QT,k)∩X

εd−2aij(uεj − vεj )2 ≤ 3N
2

δ2

∑
i,j∈( 1

ε
A×QT,k)∩X

εdaij(uεj − vεj )2.

In order to estimate the first two integrals in (29), we may choose h ∈ {1, . . . , N − 2} such
that ∑
i∈( 1

ε
Sd
h
×QT,k)∩X

j∈( 1
ε
Ŝd
h
×QT,k)∩X

εd−2aij
[
(uεi − uεj)2 + (vεi − vεj )2]

≤ 1
N − 2

∑
i,j∈( 1

ε
A×QT,k)∩X

εd−2aij(uεi − uεj)2 + 1
N − 2

∑
i,j∈( 1

ε
A×QT,k)∩X

εd−2aij(vεi − vεj )2

≤ 1
N − 2

∑
i,j∈( 1

ε
A×QT,k)∩X

εd−2aij(uεi − uεj)2 + C

N − 2

ˆ
A\A(2δ)

|∇u(x)|2dx,

where we have used (27) and the assumption of finite range. This, combined with (29),
leads us to∑

i∈( 1
ε
Sd
h
×QT,k)∩X

j∈( 1
ε
A×QT,k)∩X

εd−2aij(wεi − wεj )2 ≤ C 1
N − 2

∑
i,j∈( 1

ε
A×QT,k)∩X

εd−2aij(uεi − uεj)2

+ C

N − 2

ˆ
A\A(2δ)

|∇u(x)|2dx+ C
N2

δ2

∑
i∈( 1

ε
Sd
h
×QT,k)∩X

j∈( 1
ε
A×QT,k)∩X

εdaij(uεj − vεj )2. (30)

iv) Note that∑
i∈( 1

ε
(Ah∪A\Ah+1)×QT,k)∩X
j∈( 1

ε
Sd
h
×QT,k)∩X

εd−2aij(wεi − wεj )2 ≤
∑

i∈( 1
ε
A×QT,k)∩X

j∈( 1
ε
Sd
h
×QT,k)∩X

εd−2aij(wεi − wεj )2,

so that, the same argument as for iii) can be performed, obtaining estimate (30).
In view of the finite-range assumption, the points belonging to sets of items (v) and

(vi) do not have any interaction since δ/N >> εT .
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Gathering estimates (24), (28) and (30), we obtain that, for h ∈ {1, . . . , N − 2},∑
i,j∈( 1

ε
A×QT,k)∩X

εd−2aij(wεi − wεj )2 ≤
∑

i,j∈( 1
ε
A×QT,k)∩X

εd−2aij(uεi − uεj)2

+ C

ˆ
A\A(2δ)

|∇u(x)|2dx+ C
1

N − 2
∑

i,j∈( 1
ε
A×QT,k)∩X

εd−2aij(uεi − uεj)2

+ C

N − 2

ˆ
A\A(2δ)

|∇u(x)|2dx+ C
N2

δ2

∑
i∈( 1

ε
Sd
h
×QT,k)∩X

j∈( 1
ε
A×QT,k)∩X

εdaij(uεj − vεj )2.

(31)

Note that the last sum vanishes as ε → 0 since both uε and vε converge to u with
respect to convergence (6). Hence, taking the limit as ε→ 0 of (31), we obtain that

lim sup
ε→0

Fε(wε)− Fε(uε) ≤ C
ˆ
A\A(2δ)

|∇u(x)|2dx+ C

N − 2 lim inf
ε→0

Fε(uε)

+ C

N − 2

ˆ
A\A(2δ)

|∇u(x)|2dx.

Letting first N →∞ and then δ → 0, we get inequality (21) as desired.

6 Homogenization
This section is devoted to the proof of Theorem 2.2. We adopt a direct approach proving
separately the lower and the upper bound inequalities for the family Fε given by (2).

6.1 Proof of the lower bound
We prove the lower-bound inequality for the family Fε using the blow-up method introduced
by Fonseca and Müller [22] (see also [16]).

Let uε be a sequence with equi-bounded energy Fε(uε) and such that uε converge to
u ∈ H1(Ω). Let the sequence of positive measures λε be defined as

λε :=
∑

i∈( 1
ε

Ω×QT,k)∩X

( ∑
j∈( 1

ε
Ω×QT,k)∩X

εd−2aij(uεi − uεj)2
)
δεi,

where δx is the Dirac measure concentrated at x. The d-dimensional measure µε is defined
by

µε(B) := λε(B × εQT,k) =
∑

i∈( 1
ε
B×QT,k)∩X

∑
j∈( 1

ε
Ω×QT,k)∩X

εd−2aij(uεi − uεj)2

for Borel sets B of Rd. Note that µε(B) takes into account interactions between the nodes
with projection in B and the ones in all X, but, in view of the equi-boundedness of E ,
which is a finite-range assumption, we can limit the interactions between the nodes with
projection in B and those with projection in an εR-neighbourhood of B.

