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Abstract

Recent theoretical and experimental advances have opened new perspectives on the

characterization of strongly correlated phases of matter, adding a new layer of understanding

based on concepts and tools borrowed from quantum information theory. We join the

effort by investigating, within dynamical mean-field theory and its cluster extension, the

local and quasilocal (i.e. short-range) quantum information content of salient landmarks

in the phase diagram of the two-dimensional Hubbard model, the cornerstone model for

the description of the physics of cuprate materials, and of a closely related model for

interacting topological states on the honeycomb lattice.

In the first part of the thesis, we focus on the dynamical mean-field theory solution of

the Kane-Mele-Hubbard model, at zero temperature. In the thermodynamic limit we

find evidence of an interaction-driven discontinuous quantum phase transition between

the Z2 quantum spin-Hall insulator and anisotropic antiferromagnetic solutions, with an

intermediate regime of coexistence of nontrivial topology and magnetic order.

A clear-cut interpretation of these results is given in terms of a rigorous quantification of

quantum and classical correlations contained in a single local orbital (which we refer to

as intra-orbital mutual information), providing a notion of "statistical distance" from the

Hartree-Fock description of the system. The resulting analysis complements the established

Green’s function based understanding of the relationship between dynamical and static

mean-field theories. In particular, we find the magnetic solutions of dynamical mean-field

theory to asymptotically approach the corresponding uncorrelated Hartree-Fock states, in

the strong coupling limit, in stark contrast with the paramagnetic Mott-Hubbard solution,

which in turn reveals a maximally correlated local spin-orbital pair at large interaction

strength. Furthermore, these findings cast some light on the relationship between Mott

localization and the possible development of nonlocal entanglement.

In the second part of the thesis, we provide an alternative view of both the interaction-

driven and density-driven paramagnetic Mott transitions in the two-dimensional Hubbard

model, in terms of rigorous measures of entanglement and correlation between two spatially

separated electronic orbitals, with no contribution from their environment. A space-resolved

analysis of cluster dynamical mean-field theory results elucidates the prominent role of

the nearest-neighbor entanglement in probing Mott localization: two traditional upper

bounds and two recently introduced lower bounds for its magnitude sharply increase at the
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metal-insulator transition, in contrast with the moderate variation found at all interaction

strengths that are sufficiently far from the transition point. At half-filling, the two-site

entanglement beyond nearest neighbors is shown to be quickly damped as the inter-site

distance is increased within the cluster, suggesting that Mott-Hubbard insulators may

follow an area law. However, the size of the simulated clusters does not allow a quantitative

analysis of the decay, so that a precise classification of the spatial entanglement properties

of the system is left for future study. In the presence of hole-doping, we show how the

pseudogap metal separating the Mott-Hubbard insulator from the hole-dominated Fermi

liquid features quasilocal entanglement properties that are strikingly similar to the localized

Mott phase, while it is separated from the low-entangled Fermi liquid by a discontinuous

jump in all the computed entanglement and correlation measures.

All the presented results ultimately resolve a conundrum of previous analyses based on the

single-site von Neumann entropy, which has been found to monotonically decrease when

the interaction is increased, defeating the purpose of capturing and understanding strong

electronic correlations with the aid of quantum information concepts. Both the intra-orbital

mutual information and the quasilocal two-site entanglement, on the other hand, recover

instead the distinctive character of Mott insulators and pseudogap metals as strongly

correlated many-body states, demonstrating its central role in future advancements in the

field of quantum materials.
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Preface

The field of strongly correlated electrons has been among the most lively in condensed

matter in the last few decades. A new era started with the discovery of high-temperature

superconductivity in a family of doped copper oxides, with the realization that the vicinity of

a Mott insulating state could be a central key to, at least partially, understand the pairing

mechanism and ultimately engineer materials with higher, possibly room-temperature

transition points. The two-dimensional Hubbard model, as a minimal description of the

relevant physics in these systems, has then turned into one of the most studied model

Hamiltonians, marking the history of many recent achievements in the field and leading

to the development of new concepts and methods. Among the various milestones, a

prominent spot is reserved to dynamical mean-field theory (DMFT) and its extensions,

bringing the first coherent description of interaction-driven metal-insulator transitions, in a

nonperturbative, field-theory based, treatment of the local dynamical correlations.

On the other hand, the recent explosion of interest in quantum information theory, mostly

projected towards the development of robust quantum computing schemes, has sprout an

abundance of new results in fundamental quantum mechanics, filling the gap between the

highly complex developments in the last decades of quantum field theory and the minimal

simplicity of the quantum systems that, so far, we are able to control. One of the greatest

achievements of the quantum information community has surely been the development of

a quantitative theory of entanglement detection, extended also to many-body systems.

Therein, the concept of bipartite and multipartite entanglement has proven to be of stark

relevance for the characterization of quantum phase transition, and the classification of

exotic phases, especially in absence of a clearly defined order parameter.

This thesis has been carried out in the effort of building a solid bridge between the two

disciplines (and hopefully the two communities), with the ultimate goal of reaching an

enhanced understanding of the role of strong correlations, and possibly entanglement,

in driving and/or probing the complex transformations that a many-electron system

undergoes when the (static) mean-field description breaks apart. Field-theory methods

have generally no direct access to many-body wavefunctions, making the connection to

quantum information concepts particularly hard.
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As virtually any PhD journey, these four years of work have been filled with discontinued

paths, continuous excitement with new ideas and a fair deal of hopping between different

projects. As a result, the two main pillars of this thesis are derived from research ideas

in principle not straightforwardly related to each other. Nevertheless, for my personal

taste and hopefully the reader delight, I decided to report them as a somewhat unitary

story, bound together by the fil rouge of importing quantum information insights into the

field of strongly correlated electrons. For this reason, an introductory chapter, perhaps

longer than usual, has been added, obviously discussing the common concepts and tools,

but also reporting some results that have been produced expressly for the thesis. It is

called ouverture and, as the name suggests, it is intended to be read before starting with

the main courses. The rest of the thesis is divided in two parts, made as independent

as possible on each other, as all the needed shared foundation has been included in the

ouverture.

The first part reports on our study of correlated topological phase transitions, in particular

the transformation of a quantum spin-Hall insulator into an antiferromagnetic Mott

insulator, on the minimal model Hamiltonian for interacting Dirac electrons. The single-

site DMFT results are compared with a standard Hartree-Fock theory and a quantum

information "distance" is defined to complement the traditional, Green’s function based,

understanding of the difference between the two descriptions.

The second part, in turn, extends the analysis to short-range nonlocal correlations, this

time analyzed in the Hubbard model on the square lattice. The results are obtained

within cluster dynamical mean-field theory (CDMFT), an extension of the single-site

theory, able to include nonlocal effects within small clusters. A careful review of some

entanglement measures for bipartite open quantum system is included, as we are interested

in the evaluation of correlations and entanglement between two electronic orbitals residing

on different lattice sites, without any contribution from the surrounding lattice. This

fairly specific request comes from a lesson taught by some recent works, which have

thoroughly analyzed the so-called local (single-site) von Neumann entropy. While this

quantity can indeed mark all the features in the phase diagram, along the interaction,

temperature and doping axes, its physical meaning has not been, in our opinion, fully

identified (or communicated), leading to an apparently misleading depiction of the Mott-

Hubbard transition. We show that two-site entanglement measures are indeed much more

revealing of the strongly correlated character that is universally attributed to paramagnetic

Mott insulators and pseudogap metals. In this light they represent "useful" entanglement

measures to be used in more involved models describing competing phenomena. Finally,

we amend the physical interpretation of the local entropy, connecting it with the notion of

local fluctuations and demonstrate how the local correlations are much better captured

by the intra-orbital mutual information, the same "distance" we have leveraged for the

topological transitions, mentioned above.
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OOuverture: correlated insulators

„I first heard of it when Fowler was explaining it to

one of Rutherford’s closest collaborators, who said

‘very interesting’ in a tone which implied that he

was not interested at all. Neither was I.

— Nevill Francis Mott
about Bloch-Wilson’s theory of insulators

O.1 Failure of band theory
The band theory of solids [5–9] is the cornerstone of our understanding of the electronic

properties of crystalline materials. The main idea is that the properties of the electrons

in a solid can be approximated as those of a gas of effective fermionic quasiparticles,

which can tunnel between localized atomic orbitals for a relatively large lifetime (so that

they constitute coherent charge carriers), leading to a description of the system in terms

of delocalized single-particle states. For a given number N of electrons in the solid, N

quasiparticles will populate these states according to the Fermi-Dirac thermal statistics

wich, at zero temperature, results in a filling of the N/2 lowest-lying eigenstates, each

with two quasiparticles of opposite spins.

The underlying assumption of band theory is that the electron-electron repulsion is suffi-

ciently screened (hence weak) as to ensure a one-to-one correspondence of the effective

fermions with the actual interacting electrons, so that the quasiparticle states (though not

being eigenstates of the many-body Hamiltonian) can be defined and labeled by the same

quantum numbers of the corresponding noninteracting reference state. Furthermore, their

motion is simply characterized by a renormalization of their physical properties, such as the

interaction-induced enhancement of the electronic effective mass. The phenomenological

introduction of these concepts is due to Landau [10], and the later formalization in the

framework of diagrammatic perturbation theory is known as Fermi liquid theory [11–14].

The simplest approximation of Fermi liquid theory amounts to model the screened electron-

electron repulsion as an effective one-body potential, emerging from the interaction of a

single electron with the averaged effect of the presence of all the others. This amounts to

assume the lifetime of the quasiparticles as infinite and neglect all the dynamical effects of

the electronic repulsion, hence defining what is called a static mean-field approximation

of the many-body problem. The mean-field potential is added to the periodic potential
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introduced by the underlying lattice of positive charged ions, resulting overall in a spectrum

formed by continuous energy bands, possibly separated by gaps where no single-particle

eigenstates are present. According to Bloch’s theorem, each of these eigenstates can be

written as a modulated plane wave [5]

ψnk(r) = unk(r)e
ik ·r , (O.1)

where k is the so-called crystalline momentum and n is a quantum number labeling the

modulating function unk , that in turn has the same periodicity of the lattice. The energy

eigenvalue εnk associated to the ψnk eigenstate defines the n-th band of the solid [7, 8].

The existence of these bands is the crucial element of the theory and has historically led

to a great number of successful predictions, paving the road for the understanding of the

physical properties of materials. Among these achievements, a fundamental role is assumed

by a criterion introduced by Wilson [6] for the classification of the transport character of

solids: solids where the number of electrons completely fills the highest occupied (valence)

band, leaving the next (conduction) band empty, will be insulators; solids that feature a

partially filled conduction band will be metals; semiconductors are simply insulators with a

small gap, so that the conduction band can be populated by thermal excitations.

The band theory of solids has proven to be extremely successful in describing the qualitative

features of many solids. In particular, the development of density functional theory1,

especially in the Kohn-Sham formulation [16], and the continuous improvement of the

approximations for the exchange-correlation functional, has affirmed the possibility to

compute band structures for real materials, in impressive agreement with experiments.

Yet, there are spectacular examples in which band theory completely fails to describe the

properties of materials, even on a qualitative level. Among these, a central role is played

by the so-called Mott insulators [17–20], materials that display all the phenomenology

of insulators, despite the electron count would suggest a partially filled conduction band.

This discovery dates back to 1939, in the early stages of band theory, when it was reported

that transition-metal oxides displayed this behavior [21]. It became rapidly clear that

electron-electron interactions, which are either neglected or treated at the Fermi liquid

level in band theory calculations, were the most likely reason for its breakdown [17, 22].

However, the physical mechanism underlying the transformation of band metals into

interaction-induced insulators, has been debated since the early days, with the opposition

of two main ideas: one, proposed by Slater [22], identifies the transition mechanism in the

nesting property of the Fermi surface (see section O.2 for a definition), that enables strong

1To be fair, density functional theory should not be regarded as any kind of mean-field approximation, but
rather as a highly sophisticated many-body method [15]. Nevertheless, many features of the practical
implementations are essentially akin to traditional band-theory and the two theories are in fact often
referred to as synonyms in the community.
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magnetic fluctuations ultimately leading to an instability towards Néel (antiferromagnetic,

AFM) ordering. The other, introduced by Mott [17], predicts the formation of localized

magnetic moments, of the Heisenberg type, at temperatures that are incompatible with

long range ordering and thus leading to a paramagnetic insulating state. Upon decreasing

the temperature, a paramagnetic Mott insulator would indeed order with a Néel transition

that cannot be driven by nesting, as the Fermi surface is absent in the high-temperature

Mott state. These observations can be considered as the beginning of the field of strongly

correlated electrons.

A turning point in the field has been the discovery of high-temperature superconductivity,

by doping a class of layered copper oxides (cuprates) [23] which, when not doped, are

almost two-dimensional antiferromagnetic Mott insulators. After the original proposal by

Anderson [24, 25], the idea that the understanding of high-temperature superconductivity

boils down to unveiling the physics of doping a Mott insulator [26] has been the main

guideline in the community.

In the following be briefly discuss the simplest model that accounts for this physics, the

single-band Hubbard model [27–32], and we provide a concise description of some of its

properties. The purpose of the section is by no means a complete review of an immense

and diverse field, but simply to introduce some of the concepts that are essential to discuss

the original research reported in this thesis. For a review of the properties of the model

and the vast multitude of related computational methods we direct the reader to [33, 34]

O.2 The Hubbard model for interacting electrons
in localized orbitals

A simple derivation of the band theory of solids can be obtained by assuming the so-

called tight-binding approximation: recognizing that the electrons occupying the lower

energy levels in each atom are tightly bound to its nucleus and significantly screen its

positive charge, we can model the so-called "outer" electrons as occupying largely extended

wavefunctions, that partially intersect with each other. The corresponding overlap integral,

gives the probability amplitude for the tunneling between different atoms and is consequently

called hopping amplitude t. We can then model a simple lattice of noninteracting electrons

as a series of on-site energies (equal for all sites if the lattice is homogeneous) and a sum

over all the possible hopping terms. In second quantization it reads

H0 =
∑
iσ

εiniσ +
∑
⟨i j⟩

ti jc
†
iσcjσ , (O.2)

where ciσ (c†iσ) is the annihilation (creation) operator of an electron with spin σ at the

site i of the lattice and niσ = c
†
iσciσ is the corresponding number operator.

O.2 The Hubbard model for interacting electrons in localized orbitals 3



Formally, the hopping amplitudes ti j can be obtained by computing explicit overlap integrals

between the Wannier functions, defined as the lattice Fourier transform of the Bloch waves

in Eq. O.1 [35]:

φnR(r) ∝
∑
k

e−ik ·Rψnk(r), (O.3)

where R stands for any lattice vector. If the Wannier functions are sufficiently localized,

as it happens for the d and f orbitals in transition metals, the tight-binding approximation

provides a fairly good description of the material’s band structure, often even with the

truncation of the hopping matrix at the nearest neighboring sites. In the Wannier basis,

the band index directly translates to a localized orbital.

Once the hopping integrals have been obtained, to consider a strongly correlated material,

i.e. a system in which the band theory of solids fails, a term accounting for the electron-

electron interaction must be added. In principle, in considering the interaction between

electrons sitting at different lattice sites one has to include every term of the Coulomb

tensor, with elements

Ui jkl =

∫
dr1dr2φ

∗
i (r2)φ

∗
j (r1)Vee(r1 − r2)φk(r1)φl(r2), (O.4)

where i , j , k and l represent in principle indices for all the site-orbital pairs in the lattice.

In the assumption of well-localized Wannier functions, and considering only one orbital

per site (as we will always do in this thesis), the calculation can be greatly simplified

into considering only the so-called Hubbard terms, measuring the Coulomb repulsion of

electrons residing on the same lattice site [27–32]

Ui =

∫
dr1dr2|φi(r1)|2Vee(r1 − r2)|φi(r2)|2. (O.5)

Considering a lattice of all-equivalent sites and truncating the hopping amplitudes to

nearest neighbors we obtain the single-band Hubbard model:

H = −t
∑
σ

∑
⟨i j⟩

(
c†iσcjσ + h.c.

)
+ U

∑
i

ni↑ni↓ − µ
∑
iσ

niσ (O.6)

where t is the (uniform) nearest-neighbor hopping amplitude, µ is the chemical potential

and U is the aforementioned (uniform) local electronic repulsion. After its introduction,

the Hamiltonian in Eq. O.6 turned into a minimal but paradigmatic model to introduce the

effects of electron-electron repulsion in the tight-binding description of solids.

Despite its deceiving formal simplicity, the Hubbard model still defies most of the attempts

to solve it, except for the one-dimensional case, where the Bethe Ansatz [36] allows for an

analytical solution, and the limit of infinite dimensions [37], where dynamical mean-field

theory (DMFT) [38] leads to a numerically exact solution of the model at any temperature
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and U/t ratio (see section O.3). In two and three dimensions, the model proves extremely

hard to solve due the intrinsic competition between the kinetic and interaction terms. We

can build an intuition around this point by examining two limiting cases, the noninteracting

(U = 0) and the atomic (t = 0) limits, where a simple analytical solution can be obtained

for any dimensionality.

For U = 0, the Hubbard model becomes a simple tight-binding Hamiltonian, which can

always be diagonalized in momentum space (also for general hopping matrices, as in

Eq. O.2). Thus we can Fourier transform it in the form

H(k) =
∑
kσ

εkc
†
kσckσ, (O.7)

where the dispersion εk for a d-dimensional hypercubic lattice with only nearest-neighbor

hopping reads εk = −2t
∑

i cos(kia), where i = 1, . . . d runs over the spatial coordinates

and a is the lattice spacing. Any eigenstate of the Hamiltonian is the direct product of

delocalized states of momentum k and it describes a metal for any number of electrons

except zero or those filling the whole band. In particular, the system is metallic also when

the number of electrons equals the number of sites, corresponding to a half-filled band.

In the opposite limit, t = 0, the Hubbard model becomes a collection of disconnected atoms

(hence the name of atomic limit) and the model is trivially diagonal in real space. Now

every Fock state in the basis of the local occupations is an eigenstate and the groundstates

are all those states that minimize the number of doublons, i.e. doubly occupied sites hosting

two electrons with opposite spins, as the creation of a doublon leads inevitably to an

energy cost of U. At half-filling, this implies a vanishing population of doublons, as well

as of empty sites (sometimes also called holons), so that all the configurations with one

electron per site are degenerate groundstates at zero energy, regardless of the arrangement

of the electronic spins. This state is trivially localized in each atomic orbital and it can be

considered as the extreme version of a Mott insulator.

The strikingly different behavior in the two extreme noninteracting and atomic limits

provide us a first clue about the reason for the difficulties to solve exactly the Hubbard

model. The two terms are both extremely simple, but they are diagonal respectively in

momentum space and in real space, so that they describe naturally contrasting tendencies

and it is hard to envisage a simple picture to describe the outcome of their competition.

From a purely qualitative point of view, we can picture the evolution of the half-filled

Hubbard model from the noninteracting limit by increasing the ratio U/t in terms of a

progressive reduction of doubly occupied sites. As the interaction grows, their dynamical

average will decrease from the noninteracting value, which at half-filling can be easily

checked to be 1/4. During this process the electrons lose their mobility, as a consequence

of the increasing energetic cost for exciting a doublon/holon pair. While for U = 0 all the
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hopping processes respecting Pauli principle are allowed, as U grows the processes that

create doubly occupied sites become less and less likely, so that at some critical value of

U, for which the interaction is comparable with the kinetic energy of the electrons, the

electronic motion will become so energetically unfavorable that the electrons will become

fully localized, thus leading to an interaction-driven insulating state, whereas the electron

count would lead to a metallic system, according to the band theory of solids. This process,

that by no means requires the assumption of antiferromagnetic ordering, transforms a

metal into a insulator by the pure action of the Hubbard repulsion U, and for that reason

is traditionally called a Mott-Hubbard transition. Based on the very general arguments we

discussed above, we can expect that the Mott-Hubbard transition takes place for a critical

value of U proportional to the hopping amplitude t, or in other terms to the bare electronic

kinetic energy. In this view, we cannot expect that perturbation theory starting from either

of the two extreme limits is likely to describe this transition, as it takes place when the

two energy scales of the model are comparable. As a matter of fact, only nonperturbative

methods such as the dynamical mean-field theory [38] can access this kind of physics.

Once again, it is important to stress that the simple argument we discussed, as well as

the more concrete theoretical description that we will present in the next section, are

totally independent on the onset of long-range magnetic ordering. This is a very concrete

point given that a magnetic state, often with alternate Néel ordering, is observed at low

temperature in many Mott insulators, including the parent (undoped) compounds of high-

temperature superconductors. The Mott-Hubbard insulator that we described is instead

in principle free of any symmetry breaking and, in virtue of the local magnetic moments

that characterize its electronic configuration, it is often simply called as paramagnetic

Mott insulator. The study of the transition from a nonmagnetic metal to a paramagnetic

Mott insulator has a fundamental value, as it provides a picture of the intrinsic effects of

electron-electron interactions, beyond any symmetry breaking mechanism. In fact, this

perspective has been widely assumed in the literature employing DMFT and related methods

and it has provided a powerful paradigm for the understanding of strongly correlations,

even beyond electronic systems [39–43]. Nevertheless, the study of the role of strong

correlations in symmetry-broken, antiferromagnetic states can in principle aid to pinpoint

the fundamental difference between the aforementioned mechanism proposed by Slater

[22], defining what we will call Slater insulators and Slater metal-insulator transitions, and a

mechanism based on the sole assumption of strong correlations that, as mentioned above,

relies on the notion of localized magnetic moments that order by means of superexchange

interactions of the Heisenberg type, so defining the concept of Mott-Heisenberg insulators.

In this thesis we will address both Mott-Hubbard and Mott-Heisenberg insulators for

the Kane-Mele-Hubbard model, providing a minimal description of topological insulators

on the honeycomb lattice, with a local electron repulsion modeled by the same on-site

term of Eq. O.5. We will also consider the paramagnetic metal-insulator transition for
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the two-dimensional Hubbard model (Eq. O.6, where the underlying lattice defining the

summations is hypercubic with d = 2). Therein we will address local and quasilocal

entanglement and correlation properties, at half-filling and in presence of hole-doping,

completely discarding magnetic ordering.

Before delving into a brief introduction of DMFT and the way it captures the Mott-Hubbard

transition, we spend some words to further examine the connection between Mottness and

magnetism, elucidating some key aspects to distinguish Mott-Heisenberg insulators from

their simpler Slater description. This important discussion will be reprised in sections O.4

and O.5, analyzing the concept of correlation-induced local magnetic moments under the

lens of quantum information theory and building the foundation for a rigorous study of the

role of local fluctuations and correlations in Mott physics.

Indeed, for a half-filled Hubbard model with only nearest-neighbour hoppings, on a hyper-

cubic lattice, the groundstate is always antiferromagnetic (AFM) for every nonzero value

of U/t. We can spend a few lines to provide solid analytical arguments for this statement,

in the two regimes of weak-coupling U ≪ t and strong coupling U ≫ t.

In a weak-coupling regime, we can study the model using a mean-field Hartree-Fock

approximation. In particular we can decouple the interaction term as

U
∑
i

ni↑ni↓ ≃ U
∑
i

ni↑⟨ni↓⟩+ U
∑
i

⟨ni↑⟩ni↓ − U
∑
i

⟨ni↑⟩⟨ni↓⟩, (O.8)

amounting to a variational search for the optimal Slater determinant description of the

electronic groundstate [9, 13, 14, 22]. If we define the AFM order parameter as

m =
∑
i

(−1)Ri (ni↑ − ni↓) (O.9)

we find that a solution with m ̸= 0 is found for every value of U and follows an exponential

law of the form m ∝ e−αt/U . This state is insulating with a gap given by Um and it

describes a system with a small magnetization that changes sign each time we move of

one site along any direction. The same behavior is found in principle for any bipartite

lattice, i.e. a lattice which can be partitioned in two sublattices A and B such that all the

nearest-neighbor hopping amplitudes only connect sites of the A sublattice with those of

sublattice B and viceversa. In fact, the onset of this magnetic state can be seen as an

instability of the Fermi sea associated to the nesting of the Fermi surface at the reciprocal

vector Q = (π, π, . . . ). This leads to a doubling of the unit-cell, associated with the

broken translational symmetry, and consequently leads to a folding of the single, metallic

band into two bands defined in the so-called reduced Brillouin zone [7, 8], separated by the

aforementioned gap. Hence, despite the origin of the magnetic ordering and the insulating

behavior is the presence of the interaction, the system can be described in terms of an
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effective band structure, where the gap is simply explained by the doubling of the unit-cell.

In this sense, the Slater mechanism for the metal-insulator transition does not require

a failure of band theory and arguably describes the state of the system only when the

interaction is indeed much smaller than the hopping.

In the strong-coupling limit U ≫ t, the starting point is the atomic limit where, as we

mentioned above, we have a large manifold of degenerate groundstates, all characterized

by one electron localized on each lattice site. We notice immediately that the only active

degree of freedom left is the spin on each site. In other words, our Hubbard model

becomes a spin model as the charge is, of course, completely localized. If the presence

of the hopping does not change this situation, the system remains insulating. Indeed,

as long as t ≪ U, there is no way to induce charge fluctuations, whose energy cost is

larger than any possible kinetic gain. What a small t can induce is instead a lifting of the

degeneracy: among the many degenerate groundstates, only some will be favored by a

finite hopping. A simple perturbative argument suggests that nearest-neighbor sites gain

an energy E′ = −2t2/U if they host electrons with opposite spin (with respect to electrons

with the same spin). This leads to the prediction of an antiferromagnetic groundstate

for any bipartite lattice. Indeed, this result can be well formalized by deriving an effective

strong coupling Hamiltonian [44], which reads

H = J
∑
⟨i j⟩
Si · Sj , (O.10)

where J = 4t2/U is an the antiferromagnetic superexchange coupling [45, 46], and Si is

the quantum mechanical spin vector for the i-th site. Eq. O.10 can be recognized as an

Heisenberg model with positive coupling, obviously favoring opposite spin on neighbouring

sites. The model hence describes an insulator with localized spins that tend to align in

a AFM pattern (but do not order at high temperature). In this regime the insulating

behavior descends directly from the presence of a large U, as a strong repulsion inherently

entails the formation of local moments Si , and antiferromagnetism is expected only at

low temperatures. Indeed the high temperature state described by Eq. O.10 describes an

extreme Mott-Hubbard insulator, while the antiferromagnet at low temperature is our

definition of an extreme Mott-Heisenberg insulator. So, in both the two extreme limits

we find antiferromagnetism in the groundstate, but with a radically different origin and

arguably an underlying difference in the many-body quantum state. The two regimes are

connected continuously, hence the groundstate is always an insulating antiferromagnet for

every nonzero U/t. The critical temperature vanishes in both directions when we approach

the two limits, U = 0 and t = 0, and it reaches its maximum value in the intermediate

coupling region.
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The discussed phenomenology might appear in contrast with the existence of a true

metal-insulator transition, as the metallic region expected at weak coupling is replaced by

a Slater antiferromagnetic state. However, the two pictures are overall compatible and a

complete phase diagram of the half-filled Hubbard model features both phenomena. Even

if the groundstate is always magnetic and insulating, the antiferromagnetic region is limited

to low temperatures, in particular in realistic configurations where the lattice and/or the

structure of the hopping amplitudes can frustrate the magnetic ordering [47–50]. On the

other hand, the Mott-Hubbard transition can take place at higher temperatures, where

magnetism is no longer present and the above-described mechanism leading to charge

localization by formation of unordered magnetic moments can take place. Thus, the phase

diagram of the half-filled Hubbard model in function of interaction U and temperature

T is expected to host at least an antiferromagnetic phase (with an internal evolution

from the Slater to the Mott-Heisenberg description as the interaction is increased) and a

nonmagnetic metallic phase, which is realized for small U when the temperature exceeds

an exponentially small critical temperature, eventually transformed in a paramagnetic

insulator when the interaction reaches a critical value Uc and the metal is transformed by

the Mott-Hubbard mechanism.

O.3 Dynamical mean-field theory and the
Mott-Hubbard transition

The hunt for accurate solutions of the Hubbard model has been one of the main stories

in condensed matter theory after the discovery of high-temperature superconductivity in

doped layered Mott insulators. This search led to the development of new methods and

the improvement of many other approaches, substantially enhancing our ability to study

quantum many-body systems. Indeed, despite an exact solution of the Hubbard model in

two dimensions could not be obtained, a great amount of information has been gathered

in the effort. In this thesis we do not attempt to review this incredible effort and we limit

ourselves to refer the interested reader to recent reviews [33, 34].

Our focus is on a significant success story, which is based on the development of dynamical

mean-field theory (DMFT). The history and the origin of DMFT may appear very far from

the two-dimensional Hubbard model as they are rooted in the study of the Hubbard model

in the limit of infinite dimensions [37], where many aspects of the perturbation theory are

simplified, yet the physical picture remains highly nontrivial.

As the name suggest, the simplest way to understand DMFT is to picture it as a dynamical

(in the sense of quantum fluctuations) version of the standard mean-field theory, where

the effect of the rest of the system on a single site is parameterized by a time-dependent

effective field (see left and middle panel in Fig. O.1). The key point making the theory
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Fig. O.1.: Pictorial view of the DMFT approximation. Starting from a lattice model (left panel),
DMFT builds an effective theory for a given site in which the effect of the rest of the
lattice is described in terms of a self-consistently determined bath, which acts like a
dynamical (frequency-dependent) field, as shown in the middle panel. The right panel
shows a discretized parametrization of the bath, defining the impurity Hamiltonian
solved in practical implementations based on exact diagonalization and similar methods.
Dashed lines indicate hybridization amplitudes connecting the noninteracting bath
levels to the correlated impurity (see Eq. O.15).

immensely more powerful than a static mean-field method is the dynamical nature of

the effective field, which makes even the effective local theory a nontrivial many-body

problem. The mean-field Ansatz and the equivalence with the lattice model are enforced by

a self-consistency condition on the Green’s function. More precisely, we build an effective

local theory whose Green’s function has to coincide with the local component of the lattice

Green’s function, with the assumption of a momentum independent self-energy.

