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1 Introduction

The aim of this paper is the study of the moduli space of solutions of an eight

dimensional analog of the celebrated self-duality equation F = ⋆F for the gauge

theory curvature in four dimensions [1]. The equation in eight dimensions reads

(1.1) F ∧ T = ⋆F

where F = dA+A∧A is the curvature of the gauge bundle, T is an invariant closed

four-form and ⋆ is the Hodge star operator with respect to a given Riemannian

structure on the eight dimensional manifold. Equation (1.1) was introduced in [2] in

1982. The very existence of the invariant four-form T restricts the holonomy group

of the eight dimensional manifold X to be contained in Spin(7) [3].

We provide the eight dimensional analog of the ADHM [4] construction for (1.1)

with U(N) gauge group for X = C
4 and its discrete Calabi-Yau quotients. As we

will discuss, differently from the real four dimensional case, genuine solutions to the

above equation exist only on eight dimensional spaces whose local model is a non-

commutative deformation of C4. The latter is obtained by deforming one of the

moment maps à la Nekrasov-Schwarz [5]. This further breaks the holonomy group

Spin(7) → Spin(6) ≃ SU(4), implying that X is a Calabi-Yau fourfold. The cor-

responding gauge theory can be engineered as the low energy limit of a D(−1)/D7

system in a stabilising non trivial B-field background [6], aligned along the invari-

ant 2-form associated to the deformed moment map. The more general configura-

tion that we will study includes also a set of D7s which act as a source of matter

field/observables, as in [7, 8]. By resorting to our higher dimensional ADHM con-

struction, we provide explicit solutions of equation (1.1) in the abelian case. Let us

notice that C4 admits a (C∗)3 toric action compatible with its (trivial) Calabi-Yau

structure, which naturally lifts to the moduli space of solutions to (1.1). We describe

the invariant solutions supported at the fixed points of this toric action, by making

crucial use of the non-commutative deformation, and find that these are classified by

solid partitions. These are a four dimensional analog of Young diagrams built with

hypercubes accumulating on the corner of R4
+. This provides a lift to four complex

dimensions of the statistical crystal melting model based on plane partitions, see [9]

for the U(1) case and [10, 11] for U(N). All this construction has a natural extension

on discrete quotients of C4, the fixed points being described in this case by coloured

solid partitions.1

As it is well known, the ADHM construction for four-dimensional instantons is

at the root of an isomorphism with the moduli space of framed torsion free coherent

sheaves on P
2 [12]. We provide here an analog isomorphism between the moduli

space of solution of (1.1) on non-commutative C4 and the moduli space of framed

1Let us remark that on (partial) resolutions of C4 orbifolds one can also construct abelian

instantons whose gauge flux is along non-trivial two cycles.
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torsion free coherent sheaves on P4, extending it also to the orbifold case by adapting

the Kronheimer-Nakajima construction [13]. In this context the fixed points are

described by ideal sheaves on C4 and its quotients.

Building on equation (1.1), one can construct [14] a (semi)Topological Field

Theory2, which is indeed a topological twist of the eight dimensional gauge theory

describing the D(−1)/D7 system at low energy [15, 16]. This provides the setting for

BPS-bound states counting whose mathematical counterpart is given by Donaldson-

Thomas theory on four-folds [17]. Let us remark that major progresses have been

recently obtained on the compactification of the moduli space of solutions of (1.1)

and a rigorous definition of the associated enumerative invariants [18–22]. A natu-

ral extension is to consider the theory on S1 × X computing the Witten index of

D0/D8/D8 bound states whose mathematical counterpart is the lift to K-theory. On

toric manifolds one can study the equivariant extension of the sTQFT so providing

a geometrically motivated statistical weight for counting solid partitions which de-

scribe the fixed points of the gauge theory moduli space [8]. Chiral ring observables

can be introduced via descent equations as in the four dimensional case [14]. Their

explicit evaluation on C4 via equivariant localisation recently appeared in [8, 21].

Let us remark that M-theory on local four-folds provides a geometric engineering

description of supersymmetric gauge theories in three dimensions [23], analogously

to the much better known case of local three-folds [24] which instead describes five

dimensional supersymmetric gauge theories. Moreover, interesting classes of (0, 2)

supersymmetric models in two-dimensions arise fromD1-branes probing toric Calabi-

Yau four-fold singularities [25]. It is thus interesting to study the eight dimensional

BPS counting problem on some examples of local CY four-fold geometries. To this

end, in this paper we also provide the generalisation of the eight-dimensional ADHM-

like quiver to orbifolds C4/G, where G is a discrete subgroup of SU(4). The fixed

points in this case are classified by coloured solid partitions whose statistical weight

depends on the representation of G. This boils down to count G-coloured hypercubes

configurations whose colouring rules are dictated by the specific action of G on C4.

This provides an eight dimensional analog of instanton counting on four-dimensional

ALE spaces [26–33]. As an example, we explicitly address the associated K-theoretic

counting problem on C2 × C2/Z2.

There are a number of interesting problems to be addressed. Supersymmetric

gauged linear sigma models in two dimensions modelled on the ADHM-like quivers

presented in this paper can be studied via localisation technique. In the sphere case

this could possibly shed light on the associated quantum cohomology and its relation

with quantum integrable hydrodynamics analogously to the four dimensional ADHM

quiver studied in [34–36]. The torus case would allow to compute the elliptic genus

2The ”semi” refers to the dependence on the four-form T , which calibrates the volume of the

four-cycles in the eight dimensional manifold.
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of the eight dimensional ADHM moduli space and as such to provide an elliptic lift

of Donaldson-Thomas invariants on fourfolds analogous to the one studied in [37] on

three-folds. Finally defect operators can be investigated by a generalisation of the

ADHM-like quivers similar to the one studied in [38–40] for the four-dimensional case

and also by the eight dimensional generalisation of the nested instantons studied in

[41, 42].

The structure of the paper is the following. In section 2 we discuss the equivariant

extension of the eight-dimensional sTQFT, set up the gauge theory framework to

count its BPS states and describe the relevant equivariant observables. In section

3 we provide the ADHM-like construction solving equation (1.1) on C4 with B-field

and describe the explicit solutions at the fixed points of the toric action in terms

of solid partitions. In section 4 we extend the 8d ADHM quiver construction to

orbifolds C4/G and provide the computation of the equivariant partition function on

the explicit example of C2 × C2/Z2. In Appendix A we collect basic facts on the

classical ADHM construction focusing on the points relevant for its 8d generalisation.

Appendix B is devoted to the discussion of the relation between 8d instantons and

sheaf cohomology: in B.1 we explain the relation between the two relevant moduli

spaces via Beilinson’s theorem, while in B.2 we extend it to the orbifold case.

2 Topological gauge theory in eight dimensions

Let X be a real Riemannian eight dimensional differentiable manifold with a torsion

free Spin(7) structure [43]. This is determined by a real covariantly constant spinor

ψ+

T = ψT
+Γ

[∧4]ψ+ ∈ Λ4(X)

where Γ ≡ Γµdx
µ and {Γµ}µ=1,...,8 the SO(8) Γ-matrices. We assume ψ+ to be of

positive chirality and normalised as ψT
+ψ+ = 1.

On X the vector spaces of p-forms Λp(X) split in irreducible representations of

the holonomy group. In particular one has Λ2(X) = Λ2
7(X) ⊕ Λ2

21(X). This split

corresponds to the projections on ω ∈ Λ2(X) given by T ∧ω = −3⋆ω and T ∧ω = ⋆ω

respectively.

The Spin-bundles on X are isomorphic to S+(X) ∼ Λ1(X) and S−(X) ∼
Λ0(X) ⊕ Λ2

7(X). A supersymmetric gauge theory can be formulated on a Spin(7)

manifold via a topological twist which uses these isomorphisms [14–16]. The corre-

sponding twisted supersymmetry transformations of the gauge theory can be made

equivariant with respect to an isometry V and read

QA = Ψ , QΨ = ιV F − iDΦ , QΦ = ιV Ψ

Qχ7 = B7 , QB7 = LV χ7 + i[Φ, χ7] , Qη = Φ̄ , QΦ̄ = ιVDη + i[Φ, η] ,(2.1)

where V is any isometry of the Spin(7) structure, that is ⋆LV = LV ⋆ and LV T = 0,

where LV ≡ ιV d + dιV is the Lie derivative. In (2.1), LV ≡ ιVD + DιV is the
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covariant Lie derivative. Notice that in (2.1), Ψ ∈ S+(X) ∼ Λ1(X) and in the

second line (η, χ7) and (Φ̄, B7) ∈ S−(X) ∼ Λ0(X)⊕ Λ2
7(X).

The supersymmetric action after the topological twist can be written as a topo-

logical term plus a Q-exact one as

(2.2) S =

∫

X

T ∧ Tr (F ∧ F ) +Qν ,

where

(2.3) ν =

∫

X

Tr
[
i ⋆ χ7 ∧ F +Ψ ∧ ⋆(QΨ)† + g2χ7 ∧ ⋆(Qχ7)

† + η ∧ ⋆(Qη)†
]
,

where g is the Yang-Mills coupling constant which in the topological theory is a gauge

fixing parameter. In the path-integral, in the δ-gauge g = 0, the B7 field appears as

the Lagrange multiplier for the Spin(7)-instanton equation

(2.4) F7 = 0 ,

which is nothing but a rewriting of eq (1.1). In the following Section we will provide

an ADHM-like description of the solutions to the above equation and their moduli

space. This will turn out to have positive (virtual) dimension, inducing a U(1)R-

anomaly due to the presence of chiral fermionic zero-modes. In order to have a

non-vanishing result one has thus to insert non-trivial observables in analogy with

the well known case of Donaldson theory in four real dimensions [44]. The observables

are given by non-trivial cohomology classes of the twisted supersymmetry (2.1), and

can be obtained from an equivariant version of the usual descent equations, see [45]

for the four-dimensional case. Indeed, the supersymmetry transformations (2.1) can

be rewritten as the equivariant Bianchi identity for the curvature F = F +Ψ+Φ of

the universal bundle as [46]

(2.5) DF ≡ (−Q +D + iιV ) (F +Ψ+ Φ) = 0 ,

and expanding in the de Rham form degree. Picking an ad-invariant polynomial P
on the Lie algebra of the gauge group, we have

(2.6) QP(F) = (d+ iιV )P(F) ,

so that one can build the equivariant observables as intersection of the above with

elements of the equivariant cohomology of the manifold, Ω ∈ H•
V (X) as

(2.7) O (Ω,P) ≡
∫

X

Ω ∧ P(F).