Since µε(Ω) = Fε(uε) and thanks to the equi-boundedness of Fε(uε), the measures µε
are also equi-bounded, so that, up to subsequences, we deduce that

µε
∗
⇀ µ,

where µ is a d-dimensional positive measure on Ω. The Radon-Nikodym decomposition of
the limit measure µ with respect to the d-dimensional Lebesgue measure Ld enables us to
write that

µ = dµ

dx
Ld + µs,

with µs ⊥ Ld. Note that the positiveness of µ ensures that its singular part µs is positive
as well.
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Now, we perform a local analysis. Let x0 ∈ Ω be a Lebesgue point for µ with respect
to Ld; i.e.,

dµ

dx
(x0) = lim

ρ→0

µ(Qρ,d(x0))
Ld(Qρ,d(x0)) = lim

ρ→0

µ(Qρ,d(x0))
ρd

, (32)

with Qρ,d(x0) := x0 + [0, ρ)d. Thanks to the Besicovitch Derivation Theorem, Ld-almost
every x0 ∈ Ω is a Lebesgue point for µ with respect to Ld. Moreover, in view of [31,
Theorem 3.4.2], we have that, up to a set of zero Lebesgue measure, x0 is a point such that

lim
ρ→0

1
ρ

(
1
ρd

ˆ
Qρ,d(x0)

|u(x)− u(x0)−∇u(x0) · (x− x0)|2dx
)1/2

= 0. (33)

In other words, performing the change of variables x = ρy + x0 in the above integral, we
have that

u(ρy + x0)− u(x0)
ρ

→ ∇u(x0) · y in L2(Qd).

For all ρ→ 0 but a countable set, we have that µ(∂Qρ,d(x0)) = 0 and hence for such ρ we
have that

µ(Qρ,d(x0)) = lim
ε→0

µε(Qρ,d(x0)). (34)

Therefore, from (32), it follows that

dµ

dx
(x0) = lim

ρ→0
lim
ε→0

µε(Qρ,d(x0))
ρd

.

Now, we perform the blow-up argument. Since x0 ∈ Ω is a Lebesgue point and due to a
diagonalization argument on (32) and (34), there exists a sequence ρε → 0 as ε → 0 such
that ρε >> ε and the following equalities

dµ

dx
(x0) = lim

ε→0

µε(Qρε,d(x0))
ρdε

, (35)

and
lim
ε→0

1
ρε

ˆ
Qρε,d(x0)×QT,k

|uε − u|(x)χ∪i∈XεQidd ×Qi
k

k

(x)dx = 0, (36)

hold. Thanks to the link between the measure µε and the energy Fε, equality (35) can be
re-written as

dµ

dx
(x0) = lim

ε→0

1
ρdε

∑
i∈(Q ρε

ε
,d(

x0
ε )×QT,k)∩X

∑
j∈( 1

ε
Ω×QT,k)∩X

εd−2aij(uεi − uεj)2.

Now, the aim is to estimate the limit above. First, note that since the coefficients aij
are positive, we can consider only interactions taking place between nodes inside the cube
Q ρε

ε
,d(x0/ε)×QT,k, so that

µε(Qρε,d(x0))
ρdε

≥ 1
ρdε

∑
i,j∈(Q ρε

ε
,d

( x0
ε

)×QT,k)∩X

εd−2aij(uεi − uεj)2. (37)

We need to modify uε in order to define a function vε converging to the affine function
∇u(x0) · xd in L2(Qd). To that end, let ηε = ε

ρε
, and let Xηε,ε be the set X rescaled to

ηεZd × ε{0, . . . , T − 1}k. We define vρε on (Qd ×QT,k) ∩Xηε,ε by

vρε (ηεid, εik) := uε(εid + x0, εi
k)− u(x0)

ρε
, (38)

where uε is defined on (Qρε,d(x0)×QT,k)∩ εX. Note that since uε is a function in Cε(Ω),
vρε can be identified with a piecewise-constant function on ηεQi

d

d ×εQi
k

k if (id, ik) ∈ X. For
x = (xd, xk) ∈ Rd ×QT,k, we set w0(x) := ∇u(x0) · xd and we show that

lim
ε→0

ˆ
Qd×QT,k

|vρε (x)− w0(x)|2χ∪i∈XηεQidd ×Qi
k

k

(x)dx = 0. (39)
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To this end, we introduce the function u0 given by u0(xd) := u(x0) + w0(x). Hence,

u(x0) = u0(ρxd)− ρ∇u(x0) · xd = u0(ρxd)− ρw0(x).

This, combined with (38), implies that
ˆ
Qd×QT,k

|vρε (x)− w0(x)|2χ∪i∈XηεQidd ×Qi
k

k

(x)dx

=
ˆ
Qd×QT,k

∣∣∣∣uε(ρεxd + x0, εx
k)− u(x0)

ρε
− w0(x)

∣∣∣∣2χ∪i∈XηεQidd ×Qikk (x)dx

=
ˆ
Qd×QT,k

∣∣∣∣uε(ρεxd + x0, εx
k)− u0(ρεxd)

ρε

∣∣∣∣2χ∪i∈XηεQidd ×Qikk (x)dx

≤
ˆ
Qd×QT,k

∣∣∣∣uε(ρεxd + x0, εx
k)− u(ρεxd + x0)
ρε

∣∣∣∣2χ∪i∈XηεQidd ×Qikk (x)dx

+
ˆ
Qd×QT,k

∣∣∣∣u(ρεxd + x0)− u0(ρεxd)
ρε

∣∣∣∣2χ∪i∈XηεQidd ×Qikk (x)dx. (40)