We now briefly outline the relevant equations and ideas. As we mentioned above DMFT

defines an effective local theory for an arbitrary site "◦" of the original lattice associated

with the effective action

Seff =

∫
dτdτ ′c†◦σ(τ)G

−1
◦ (τ − τ ′)c◦σ(τ ′) + U

∫
dτn◦↑(τ)n◦↓(τ), (O.11)

where τ and τ ′ are imaginary time variables, c†◦σ and c◦σ are Grassman fields describing

creation and annihilation of fermions with spin σ on site ◦, n◦σ = c†◦σc◦σ. The effective

action describes the (imaginary) time evolution of site ◦ in the presence of the local

repulsion, which is controlled by the dynamical Weiss field G−1◦ (τ − τ ′), which contains

the effect of the rest of the lattice on site ◦. Similarly to a mean-field theory for classical

magnetic moments, the dynamical mean-field is determined by a self-consistency condition

which requires that the Green’s function of the effective theory

Gimp(τ) = −⟨Tc◦σ(τ)c†◦σ(0)⟩Seff (O.12)

coincides with the local component of the lattice Green’s function.
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Namely, in Matsubara frequencies2

Gloc(iωn)
def
=
1

Nk

∑
k

1

iωn + µ− εk −Σ(iωn)
≡ Gimp(iωn) (O.13)

where Σ(iωn) is the self-energy of the effective theory, connected to the Weiss field and

the Green’s function by a Dyson equation

Σ(iωn) = G−1◦ (iωn)− G−1loc (iωn). (O.14)

The three conditions (Eqs. O.12, O.13 and O.14) are a closed set of equations that allow

in principle to find a self-consistent set of Σ(iωn), G−1◦ (iωn) and G−1loc (iωn) satisfying them.

In practice, the implementation of DMFT amounts to a recursive solution of the effective

theory (Eq. O.11). One first computes the impurity Green’s function (Eq. O.12), starting

from a (possibly educated) guess for the dynamical Weiss field G−1◦ (iωn). Then one

retrieves the impurity self-energy from the Dyson equation (Eq. O.14). Finally, the self-

consistency condition (Eq. O.13) is used to compute a new G−1◦ (iωn) and the procedure is

iterated until convergence is achieved, i.e. when the three conditions are all satisfied to

a given target precision. The solution of the effective theory usually exploits a mapping

onto an impurity Hamiltonian which, for the single-band Hubbard model, amounts to an

Anderson impurity model (AIM) [51]:

HAIM =
∑
kσ

εkσb
†
kσbkσ+

∑
σ

ε◦σc
†
◦σc◦σ+Uc

†
◦↑c◦↑c

†
◦↓c◦↓+

∑
kσ

Vkσ(c
†
σbkσ+b

†
kσcσ), (O.15)

where b†kσ and c†◦σ are creation operators for electrons with spin σ, respectively in the

k-th bath level and in the impurity site ◦. With reference to the right panel in Fig. O.1,

we observe that the Vkσ amplitudes represent the hybridization between the impurity site

and the noninteracting bath levels. We observe that, in the AIM, the single interacting

site cannot spontaneously break the SU(2) spin symmetry, as phase transitions can only

happen in the thermodynamic limit and surely not on a single site. Hence, the only way to

allow the simulation to order in an antiferromagnetic state is to grant a spin-dependency

to the bath parameters εkσ and Vkσ, as indeed we have done in Eq. O.15, and to define

two inequivalent impurity models, each addressing a different sublattice in the original

bipartite crystal. The two inequivalent impurity Green’s function will be then coupled at

the self-consistency level, as the two resulting local Green’s functions will be coupled by

the presence of the full lattice dispersion in Eq. O.13. More details about the treatment of

antiferromagnetic states in DMFT will be given in chapter 2, section 2.2.

2In principle, all DMFT equations must be satisfied in the whole complex frequency plane. Yet, the
smooth properties of the imaginary axis make for the ideal subset of frequencies on which perform all
operations, until convergence is achieved and the self-consistency condition holds also on the real axis.
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If instead one imposes a paramagnetic constraint, in the form of εkσ = εk and Vkσ = Vk,

the system has no means of break the spin SU(2) symmetry and a Mott-Hubbard insulator

can be stabilized, at large enough U/t ratio. In this case, the Mott transition of the original

lattice can be fruitfully interpreted in terms of the Kondo physics of the auxiliary impurity

model [52]. For a review of the intimate connection between the two phenomenologies,

we suggest the reading of Ref. [53].

Despite being much simpler than the original Hubbard model, the auxiliary AIM is still a

strongly correlated system and cannot generically be solved analytically. To actually obtain

the impurity Green’s function (Eq. O.12) different "impurity solvers" can be employed,

each with specific advantages and disadvantages. Historically, the combined use of different

solvers has led the DMFT community to a rich understanding of the Mott transition in

the single-band Hubbard model and beyond [38]. In sections 2.2 and 8.5 we will give some

details about the specific impurity solvers we leveraged for the research presented in the

thesis, focusing on the main difficulties and/or the evaluation of nonstandard quantities.

Furthermore, we observe that within any Hamiltonian-based solver, the dynamical mean-

field G◦(iωn) has an explicit dependence on the bath parameters εkσ and Vkσ [54]

G−1◦ (iωn) = iωn − ε◦σ − µ−
Nbath∑
k=1

|Vkσ|2
iωn − εkσ

, (O.16)

so that we can recast its update, at each iteration of the DMFT cycle, as a multidimensional

optimization problem, enticing the minimization of a distance between a. the continuous

dynamical field that one obtains from the self-consistency relation (Eq. O.13) and b. the

discretized expression in terms of the bath parameters (Eq. O.16). The usual choice

for this distance is a, possibly weighted, chi-squared statistics [54], evaluated on the

Matsubara frequencies (for its smooth properties). At zero temperature, the imaginary

axis is discretized numerically, defining an artificial inverse temperature, that defines the

frequency resolution of the calculation (the larger the β, the finer the frequency grid). The

number of bath levels, on the other hand, controls the power and flexibility of the discretized

Hamiltonian to fit the given Weiss field, so that a larger bath would in principle lead to

better fits, and so to better numerical properties of the converged solution. However,

the long-time experience in the community has repeatedly corroborated the notion that

pretty small baths (Nbath ≃ 10) can give outstanding convergence properties and high

quality in the output quantities. We give more details about the bath optimization for

the cluster extension of the method in section 8.2, as the additional real-space structure

of the dynamical Weiss field and the need to preserve the punctual symmetry of the

(cluster-)impurity makes the choice of the both the bath parametrization and the weights

for the chi-squared cost function much more critical.
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In the following, we proceed to give a concise account of the DMFT description of the

paramagnetic Mott-Hubbard transition, in very general terms. As mentioned above, DMFT

is exact in the limit of infinite dimension (or coordination), but also, in finite dimensionality,

in the opposite limits of U = 0 (noninteracting limit) and t = 0 (atomic limit). This makes

the theory ideally suited to study the Mott-Hubbard transition, as it does not rely in the

similarity to either of the two limiting regimes. We notice en passant that the same holds

for other strongly correlated systems, as long as the interactions are local, so that their

competition and interplay is captured by DMFT without assuming any hierarchy in the

relevant energy scales of the model.

The scenario of the paramagnetic Mott transition for the half-filled Hubbard model within

DMFT is highlighted in Fig. O.2, where we report a schematic sketch of the evolution of

the local single-particle spectral function

A(ω) = − 1
π
ImG(ω) (O.17)

which, for many body systems, plays the same role as the density of states in noninteracting

models. In particular A(ω) can be measured by photoemission spectroscopy [55].

When U = 0, DMFT recovers the exact noninteracting density of states of the problem,

amounting to a metal with a half-filled band. Increasing the interaction U, some of the

spectral weight moves towards higher energy as a result of the constraint to the electronic

motion. When U becomes comparable with the bare bandwidth 2D, the spectrum develops

a characteristic nature with three different features: a quasiparticle peak around the Fermi

level which becomes narrower and narrower as the interaction grows, and two "Hubbard

bands" centered approximately around µ±U/2 associated with empty and doubly occupied

sites. While the central peak shrinks, these bands acquire more weight and move to higher

energy. The width of the peak and its total weight are proportional to the quasiparticle

weight Z [12], which for a k-independent self-energy can be expressed as

Z =

(
1− ∂Σ(ω)

∂ω

∣∣∣∣
ω=0

)−1
. (O.18)

At the critical interaction for the Mott-Hubbard transition Z indeed vanishes, signaling the

disappearance of any low-energy metallic features: the system becomes an insulator with

two incoherent spectral features separated by a preformed gap. The disappearance of the

quasiparticle peak is indeed the hallmark of the Mott-Hubbard transition which, at zero

temperature, is continuous as a function of U/t for the simple single-band Hubbard model.

In chapter 8, section 8.4, we present the phase diagram of the Hubbard model in the U/T

plane within DMFT and we will compare it with the counterpart obtained within cluster

dynamical mean-field theory (CDMFT), an extension of DMFT that includes short-range

correlations in a systematic way.
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Fig. O.2.: Schematic representation of the evolution of the interacting density of states A(ω)
(see Eq. O.17) with respect to an increasing interaction strength U, on a half-filled
single band Hubbard model, solved within DMFT for the paramagnetic Mott-Hubbard
transition. Assuming the Fermi level at zero energy, the red color indicates occupied
single-particle states (in the sense of photoemission experiments) and the grey color
identifies empty single-particle states, at zero temperature. The shaded region at low
energy indicates the so-called quasiparticle peak, whose spectral weight is measured by
Z (Eq. O.18). D is the half-bandwidth of the noninteracting density of states (top
panel). Adapted from Ref. [56]
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Fig. O.3.: Analysis of the local magnetic moments in the half-filled Hubbard model on the
honeycomb lattice at zero temperature, as computed in DMFT and Hartree-Fock
theory. The latter can capture only the AFM (Slater) phase at large U/t. The DMFT
correlated part is reported as separate curve for the AFM (Mott-Heisenberg) solution,
while it coincides with the relative mean square for the SU(2) symmetric solutions.

O.4 Slater vs Mott insulators
The groundstate of the half-filled Hubbard model on the square lattice (and in bipartite

lattices with a Fermi surface) is antiferromagnetic for every value of U/t. Yet, as introduced

above, there is a clear distinction between a weak coupling Slater regime, in which the

insulating state is a consequence of the doubling of the unit cell, leading to an effective

single-particle band insulator, and a Mott-Heisenberg regime, in which the electrons are

localized by the repulsion and magnetism arises from the ordering of their spins. The

latter regime cannot be accessed by any single-particle description and it is inherently

distinct from a band insulator, while the former can be described within the Hartree-Fock

mean-field theory.

In the strong-coupling regime, one can consider an insulating solution without magnetic

ordering. As we discussed above, we can label this solution as Mott-Hubbard insulator, to

emphasize that the pure Mott phenomenon is sufficient to stabilize this state. However,

despite the clear conceptual difference between a Slater insulator and a Mott-Heisenberg

insulator, the two regimes share the same order parameter and it is not obvious how to

distinguish them based on standard groundstate estimators.
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A possible quantity to track the evolution between the two regimes and to characterize the

difference between them is the local magnetic moment [20], which is expected to grow

from the small values typical of the Slater regime, where it starts as exponentially small,

to large (saturated) values in the Mott-Heisenberg regime. Assuming full spin isotropy (as

ensured by the SU(2) symmetry of the Hubbard interaction) we define the mean square of

the local magnetic moment as [20]

µ2z =

〈
(ni↑ − ni↓)2

〉
4

. (O.19)

For a paramagnetic phase we expect that the other components µ2x and µ2y are equivalent,

while we consider antiferromagnetic solution where the magnetization vector is parallel

to the z axis. While not being directly measurable, the local magnetic moments can be

analyzed within NMR experiments, which probe the low-frequency Fourier component of

the time correlation function ⟨µz(t)µz(t0)⟩ [7, 20].

The mean square moment defined by Eq. O.19 can be decomposed into three parts,

amounting to (i) a Fermi gas contribution, ascribed to the Pauli exclusion, (ii) a term

arising from the onset of long-range magnetic order and (iii) a correlated part, that cannot

be captured by single-body methods, including static (Hartree-Fock) mean-field theory [20]

µ2z = µ
2
z |FG + µ2z |LRO + µ2z |COR (O.20)

(i) µ2z |FG =
⟨ni ⟩ (2− ⟨ni ⟩)

8
(O.21)

(ii) µ2z |LRO =
〈
(ni↑ − ni↓)2

〉
8

(O.22)

(iii) µ2z |COR =
⟨ni↑⟩ ⟨ni↓⟩ − ⟨ni↑ni↓⟩

2
(O.23)

Given that µ2z |FG is independent on the electron-electron interaction (as it reflects only

the Fermi statistics) we can neglect it in the rest of the discussion. Hence we define the

relative mean square magnetic moment as

µ2z |REL
def
= µ2z − µ2z |FG ≡ µ2z |LRO + µ2z |COR . (O.24)

In Fig. O.3 we report DMFT and Hartree-Fock relative mean square magnetic moments

for the Hubbard model on the honeycomb lattice, at half-filling and zero temperature. We

choose the half-filled honeycomb lattice in light of the vanishing density of states at the

Fermi level, which impairs the perfect-nesting instability towards antiferromagnetic long

range order and moves the critical interaction to a finite value, in contrast with other

bipartite lattices [57, 58]. In this way we obtain a model that supports semimetal-insulator

transitions (SMIT) to both a Mott-Heisenberg and a Mott-Hubbard phase. The former is
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the groundstate of the model at large U/t, while the latter can be stabilized, in DMFT

only, by imposing a SU(2) constraint in the parametrization of the self-consistent bath, as

discussed in section O.3.

Comparing the Hartree-Fock and DMFT estimates for µ2z |REL in the AFM state, we readily

notice how the former simulation does not generate any local magnetic moment beyond

Fermi statistics, in the semimetal, according to the fact that ⟨ni↑ni↓⟩ = ⟨ni↑⟩ ⟨ni↓⟩, by

construction of the static mean-field decoupling (compare Eqs. O.8 and O.23). The

dynamical mean-field theory, on the other hand, grows a correlation-induced µ2z |COR term

as it renormalizes the double occupancy.

At the onset of antiferromagnetic order, both calculations acquire a µ2z |LRO contribution

(Eq. O.22) that quickly grows to dominate over the other terms. Remarkably, the DMFT

correlated part starts to decrease at the critical interaction for the magnetic transition

and asymptotically vanishes for large U/t, as a natural consequence of the freezing of

the charge and spin freedom, as an electron is localized as soon as the system enters the

antiferromagnetic phase and, in absence of long-range quantum correlations, its spin cannot

flip in the limit of a perfectly saturated magnet. This leads to a coalescence of the static and

dynamical mean-field predictions for the relative mean square moment at the strong coupling

limit. We infer that the Hartree-Fock and DMFT groundstates are well distinguished

whenever the equal-position correlation function g↑↓(i , i) = ⟨ni↑⟩ ⟨ni↓⟩ − ⟨ni↑ni↓⟩ has a

large finite value, thus highlighting the strongly correlated nature of the Mott-Heisenberg

insulator found within dynamical mean-field theory at intermediate interaction values, as

opposed to the single-particle description in the Hartree-Fock theory, that defines the

concept of a Slater insulator. On the other end, the SU(2)-constrained DMFT solution

grows the relative mean square moment monotonically for all U/t ratios, saturating to 1/8

at very large interaction. Given that at half-filling µ2z |FG = 1/8 (see Eq. O.21), we infer

that at strong coupling the paramagnetic Mott-Hubbard insulator realizes a total mean

square local moment of 1/4, corresponding to maximal fluctuations of the local spin.

Overall, the reader would have noticed that the key ingredient to set apart Mott insulators

from their simpler Slater description, lies in the equal-position correlation function, as a

natural quantity to mark local moments beyond the Hartree-Fock mean-field Ansatz. In

the next section we would like to make a step further and substitute this ad hoc quantifier

with a general notion of statistical "distance" from the set of uncorrelated states, within

the framework of quantum information theory. This would allow a deeper understanding of

the nature of local correlations underpinning interaction-driven metal-insulator transitions.

Further it entices a natural extension to the realm of nonlocal correlations, that will be

explored in the second part of this thesis, chapters 7, 9 and 10. We inform the reader

that a brief review of the quantum information geometrical concepts leveraged to define

the statistical "distance" mentioned above is given in appendix A.
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O.5 Quantifying the distance from Slater states
with quantum information theory

Given the conservation of total charge and magnetization, assured by the symmetries of

the Hubbard interaction [27–30] we can always write the density matrix of a single lattice

site ρi as to conserve the local charge and magnetization. The global conservation is

inherited by the subsystem in virtue of the additivity of charge and spin projections. Indeed,

we can always write the total charge as n = ⟨n1⟩+ ⟨n2⟩+ . . . and the total magnetization

as m = ⟨µ1⟩+ ⟨µ2⟩+ . . . , where ⟨µi ⟩ = ⟨ni↑ − ni↓⟩ /2, so that these global quantities are

described by local operators, in the form3

⟨Q⟩ = ⟨q1 ⊗ 12 ⊗ . . .⟩+ ⟨11 ⊗ q2 ⊗ 13 ⊗ . . .⟩+ . . . (O.25)

Whenever a global quantity can be expressed as in Eq. O.25, the generated unitary group

UQ = exp(iαQ) is factorized on the local subspaces:

UQ = Uq1 ⊗ Uq2 ⊗ · · · = exp(iαq1)⊗ exp(iαq2)⊗ . . . (O.26)

Given that the conservation of the global expectation value ⟨Q⟩ is equivalent to constraining

the global density matrix ρ to satisfy the relation UQρU
†
Q = ρ, it directly follows that the

local reduced density matrices ρi must satisfy UqiρiU
†
qi = ρi [59, 60].

For models in which a single site is populated by just one electronic orbital, this condition

leads to a diagonal form of the local reduced density matrix [61–65]

ρi = λ• |•⟩⟨•|+ λ↑ |↑⟩⟨↑|+ λ↓ |↓⟩⟨↓|+ λ↑↓ |↑↓⟩⟨↑↓| (O.27)

where the λ◦ coefficients define a probability distribution for the four local states |•⟩ =
|0⟩ ⊗ |0⟩, |↑⟩ = |1⟩ ⊗ |0⟩, |↓⟩ = |0⟩ ⊗ |1⟩ and |↑↓⟩ = |1⟩ ⊗ |1⟩, expressed in the number

occupation basis |n↑⟩ ⊗ |n↓⟩ of any arbitrary spin projection. For a Néel ordered phase,

the density operator ρi will still be diagonal if written in the basis of the spin projection in

which the order parameter is developed, so that Eq. O.27 is a general description of the

local physics of paramagnetic Fermi liquids, Mott-Hubbard insulators and Mott-Heisenberg

antiferromagnets, as modeled by the single-band Hubbard model. In chapter 2 we will

discuss in detail how to treat magnetic anisotropy, as introduced by spin-orbit coupling in

the Kane-Mele-Hubbard model.

Given that Eq. O.27 represents by definition a classical mixture of product states, hence a

separable state with respect to the bipartition into the selected spin-projection orbitals, we

3Not all global quantities can be written in this form, of course. A notable counter-example is given by
the total spin S2.
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can readily infer that the two local spin orbitals are never entangled [66–71]. Furthermore,

Eq. O.27 is manifestly diagonal in the two spin-projection sectors, hence satifying the form

of a pseudo-classical state (Eq. A.14), so that all bipartite correlations between them are

due to the probability distribution {λ◦} and, as such, they should be considered classical

[72, 73]. A discussion on the classification of correlations as classical, quantum and

entanglement-induced is given in appendix A. We can furthermore quantify these classical

correlations in the most general way by evaluating the intra-orbital mutual information

between the selected local spin states. Indeed, given the density matrix of a generic

bipartite quantum system ρAB, and ρA and ρB the reduced density matrices for the two

subsystems, the mutual information between ρA and ρB, defined as I(A : B) = sA+sB−sAB,
in terms of the von Neumann entropies sA = − tr ρA log(ρA), sB = − tr ρB log(ρB) and

sAB = − tr ρAB log(ρAB), satisfies the inequality [74]

I(A : B) ⩾

(
⟨OA ⊗OB⟩ρAB − ⟨OA⟩ρA ⟨OB⟩ρB

)2
2∥OA∥2∥OB∥2

(O.28)

for any pair OA, OB of many-body operators acting on the Fock spaces of subsystems

A and B, respectively, and with ∥O◦∥ denoting the Euclidean operator norm of O◦ (its

largest-modulus eigenvalue). A broader discussion on the role of the mutual information

as a "distance" from the set of uncorrelated states, can be found, again, in appendix A.

Notating, for brevity, a generic spin-orbital basis as |ni↑⟩ ⊗ |ni↓⟩, we can explicitly write the

local density matrix as [61–65]

ρi =


⟨(1− ni↑)(1− ni↓)⟩ 0 0 0

0 ⟨ni↑(1− ni↓)⟩ 0 0

0 0 ⟨(1− ni↑)ni↓⟩ 0

0 0 0 ⟨ni↑ni↓⟩



=


δi +Di 0 0 0

0 ⟨ni↑⟩ −Di 0 0

0 0 ⟨ni↓⟩ −Di 0

0 0 0 Di

 (O.29)

where δi = 1− ⟨ni ⟩ and Di = ⟨ni↑ni↓⟩ are the local doping fraction and double occupancy.
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At half filling ⟨ni↑⟩ + ⟨ni↓⟩ = 1, so that we can write the von Neumann entropy of ρi
(i.e. the Shannon entropy of {λ◦}) in terms of only the magnetization mi = |⟨ni↑⟩ − ⟨ni↓⟩|
and the double occupancy Di :

si =− tr ρi log ρi =
∑
◦
λ◦ logλ◦

=−
(
1− mi

2
−Di

)
log

(
1− mi

2
−Di

)

−
(
1 + mi

2
−Di

)
log

(
1 + mi

2
−Di

)

− 2Di logDi . (O.30)

To access the intra-orbital mutual information we then partition the local orbital into its

two spin-projection states and compute the respective partial traces

ρi↑ = tr↓ ρi =

(
⟨ni↑⟩ 0

0 1− ⟨ni↑⟩

)
, (O.31)

ρi↓ = tr↑ ρi =

(
⟨ni↓⟩ 0

0 1− ⟨ni↓⟩

)
, (O.32)

and the sum of the respective von Neumann entropies

si↑ + si↓ =− tr (ρi↑ log ρi↑ + ρi↓ log ρi↓)

=− (1− mi) log

(
1− mi

2

)

− (1 + mi) log

(
1 + mi

2

)
. (O.33)

Finally the intra-orbital mutual information between the two spin orbitals in the chosen

basis is given, in terms of Eqs. O.30 and O.33 as

I( ↑ : ↓ ) = si↑ + si↓ − si , (O.34)

So far, we have established that two local spin orbitals are never entangled for a spin-

conserving model with local Hubbard interactions and we have provided a general recipe

to quantify the classical correlations, in terms of their von Neumann mutual information.
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We deepen the significance of our analysis by showing that, within a local Hartree-Fock

mean-field theory of the Hubbard model, also the classical correlations vanish, for any

paramagnetic or antiferromagnetic state. By construction of the mean-field Ansatz

(Eq. O.8), the double occupancy is expressed as the product of single-particle expectation

values, in the appropriate spin-orbital basis:

DHF
i =

〈
δHHF

〉
ρi

U
= ⟨ni↑⟩ ⟨ni↓⟩

=

(
1− mi

2

)(
1 + mi

2

)
(O.35)

Inserting this expression in Eq. O.30 we obtain

sHF
i = −(1− mi)

2

2
log

(
1− mi

2

)
− (1 + mi)

2

2
log

(
1 + mi

2

)

− (1− mi)(1 + mi)

2

[
log

(
(1− mi)

2

)
+ log

(
(1 + mi)

2

)]

= −(1− mi)
2 + (1− mi)(1 + mi)

2
log

(
1− mi

2

)

− (1 + mi)
2 + (1− mi)(1 + mi)

2
log

(
1 + mi

2

)

= −(1− mi) log

(
1− mi

2

)
− (1 + mi) log

(
1 + mi

2

)
(O.36)

which exactly matches Eq. O.33, proving that at the Hartree-Fock level the intra-orbital

correlation (Eq. O.34) vanishes, regardless of the value of mi , both in the antiferromagnetic

and paramagnetic states. This confirms the expectation that the Hartree-Fock approxima-

tion neglects any kind of dynamical, local correlation. As we will discuss in chapters 7, 9

and 10 nonlocal correlations can indeed exist in quadratic models, and we can observe a

finite nonlocal mutual information even for noninteracting systems.

We end this section by a direct inspection of the intra-orbital mutual information in the

model calculations introduced in the previous section O.4, i.e. for both the Mott-Heisenberg

and the Mott-Hubbard semimetal-insulator transitions (SMIT) of the Hubbard model on

the honeycomb lattice.

In the left panel of Fig. O.4 we report the evolution of the single-orbital von Neumann

entropy si , the single-spin von Neumann entropy siσ and the intra-orbital mutual information

I( ↑ : ↓ ), as a function of the local Hubbard interaction U/t, for a DMFT calculation

that is allowed to develop an antiferromagnetic order parameter. In the noninteracting

limit the single-orbital entropy si assumes its maximal value log(4), corresponding to
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an equal distribution of single-orbital Fock states in the local reduced density matrix:

λ• = λ↑ = λ↓ = λ↑↓ = 1/4. As the interaction is increased, the energy cost of having

doubly occupied states (and consequently empty states, at half-filling) grows larger and

larger, reducing the value of si . At the Mott-Heisenberg transition a finite magnetic order

parameter mi is developed, so that si starts to decrease significantly faster (see Eq. O.30).

Eventually, for a fully saturated antiferromagnetic state, si vanishes, as all the freedom on

the single-orbital configuration is removed.

On the other hand, the two single-spin entropies can be shown to always coincide si↑ = si↓,

since the density of each spin species is fixed by the half-filling condition. They are moreover

fixed at their maximal value log(2) as long as no AFM order parameter is developed. We

can understand this by realizing that the von Neumann entropy of a single spin can be

reduced only by an imbalance of of ⟨n↑⟩ = 1− ⟨n↓⟩ and ⟨n↓⟩ = 1− ⟨n↑⟩, as evident from

a comparison of Eqs. O.31, O.32 and O.33. At the Mott-Heisenberg transition, both

the spin-entropies start to rapidly decrease, as the spin population imbalance is directly

introduced by the magnetization mi = |⟨n↑⟩ − ⟨n↓⟩|.

The combined behavior of si and si↑ leads to an interesting evolution of the intra-orbital

mutual information I( ↑ : ↓ ) = si↑+si↓−si , that vanishes at U = 0, as si = log(4) = si↑+si↓,

gradually increases in the interacting semimetal until it reaches a maximum at the Mott-

Heisenberg transition point. After the transition, the onset of a finite magnetization slowly

depletes it, as the system is completely frozen and no information content can be extracted

from neither the single orbital or one of the two spin orbitals and without information,

correlation cannot exist! [75, 76]

On the right panel of Fig. O.4 we report the same quantities, but this time for the

paramagnetic simulation, i.e. a calculation that does not allow the development of a finite

order parameter. In view of the preceding discussion, we can surely expect the static

and dynamical mean-field solutions to progressively depart away from each other, as

the interaction is increased, and reach a maximal “distance” when the latter realizes the

paramagnetic Mott insulating state. Indeed the absence of spion symmetry breaking leads

to a monotonically increasing intra-orbital mutual information that approaches log(2) in the

limit of strong coupling U ≫ t. The growth is very fast before the Mott transition, which

happens when I( ↑ : ↓ ) is already very close to the asymptotic value, at U/t ≈ 10.75. We

can locate the transition point by inspecting (see Fig. O.5) the behavior of the quasiparticle

weight Z (Eq. O.18), which must vanish for a Mott state, as a witness of the death of

quasiparticles and consequently of a valid description in terms of single-body entities.

We finally observe that the asymptotic value of log(2) for the intra-orbital mutual informa-

tion does directly descend from the strong coupling limit of the single-orbital entropy si ,

as the single-spin entropy is fixed to log(2) at all interaction values. Indeed, the former

quantity has been intensely studied across paramagnetic MITs, both in the limit of infinite
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dimensions [61] and for the square lattice in two dimensions [3, 62], displaying essentially

the same behavior discussed above. Yet, it does not capture the signature of Mott

insulators as strongly correlated electronic systems, as it always decreases, monotonically

with the growth of the interaction.

As we will thoroughly discuss in chapters 7 and 9, it instead bounds from above all the

local fluctuations in the many-body state. Intuitively, one can consider Eq. O.28 and take

A=B, leading to a "diagonal" mutual information I(A : A) = sA (it is often referred to

as self-information, in this context) that bounds from above all the fluctuation functions〈
O2A
〉
− ⟨OA⟩2. The argument can be made rigorous, see Ref. [75]. Indeed, an inspection

of two prominent fluctuation functions, i.e. the charge and spin local fluctuations, as

reported in Fig. O.6, demonstrates (i) a monotonic reduction of the charge fluctuations,

for both the Hubbard-Heisenberg and the Mott-Hubbard transitions, as indeed expected for

a transition to an insulating state, and (ii) a monotonic increase of the spin fluctuations in

the semimetal phase, that continues up to saturation for the paramagnetic calculation but,

on the contrary, is interrupted by the onset of antiferromagnetism at the Mott-Heisenberg

transition, where instead it starts to decrease and eventually vanish in the strong coupling

limit.