In the path integral formulation of the gauge theory, we will actually consider the

generating function of the equivariant observables through the determinant bundle

(2.8) Odet (Ω) ≡
∫

X

Ω ∧ det(m1 + F) ,
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where m is a generating parameter of the observables. In the calculations of the

following Sections, we will consider the K-theoretic uplift of the above, or in other

terms the index of the equivariant theory on X × S1.

3 ADHM construction in eight dimensions

In this section we describe an eight dimensional generalisation of the classical ADHM

construction in four dimensions and show that it describes the moduli space of so-

lutions to (1.1). For the sake of completeness we recall in Appendix A the four-

dimensional ADHM construction and highlight few aspects of the latter which the

reader could find useful to follow the eight dimensional generalisation.

Let us start by fixing the spinorial notation to write equation(1.1) and the ADHM

representation of its solutions. The Cliff(8) gamma matrices can be chosen as 16×16
real matrices of the form

(3.1) Γµ =

(
0 Σµ

Σ̄µ 0

)
,

where Σ0 = Σ̄0 = 18×8 and Σi = −Σ̄i for i = 1, . . . , 7. The latter are real anti-

symmetric matrices (they are in fact
√
−1 times purely imaginary Cliff(7) gamma-

matrices). Let S± denote eight-dimensional real irreducible Majorana-Weyl spinor

representations of Spin(8) of positive and negative chirality respectively. Since the

representations S± are real, the matrices of Spin(8) generators

(3.2) Γµν =
1

2
[Γµ,Γν ] =

1

2

(
Σ[µΣ̄ν] 0

0 Σ̄[µΣν]

)

are real and antisymmetric and so are the 8 × 8 blocks Σµν = 1
2
Σ[µΣ̄ν] and Σ̄µν =

1
2
Σ̄[µΣν]. Formulated differently, we have (cf. (A.16)) an isomorphism of three Spin(8)

representations spaces, each represented by real and antisymmetric 8× 8 matrices:

(3.3) Λ2S+ = Λ2S− = Λ2
R

8 = adjSO(8).

The triality of Spin(8) permutes S+, S− and R8, which is the defining representation

of SO(8). Notice that each of the two sets of 28 matrices (Σµν)α
β – or (Σ̄µν)α

β – form

a basis in the space of real antisymmetric matrices3. Due to this fact, the following

Fierz identities hold:

(3.4) (Σµν)αβ(Σ
µν)γδ = (Σ̄µν)αβ(Σ̄

µν)γδ = −8(δαδδβγ − δβδδαγ).

The coefficient in the l.h.s. of Eq. (3.4) can be obtained by contracting β and γ

indices and using the relations of the Clifford algebra to get ΓµνΓµν = −56 · 116×16.

3A third basis of matrices corresponding to the representation Λ2R8 is given by (δµαδ
ν
β − δµβδνα).
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3.1 Eight-dimensional equations

There is no way to formulate a first order equation for Fµν in 8d in an SO(8)-invariant

manner. Another way to formulate this is to say that there is no SO(8)-invariant

four-index tensor T µνλρ, which can be used to write

(3.5) λFµν =
1

2
T µνλρFλρ.

with λ being some eigenvalue. However, if we make a choice of a constant spinor on

R8 we can build from it a tensor T µνλρ invariant under Spin(7) ⊂ Spin(8). This is

the largest possible symmetry subgroup which can be preserved by equations of the

form (3.5) in eight space-time dimensions. For this construction let us fix ψ+ ∈ S+

such that ψT
+ψ+ = 1 and write

(3.6) T µνλρ = ψT
+Γ

µνλρψ+,

where

(3.7) Γµνλρ =
1

4!
Γ[µΓνΓλΓρ]

The tensor T µνλρ then satisfies the 8d self-duality equation4

(3.8) T µνλρ = ǫµνλραβγδT αβγδ,

since

(3.9) ǫµνλραβγδΓαβγδ = ΓµνλρΓ9.

For definiteness we take5 ψα
+ = δα0 . The choice of the spinor ψ+ allows us to split

S+ into the one-dimensional subspace proportional to ψ+ and the seven-dimensional

orthogonal complement which we call S̃+. In a group-theoretical language this cor-

responds to the splitting of the representation S+ into 1 ⊕ 7 under the subgroup

Spin(7) ⊂ Spin(8).

The irreducible two-form representation Λ2R8 = 28 of Spin(8) splits into a sum of

two irreps 7⊕21 of Spin(7). These two irreps correspond to two different eigenvalues

λ = 1 and λ = −3 respectively in the first order field equations (3.5). In this way

the splitting allows us to write two different Spin(7)-invariant conditions6 on the

field strength Fµν . The conditions correspond to the vanishing of the component

4We could have started with a negative chirality spinor ψ− corresponding to anti-self-dual T µνλρ.

The resulting construction is isomorphic due to the triality of SO(8).
5In our conventions the spinor indices run from 0 to 7 similarly to the indices of the R8 vectors.
6These two conditions may be viewed as analogues of the self-duality and anti-self-duality con-

ditions in 4d. However, the latter are more similar to choosing the opposite chirality spinor ψ−

instead of ψ+.
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of Fµν lying in one of the two irreps of Spin(7), or equivalently to the eigenspaces

corresponding to two different eigenvalues in Eq. (3.5). The choice λ = 1 gives

Eq. (1.1).

As discussed in [2] (1.1) reads then in spinorial form as

(3.10) (Σµν)αβψ
β
+Fµν = (Σµν)α0Fµν = 0,

which imposes 7N2 equations, so that – together with N2 gauge fixing conditions for

the gauge group U(N) – eliminate all functional degrees of freedom from Aµ(x) and

therefore a finite dimensional moduli spaceMN,k of solutions remains. Similarly to

the 4d case, one can viewMN,k as an octonionic quotient of the space of connections

A by the gauge group G. Indeed we can introduce seven natural symplectic forms

ω
(A)
µν = (Σµν)A0 on R8 and use them to write seven symplectic structures on A:

(3.11) ΩA[δ1Aµ(x), δ2Aµ(y)] =

∫

R8

T ∧ ω(A) ∧ δ1A(x) ∧ δ2A(x),

where T denotes the four-form with components T µνλρ. Then the 7N2 conditions

(3.10) correspond to the vanishing of the seven moment maps

(3.12) µA[φ(x)] =

∫

R8

T ∧ ω(A) ∧ trφ(x)F,

and we have the ”octonionic” quotient

(3.13) MN,k = A///////G.

3.2 Derrick’s theorem and noncommutativity

Any solution of the first order equations (3.5) is automatically a solution of the 8d

Yang-Mills equations. Indeed,

(3.14) DµFµν =
1

2
TµνλρDµFλρ =

1

2
TµνλρD[µFλρ] = 0

where we have used the Bianchi identity for Fµν and the fact that Tµνλρ is totally an-

tisymmetric. We are looking for localized solutions, i.e. for those sufficiently rapidly

decaying at infinity in order to have finite action. Then, the solutions of (3.5), if any

exist, should be true extrema of the Yang-Mills action. The well-known Derrick’s

theorem states that in dimensions greater than four no such localized solution are

possible. The idea of the proof is to provide for any non-singular field configuration

a continuous family of configurations with lower action, so that no true minimum

can exist. The family of configurations is obtained by scaling the initial configura-

tion into smaller and smaller volume. A simple power counting then shows that the

action on the scaled down configuration is lower.
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Thus, classically, the moduli space MN,k of solutions is empty. However, there

is a natural way to deform the problem to get a non-empty space of solutions by

introducing noncommutativity. The commutation relations for the coordinates are

similar to those of the 4d case (cf. (A.32)):

(3.15) [xµ, xν ] = iζ(ω−1)µν ,

where ζ is a real parameter and ωµν is a non-degenerate constant 2-form on R
8. In

this case Derrick’s theorem doesn’t apply, since the coordinates cannot be rescaled

without affecting their commutation relations (3.15). To put it another way, the

non-commutativity introduces an additional fundamental scale
√
ζ into the problem,

which puts a limit on how much one can scale down localized field configurations.

So, even when no classical non-singular solutions to field equations exist, additional

solutions to the non-commutative version of the problem having typical size
√
ζ may

appear. This is exactly the situation we have with Eq. (3.5), where there is a finite-

dimensional moduli space of solutions after the non-commutative deformation. This

will be our definition ofMN,k. In the next section we will describe this moduli space

using an analogue of the ADHM construction.

3.3 8d ADHM construction

The ADHM equations for the 8d instantons were written in [7, 8]. They correspond

to bound states of k D0 and N D8 branes in a suitable B-field background. As in

sec. A.5, the B-field introduces non-commutativity into the 8d gauge theory. Also, as

we have explained in sec. 3.2 it allows for the very existence of solutions to the first

order equations (3.5), corresponding to stable low-energy bound states of D-branes.

To introduce the non-commutativity we pick one of the seven complex structures

on R8, or correspondingly one of the symplectic forms ω
(A)
µν to represent the Kähler

form. For definiteness we choose ω
(1)
µν and denote the projection of the two-form B

on ω
(1)
µν by ζ .

The choice of the complex structure breaks down the Spin(7) symmetry of the

seven first order equations (3.10) further to Spin(6) = SU(4). Equivalently we can

say that by choosing a complex structure we introduce one more fixed chiral spinor

χα
+ = δα1 into our theory (which corresponds to the index 1 in ω

(1)
µν ). The seven

equations (3.10), transforming as a Spin(7) spinor, split into an SU(4) singlet (cor-

responding to the component in the direction of χ+) and further six equations lying

in the representation

(3.16) 6 = R
6
SO(6) = (Ω(2,0) ⊕ Ω(0,2)

C
4)+,

of complex two-forms obeying αzizj = ǫzizjzkzlαz̄k z̄l.

Unlike in the 4d case the B-field not only adds a constant to the value of one of

the seven moment maps µA, but introduces new degrees of freedom corresponding to

the rectangular matrix I, which only appears in one of the moment map equations.
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Somewhat similarly to the 4d case we introduce a (8k + N) × 8k matrix ∆(x),

which can be written as7

(3.17) ∆(x) =

(
(Bµ − xµ1k×k)⊗ Σ̄µ

I† ⊗ (ψ†
+ + iχ†

+)

)
,

where Bµ are eight Hermitian k × k matrices, Σµ are defined in Eq. (3.1), I† is an

N × k matrix.

We will be looking for solutions of

(3.18) ∆†(x)U(x) = 0,

with ∆ satisfying certain moment map conditions. However, differently from the

4d case, these conditions do not imply that ∆†∆ = 18×8 ⊗ f−1
k×k

8. Indeed, to solve

Eq.(3.10), it is enough to impose

(3.20) ∆†∆ψ+ = ψ+ ⊗ f−1
k×k.