The first integral in (40) goes to 0 as ε → 0. Indeed, due to the change of variables
yd = ρεx

d + x0, we deduce that
ˆ
Qd×QT,k

∣∣∣∣u(ρεxd + x0)− u0(ρεxd)
ρε

∣∣∣∣2χ∪i∈XηεQidd ×Qikk (x)dxddxk

= 1
ρd+2
ε

ˆ
Qρε,d(x0)×QT,k

|uε(yd, εxk)− u(yd)|2χ∪i∈XεQidd ×Qi
k

k

(x)dyddxk,

which vanishes as ε → 0 thanks to (36). We evaluate the second integral in (40). Using
again the change of variables yd = ρεx

d + x0 and the definition of u0, we have that
ˆ
Qρε,d(x0)×QT,k

|u(yd, εxk)− u(yd)|2χ∪i∈XεQidd ×Qi
k

k

(x)dyddxk

≤ T k
1
ρ2
ε

1
ρdε

ˆ
Qρε,d(x0)

|u(yd)− u0(y − x0)|2dyd

= T k
1
ρ2
ε

1
ρdε

ˆ
Qρε,d(x0)

|u(yd)− u(x0)−∇u(x0) · (y − x0)|2dyd.

Thanks to (33), it follows that also the integral above vanishes as ε → 0 so that we can
conclude that (39) holds. Set

vε(ηεid, εik) := vρεε (ηεid, εik).

Now, using Lemma 5.1, we may modify the sequence vε to get a new sequence ṽε which
is equal to ∇u(x0) · ηεid near the boundary (∂Qd × QT,k) ∩Xηε , where Xηε is the set X
rescaled to ηεZd × {0, . . . , T − 1}k, and

lim sup
ε→0

∑
(ηεid,ik),(ηεjd,jk)∈(Qd×QT,k)∩Xηε

ηd−2aij(ṽε(ηεid, εik)− (ṽε(ηεjd, εjk))

≤ lim sup
ε→0

∑
(ηεid,ik),(ηεjd,jk)∈(Qd×QT,k)∩Xηε

ηd−2aij(vε(ηεid, εik)− (vε(ηεjd, εjk)) + o(1).

(41)

In order to simplify the notation, we may assume that x0 ∈ εTZd so that we avoid the
translation of the coefficients aij . In view of (37) and thanks to estimate (41), we have
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that

dµ

dx
(x0) ≥ lim sup

ε→0

∑
(ηεid,ik),(ηεjd,jk)∈(Qd( x0

ρε
)×QT,k)∩Xηε

ηd−2
ε aij

(
uεi − uεj
ρε

)2

= lim sup
ε→0

∑
(ηεid,ik),(ηεjd,jk)∈(Qd×QT,k)∩Xηε

ηd−2
ε aij(vε(ηεid, εik)− vε(ηεjd, εjk))2

≥ lim sup
ε→0

∑
(ηεid,ik),(ηεjd,jk)∈(Qd×QT,k)∩Xηε

ηd−2
ε aij(ṽε(ηεid, εik)− ṽε(ηεjd, εjk))2

≥ lim sup
ε→0

inf
{ ∑

(ηεid,ik),(ηεjd,jk)∈(Qd×QT,k)∩Xηε

ηd−2
ε aij(wε(ηεid, εik)− wε(ηεjd, εjk))2 :

wε(ηεid, εik) = ∇u(x0) · ηεid, if dist(ηεid, ∂Qd) < 2ηε
√
dT

}
.

Setting Kε = b1/(ηεT )c, we have that

dµ

dx
(x0) ≥ lim inf

ε→0

1
(KεT )d inf

{ ∑
i,j∈(QKεT,d×QT,k)∩X

1
η2
ε
aij(wε(ηεid, εik)− wε(ηεjd, εjk))2 :

wε(ηεid, εik) = ∇u(x0) · ηεid if dist(ηεid, ∂QKεT,d) < 2ηε
√
dT

}
≥ lim inf

ε→0

1
(KεT )d inf

{ ∑
i,j∈(QKεT,d×QT,k)∩X

aij(w̃i − w̃i)2 :

w̃i = ∇u(x0) · id if dist(id, ∂QkεT,d) < 2
√
dT

}
= f0(∇u(x0)),

where we have set w̃i := wε(ηεid, εik)/ηε. Therefore, for Ld-almost every x0 ∈ Ω, we have

dµ

dx
(x0) ≥ Ahom∇u(x0) · ∇u(x0).

Integrating on Ω, we conclude that

µ(Ω) ≥
ˆ

Ω

dµ(Ω)
dx

dx ≥
ˆ

Ω
Ahom∇u(x) · ∇u(x)dx.