In light of the above discussion, we can suggest (of course not prove, since an upper bound

is not obliged to follow the behavior of one specific quantity that it bounds), that the global

reduction of the single-orbital von Neumann entropy across both the Mott-Heisenberg

and the Mott-Hubbard transitions is dominated by the progressive reduction of the charge

fluctuations, in the semimetal, while the different behavior in the two Mott insulators,

can indeed be explained by the opposite fate of the spin fluctuations: on one hand, for

the Mott-Heisenberg transition we have a system where the two physically significant

fluctuation functions vanish in the strong coupling limit, and si indeed appears to approach

the same limit, while on the other hand, the Mott-Hubbard insulator displays strong (in

fact, maximal) spin fluctuations, giving a clear-cut explanation of the log(2) value of the

single-orbital entropy.

Whereas we have shown that the single-orbital behavior correctly accounts for the local

fluctuation properties of the system, we can indeed argue that the correct measure of

local correlation is given by the intra-orbital mutual information. A direct comparison of

Figs. O.3 and O.4 clearly demonstrates that I( ↑ : ↓ ) perfectly accounts for the observed

behavior of the correlated part of the local moment µ2z |cor, which undoubtedly represent a

key property to witness the genuine Mott character of a (semi)metal-insulator transition.

We will report the same quantities and briefly recall the same arguments in chapter 9,

section 9.2, to confirm that the Hubbard model on the square lattice, at least for the

paramagnetic Mott transition, displays the same phenomenology, which then is not to be

considered as a specific feature of the honeycomb lattice.
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Fig. O.4.: Single-orbital entropy, single-spin entropy and intra-orbital mutual information for the
Mott-Heisenberg (left) and the Mott-Hubbard (right) semimetal-insulator transitions
found in the DMFT solutions for the Hubbard model on the honeycomb lattice. All
values are reported in bits (units of log(2)).
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Fig. O.5.: Evolution of the quasiparticle weight Z as a function of the Hubbard interaction
strength U/t, for the paramagnetic Mott transition found in the Hubbard model on
the honeycomb lattice. The vanishing of Z signals the death of Fermi liquid theory
and hence the transition to a strongly-correlated insulating state.
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Fig. O.6.: Local charge and spin fluctuation for the Mott-Heisenberg (left) and the Mott-Hubbard
(right) semimetal-insulator transitions found in the DMFT solutions for the Hubbard
model on the honeycomb lattice.
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O.6 Other correlated insulators:
nontrivial electronic topology

The existence of interaction-induced metal-insulator transitions (MIT) and semimetal-

insulator transitions (SMIT), that we have concisely described in the previous sections,

underlines the possibility of phase transitions that are not associated to the traditional

paradigm of spontaneous symmetry breaking, the incredibly influential masterpiece of

statistical physics introduced by Ginzburg and Landau in 1950 [77]. Or, at least, an order

parameter for the paramagnetic Mott-Hubbard transition as not yet been found and its

definition constitutes an outstanding open problem in condensed matter physics, despite

some early attempts, relevant only for the critical endpoint at high-temperature [78].

Yet, the experimental discovery of topological insulators, happened almost two decades ago

[79, 80], has attracted a fast growing attention to a whole other class of phase transitions

that cannot be associated to any kind of local order parameter. We will not delve, here,

into the description of this vast and complex field. However we will give a brief review

of some selected concepts that will be useful for the description of our results on the

Kane-Mele-Hubbard model, in the second part of the thesis (chapters 1, 2, 3, 4, 5). For

reviews of this evolving field, we suggest Refs. [81–83].

The very first theoretical model for a topological insulator dates back to the ’80s [84],

hypothesizing a possible effect in graphene many years before the first synthesis of the

material (which, however, has a too small spin-orbit coupling to actually host the predicted

properties). In this way Haldane devised the model that now is named after himself, giving a

minimal description of what now is usually called a Chern insulator. The main, spectacular

property of a Chern insulator is that it sustains a quantum Hall effect, without the need of

an external magnetic field. The resulting edge currents, in a bounded sample, can be proven

to be dissipation-less, as no back-scattering is allowed for electrons residing in the relevant

quantum states of the material. In the top-left panel of Fig. O.7 we show a schematic

illustration of this situation, together with, on the right, the corresponding properties of

the band structure. It features an energy gap, for the Bloch states in the bulk of the

material, and a single edge state, crossing the gap, that is associated to the dissipation-less

currents described above. As we anticipated there is no local order parameter for the

transition between a metal, or another kind of insulator, and this electronic phase and

the theoretical tool to uniquely characterize it is the so-called Chern number. The Chern

number is what we call a topological invariant, namely an integer that is associated with

highly nonlocal features of the energy bands and their correspondent eigenstates.4 Most

remarkably, the Chern number is exactly proportional to the quantum Hall current in the

4This is crucial: the energies alone do not determine the Chern number!
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edge states, in terms of fundamental constants. For this reason, a zero Chern number

identifies a trivial, i.e. nontopological state, while any nonzero value for the Chern number

identifies an equivalence class of states with the same topology. The sign of the Chern

number determines the chirality of the edge currents, such that opposite Chern numbers

with the same magnitude correspond to distinct topological families. It has been shown

that many kind of perturbations are not able to easily change the Chern number, hence the

topological properties of a system. On the other hand, when a transition occurs it is always

associated with the closure of the energy gap (breaking the adiabatic connection with the

original system) and/or with the presence of dramatic effects, like extreme disorder or

strong electronic correlations, invalidating the whole band theory picture that underlies

the elementary description of these states. There are many other aspects associated with

the concept and the realization of a Chern insulator, but here we do not enter in further

details.

Another family of topological insulators is given by the so-called quantum spin-Hall insulators

(QSHI), depicted in the lower panels of Fig. O.7. These states can be generally decomposed

into the superposition of two "copies" of a Chern insulator, where one copy describes the

properties of one spin family (e.g. the electrons in a |↑⟩ spin state) and the other describes

the remnant electrons (the ones in a |↓⟩ state). In fact, the very first model for a QSHI

has been developed by Kane and Mele [85, 86], assembling together two copies of the

aforementioned Haldane model [83]. Crucially, the two copies of the Chern state are

characterized by opposite Chern numbers, so that the total charge current at the edge of

the system vanishes (as the Chern numbers are additive, for independent bands, or spin

bands). However, the two spin bands are effectively in a Chern state, hence there would be

counter-propagating currents, with opposite spin character, defining the so-called helical

spin currents, that do not transport charge but indeed transport spin. These currents

are less robust against perturbations than the corresponding charge currents in Chern

insulators. In particular they are protected by time-reversal symmetry [86], meaning that

any process that can flip a spin does indeed cause back-scattering, dissipating the edge

currents. Yet, quantum spin-Hall insulators have been successfully realized in experiments

[79], effectively driving the growth of the whole field and attracting intense research in

both the theoretical and applied domains. Given that the total Chern number of a QSHI

vanishes, the topology of the system must be characterized by a different integer. It has

been show that this integer indeed exists and can assume just two values (even or odd) [86].

For this reason it is universally referred to as the Z2 topological invariant. Under rather

general conditions, the Z2 invariant can be computed directly from the two individual Chern

numbers associated to the opposite spin polarizations, as Z2 = (C↑ − C↓)/2. Whenever

the spin projection is conserved, the two individual Chern numbers are well defined and

one can directly compute either of them, as Z2 ≡ C↑ ≡ C↓. In this case the Z2 invariant

is also called spin-Chern number.
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Fig. O.7.: Schematic representations of a Chern insulator (top) and of a quantum spin-Hall
insulator (bottom). On the left an illustration of the typical interface between the
topological insulator and a trivial insulator (e.g. the vacuum). On the right the
corresponding features in the band structure of the material, for bounded crystallites,
solved in open boundary conditions. The Chern insulator presents a single edge-state
that lies within the band gap. If the Fermi level EF crosses this state the interface
with the vacuum (or with a trivial insulator) sustains a dissipationless current. The
quantum spin-Hall insulator, on the other hand, features two distinct edge states,
with an opposite, well-defined spin character. The corresponding edge states are
counter-propagating, resulting in zero charge current, but a finite spin current, that is
protected by time-reversal symmetry (i.e. spin-flip processes can indeed dissipate its
flow). Adapted from Hasan and Kane [81].
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Returning to our main motivation, namely the analysis of correlated insulating states

of matter, we point out that notwithstanding the possibility of defining and realizing

topological insulating systems that are well described within a single-particle picture, the

study of the effect of electron-electron interactions and in particular of strong correlation

effects on these states has been very fruitful, revealing a multitude of interesting research

directions. We leave a full coverage of the progress made in the last two decades to

Refs. [87, 88] and focus on two main points, relevant for our discussion of the phase

diagram of the Kane-Mele-Hubbard (KMH) model, which is nothing but the inclusion of

the local Hubbard repulsion (Eq. O.5) into the minimal model for QSHI states proposed by

Kane and Mele [85, 86].

• Topological insulators are quite robust against the electronic repulsion, yet they can

undergo interaction-induced phase transitions to topologically trivial band insulators.

In this case the interaction renormalizes the relevant physical parameters in the

Hamiltonian and makes the system cross its topological phase boundary. Despite

the apparent simplicity, many interesting effect can be associated with this class of

phenomena, as the conversion of a continuous topological transition, i.e. the standard

picture in noninteracting and Hartree-Fock band theories, to a discontinuous transition

that does not close the gap nor it is associated with any spontaneous symmetry

breaking [89–93].

• Topological insulators can be completely transformed in strongly correlated many-

body states, such as Mott-Heisenberg and Mott-Hubbard insulators. In this case it is

not easy to determine if the nontrivial topology survives or it is removed by the Mott

transition. The onset of magnetism should in principle significantly "endanger" the

existence of a QSHI state, as it breaks the protecting time-reversal symmetry. Yet,

many observations and theoretical predictions have been made for weakly magnetized

topological insulators, or strongly magnetized systems that are transformed from

quantum spin-Hall insulators to Chern insulators, by the onset of antiferromagnetism.

In both cases the the resulting phase is usually referred to as antiferromagnetic

topological insulator (AFMTI) [94, 95]. In chapter 3 we discuss our prediction for a

weakly magnetized AFMTI state, found in the Kane-Mele-Hubbard model, in the

proximity of a discontinuous Mott-Heisenberg transition at intermediate interaction

strength. On the other hand, a Mott-Hubbard transition makes for an even more

difficult determination of the topological character of the resulting many-body state,

generating heated debates in the community [96–98]. Of particular interest in

this context is the concept of topological Mott insulator [47], recently brought to

renovated attention as evidence of nontrivial topology has been reported for the

Mott-Hubbard phase in the Kane-Mele-Hubbard model [99], as well as in closely

related systems [100].
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We end this section by noting that, as isolated as the attempt to develop of a Ginzburg-

Landau theory [78], there have been recent proposals for classifying the Mott-Hubbard

transition as inherently topological, with an invariant related to generalizations of the

Luttinger theorem [101, 102]. A remarkable connection can be made with the concept of

Luttinger surface and hence to the possible extension of Fermi liquid theory to the spin

degrees of freedom of a Mott-Hubbard insulator [103]. This in turn suggests a renovated

interest in the historically influential proposal to describe the parent compound of cuprate

superconductors as a resonating valence bond insulator [24, 25] or, more in general, as a

quantum spin liquid [48]. This, once again, suggests a deep connection between the physics

of Mott-Hubbard localization and the development of large nonlocal entanglement. While

we are not able, within DMFT or its cluster extension, to model the long-range properties

of quantum spin liquids, we make a small step towards the answer to these significant

questions with a study of the quasilocal, i.e. extremely short-range, entanglement between

electronic orbitals residing at different lattice sites, as thoroughly discussed in the second

part of the thesis, chapters 6, 7, 8, 9, 10.

O.7 There is much more to strong correlations
In the beginning of the chapter, we have briefly mentioned that the parent compound

of cuprate superconductors is always a Mott-Heisenberg insulator, and that the general

understanding of high-temperature superconductivity in these materials is believed to be

intimately connected to the physics of doping a Mott insulator [24–26].

A deeper exploration of the topic, immediately reveals that the doping phase diagram

of these materials is extremely rich and that superconductivity and Mott-Heisenberg

antiferromagnetic ordering are just a tiny piece of the puzzle. In Fig. O.8 we report a

qualitative representation of the cuprate phase diagram, highlighting with a vertical line

the parent (undoped) compound.

In the vicinity of half-filling, a large antiferromagnetic region dominates the low temperature

landscape. But once we inject enough holes (or electrons, even if the electron doping is

much less favorable in practice, due to the asymmetry of the antiferromagnetic dome)

the system is transformed in either a superconductor (at low enough temperature) or

a so-called pseudogap metal. The experimental features of the latter phase have long

puzzled the community [55, 104], eventually enforcing the idea that a complete theoretical

understanding of the underlying strongly correlated physics is probably needed, as a partial

key to unlock the understanding and hence the engineering of superconducting states

with high(er) critical temperature. In this thesis we will contribute to essentially a single

aspect of this puzzle, focusing on the evaluation of the intra-orbital mutual information,

defined above in section O.5, and the short-range two-site entanglement, which together

will provide a hint for an intimate connection between the quasilocal physics of pseudogap
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Fig. O.8.: Schematic phase diagram of a cuprate high-temperature superconductor. The parent
(undoped) compound is an antiferromagnetic Mott-Heisenberg insulator, at sufficiently
low temperatures. Upon doping exotic, strongly correlated phases can arise, including
unconventional superconductivity.

metals and the properties of a Mott-Hubbard insulator. The discussion of these results

is included in chapter 10, while a brief outlook on the what can be done to extend the

analysis to the notable long-distance properties of the Fermi surface will be given in the

conclusion of the thesis.

Returning to the phase diagram in Fig. O.8, we observe that, only on the hole-doped side,

another exotic metallic phase can be stabilized, at high temperature and/ore large doping

fraction. This strange metal violates the Ohm law, with a linear temperature dependence

of the resistivity and of the Hall coefficient [26, 105]. While significant progress has been

made on more complicated models, featuring random interactions at all distances in a

disordered medium, with notable connections with the physics of black-holes [106, 107],

recent evidence suggests that the strange metal phase of cuprates can be, at least partially,

captured by the doped single-band Hubbard model [108].

Overall, the tight competition between different energy scales makes for beautifully rich

phase diagrams in all strongly correlates systems, ranging from alternative platforms for

unconventional superconductivity [109–118], to multiferroic perovskites [119–121], twisted

bilayers [122–124], SU(N) systems in cold-atom simulators [125–127], and even catalytic

molecular complexes, relevant to biology [128, 129]. In turn, the understanding and the

classification of the emerging complexity can be often fruitfully exploited for controlling

new phenomena and engineering novel devices, spanning the different pillars of materials

science, soft matter and quantum technologies.
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honeycomb lattice





1Introduction

„Hexagons are the bestagons.

The rest just can’t compete with the best.

— CGP Grey
referring (also) to graphene

1.1 Topological and magnetic phases of
interacting Dirac fermions

The study of interaction effects on Dirac fermions has an intense, if relatively recent,

history in the field of strongly correlated materials, dating back to the first explorations on

graphene, where theoretical efforts [57] have anticipated the experimental discovery [58].

The birth of topological insulators [80–83], on the other hand, has brought renovated

attention on the role of the intrinsic spin-orbit coupling, whose central role was earlier

emphasized, in the absence of interactions, by Haldane [84] and Kane and Mele [85, 86].

The so-called Kane-Mele-Hubbard (KMH) Hamiltonian [87, 88] promised to become

a paradigm for the interplay between topology and spin-orbit coupling with electron

correlations. The search for a solution of this model has been boosted by the quick

realization that, at half-filling where it describes interacting quantum spin-Hall insulators

(QSHI), it is not affected by a sign-problem in projective quantum Monte Carlo schemes [87,

88]. The consequent fervent activity has spanned the entirety of the last decade, involving a

multitude of analytical and numerical techniques in the field of strongly correlated electrons

[130–148].

So far, to the best of our knowledge, most research has focused mainly on the identification

and characterization of the ground state properties of the model. On the other hand, the

magnetic anisotropy introduced by the topological spin-orbit coupling suggests that it is

important to characterize the different antiferromagnetic phases, and the mechanisms

behind their stability, beyond the plain determination of the energetically favoured solutions

at zero temperature. This can lead to opportunities to favour one or another phase, or to

switch from one to the other by playing with geometry and/or introducing perturbations

to the model.

For this reason, in this chapter we use dynamical mean-field theory (DMFT, see section

O.3) to address the comparison and competition of solutions with different symmetries:
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paramagnetic, in-plane and out-of-plane antiferromagnetic. We further compare the DMFT

results to the Hartree-Fock (HF) static mean-field theory, in order to address the role

of dynamical correlations in the stabilization of these solutions. Moreover, we support a

conventional analysis of their properties with concepts from quantum information theory: a

rigorous quantification of quantum and classical correlations between electrons populating

the same local orbital, which we label as intra-orbital correlations, will allow a clear-cut

assessment of the “distance” between the DMFT and HF solutions, complementing earlier

studies on interaction-driven antiferromagnets [149, 150].

The peculiar effects of the intrinsic spin-orbit coupling are shown to lead to significantly

strong local correlations in weakly-magnetized states, in contrast with the pure Hubbard

model on the honeycomb lattice. Furthermore, these states are proven to preserve the

nontrivial topology of the parent QSHI state, hinting at a possible antiferromagnetic

topological insulating (AFMTI) [94, 95] phase in the model. Similar findings have been

reported for the Bernevig-Hughes-Zhang-Kanamori model [151–154], describing interacting

quantum spin-Hall insulating phases on the square lattice [87–89, 91].

Finally, the comparison with the symmetry unbroken solution establishes the fate of intra-

orbital correlations in the strong-coupling limit of the model, for both the semimetallic

noninteracting reference, at vanishing spin-orbit coupling, and the topological QSHI state.

The resulting local reduced density matrix is shown to host maximal classical correlations,

reflecting our recently proposed connection between genuine Mott localization without

symmetry breaking and the development of short-range nonlocal entanglement [3], that

will be discussed in detail in the second part of the thesis, chapters 6, 7, 8, 9 and 10.

We conclude the chapter with an outlook on future research opportunities, including the

extension of the analysis to nonlocal physics, as to enable direct access to quantum and

classical nonlocal correlations and the investigation of the role of Green’s function zeros

[96–98], recently proposed to describe topological Mott insulating phases [47] on the

Kane-Mele-Hubbard Hamiltonian and closely related models [99, 100].
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1.2 Outline of the following chapters
The following chapters are organized as follows:

• In chapter 2 we define the Hamiltonian, discuss its main features and give an

overview of the existing literature. We proceed, in sections 2.1 and 2.2 to detail our

static and dynamical mean-field calculations, underlining the different assumptions

to get in-plane magnetized, out-of-plane magnetized and paramagnetic solutions.

Finally, in section 2.3 we prove the absence of intra-orbital entanglement and

define a rigorous measure of classical intra-orbital correlations, within the quantum

information framework introduced in section O.5.

• In chapter 3 we present numerical results for the two anisotropic antiferromagnetic

transitions (sections 3.1, 3.2) and compare the intra-orbital correlations to those

of the paramagnetic Mott insulator (sections 3.3) and 3.4). Thus we outline an

educated guess about the short-range nonlocal entanglement of Mott-Hubbard

insulators, leaving a full exploration to chapter 9, in the second part of the thesis.

• In chapter 4 we provide further computational details, analyzing the energetic

competition between the two anisotropic antiferromagnetic solutions, across the

parameter space of the model. A discussion on possible, experimentally feasible

strategies for stabilizing the unfavorable out-of-plane Néel state is included.

• Finally in chapter 5 we draw our conclusions and outline future research directions,

concerning several aspect of the present discussion.
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2The Kane-Mele-Hubbard model

We consider the minimal Hamiltonian for noninteracting topological Dirac fermions on the

honeycomb lattice, due to Kane and Mele [85, 86]

HKM = t
∑
⟨i j⟩

c†i cj + iλso
∑
⟨⟨i j⟩⟩

c†i (νi j · σ)cj , (2.1)

where ci = (ci↑, ci↓), ⟨i j⟩ and ⟨⟨i j⟩⟩ indicate sums respectively over the nearest and

next-nearest neighbors on the honeycomb lattice,

νi j =
dik × dkj
|dik × dkj |

, σ = (σx , σy , σz),

with dik and dkj vectors connecting the i-th and j-th nearest neighbors sites in the lattice

through the intermediate k-th site, and σx , σy and σz are the Pauli matrices associated

to the spin degrees of freedom.

We define our model as minimal because, with respect to the original references [85, 86]

here we neglect the staggered sublattice potential

Hν = λν
∑
i

εic
†
i ci , εi =

+1 i ∈ {Sublattice A}

−1 i ∈ {Sublattice B}

and the Rashba term

HR =
iλR
2

∑
⟨i j⟩

c†i
(σ × di j)z
|di j |

cj

which are meant to model a possible ionic nature of the bond and the presence of a growth

substrate, respectively. These two terms compete with the the λso spin-orbit coupling,

closing the topological gap respectively for λν ⩾ 3
√
3λso and λR ⩾ 2

√
3λso [86]. In

their absence, Eq. 2.1 describes free-standing graphene for λso = 0 and a model quantum

spin-Hall insulator (QSHI) otherwise.

The noninteracting model in Eq. 2.1 can be solved exactly in reciprocal space, as

HKM =
∑
k

Ψ†kH(k)Ψk

Ψk = (ckA↑, ckB↑, ckA↓, ckB↓)
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Fig. 2.1.: On the left a fragment of the honeycomb lattice, with the two sublattices marked in
different colors. The arrows represent the two lattice basis vectors, u and v , and the
inter-sublattice nearest-neighbor displacements δi . On the right the hexagonal first
Brillouin zone, whose extreme points are grouped into two inequivalent classes K and
K′, hosting the Dirac fermions at the Fermi level, for the half-filled semimetal.

with

H(k) = xkΓ01 + ykΓ02 + δkΓ33

=


δk(k) xk − iyk 0 0

xk + iyk −δk(k) 0 0

0 0 −δk(k) xk − iyk
0 0 xk + iyk δk(k)


=

(
H↑(k) 02×2
02×2 H↓(k)

)
, (2.2)

xk = t
[
cos(k · u) + cos(k · v) + 1

]
,

yk = t
[
sin(k · u) + sin(k · v)

]
,

δk = 2λso
[
sin(k · u)− sin(k · v)− sin(k · u − k · v)

]
,

where u = (3/2,
√
3/2), and v = (3/2,−

√
3/2) are suitable basis vectors for the honey-

comb lattice (see the left panel in Fig. 2.1). The spinorial 4× 4 matrices Γi j = σi ⊗ τj , are

defined in terms of σi and τj Pauli matrices, respectively referred to spin and sublattice

degrees of freedom, with the convention that σ0 and τ0 are 2× 2 identity matrices.
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The eigenvalues of H(k) are

E±(k) = ±
√
|xk + iyk |2 + |δk |2 (2.3)

so that the two bands are gapped for any finite spin-orbit coupling λso. Otherwise they

realize a semimetal with Dirac cones at K =
(
2π
3 ,

2π
3
√
3

)
and K′ =

(
2π
3 ,− 2π

3
√
3

)
. The

minimal gap in the Brillouin zone (see the right panel in Fig. 2.1) is located at the Dirac

points K and K′ for λso < 3
√
3t ≃ 0.2t, with magnitude ∆0 = 6

√
3λso [85], otherwise a

smaller gap ∆0 = 2t opens at M =
(
2π
3 , 0

)
[130].

The spin block-diagonal form of Eq. 2.2 reveals the correspondence between Chern and

quantum spin-Hall insulators: the Kane-Mele model can be seen as a superposition of two

spinless Haldane Hamiltonians [84], with opposite next-nearest neighbor phases φ↑ = π/2

and φ↓ = −π/2 [81–83]. By virtue of the spin factorization of the Kane-Mele eigenvectors,

the Z2 invariant can be computed, in principle, as the Chern number of an individual spin

polarization Z2 = (C↑ − C↓)/2 = C↑ = C↓, but, as we will discuss in detail, the emergence

of in-plane magnetic ordering, in the presence of electron-electron interactions, spoils

the conservation of the out-of-plane spin component and requires a general treatment.

Throughout this work we compute the Z2 topological invariant of suitable effective quadratic

models for the interacting system, from the evolution of Wannier charge centers [155], as

implemented in the Z2Pack software [156].

To investigate the effects of electron-electron repulsion on the Kane-Mele model we include

a local interaction in the Hubbard form (see Eq. O.5), leading to the Kane-Mele-Hubbard

(KMH) Hamiltonian [87, 88]

HKMH = HKM + U
∑
i

[(
ni↑ −

1

2

)(
ni↓ −

1

2

)]
, (2.4)

where niσ = c†iσciσ is the local spin-density operator. The interaction is written in an

explicitly particle-hole symmetric form so that the model is half-filled for zero chemical

potential (for this reason we omit the chemical potential term altogether).

The ground state of Eq. 2.4 has been extensively studied within a multitude of analytical

[130–135] and numerical [136–142] approaches, including dynamical mean-field theory

and its cluster extensions [139, 143–148], generating a rich debate around several open

questions: from claims of a spin-liquid phase at low spin-orbit coupling [131, 136, 137,

146] and later disproving evidence [138, 139], to contrasting assessments of the nature of

the magnetic transitions [130–132, 134] and the possible role of magnetic excitons and

their condensation [133].

Nevertheless, the essential features of the ground state phase diagram can be now

considered as established [88] and they have been confirmed to survive the introduction
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of the full long-range Coulomb repulsion [157]. For λso = 0 the model describes a Dirac

semimetal, up to relatively high repulsion, and magnetizes to an isotropic Néel state above

above a critical U/t ratio.1 With a finite spin-orbit coupling λso ̸= 0, the quantum spin Hall

state results increasingly stable against magnetic ordering, due to its symmetry protected

nontrivial topology. Furthermore, the long range ordering eventually stabilized at large

U/t, is characterized by a lowered easy-plane symmetry, due to the inherent coupling of

spin and lattice degrees of freedom [134].

The interest in paramagnetic insulating solutions for large interaction U ≫ t has been

revived by the recent reconsideration of possible topological Mott insulating states [47] in

strongly interacting topological insulators [100], including analytical investigations on the

Kane-Mele-Hubbard Hamiltonian [99]. Our quantum information analysis of local solutions

within dynamical mean-field theory thus complements recent advances in the field, with a

rigorous quantification of quantum and classical intra-orbital correlations, not only for the

groundstate, but at different levels of symmetry breaking, including the possibly topological

paramagnetic Mott insulator.

2.1 Static mean-field theory
In this section we discuss the Hartree-Fock static mean-field theory for the half-filled

KMH model. We will consider antiferromagnetic solutions with magnetization along

the z (out-of-plane) axis or in the x-y (lattice) plane. Within Hartree-Fock theory, we

decouple the quartic term in Eq. 2.4 into all the Wick contractions that we assume to

have nonvanishing expectation values in the target state. If we consider solutions with an

out-of-plane magnetization we can write the decoupling as

δHHF⊥ ∝
(
nA↑ ⟨nA↓⟩+ nA↓ ⟨nA↑⟩ − ⟨nA↑⟩ ⟨nA↓⟩
+ nB↑ ⟨nB↓⟩+ nB↓ ⟨nB↑⟩ − ⟨nB↑⟩ ⟨nB↓⟩

)
(2.5)

from which we can define the following order parameters within the bipartite unit-cell

Fz = ⟨nA↑⟩+ ⟨nB↑⟩ − ⟨nA↓⟩ − ⟨nB↓⟩ =
〈
Ψ†kΓ30Ψk

〉
,

Az = ⟨nA↑⟩ − ⟨nB↑⟩ − ⟨nA↓⟩+ ⟨nB↓⟩ =
〈
Ψ†kΓ33Ψk

〉
,

Pz = ⟨nA↑⟩ − ⟨nB↑⟩+ ⟨nA↓⟩ − ⟨nB↓⟩ =
〈
Ψ†kΓ03Ψk

〉
,

Nz = ⟨nA↑⟩+ ⟨nB↑⟩+ ⟨nA↓⟩+ ⟨nB↓⟩ =
〈
Ψ†kΓ00Ψk

〉
,

1In contrast with the square lattice [158, 159] and with the expectations for a generic bipartite lattice, in
which at half-filling the groundstate is antiferromagnetic for any non-zero interaction, the honeycomb
lattice generally displays a finite critical strength for antiferromagnetic ordering. This property descends
from the peculiar properties of Dirac cones: the vanishing density of states at the Fermi level renders
ineffective the logarithmic instability, even in the presence of perfect nesting [57, 58].
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where the Γi j matrices and the spinorial basis Ψk are the same as in Eq. 2.2. Pz ̸= 0
describes a staggered charge-density wave, surely not expected to be realized in a half-filled

repulsive model, while particle-hole symmetry fixes the total charge parameter Nz = 2

at half-filling. We are thus left with a variational optimization over Fz and Az , which

correspond to ferromagnetic and antiferromagnetic ordering, respectively.