In our convention for ψ+ and χ+ Eq. (3.20) has explicit components

(3.21) (∆†∆)A0 = 0, A = 1, . . . , 7,

or more explicitly

(3.22) i(ω(A)−1)µν [Bµ, Bν ] + δA,1II† = ζδA,1, A = 1, . . . , 7.

3.4 Formulation in complex coordinates

By explicitely using the complex structure, we can rewrite Eq.(3.22) in the form

given in [7]. The 8d ADHM data contains four complex k × k matrices Ba and a

complex k ×N matrix I and the equations read

4∑

a=1

[Ba, B
†
a] + II† = ζ1k×k,(3.23)

[Ba, Bb]−
1

2
ǫabcd[B

†
c , B

†
d] = 0.(3.24)

7Notice that the combination ψ+ + iχ+ transforms in the complex one-dimensional Weyl spinor

representation of the Spin(2) = U(1) part of Spin(6)× Spin(2) ⊂ Spin(8).
8Indeed, since (Σµν)αβ is a complete basis of real antisymmetric 8× 8 matrices,

∆†(x)∆(x) = II† ⊗ (ψ+ + iχ+)(ψ
T
+ − iχT

+)+

+
1

2
([Bµ, Bν ] + iζω(1)

µν 1k×k)⊗ Σµν + (Bµ − xµ1k×k)(Bµ − xµ1k×k)⊗ 18×8 = 18×8 ⊗ f−1
k×k

implies (recall that ω
(1)
µν = (Σµν)01)

(3.19) [Bµ, Bν ] + iζω(1)
µν ⊗ 1k×k + iω(1)

µν II
† = 0,

which gives 28 matrix equations, instead of just seven.
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The matrix ∆† defined in Eq. (3.17) can be written quite explicitly in complex

coordinates. Indeed, the main ingredient of ∆† is the matrix xµΣ
µ : S− → S+, which

acts from one Majorana-Weyl representation of Spin(8) to another. Under the SU(4)

subgroup the spinor representations S± split into sums of even and odd parts of the

exterior algebra:

S+ = 1⊕ 6⊕ 1 = Λ0
C

4 ⊕ Λ2
C

4 ⊕ Λ4
C

4,(3.25)

S− = 4⊕ 4̄ = Λ1
C

4 ⊕ Λ3
C

4.(3.26)

The matrix xµΣ
µ then acts on the exterior powers as an operator

(3.27) ıza∂za + z̄adza,

where ıza∂za is the substitution of the vector field za∂za . In this way we get:

(3.28) ∆† =




b1 b2 b3 b4 0 0 0 0 I

b†2 −b†1 0 0 0 0 b4 −b3 0

b†3 0 −b†1 0 0 −b4 0 b2 0

b†4 0 0 −b†1 0 b3 −b2 0 0

0 b†3 −b†2 0 b4 0 0 −b1 0

0 −b†4 0 −b†2 b3 0 −b1 0 0

0 0 b†4 −b†3 b2 −b1 0 0 0

0 0 0 0 b†1 b†2 b†3 b†4 0




,

where we have abbreviated ba = Ba − za. Notice that unlike in the four-dimensional

case both representations S± are real, i.e. they admit outer automorphisms which

square to one. Explicitly these automorphisms are given by the matrices

(3.29) τ+ =




0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0




, τ− =

(
0 14×4

14×4 0

)
.

The square part of the matrix ∆ commutes with the automorphisms in the sense

that

(3.30) τ+∆
†
squareτ− = ∆∗

square.
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3.5 Matrix formulation

After choosing the non-commutative deformation (3.15), the original instanton equa-

tions (3.10) become:

Fab =
1

2
ǫabcdFc̄d̄,(3.31)

4∑

a=1

Faā = 0.(3.32)

Let us rewrite these equations in terms of the matrix variables analogously to

the noncommutative 4d case recalled in sec. A.6. Plugging the Za variables in the

instanton equations (3.31), (3.32) we get:

[Za, Zb] =
1

2
ǫabcd[Z

†
c̄ , Z

†
d̄
],(3.33)

4∑

a=1

[Z†
ā, Za] = 2ζ.(3.34)

Again the nontrivial r.h.s. in Eq. (3.34) arises because of the noncommutativity of

za and z†ā. The vacuum solution of Eqs. (3.33), (3.34) is given by

(3.35) Za = za,

and corresponds to vanishing gauge potential Aa. Let us now discuss the simplest

non trivial solutions.

3.6 U(1) one-instanton

Nontrivial solutions to Eqs. (3.33), (3.34) correspond to nontrivial ideals in the ring

of polynomials in four variables. Let us consider the simplest solution corresponding

to a single abelian instanton sitting at the origin of C4. In this case (cf. also [47,

Eq. (3.18)])

(3.36) Za = S[[[1]]]zaf[[[1]]](N)S†
[[[1]]],

where N =
∑4

a=1 a
†
āaa and

(3.37) f[[[1]]](N) =

(
1− 24

N(N + 1)(N + 2)(N + 3)

) 1
2

,

and S[[[1]]] is the partial isometry of the Hilbert space (which is H = C[z1, z2, z3, z4]),

satisfying

(3.38) S[[[1]]]S
†
[[[1]]] = 1, S†

[[[1]]]S[[[1]]] = 1− |0, 0, 0, 0〉〈0, 0, 0, 0|= PH\{|0,0,0,0〉}.

Notice that N in the denominator of f[[[1]]](N) is never zero, because the state

|0, 0, 0, 0〉 is projected out by the partial isometry .
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3.7 U(1) multi-instanton

By taking the square of equations (3.33) we deduce that the operators Za commute

with each other:

(3.39) [Za, Zb] = 0.

As we have noticed above the multi-instanton solutions correspond to ideals in the

ring H = C[z1, z2, z3, z4]. Having such an ideal I, we define a partial isometry SI ,

which satisfies

(3.40) SIS
†
I = 1, S†

ISI = PI ,

where PI is the projection operator on the ideal I. The matrix ∆† contains the infor-

mation about the resolution of the ideal corresponding to the solution of the ADHM

equations. Consider for example the 1-instanton solution (3.36). It corresponds to

the ideal I[[[1]]] of polynomials without constant terms. The resolution of this ideal

is written as the following exact sequence:

(3.41) 0→ O µ4→ O⊕4 µ3→ O⊕6 µ2→ O⊕4 µ1→ O p→ I[[[1]]] → 0,

where O = C[z1, z2, z3, z4], p is the projection and the linear operators µi are

µ1 = ( z1 z2 z3 z4 ),(3.42)

µ2 =




z2 z3 z4 0 0 0

−z1 0 0 z3 −z4 0

0 −z1 0 −z2 0 z4
0 0 −z1 0 z2 −z3


 ,(3.43)

µ3 =




0 0 z4 z3
0 −z4 0 z2
0 z3 −z2 0

z4 0 0 −z1
z3 0 −z1 0

z2 −z1 0 0




, µ4 =




z1
z2
z3
z4


 .(3.44)

Notice that these operators are very similar to those featuring in ∆† in Eq. (3.28).

This similarity seems to be a generic property of any ADHM-like construction.

We are interested in the solutions which are fixed points of the U(1)3 ⊂ SU(4)

action on C4. Those correspond to monomial ideals in the ring C[z1, z2, z3, z4] and

are enumerated by solid partitions. We denote the ideal corresponding to a solid

partition σ by Iσ. The fixed point multi-instanton solutions can be obtained with an

ansatz similar to Eq. (3.36), but now the function f(r) does not need to be symmetric

in Na = a†aaa (no summation over a), so that

(3.45) Za = Uσzaf
(σ)
a (N1, N2, N3, N4)U

†
σ
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We thus have to determine four functions f
(σ)
a (N1, N2, N3, N4) of four variables.

Eqs. (3.39), (3.34) imply the following recurrence relations9 for fa

fa(Nb + 1)fb(N) = fb(Na + 1)fa(N),(3.46)

4∑

a=1

{
(fa(N))2(Na + 1)− (fa(Na − 1))2Na

}
= 4.(3.47)

Eqs. (3.46) are “flatness” conditions for fa and can be solved explicitly. Indeed, one

can see that

(3.48) fa(N) =
h(N)

h(Na + 1)

solves Eqs. (3.46) for any function h(N). There remains a single recurrence rela-

tion (3.47) for h(r), which reads

(3.49)
4∑

a=1

{
h(N)2

h(Na + 1)2
(Na + 1)− h(Na − 1)2

h(N)2
Na

}
= 4.

An example of instanton solution with second Chern class equal to k(k+1)(k+2)(k+3)
24

is given by

(3.50) Za = Skzaf
(k)(N)S†

k,

where Sk now avoids all the states corresponding to monomials of degree at most k

and

(3.51) f (k)(N) =

(
1− k(k + 1)(k + 2)(k + 3)

N(N + 1)(N + 2)(N + 3)

) 1
2

.

Notice that all four functions fa(N) are in this case equal to each other. The so-

lutions (3.51) correspond to “pentachoron” solid partitions (decreasing sequences of

tetrahedral plane partitions), e.g. [[[1]]] for k = 1 or [[[2, 1], [1]], [[1]]] for k = 2.

4 Counting solid partitions on orbifolds

4.1 Orbifolding the quiver

As we showed in section 3, eight-dimensional instanton dynamics is encoded in the

representation theory of the quiver depicted in Fig.1, with relations

(4.1) [Ba, Bb] = 0, 1 ≤ a < b ≤ 4
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N k

Figure 1: Local model for the Quot scheme of points.

and a stability condition.10 The moduli space of its stable representations Mk,N

is isomorphic to the quot scheme of points QuotA4(O⊕N , k) or, equivalently, to the

moduli space of framed torsion free sheaves on P4, as we briefly show in appendix B.1.

This isomorphism follows from an application of Beilinson’s theorem or, equivalently,

from an infinitesimal argument due to [48].

The next natural step is then to study eight-dimensional instanton dynamics on

orbifolds of C4. Then we let G be a finite subgroup G ⊂ SU(4), and study instantons

on C4/G. From the open string theory perspective this amounts to consider twisted

representations of the Chan-Paton factors under the discrete group G, which man-

ifest in the low energy quiver dynamics of fractional and regular branes [49]. The

mathematical counterpart of the quiver ADHM-like description for orbifold instan-

tons on C4 can be obtained as an application of Beilinson’s theorem which is outlined

in appendix B.2.