Since µε
∗
⇀ µ, we have that lim infε→0 µε(Ω) ≥ µ(Ω). This implies that

lim inf
ε→0

Fε(uε) = lim inf
ε→0

µε(Ω) ≥ µ(Ω) ≥
ˆ

Ω
Ahom∇u(x) · ∇u(x)dx = Fhom(u),

which concludes the proof of the lower bound.
It remains to prove that f0 satisfies formula (7). First, we prove the existence of the

limit.
Proposition 6.1. For all z ∈ R there exists the limit

f0(z) = lim
K→∞

1
(KT )d inf

{ ∑
i,j∈(QKT,d×QT,k)∩X

aij(ui − uj)2 :

ui = z · id if dist(id, ∂QKT,d) < 2
√
dT
}
. (42)
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Proof. For fixed K ∈ N and z ∈ Rd, we set

fK0 (z) := 1
(KT )d inf

{ ∑
i,j∈(QKT,d×QT,k)∩X

aij(ui − uj)2 :

ui = z · id if dist(id, ∂QKT,d) < 2
√
dT
}
.

Let uK be a function such that
1

(KT )d
∑

i,j∈(QKT,d×QT,k)∩X

aij(uKi − uKj )2 ≤ fK0 (z) + 1
K
,

and uKi = z · id, if dist(id, ∂QKT,d) < 2
√
dT . For H > K, we introduce the set of indices

I := {l ∈ Zd : 0 ≤ (K + 1)lm < H,m = 1, . . . , d}. We define

uHi :=

{
uK(id − l, ik) + z · l, (id, ik) ∈ QlKT,d ×QT,k, l ∈ I,

z · id, otherwise.

We have that

fH0 (z) ≤ 1
(HT )d

∑
i,j∈(QHT,d×QT,k)∩X

aij(uHi − uHj )2

= 1
(HT )d

∑
i∈(∪l∈IQlKT,d×QT,k)∩X

∑
j∈(QHT,d×QT,k)∩X

aij(uKi − uHj )2

+ 1
(HT )d

∑
i∈[(QHT,d\∪l∈IQlK,d)×QT,k]∩X

∑
j∈(QHT,d×QT,k)∩X

aij(z · id − uHj )2. (43)

Due to the finite-range assumption there is no interaction between nodes in (
⋃
l∈I Q

l
KT,d×

QT,k)∩X and those in [(QHT,d \
⋃
l∈I Q

l
KT,d)×QT,k]∩X. This implies that the first sum

in (43) may be estimated as

1
(HT )d

∑
i∈(∪l∈IQlKT,d×QT,k)∩X

∑
j∈(QHT,d×QT,k)∩X

aij(uKi − uHj )2

= 1
(HT )d

∑
i,j∈(∪l∈IQlKT,d×QT,k)∩X

aij(uKi − uKj )2 ≤ Kd

Hd

∑
l∈I

(fK0 (z) +K−1)

≤ Kd

Hd

⌊
H

K + 1

⌋d
(fH0 (z) +K−1) ≤ Kd

(K + 1)d (fK0 (z) +K−1). (44)

Using the finite-range assumption, the second sum in (43) may be estimated as

1
(HT )d

∑
i∈[(QHT,d\∪l∈IQlKT,d)×QT,k]∩X

∑
j∈(QHT,d×QT,k)∩X

aij(z · id − uHj )2

≤ 1
(HT )d

∑
i∈[(QHT,d\∪l∈IQlKT,d)×QT,k]∩X

( ∑
j∈(QHT,d×QT,k)∩X

aij |z · id − z · jd|2
)

≤ C

(HT )d
∑

i∈[(QHT,d\∪l∈IQlKT,d)×QT,k]∩X

( ∑
j∈(QHT,d×QT,k)∩X

aij |id − jd|2
)

≤ C

(HT )d
⌊

H

K + 1

⌋d
. (45)

Combining (44) and (45), from (43) it follows that

fH0 (z) ≤ Kd

(K + 1)d (fK0 (z) +K−1) + 1
T d(K + 1)d .
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Taking first the limsup as H →∞ and then the lower limit as K →∞, we obtain

lim sup
H→∞

fH0 (z) ≤ lim inf
K→∞

fK0 (z),

which concludes the proof.

Since we deal with convex energies, asymptotic homogenization formula (42) can be
reduced to a single periodic minimization problem.
Proposition 6.2. We have that f0(z) defined by (42) coincides with fhom(z) defined for
z ∈ Rd as

fhom(z) := 1
T d

inf
{ ∑
i∈(QT,d×QT,k)∩X

∑
j∈(Rd×QT,k)∩X

aij(ui − uj)2 :

ui − z · id is T -periodic in e1, . . . , ed

}
. (46)

Proof. Fix z ∈ Rd. First, we prove that f0(z) ≤ fhom(z). To this end, for δ > 0, let u# be
a function satisfying

1
T d

∑
i∈(QT,d×QT,k)∩X

∑
j∈(Rd×QT,k)∩X

ai,j(u#
i − u

#
j )2 ≤ fhom(z) + δ

and u#
i − z · i

d is T -periodic in e1, . . . , ed. We define uεi = uε(εi) := εu#(i). Note that
uεi converges to z · xd with respect to the convergence given by (6). Set Id := {l ∈ Zd :
εlT + εQT,d ∩ Ω 6= ∅}. In view of Theorem 2.2 and the periodicity of aij , we deduce that

|Ω|f0(z) ≤ lim inf
ε→0

Fε(uε)

≤ lim sup
ε→0

Fε(uε) ≤ lim sup
ε→0

∑
l∈Id

∑
i,j∈(Ql

T,d
×QT,k)∩X

εdaij(u#
i − u

#
j )2

≤ lim sup
ε→0

∑
l∈Id

εd
∑

i∈(QT,d×QT,k)∩X

∑
j∈(Rd×QT,k)∩X

aij(u#
i − u

#
j )2

≤ |Ω|(fhom(z) + δ).