Given that the λso spin-orbit coupling in Eq. 2.1 lowers the spin rotation symmetry from

the full SU(2) of the standard Hubbard model, to a residual U(1) rotation around the

out-of-plane axis [134], the z-axis magnetic ordering is no longer equivalent to the in-plane

one. Hence we have to define a different mean-field decoupling, involving contractions of

the spin-flip operators ui = c
†
i↑ci↓ and di = c

†
i↓ci↑, as

δHHF∥ ∝
(
uA ⟨dA⟩+ dA ⟨uA⟩ − ⟨uA⟩ ⟨dA⟩
+ uB ⟨dB⟩+ dB ⟨uB⟩ − ⟨uB⟩ ⟨dB⟩

)
. (2.6)

The corresponding unit-cell order parameters are

Fx = ⟨uA⟩+ ⟨uB⟩+ ⟨dA⟩+ ⟨dB⟩ =
〈
Ψ†kΓ10Ψk

〉
,

Fy = i ⟨uA⟩+ i ⟨uB⟩ − i ⟨dA⟩ − i ⟨dB⟩ = −
〈
Ψ†kΓ20Ψk

〉
,

Ax = ⟨uA⟩ − ⟨uB⟩+ ⟨dA⟩ − ⟨dB⟩ =
〈
Ψ†kΓ13Ψk

〉
,

Ay = i ⟨uA⟩ − i ⟨uB⟩ − i ⟨dA⟩+ i ⟨dB⟩ = −
〈
Ψ†kΓ23Ψk

〉
,

so that (Fx , Fy ) and (Ax , Ay ) would describe respectively ferromagnetic and antiferro-

magnetic order in the plane. Unless we introduce terms breaking the symmetry within the

plane, we can safely restrict to the x components.

In chapter 4 we will consider the competition between the two antiferromagnetic solutions,

i.e. finite Az or Ax , in order to address the role of the spin-orbit coupling in their energetic

balance. Owing to the variational principle, we can establish the relative stability of the

two solutions by comparing their energies at zero temperature and we can gain further

insight by comparing the evolution of relevant physical quantities.

Finally, we point out that the Z2 invariant can be evaluated with the same procedure

adopted for the noninteracting Hamiltonian, given that the Hartree-Fock corrections are

quadratic by construction, leading to an effective quadratic Hamiltonian with optimal

parameters determined according to the variational principle.

2.1 Static mean-field theory 43



2.2 Dynamical mean-field theory
As briefly introduced in section O.3, dynamical mean-field theory (DMFT) provides a

nonperturbative approach to strongly correlated electrons, based on a self-consistent

mapping between the original interacting lattice model and a quantum impurity embedded

in a noninteracting bath (see section O.3). While the standard formulation of DMFT

assumes the equivalence of all the sites of the lattice, hence one single quantum impurity

model to be solved self-consistently, the method can be naturally extended to account for

inequivalent sites, defining one impurity model and one self-energy for each of them.

The central quantity is the single-particle interacting Green’s function matrix in the subspace

spanned by the inequivalent impurities, which is imposed to match the projection of the

lattice Green’s function matrix onto the local subspace of the model, with the assumption

of a site-diagonal self-energy matrix2

Gloc(z)
def
=
1

Nk

∑
k

G(k , z) =
1

Nk

∑
k

(
z −H(k)−Σimp(z)

)−1 ≡ Gimp(z) (2.7)

where z is a generic complex frequency, H(k) is the noninteracting Hamiltonian of the full

lattice, Gimp and Σimp are the Green’s function and self-energy matrices describing the

quantum impurities. Despite being originally formulated in the limit of infinite dimensions

[37, 38], dynamical mean-field theory has proven successful for the realistic modeling of

materials [160], with a growing literature in the field of strongly correlated topological

systems in two and three dimensions [89, 91, 92, 100, 152, 161–164].

For the Kane-Mele-Hubbard model, Eqs. 2.2 and 2.4, we need to consider two inequivalent

impurity models, accounting for the A and B sublattices that define the honeycomb

structure (see Fig. 2.1). Hence, the self-energy matrix in Eq. 2.7 is characterized, by

construction, by a block-diagonal structure in sublattice space. Given our interest for the

in-plane magnetic solutions, we cannot assume a spin factorization in the Sz basis, as

customarily leveraged in most implementations of the method. In particular, we adopt a

Lanczos/Arnoldi exact diagonalization (ED) solver [54, 165], built upon a generalization

of the EDIpack software [166], to allow a full spin dependency of the impurity self-energy.

To alleviate the inherent computational effort of a spinful ED calculation, we leverage

the antiferromagnetic symmetry of the target solutions, to solve only one of the two

sublattices. For the out-of-plane calculation (AFM⊥) we impose the standard Néel

symmetry as ΣA↑↑ = Σ
B
↓↓, Σ

A
↓↓ = Σ

B
↑↑, and ΣA↑↓ = Σ

A
↓↑ = Σ

B
↑↓ = Σ

B
↓↑ = 0. For the easy-

plane computation (AFM∥) we impose the same conditions on the Sx projection, which

rotated back to the computational Sz basis become ΣA↑↑ = Σ
B
↑↑, Σ

A
↓↓ = Σ

B
↓↓, Σ

A
↑↓ = −ΣB↓↑,

2Notice that, while the self-energy and the impurity Green’s functions are diagonal in the site index, the
lattice Green’s function is not, due to the nonlocal part of the noninteracting Hamiltonian.

44 Chapter

2 The Kane-Mele-Hubbard model



ΣA↓↑ = −ΣB↑↓. We stress that both set of conditions represent a lower symmetry with

respect to the paramagnetic state that is found at low U/t ratio, so that the computation

can safely impose either of them in the whole phase diagram, with no loss of generality.

The DMFT/ED homologue of the Hartree-Fock decoupling Ansatz, is the parametrization

of the noninteracting bath, as it encodes the allowed properties of the resulting self-energy

through the self-consistency condition defined by Eq. 2.7. Similarly to our Hartree-Fock

treatment, we explore the competition between AFM⊥ and AFM∥ solutions, by defining

two alternative reduced parametrizations [167]

Hbath⊥ =

Nb∑
i=1

(εiσ0 +miσz), (2.8)

Hbath∥ =

Nb∑
i=1

(εiσ0 +miσx), (2.9)

where σz and σx are Pauli matrices and σ0 is the 2 × 2 identity in spin space. The

AFM⊥ bath can be easily shown to match the traditional parametrization in terms of

spin-dependent energy levels (see Eq. O.15), while the AFM∥ case exploits the reduced

representation of Eq. 2.9 to elegantly encode the in-plane magnetic ordering. In the

practical implementation, to ease the search for each of the two solutions, we provide

nonzero initial guesses for the mi bath parameters, imposing a small (< 0.1t) positive

“kick” on the impurity model representing the A sublattice and an opposite term on the

other one.3 The self-consistent iteration would either kill or enhance these initial guesses,

determining the phase diagram of the model, within the given DMFT Ansatz. To access

the Mott-Hubbard state, with no symmetry breaking, we define a third parametrization

in which the bath does not depend on the spin degrees of freedom, obtaining a bath

Hamiltonian that is fully equivalent to the original Anderson impurity model [51]

Hbathpara =

Nb∑
i=1

εiσ0 . (2.10)

In all cases the Nb bath sites have been connected to the interacting impurity with spin-

independent real hybridization amplitudes Vi , initialized to a common value but free to

evolve independently for each bath site. All the data presented in this part of the thesis have

been obtained for Nb = 6. Explicit bath-size scaling, up to Nb = 9 has been performed on

selected data points at fixed spin-orbit coupling λso = 0.3t, ensuring excellent convergence

of all the significant features.

3We underline that this does not imply the presence of a magnetic field, which would be applied on the
impurity sites, but it is simply a tool to initialize the iterative procedure.
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Given a self-consistent solution of Eq. 2.7, local physical observables can be computed in

principle from the resulting local Green’s function matrix, which coincides by construction

to the impurity propagator. Hence, within our DMFT/ED implementation, we can

directly evaluate local observables from the Lanczos impurity solver, with great benefit in

computational cost and accuracy. In particular we compute single-particle and two-particle

occupations directly as ⟨niσ⟩ and ⟨ni↑ni↓⟩, where i is the label of the impurity site in the

two inequivalent auxiliary models and the spin basis can be rotated as needed. From

these expectation values the antiferromagnetic order parameter and the single-orbital and

single-spin reduced density matrices (see section 2.3) are directly accessible, with the same

definitions employed in Hartree-Fock theory. The impurity Green’s function matrices are in

turn evaluated in their continued-fraction representation, by a Lanczos tridiagonalization.

From them, we can easily evaluate spectral properties, as e.g. the single-particle gap, which

can be defined as the real-frequency distance between the two peaks in Re[Gi i(ω)] that

are closer to the Fermi level.4

Quantities involving nonlocal Green’s function can sometimes require more costly pro-

cedures, as the k-space integration and possible additional frequency convolutions can

introduce numerical instability and/or unfavorable performance.

For this reason, instead of the general formulation of the interacting Z2 invariant, based

on the lattice Green’s function G(k , z) [168–170], we exploit a simplified formulation

based on an auxiliary quadratic model, allowing for a calculation as cheap as for a

noninteracting Hamiltonian or within the Hartree-Fock approximation: the so called

topological Hamiltonian [171, 172]

Htopo(k) = H(k) +Σ(k , 0) = −G−1(k , 0) (2.11)

has been proven to give the same topological invariant as the full interacting model described

by G(k , z), provided that an adiabatic connection to the noninteracting propagator G0(k , z)

is assured. Within dynamical mean-field theory the recipe is further simplified by the locality

of the self-energy matrix, so that we compute the Z2 invariant from the Wannier charge

center evolution of the simple H(k) +Σ(0) renormalized Hamiltonian.

Another nonlocal observable of interest for the analysis of the competition between the two

anisotropic AFM orderings, is the kinetic energy K = ⟨H(k)G(k , z)⟩. A careful discussion

about its evaluation within dynamical mean-field theory is given in chapter 4.

4Due to Kramers-Kronig relations, such peaks are directly related to the edges of the spectral function
Ai (ω) = −Im[Gi i ](ω)/π.
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2.3 Intra-orbital correlations in presence of
magnetic anisotropy

In this section we briefly discuss how to generalize the measure of intra-orbital correlations,

introduced in the introductory section O.5, to the case of magnetically anisotropic systems.

In this way, we complement the description based on more conventional observables with a

quantity which unveils the quantum information content of the analyzed solutions and gives

important hints on the possible presence of nonlocal entanglement in the system [173].

We recall that for single-band models that conserve the total charge and magnetization,

the single-site density matrix can be written in diagonal form, as [61–65] (see section O.5)

ρi = λ1 |•⟩⟨•|+ λ2 |↗⟩⟨↗|+ λ3 |↙⟩⟨↙|+ λ4 |↗↙⟩⟨↗↙| , (2.12)

with
∑
i

λi = 1, ∀i : 0 ⩽ λi ⩽ 1.

where |↗⟩ and |↙⟩ indicate spin-orbitals associated to an arbitrary choice of the spin

component, and the black dot stands for an empty lattice site. The form of Eq. 2.12

satisfies the condition for a classically correlated state,5 thus implying that the two local

spin states experience only correlations that should be regarded as classical. Furthermore,

we remind that the intra-orbital correlation, defined as in Eq. O.34, does always vanish for

a Hartree-Fock calculation, as proven in section O.5.

Even if the Kane-Mele spin-orbit coupling lowers the spin symmetry from the full SU(2) to

the U(1)|⊥ rotation around the out-of-plane axis [134], we can still work in the basis of the

S⊥ projection, as it is an eigenvector of the residual spin symmetry, or, alternatively, we can

fix an arbitrary S∥ direction in the plane. For a Néel ordered phase, the choice is obligated,

as the spontaneous symmetry breaking associated with the onset of antiferromagnetism

completely removes all freedom in the direction of spin quantization. In this respect,

anisotropic magnetic phases are not fundamentally different from the usual scenario.

Hence, for the Kane-Mele-Hubbard model we will consider an intra-orbital mutual informa-

tion in the form of Eq. O.34, which we can write for a the in-plane and out-of plane spin

components respectively as I(→:←) = si→ + si← − si and I( ↑ : ↓ ) = si↑ + si↓ − si , where

in the expressions of si (Eq. O.30) and siσ (Eq. O.33) we must insert the in-plane mi∥ and

out-of-plane mi⊥ order parameters, respectively.

5For an in-depth analysis of the nature of classical and quantum correlations see Eq. A.14 and the
associated discussion in appendix A.
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3Mott transitions in the
Kane-Mele-Hubbard model

In this chapter we present our numerical results for the Kane-Mele-Hubbard model (Eq.

2.4), at zero temperature, within both Hartree-Fock and dynamical mean-field theory.

3.1 QSHI to AFM∥ transition
We start by inspecting and comparing the Hartree-Fock and DMFT solutions in the case

of a calculation that is able to develop in-plane antiferromagnetism (see sections 2.1 and

2.2, for details on the relevant parametrizations). At large U/t the AFM∥-parametrized

calculations are expected to develop a finite order parameter and to be more stable than

the corresponding AFM⊥ state, as long as an arbitrarily small spin-orbit coupling λso/t is

included in the Hamiltonian [87, 88, 130, 141]. Hence we prospect these calculations to

find the ground state of the model throughout the whole parameter space. The stability

of the in-plane solution is indeed confirmed for every value of U/t and λso/t, by explicit

calculation of the energies within both HF and DMFT. In chapter 4 we present more details

about these energy calculations, including a discussion of possible strategies to stabilize

the out-of-plane solution, in the context of cold-atom experiments and/or solid-state

nanostructures.

In the two panels of Fig. 3.1 we report Hartree-Fock and DMFT results, for respectively

the staggered magnetization m∥ and the single-particle gap ∆, as a function of U/t and

fixed λso = 0.3t, both superimposed on a background associated with the value of the Z2
invariant. The Hartree-Fock solution develops a finite magnetization, in a continuous way,

for U ≳ 3.3t, preserving the nontrivial topology of the QSHI state up to U ≃ 3.5t, where

the staggered magnetization reaches m∥ ≲ 0.25. The single-particle gap remains instead

fixed at its noninteracting value determined by λso, ∆0 = 2t, at all interaction strengths

before the transition, due to the inability of the Hartree-Fock correction δHHF∥ to capture

anything but constant energy shifts, when no order parameter is developed.

After the transition ∆ increases linearly, approaching, for large U/t, the standard magnetic

gap ∆m = Um∥ found for spin-orbit-free models, at the Hartree-Fock level [148, 149].

The fact that at intermediate U/t, right after the transition, ∆ < ∆0 + ∆m suggests a

competition between the renormalization of the topological gap ∆0, opened by λso in the

noninteracting model, and the progressive opening of the magnetic gap.
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The dynamical mean-field theory, on the other hand, show a discontinuous transition at

much stronger interaction U ≃ 6.8t, matching exactly the death of the Z2 topological

invariant. Yet, a finite order parameter m∥ ≲ 0.17 is found for a significant range of

interaction values, approximately U ≳ 5t, before the first-order jump. As a matter of fact

the jump is not associated with the development of AFM ordering, bur rather with the

change in the Z2 topological invariant.

The resulting coexistence of nontrivial topology and magnetic order has been checked to be

robust against variation of the spin-orbit coupling and all the relevant computational param-

eters: number of bath sites in the auxiliary impurity model, tolerance of the minimization

procedure in the update of the bath parameters across the DMFT iterations, frequency

resolution on the imaginary axis for the computation of the Green’s function matrices.

The evolution with the spin-orbit coupling can be summarized in a phase diagram that we

report in Fig. 3.2, confirming the existence of a magnetized topological ground state at

least in the 0.03̄t ⩽ λso ⩽ 0.6t range. Smaller finite values of the spin-orbit coupling have

not been addressed in our calculations. For λso = 0 we recover the well-known transition

between a Dirac semimetal and an isotropic Néel state [57, 138, 139, 144, 145, 147, 148],

that, to some extent, we have discussed in the introductory sections O.4 and O.5.

We remark that even if the coexistence between nontrivial topology and a weak antifer-

romagnetic magnetization has never been reported, to the best of our knowledge, for

the Kane-Mele-Hubbard model, similar predictions of an antiferromagnetic topological

insulating (AFMTI) [94, 95] phase have appeared for the closely related Bernevig-Hughes-

Zhang-Kanamori model, within dynamical mean-field theory [151, 152], variational cluster

approximation (VCA) [153] and the density matrix renormalization group (DMRG) [154].

Having established the behavior of the magnetic order parameter and the topological

invariant, we turn back to Fig. 3.1 to observe that the single-particle gap in the DMFT

calculation is strongly reduced by increasing the interaction, for U smaller than the critical

value for magnetic ordering, in striking contrast with Hartree-Fock theory. After the

transition ∆ grows resembling a Um∥ behavior, but shifted to a significantly smaller value

with respect to the static mean-field. This effect is inherently dynamical and can be

attributed to the large width of the Hubbard bands, describing the incoherent excitations

at high energies in the single-particle spectral function, as discussed in depth in Ref. [149].

We point out that, while in DMFT the gap can be evaluated only from the spectral

function, as described in section 2.2, in Hartree-Fock we can directly access the mean-field

bands. Leveraging this, we have cross-checked our algorithm to extract the gap on the

Hartree-Fock Green’s function, computed by assuming a self-energy constant in frequency,

and given by Um∥. We find excellent agreement with the gap computed from the mean-field

bands, hence validating the method for the, otherwise inaccessible, DMFT gap.
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Fig. 3.1.: Transition between the quantum spin-Hall and the easy-plane antiferromagnetic in-
sulators at λso = 0.3t. The colored regions represent an odd Z2 invariant for the
Hartree-Fock and dynamical mean-field theory calculations. The white region is nontriv-
ial in both calculations. m∥ is the staggered magnetization. ∆/t is the single-particle
gap, as computed from the diagonal components of the Green’s function (section 2.2).
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The comparison between HF and DMFT highlights some important differences between

the two solutions, despite they both describe the same phase and a ground state with

the same symmetry. To further analyze this difference we leverage on the measurements

of classical correlations that we defined in section 2.3. In Fig. 3.3 we show the single-

orbital and single-spin von Neumann entropies (Eqs. 7.2 and O.33, together with the

intra-orbital mutual information (Eq. O.34). The latter bounds from above all local

correlation functions, according to Eq. (O.28). Recalling that the intra-orbital mutual

information exactly vanishes for any Hartree-Fock calculation, as proven by Eq. O.36, we

propose it as a rigorous quantifier for the “distance” between static and dynamical mean-

field predictions for the local structure of the ground state. At the noninteracting limit

U/t = 0, we naturally have vanishing intra-orbital correlations, as the single-orbital entropy

assumes its maximal value si = log(4), corresponding to equal occupation probabilities

p• = p↑ = p↓ = p↑↓ = 1/4, while the single-spin entropies are fixed at log(2) by the absence

of a finite magnetization. Switching on the interaction and progressively increasing the U/t

ratio, si decreases monotonically, following the reduction of the double occupancy Di . This

in turn leads to a finite and monotonically increasing intra-orbital mutual information, up

to the first-order transition at U ≃ 6.8t. Therein, the jump in the order parameter results

in a sudden reduction of both single-orbital and single-spin von Neumann entropies. After

the transition, the single-spin entropy quickly decays as a consequence of the increasing

magnetization, while the reduction of si , which in principle is ascribed to both Di and mi ,

is progressively dominated by the latter. In fact, in the AFM phase the double occupancy

gradually approaches zero, as the local magnetic moments align towards a fully ordered

Néel state. At infinite interaction U ≫ t, we have a saturated magnetization mi = 1

and vanishing double occupancy Di = 0, leading to si = si ,→ = si ,← = 0, as there is no

statistical uncertainty on the electronic configuration of the local orbital. The behavior

of single-orbital and single-spin von Neumann entropies for U ≳ 6.8t stops the growth of

intra-orbital correlations, abruptly quenching them by more than a half at the discontinuous

topological transition and progressively approaching zero as the antiferromagnetic order

parameter is saturated. Overall, we can then affirm that the local groundstates of the

static and dynamical mean-field theory calculations coincide at the noninteracting and

strong coupling limits, while their distance reaches a maximum just before the first-order

transition from the weakly magnetized topological state to the trivial antiferromagnet.

The change in the Z2 invariant abruptly reduces the intra-orbital correlations, while the

progressive development of a small finite magnetic order parameter in the topological

phase has a little effect on their growth, remarking the strongly correlated character of the

topological antiferromagnetic solution found within DMFT, as opposed to the coexistence

found for 3.3 ≲ U/t ≲ 3.6 at the Hartree-Fock level.
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Fig. 3.2.: Phase diagram of the Kane-Mele-Hubbard model as predicted by DMFT. The orange
region represents an odd Z2 invariant, the blue region a finite AFM∥ order parameter.
The shaded region at intermediate interaction U, depicts the coexistence of topological
and magnetic ordering. At λso = 0 there is an isotropic semimetal to AFM transition,
characterized by trivial topology at all interaction values (solid lines).
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Fig. 3.3.: Single-orbital von Neumann entropy si , single-spin von Neumann entropies si→ and si←
and intra-orbital mutual information I(→:←) = si→ + si← − si , across the QSHI to
AFM∥ transition, at λso = 0.3t. The shaded area represents all possible local correlation
functions. All quantities are expressed in units of log(2) = 1 bit.
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3.2 QSHI to AFM⊥ transition
In this section we draw our attention to the out-of-plane Néel ordered state, which has

generally higher energy with respect to the in-plane counterpart (as discussed in detail

in chapter 4). Yet, solutions of this kind exist for sufficiently large U/t, using both the

static and dynamical mean-field theory. The behavior of the Hartree-Fock magnetization

and single-particle gap, at λso = 0.3t (Fig. 3.4), reveals a transition at U ≃ 4.6t, which

appears to be continuous, even if quite abrupt with respect to the in-plane case (Fig. 3.1).

The quick reduction of ∆ after the transition reflects a fundamental change in the mean-

field bands, caused by the sudden presence of a large order parameter. We report that

this effect is even more pronounced for λso < 3
√
3t, featuring a shift of the minimal gap

from the Dirac points K, K′ to the M symmetry point (see Fig. 2.1), as the magnetic

order parameter is developed. Hence, with respect to the easy-plane case, the competition

between the progressive reduction of the topological gap introduced by λso and the opening

of a magnetic gap ∆m = Um⊥ is clearly dominated by the former effect, leading to a sharp

minimum at U ≃ 4.9t.

On the other hand, the DMFT solution displays a first-order transition, reasonably similar

to the one observed in the AFM∥ calculation. We point out, though, that the discontinuous

jump, placed at a significantly higher critical interaction U ≃ 8.4t, brings the magnetization

at the very large value of m⊥ ≃ 0.89, quickly coalescing with the Hartree-Fock prediction

at stronger interactions. This convergence towards an essentially mean-field picture,

immediately after the transition, is clearly captured also by the intra-orbital mutual

information (Fig. 3.5), which drops almost to zero right after the discontinuous topological

transition.

Similarly to the AFM∥ ground state, we remark that the AFM⊥ dynamical mean-field

theory calculation finds a coexistence between nontrivial topology and weak (out-of-

plane) antiferromagnetic ordering at intermediate interaction values 6.5 ≲ U/t ≲ 8.4,

corresponding to a regime of strong intra-orbital correlations. This is not the case for

the Hartree-Fock calculation, as the magnetization vanishes up to the antiferromagnetic

transition. Therein the increase of the magnetization is so fast as to change the Z2
invariant within less than δU = 0.1t.
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Fig. 3.4.: Transition between the quantum spin-Hall and the out-of-plane antiferromagnetic
insulators at λso = 0.3t. The colored regions represent an odd Z2 invariant for the
Hartree-Fock and DMFT calculations. The white region is nontrivial in both calculations.
m⊥ is the staggered magnetization. ∆/t is the single-particle gap, as computed from
the diagonal components of the Green’s function matrix (see section 2.2).
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Fig. 3.5.: Single-orbital von Neumann entropy si , single-spin von Neumann entropies si↑ and si↓
and intra-orbital mutual information I( ↑ : ↓ ) = si↑ + si↓− si , across the QSHI to AFM⊥
transition, at λso = 0.3t. The shaded area represents all possible local correlation
functions. All quantities are expressed in units of log(2) = 1 bit.
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Fig. 3.6.: Single-orbital von Neumann entropy si , single-spin von Neumann entropies si ,↑ and
si↓ and intra-orbital mutual information I( ↑ : ↓ ) = si↑ + si↓ − si , across the unbroken
Mott transition, at λso = 0.3t. The shaded area represents all possible local correlation
functions. All quantities are expressed in units of log(2) = 1 bit.
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3.3 QSHI to Mott-Hubbard transition
A careful comparison between Fig. 3.3 and Fig. 3.5 reveals how the largest value of the

I( ↑ : ↓ ) intra-orbital mutual information, reached just before the sudden drop at the AFM⊥
topological transition, is naturally higher than the corresponding maximum of I(→:←)
found in the AFM∥ calculation, essentially because of the significantly stronger critical

interaction: as long as the magnetization is weak, the nontrivial topology of the state

survives, preserving the interaction-driven, monotonic growth of intra-orbital correlations.

The onset of the large-magnetization trivial phase leads to a more or less rapid decrease

of correlations. This phenomenon is not unexpected, as the broken-symmetry solution are

usually assumed to be less correlated.

This observation finally brings us to ponder how strong we can let the intra-orbital

correlations to grow, if we constrain the system in a symmetry-unbroken state. In search

for an answer, we consider the transition between the interacting quantum spin-Hall

insulator, which is notoriously adiabatic connected to the noninteracting limit of the model,

to the Mott-Hubbard insulator, which must eventually be stabilized, at large enough

interaction strength. As there is no symmetry breaking, the transition mechanism must

inevitably amount to strong correlation effects, so that we cannot capture it in any way

with Hartree-Fock theory. Hence we present only DMFT data, again for fixed λso = 0.3t.

Recalling the introductory discussion in section O.5, we can surely expect the static

and dynamical mean-field solutions to progressively depart away from each other, as

the interaction is increased, and reach a maximal “distance” when the latter realizes the

paramagnetic Mott insulating state.

In fact, as shown in Fig. 3.6, solving the DMFT equations within the paramagnetic Ansatz

(Eq. 2.10), leads to a monotonically increasing intra-orbital mutual information, that

approaches log(2) in the limit of large repulsion. The growth is very fast before the Mott

transition, which happens when I( ↑ : ↓ ) is already very close to its asymptotic value. The

residual slow growth is due to the long tail of finite double occupancy, that is never zero

except for an extreme atomic insulator.

On the other hand, the single-spin von Neumann entropy remain fixed at 1 bit = log(2),

since there is no finite magnetization and the density of each spin species is fixed to

0.5, at half-filling. Hence, the monotonic growth of the mutual information directly

descends from the behavior of the single-orbital von Neumann entropy. This latter quantity

has been intensely studied across paramagnetic metal-insulator transitions, in the limit

of infinite dimensions [61] and in the two-dimensional Hubbard model on the square

lattice [3, 61–63]. Our results for the KMH model have indeed a very similar qualitative

behavior as a function of U, across the QSHI to Mott-Hubbard transition, at all spin-orbit

coupling values. In particular we recover also the semimetal-insulator transition transition
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at λso = 0, that we have discussed in the introductory section O.5. The coalescence of the

von Neumann entropy of the two spin subsystem with that of the whole local system (the

spinful single-orbital) reveals the typical situation of a maximally correlated pair, wherein

all the information stored in the composed system can be fully extracted by either of the

two sub-parts [75, 76].

In contrast with a conventional Mott metal-insulator transition, in the present case the

system is gapped also in the noninteracting limit. The noninteracting gap is associated

with the topological nature of the system, and is renormalized (decreased) by the growing

interaction. On the contrary, the Mott insulator displays a gap that stems directly from the

local repulsion. We can thus pinpoint our Mott transition monitoring the behaviour of the

single-particle gap, whose evolution at λso = 0.3t is reported in Fig. 3.7. In section 2.2 we

give a brief description of how we evaluate this quantity, directly from the impurity Green’s

function matrix, that at self-consistency satisfies Eq. 2.7 and provides direct information

on the spectral properties of the lattice.

As witnessed by the single-particle gap, the Mott transition takes place at U ≃ 12.5t,
where we clearly observe a sudden jump from the almost vanishing renormalized topological

gap to the large Mott gap, which is already open as soon as we enter in the Mott state,

as it happens also for the pure Hubbard model [38, 174–176]. Before the transition, the

monotonic decrease of ∆ can be shown to be proportional to the quasiparticle weight

Z = 1/(1− ∂ωΣiσ(0+)), as computed for any sublattice i and spin state σ, outlining the

dynamical nature of its renormalization. In very general terms Z, which ranges from 1 in

a noninteracting system to 0 in a Mott state, renormalizes the single-particle dispersion,

resulting in a shrinking of the gap.

After the Mott critical point, the spectral gap is determined by the position and width of the

incoherent Hubbard bands, as there is no quasiparticle description for the purely many-body,

interaction-driven, insulating state. We remark that within our resolution on the real

frequency axis (δω = 0.001t), that directly descends from the numerical discretization

of the imaginary axis, at zero temperature, the single-particle gap never closes as its

minimum value is ∆min ≃ 0.03t, corresponding to an almost vanishing quasiparticle weight

Z ≃ 0.005 at U/t = 12.25 and Z ≃ 0.000008 at U/t = 13, clearly placing the Mott

transition in between.