The useful thing to point out here is that the monad description for the moduli

space MG
k,N of orbifold instantons, which can be obtained by means of homological

algebra, is then given in terms of a sequence of maps between vector spaces. These

maps can be easily understood as an equivariant decomposition (in terms of the

G-action) of the maps and vector spaces arising in the quiver description of Mk,N .

If we introduce the action of G on the coordinates zα in C
4 by rαzα, we have a

decomposition of the fundamental representation Q = ρr1 ⊕ · · · ⊕ ρr4 , where ρrα
denotes the irreducible representation of G with weight rα. This decomposition also

defines a coloring N⊕4 → G by

(n1, n2, n3, n4) 7→ ρ⊗n1
r1
⊗ ρ⊗n2

r2
⊗ ρ⊗n3

r3
⊗ ρ⊗n4

r4
.

Correspondingly we also have decompositions of the vector spaces

W =
⊕

r

Wr ⊗ ρ∨r , V =
⊕

r

Vr ⊗ ρ∨r ,

9We denote by fa(Nb + 1) the function fa(N) with Nb → Nb + 1.
10Strictly speaking we showed that the moduli space of SU(4) instantons can be identified with a

space of matrices cut by equations (4.1) plus an additional real constraint, modulo gauge symmetry.

Though it have not rigorously been proved as of this writing, it is believed that the last real condition

can be traded for a stability condition, so that the moduli space of instantons may be identified

with stable representations of a quiver with relations.
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where all of theWr, Vr are finite dimensional vector spaces carrying a trivialG-action.

The corresponding decomposition of the dimensions k = dimC V , N = dimCW is

then induced as

k =
∑

r

kr =
∑

r

dimC Vr, N =
∑

r

Nr =
∑

r

dimCWr.

Here kr = dimC Vr represents the fractional instanton charge in the ρ∨r representation

of G, which, from an equivariant localisation point of view, will specify the number

of boxes of r-th type in a G-colored solid partition. On the other hand, the gauge

sheaf at infinity transforms in a given representation ρ of G, and the Nr dimensions

determine the multiplicities of the decomposition of ρ in irreducible representations.

If the theory is abelian, i.e. N = 1, only one of the Nr is not zero, and equal

to one, while in the case of a non-abelian theory one is given with a plethora of

different possibilities. We will restrict our attention to the abelian case for the

moment. The decomposition of V then induces a decomposition of the linear maps

Bα ∈ HomG(V,Q⊗ V ) as

B =
⊕

r

(Br
1, B

r
2, B

r
3, B

r
4),

so that Br
α : Vr → Vr+rα. This decomposition immediately gives us the orbifold

generalisation of the 8d ADHM equations as

(4.2) Br+rα
β Br

α = B
r+rβ
α Br

β.

In general, even for abelian theories, one should consider different cases (correspond-

ing in the abelian case to which one of theWr vector spaces has non-vanishing dimen-

sion). These different choices correspond to instanton configurations with different

asymptotics at infinity. One can however argue along the lines of [50] that moduli

spaces corresponding to different asymptotics are isomorphic, so that when comput-

ing partition functions we will just consider the distinguished boundary condition

N = (1, 0, . . . , 0).

As in the lower dimensional cases (see [13, 50, 51]) all the information about

the moduli space of orbifold instantons can be encoded in the datum of a quiver

generalising the McKay quiver, which is determined by the representation theory

data of the G-action. This quiver will moreover encode the decomposition of the

usual ADHM data according to the G-action and it will have the orbifold ADHM

equations as relations. One then starts considering all the irreducible representations

Ĝ of G ⊂ SL(4,C). To each representation in Ĝ, including the trivial one, we

associate a node in the quiver, while a node r is connected to a node s by a number

of arrows ars which is determined by the decomposition

Q⊗ ρr =
⊕

s

arsρs, ars = dimCHomG(ρs, Q⊗ ρr).
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To the resulting quiver Q we also associate the framed quiver Qf , its path algebra

CQf , and the bounded quiver (Qf ,R) determined by an ideal 〈R〉 of relations in CQf .

Its representations form the category Rep(Qf ,R), which is equivalent to the A-mod

category of left A-modules for the factor path algebra A = CQf/〈R〉. Moreover,

to each vertex v of Q one can associate a simple module Dv, defined to be the

representation Vv ∼= C and Vw = 0, for v 6= w. Projective resolutions of the simple

modules Dv can be constructed by means of the submodule Pv of A generated by

paths beginning on vertex v

· · · ⊕
w d

p
w,vPw · · · ⊕

w d
1
w,vPw Pv Dv 0,

where

dpv,w = dimC Ext
p
A
(Dv,Dw).

In the lower dimensional case a special role is played by representations Rep(Q,R)

of the bounded quiver with dimensions kr = 1 and dimCW = 1, as it turns out they

correspond to smooth crepant resolutions of toric singularities. In some cases also the

path algebra A is a different desingularisation by itself, known as the noncommutative

crepant resolution of the toric singularity, which contains the coordinate ring of the

singularity as its center. In four complex dimensions, however, a crepant resolution of

the orbifold singularity is not even granted to exist, though in some simple classes of

examples this is known to be the case [52, 53]. Take as an example the case of C4/Z4

with the diagonal action (z1, z2, z3, z4) 7→ (ζz1, ζz2, ζz3, ζz4), where ζ = e2πi/4 = i.

As Q = ρ1 ⊕ ρ1 ⊕ ρ1 ⊕ ρ1, rα = 1 for each α = 1, . . . , 4 and the relevant associated

quiver Q is then

0

1 2

3

and the maps Br
α : Dr → Dr+rα mod 4 are of the form

B0
α : D0 → D1,

B1
α : D1 → D2,

B2
α : D2 → D3,

B3
α : D3 → D0.
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The relevant relations for the unframed quiver are obtained by decomposing accord-

ingly the ADHM equations, thus obtaining

B1
2B

0
1 = B1

1B
0
2 , B1

3B
0
1 = B1

1B
0
3 , B1

4B
0
1 = B1

1B
0
4 , B1

3B
0
2 = B1

2B
0
3 ,

B1
4B

0
2 = B1

2B
0
4 , B1

4B
0
3 = B1

3B
0
4 , B2

2B
1
1 = B2

1B
1
2 , B2

3B
1
1 = B2

1B
1
3 ,

B2
4B

1
1 = B2

1B
1
4 , B2

3B
1
2 = B2

2B
1
3 , B2

4B
1
2 = B2

2B
1
4 , B2

4B
1
3 = B2

3B
1
4 ,

B3
2B

2
1 = B3

1B
2
2 , B3

3B
2
1 = B3

1B
2
3 , B3

4B
2
1 = B3

1B
2
4 , B3

3B
2
2 = B3

2B
2
3 ,

B3
4B

2
2 = B3

2B
2
4 , B3

4B
2
3 = B3

3B
2
4 , B0

2B
3
1 = B0

1B
3
2 , B0

3B
3
1 = B0

1B
3
3 ,

B0
4B

3
1 = B0

1B
3
4 , B0

3B
3
2 = B0

2B
3
3 , B0

4B
3
2 = B0

2B
3
4 , B0

4B
3
3 = B0

3B
3
4 .

The center Z(A) of the path algebra A associated to the bounded quiver is generated

as a ring by elements

xαβγδ = B3
αB

2
βB

1
γB

0
δ , α ≤ β ≤ γ ≤ δ.

As the G-action is chosen to be diagonal one can identify the generators xαβγδ with

the invariant elements in C[z1, z2, z3, z4] by xαβγδ  zαzβzγzδ, so that

SpecZ(A) ∼= C
4/Z4

and the factor path algebra A is a resolution of the orbifold singularity C4/Z4.

4.2 Orbifold partition function

The K-theoretic instanton partition function in eight dimensions has been studied

in [7] by means of supersymmetric localisation in terms of the quantum mechanics

of a D0-D8 system. In the abelian case the moduli space of BPS vacua is identified

with the Hilbert scheme of points of C4. In the general case of a proper Calabi-

Yau fourfold X , the Hilbert scheme of points X [n] is known to carry an obstruction

theory, though not perfect. The mathematical definition of the DT-like invariants

corresponding to the instanton partition function is made difficult precisely by the

latter fact. It is known that they depend on the choice of an orientation of the virtual

tangent space and that they need insertions in order to be defined properly. Indeed,

if Z ⊆ X [n]×X denotes the universal object, then the virtual tangent space to X [n]

can be written as

T vir
X[n] = RH omπ

X[n]
(IZ , IZ)0[1] = RπX[n],∗ ◦RH om(IZ , IZ)0[1],

and this obstruction theory is not perfect. However, the machinery put forward by

the work of Borisov-Joyce, [54], and more recently by Thomas [22], one can still

construct a virtual fundamental class [X [n]]viro(L) depending on the choice of a square

root of the isomorphism Q : L × L → O , where L = detRH omπ
X[n]

(IZ , IZ). As,

however, we are interested in the case of a quasi-projective variety, namely (C4)[n], the
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previous observations don’t provide direct access to definitions of relevant invariants.

Equivariant localisation (with respect to the action of T = {(t1, t2, t3, t4) ∈ (C∗)4 :

t1t2t3t4 = 1} ⊂ (C∗)4), however, does provide an easy way out. For a thorough

description of this procedure, see [21]. For us, let it suffice to say that, given any

T-equivariant line bundle L on X , one can define the following K-theoretic invariant,

with a slight abuse of notation

ZK
X (L, y) = χ

(
X [n], Ôvir ⊗

∧•(L[n] ⊗ y−1)

det1/2(L[n] ⊗ y−1)

)

=
∑

S∈(X[n])T

(−1)o(L)|Se
(√

ObX[n] |S
fix
) ch

(√
Kvir

X[n] |S
1/2
)

ch
(∧•√Nvir|S

∨) ·

· ch
(∧•(L[n] ⊗ y−1)

)

ch
(
det1/2(L

[n]⊗y−1)
) td

(√
T vir
X[n] |S

fix
)
,

where L[n] = RπX[n],∗(Rπ
∗
XL ⊗ OZ) and the choice of the square root of the virtual

tangent space at a fixed point S induces those of ObX[n] |S = h1(T vir
X[n]), K

vir
X[n] |S =

det(T vir
X[n] |∨S) and Nvir|S = (T vir

X[n] |S)mov. Before moving on, let us also notice that the

choice that square roots is not unique, so that the invariants at hand are defined

only up to a sign. Precisely this definition of ZK
X (L, y) is what the partition function

of the D0-D8 system computes, with a given prescription for the orientation choice.