From the arbitrariness of δ, the conclusion follows.
It remains to show that fhom(z) ≤ f0(z). Let v be a function defined on (QKT,d ×

QT,k) ∩ X such that vi = z · id if dist(id, ∂QKT,d) ≤ 2
√
dT . We define a function u on

(QT,d ×QT,k) ∩X by

u(i) := 1
Kd

∑
l∈{0,...,K−1}d

v(id + lT, ik).

With the help of Jensen’s inequality combined with the assumption of finite range and the
periodicity of aij , we deduce that

fhom(z) ≤ 1
T d

∑
i∈(QT,d×QT,k)∩X

∑
j∈(Rd×QT,k)∩X

aij(ui − uj)2

≤ 1
(KT )d

∑
i∈(QT,d×QT,k)∩X

∑
j∈(Rd×QT,k)∩X

∑
l∈{0,...,K−1}d

aij(v(id + lT, ik)− v(jd + lT, jk))2

= 1
(KT )d

∑
i,j∈(QKT,d×QT,k)∩X

aij(vi − vj)2.
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Taking the infimum, we get

fhom(z) ≤ 1
(KT )d inf

{ ∑
i,j∈(QKT,d×QT,k)∩X

aij(vi − vj)2 :

vi = z · id if dist(id, ∂QKT,d) < 2
√
dT

}
.

Then, passing to the limit as K →∞, we have the desired inequality which concludes the
proof.

6.2 Proof of the upper bound
We now prove the Γ-lim sup inequality. The proof is independent of the blow-up result and
it relies on the validity of the homogenization formula and a standard density argument
by piecewise-affine functions (see [8, Remark 1.29]). We consider the case when the target
function u is piecewise-affine and we assume that the gradient of u takes λ values, for some
λ positive integer. For fixed z1, . . . , zλ ∈ R, we define

Ωq := {xd ∈ Ω : u(xd) = zq · xd + cq},

for q = 1, . . . , λ (with cq some constant).
We fix one such q. We choose wq ∈ Cε(QT,d) such that wqi − z · i

d is T -periodic in
e1, . . . , ed and ∑

i,j∈(QT,d×QT,k)∩X

aij(wqi − w
q
j )

2 = fhom(zq).

For any q = 1, . . . , λ, we define uε,qi := uqε(εi) = εwq(i) + cq. In view of Lemma 5.1, we
may modify the sequence uqε to obtain a new sequence vq,δε converging to zq · xd + cq with
respect to convergence (6) such that

vε,q,δi = zq · εid + cq, if i ∈ ((Ωq \ Ωq(δ))×QT,k) ∩X,

vε,q,δi = uε,qi , if i ∈ (Ωq(2δ)×QT,k) ∩X,

and
lim sup
ε→0

F qε (vq,δε ) ≤ lim sup
ε→0

F qε (uqε) + o(1) (47)

as δ → 0, where F qε is the functional defined as in (2) with Ωq in the place of Ω.
Now, we estimate F qε (uqε). To that end, for q = 1, . . . , λ, we introduce the set of indices

Idε,q := {l ∈ Zd : εQlT,d ∩ Ωq 6= ∅}, and we deduce that

F qε (uqε) =
∑

i,j∈( 1
ε

Ωq×QT,k)∩X

εd−2aij(uε,qi − u
ε,q
j )2

≤
∑

i,j∈(∪
l∈Idε,q

Ql
T,d
×QT,k)∩X

εdaij(wq(i)− wq(j))2

≤
∑
l∈Idε

εd
∑

i,j∈(Ql
T,d
×QT,k)∩X

aij(wq(i)− wq(j)2 ≤ |Ωq|fhom(zq) + o(1),

as ε→ 0. This combined with (47) implies that

lim sup
ε→0

F qε (vq,δε ) ≤ |Ωq|fhom(zq) + o(1) (48)

as δ → 0.
Now, we define the recovery sequence vε by

vεi = vε,q,δi if i ∈ Ωq,
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for q = 1, . . . , λ. To conclude the proof, it remains to show that, given q1, q2 ∈ {1, . . . , λ},

lim sup
ε→0

∑
i∈( 1

ε
Ωq1×QT,k)∩X

j∈( 1
ε

Ωq2×QT,k)∩X

εd−2aij(vεi − vεj )2 = o(1) (49)

as δ → 0.
Since δ >> εT , the interactions between nodes in ( 1

ε
Ωq1 (2δ)×QT,k) ∩X and ( 1

ε
(Ωq2 \

Ωq2 (δ))×QT,k)∩X or nodes in ( 1
ε
Ωq1 (2δ)×QT,k)∩X and ( 1

ε
Ωq2 (2δ)×QT,k)∩X do not

take place. This allows to reduce (49) to the following estimate

lim sup
ε→0

∑
i∈[ 1

ε
(Ωq1\Ωq1 (δ))×QT,k]∩X

j∈[ 1
ε

(Ωq2\Ωq2 (δ))×QT,k]∩X

εdaij(uεi − uεj)2 = o(1) (50)

as δ → 0, where we have set uεi = u(εid), and used the fact that vε,q,δi = zq · εid + cd = uεi
if i ∈ (Ωq \ Ωq(δ)×QT,k) ∩X. By the Lipschitz continuity of u we deduce that∑
i∈[ 1