Finally, turning to the characterization of the topological character of the phases, the Z2
invariant remains odd for every interaction value preceding the Mott transition, according

to the topological Hamiltonian (Eq. 2.11). On the other hand, the latter quantity cannot

be used in the Mott insulating state, where we cannot assume an adiabatic connection with

the noninteracting model. This would apply for any phase transition, but in this specific

case it is made particularly clear by the divergence of the self-energy at the Fermi level.
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In fact, a recent work by N. Wagner et al. [99] has proposed the paramagnetic Mott

insulating phase of the Kane-Mele-Hubbard model, as a realization of the topological

Mott insulator conjectured in Ref. [47]. Similar claims have appeared for the Bernevig-

Hughes-Zhang-Kanamori model and the interacting SSH chain [100]. In this chapter we

do not delve into this new, exciting open question, as the single-site DMFT approximation

(Eq. 2.7) assumes a k-independent self-energy matrix and thus gives no access to the

dispersion of the Green’s function zeros, which is being discussed as the central ingredient

to detect this kind of strongly correlated topological states [96–98].
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Fig. 3.7.: Transition between the quantum spin-Hall and the paramagnetic Mott insulators at
λso = 0.3t, as witnessed by the evolution of the single-particle gap ∆/t, computed
from the diagonal components of the Green’s function matrix. (see section 2.2)
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3.4 Landscape of intra-orbital correlations
We summarize our results and conclude our analysis by comparing and contrasting the

intra-orbital mutual information across the whole parameter space of the model, for the

three DMFTAnsätze, as defined by Eqs. 2.8, 2.9 and 2.10. The three correlation maps

are reported in panels (a), (b) and (c) of Fig. 3.8.

The AFM∥ and AFM⊥ calculations coincide at vanishing spin-orbit coupling where the

system has SU(2) spin-rotation symmetry [87, 88]. Therefore we have I(→:←) ≡ I( ↑ : ↓ )
at all interaction values, describing a gradual growth of local correlations in the Dirac

semimetal and a progressive damping in the isotropic antiferromagnet. As already discussed

in the introductory section O.5, the maximum mutual information value is attained at the

critical point for the symmetry breaking (compare with Fig. O.4).

At any finite λso, the weakly interacting system becomes a quantum spin-Hall insulator

and the quantum critical points for the first-order topological transition to the strongly

polarized easy-plane and out-of-plane antiferromagnets detach from one another. In

particular we have Uc⊥ > Uc∥ , at all values of the spin-orbit coupling. The resulting strong

correlation ridges, culminating at the transition line, are characterized by significantly

different “heights”, with the AFM⊥ solution reaching up to I( ↑ : ↓ ) ≃ 0.3 bit and the AFM∥
ground state I(→:←) ≃ 0.2 bit. Hence, already a small intrinsic spin-orbit coupling allows

the engineering of strongly correlated, weakly magnetized, topological states, especially

when the order parameter is developed on the out-of-plane axis. In the next chapter 4 we

discuss two possible strategies to stabilize the AFM⊥ solution, within cold-atom simulators

or solid-state systems at the nanoscale. The latter recipe is especially effective at interaction

strengths that are relevant for realizing the AFM⊥ weakly-magnetized topological solution.

Both the strongly magnetized antiferromagnets are characterized by vanishing intra-orbital

correlations in the U ≫ t limit. Remarkably, at high spin-orbit values the AFM⊥ solution is

characterized by an almost saturated Néel order immediately after the transition, directly

connected with a vanishing intra-orbital correlation at any U > Uc⊥.

Finally, following the behavior of the intra-orbital mutual information across the param-

agnetic Mott transition (Fig. 3.8c) we clearly see that the paramagnetic Mott insulator

is always characterized by maximally correlated local spin-orbital pairs, regardless of the

nature of the weak-coupling phase that turns insulating by increasing U, which can either

be the Dirac semimetal (λso = 0) or the quantum spin-Hall insulator (λso ̸= 0). In these

Mott states, the on-site spin states share almost 1 bit of information, at all interaction

values beyond the Mott critical point.

We remind that in sections O.5 and 2.3 we have discussed, in very general terms, the

local correlations on a single site must be considered classical in single-band models that
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conserve charge and spin, as the corresponding single-orbital reduced density matrix is

described by a so-called pseudo-classical expression.

However, at zero temperature the only two sources of classical correlations in a given

open quantum subsystem, are I. the possible quantum degeneration of the global closed

system (here the entire Kane-Mele-Hubbard lattice) and/or II. the presence of nonlocal

entanglement beyond the boundary of the selected subsystem [173]. Indeed the latter

possibility has been recently explored for the Mott-Hubbard phase found in the square lattice

within a cluster extension of dynamical mean-field theory [3], paving the road for future

investigation on the relationship between Mottness and nonlocal quantum correlations.

We will discuss in great detail this intriguing observation in the second part of the thesis,

chapters 6, 7, 8, 9 and 10.
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Fig. 3.8.: Intra-orbital correlations at different interactions U and spin-orbit couplings λso for
(a) the AFM∥-parametrized solution, (b) the AFM⊥-parametrized solution and (c) the
paramagnetic solution, within dynamical mean-field theory. Units of log(2) = 1 bit.
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4Stability of the AFM phases

In this chapter we will analyze the competition between the in-plane and out-of-plane

magnetic orderings in the KMH model, in terms of their total energies, at zero temperature.

The subject has been extensively explored in the literature, with a multitude of techniques

[87, 88, 130–135, 137, 140–142, 146]. In this work we focus on quantifying the energy

difference between the two competing states, in view of the design of experimental

strategies to control the magnetic and electronic properties of systems based on the

honeycomb lattice.

After a brief introduction to the theoretical formulas we use to compute total energies

within dynamical mean-field theory, and a benchmark against existing literature in the

well-studied limit of vanishing spin-orbit coupling, we focus again on the way in which

DMFT sets apart from standard mean-field theory, especially in the region where the latter

predicts the most energy difference between the AFM∥ and AFM⊥ solutions.

We further provide evidence for an easy switch of the favored ordering, by either introducing

a staggered external field, a situation which is hard to realize in a solid-state framework

and it can be obtained only in cold-atom experiments, or by leveraging boundary effects in

solid-state realizations of the model, at the nanoscale.

4.1 Computing the total energy in DMFT/ED
Within the Hubbard approximation for the electron repulsion, the total energy of an

interacting electron lattice can be expressed as the sum of a local potential energy and the

kinetic term, which is manifestly nonlocal

E =
∑
i

Ui +K (4.1)

The potential term on every site is given by the expectation value of the Hubbard interaction

in the Hamiltonian Eq. 2.4

Ui =

〈
U

(
ni↑ −

1

2

)(
ni↓ −

1

2

)〉
= U ⟨ni↑ni↓⟩ −

U

2
⟨ni↑ + ni↓⟩+

U

4
, (4.2)

Given the locality of all terms, this expectation value can be directly evaluated on the

impurity site of the auxiliary model (it is equal in the two sublattices for all the nonmagnetic

and antiferromagnetic solutions).
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The kinetic energy can be computed in terms of a general interacting Green’s function

matrix, as

K =
1

β

∑
k,n

trH(k)G(k , iωn), (4.3)

where H(k) indicates the noninteracting Hamiltonian matrix and iωn are fermionic Mat-
subara frequencies at the given inverse temperature β.The customary strategy to evaluate
Eq. 4.3 within dynamical mean-field theory amounts to recast it in terms of the local
(k-summed) Green’s function matrices, as

K = tr
1

β

∑
k,n

(
H(k)G(k, iωn) + G(k, iωn)

−1G(k, iωn)− G0(k, iωn)−1G0(k, iωn)
)

(4.4)

= tr
1

β

∑
k,n

(H(k)G(k, iωn) + (iωn −H(k)−Σ(k, iωn))G(k, iωn)− (iωn −H(k))G0(k, iωn))

= tr
1

β

∑
k,n

(
iωn

(
G(k, iωn)− G0(k, iωn)

)
−Σ(k, iωn)G(k, iωn) +H(k)G0(k, iωn)

)
= tr

1

β

∑
n

(
iωn

(
Gloc(iωn)− G0loc(iωn)

)
−Σimp(iωn)Gloc(iωn)

)
+

∫ +∞

−∞

ε ρ0(ε)

exp[β(ε− µ)] + 1dε

where we have used the lattice-model Dyson equation to evaluate G(k , iωn)−1 and

G0(k , iωn)
−1 and the DMFT approximation of the self-energy Σ(k , iωn) ≃ Σimp(iωn) [38].

The only term depending explicitly on H(k) can be trivially expressed in terms of the non-

interacting density of states ρ0(ε). We observe nevertheless that the remaining imaginary

frequency summations are affected by slow-decaying tails, due to the iωn prefactor in

the first term of the last row in Eq. 4.4. The numerical evaluation of the kinetic energy

could then be affected by the inevitable finite cutoff on the imaginary axis. An analytic tail

correction can be implemented by defining an asymptotic model for the full interacting

Green’s function matrix, as [177, 178]

T(k , iωn) =
1

iωn
+
H(k) +Σimp(∞)

(iωn)2
+O

(
1

(iω)3

)
,

where the expansion coefficients can be derived by inspecting the high-frequency behavior

of the impurity self-energy [179–182].

We can thus recast Eq. 4.3 as [183]

K = tr
1

β

∑
k,n

H(k) (G(k , iωn)− T(k , iωn) + T(k , iωn))

= tr
1

β

∑
k,n

H(k)

[
G(k , iωn)−

1

iωn
− H(k) +Σ

imp(∞)
(iωn)2

]

+ tr
∑
k

[
H(k)

2
− H(k)(H(k) +Σ

imp(∞))
4T

]
(4.5)
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Fig. 4.1.: Total energy of the Hubbard model on the honeycomb lattice, corresponding to a
Kane–Mele–Hubbard model with no spin-orbit coupling. The DMFT/NRG and AFQMC
data are taken from Ref. [148]. The Hartree-Fock and DMFT/ED data have been
generated for this benchmark.

where the last term is obtained from the exact Matsubara sums 1/β
∑

n(iωn)
−1 = 1/2

and 1/β
∑

n(iωn)
−2 = β/4.

To asses the accuracy and effectiveness of our estimate for the lattice total energy, we

compare in Fig. 4.1 our data, for λso = 0, with the results published in Ref. [148] for the

Hubbard model on the honeycomb lattice. Despite gradually approaching the Hartree-Fock

prediction at the strong coupling limit, in full agreement with the quantum-information

analysis reported in the main text, the DMFT/ED energy is found much closer to the

auxiliary-field quantum Monte Carlo (AFQMC) values around the magnetic transition.

It is worth noticing that the DMFT/NRG [184] calculations of Ref. [148] are essentially

indistinguishable from our data throughout the whole phase diagram, signaling that our

estimate is not significantly affected by the finite-bath limitations inherent to the ED solver

[38, 165, 166]. Overall, we conclude that our DMFT/ED calculations provide reliable total

energies (at least in the strongly correlated regime around the magnetic transitions) both in

the sense that they correctly reproduce the available DMFT results, using a very different

solver, and in the fact that they are comparable with state-of-the-art AFQMC calculations.

This benchmark leads us to assume that our calculations can correctly represent the

competition between the AFM⊥ and AFM∥ orderings and accurately reproduce the energy

gap separating the two solutions.
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4.2 Energy separation between the two
competing AFM solutions

Having established the properties of the total lattice energy within dynamical mean-field

theory in the λso = 0 limit, we compare the AFM∥ to AFM⊥ energy gap, between the

DMFT/ED and the Hartree-Fock calculations, across the whole phase diagram of the

model. As depicted in Fig. 4.2 both static and dynamical mean-field theories predict the

AFM∥ solution to be favored whenever the spin symmetry of the model is spontaneously

broken and a finite order parameter is stabilized in the calculation. If both order parameters

vanish the two solutions coincide and the energy gap obviously vanishes. Additionally, for

small enough λso we recover the full SU(2) spin-rotation symmetry, so that the ordered

phases are numerically indistinguishable.

In Fig. 4.3 we show both total energies at λso = 0.3t, where the separation between the

two magnetic states is maximal. Both static and dynamical mean-field theories predict a

very small gap, with respect to the overall energy scales. Additionally, the Hartree-Fock

treatment significantly overemphasizes the stability of the AFM∥ state, in a multifaceted

fashion:

1. As it can be checked by inspecting also Fig. 4.2, the gap values are bigger per se, by

almost a factor of two at its maximum magnitude.

2. While both calculations find the maximum energy difference at the critical interaction

for the AFM⊥ transition, the different nature of this quantum critical point in the

two theories greatly affects the behavior after the transition: the Hartree-Fock

energies smoothly decrease with the increasing order parameter while the DMFT/ED

transition is abrupt and almost closes the gap right away.

3. Whereas the remnant gap in DMFT/ED rapidly closes with U, within the static

mean-field it does so only asymptotically, very slowly.

Overall, the standard Hartree-Fock mean-field theory overestimates the extension, in

parameter space, of the region where the in-plane magnetized phase is clearly stable as

well as the size of the energy difference between the two magnetic solution.
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Fig. 4.2.: Total energy difference (per site) between the AFM∥ and the AFM⊥ solutions. Hartree-
Fock on the left and dynamical mean-field theory on the right. Both calculations
find the in-plane magnetization to be favored in a large portion of the phase diagram.
Note that the λso → 0 limit is characterized by a vanishing gap at all interaction
values, according to the asymptotic restoring of the full SU(2) spin symmetry. The
remaining region at weak coupling is paramagnetic and the two solutions are inherently
indistinguishable. To aid the graphical rendering, the DMFT/ED data have been slightly
smoothed in this figure.
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Fig. 4.3.: Total energies of the AFM⊥ and AFM∥ solutions at λso = 0.3t. Hartree-Fock on
the left and dynamical mean-field theory on the right. The overall energy scales are
very similar, with the DMFT solution slightly more stable. The gap between the two
magnetic states is very different though: the Hartree-Fock solution overestimates the
stability of the in-plane magnetization.
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4.3 Switching ground state with an external field
The fact that, in the strongly-correlated intermediate regime, the two magnetic solutions

of the KMH model are in fact very close in energy brings up a natural question: can we

invert the energy difference of such states and make the AFM⊥ ordering favored?

A straightforward route to achieve this magnetic gap inversion is clearly to add a per-

turbation which favours explicitly the z-axis magnetization, in the form of a staggered

external field along the z direction. Given the insulating character of the system and that

we are interested in a regime of relatively high interaction values we model the staggered

magnetic field as a Zeeman term in the Hamiltonian:

H′KMH = HKMH − h⊥σz ⊗ τz (4.6)

where σz and τz are Pauli matrices referred respectively to the spin and sublattice degrees

of freedom, in the ψ = (|A ↑⟩ , |B ↑⟩ , |A ↓⟩ , |B ↓⟩) single-particle basis.

In Fig. 4.4 we show our Hartree-Fock and DMFT/ED data for λso = 0.3t and respectively

U = 5t and U = 8t, so to probe the robustness of the AFM∥ groundstate very close to

the estimated bottom of its stability valley (compare to Fig. 4.2).

The behavior of the total lattice energies is significantly different within the two methods,

once again remarking the contrasting nature of the respective quantum many-body states.

Both simulations find a critical field strength for which the energy difference is inverted

and the AFM⊥ stabilized.

It is worth noticing that the estimated critical fields are smaller than the given spin-orbit

coupling, which besides being the smallest bare energy scale in the unperturbed Hamiltonian,

is the only term responsible for the magnetic anisotropy in the Kane-Mele-Hubbard model.

We report that for λso = 0.1t the critical field is even an order of magnitude under the

spin-orbit coupling, which naturally follows from the fact that for smaller λso the energy

gain itself is significantly reduced.

Overall, we argue that such small values for the critical staggered field suggest a realistic

possibility of switching ground state in cold atom simulators, opening an interesting avenue

for future research. We further acknowledge that a similar analysis has been considered in

Ref. [135], where instead a uniform Zeeman field is considered, leading to the analytical

prediction of a canted magnetic ground state.
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Fig. 4.4.: Variation of the total energy with an out-of-plane, staggered external field. Hartree-
Fock data for U = 5t on the left and dynamical mean-field theory data for U = 8t
on the right. The spin-orbit coupling is λso = 0.3t for both calculations. The dotted
vertical line marks respectively the h⊥ ≃ 0.128t and h⊥ ≃ 0.174t critical fields for the
inversion of the magnetic gap.
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Fig. 4.5.: Schematic illustration of the 2N, 3N, 4N and 5N KMH nanoflakes. The arrows illustrate
the two possible antiferromagnetic orderings, underlining that in the general case the
local magnetization would not be uniform in the nanoflake.

4.4 Switching ground state at the nanoscale
Finally, we investigate a different route to introduce novel magnetic properties in a

Kane-Mele-Hubbard system, by addressing the properties of the model on small-size

nanoflakes that preserve the full point-symmetry of the lattice. Such systems have been

extensively studied for the case of vanishing spin-orbit coupling [185, 186], within single-

site inhomogeneous dynamical mean-field theory (RDMFT)1 [38, 160], revealing the

onset of magnetic order at any finite interaction U. Extended discussions around the

accuracy of RDMFT for inhomogeneous systems and its relevance for modeling realistic

solid-state materials can be found in [160, 187, 188]. Attention has also been given to

correlated topological phases on the square lattice [152, 161], establishing a clear route

to investigate the interplay between complex single-particle Hamiltonians and the local

Hubbard interaction, whenever cluster theories [189] are out of reach.

1As we mentioned already in section 2.2, one can always treat an arbitrary number of auxiliary impurity
models, to enlarge the unit-cell of the system. If one further transforms the noninteracting Hamiltonian
from a k-space function, obtained in periodic boundary conditions, to a r -space function in open
boundary conditions, single-site DMFT is readily extended to treat inhomogenous systems, with a
computational complexity the scales almost as the number N of inequivalent sites (leading to solve N
impurity models). The exceeding time is spent in evaluating the N ×N lattice Green’s function matrix,
and enforcing the self-consistency Eq. 2.7, that couples the different impurity sites at this level.
The method is often called also nanoDMFT or real-space DMFT (RDMFT).
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Following the notation of previous works [185, 190], we address 2N, 3N, 4N and 5N

flakes, where (r + 1)N = 24, 54, 96, 150 indicates the total number of sites in terms of

the number of edge sites N, and the number of unit-cell translations r connecting the

center and the edge of the flake. The structure of the nanoflakes can be inspected in

Fig. 4.5. The corresponding noninteracting Hamiltonians H(i , j), i , j = 1, . . . , (r + 1)N

have been generated leveraging the HoneyTools software [191]. No punctual symmetry

has been enforced in the iterative solution of the DMFT equations, amounting to a

self-consistent coupling of (r + 1)N impurity models. A real-space analysis of the Z2
invariant has been performed on the resulting topological Hamiltonians2 Htopo(i , j) =

H(i , j) +Σ(i , j, ω = 0), leveraging the recently introduced generalized local spin-Chern

marker [192], as implemented in the StraWBerryPy software [193].

In Fig. 4.6 are reported the total, kinetic and potential energy differences of all flakes, for

increasing repulsion values and fixed λso = 0.3t. The AFM⊥ solution is significantly favored

at intermediate U/t, in stark contrast with the energy landscape at the thermodynamic

limit (Fig. 4.2). This energy gap between the two antiferromagnetic solutions keeps

increasing with the electronic repulsion, until a size-dependent critical value, after which

it is quickly reduced and eventually inverted at strong coupling. An inspection of the

left panel of Fig. 4.7, reporting the interaction dependence of the mi ,∥ and mi ,⊥ order

parameters, reveals that the maximum of the total energy difference roughly corresponds

to a sudden increase of the easy-plane local magnetization mi ,∥. In particular, it is exactly

located at its discontinuous jump for the 2N flake, and around the concavity inversion for

the larger ones. The presence of a discontinuous transition on the smallest flake, with a

critical interaction that is significantly smaller than its thermodynamic limit counterpart

(see Fig. 3.1), can be attributed to the obviously strong boundary effects: the edge sites

amount to half of the system and their lower coordination favors the electronic repulsion

over the kinetic energy. Indeed they feature a larger magnitude of the order parameter at

any interaction value. We argue that the critical interaction for the first-order transition is

the same for edge and bulk sites because the magnetization of the former acts as a trigger

for the latter. Larger flakes feature a smooth transition and a bulk-edge separation that

grows significantly with the system size, suggesting a highly nontrivial finite-size scaling,

as expected for nanoscale systems, which are inherently far from their thermodynamic

limit. An important consequence of the strong finite size effects is the absence of a

topological transition, as the local marker for the Z2 invariant [192] is odd for all the AFM∥
and AFM⊥ calculations, even when the magnetization is almost saturated (2N and 3N

flakes, in Fig. 4.7). In this sense, we can affirm that, at the nanoscale, the out-of-plane

antiferromagnetic topological insulating phase is not only stabilized for a wide range of

interaction strengths, but also enhanced in its observable properties, as the coexistence of

topological and magnetic order is extended to large values of the staggered magnetization.

2We substitute the k-dependence in Eq. 2.11, with a real-space dependence on the sites i and j .
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A direct analysis of the site resolved intra-orbital correlation is reported in the right panel

of Fig. 4.7, revealing an edge-bulk separation of the I(→:←) mutual information that

increases with the electronic repulsion up to a critical value that matches the location

of the maximum in the total energy difference. At larger U/t, i.e. whenever the order

parameter becomes large enough, the edge sites become suddenly less correlated than

the bulk, and all intra-orbital correlations monotonically decrease towards zero at the

strong coupling limit. As for the infinite lattice, we observe that the AFM⊥ solution

reaches significantly larger intra-orbital correlations, as the critical interaction for the

large magnetization is shifted at higher repulsion strengths. Overall, the out-of-plane

magnetization seems favored whenever the edge correlation dominates, whereas at U/t

beyond the maximum of I(→:←), we have an AFM∥ solution that barely distinguishes

between edge and bulk sites in the intra-orbital mutual information and, consequently,

quickly approaches the energetic gain that characterizes the full phase-diagram in the

thermodynamic limit. The boundary origin of the groundstate inversion in the nanoflakes

can be confirmed by a closer inspection at the energetic balance of the system. As reported

in Fig. 4.6, bot the kinetic and potential energy differences between the easy-plane and

out-of-plane magnetized states are nonmonotonic and strongly influenced by size. The

kinetic energy favors the AFM∥ solution, as expected from the presence of a finite spin-orbit

coupling in the noninteracting Hamiltonian. The potential energy favors instead the AFM⊥
solution, and given the lowered coordination at the boundary, wins the competition, as

long as the actual edge correlation is stronger than the bulk correlation, in both solutions.

In Figs. 4.8 and 4.9 we provide fixed U/t real-space snapshots of the AFM⊥ and AFM∥
solutions. The magnetization is depicted with out-of-plane and in-plane arrows while the

spin mutual information is proportional to the area of the drawn circles. Indeed we can

appreciate how the weak repulsion snapshots depict very similar states for the AFM⊥
and AFM∥ calculations, both characterized by a small order parameter and strong, edge-

dominated, intra-orbital correlations. At large U/t, however, we confirm an out-of-plane

state that is essentially more correlated and (slightly) more magnetized but qualitatively

unchanged, while the AFM∥ solution reveals an almost saturated easy-plane order and a

(slightly) bulk-dominated mutual information profile.

Finally, we point out that the inhomogeneous dynamical mean-field theory has also been

successfully applied to simulate harmonic trapping in cold atom experiments [194–196], in

particular for graphene [190], where it provides a natural recipe to stabilize artificial flakes

with the full rotational symmetry of the honeycomb lattice, as the ones addressed in this

appendix. Furthermore, the harmonic confinement has been shown to greatly enhance the

magnetic ordering, by enforcing a radially inhomogeneous filling of the orbitals. Extending

our study of local correlations to this enriched setup would surely be of great interest.
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Fig. 4.6.: Difference of total, kinetic and potential energy for nanoflakes of Ntot = (r + 1)N sites,
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Fig. 4.7.: Site-resolved staggered magnetization (left) and intra-orbital correlation (right), for
increasing values of the Hubbard interaction, at a fixed spin-orbit coupling λso = 0.3t.
The light curves correspond to the orbitals at the edge of the flake, the dark ones to
the bulk. Remarkably, the magnetization of the 2N flake features the least significant
edge-bulk separation. The 2N in-plane magnetization, displays also a discontinuous
jump, much similar to the observed phenomenology in the bulk. The magnetization
of the larger flakes appear to slowly evolve towards the thermodynamic limit. This
nontrivial and to large extent surprising finite-size scaling suggests a prominent role of
the flake boundary in determining the magnetic properties of the system, as we are
certainly very far from the large-size limit. We further highlight that the order parameter
is finite for arbitrarily small U/t values, in all calculations, in sharp contrast with the
infinite lattice solutions. This is a well-known property of honeycomb nanoflakes, as
previously demonstrated in spin-orbit-free graphene [185, 190]. Regarding the intra-
orbital correlations, the AFM∥ solution is clearly more correlated at the boundary for
small values of the interaction and the mutual information gap monotonically increases
with U as long as the average magnetization does not saturate. In fact, a large
magnetization quickly inverts the edge-bulk separation and gradually kills all correlations
approaching the strong coupling limit. On the contrary, the AFM⊥ solution does
not reach a highly ordered state within the explored range of interaction values, thus
allowing stronger intra-orbital correlations in both the edge and the bulk of the system.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4.8.: Magnetic order parameter and intra-orbital correlation in the 2N (a,b), 3N (c,d), 4N
(e,f) and 5N (g,h) nanoflakes. The length of the arrows measures the AFM⊥ order
parameter. The area of the circles measures the intra-orbital correlation I( ↑: ↓ ). Data
for λso = 0.3t (a,b,c,d,e,f,g,h) and U = 4.5t (a,c,e,g), U = 5t (h), U = 6t (b,d,f).
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Fig. 4.9.: Magnetic order parameter and intra-orbital correlation in the 2N (a,b), 3N (c,d), 4N
(e,f) and 5N (g,h) nanoflakes. The length of the arrows measures the AFM∥ order
parameter. The area of the circles measures the intra-orbital correlation I(→:←). Data
for λso = 0.3t (a,b,c,d,e,f,g,h) and U = 4.5t (a,c,e,g), U = 5.9t (h), U = 6t (b,d,f).
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5Summary and outlook

In this chapter we have presented a thorough comparison of static and dynamical mean-

field theory calculations for the Kane-Mele-Hubbard model, describing topological Dirac

fermions in presence of a local electron repulsion [87, 88].

We have compared anisotropic antiferromagnetic solutions finding, in agreement with

previous literature, that the phase with in-plane magnetization is always energetically

favoured with respect to the out-of-plane state. Our results identify, however, some

features of the Mott-Heisenberg transition that, to the best of our knowledge, have not

been explored so far, namely the existence of a weakly-magnetized topological state, at

intermediate interactions, and a subsequent discontinuous topological transition to an

almost saturated Néel state.

We remark that our dynamical mean-field theory is solved, by construction, at the ther-

modynamic limit, whereas the multitude of sign-free quantum Monte Carlo simulations

appeared throughout the years are all affected by finite-size effects [87, 88, 137], which

require finite-size scaling to assess the thermodynamic limit. While in principle well under

control due to the lack of sign problem, this extrapolation has led to some uncertainty and,

consequently to a remarkable controversy regarding the existence of a spin-liquid phase

in the phase diagram for small and vanishing values of the intrinsic spin-orbit coupling

[136–139]. On the other hand, reports of an AFMTI phase similar to the one we observe,

have appeared for the closely related Bernevig-Hughes-Zhang-Kanamori model, within

DMFT, VCA and DMRG calculations [151–154].

We observe that the promotion of continuous topological transitions, found in the absence

of interactions and/or at the Hartree-Fock level, to genuine first-order transitions with

discontinuous jumps in all observables has been attributed to the inclusion of strong local

electronic correlations beyond static mean-field theory [90–92, 162].Our analysis, based

on the intra-orbital mutual information, directly measures correlations contained in a local

orbital and quantifies the distance from a Hartree-Fock state, hence providing a foundation

to this statement under the lens of quantum information theory.

Furthermore, we characterize the competing out-of-plane antiferromagnetic states, as

well as forcefully paramagnetic solutions at very large repulsion, eventually fading into a

Mott-Hubbard insulator. The comparison of the three different kind of interaction-driven

insulating states depicts a colorful landscape for the intra-orbital correlation, suggesting

interesting opportunities for the design of correlation-enhanced exotic topological states.

79



In particular the realization of a strongly-correlated antiferromagnetic topological insulator

seems very promising, on both the easy-plane and out-of-plane axes. We prospect viable

experimental realization in cold-atom simulators or solid-state nanostructures.

Finally, the Mott state without magnetic ordering, recently proposed to be possibly

topological [47, 99, 100], has been shown to host a maximally correlated local state,

shading light on a likely relationship between genuine, symmetry-unbroken, Mottness and

the development of large nonlocal entanglement. We discuss a path to the direct analysis

of short-range quantum and classical correlations between spatially separated electronic

orbitals in the second part of the thesis, with an application to the Mott-Hubbard state

found on the square lattice in chapter 9.
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Quasilocal quantum correlations in the
square lattice





6Introduction

6.1 Success and failure of the local entropy
The Hubbard model is a cornerstone of condensed matter physics, which has been in-

troduced as the minimal description of materials with strongly correlated electrons. The

two-dimensional version of the model on a square lattice acquired an even more central role

as the central building block to understand high-temperature superconductivity in copper

oxides. Besides the various landmarks of the rich cuprate phase diagram, like d-wave

superconductivity, antiferromagnetism and charge ordering/stripes, the most fundamental

phenomenon described by the Hubbard model is perhaps the paramagnetic metal-insulator

transition (MIT) happening at half-filling which, at least within cluster extensions of DMFT

is directly linked to the pseudogap phase that is stabilized by underdoping the resulting

Mott-Hubbard insulator. The Mott transition is indeed a much more general phenomenon,

observed in a variety of strongly correlated oxides.

Both the Mott insulating state and the pseudogap arguably represent striking signatures

of strong electronic correlations [17–19, 26, 55, 104, 197]; the pseudogap region has been

growingly associated with the onset of large short-range spin correlations [198–200] and

nonlocal entanglement which is also expected in the paramagnetic Mott insulator [24, 25,

48, 103, 201, 202].