All these considerations translate into the physical treatment of the problem,

where the supersymmetric measure corresponding to the bulk contribution to the

Witten index manifest ghost number anomaly, reminiscent of the positive virtual

dimension of the underlying moduli space. Then, in the absence of the Ω deforma-

tion, the Witten index is vanishing unless observables matching the ghost number

anomaly are inserted. This can be neatly done by adding auxiliary hypermultiplets

representing the matter deformation necessary in order to cure the anomaly. A sim-

ilar story goes for the non-abelian case, which generalises the moduli space to the

Quot scheme of points of C4, and was studied in [8]. In general the partition function

takes the form

ZD8
N =

∑

k

ZD8
N,kq

k,

where ZD8
N,k is computed by the JK integration

ZD8
N,k =

∫

JK

Z1−loop
N,k dku =

1

k!

∑

u∗∈Msing

JK-Resu∗,ζ χkd
ku

and the instanton measure χk is defined by

χk ∝
∏

i>j

sin2(ui − uj)
∏3

a<b sin(ui − uj − ǫa − ǫb)∏3
a=1 sin(ui − uj − ǫa) sin(uj − ui − ǫa)

k∏

i=1

N∏

α=1

sin(ui −mα)

sin(ui − aα)
.
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It is then known that poles contributing to the JK integration are only those cor-

responding to N -tuples of solid partitions π = (π1, . . . , πN), such that |π| = |π1| +
· · · + |πN | = k. It turns out it is more convenient to work with exponential vari-

ables ta = e2iǫa , xi = e2iui , να = e2iaα and µα = e2imα , in which case we have

ZD8
N,k =

∑
|π|=kMz

(π), with

M
z
(π) = Resx=xπ

χk

∏

i

dxi
xi

and

χk =
∏

i 6=j

(xj − xi)
∏3

a<b(xj − xitatb)∏4
a=1(xj − xita)

k∏

i=1

N∏

α=1

µα − xi
να − xi

up to a normalisation constant. It also turns out that a more geometric interpretation

for the index computation is available. Indeed, in the rank one case, if Q denotes

the character of a solid partition and
√
V =

∑
µ t

µ−∑ν t
ν ∈ KT

0 (pt) is the character

of the square root of the virtual tangent space to the BPS moduli space at a fixed

point, one has √
V = Q− P 123QQ,

where P123 = (1 − t1)(1 − t2)(1 − t3) and the involution acts on the generators of

KT

0 (pt) as ti = t−1
i . Then

M
z
(π) = (−1)h(π)

[
−
√

Ṽ

]
,

with

h(π) = |π|+#{(a, d) : (a, a, a, d) ∈ π and a ≤ d},
√

Ṽ =
√
V − yQ, while the action of the brackets operator [•] on • ∈ KT

0 (pt) is

defined as

[V] =

∏
µ[t

µ]
∏

ν [t
ν ]

=

∏
µ(t

µ/2 − t−µ/2)
∏

ν(t
ν/2 − t−ν/2)

.

The same procedure might be followed in order to compute partition functions

for orbifold instantons. In this case, however, the bosonic field content is the one

associated to the morphisms of the quiver specifying the natural crepant resolution of

the orbifold singularity, provided it exists. Let us notice here that as G ⊂ SL(4,C) is

contained in the localising torus T the locus on which the computation localises can

be identified with the G-invariant part of the T-fixed one. Moreover, as the geomet-

rical interpretation is that of an equivariant count of G-equivariant zero-dimensional

schemes, in order to perform computation one can proceed by simply extracting the

G-invariant part
√

Ṽ
G

of
√
Ṽ.

In the case of an orbifold theory the JK residue form gets easily generalised. Let

us consider for the sake of simplicity the case of C2/Zn×C2. The bosonic field content
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is now encoded in the relevant quiver describing the resolution of the orbifold. Let

then Q0 and Q1 be the node set and the edge set of the quiver. We have

Zorb
N

=
∑

k

qkZorb
N,k
,

with qk =
∏

a∈Q0
qkaa and

Zorb
N,k

=

∫

JK

Z1−loop

N,k
dkx =

∑

u∗∈Msing

JK-Resu∗,ζ χ
orb
k

dkx,

where we denote by x the collection of coordinates associated to the gauge nodes in

Qf , i.e. x = (x
(0)
1 , . . . , x

(0)
k0
, . . . ) and

dkx =
∏

a∈Q0

ka∏

i=1

dx
(a)
i

x
(a)
i

.

The orbifold instanton measure χorb
k

can be easily read off the edge set Q1 of the

quiver, and we have:

χorb
k
∝
∏

a∈Q0

1

ka!
Z

(a)
f/afZ

(a)
adjZ

(a)
bif ,

where Z
(a)
f/af , Z

(a)
adj, Z

(a)
bif encode the bosonic field content of the theory in the funda-

mental/antifundamental, adjoint and bifundamental representation of the a-th node

respectively. In particular we have

Z
(a)
f/af =

ka∏

i=1

Na∏

α=1

µ
(a)
α − x(a)i

ν
(a)
α − x(a)i

,

Z
(a)
adj =

ka∏

i 6=j

(x
(a)
j − x(a)i )(x

(a)
j − x(a)i t1t2)

(x
(a)
j − x(a)i t3)(x

(a)
j − x(a)i t4)

Z
(a)
bif =

ka∏

i=1

ka+1∏

j=1

(x
(a)
i − x(a+1)

j t1t3)(x
(a)
i − x(a−1)

j t2t3)

(x
(a)
i − x(a+1)

j t1)(x
(a)
i − x(a−1)

j t2)
,

with the node indices being understood to be a (mod n).

Remark 4.1. The JK integral formula for the 4-fold orbifold partition function im-

mediately reduces to the integral formula for orbifold counting on 3-folds after the

specialisation µ t4, as is to be expected. ◭

4.3 An example: C2/Z2 × C2

As an example let us consider a local P1 realised as TotP1 (O(−2)⊕O⊕2). This can

be understood as the canonical crepant resolution of the orbifold singularity C
4/Z2

∼=
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C2/Z2 × C2, with the Z2-action defined as (z1, z2, z3, z4) 7→ (ζz1, ζ
−1z2, z3, z4). The

ADHM data associated to the orbifolded C2 directions can be decomposed according

to the Z2-action in irreducible Z2 representations as we described in section 4.1. The

relevant quiver then takes the following form

N0 N1k0 k1

Figure 2: Orbifolded C4/Z
(1,−1,0,0)
2 quiver

For the sake of simplicity we will restrict to the case N = 1, which enforces

N = (1, 0) by the construction in [13] and the observations in 4.1. Supersymmetric

localisation can be exploited in order to compute partition functions. As Z2 is a

subgroup of the localising torus T ∼= (C∗)3, the relevant fixed points will simply be

identified to be the Z2–invariant locus of the T–fixed one. In particular, as the T

and the Z2-actions commute and as the T–fixed locus of the theory on C4 is into

bijective correspondence with solid partitions, if we take the framing to be in the

trivial representation of Z2 their Z2–analogue will be identified with solid partitions

πZ2 decorated by a Z2–coloring, which must be compatible with the action of Z2 on

C4. By identifying solid partitions themselves with Z2 representations, this coloring

is in fact induced by the coloring (n1, n2, n3, n4) 7→ ρ⊗n1
r1
⊗ ρ⊗n2

r2
⊗ ρ⊗n3

r3
⊗ ρ⊗n4

r4
we

described in section 4.1. One way we can construct these Z2–colored solid partitions

goes as follows: let |π| = k and fix an ordinary partition µ = (µ1, µ2, . . . , µℓ), |µ| ≤ k,

colored according to Z2–action, then associate to each one of the boxes of the Young

diagram of µ another partition λs, so that
∑

s∈µ |λs| = n, and the partitions λs must

satisfy a nesting relation in either direction of µ. Graphically we have

p ∈ fixed locus ←→

λ1,1 λ1,2 . . . λ1,µ1

λ1,1 λ1,2 . . .
...

...
...

λℓ,1 · · · λℓ,µℓ

,

with λi,j ⊃ λi,j+1 and λi,j ⊃ λi+1,j , for (i, j) ∈ µ. The coloring of the resulting

solid partition is then induced by a coloring of the Young diagram µ, where each λs
acquires the same color as the underlying box s ∈ µ. The main difference from the

standard instanton counting consists then in the fact that only Z2-invariant boxes in

πZ2 are now going to contribute to the computation of the partition functions.
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Example 4.1. Consider the case N = 1, k = 2 of the cohomological limit of the K-

theoretic partition function we discussed in the previous sections. This cohomological

limit can be interpreted geometrically as follows: the Chern character provides a

natural transformation from the T-equivariant K-theory to the T-equivariant Chow

group with rational coefficient by ti 7→ esi, with si = cT1 (ti). This natural map

can be extended to complex coefficients as tbi 7→ ebsi, b ∈ C, and it gives a simple

linearisation of the K-theoretic brackets [•] = •1/2−•−1/2 operator ch[tbµ] = beT(t
µ)+

O(b2). This linearisation property can be employed to define a map ZD8
N,k
7→ ZD8,coh

N,k
,

which can in turn be identified with the rational limit of the trigonometric partition

function, from a physical standpoint. The rational partition function is also given an

integral representation in terms of JK residues, which also depends on all possible

decompositions of (k,N) in (k,N).

Coming back to the particular case of (k,N) = (2, 1), one can see that the only

possible solid partitions with two boxes are

(4.3) π1 = [11] [11] , π2 =
[11]

[11]
, π3 = [21] , π4 = [12] .

The same solid partitions may also be visualised in the following way:

(4.4) π1 =
1

1 , π2 =
1

1 , π3 = 1

1

, π4 =
2

,

where the number on the (i, j, k) box of each plane partition denotes the height of a

pile of boxes stacked on (i, j, k) along the ǫ4 direction. The corresponding fixed points

labelled with the coloring corresponding to the orbifold action will then be

(4.5) π1 = [11] [11] , π2 =
[11]

[11]
, π3 = [21] , π4 = [12] .