ε
(Ωq1\Ωq1 (δ))×QT,k]∩X

j∈[ 1
ε

(Ωq2\Ωq2 (δ))×QT,k]∩X

εd−2aij(uεi − uεj)2 ≤ C
∑

i∈[ 1
ε

(Ωq1\Ωq1 (δ))×QT,k]∩X
j∈[ 1

ε
(Ωq2\Ωq2 (δ))×QT,k]∩X

εdaij |id − jd|2

≤ C max{aij}T k
λ∑
q=1

∣∣∣ ⋃
l∈[ 1

ε
(Ωq\Ωq(δ))]

εQld

∣∣∣ ≤ Cδ

(the final C taking into account the bound for aij , their range, T and the Hd−1 measure
of the union of ∂Ωq), which proves (50).

Gathering estimates (48) and (49), we deduce that

lim sup
ε→0

∑
i,j∈( 1

ε
Ω×QT,k)∩X

εd−2aij(vεi − vεj )2 ≤
λ∑
q=1

|Ωq|fhom(zq) + o(1).

as δ → 0, which concludes the proof of the upper bound.
Remark 6.3. Recall that the Γ-limit of a family of non-negative quadratic forms is still a
non-negative quadratic form (see e.g. [20, Theorem 11.10]). Applying this property in our
setting, we deduce that the Γ-limit Fhom of Fε is a non-negative quadratic form. In other
words, there exists a symmetric matrix Ahom such that fhom(z) = Ahomz · z, which finally
gives (7).

6.3 Convergence of minimum problems
In this section, we deal with minimum problems with boundary data. To this end, we
derive compactness result in the case that the functionals Fε are subjected to Dirichlet
boundary conditions. In the discrete setting, such conditions are imposed by introducing
a parameter r ∈ N and fixing the value of u in a neighbourhood of the ‘lateral boundary’
of Ω × QT,k, corresponding to id in a neighbourhood of the boundary of Ω ⊂ Rd, of size
εr.

For any r > 0 and given ϕ ∈ H1(Rd), we introduce the set

Cϕ,rε (Ω) :=
{
u ∈ Cε(Ω) : u(εi) =

 
εid+εQd

ϕ(xd)dxd if (εid + (−εr, εr)d) ∩ Rd \ Ω 6= ∅
}
.

We define the functional Fϕ,rε by

Fϕ,rε (u) := Fε(u), u ∈ Cϕ,rε (Ω).
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Theorem 6.4. For any ϕ ∈ H1(Rd), let Fϕ be the functional defined by

Fϕ(u) :=


ˆ

Ω
Ahom∇u · ∇u dx, u− ϕ ∈ H1

0 (Ω)

∞, otherwise,

where Ahom is given by (7). Then, for any r > 0, the family of functionals Fϕ,rε Γ-converges
to the functional Fϕ with respect to convergence (6).

Proof. We prove the Γ-liminf inequality. To that end, we prove that if uε converges to u
with respect to convergence (6) and Fϕ,rε (uε) is equibounded, then u− ϕ ∈ H1

0 (Ω). First,
note that if supε>0 F

ϕ,r
ε (uε) < ∞, then, thanks to the coerciveness of the coefficients aij ,

we deduce that
sup
ε→0

∑
i,j∈( 1

ε
Ω×QT,k)∩X

εd−2(uεi − uεj)2 <∞.

We denote by ũε the extension of uε on the whole X defined by ũεi = ϕ(εid), for any
ε > 0 and outside Ω. Analogously, ũ is the extension of u on Rd obtained by setting
ũ(xd) = ϕ(xd). Let Ω′ be an open set such that Ω ⊂⊂ Ω′. Hence, we have that∑
i,j∈( 1

ε
Ω′×QT,k)∩X

εd−2aij(ũεi − ũεj)2 ≤
∑

i,j∈( 1
ε

Ω×QT,k)∩X

εd−2aij(uεi − uεj)2

+
∑

i,j∈( 1
ε

(Ω′\Ωr)×QT,k)∩X

εd−2aij(ϕ(εid)− ϕ(εjd))2 ≤ C.

Repeating similar arguments as the proof of Γ-lim inf inequality of Theorem 2.2 and since
ũε converges to ũ, we deduce that ũ ∈ H1(Ω′) and hence u− ϕ ∈ H1

0 (Ω). Then, invoking
again Theorem 2.2, we have that

lim inf
ε→0

Fϕ,rε (uε) = lim inf
ε→0

Fε(uε) ≥ Fϕ(u),

as desired.
Now, we show the Γ-limsup inequality. First, consider the case where u ∈ H1(Ω) such

that supp(u− ϕ) ⊂⊂ Ω. The general case is obtained by a density argument.
Consider a target function u such that supp(u−ϕ) ⊂⊂ Ω. In view of Theorem 2.2, we

know that there exists a recovery sequence uε converging to u such that

lim
ε→0

Fε(uε) =
ˆ

Ω
Ahom∇u · ∇udx.