On the other hand, the flourishing of quantum information theory has greatly emphasized

the possibility to quantify the entanglement of quantum many-body systems and to use

it to improve our understanding of quantum phase transitions [203–206], topological

order [207–209], chemical bonding [73, 210, 211] and the development of highly efficient

numerical methods [212–214]. Yet, the extension and adoption of quantum information

concepts into the realm of fermionic models for strongly correlated matter presents

significant theoretical subtleties [215–220], and it faces the severe practical limitations of

wavefunction-based methods, either due to the infamous sign problem in quantum Monte

Carlo (QMC) schemes [221–223] or high dimensionality in tensor networks [224–227].

In the last few years we have witnessed some pioneering efforts to introduce a systematic

analysis of entanglement properties into traditionally successful descriptions of Mott-

Hubbard physics, based on nonperturbative diagrammatic schemes. A seminal study within

single-site DMFT (see section O.3) attempted to probe the development of entanglement

across the interaction-driven Mott transition [61] through the single-site von Neumann
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entropy. Indeed, the spatially local nature of the dynamical self-energy captured in this

framework makes it natural to address on-site markers, in contrast with traditional analyses

in terms of the entanglement area law [70, 71, 228].

A similar approach has been more recently pursued [62–64] within cluster dynamical mean-

field theory (CDMFT) which improves on DMFT including effects of short-range spatial

correlations within finite clusters [189, 229–232]. Yet, these studies have been also limited

to single-site entropic measures despite the release of the single-site DMFT approximation.

The limitation to local markers, in Refs. [62–64] is driven partly by sampling accessibility in

the finite-temperature QMC solver for the auxiliary cluster problem (see chapter 8), as

well as by their direct experimental access in cold-atom experiments [233].

Remarkably, the single-site von Neumann entropy has been shown to be sensitive to all

the quantitative landmarks of the phase diagram at half-filling [62], as well as in presence

of hole doping [63] and d-wave superconductivity [64].

Yet, the evolution as a function of the interaction strength for the half-filled transition does

not seem to convey the expected physical picture for a correlation-driven Mott localization:

in fact, despite being clearly influenced by the Mott transition, this quantity decreases

from the metallic to the insulating phase [61, 62]. This seems in sharp conflict with the

widespread notion, supported also by physical intuition, that nearly localized ("weak") Mott

insulators are underpinned by the development of large entanglement among electronic

orbitals at different sites [48].

We can understand this shortcoming of the local von Neumann entropy in describing the

entanglement of the Mott insulator by noting that, regardless of the approximation, this

quantity inevitably follows the behavior of the local double occupancy in the single-band

Hubbard model (see Eq. 7.2). The double occupancy, in turn, naturally decreases across

the Mott transition as a consequence of the freezing of charge fluctuations [61], thus

leading to the decreasing of the local von Neumann entropy. We will discuss in depth this

aspect in section 9.2.

At a more fundamental level, we notice that the local von Neumann entropy, as a measure

of the entanglement between a single-site and the rest of the system, includes in a single

quantity bipartite and multipartite correlations from all spatial ranges in the lattice, and

therefore it does not necessarily capture the behavior of any such specific term [70].

Interestingly, recent extensions of the analysis to multi-site collision (2-Rényi) entropies

[234, 235] share the same unsatisfactory qualitative picture of the MIT of the local von

Neumann entropy, suggesting that some care should be taken in defining proper measures

of nonlocal entanglement that capture the nature of the Mott insulating state and its

difference with the metallic phase.
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In this thesis, as reported in Ref. [3] we overcome these limitations by considering, within

CDMFT, quasilocal measures of bipartite entanglement, namely the mode entanglement

between two lattice sites at various distances ranging from nearest-neighbors to more

distant pairs within the embedded interacting cluster. In this way we identify the key role

of the nearest-neighbor contributions with respect to longer-distant counterparts.

To faithfully characterize the two-site fermionic entanglement we resort to quantum relative

entropies (see appendix A) and the logarithmic negativity (see section 7.4), both of which

provide measures of correlation and entanglement that are suited to be used for generic

open quantum systems (as pairs of atomic orbitals embedded in a larger environment

inherently are).

In particular we complement the upper bounds provided by the von Neumann mutual

information and the logarithmic negativity with some new lower bounds, recently obtained by

Ding et al. [219, 220] by imposing particle and charge superselection rules (SSR) [73, 211,

215–218, 236–242], with a strong operational relevance for prospected implementations

of quantum information processing and computation tasks in condensed matter systems.

We compute all these quantities within zero-temperature CDMFT, leveraging a combination

of numerically exact methods: a Lanczos/Arnoldi exact diagonalization scheme [54,

165, 166], which is limited to clusters of at most four sites, and a recently introduced

configuration-interaction solver [243, 244], which gives access to the larger clusters

required to assess the entanglement beyond next-nearest neighbors. In order to identify the

fundamental information related to the Mott-Hubbard transition we consider paramagnetic

solutions in which magnetic ordering is inhibited at zero temperature, thus ensuring a clean

analysis of the quantum phase transition, free of any thermal effect.

Our analysis of the quasilocal two-site entanglement allows to obtain a terse physical picture

of quantum and classical correlations across both the interaction-driven and density-driven

Mott transition in the 2d Hubbard model, as well as a distinctive characterization of the

metallic and insulating phases, under the lens of quantum information theory.

In particular, we show that the nearest-neighbor entanglement captures the physics of

the model throughout the whole phase diagram at zero temperature providing a picture

consistent with expectations and physical intuition. The two-site entanglement beyond

nearest neighbors is shown to quickly decay with the lattice distance, at half-filling,

as expected for low energy many-body states [74, 245, 246]. Overall, the quasilocal

entanglement of the Mott insulator is larger with respect to the Fermi liquid state and

it is found particularly stable with respect to variations in the interaction and of the

chemical potential, as long as the insulating state is preserved. Moreover, when the

chemical potential reaches the critical value to overcome the incompressibility of Mott gap,

the system enters in a pseudogap metallic phase and the nearest-neighbor entanglement

starts to decrease monotonically, as a function of the doping. Eventually, a first order
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transition separates the pseudogap state from the weakly entangled hole-dominated Fermi

liquid regime. The discontinuous jump in the nearest-neighbor entanglement across the

doping-driven transition between the two metals, resembles the interaction-driven MIT

observed at half-filling, highlighting the intimate connection between the Mott-Hubbard

insulator and the pseudogap metal.

These results depict the Mott and pseudogap phases in the CDMFT solution of the

2d Hubbard model as intimate relatives, featuring large short-range entanglement, with

respect to the weakly-correlated Fermi liquid phase found at weak repulsion and high hole

concentration. Our short-range entanglement thus overcomes the limitations of previous

analyses based on single-site (and multi-site) entanglement entropies, and provides an

information which agrees with the widespread expectations for the strongly correlated

phases [24, 25, 48, 103, 201, 202]. This success makes this quantity a serious candidate

to properly measure the relative degree of entanglement of different systems even when

we have no clear a priori expectations.

6.2 Outline of the following chapters
The following chapters 7, 8, 9, 10 are organized as follows.

• In chapter 7 we introduce the adopted measures of quasilocal correlation and entan-

glement. We further discuss the role of parity and charge SSR in the construction

of lower bounds to the relative entropy of entanglement, as well as their relevance

for a faithful operational definition of entanglement as a resource for quantum

technologies.

• In chapter 8 we briefly review the cluster dynamical mean-field theory solution of the

2d Hubbard model, with particular focus on the adopted solvers and the strategy

we devise for the evaluation of single- and two-site reduced density matrices, as the

main ingredients to compute the measured of quasilocal entanglement.

• In chapter 9 we present and discuss our results for the interaction-driven MIT at half-

filling, highlighting the strong physical interpretation of the two-site entanglement,

as opposed to the von Neumann entropy.

• In chapter 10 we extend our analysis to the hole-doped model, shading some light

on the physics of the pseudogap metal and its connection to the Mott-Hubbard

insulator, in terms of the nearest-neighbor and next-nearest-neighbor entanglement.
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7Quantifying quasilocal
entanglement

The quantification of entanglement between the constituents of a quantum system repre-

sents one of the greatest pursuits of quantum information theory. In the last few decades,

a solid understanding has been established for bipartite pure states, where von Neumann

entropies provide a rigorous and accessible measure of entanglement, thus assuming a

leading role [69, 247, 248]. Many-body systems can be analyzed in this framework as

long as one is interested to bipartitions involving at least one macroscopic subsystem,

at zero temperature and in absence of groundstate degeneracy [70, 71, 203, 204, 207,

224, 249, 250]. To characterize the spatial structure of entanglement at the microscopic

level, instead, one has to resort to nontrivial generalizations, as the concept of multipartite

entanglement measures [201, 241, 251–256] or bipartite measures well-suited for mixed

states, as microscopic parties embedded in an environment must be described as open quan-

tum systems [73, 219, 220, 257–269]. In this chapter we will adopt the latter approach,

focusing on the entanglement between pairs of lattice sites., as we will show, in chapters

9 and 10, that this quantity is particularly sensitive to the onset of the Mott-Hubbard

insulating state and the correlated pseudogap metal.

The key quantity for our analysis will be the quantum relative entropy (QRE) [270], a

geometrical quantity akin to a pseudo-distance in the space of quantum states that is

able to quantify and classify inter-orbital correlations, including quantum entanglement,

in an elegant unified framework. We provide a brief summary of key results connecting

the QRE with the notion of classical and quantum correlations in appendix A. In order

to measure properly the entanglement within a pair of lattice sites, the QRE should be

minimized with respect to the convex set of two-site separable states [270]. The resulting

minimal "distance" between the given state and its closest separable relative is traditionally

referred to as the relative entropy of entanglement (REE), and it quantifies in a rigorous

way the bipartite entanglement between the two sites. It can be proven that the REE

respects all the desired properties of a well-posed entanglement measure [247, 248], for

the most generic mixed quantum states. In the following we will refer to this quantity

simply as the two-site entanglement Ei j and recall explicitly the notion of REE only when

strictly necessary to avoid confusion.

Provided that no simple parametrization for the set of two-site separable states is currently

available [271], a closed expression for Ei j remains elusive [272] while a direct numerical
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minimization has been proven to be a NP-complete problem [273]. Yet, lower bounds

can be constructed by enforcing superselection rules (SSR) associated with conserved

quantities [219, 220], as detailed in section 7.3. The importance of such restrictions

to the set of accessible quantum states goes well beyond the need of an approximation

for the unrestricted REE. In fact, the very definition of entanglement as a resource of

the quantum world, crucially verges on the (im)possibility of preparing and manipulating

some states by using only local operations and classical communication (LOCC). If there

is a restriction on the allowed local operators (either fundamental or technological), no

correlation associated to those physical observables would be detected, so the state would

appear as effectively uncorrelated. Classical communication allows the extension of this

concept to the set of separable (disentangled) states.1 Hence, while in principle there

might be more classical or quantum correlation in a given state, the enforcing of a carefully

chosen superselection rule allows to estimate the operationally accessible portion of those

correlations, at least within tradition quantum information protocols [274].

The relationship between the REE and other measures of entanglement, e.g. entanglement

of formation, entanglement of distillation, entanglement cost, etc. are extensively discussed

in Refs. [247, 248, 257, 259, 262, 263, 270, 275]. In particular, the notion of distillable

entanglement can be formalized in the so-called positive partial transpose (PPT) criterion

[67–69], allowing the definition of an upper bound for the two-site entanglement of

distillation EDi j , not directly related to the geometrical notion of relative entropy of

entanglement. This is possible thanks to the block-diagonal structure of the two-site

reduced density matrix, in single-band models, as we dill discuss in detail in section 7.4.

In the following we describe the evaluation of all these entanglement and correlation

measures, in terms of the ground state reduced density matrices for single- and two-orbital

subsystems, as computed or measured within any theoretical or experimental method. The

discussion about all the computational details that are specific to our numerical approach

is deferred to chapter 8.

7.1 Single- and two-site von Neumann entropy
Let us consider the ground state density matrix ρgs for a model defined on a lattice L.

The reduced density matrix (RDM) for a subsystem A of the lattice L is defined as the

trace over all the degrees of its complementary subsystem L \ A:

ρA = trĀ (ρgs) , Ā = L \ A. (7.1)

1A well-rounded discussion of these statements is given at the end of appendix A, after introducing the
relevant geometrical concepts, i.e. a formal definition of the sets of uncorrelated and separable states.
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Taking a single site i as the A subsystem, the von Neumann entropy of ρi is usually called

local entanglement entropy [61–64, 70]

si = − tr(ρi log ρi). (7.2)

For models in which a single site hosts only one orbital, the local entanglement entropy

coincides with the single-orbital entropy defined in Eq. O.30, for the half-filled case. In the

presence of doping, we would have a dependency also on the filling fraction δi , as evident

from the application of Eq. 7.2 to the single-orbital expression of ρi , given in Eq. O.29.

If ρgs describes a pure state,2 then si gives a well-defined measure of the bipartite

entanglement between the single site and the surrounding lattice [70]. However, we stress

that, being one of the entangled parties a macroscopic subsystem, this quantity includes

quantum correlations for all the spatial ranges encoded in the model. In this sense, we

believe that the name “local entanglement entropy” can be misleading, and we will limit its

usage, in favor of single-site or single-orbital von Neumann entropy. Nevertheless, we note

that si provides an upper bound to all local quantum and classical fluctuations, as we will

demonstrate in the next section 7.2.

In a similar way, we can define a two-site von Neumann entropy from the RDM ρi j of two

arbitrary sites, not necessarily neighbors or connected by any term in the Hamiltonian:

si j = − tr(ρi j log ρi j). (7.3)

We indicate the particular case of nearest neighbors with the dedicated symbol s⟨i j⟩.

The two-site entanglement entropy si j shares most properties with si , being it a measure

of the entanglement between a pair of sites and their environment, and –again– an upper

bound to quantum and classical fluctuations in the two-site subsystem (see Sec. 7.2).

However, differently from ρi (see Eq. O.29), the two-site RDM is not represented by a

diagonal matrix even for Hubbard-like models with local interactions, so we cannot rule

out a priori the presence of entanglement between its sub-parts. We will return to the

matrix structure of ρi j later, to discuss the evaluation of lower bounds to the entanglement

between site i and site j , with no reference to their environment.

7.2 Two-site mutual information
Given the entanglement entropies si and si j , respectively of a single- and a two-site

subsystem, we can write the mutual information between the two sites as [70, 270]

Ii j = si + sj − si j , (7.4)

2i.e. if there is no groundstate degeneracy, as single groundstates can be proven to be extreme points of
the set of all states [224] and extreme points are always pure (see appendix A)
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reserving the symbol I⟨i j⟩ for the case of nearest neighbors. The mutual information Ii j
gives a measure of all quantum and classical correlations between sites i and j . To elucidate

this, let us rewrite explicitly the inequality in Eq. O.28, for the two-site bipartition

Ii j ⩾

(
⟨Oi ⊗Oj⟩ρi j − ⟨Oi ⟩ρi ⟨Oj⟩ρj

)2
2∥Oi∥2∥Oj∥2

(7.5)

where Oi and Oj are generic operators acting on the Hilbert spaces of site i and site j ,

respectively, and ∥□∥ is the Euclidean operator norm. In virtue of Eq. 7.5, Iij provides an

explicit upper bound to all two-site correlation functions, hence quantifying the maximum

correlation between site i and site j .

In appendix A we review an elegant geometrical rationale for this property, showcasing the

derivation of two inequalities that relate the mutual information with suitable measures

of classical and quantum correlation. In the two site setting they read as Ii j ⩾ Qi j ⩾ Ei j
(Eq. A.17) and Ii j ⩾ Qi j+Ci j (Eq. A.21), where Qi j is a measure of all quantum correlations

(also those beyond entanglement) and Ci j is the corresponding measure of classical

correlations. We observe that for pure composite systems (e.g. a pair of isolated sites

at zero temperature and in absence of degeneracy), we have no classical correlations

(Ci j = 0) and all quantum correlations are included in the REE (Qi j ≡ Ei j). This is evident

if we consider that a pure two-site state must have vanishing two-site von Neumann

entropy (si j = 0), so we have that the two-site mutual information Ii j = si + sj gives a

measure of the entanglement between the two sites si = sj . If instead si j ≠ 0, as it is

generally the case in a condensed matter system, then ρi j describes a statistical mixture

of pure quantum states and Ii j includes also the classical correlations arising from the

correspondent probability distribution.

Another remarkable property of the two-site mutual information lies in the ability of

detecting area laws [71, 228, 276–278] by means of a rigorous relationship with the decay

rate of two-point correlations, as proposed by Wolf et al. [74] and recently confirmed in

cold-atom experiments by Tajik et al. [245].

Finally, we point out that the “diagonal” mutual information Ii i (usually called self-

information) coincides with the single-site entropy si (see Eq. 7.5 or Ref. [75] for a rigorous

derivation). Consequently si bounds from above all the local fluctuations
〈
O2i
〉
ρi
− ⟨Oi ⟩2ρi

encoded in ρi . More in general, the von Neumann entropy of a subsystem A always provides

an upper bound for the quantum and classical fluctuations encoded in the corresponding

state ρA, by virtue of Eq. O.28.
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7.3 Lower bounds to the quasilocal
entanglement from superselection rules

Since a closed mathematical expression for the two-site entanglement Ei j , as measured by

the REE, is inaccessible and numerical minimization of the quantum relative entropy lies

in the NP-complete class [273], we aim at characterizing Ei j by means of upper and lower

bounds. As for the two-site entanglement entropy and mutual information, we will notate

the special case of nearest neighbors with the symbol E⟨i j⟩.

As discussed above, the two-site mutual information Ii j clearly provides a rigorous and

easy to compute upper bound to the two-site entanglement Ei j ⩽ Ii j . On the other hand,

obtaining lower bounds to the entanglement of open systems, constitutes a nontrivial

problem in quantum information theory [247]. Recently significant progress has been

obtained by imposing the conservation of local quantities (either charge or parity) on all the

physical density matrices of the entire open system and all the operators acting on the local

Hilbert spaces of its subsystems [219, 269]. This restriction can be formulated in terms of

suitable superselection rule (SSR), namely, generalizations of conventional selection rules

that constrain the coherent superposition of states pertaining to different eigenvalues of

selected local operators [279]. The relevance of local SSR in the definition of operationally

accessible entanglement [215–218, 220, 236–242] has been recently challenged by new

arguments in quantum thermodynamics [274], showcasing the consumption of SSR-

forbidden entanglement in thermodynamic processes otherwise impossible for separable

states. Here we do not contribute to this exciting scientific debate and just note that,

notwithstanding their possible physical or operation interpretation, it can been shown that

the parity superselection rule (P-SSR) and the charge superselection rule (N-SSR) allow

for the definition of rigorous lower bounds to the two-site REE [219], in the form:

EN-SSR
i j ⩽ EP-SSR

i j ⩽ Ei j . (7.6)

Before detailing their analytical expressions, in terms of the two-site reduced density

matrix, we observe that the P-SSR and N-SSR can also be applied to the single-site

entanglement Ei (measured exactly by the single-site von Neumann entropy si , in the

absence of superselection rules) and the two-site mutual information Ii j , providing lower

bounds to quantum and total correlations in the respective bipartitions [280]

EN-SSR
i ⩽ EP-SSR

i ⩽ Ei ≡ si (7.7)

IN-SSR
i j ⩽ IP-SSR

i j ⩽ Ii j (7.8)
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In the following we report the explicit expressions for all these superselected measures of

correlation and entanglement. In doing so, we will also comment on the matrix structure

of the single-orbital and two-orbital density matrices, which has a crucial role in the

construction of the two-site SSR formulas.

7.3.1 Superselected single-site entanglement
As already discussed in section O.5, the spin SU(2) and charge U(1) symmetries of the

Hubbard model impose that the single site reduced density matrix ρi is diagonal in the

Fock basis |•⟩, |↑⟩, |↓⟩, |↑↓⟩, where the black dot represents an empty site:

ρi =


λ1 0 0 0

0 λ2 0 0

0 0 λ3 0

0 0 0 λ4

 ,

with λ1 = ⟨(1− ni↑)(1− ni↓)⟩, λ2 = ⟨ni↑(1− ni↓)⟩, λ3 = ⟨(1− ni↑)ni↓⟩, λ4 = ⟨ni↑ni↓⟩.

At zero temperature, in absence of degeneracies, the ground state of the full lattice is

pure and can be written as the Schmidt decomposition

|Ψgs⟩ =
√
λ1 |•⟩ ⊗ |N,M⟩ +√
λ2 |↑⟩ ⊗ |N − 1,M − 1/2⟩ +√
λ3 |↓⟩ ⊗ |N − 1,M + 1/2⟩ +√
λ4 |↑↓⟩ ⊗ |N − 2,M⟩ ,

where |N,M⟩ represent a Fock state of N electrons and M magnetization, for the rest

of lattice sites j ≠ i . It is exactly the existence of a Schmidt decomposition that ensures

that the entanglement between the single site i and the rest of the lattice {j ̸= i}, which

hereafter we will refer to as single-site entanglement Ei , is just given by the von Neumann

entropy of ρi , namely

Ei ≡ si = − tr(ρi log ρi) = −
∑
n

λn logλn.

However, as soon as we consider a local superselection rule, namely a restriction on

the allowed physical operators such that all of them must commute with a given local

quantity Qi , the ground state Ψgs must be projected into the subspaces associated to the

eigenvalues qi of Qi , defining the superselected density matrix [73, 275, 280]

ρQ-SSR
gs =

∑
qi

Pqi |Ψgs⟩⟨Ψgs|Pqi .
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In general, the sum defining ρQ-SSR
gs results in a mixed state, so that all its von Neu-

mann reduced entropies (including the single-site one) are not legitimate measures of

entanglement:

EQ-SSR
i ̸= − tr(ρQ-SSR

i log ρQ-SSR
i ).

The single-site entanglement in a lattice that is globally in a mixed state can instead be

measured by the REE and closed expression have been derived for the cases of Qi = Ni
and Qi = Pi (where Ni is local electron number and Pi its parity) [280]:

EN-SSR
i = (λ2 + λ3) log(λ2 + λ3)− λ2 logλ2 − λ3 logλ3, (7.9)

EP-SSR
i = (λ1 + λ4) log(λ1 + λ4) + (λ2 + λ3) log(λ2 + λ3)

− λ1 logλ1 − λ2 logλ2 − λ3 logλ3 − λ4 logλ4. (7.10)

Remarkably, the λn entering the two expressions are the elements of the single-site local

density matrix, as they are, since ρi is already diagonal on the Ni and Pi sectors. The full

derivation of Eqs. 7.9 and 7.10 can be found in Ref. [280].

7.3.2 Superselected two-site entanglement
In this section we report some closed formulas for the two-site (two-orbital) relative

entropy of entanglement under charge superselection rule and parity superselection rule, as

originally derived by Ding et al. [219]. Given the complexity of a minimization over the set

of separable states, which is equivalent to the formidable separability problem [271–273],

these expressions hold only under the assumption of some key properties of the two-site

state ρi j . Nevertheless, we can connect all these requirements to global symmetries of

condensed matter systems, typically realized in low-energy states. Furthermore, all the

requirements can be directly checked by inspecting selected matrix elements of ρi j , as we

will point out through the text. The reader interested in the original derivations and a

general discussion on the relevance of these superselected measures of the entanglement

accessible in realistic quantum information processing on condensed matter systems, is

strongly encouraged to approach references [219, 220].

Let us start by noting that, in analogy to Eq. 7.3.1, we can write the SSR-filtered reduced

density matrix as

ρQ-SSR
i j =

∑
qi ,qj

Pqi ⊗Pqj ρi j Pqi ⊗Pqj , (7.11)

where Pqi and Pqj are projectors on the single-site subspaces associated to the eigenvalues

of the quantity Qi . The action of Eq. 7.11 in our conventional basis for the two-site Fock

space (Table 7.1) is illustrated in Fig. 7.1, for the cases of Qi = Ni and Qi = Pi .
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n
∣∣Ψ↑n〉⊗ ∣∣Ψ↓n〉

1 | • • ⟩ ⊗ | • • ⟩
2 | ↑ • ⟩ ⊗ | • • ⟩
3 | • ↑ ⟩ ⊗ | • • ⟩
4 | ↑ ↑ ⟩ ⊗ | • • ⟩

n
∣∣Ψ↑n〉⊗ ∣∣Ψ↓n〉

5 | • • ⟩ ⊗ | ↓ • ⟩
6 | ↑ • ⟩ ⊗ | ↓ • ⟩
7 | • ↑ ⟩ ⊗ | ↓ • ⟩
8 | ↑ ↑ ⟩ ⊗ | ↓ • ⟩

n
∣∣Ψ↑n〉⊗ ∣∣Ψ↓n〉

9 | • • ⟩ ⊗ | • ↓ ⟩
10 | ↑ • ⟩ ⊗ | • ↓ ⟩
11 | • ↑ ⟩ ⊗ | • ↓ ⟩
12 | ↑ ↑ ⟩ ⊗ | • ↓ ⟩

n
∣∣Ψ↑n〉⊗ ∣∣Ψ↓n〉

13 | • • ⟩ ⊗ | ↓ ↓ ⟩
14 | ↑ • ⟩ ⊗ | ↓ ↓ ⟩
15 | • ↑ ⟩ ⊗ | ↓ ↓ ⟩
16 | ↑ ↑ ⟩ ⊗ | ↓ ↓ ⟩

Tab. 7.1.: Basis for the two-site Fock space Fi j . The indices n of the quantum states |Ψn⟩ =∣∣Ψ↑n〉⊗∣∣Ψ↓n〉 define our conventional labeling for the matrix elements λnm of the reduced
density matrix for the two-site subsystem. Black dots (•) represent empty lattice sites.
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Fig. 7.1.: Representation of the two-site reduced density matrix ρi j , in the
∣∣Ψ↑n〉 ⊗ ∣∣Ψ↓n〉 basis.

Most entries vanish (white) due to the spin and charge symmetries of the Hubbard
model [281]. Superselecting for the local electron parity (P-SSR) sets all light-shaded
entries to zero, while the charge superselection rule (N-SSR) removes the remaining
local density fluctuations (dark-shaded entries). Black elements are always preserved.
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Given that both ρN-SSR
i j and ρP-SSR

i j are block-diagonal (with respect to the bipartition

of interest into sites i and j) we can apply the famous positive partial transpose (PPT)

criterion to characterize the set of two-site separable states. In its orginal formulation,

due to Peres and the Horodecki [67, 68], the PPT criterion gives a necessary condition for

separability in systems of two distinguishable parts. The condition is sufficient only for

Hilbert spaces of dimension d(AB) = d(A)× d(B) ⩽ 2× 3. At first sight, the two-orbital3

system described by ρi j appears to satisfy the dimensional condition, with di j = 2 × 2.
However, the indistinguishability of Fermions forces us to consider the bipartition into

single-particle states (orbitals), hence adopting the formalism of second quantization, with

an enlargement of the dimension of the states from the two-orbital Hilbert space, to the

two-orbital Fock space, with dimension dFock = 4× 4. Here the block-diagonal structure

of the ρi j and its superselected relatives comes to help, as we can effectively formulate

the PPT criterion on each block, and get a necessary and sufficient condition for the

separability of the whole ρi j .

We can write the most general ρi j , as

ρi j =
∑
Ψin

∑
Ψim

∑
Ψjn

∑
Ψjm

〈
ΨinΨ

j
n

∣∣ρi j ∣∣ΨimΨjm〉 ∣∣Ψin〉〈Ψim∣∣⊗ ∣∣Ψjn〉〈Ψjm∣∣ , (7.12)

where Ψin and Ψjm represent, respectively the n-th state of site i and the m-th state of

site j . All these states live in the Fock space spanned by { |•⟩, |↑⟩, |↓⟩, |↑↓⟩ }, but we can

restrict Eq. 7.12 to any one of the sectors identified by the two-site particle number and

the two-site magnetization. The partial transpose of ρi j , with respect to site j is given as

ρ
⊺j
i j =

∑
Ψin

∑
Ψim

∑
Ψjn

∑
Ψjm

〈
ΨinΨ

j
n

∣∣ρi j ∣∣ΨimΨjm〉 ∣∣Ψin〉〈Ψim∣∣⊗ (∣∣Ψjn〉〈Ψjm∣∣)⊺
=
∑
Ψin

∑
Ψim

∑
Ψjn

∑
Ψjm

〈
ΨinΨ

j
m

∣∣ρi j ∣∣ΨimΨjn〉 ∣∣Ψin〉〈Ψim∣∣⊗ ∣∣Ψjn〉〈Ψjm∣∣ , (7.13)

where we have used color to highlight the action of the transposition on the j-subspace.

The PPT criterion then ensures that the state ρi j is separable with respect to the i/j

bipartition if and only if ρ⊺ji j has no negative eigenvalues. We observe that the operation in

Eq. 7.13 is symmetric, with respect to the separability criterion, as ρ⊺ji j = [ ρ
⊺i
i j ]
⊺ and the

full transposition preserves the spectrum.

Let us now consider the N-SSR or P-SSR constrained two-site reduced density matrices.

The effect of the two superselection rule is to suppress all matrix elements that do not

preserve the single-site electron number and its parity. Hence, the only elements that are

not invariant under the partial transposition of Eq. 7.13, are those connecting the states in

{ |Ψ6⟩, |Ψ11⟩ } and { |Ψ7⟩, |Ψ10⟩ } (see Table 7.1). This implies that the only subspaces in

3recall that we are considering systems with one orbital per site
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which all the superselected two-site entanglement is developed, are those containing those

states, namely S = Span{ |Ψ1⟩, |Ψ6⟩, |Ψ11⟩, |Ψ16⟩ } and S′ = Span{ |Ψ4⟩, |Ψ7⟩, |Ψ10⟩,
|Ψ13⟩ }, corresponding respectively to the conditions (Pi , Pi) = (even, even), enforced by

the P-SSR, and (Ni , Nj) = (1, 1), which is enforced by both P-SSR and N-SSR.