The partition function (equivariant under T0 = (C∗)3|s1+s2+s3+s4=0) for the non orb-

ifolded theory then reads

(4.6)

ZD8
1,2 (ǫ; q) =

q2

2

(
m2(ǫ1 + ǫ2)

2(ǫ1 + ǫ3)
2(ǫ2 + ǫ3)

2

ǫ21ǫ
2
2ǫ

2
3ǫ

2
4

+ 5
m(ǫ1 + ǫ2)(ǫ1 + ǫ3)(ǫ2 + ǫ3)

ǫ1ǫ2ǫ3ǫ4

)
,

while the contribution from the regular instanton sector to the orbifold partition func-

tion will be

ZD8,orb
reg (ǫ; q0, q1) =Z

D8,orb
(1,0),(2,0)(ǫ; q0, q1) + ZD8,orb

(1,0),(1,1)(ǫ; q0, q1)

=
q20mǫ12

2ǫ3ǫ123(ǫ12 + 2ǫ3)

(
(ǫ3 −m)(ǫ12 − ǫ3)

ǫ3
+

(ǫ123 +m)(2ǫ12 + ǫ3)

ǫ123

)

+
q0q1mǫ12

2ǫ3ǫ123(ǫ2 − ǫ1)

(
(2ǫ2 + ǫ3)(ǫ13 − ǫ2)

ǫ2
− (2ǫ1 + ǫ3)(ǫ23 − ǫ1)

ǫ1

)
,
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with ǫi = cT1 (ti), ǫij = ǫi+ǫj and similarly ǫ123 = ǫ1+ǫ2+ǫ3. The previous formula can

be either obtained through an integral formula and iterated residues, or by generalising

the geometric correspondence of [8] to the orbifold case

ZD8,orb
reg (ǫ; q0, q1) =

∑

|π|=2

(−1)h(π)eT
[
−
(√

T vir
π

)Z2
]
q
|π|0
0 q

|π|1
1 ,

where
√
T vir
π is a square root of the virtual tangent space T vir

(C4)[k]
|π and |π|i denotes the

number of boxes in π, seen as Z2-modules, transforming in the ρi-th representation

of Z2.
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A Review of the 4d ADHM construction

A.1 Self-dual connections in 4d

In this appendix we recall some basic facts about the standard ADHM construction

[4] of the solutions to the self-duality equation on R4:

(A.1) Fµν =
1

2
ǫµνλρFλρ,

where Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] is the curvature of a U(N) connection. The

instanton number is defined as

(A.2) k =
1

16π2

∫
d4x ǫµνλρ tr(FµνFλρ)

We denote the moduli space of self-dual U(N) connections of instanton number k by

Mk,N . The (virtual) dimension of the moduli space of instantons is by definition the

number of independent deformations

(A.3) (δαµδ
β
ν −

1

2
ǫαβµν)DµδAν = 0,

minus the number of gauge degrees of freedom:

(A.4) δAµ ∼ Dµφ,
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where Dµ is the covariant derivative in the background Aµ. This difference can

be understood as the index of the elliptic complex (this requires certain vanishing

theorem for the cohomologies in degrees 0 and 2):

(A.5) C : 0→ Ω0(R4, su(N))
DA→ Ω1(R4, su(N))

(1−∗)DA→ Ω2
+(R

4, su(N))→ 0,

which by the Atiyah-Singer index theorem is given by

(A.6) dimMk,N = ind C = 4Nk.

A.2 ADHM data and equations

In the ADHM construction we consider a complex (2k+N)×N matrix U satisfying

the equation

(A.7) ∆†(x)U(x) = 0,

where ∆(x) is a (2k +N)× 2k complex matrix

(A.8) ∆(x) =



B†

2 − z∗2 −B1 + z1
B†

1 − z∗1 B2 − z2
I† J


 ,

and z1 = x2 + ix1, z2 = x4 + ix3. The auxiliary matrix ∆(x) is required to satisfy

the moment map equation

(A.9) ∆†(x)∆(x) = 12×2 ⊗ f−1
k×k(x),

where f(x) is a k×k invertible matrix. Eq. (A.9) leads to the well-known conditions

on B1,2, I and J :

(A.10) µC = [B1, B2] + IJ = 0, µR = [B1, B
†
1] + [B2, B

†
2]− II† + J†J = 0.

One has to normalize U so that

(A.11) U †U = 1N×N .

In other words, the matrix U defines a basis of N orthonormal vectors inside C2k+N .

The columns of the matrix ∆(x) form a set of k linearly independent vectors inside

C2k+N (the linear independence is guaranteed by Eq. (A.9)). Eq. (A.7) means that

the basis defined by U is orthogonal to the set of 2k vectors inside C2k+N defined

by ∆(x). Together the columns of U and ∆ form a complete basis in C2k+N , and

therefore:

(A.12) 1(2k+N)×(2k+N) − U(x)U †(x) = ∆(x)(12×2 ⊗ fk×k(x))∆
†(x).
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The self-dual connection Aµ(x), corresponding to the matrix U(x) is given by

(A.13) Aµ(x) = U †∂µU(x).

It is easy to show that the connection (A.13) is indeed self-dual:

(A.14) Fµν = ∂µU
†∂νU(x)− ∂νU †∂µU(x) + [U †∂µU(x), U

†∂νU(x)] =

= (∂[µU
†)(1− UU †)(∂ν]U

†) = U †(∂[µ∆(x))(12×2 ⊗ fk×k(x))(∂ν]∆
†(x))U =

= U †(σµν ⊗ fk×k(x))U,

where

(A.15) σµν = σµσ̄ν − σν σ̄µ = iηaµνσa,

and σµ = (1, i~σ), σ̄µ = σ†
µ = (1,−i~σ), ηaµν is the ’t Hooft symbol. The matrices

(σµν)α
β when seen as matrices with indices µν are known to be self-dual. In fact they

give an intertwining operator between the three-dimensional representation Λ2
+R

4 of

SO(4) and the adjoint representation of SU(2)+, which is part of Spin(4) = SU(2)+×
SU(2)−, so that

(A.16) Λ2
±R

4 = adjSU(2)± .

The moduli space Mk,N of solutions to the ADHM equations is the space of matrices

(B1, B2, I, J) obeying µC = 0 and µR = 0 quotiented by the action of U(k) group

(indeed, constant U(k) transformations don’t change the connection (A.13)). The

resulting dimension of the moduli space is

(A.17) dimR Mk,N = 2k2︸︷︷︸
B1

+ 2k2︸︷︷︸
B2

+2Nk︸︷︷︸
I

+2Nk︸︷︷︸
J

− 2k2︸︷︷︸
µC

− µR︸︷︷︸
k2

− k2︸︷︷︸
/U(k)

= 4Nk,

is equal to the dimension of the tangent (A.6), as it should.

A.3 Spinor formalism

Let us see how the ADHM equations can be formulated using spinors. Let γµ,

µ = 0, . . . , 4 be four-dimensional gamma-matrices generating the algebra Cliff(4).

Then we have

(A.18) γµγνγλγρ = ǫµνλργ5,

where γ5 is the chirality operator. Let ψ± be a positive (resp. negative) chirality

spinor of Spin(4)

(A.19) γ5ψ± = ±ψ±,
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normalized so that ψ†
±ψ± = 1. We can then trivially write that

(A.20) ψ†
±γ

µγνγλγρψ± = ±ǫµνλρ.

Notice that this identity is independent of the concrete value of ψ±. We can thus

write the self-duality condition for Fµν as

(A.21) Fµν =
1

2
ψ†
+γ

µγνγλγρψ+Fλρ.

Alternatively, one can notice that

(A.22) γµν =
1

2
[γµγν ] =

(
σµν 0

0 σ̄µν

)
=

(
ηaµνiσ

a 0

0 η̄aµνiσ
a

)
,

where σ̄µν = σ̄[µσν], so that the projection on the self-dual part of Fµν can be written

as

(A.23) γλγρψ−Fλρ = 0, or σ̄λρFλρ = 0.

Eq. (A.23) contains three independent equations on the components of Aµ(x). The

forth equation is provided by the gauge fixing condition, e.g. ∂µAµ = 0, so that the

total number of components is equal to the total number of (first order) equations.

After imposing the equations no functional degrees of freedom in Aµ(x) remain, and

the moduli space of solutions Mk,N is finite-dimensional.

A.4 Hyperkähler reduction and complex structure(s)

We have considered self-duality equations in R4 without any reference to a specific

choice of the complex structure. However, we can incorporate complex structure in

our construction. R4 is a hypekähler manifold with three basis complex structures

I, J and K11 satisfying the usual quaternionic relations. Correspondingly, there are

three Kähler forms ωI , ωJ and ωK.

These forms can be used to give the structure of the hyperkähler manifold to the

space A of U(N) connections on R
4. Indeed, the metric on the space of connections

is induced from the flat metric on R4

(A.24) ds2[δ1Aµ(x), δ2Aµ(y)] =

∫

R4

tr δ1Aµ(x)δ2Aµ(x),

and we can write the symplectic forms on A as follows

(A.25) Ωa[δ1Aµ(x), δ2Aµ(y)] =

∫

R4

ωa ∧ tr δ1A(x) ∧ δ2A(x),

11There is in fact a S2 worth of complex structures. Indeed, aI + bJ + cK is a complex structure

as long as a2 + b2 + c2 = 1.
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where a = I, J,K. All three ωa are actually self-dual two-forms. One can then verify

that the action of G on A is Hamiltonian for all three symplectic forms Ωa, and the

corresponding three moment maps are

(A.26) µa[φ(x)] =

∫

R4

ωa ∧ tr(φ(x)F (x)),

where F = dA + [A,A] is the field strength. Requiring moment maps to vanish we

get precisely the self-duality equations:

(A.27) ωa ∧ F = 0.

Indeed, Eq. (A.27) mean that the anti-self-dual part F vanishes. The space of self-

dual connections can be thought of as the hyperkähler reduction of A by the group

G of all gauge transformations. If we introduce Ak as the space of connections with

instanton number k then we can write

(A.28) Mk,N = Ak///G.

Let us choose a complex structure I, such that z1 and z2 defined as in Eq. (A.8)

are the holomorphic coordinates. Only a subgroup U(2) ⊂ SO(4) of rotations pre-

serves this choice. The choice of the complex structure I singles out one of the Kähler

forms ωI , which can be written as

(A.29) ωI = ωR = dz1 ∧ dz̄1 + dz2 ∧ dz̄2.

The other two forms ωJ and ωK can be recast into the holomorphic symplectic form

(and its conjugate)

(A.30) ωJ + iωK = ωC = dz1 ∧ dz2.

The subgroup of SO(4), which preserves both the complex structure I and ωC is

SU(2) ⊂ U(2) (the remaining U(1) ⊂ U(2) rotates the phase of ωC). The field

strength Fµν breaks into the following irreducible representations of SU(2) (we also

list the number of components):

(A.31) Fµν =





F
(2,0)
z1z2 = Fµν(ω

−1
C
)µν , dim = 1,

F
(0,2)
z̄1z̄2 = Fµν(ω̄

−1
C
)µν , dim = 1,

F
(1,1)
ω = Fµν(ω

−1
R
)µν , dim = 1,

(F
(1,1)
0 )ziz̄j = F

(1,1)
ziz̄j − 1

2
F

(1,1)
zk z̄l (ω

−1
R
)zk z̄l(ωR)ziz̄j , dim = 3.