In order to modify the sequence uε near the boundary of Ω, we apply Lemma 5.1 with
vε = u. Hence, there exists a sequence wε such that wε still converges to u with respect
to convergence (6), wε = u is a neighbourhood of Ω and

lim sup
ε→0

Fε(wε) ≤ lim sup
ε→0

Fε(uε) + o(1).

Since supp(u− ϕ) ⊂⊂ Ω, it follows that wε is equal to ϕ is a neighbourhood of Ω, so that
Fϕ,rε (wε) = Fε(wε). We may conclude that

lim sup
ε→0

Fϕ,rε (wε) ≤ lim sup
ε→0

Fε(uε) + o(1) = Fϕ(u) + o(1),

which concludes the proof.

Now, we state the following result which deals with convergence of minimum problems
with Dirichlet boundary data.
Proposition 6.5. We have that

lim
ε→0

inf{Fε(u) : u ∈ Cϕ,rε (Ω)} = min{Fhom(u) : u− ϕ ∈ H1
0 (Ω)}.

Moreover, if uε ∈ Cϕ,rε (Ω) converges to ũ with respect to convergence (6) and it is such that

lim
ε→0

Fε(uε) = lim
ε→0

inf{Fε(u) : u ∈ Cϕ,rε (Ω)},

Then, u is a minimizer for min{Fhom(u) : u− ϕ ∈ H1
0 (Ω)}.
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Proof. We have to show the equi-coerciveness of Fϕ,rε with respect the topology defined
by (6). To that end, consider {uε} ⊂ Cϕ,rε (Ω) such that supε>0 F

ϕ,r
ε (uε) < ∞. In view of

inequality (51) applied to u− ϕ, we deduce that∑
l∈Zd

∑
i,j∈(Ql

T,d
×QT,k)∩X

εd|uεi − ϕi|2 ≤ C
∑

i,j∈( 1
ε

Ω×QT,k)∩X

εdaij |(uεi − ϕi)− (uεj − ϕj)|2

≤ CFε(uε) + C
∑

i,j∈( 1
ε

Ω×QT,k)∩X

εdaij |ϕi − ϕj |2 ≤ C.

Hence, we may apply Proposition 4.1 to deduce that there exists a subsequence uε such
that uε is converging. This concludes the proof.

The next proposition shows the Poincaré inequality for functions u ∈ Cϕ,rε (Ω). We
prove it assuming that ϕ = 0.
Proposition 6.6. Let Ω be a bounded open set of Rd and let u be a function in Cε(Ω) such
that ui = u(εi) = 0 if dist(εid, ∂Ω) ≤ 2ε

√
dT . Then, there exists a constant C > 0 such

that ∑
i,j∈( 1

ε
Ω×QT,k)∩X

εd|ui|2 ≤ C
∑

i,j∈( 1
ε

Ω×QT,k)∩X

εdaij |ui − uj |2, (51)

where C is of order of [diam(Ω)]2.

Proof. We identify u with its extension to (Rd × QT,k) ∩ X which is equal to 0 outside
(Ω×QT,k)∩X. Due to the boundedness of Ω, there existsM > 0 such that Ω ⊂ [0,M)d and
( 1
ε
[0,M)d×QT,k)∩X contains a path joining two arbitrary nodes i, j ∈ ( 1

ε
Ω×QT,k)∩X.

Fix i ∈ ( 1
ε
Ω × QT,k) ∩ X and let j be a node such that dist(εjd, ∂Ω) ≤ 2ε

√
dT and

id − jd = λTe1, where, without lost of generality, we may assume that λ is a positive
integer. Note that λ depends on the fixed node i and it is of order MT−1ε−1. Let li and
lj be two indices in Zd such that i ∈ QliT,d and j ∈ QljT,d. Let S

λ
T,d be the union of (λ+ 1)

neighbouring cubes joining QliT,d and Q
lj
T,d such that each two consecutive cubes having

one face in common. In other words,

SλT,d :=
λ⋃
q=0

Q
lq
T,d,

where lq = lj +qTe1, for q = 1, . . . , λ and l0 = lj . Since X is connected, there exists a path
of nodes {jq}λq=0 joining j0 = j and jλ = i such that it is contained in SλT,d + (−T, T )d,
jq ∈ (QlqT,d×QT,k)∩X and (jq, jq+1) ∈ E . Such a path can be built repeating periodically
the path joining j ∈ (Ql0T,d × QT,k) ∩X and j + Te1 ∈ (Ql1T,d × QT,k) ∩X. Since uj = 0,
we have that

ui =
λ∑
q=1

(ujq − ujq−1 ).

Hence, an application of the Jensen inequality leads us to

|ui|2 ≤ λ
λ∑
q=1

|ujq − ujq−1 |
2.