Here we introduce the stronger restriction on the symmetry of ρi j , that finally leads

to a viable minimization of the quantum relative entropy (QRE) defining the measure

of entanglement. We assume the two sites i and j to be symmetric in the ρi j state.

In particular, for the subspaces of interest, we have: ⟨Ψ7|ρi j |Ψ7⟩ = ⟨Ψ10|ρi j |Ψ10⟩ and

⟨Ψ6|ρi j |Ψ6⟩ = ⟨Ψ11|ρi j |Ψ11⟩. Unfortunately this rules out a priori the usage of the

resulting closed formulas for any state that breaks translational symmetry, as in presence

of disorder, antiferromagnetic order or charge density waves.4

At this point, we can define the following probabilities:

λ1 = ⟨Ψ1|ρi j |Ψ1⟩ ,
λ4 = ⟨Ψ4|ρi j |Ψ4⟩ ,(
λ6

λ11

)
= R†

(
⟨Ψ6|ρi j |Ψ6⟩ ⟨Ψ6|ρi j |Ψ11⟩
⟨Ψ11|ρi j |Ψ6⟩ ⟨Ψ11|ρi j |Ψ11⟩

)
R,

(
λ7

λ10

)
= R†

(
⟨Ψ7|ρi j |Ψ7⟩ ⟨Ψ7|ρi j |Ψ10⟩
⟨Ψ10|ρi j |Ψ7⟩ ⟨Ψ10|ρi j |Ψ10⟩

)
R,

λ13 = ⟨Ψ13|ρi j |Ψ13⟩ ,
λ16 = ⟨Ψ13|ρi j |Ψ16⟩ ,

with R =

(
1 −1
1 +1

)
× 1√
2
.

To build the N-SSR and P-SSR constrained measures of entanglement we further define
the following auxiliary quantities:

µ7 =
b1 + c1 +

√
d1

4(a1 − ν10)
, µ10 =

b1 − c1 −
√
d1

4(a1 − ν7)
, µ6 =

b2 + c2 +
√
d2

4(a2 − ν11)
, µ11 =

b2 − c2 −
√
d2

4(a2 − ν6)
,

µ4 = λ4 +
ν7 + ν10 − µ7 − µ10

2
, µ13 = λ13 +

ν7 + ν10 − µ7 − µ10
2

,

µ1 = λ1 +
ν6 + ν11 − µ6 − µ11

2
, µ16 = λ16 +

ν6 + ν11 − µ6 − µ10
2

,

4Further, any extension to multi-orbital systems has to be constructed with great care, ensuring to never
mix orbitals with different character.
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where we have

ν7 = max(λ7, λ10), ν10 = min(λ7, λ10),

ν6 = max(λ6, λ11), ν11 = min(λ6, λ11),

a1 = ν7 + ν10 + λ4 + λ13, b1 = a
2
1 − (λ4 − λ13)2, c1 = (ν7 − ν10)a1,

a2 = λ1 + ν6 + ν11 + λ16, b2 = a
2
2 − (λ1 − λ16)2, c2 = (ν6 − ν11)a2,

d1 = (λ4 + λ13)
2(ν7 − ν10)2 + 8λ4λ13(2λ4λ13 + (λ4 + λ13)(ν7 − ν10) + 2ν7ν10),

d2 = (λ1 + λ16)
2(ν6 − ν11)2 + 8λ1λ16(2λ1λ16 + (λ1 + λ16)(ν6 − ν11) + 2ν6ν11).

Finally the charge superselection rule (N-SSR) and parity superselection rule (P-SSR)

entanglement measures are given as classical5 relative entropies [219]:

EN-SSR
i j =

∑
n∈S

λn log
λn
µn
, EP-SSR

i j = EN-SSR
i j +

∑
n∈S′

λn log
λn
µn

(7.14)

If we finally impose λ1 = λ16 which follows from particle-hole symmetry and λ4 = λ13
which is instead the condition for a singlet ground state, we obtain a valuable simplification

of the two expressions in Eq. 7.14:

EN-SSR
i j =

[
r log

(
2r

r + t

)
+ t log

(
2t

r + t

)]
× θ(t − r), (7.15)

EP-SSR
i j = EN-SSR

i j +

[
s log

(
2s

s + τ

)
+ τ log

(
2τ

s + τ

)]
× θ(τ − s), (7.16)

where θ(t − r) and θ(τ − s) are Heaviside steps, vanishing if r ⩾ t, and s ⩾ τ , respectively,

and r, t, s, τ are defined as

t = ν7, r = ν10 + λ4 + λ13, τ = ν6, s = ν11 + λ1 + λ16.

The vanishing imposed by the θ-steps reflects the Peres-Horodecki separability criterion in

the S and S′ subspaces. Finally, we highlight that Eqs. 7.15 and 7.16 differ for a term

depending on τ and s alone, and so involve only diagonal occupations of pairs of doublon

and holon states. Since both of them are gradually suppressed across the Mott-Hubbard

transition (in order to have a half-filled insulator the number of doublons and holons has

to coincide and eventually vanish, deep in the Mott state), one would expect the two

superselected measures of two-site entanglement to be asymptotically indistinguishable in

a Mott insulator. We anticipate here that this result is indeed found in our calculations [3]

and that the related discussion is reported in chapter 9.

5The assumption of equivalent orbitals ensures that ρi j and its closest separable state are diagonal on the
same basis, so that {µi} defines the spectrum of such state, on the subspaces that were not separable
already. Elsewhere µi ≡ λi , giving no contribution to the relative entropy.
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7.3.3 Superselected two-site correlations
In this section we describe the application of the charge and parity superselection rule to

filter the total (quantum and classical) correlations. This would allow us to analyze the

effect of the restrictions on a quantity that we can easily compute in the absence of the

SSR. Let us consider again a two-site subsystem, described by the ρi j reduced density

matrix. As discussed at length in section 7.3.2, the spin SU(2) and charge U(1) symmetries

of the Hubbard model disallow all fluctuations in the two-site charge and magnetization in

ρi j , leading to the form illustrated in Fig. 7.1 [65, 281]. If we consider a bipartition of ρi j
into single sites, the enforcement of the charge superselection rule (N-SSR) amounts to

forbidding all changes in the single-site charge, while the parity superselection rule (P-SSR)

allows only the charge fluctuations that preserve the parity of the local particle number Ni .

Local spin-flips survive both superselection rules, as they commute with Ni [280].

Once either the charge or the parity SSR filtering is applied on ρi j , the superselected

measures of the total correlation (see appendix A for a discussion of the term) between

the two sites is just given by the two-site mutual information between, evaluated on the

filtered ρi j . To be more explicit, if we write the von Neumann entropy of a generic density

matrix ρ with the functional notation s{ρ}, we have

IN-SSR
i j = s

{
ρi

}
+ s
{
ρj

}
− s
{
ρN-SSR
i j

}
, (7.17)

IP-SSR
i j = s

{
ρi

}
+ s
{
ρj

}
− s
{
ρP-SSR
i j

}
. (7.18)

We stress that the single-site RDM, as computed from ρi j via the usual partial trace, are

insensitive to the N-SSR and P-SSR filtering, once again because they are diagonal on the

charge sectors. For this reason they are not superscripted in Eqs. 7.17 and 7.18.

7.4 Distillable entanglement and the two-site
logarithmic negativity

In section 7.3.2 we have discussed how the positive partial transpose (PPT) separability

criterion, which is in principle only a necessary condition for two-orbital fermionic systems,

becomes also sufficient in virtue of the SU(2) and U(1) symmetries of the single-band

Hubbard model, as can be seen by decomposing the two-site reduced density matrix in

charge and magnetization sectors. In these conditions, one can obtain a relatively good

measure of entanglement by a simple and direct quantification of how much the given

state ρi j violates the PPT criterion.
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In practice one can sum the negative eigenvalues of the partial transpose ρ⊺ji j and already

obtain a fair measure of entanglement, that does not increase under LOCC [282]. If one

further defines the logarithmic negativity as [247, 283]

Ni j = log

(
1 +

∑
k

∣∣λ⊺k ∣∣− λ⊺k
)
, (7.19)

where λ⊺k are the eigenvalues of ρ⊺ji j , one obtains a rigorous upper bound to the distillable

entanglement EDi j , namely, if one express Eq. 7.19 in bits (units of log(2)), it is always

larger or equal to the portion of pure Bell pairs (singlet states) that can be extracted from

n copies of the given (two-site, in our case) state. Unfortunately, Ni j , that hereafter we

will call simply as two-site negativity, is a strict upper bound to the purification ratio, in the

sense that it does not recover the correct value for pure states (which instead is given by

the von Neumann entropy of ρi j , or any other measure that coalesces to the von Neumann

entropy in the limit of zero classical correlations).

Observing that the distillable entanglement is always lower or equal than the relative

entropy of entanglement (REE) EDi j ⩽ EREEi j [247, 248, 270], we cannot leverage the

two-site negativity as a rigorous upper bound to the two-site entanglement, at least in

the geometrical framework provided by the quantum relative entropy (for us EREEi j ≡ Ei j).
Nevertheless, it can be surely compared with our upper and lower bounds for the REE,

providing additional validation and insight into our results for the two-site entanglement in

the two-dimensional Hubbard model.

Before ending the section, we observe that even if the case of our interest (entanglement

between two-sites in a single-band Hubbard model) escapes the failure of the PPT criterion,

the possibility of a vanishing negativity for a separable state is very relevant for great

multitude of open quantum systems. In that case, it has been shown that the negativity is

still an upper bound to the distillable entanglement and it is this quantity that vanish for

a certain classes of states. The amount of entanglement that cannot be purified, yet is

present in the given (mixed)6 quantum state, is often called bound entanglement [284].

For some fermionic systems, bound entanglement is typically present, invalidating the use

of the logarithmic negativity as tool for the study of quantum criticality or topological

order. This is the case e.g. of the failure of the PPT to detect the edge Majorana states in

the Kitaev chain [264]. Some proposals to substitute the partial transpose with different

transformations that do not preserve the spectrum of the state have been proposed in

recent years [264–267], with a great degree of success. Nevertheless, bound entanglement

cannot exist in density matrices with dimension d < 6, as proven by the necessary version

of the PPT criterion [68], so we will not explore further the matter, given our interest in

subspaces of dimension dsub ⩽ 4, as can be checked by inspecting Fig. 7.1.

6The PPT criterion does not ever fail for pure states
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7.4.1 Superselected two-site negativity
In complete analogy to the case of total correlations (see section 7.3.3), we can define

SSR-restricted two-site negativities, by applying its definition (Eq. 7.19), to the SSR-

filtered RDM, as given in Eq. 7.11 and illustrated in Fig. 7.1. In practice, one first filters

ρi j , according to the selected superselection rule, then rotates the Fock basis as to allow

an easy implementation of the partial transpose. Finally one diagonalizes the resulting

matrix and feeds the spectrum to Eq. 7.19. This approach can be fruitfully related to the

concept of symmetry-resolved negativity [267, 285–289] and, within our program, will be

used to further explore the role of the superselection rules in modifying the structure and

correlation properties of the two-site reduced density matrix. In section 9.4 we will see

how the resulting discussion indeed shades some significant light on the degree of influence

we can attribute to the superselection rules in defining the observed entanglement features

of the Mott-Hubbard transition.

7.5 Summary of nonlocal correlation measures
For ease of reference, here we provide a concise summary of all the correlation and

entanglement markers we analyzed throughout this chapter spelling out their definition,

the information they measure and their role to bound other markers from above or below.

We remind that all these results assume zero temperature.

Marker What it measures What it bounds

entropy (7.2)

entanglement

Single-site

si

for pure ground states

the rest of the lattice,

a single site i and

Entanglement between

[from above]

on the site i

All fluctuations

SSR (7.9)

under charge

entanglement

Single-site

EN-SSR
i

conserve the local charge Ni

lattice, within operations that

a single site i and the rest of the

Accessible entanglement between

[from below]

for all ground states

rest of the lattice,

a single site i and the

Entanglement between

SSR (7.10)

under parity

entanglement

Single-site

EP-SSR
i

electron number Ni

conserve the parity of the local

lattice, within operations that

a single site i and the rest of the

Accessible entanglement between

[from below]

for all ground states

rest of the lattice,

a single site i and the

Entanglement between
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Marker What it measures What it bounds

entropy (7.3)

entanglement

Two-site

si j

for pure ground states

the rest of the lattice,

the two sites (i , j) and

Entanglement between

[from above]

on the two sites (i , j)

All fluctuations

information (7.4)

Two-site mutual
Ii j

sites i and j

between the two

Total correlation

[from above]

two-site correlator

as well as any

between i and j ,

The entanglement

charge SSR (7.17)

information under

Two-site mutual

IN-SSR
i j

the local charge Ni

operations that conserve

sites i and j , within

between the two

Accessible correlation

[from below]

information Ii j

The two-site mutual

parity SSR (7.18)

information under

Two-site mutual

IP-SSR
i j

electron number Ni

the parity of the local

operations that conserve

sites i and j , within

between the two

Accessible correlation

[from below]

information Ii j

The two-site mutual

under charge SSR (7.15)

Two-site entanglement
EN-SSR
i j

the local charge Ni

operations that conserve

between i and j , within

Accessible entanglement

[from below]

between i and j .

The entanglement

under parity SSR (7.16)

Two-site entanglement
EP-SSR
i j

electron number Ni

the parity of the local

operations that conserve

between i and j , within

Accessible entanglement

[from below]

between i and j .

The entanglement

negativity (7.19)

Two-site logarithmic
Ni j —

[from above]

between i and j .

entanglement

The distillable
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8Cellular extension of dynamical
mean-field theory (CDMFT)

A variety of complementary and competing approaches have been devised to extend the

dynamical mean-field theory in order to include nonlocal correlations of different kind.

A well-defined class of methods are cluster extensions of DMFT, where the role of the

impurity site is taken by a finite cluster. Hence short-range correlations within the cluster

are treated in their full dynamical nature [189, 229–232, 290].

Other approaches aim to include dynamical correlations without the limitations of a cluster.

Among them we can mention fluctuating field methods [291–293] and diagrammatic

expansions around DMFT [293–295], such as GW+DMFT [296], dual particles [297, 298],

the dynamical vertex approximation (DΓA) [299], the triply irreducible local expansion

(TRILEX) [300, 301] and its dual extension [302, 303], and the single-boson exchange

approximation [304]. In principle, these techniques take into account the nonlocal correla-

tions at all spatial ranges.

Obviously a complementary information to dynamical mean-field theory (DMFT) can be

achieved with methods that provide a numerical solution of the models on finite systems,

ranging from quantum Monte Carlo (QMC) schemes and tensor network extensions of the

density matrix renormalization group (DMRG), whose combination has proven extremely

fruitful for the investigation of complex long-range ordered phases [305–307]. For the

strongly correlated paramagnetic regime at intermediate coupling, however, and despite

considerable progress in recent years, there is still no complete picture of the nonlocal

physics of even single-orbital models with local interaction.

In this chapter we will focus an a well-known and successful cluster extension of the

dynamical mean-field theory, traditionally referred to as cellular DMFT (or just cluster

dynamical mean-field theory, CDMFT), which has proven to provide a reliable account

of the interaction-driven and density-driven Mott transitions in low-dimensional systems

[145, 146, 167, 198, 229–232, 290, 308, 309]. First, we introduce the essential concepts,

with a focus on the main differences and on the complications introduced with respect to

single-site DMFT. Then we briefly review the role of cluster dynamical mean-field theory

in enriching the description of the Mott-Hubbard transition, in the square lattice. Finally

we delve into some implementation details of our calculations, including the evaluation of

the single-site and two-site reduced density matrices that constitute a novel feature and

the key ingredient for our analysis of the quasilocal entanglement in Mott insulators and

pseudogap metals, as described in chapters 9 and 10.
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8.1 Tiling the lattice
The auxiliary model that defines the cluster dynamical mean-field theory approximation

features a cluster of Nimp impurity sites, arranged in a geometry compatible with the tiling

of the original lattice. The hopping structure and interaction inside these cluster-impurities

is described by the lattice Hamiltonian, restricted to the cluster sites. For the single-orbital

Hubbard model we then have (see Eq. O.6):

Himp = −t
∑
σ

Nimp∑
⟨i j⟩=1

(
c†iσcjσ + h.c.

)
+ U

Nimp∑
i=1

ni↑ni↓ − µ
∑
σ

Nimp∑
i=1

niσ (8.1)

As for the case of single-site DMFT (see section O.3), the resulting cluster-impurity is

connected to a dynamical bath (described by a frequency-dependent Weiss field) and the

resulting embedding Hamiltonian is solved in open boundary conditions.1

The extension of the DMFT embedding to a cluster of impurities, promotes the dynamical

Weiss field, the impurity self-energy and the local Green’s function to a Nimp×Nimp matrix

structure, as they explicitly depend on the real-space degrees of freedom of the cluster. In

particular, given an impurity self-energy Σimp(z), the local Green’s function is obtained as

Gloc(z) =
1

Nk

∑
k

(
z + µ−H(k)−Σimp(z)

)−1
(8.2)

where the crystalline momentum k and the reciprocal one-body Hamiltonian H(k) must

be defined in the so-called reduced Brillouin zone, generated by the tiling of the original

lattice with n →∞ copies of the cluster [189]. To illustrate the procedure, we consider the

simplest case of a linear chain tiled by two-site clusters. The original noninteracting lattice

Hamiltonian, considering a tight-binding approximation involving only the nearest-neighbor

hopping, is given by H(k) = −2t cos(ka), where a is the lattice spacing and k spans

the entire Brillouin zone k ∈ [−π/a, π/a]. To describe a tiling of the chain into two-site

clusters, we can rewrite the Hamiltonian considering a two-site unit cell

H(k) =

(
0 −t(1 + e−i2k)

−t(1 + e+i2k) 0

)
,

where the restriction of k ∈ [−π/(2a), π/(2a)], defines the reduced Brillouin zone [7, 8].

1An alternative scheme, involving the solution of the embedded cluster in periodic boundary conditions
has been extensively explored, under the name of dynamical cluster approximation (DCA). A review
of these two alternative cluster extensions of DMFT and a comparison with other quantum cluster
theories can be found in Ref. [189].
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In general, for a d-dimensional hyper-cubic lattice we can always define a tiling in clusters

of shape N1 × · · · × Nd , reducing the Brillouin zone in all directions ki , by a factor of Ni .

The d = 2 case, defining the square lattice, is illustrated in the left panel of Fig. 8.1, for a

cluster of shape 2× 2.

Once this cluster-superlattice mixed representation is defined, in terms of real-space

matrices for the cluster degrees of freedom and reduced crystalline momentum vectors for

the inter-cluster band structure, the CDMFT self-consistency condition results as a direct

generalization of the single-site theory: Gloc(iωn) ≡ Gimp(iωn).

8.2 Bath optimization to enforce the
self-consistency

In principle, on implementations relying on a discretized bath, the iterative procedure to

obtain a Hamiltonian for the bath that satisfies the self-consistency condition is directly

extended from the single-site case, exploiting the cluster-superlattice mixed representation

described above. Yet, the optimization of the bath becomes significantly more delicate,

essentially for two independent reasons:

1. the Green’s functions and self-energies of the embedded interacting cluster must not

artificially break the symmetries of the original lattice (or those remaining after some

symmetry is spontaneously broken), which implies that the bath parameters must

respect these symmetries, resulting in a highly constrained search for the optimal

bath configuration.

2. the off-diagonal components of the hybridization function, and consequently of the

Weiss field are not normalized and can in practice be of a completely different order

of magnitude with respect to the diagonal part. This means that our optimization

has to treat very different objects at the same time.

There are several strategies to alleviate the first point. One can explicitly take into

account the desired symmetries of the cluster and generate the bath parametrization

by leveraging the irreducible representations of the corresponding point group [310] or,

equivalently, one can group the bath sites into noninteracting replicas of the cluster-

impurity, suppressing all the hybridization amplitudes that do not connect the sites with the

same index i = 1, . . . , Nimp (see the schematic representation in the right panel of Fig. 8.1).

The bath Hamiltonian is then given as a sum over the replica index r = 1, . . . , Nrepl of the

one-body Hamiltonian of the cluster, where the relevant physical terms (e.g. the hopping

and the chemical potential, for the simple case of the single-orbital Hubbard model) are
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Fig. 8.1.: Schematic representation of the cellular extension of dynamical mean-field theory. On
the left we highlight a 2× 2 plaquette in a square lattice, defining the enlarged unit-cell
for the periodic tiling. The middle panel represents the embedding of the interacting
plaquette in a dynamical bath, defining the CDMFT mapping to an effective cluster
impurity problem. On the right we give a scheme of the replica parametrization of
the dynamical bath, where the impurity plaquette is connected to its noninteracting
replicas by the impurity-bath hybridization amplitudes, represented by dashed lines.
The one-body Hamiltonian of the replicas and the hybridization amplitudes are jointly
optimized to satisfy the self-consistency condition Gloc(iωn) = Gimp(iωn).

made replica-dependent and, together with the V (i , r) hybridization amplitudes2, constitute

the parameters to optimize:

Hbath =

Nrepl∑
r=1

−λt(r)∑
σ

Nimp∑
⟨i j⟩=1

(
b†iσbjσ + h.c.

)
− λµ(r)

∑
σ

Nimp∑
i=1

b†iσbiσ

 . (8.3)

We observe that Eq. 8.3 features a paramagnetic constraint, as the two spin polarizations

are controlled by the same bath parameters and there is no freedom to develop spin-

dependent features in the effective impurity problem. In our calculation, this choice has the

crucial role of preventing magnetic ordering, so to allow the study the pure paramagnetic

Mott-Hubbard transition at zero temperature. If one is instead interested in studying a

magnetically active system, as e.g. a Mott-Heisenberg insulator, the constraint can be

easily removed by doubling the the number of optimization parameters and letting them

depend on the spin polarization: {λt(r), λµ(r)} 7→ {λt(r, σ), λµ(r, σ)}. Analogously, one

can describe other broken-symmetry solutions using a suitable form of the bath.

Alternatively, one can simply consider the original formulation of the DMFT embedding in

terms of the Anderson impurity model, where the bath is constituted by Nbath independent

noninteracting sites, each one parametrized by a spin-independent (spin-dependent, for a

magnetic calculation) energy and a hybridization amplitude connecting it to every impurity

2We clarify that the original replica-scheme features an impurity-independent hybridization V (r), to
enforce exactly the symmetries [167, 311]. Hence a V (i , r) hybridization is in fact not completely
equivalent to the group-theory approach of Ref. [310]. Nevertheless, we find that the convergent
self-consistent hybridization is indeed independent on the impurity index, up to a very small numerical
error, and that the additional freedom we provide results often in an easier convergence.
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site. In this “all-to-all” scheme all the complexity of the hopping structure in the replicas is

transferred to the nondiagonal structure of the impurity-bath hybridization and no explicit

enforcement of the lattice symmetries is present. Yet, provided that one has enough

degrees of freedom (a large number of bath sites), it has been shown that modern conic

optimization schemes can find the correct bath configuration, without any prior knowledge

of the lattice symmetries [312]. As we will discuss in detail in section 8.5, our calculations

leverage both the replica-scheme and the all-to-all conic optimization, depending on the

size of the addressed cluster impurity model.

Concerning the second difficulty in the bath optimization, arising from the matrix structure

of the hybridization function and the Weiss field, the essential strategy lies in a generalization

of the cost function. Instead of the usual chi-squared distance [54]

χ2 =
1

M

M∑
n=1

Nimp∑
i j=1

∣∣Fi j(iωn)−Fbath
i j (iωn)

∣∣2, (8.4)

where F represents either the dynamical Weiss matrix or the hybridization function matrix

and M is the number of considered Matsubara frequencies, we define:

χq =
1

M

M∑
n=1

1

Wn

Nimp∑
i j=1

1

Wi j

∣∣Fi j(iωn)−Fbath
i j (iωn)

∣∣q. (8.5)

We underline in particular the presence of the Wi j weight, with the role of tailoring the

treatment of the off-diagonal matrix elements Fi j . Defining it as

Wi j =
1

M

M∑
n=1

|Fi j(iωn)| (8.6)

in general avoids the overlooking of small off-diagonal features of the given dynamical

matrix. However, we stress that no universal solution is given, as one can easily fall in

the situation of a vanishing (or particularly small) off-diagonal component, invalidating

the whole procedure. In those cases one could exclude selected matrix elements from

the optimization or change the definition of Wi j as necessary. In general the preferred

strategy has to be carefully evaluated on a case-by-case basis. Analogously, there is no

universal recipe to choose the imaginary axis weight Wn and/or the exponent q. We report

that in our calculations for the Mott-Hubbard transition on the square lattice we usually

take q = 2, 3 and Wn = 1, n, ωn. We notice that, under rather general circumstances,

the converged results do not depend significantly on these choices, except for the most

delicate parameter regimes close to phase transitions, and these dependencies are reduced

when we increase the number of bath sites.
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8.3 Reconstructing the momentum dependence
All the quantities computed in the CDMFT approximation are inherently defined in the

cluster-sublattice mixed representation, as described in section 8.1. Consequently, the local

Green’s function matrix defined in Eq. 8.2 provides a complete description of the physical

properties that are defined within the cluster, which we shall refer to as the quasilocal

observables. We should not forget that the whole CDMFT construction is designed for an

infinite lattice, whose properties are obviously those that can be compared with experiments

and non-cluster methods. In single-site DMFT these are directly computable from the

(scalar) local Green’s function, as its k-dependency is defined over the whole Brillouin

zone. Unfortunately, this is not the case for CDMFT, as the inherent mixed representation

of its predictions introduces some arbitrariness in the reconstruction of the full lattice

periodicity. Generally, one relies on ad-hoc recipes that assemble a periodized version of

the real-space degrees of freedom in the cluster, on a quantity of choice. Two prominent

examples are given by the so-called G-scheme [313] and Σ-scheme [167, 231], referring to

the periodization of the Green’s function matrix or the self-energy matrix, respectively:

G(k , z) =
1

Nimp

Nimp∑
i j=1

e−ik(ri−rj ) [Gloc]i j(k , z) (8.7)

Σ(k , z) =
1

Nimp

Nimp∑
i j=1

e−ik(ri−rj ) [Σloc]i j(z) (8.8)

Different choices, in general, result in different features of the periodized observables,

underling the non-uniqueness of the procedure that stems from the finite size of the cluster.

In many cases, both the G-scheme and the Σ-scheme can introduce artifacts leading, in

the worst-case scanerios, even to wrong predictions. The reason behind these pathologies

lies in the possible nonanalyticity of the considered quantities, which cannot in any way be

regularized by an average over a small number of sites, as Eqs. 8.7 and 8.8 indeed are. The

text-book example comes from addressing Mott-Hubbard insulators within the Σ-scheme:

as the opening of the Mott gap is associated with the development of pole-like divergences

in the cluster self-energy, the periodized Σ(k , z) acquires nonphysical features, ultimately

leading to the manifestly wrong prediction of a finite spectral weight at the Fermi level.

We underline that such an nonphysical result is not only in contrast with intuition, but

also in stark conflict with the information obtained from the cluster quantities obtained

within the same calculation.

Despite all the subtleties, many CDMFT studies have successfully described physical

phenomena associated with an interaction-induced strong k-dependence, where the most

important examples are given by the d-wave superconductor and the pseudogap metal found
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in the doped Hubbard model on the square lattice [109, 198, 230, 308, 309, 314]. The

resulting predictions are essentially confirmed by the dynamical cluster approximation [199,

315, 316] (which solves the embedded cluster in periodic boundary conditions, so to define

coarse patches that cover the entire Brillouin zone of the lattice [189]), sophisticated

alternative periodization schemes in CDMFT that exploit the natural inhomogeneous

of large clusters to isolate the "center-focused" physics [317], and finally by numerical

methods not based on the concept of clusters [200, 318].

8.4 Short-range correlations and Mott physics
As extensively discussed in section O.3, the main achievement in the early days of dynamical

mean-field theory has been the successful merge of two partial descriptions of the interaction-

driven Mott-Hubbard transition. One one hand, the Fermi liquid theory of metals, that

describes the interaction effects as a progressive renormalization of the electron effective

mass, that eventually diverges at the metal-insulator transition signaling the breakdown of

the model. On the other hand, the original arguments proposed by Hubbard to model the

insulating phase starting from the atomic limit, that captures the high energy features of

the insulating phase, at the cost of a little success in describing the weakly-interacting

metal [27–30]. Both descriptions are essentially unsatisfactory, as they approach the

problem from one side or the other, but they can hardly be relied on when approaching or

even crossing the Mott transition. The inclusion of the full dynamical fluctuation effects

at the cost of freezing all the spatial correlations, consecrates the dynamical mean-field

theory of the Mott-Hubbard transition as the first consistent account of the two competing

regimes. In the upper panel of Fig. 8.2 we report the paramagnetic DMFT phase diagram

for the Hubbard model on the square lattice, at varying interaction strength and finite

temperature, as computed in Ref. [232]. At weak interaction and low temperature, we

have a Fermi liquid metal that is adiabatically connected to the noninteracting limit. On

the contrary, at strong coupling, we find a paramagnetic insulator, adiabatically connected

to the atomic limit. In between, there is a region of strict coexistence between the two

solutions (in green), delimited by two spinoidal lines that are traditionally denotes as

Uc1(T ) ⩽ Uc2(T ). Hence, at a given temperature:

• The metallic solution extends up to Uc2, where the quasiparticle weight, given in

the DMFT approximation as Z = (1− ∂ωΣ(0))−1, in terms of the local self-energy

Σ(z), vanishes as a signal of the divergence of the effective electron mass.