The first three one-dimensional pieces turn out to be self-dual (they are projections

on ωa), while the three-dimensional representation is anti-self-dual. Having these

identifications it is easy to see that the moment map equation (A.9) is just the

requirement that the ∆†∆ lies in the self-dual part 1 of the tensor product of SU(2)

representations 2̄⊗ 2 = 3⊕ 1.
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A.5 Non-commutative deformation.

The instanton moduli space Mk,N contains singularities, which correspond to instan-

tons of zero size. A clever way to regularize the moduli space is to consider instantons

on the non-commutative spacetime R4 with coordinates satisfying:

(A.32) [xµ, xν ] = iθµν ,

where θµν is a constant 2-form. We further assume that θµν is anti-self-dual, then

with an SO(4) rotation it can be aligned with one of the three basis Kähler structures,

e.g.

(A.33) θµν =
ζ

4
η̄3µν ,

where ζ is a real non-commutativity parameter which we take to be positive.

As shown in [5], the ADHM construction for the non-commutative case requires

only a minor update. The expression (A.8) for ∆(x) is still valid and the condi-

tions (A.9) still holds. However, since the coordinates no longer commute, one of the

moment maps is modified:

(A.34) µR = [B†
1, B1] + [B†

2, B2] + II† − J†J = ζ1k×k.

Notice that after the non-commutative deformation, the instanton solutions also

appear in the U(1) gauge theory.

In string theory language, the self-dual connections we are studying correspond

to bound states of D0 and D4 branes (or, more generally Dp and D(p + 4) branes).

Non-commutativity arises if we turn on the nonzero B-field background along the

D4 brane.

A.6 Matrix form of the non-commutative self-duality equations.

In the noncommutative setting it will be convenient for us to recast the self-duality

equations in matrix form. To this end we introduce the operator analogues of co-

variant derivatives

(A.35) Xµ = xµ + iθµνAν ,

The commutator of covariant derivatives gives the field strength:

(A.36) [Xµ, Xν ] = iθµν + θµλθνρFλρ,

where the second term in the r.h.s. is due to Eq. (A.32).

The self-duality equations can be rewritten as an equation for the operators Xµ

(A.37) [Xµ, Xν ]− iθµν =
1

2
ǫµνλρ([X

λ, Xρ]− iθλρ).
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Let us choose a Kähler structure on R4 proportional to the B-field. In the complex

structure compatible with B the noncommutativity reads

(A.38) [za, z̄b] = −
ζ

2
δab, [za, zb] = [z̄a, z̄b] = 0.

We introduce complex covariant derivatives Za corresponding to complex coordi-

nates za. Eqs. (A.37) are then written as one real and one complex equation for Za

operators:

[Z1, Z2] = 0, [Z†
1, Z

†
2] = 0,(A.39)

[Z†
1, Z1] + [Z†

2, Z2] = ζ.(A.40)

The commutation relations (A.38) are of course nothing but a pair of standard

Heisenberg algebras of creation and annihilation operators, so that

(A.41) za =

√
2

ζ
a†a, z̄a =

√
2

ζ
aa,

and

(A.42) [aa, a
†
b] = δab, [aa, ab] = [a†a, a

†
b] = 0.

The operators aa, a
†
a act on the Hilbert space H, which is spanned by the eigenstates

|n,m〉 of the number operators:

(A.43) Na = a†aaa, N1|n,m〉 = n|n,m〉, N2|n,m〉 = m|n,m〉.

H can be identified with the ring of polynomials in a†a (or in za) acting on the vacuum

|0, 0〉.
The simplest solution to Eqs. (A.39) is the vacuum solution

(A.44) Za = za,

which corresponds to zero Aµ and vanishing instanton charge.

Another example of a solution is the non-commutative U(1) instanton sitting at

the origin of C2:

(A.45) Za =

√
2

ζ
S[1]a

†
a

√
N(N + 3)

(N + 1)(N + 2)
S† =

√
2

ζ
S

√
N + 2

N
a†a

√
N

N + 2
S†
[1],

where N = a†1a1 + a†2a2 and S†
[1] acts on H by relabelling the (infinite number of)

basis vectors, so that the state |0, 0〉 does not belong to its image. An example of

such a transformation is

(A.46) S†
[1]|n,m〉 =

{
|n,m〉 m 6= 0,

|n+ 1, m〉 m = 0.
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The solution (A.45) is non-singular (all of its matrix elements are well-defined) and

invariant under U(2) rotations of the space-time C2 (the operator S[1] is invariant

only up to a unitary transformation, which can be viewed as a gauge transformation).

We give some more examples of instanton solutions invariant under U(1)2 ⊂ U(2) in

A.8.

A.7 U(1) instantons and ideals

Let us recall the correspondence between U(1) noncommutative instantons and ideals

in the ring of polynomials C[z1, z2]. The matrix U for gauge group U(1) is a (2k+1)-

dimensional column vector, which we write as

(A.47) U(z) =



ψ1(z)

ψ2(z)

ξ(z)


 ,

where ψ1,2(z) are two k-dimensional column vectors of polynomials and ξ(z) is a

polynomial. Eq. (A.7) for U is then equivalent to two equations

Iξ(z) = (z2 −B2)ψ1(z) + (z1 − B1)ψ2(z),(A.48)

0 = (B†
1 − z̄1)ψ1(z) + (z̄2 − B†

2)ψ2(z).(A.49)

Eq. (A.48) implies (see e.g.[55] for details) that ξ(z) belongs to an ideal I ⊂
C[z1, z2] of polynomials which vanish when one subsitutes in them matrices B1,2

instead of the variables z1,2. Indeed, acting with Eq. (A.48) on the states |n,m〉 ∈ H
we get

(A.50) ξ(z)|n,m〉I = (z2 −B2)ψ1(z)|n,m〉+ (z1 − B1)ψ2(z)|n,m〉.

After the substitution z1,2 → B1,2 we get

(A.51) ξ(B1, B2)|n,m〉I = 0.

Acting with Bk
1B

l
2 on Eq. (A.51) and using the commutativity of B1 and B2 we

see that ξ(B1, B2)|n,m〉 is zero on the whole Ck, so it is a zero matrix and thus

ξ(B1, B2) = 0 as a matrix equation. This determines the ideal completely. Vice

versa, each element ξ(z) of I by definition can be written as a linear combination

from Eq. (A.48), but not uniquely: one can shift

ψ1(z)→ ψ1(z) + (z1 − B1)χ(z),(A.52)

ψ2(z)→ ψ2(z) + (z2 − B2)χ(z),(A.53)

for any column-vector χ(z). To fix a unique decomposition we have to gauge fix the

symmetry (A.52), (A.53), which is done by requiring Eq. (A.49) (note that z̄a act as

the derivatives in za).
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For the single U(1) instanton solution described in the previous section we have

B1 = B2 = 0, I =
√
ζ and

(A.54) U(z) =




z̄2
z̄1

1√
ζ
(z1z̄1 + z2z̄2)


λ(z).

For any λ(z) the vector (A.54) solves (A.7). However to satisfy the normalization

condition (A.11), we have to put the following normalization factor instead of λ(z):

(A.55) N =
1√

(z1z̄1 + z2z̄2)(z1z̄1 + z2z̄2 + ζ)
S†.

The solution (A.45) is obtained from the normalized U(z) as

(A.56) Za = U †zaU, Z†
a = U †z̄aU.

A.8 4d fixed point instantons

We give here some examples of noncommutative instanton solutions on R4 which are

equivariant under the U(1)2 subgroup of SO(4). The ideals in C[z1, z2] corresponding

to these solutions are monomial ideals enumerated by Young diagrams.

All the solutions have the form

(A.57) Za =

√
ζ

2
SY hY (N1, N2)

−1a†ahY (N1, N2)S
†
Y ,

where SY is the partial isometry associated with the monomial ideal labelled by the

Young diagram Y , Na = a†aaa and

(A.58) hY (N1, N2) =

√
gY (N1, N2)

gY (N1 + 1, N2 + 1)
.

Let us display the functions gY (N1, N2) for some elementary Young diagrams

g[1] = N,(A.59)

g[2] = N2 −N1 +N2,(A.60)

g[1,1] = N2 +N1 −N2,(A.61)

g[3] = N(N2 − 3(N1 −N2) + 2,(A.62)

g[1,1,1] = N(N2 + 3(N1 −N2) + 2,(A.63)

g[2,1] = (N − 1)N(N + 1),(A.64)

g[3,2,1] = (N − 2)(N − 1)N2(N + 1)(N + 2).(A.65)

where N = N1+N2. The first solution (A.59) is the one-instanton solution discussed

in sec. A.6. One can check that for any function gY given above the matrix equa-

tions (A.39), (A.40) are indeed satisfied. In fact Eq. (A.39) is satisfied automatically
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by the ansatz (A.57), and it is only necessary to check a single recurrence relation

for the function h(N1, N2):

(A.66)

2∑

a=1

{
h(N)2

h(Na + 1)2
(Na + 1)− h(Na − 1)2

h(N)2
Na

}
= 2,

which turns out to be true. Of the solutions given above only (A.59) and (A.65) are

invariant under the full SU(2) rotation symmetry. There exists an infinite family of

such fully symmetric solutions corresponding to triangular Young diagrams with

(A.67) h[k,k−1,...,1](N1, N2) =

(
1− k(k + 1)

N(N + 1)

) 1
2

=

(
(N − k)(N + k + 1)

N(N + 1)

) 1
2

.

Notice that gY (i, j) vanishes if the box (i, j) lies on the border of the Young

diagram Y . This guarantees that the action of Za and Z†
a from Eq. (A.57) is well-

defined.

B 8d instantons and sheaf cohomology

B.1 Moduli spaces of 8d instantons via Beilinson’s Theorem

Here we will briefly study moduli spaces of framed torsion-free sheaves on P4 and

their relation to spaces of SU(4) instantons (and their generalisations) on C4. Let

us first notice that, in general, if E is a torsion-free sheaf of rank N on P4 with

ch(E ) = (N, 0, 0, 0,−k), framed along a divisor D, there exists a natural sequence of

sheaves (for the proof of this result, see [48])

0 E O
⊕N
Pd Q 0,

and Q has finite support in A4 ∼= P4/D. Consider then the moduli space

(B.1)





E ∈ Coh(P4), E torsion− free, rk(E ) = N,

E O
⊕N
P4 Q s.t.