Summing over i ∈ ( 1
ε
Ω×QT,k) ∩X, we get∑

i∈( 1
ε

Ω×QT,k)∩X

εd|ui|2 ≤ λ
λ∑
q=1

∑
i,j∈( 1

ε
Ω×QT,k)∩X

εd|ujq − ujq−1 |
2

≤ Cλ2
∑

i,j∈( 1
ε

Ω×QT,k)∩X

εdaij |ujq − ujq−1 |
2,

where the constant C takes into account the fact that the possible multiplicity of the
paths containing the connection joining jq−1 and jq, which is anyhow uniformly bounded.
Recalling that λ is of order MT−1ε−1, we get the inequality (51), as desired.
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7 Examples
In this section, we exhibit some simple examples of the possible geometries of the set X.
We also compute the homogenized matrix Ahom given by formula (7). In the examples
below, we think of X as a subset of Zd+k where d = 1 is identified with the horizontal
direction and k = 1 or 2. Since d = 1 the homogenized matrix actually reduces to a single
coefficient giving the homogenized energy density Ahomz

2.
In all the following examples the value of the non-zero coefficients aij is always 1, and

the corresponding connections are represented by solid lines in the figures.

(a)
(0,0) (1,0) (2,0)

(0,2) (1,2) (2,2)

(1,1)

(b)

(0,0) (1,0) (2,0)

(0,2) (1,2) (2,2)

(1,1)

Figure 2: Figure (a) shows X and Figure (b) shows the periodicity cell (Q2,d ×Q2,k) ∩X.

Example 7.1. Let X be the set pictured in Figure 2(a). Here, we have that d = k = 1
and the period T is equal to 2. Figure 2(b) shows a periodicity cell. The geometry of the
set X can be thought as the discrete version of a perforated domain. Indeed, note that
nodes (0, 1) and (2, 1) in Figure 2(b) are missing.

A minimizer ũ for (7) is given by ũ(0, 0) = ũ(0, 2) = 0, ũ(1, 0) = ũ(1, 1) = ũ(1, 2) = z
and ũ(2, 0) = ũ(2, 2) = 2z, so that Ahom = 4.

In the next three examples d = k = 1, the set X is always simply Z × {0, 1} and
the period T is 1, but the set E is such that the graph cannot be directly seen as a
discretization of a thin film in the continuum parameterized as a subgraph of a function
of one real variable.

(a) (b)

Figure 3: Figure (a) shows X and Figure (b) shows the periodicity cell (Q1,d ×Q1,k) ∩X.

Example 7.2. Let X be as drawn in Figure 3(a). In this case E contains all ‘cross-
connections’ between points of X. The minimizer ũ for Ahomz

2 is ũ(0, 0) = ũ(1, 1) = 0
and ũ(1, 0) = ũ(0, 1) = z, so that Ahom = 4.

The following two examples can also be reformulated in a square or triangular lattice,
respectively, by a change of variables, so that they can be treated as in [2]. Our result
makes these changes of variable not necessary.

(a) (b)

Figure 4: Figure (a) shows X and Figure (b) shows the periodicity cell (Q1,d ×Q1,k) ∩X.
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Example 7.3. Consider X as drawn in Figure 4(a). Here, the graph is analog to a nearest-
neighbour thin film, but with a translation of a unit of one of the two copies of Z, which
again makes this geometry not immediately seen as a discretization of a continuum thin
film. The 1-periodic minimizer ũ for Ahomz

2 is given by ũ(0, 0) = ũ(1, 1) = 0, ũ(1, 0) = z
and ũ(0, 1) = −z and the homogenized coefficient is Ahom = 4.

(a) (b)

Figure 5: Figure (a) shows X and Figure (b) shows the periodicity cell (Q1,d ×Q1,k) ∩X.

Example 7.4. Consider X as drawn in Figure 5(a). Here the set of connections has the
structure of a triangular lattice. The minimizer ũ for Ahomz

2 is given by ũ(0, 0) = 0,
ũ(1, 0) = z, ũ(0, 1) = −1/2z and ũ(1, 1) = 1/2z. The homogenized coefficient is Ahom =
5/2.

(a) (b)

Figure 6: Figure (a) shows X and Figure (b) shows the periodicity cell (Q4,d ×Q4,k) ∩X.

Example 7.5. Let X be the set pictured in Figure 6(a), where d = k = 1 and the period
T is equal to 4. The set X is a subset of Z × {0, 1, 2}. Such a set X can be though as a
discrete layered media, whose conductivity is equal to 1 along the straight lines, while in
the part corresponding to the rhombus structure the effective conductivity is 2.

The minimizer ũ for Ahomz
2 is given by ũ(0, 0) = z, ũ(1, 1) = 4z/3, ũ(2, 1) = 8z/3,

ũ(3, 0) = ũ(3, 2) = 10z/3 and ũ(4, 1) = 4z and Ahom = 8/3.

Figure 7: An alternate structure for Example 7.5

Note that the same example can be restated with X = Z × {0, 1} using the set of
connections in Fig. 7.

Example 7.6. We consider the set X drawn in Figure 1. To uniform the notation intro-
duced in this section, we rotate X, obtaining the structure pictured in Figure 8(a). Here
d = 1 and k = 2. The period T is equal to 2 and the periodicity cell is drawn in Figure
5(b). The structure is actually the same as that in Example 7.2 but transposed to a three-
dimensional setting, and Ahom = 4. Note that in this case the solid lines representing the
connections do not intersect and they have all the same length, so that they can also be
interpreted as a system of homogeneous conducting rods.
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(a) (b)

Figure 8: Figure (a) shows X and Figure (b) shows the periodicity cell (Q2,d ×Q2,k) ∩X.
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