Q of finite support in A
4 ∼= P

4/D





/
iso,

parametrising torsion–free sheaves on P4 fitting in a given short exact sequence. Of

course the previous moduli space is identified with the quot scheme of points in A
4,

as the Grothendieck moduli functor

QuotP4(O⊕N , k) : Schop
C
→ Sets

contains an open subfunctor QuotA4(O⊕N , k) →֒ QuotP4(O⊕N , k) parametrising pre-

cisely the quotients above. What one might want to do is then to study a model for
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deformations of the moduli space of sheaves

Mr,n(P
4) =





E ∈ Coh(P4), E torsion− free, rk(E ) = N,

c1(E ) = c2(E ) = c3(E ) = 0, c4(E ) = k, E |℘i
∞

∼= O
⊕N
P4

H3(P4, E (−3)) = 0, H2(P4, E (−ℓ)) = 0, ∀ℓ





/
iso,

where ℘i
∞, i = 1, . . . , 4, are hyperplanes at infinity in P4 defined by zi = 0 in

homogeneous coordinates. The aim is to generalize the monad construction for the

usual SU(N) instantons to the case of C4. Let then E ∈ Coh(P4) a sheaf on P4 as in

the definition and consider P4 × P4 with the projections on the two factors

P4 × P4

P4 P4

p1 p2

One then has the Koszul resolution of O∆, ∆ being the diagonal ∆ ∼= P4 →֒ P4×P4:

0
∧4

Ô
∧3

Ô
∧2

Ô

Ô OP4×P4 O∆ 0,

where Ô = OP4(1) ⊠Q∨,12 and Q ∼= TP4(−1). The previous sequence tells us that

[O∆] ∼= [
∧• (OP4(−1)⊠Q∨)] in the derived category. We then define

Cp =

−i∧
(OP4(−1)⊠Q

∨) ,

by means of which we will define the Beilinson spectral sequence in this case. As

E ∈ Coh(P4), we have the trivial identity p1∗ (p
∗
2E ⊗ O∆) = E , and if we replace O∆

by its Koszul resolution we get the double complex for the hyperdirect image, which

can be expressed in terms of the Fourier-Mukai transform

R•p1,∗ (p
∗
2E ⊗ C•) .

There are then two different spectral sequences that can be taken for the Fourier-

Mukai transform. One of them gives back the trivial identity we started with, while

the other one has E1–term given by

Ep,q
1 = Rqp1,∗ (p

∗
2 ⊗ Cp) ,

and as Cp = F
p
1 ⊠F

p
2 , the E1–term can be written as

Ep,q
1 = F

p
1 ⊗Hq(P4, E ⊗F

p
2 ).

12For any two coherent sheaves F , G on P4, we define a sheaf on P4×P4 as F ⊠G = p∗1F ⊗p∗2G .
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This spectral sequence converges to

Eq,p
∞ =

{
E (−ℓ), if q + p = 0

0, otherwise

for each ℓ ≥ 0. We can actually make the first term in the sequence explicit:

Ep,q
1 = OP4(p)⊗Hq

(
P
4, E (−ℓ)⊗ Ω−p

P4 (−p)
)
,

and being an object in the derived category, we can summarize it by the following

complexes.

(B.2)

E−4,4
1 E−3,4

1 E−2,4
1 E−1,4

1 E0,4
1

E−4,3
1 E−3,3

1 E−2,3
1 E−1,3

1 E0,3
1

E−4,2
1 E−3,2

1 E−2,2
1 E−1,2

1 E0,2
1

E−4,1
1 E−3,1

1 E−2,1
1 E−1,1

1 E0,1
1

E−4,0
1 E−3,0

1 E−2,0
1 E−1,0

1 E0,0
1

Though the spectral sequence is naturally a doubly graded object, fixing certain

conditions on the sheaf cohomology groups makes it collapse to an ordinary sequence.

Indeed it is easy, albeit tedious, to show by means of homological algebra that the

appropriate conditions are exactly those in the definition of MN,k(P
4). By doing so,

the spectral sequence displayed in (B.2) converges to E−1,1
∞
∼= E (−2), all the other

terms being identically vanishing. Moreover the Ep,q
1 term of the Beilinson spectral

sequence is reduced to the following (B.3)

(B.3)

0 A⊗ OP4(−4) B ⊗ OP4(−3) C ⊗OP4(−2)

D ⊗OP4(−1) E ⊗ OP4 0,

where

A = H1(P4, E (−3)), B = H1(P4, E (−2)⊗ Ω3
P4(3)),

C = H1(P4, E (−2)⊗ Ω2
P4(2)), D = H1(P4, E (−2)⊗ Ω1

P4(1)),

E = H1(P4, E (−2)).

We then see that (B.3) is a perfect extended monad in the sense of [56, Definition

3.1/3.2], and it provides a model for the deformation of the Quot scheme of points on

A4. Analogously one can lift the set theoretic isomorphism between moduli spaces

of framed sheaves and quot schemes of points to a scheme theoretic isomorphism by
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virtue of a version in families of Beilinson’s theorem. Indeed, let S be a scheme over

C. Given any coherent sheaf E on Pm×S there exists a spectral sequence Ep,q
i whose

Ep,q
1 term is

Ep,q
1 = OPm(p)⊠ Rqp2,∗

(
E ⊗ Ω−p

P4×S/S(−p)
)
,

where p2 is the projection of Pm × S on the second factor. The spectral sequence

Ep,q
i converges to

Eq,p
∞ =

{
E , if q + p = 0

0, otherwise.

This approach was studied in much greater generality in [56], and more details

about the proof can be found also in [57, 58]. Moreover, the scheme-theoretic isomor-

phism between moduli spaces of framed torsion-free sheaves on P
m and quot schemes

of points on Am was recently proved by means of an infinitesimal argument in [48].

Remark B.1. The choice of conditions constraining the sheaves E ∈ CohP4 are dif-

ferent from the instanton sheaf conditions found in [59] as the latter would exclude

certain sheaf configurations, such as ideal sheaves of points, which are instead known

to be interesting to the problem at hand. ◭

B.2 Orbifold instantons and ADHM data decomposition

It is interesting to notice here that in general it is not known whether a Gorenstein

orbifold in dimension 4 admits a crepant resolution, and many singularities are ter-

minal. Nonetheless some classification results, though a bit scattered, are available.

It is known, for example, that orbifolds of the form Cr/G admit crepant resolutions

in the case of finite abelian subgroups G ⊂ SL(r,C) for which Cr/G is a complete

intersection, [60, 61], while some arithmetic condition have been derived in the case

of some series of cyclic quotient singularities [62, 63]. Moreover, contrary to the lower

dimensional cases, here the Hilbert-Chow morphism

HilbG(Cr)
π−−−−→ C

r/G

does not necessarily provide a crepant resolution, as there are even cases in which

HilbG(Cr) is singular despite C
r/G being known to have projective crepant resolu-

tions. Here HilbG(Cr) denotes the G-Hilbert scheme of zero-dimensional G-invariant

subschemes Z ⊂ Cr of length |G| such that H0(OZ) is the regular representation of

G. It turns out, however, that in some cases which will be of interest to us a canonical

crepant (projective) resolution of the orbifold singularity is indeed provided by the

G-Hilbert scheme, and toric geometry techniques are well suited to check whether

this is the case or not, [52, 53]. Let’s assume for the moment that X = HilbG(C4) is

a crepant resolution of C4/G: this will enable us to justify the ADHM data decom-

position which we will use in the following in order to study the orbifold instantons
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in eight dimensions. Take then the universal object Z ⊂ X×C4 with the projections

πi on the i-th factor.

Z

X × C4

X C4

π1 π2

We can then introducte the tautological bundle T on X by pushing forward

T = π1∗OZ .

Under the G-action, T transforms under the regular representation, and it is easy

to show that its fibers are of the form C[z1, z2, z3, z4]/I ∼= H0(OY ), where I is a G-

invariant ideal corresponding to the zero-dimensional subscheme Y ⊆ C4 of length

|G|. Multiplication by the coordinates along the fibers of T induces a G-invariant

homomorphism B ∈ Q ⊗ End(T ) (where Q denotes the regular representation of

G), which is representable by a quadruple of endomorphisms (B1, . . . , B4), such that

B ∧ B =
∑

a<b[Ba, Bb] = 0 ∈ HomG(T ,
∧2Q ⊗ T ). As we noticed in section 4.1

the regular representation Q may be decomposed in irreducible representations of G.

This induces a decomposition of the tautological bundle as

T =
⊕

r

Tr ⊗ ρr.

The monad construction for the ADHM representation of orbifold instantons then

follows from a generalisation of [13, 50, 51]. One starts from the resolution of the

diagonal in X ×X , which is

(
T ⊠T ∨ ⊗∧4Q∨)G (

T ⊠ T ∨ ⊗∧3Q∨)G (
T ⊠ T ∨ ⊗∧2Q∨)G

(T ⊠T ∨ ⊗Q∨)G (T ⊠ T ∨)G O∆.

We then compactify X to X by compactifying C4/G to P4/G and resolving

the singularity at the origin. We can do this by defining X = X ⊔ P∞, where

P∞ ∼= P
3/G. This is useful as we can then glue objects on X and G-invariant objects

on P∞ so as to get globally defined objects on X . A globally defined resolution of
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the diagonal sheaf in X ×X can then be obtained in this way, and we get

0
(
T (−4P∞)⊠ T ∨ ⊗∧4

Q∨)G (
T (−3P∞)⊠ T ∨ ⊗∧3

Q∨)G

(
T (−2P∞)⊠ T ∨ ⊗∧2

Q∨)G (T (−P∞)⊠ T ∨ ⊗Q∨)G

(T ⊠ T ∨)G O∆ 0.

The construction then follows the same strategy adopted in the previous section.

In particular, if E is a coherent sheaf on X, one can take its Fourier-Mukai transform,

where now C• is the resolution of the diagonal O∆ in X . Then, associated to the

sheaf E (−ℓ) = E ⊗OX(−ℓP∞) there is a spectral sequence Ep,q
i , whose Ep,q

1 -term is

given by

Ep,q
1 =

(
T (p)⊗Hq(X, E (−ℓ)× T

∨ ⊗
−p∧

Q
∨)

)G

.

The tensor product decomposition of the tautological bundle T as T =
⊕

Tr ⊗
ρr makes it possible to reduce the homological algebra coming from the orbifold

spectral sequence to the easier P4 case. Indeed, cohomology groups relevant to the

computations all take the form Hq(X, E (−ℓ)⊗Tr), which can in turn be interpreted

as the equivariant decomposition of the ADHM datum.
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