• The insulating solution is found down to Uc1, where the Mott gap vanishes as

the high-energy incoherent bands collapse into each other, recovering the original

Hubbard picture of the transition.
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Fig. 8.2.: Paramagnetic phase-diagram of the Hubbard model on the half-filled square lattice,
at finite temperature, within single site and 2 × 2 cluster (plaquette) DMFT. The
horizontal axis is measured as Ur/t, where Ur = (U − Uc)/Uc and Uc identifies the
thermal critical point. The dashed red line above the thermal critical point marks a
crossover between a small-DOS metal and a small-gap insulator. The green region
below the thermal critical point identifies a coexistence region for the Fermi liquid and
the Mott insulating solutions, delimited by spinoidal lines Uc1(T ) and Uc2(T ). The
dashed line in-between marks equal free energies for the two solutions. Notably, in the
limit of small temperature T ≪ t, it coalesces with Uc2 or Uc1, respectively for the
DMFT and CDMFT simulations. Figures adapted from Ref. [232].
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Fig. 8.3.: Quasiparticle weight of the Hubbard model on the half-filled square lattice, at zero
temperature, within single site and 2×2 plaquette CDMFT. At U = 0 both calculations
find Z = 1, as quasiparticles saturate all spectral weight. The point at which Z
vanishes defines the quantum critical point for the MIT. The inclusion of short-range
off-diagonal self-energy terms significantly moves the quantum critical point, towards
weaker interactions. The horizontal axis is measured as U/D, where D = 4t is the
half-bandwidth of the square lattice.

• The dashed line between the two spinodals marks a first-order phase transition, that

in the limit of zero temperature has been proven to coincide with Uc2 [38], de facto

removing the discontinuous character of the transition.

• At high temperature the transition line ends in a classical critical point, above which

the interaction drives a supercritical crossover, marked by a Widom line.

One of the possible objections to the above picture when dealing with finite-dimensional

models lies, of course, in the complete neglect of possible nonlocal correlation effects.

Indeed, the extension of the impurity model to a cluster of just 4 sites (a 2× 2 plaquette),

qualitatively changes some key aspects of the phase diagram, as reported in the lower

panel of Fig. 8.2. In particular, the slope of all the separation lines is inverted, at low

enough temperature, and the zero-temperature extrapolation of the first-order quantum

critical point completely disconnects from Uc2 and instead appears to join Uc1. On the

other hand, as we show in Fig. 8.3 for our own calculation of Z, within both DMFT and

plaquette CDMFT, the absolute value of the critical interaction for the zero temperature

MIT is substantially reduced, highlighting the rich influence of nonlocal correlations on

the physics of the Mott-Hubbard transition, as they both reduce the overall scale of the

interaction strength needed for localizing the electrons and invert the slope of the Uc2
spinoidal, making the insulating phase less and less favorable at higher temperatures.
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The early explanation of this peculiar effect, due to Park, Haule and Kotliar [232], amounts

to a simple thermodynamic argument, that we proceed to describe in light of our introduc-

tory discussion on the nature of local correlations (section O.5) and of the forthcoming

analysis of nonlocal correlations under the lens of quantum information theory (chapter 9).

The single-site DMFT description of the transition completely removes the role of spatial

antiferromagnetic correlations, therefore describing the local projection of the insulating

many-body state as a perfectly balanced mixture of single-occupied orbitals either in the

|↑⟩ or |↓⟩ spin configuration. As the Hubbard model conserves the total magnetization and

local projections of the global many-body state must inherit this property, such mixture has

to be classical (i.e. incoherent) as indeed we have shown to be in the single-site reduced

density matrix (see section O.5). A classical mixture leads to a large thermodynamic

entropy, even at zero temperature, and the DMFT prediction for this quantity in a Mott

insulator indeed approaches the extensive value of log(2) per site [232], corresponding to

an additive contribution the from asymptotic value of the single-site von Neumann entropy.

A cluster theory of the Mott-Hubbard transition, on the other hand, allows for antiferro-

magnetic correlation within the cluster. For example, at the two-site level, it describes

the paramagnetic Mott phase as a quantum superposition of the two degenerate anti-

ferromagnetic solutions of an isolated Hubbard dimer periodically repeated on the whole

lattice. With larger cluster the correlations extend to more distant sites, as we will carefully

discuss in chapter 9. As we will see, the single-orbital von Neumann entropy, evaluated on

a cluster, does still approach log(2) in the Mott-Hubbard insulator. Yet, the von Neumann

entropy of larger subsystems is strictly subadditive, leading to large nonlocal correlations

and quantum entanglement between orbitals at different lattice sites. Hence, we foresee

the possibility of a clear-cut relationship between the development of nonlocal (short-range)

correlations and the subadditivity of the quantum entropy. The matter will be rigorously

settled in sections 9.1 and 9.3.

Finally, returning to the original argument in Ref. [232], the significant reduction of the

thermodynamic entropy found in the CDMFT calculations of Fig. 8.2 clearly reduces the

free energy of the insulating solution as the temperature grows, explaining the negative

slope of the spinodal lines.

8.5 Implementation details
In this section we give a brief overview of our implementation of a cluster dynamical

mean-field theory for the Hubbard model on the square lattice.

To solve the auxiliary quantum cluster problem at zero temperature, we rely on a combined

numerical analysis, based on two different Hamiltonian-based solvers: a Lanczos/Arnoldi

exact diagonalization (ED) [54, 165, 166] and the adaptive sampling configuration interac-
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tion (ASCI) [243, 244, 319, 320]. Both methods parameterize the noninteracting bath

in terms of a finite number of non-interacting levels (which we shall henceforth call bath

sites), but employ different algorithms to obtain the frequency-dependent self-energy and

the local Green’s function that are necessary to enforce the CDMFT self-consistency.

Our ED solver leverages on the massively parallel implementation of the EDIpack soft-

ware [166], naturally generalized to treat clusters.3 To reduce the number of variables

to be optimized, we employ the above discussed representation of the bath in terms of

non-interacting replicas of the correlated cluster, diagonally coupled to the corresponding

impurity sites (see section 8.2). Their internal parameters, corresponding to on-site

energies and nearest-neighbor hoppings, are optimized, together with the impurity-bath

hybridization amplitudes, in an iterative procedure that enforces the self-consistency con-

dition on the cluster Green’s function. At each loop, the cost function in Eq. 8.5 is

minimized by a conjugate-gradient algorithm, with numerically evaluated derivatives. With

the resulting CDMFT/ED scheme, we address clusters of shape 1× 2 and 2× 2, changing

the number of replicas as to keep the total number of sites in the impurity model fixed to

Ns = Nimp + Nbath = Nimp(1 + Nrepl) = 12.

In addition to the exact diagonalization, as mentioned above, we exploit the recently

introduced CDMFT/ASCI implementation [243] to benchmark our results and study larger

cluster sizes with respect to those accessible with the ED algorithm. This method is

capable of alleviating the ED limitations related to the exponential growth of the Hilbert

space: the ASCI Ansatz corresponds to an adaptively optimized truncation of the impurity

model Hilbert space, in terms of a subset of selected Slater determinants, which together

reconstruct the most-significant part of the ground state wavefunction [244, 319, 320].

It further relies on optimizing the orbital active space by constructing a suitable natural

basis, from an approximated one-body reduced density matrix of the bath [243, 321, 322].

This results in a highly compact and accurate representation of the ground state [323] and

the one-body Green’s functions [243], while reducing substantially the overall computational

cost. In the CDMFT/ASCI method the bath sites are split into groups of Nimp degenerate

levels, with an all-to-all amplitude to the cluster impurity sites (see section 8.2).

The bath parameters are self-consistently determined, loop by loop, by means of a modern

conic optimizer [312]. In chapter 9 we report ASCI calculations for cluster with N × 2
shape, where N ranges from 1 to 4. We fix the number of bath sites to 6 times the number

of cluster impurities, in order to always have 6 nondegenerate bath energies, according to

the degeneracy structure determined in Ref. [312].

3An unpublished version of the implemented cluster extension can be found at https://doi.org/10.
5281/zenodo.10628156

8.5 Implementation details 113

https://doi.org/10.5281/zenodo.10628156
https://doi.org/10.5281/zenodo.10628156


8.5.1 Calculation of reduced density matrices
In this thesis a central role is played by the evaluation of different measures of entanglement

and correlation which in turn rely on the calculation of reduced density matrices of the

system. Since this evaluation in CDMFT is by far less standard then all the other quantities

that we compute, we discuss it in some details. The two impurity solvers, ED and ASCI,

grant us direct access to an explicit representation of the ground state of the cluster

impurity model. Using this information, we can build the zero temperature RDM for

any cluster subsystem (e.g. two sites) performing an on-the-fly trace over the bath and

complementary impurity degrees of freedom. The local RDM, thoroughly studied in

Refs. [61–64], is obtained by further tracing over all but one site, matching the analytic

expression in terms of spin-density averages and the local occupancy, given in Eq. 7.2.

To elucidate the need of computing the trace on-the-fly, we give the explicit expression

for the density matrix of the full cluster-impurity model, at zero temperature. It reads:

ρgs =
1

Ω

Ω∑
ν

∣∣Ψνgs

〉〈
Ψνgs

∣∣ = 1
Ω

Ω∑
ν

4Ns∑
n=1

4Ns∑
m=1

Cνnm | n ⟩⟨m | , (8.9)

where Ω is the ground state degeneracy, Ns = Nimp+Nbath the total number of sites in the

effective impurity model, and |n⟩ and |m⟩ are Fock basis states stored in the digital memory

as integers whose binary decomposition gives the occupation number vector, with a 0 or 1

bit for each spin-orbital. The coefficients defining the matrix elements of ρgs are given by

the Ω ground state eigenvectors retrieved by either the Lanczos procedure or the ASCI

algorithm. Hence, the relevant dimension of the matrix is given by Ω16Ns , a gargantuan

number, due to the dramatic exponential scaling of the fermionic Fock space. Let us take

Ω = 1, and consider real matrix elements in double precision: the needed memory to

store the full ρgs for a typical ED calculation with Ns = 12, amounts to approximately 2

petabytes! Even implementing all the symmetries of the model, to decompose the Fock

space into independent sectors (as we indeed do [166]), the relevant dimension of the

matrix is still of the order of 106, amounting to 1006 reals numbers for approximately 8

terabytes of memory. Hence, to trace away the bath4 from ρgs without storing the full

matrix, we need to efficiently track what are the allowed bath states for each impurity

state, within a given symmetry sector. Indeed, writing explicitly the decomposition of ρgs

into the impurity and bath subspaces we have, for a sector of dimension D = Dimp×Dbath,

ρDgs =
1

Ω

Ω∑
ν

Dimp∑
i=1

Dimp∑
j=1

Dbath∑
p=1

Dbath∑
q=1

Cνijpq | p ⟩ ⊗ | i ⟩⟨ j | ⊗ ⟨ q | , (8.10)

4Or the bath plus some impurity site, of course, with minimal modifications in the argument. The only
important detail to keep in mind is to consider the fermionic signs, if a swap in the Fock state is
needed.
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so that the partial trace over the bath can be written as

tr b ρ
D
gs =

1

Ω

Ω∑
ν

Nbath∑
b=1

⟨ b | ρgs | b ⟩

=
1

Ω

Ω∑
ν

Dbath∑
b=1

Dimp∑
i=1

Dimp∑
j=1

Dbath∑
p=1

Dbath∑
q=1

Cνijpq ⟨ b | p ⟩ ⊗ | i ⟩⟨ j | ⊗ ⟨ q | b ⟩

=
1

Ω

Ω∑
ν

Dbath∑
b=1

Dimp∑
i=1

Dimp∑
j=1

Dbath∑
p=1

Dbath∑
q=1

Cνijpq δbp | i ⟩⟨ j | δqb

=
1

Ω

Ω∑
ν

Dbath∑
b=1

Dimp∑
i=1

Dimp∑
j=1

Cνijbb | i ⟩⟨ j |

=

Dimp∑
i=1

Dimp∑
j=1

| i ⟩⟨ j |
(
1

Ω

Ω∑
ν

Dbath∑
b=1

Cνijbb

)
= ρDimp (8.11)

where we have grouped in parentheses the explicit expression for the matrix elements of

the impurity reduced density matrix ρimp, in the given sector D.

Hence it becomes clear that in order to compute the (i j)-th matrix element of ρimp one has

to sum over all the sectors, the degenerate ground states and the bath states compatible

with both the impurity states | i ⟩ and | j ⟩, according to the symmetries of each sector. To

achieve this in an efficient algorithm it is then necessary to pre-compute all the compatible

bath states, for each impurity state on each sector, and store the information in a suitable

data structure (e.g. a hash-table, where the impurity state serves as the key, and the list

of compatible bath states is the stored value). Finally, a suitable implementation of the

set-intersection between bath state lists would allow to directly implement the formula

in Eq. 8.11. If, as usual, the number of impurity sites (or in general the dimension of

the subsystem of interest) is much smaller than the number of bath sites (or in general

the number of traced sites), then the double summation runs on a small set of indices,

providing an efficient implementation of the partial trace.

Finally, we observe that a recent work by Roósz et al. [65] provides a recipe to obtain

single-orbital and two-orbital reduced density matrices from the knowledge of single-particle

and two-particle Green’s functions alone, giving access to the quasilocal entanglement and

correlation measures introduced in chapter 7 to a broad variety of many-body methods.

Moreover, a feasible tomography protocol has been recently proposed for dot-cavity devices,

giving experimental access to the single-site and two-site RDM [324]. Hence we foresee the

opportunity of applying our methodologies in the emerging field of entanglement detection

in realistic open quantum impurity systems [269].
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9Quasilocal entanglement of a
Mott-Hubbard insulator

In this chapter we present numerical CDMFT results for the evolution of quasilocal

entanglement and correlations, across the interaction-driven Mott-Hubbard transition of

the half-filled square lattice. We will start, in section 9.1, with a discussion of the scaling

of the von Neumann entropy as a function of the cluster-size used in CDMFT and on the

subsystem-size, based on our ED and ASCI calculations for N × 2 ladders. We find a weak

dependence which supports the reliability of our results. A comparison with data recently

appeared for the 2-Renyi entropy [234, 235], a close relative of the von Neumann entropy

[76, 325, 326], will further confirm that the qualitative behavior of the entanglement

entropy does not fundamentally change by increasing the size of the selected subsystem.

We first reproduce the results for the single-site entropy across the interaction-driven Mott

transition within CDMFT [62], then we briefly check in section 9.2 the behavior of the

intra-orbital mutual information (Eq. O.34), to confirm that the local correlation picture

of the Mott-Hubbard transition, analyzed in chapter O, does not depend on the specific

details of the lattice geometry and survives the inclusion of off-diagonal self-energy terms

in the DMFT self-consistency.

After these benchmarks, we will proceed in section 9.3 with the analysis of upper and lower

bounds to the entanglement and correlation between neighboring sites, in terms of the

two-site mutual information, two-site negativity and two-site superselected relative entropy

of entanglement (REE). The robustness of von Neumann entropy, mutual information and

negavitity to the SSR-filtering will be assessed in section 9.4. In section 9.5 we will explore

the spatial decay of entanglement and correlations, discussing the behavior of the two-site

mutual information and negativity beyond nearest neighbors. Finally, in section 9.6 we will

give some perspectives and draw our conclusions about the performance of our measures

of entanglement for the Mott-Hubbard transition.
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9.1 Size scaling of the von Neumann entropy
We begin by investigating the local and the nearest-neighbor entanglement entropies across

the Mott transition. All energies will be measured in units of the half-bandwidth of the

noninteracting model, D = 4t. As expected for a CDMFT analysis [232, 317, 327, 328]

the critical interaction for the metal-insulator transition is expected to depend on the size of

the embedded cluster. We tracked the quantum critical point for all the investigated cluster

shapes, namely different clusters with two sites along one direction and ranging from 1 to

4 sites in the other direction, and estimated it to be placed in the interval U/D = [1.5, 1.6].

However, a precise determination of the transition point is beyond the scope of this thesis

work, as we are mainly interested in a qualitative spatial characterization of short-ranged

entanglement and correlations in the Mott-Hubbard insulating phase.

In Fig.9.1 we report the behavior of si and s⟨i j⟩ as a function of the interaction strength. We

compare the results for the different cluster sizes and effective bath sizes, obtained either

with the ED or the ASCI impurity solvers, at zero temperature, as indicated in the legend.

We remark that all these calculations refer to a lattice system in the thermodynamic limit,

and the size of the cluster should not be seen as a real finite-size effect, but rather as the

range of the dynamical correlations included in the calculation.

The behavior of the local entanglement entropy, reported in Fig. 9.1(a), is essentially

insensitive to the cluster size and the size of the bath, even in the proximity of the

Mott transition point. As we discussed, si is a decreasing function of U which displays a

discontinuous jump at the Mott transition. This confirms that si is properly captured in

CDMFT indeed represents an effective marker for the quantum Mott-Hubbard transition,

in agreement with extensive explorations of the finite temperature phase diagram in the

recent literature [62–64]. It also shows that our calculations with a finite bath correctly

reproduce the behavior of their finite-temperature counterparts with a continuous bath

solved using a CTQMC solver.

The nearest-neighbor entanglement entropy s⟨i j⟩, see Fig.9.1(b), displays a more noticeable

dependence on the size of the CDMFT cluster, even if the overall qualitative behavior

is robust. Interestingly, significant quantitative discrepancies arise between clusters of

different sizes deep in the metallic and insulating regimes, while smaller effects are found

in the intermediate region close to the Mott transition. We relate this behavior to the fact

that some choices of the cluster shape (e.g. 3× 2 and 4× 2) can break the symmetries of

the full lattice, a well-known drawback of the cellular extension of DMFT, that can be

fully resolved only in the limit of infinite cluster size (amounting to a solution of the full

Hubbard model). However, as far as the qualitative behavior across the Mott transition is

concerned, we can interpret s⟨i j⟩ to be well converged.
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Fig. 9.1.: Local (a) and nearest-neighbor (b) entanglement entropies, respectively si and s⟨i j⟩,
across the interaction-driven metal-insulator transition. Data from ED (lines and
symbols) and ASCI (open symbols), for different combinations of cluster sizes and bath
levels. Clusters have ladder shape N × 2.
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Having clarified the scaling behavior of the local and nearest-neighbor entanglement entropy

with respect to cluster and bath size, in the following we focus on the 2 × 2 plaquette,

for an in-depth analysis of the CDMFT/ED results. We will return to larger clusters,

addressed with the ASCI solver in section 9.5, for the analysis of the spatial decaying of

entanglement and correlations between pairs of sites at a generic distance.

To start, we characterize the behavior of the single- and two-site von Neumann entropy for

the plaquette cluster in the two extreme regimes of the model. In the noninteracting system

(U = 0), the local entropy approaches the value si = 2 log(2), corresponding to a maximally

entangled single-site state. This is easily interpreted as the model, at half-filling, is particle-

hole symmetric, so that the noninteracting metal is a Fermi gas with equal populations of

empty, doubly and singly occupied electronic states. On the contrary, we do not find a

maximally entangled state for the two-site nearest-neighbor sites, as the corresponding

two-site entanglement entropy assumes a value smaller than 4 log(2). This is a direct

consequence of the spatial correlation between the neighboring sites: if s⟨i j⟩ = 4 log(2),

then we would have zero mutual information I⟨i j⟩ = si + sj − s⟨i j⟩ = 2si − s⟨i j⟩ = 0 between

i and j , given that any of the four single-site RDM is equivalent in the 2× 2 plaquette.

According to Eq. 7.5 this in turn would imply that no finite correlation function exists, for

any pair of operators acting on the two neighboring sites. The fact that finite two-site

correlations exist, even in the noninteracting limit, clarifies that the inter -orbital mutual

information assumes a very different role from that of the intra-orbital mutual information

introduced in section O.5, highlighting the importance of considering explicit measures

for the nonlocal correlations in CDMFT. Indeed, in section 9.2 we will verify that the

intra-orbital mutual information preserves its properties, when extending the analysis from

single-site DMFT to CDMFT.

In the left panels of Fig. 9.2 we report the spectral analysis of the single-site and nearest-

neighbor RDM, i.e. we quantify the contribution of the different basis states in the single-

site and two-site Fock spaces. To accommodate and illustrate as clearly as possible

the nested structure of the spectrum, with (i) the probability distribution given by the

RDM eigenvalues, describing the statistical weight of each pure state and (ii) a quantum

probability distribution, given for each pure state by the square moduli of the coefficients

of their expansion on the given Fock basis (according to Born’s rule), we represent such

spectra as treemaps [329, 330].

We start from the non-interacting regime U/D = 0 (left panels in Fig. 9.2). As discussed

in section O.5, the single-site RDM is diagonal on the spin-orbital occupation basis, leading

to a very simple treemap representation, as a set of four squares of equal area, representing

the equal diagonal matrix elements of ρi . On the other hand, the two-site RDM is far

more complex, leading to a hierarchy of rectangle sizes, with area proportional to the

eigenvalues of ρ⟨i j⟩ for the outer ones (outlined in black), and proportional to the Born
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weights for the inner (colored) ones. Equal colors correspond to equal basis Fock states

(regardless of the pure state they come from) and for the dominant configurations (larger

rectangles) we report explicitly the coefficient of the expansion in the Fock space, as a

pre-factor to the basis state. Panel (c) shows that in the noninteracting limit, all the 16

two-site pure states contribute, although differently, to the spectrum of ρ⟨i j⟩, reflecting the

itinerant character of the solution, which on a two site system is represented by fluctuation

in the local charge ⟨ni ⟩ and ⟨nj⟩.

In the strong coupling regime, U ≫ D, both the local and nearest-neighbor von Neumann

entropies slowly approach log(2), highlighting a strong subadditivity of the quantum entropy

in the Mott phase, which again suggests the development of strong spatial correlations

between the sites (see section 9.3). A deeper analysis of the underlying pure states,

represented in the right panels of Fig. 9.2, reveals the presence of remarkable differences

in the two corresponding description of the local and quasilocal electronic configurations.

The local entropy is largely dominated by the equally weighted pure states |↑⟩ and |↓⟩,
demonstrating the expected local description of a paramagnetic Mott insulator: for a

single-site, the long tail in the von Neumann entropy simply arises from the progressively

suppressed populations of holons and doublons, which vanish exactly only at the atomic

limit (D = 0). On the other hand, s⟨i j⟩ is dominated by four pure states, i.e. the spin-singlet

(|↑↓⟩ − |↓↑⟩)/
√
2, accounting for about 75% of the statistical mixture, and the spin-triplet

states |↑↑⟩, |↓↓⟩ and (|↑↓⟩+ |↓↑⟩)/
√
2, adding up for almost all the rest, in equal parts.

Such relative composition of singlet and triplet states in the nearest-neighbor dimer has

been checked to be consistent across all the addressed cluster and bath sizes: the numerical

differences in the von Neumann entropies for the larger clusters are due to a different

cumulative weight of all the remnant 12 pure states. This once again confirms that

the two-site reduced density matrices are qualitatively consistent across all the cluster

realizations.

Before proceeding with the analysis of intra-orbital correlations, we briefly compare our

result to those obtained in recent works [234, 235], that compute within three different

methods, the collision entropy of subsystems of more than two sites. This quantity is

often referred to as 2-Rényi, where the α-Rényi entropy is a generalization of the von

Neumann entropy, defined for a generic density matrix ρ as

Sα =
1

1− α log(tr ρ
α) , (9.1)

with 0 < α <∞ and α ̸= 1. Remarkably, the singularity in α = 0 can be removed, so to

recover von Neumann entropy in the α → 1 limit. The α = 2 case has been increasily

used to estimate the entanglement in complex systems, as it can be sampled in several

quantum Monte Carlo schemes [333, 334], and other methods that have no access to

the von Neumann entropy [234, 335]. Despite some undesirable properties, like the lack
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Fig. 9.2.: Treemap visualization [329, 330] of single-site and nearest-neighbor RDM at the
noninteracting and strong coupling limits. Outlined rectangles represent pure (eigen)
states of the given RDM, with an area proportional to the corresponding eigenvalue. All
pure states are further partitioned into colored rectangles, representing their expansion
into the Fock space basis for the given subsystem. The area of each colored rectangle is
proportional to the square modulus of the corresponding expansion coefficient, according
to Born’s rule [331] for quantum measurements on pure states. Explicit expressions
for the basis-states and their coefficients in the given pure state are reported for the
rectangles that dominate the treemap. Same basis states are represented in equal
color, with no influence by the expansion coefficient. Overall the sum of the areas
of rectangles with the same color, is proportional to the probability associated to
generalized quantum measurements on mixed states (the so called POVM) [66, 332].
Data from the 2× 2 CDMFT/ED simulation with Nbath = 8.
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computed within a suitably modified single-site DMFT approximation, tailored to sample
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determinant quantum Monte Carlo (DQMC), for a small cylinder geometry [235].
Adapted from the original reference.
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of subadditivity and the possible lack of positivity for the correspoding 2-Rényi mutual

information I2 [325, 326], the collision entropy S2 has been successfully applied to many

systems of strongly correlated electrons [334, 336–338].

In particular, in Fig. 9.3 we report the 2-Rényi mutual information for a global bipartition

of the Hubbard model, defined on a finite square lattice of 16× 16 sites. It is evaluated

from a newly introduced extension of single-site DMFT, that modifies the effective action

(Eq. O.11) so to allow the sampling of the 2-Rényi entropy from a nonequilibrium evolution

[234]. On the other hand, in Fig. 9.4 we report the 2-Rényi entropy for the Hubbard model

on the honeycomb lattice, evaluated again on a global bipartition of a cylinder of 18 sites,

within both determinant quantum Monte Carlo and the density matrix renormalization

group. The latter calculation is technically less relevant to the MIT of the Hubbard model

on the square lattice, as it describes a semimetal-insulator transition (SMIT), and more

importantly, the resulting correlated insulator is of the Mott-Heisenberg type. Nevertheless,

we have discussed at length in sections O.4 and O.5 how the Mott-Hubbard and Mott-

Heisenberg insulators are very similar with respect to their local correlations and showed in

Fig.O.4 that the single-site von Neumann entropy does not behave in a drastically different

way across the transition, as it decreases monotonically in both cases, with just a different

asymptotic value at the atomic limit.

The complete picture formed by the results of all these calculations, coming from very

different methods, predicts an entanglement entropy for N = 1, 2, 8, 128 sites that

monotonically decreases as we increase the Hubbard interaction U/D, even when entering

the strongly correlated insulator (with or without magnetic ordering).

This means that nonlocal estimates of the entanglement do not properly reproduce the

expectation about the entengled nature of the Mott insulator. Hence, we deem this

description of the entanglement properties of strongly correlated materials insufficient and

propose a spatially resolved study of the nonlocal quantum correlations (measured by the

entanglement between two lattice sites with no contribution from their environment) as a

necessary tool for a proper characterization of the Mott state.
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Fig. 9.5.: Local charge and spin fluctuations, for the Hubbard model on the square lattice.
Data from the 2× 2 CDMFT/ED simulation with Nbath = 8.

9.2 Local fluctuations and correlations
In this section we take a short interlude from our main program, with the aim of showcasing,

in a precise way, in which sense the single-site entropy deserves its nickname of local

entropy. First of all, as we have already discussed in section 7.1, si has nothing to do with

a concept of entanglement confined in the local single site. On the contrary, it includes

contributions associated with the entanglement at all possible distances in the system, with

no general criterion or algorithm to filter or pinpoint the effect of any one term [70]. But,

recalling the discussion in section 7.2, we know that si describes also the self-information

contained in the single-site reduced density matrix, so that, by virtue of Eq. O.28, it bounds

from above the fluctuations of all local observables.

In Fig. 9.5 we report the evolution as a function of the interaction strength of the local

charge and spin fluctuations, across the MIT. These quantities notoriously give valuable

insight on the physics of Mott insulators, as they clearly unveil the freezing of charge

degrees of freedom and the formation of interaction-induced local magnetic moments. We

notice that the upper envelope of the two curves in Fig. 9.5 has a behavior that follows

qualitatively that of si . This is clearly compatible with the fact that si bounds from above

all the local fluctuations, and suggests that the monotonically decreasing behavior of si
is dictated by the evolution of these two relevant observables. Of course this a purely

evocative argument which is not automatically implied by the upper-bound property. In fact,

it is evident that the local charge fluctuation dominate in the Fermi liquid and are quickly
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Fig. 9.6.: Intra-orbital mutual information for the Hubbard model on the square lattice.
The shaded area represents the range in which lie all correlation function involving
the two local spin states. Data from the 2× 2 CDMFT/ED simulation with Nbath = 8.

damped by Mott localization, while, on the other hand, the spin fluctuations increase

monotonically with U/D, eventually surpassing the charge fluctuations as the Mott state

is stabilized. Moreover, we know that for a Mott-Heisenberg insulator the strong-coupling

limit of si is smaller than log(2) (see Fig. O.4) and that the local magnetic moments

eventually are suppressed to their minimum value, typical of a Fermi gas, deep in the

antiferromagnetic phase (see Fig. O.3). Hence, the concept of local self-information is

shown to provide valuable insight also on the physics of Mott antiferromagnets.

To complete the strictly local (i.e. information contained in a single site, with no reference

to its environment) quantum information description of the Mott-Hubbard transition, we

recall the definition of intra-orbital correlations, as the mutual information shared by the

two local spin states: I( ↑ : ↓ ) = si↑ + si↓ − si (Eq. O.34). Given its role as a measure of

all the correlations encoded in the local spin-orbital pair {| i ↑⟩, | i ↓⟩} (see section O.5), it

bounds from above also the correlation contribution to the local mean square moments,

that is precisely given by the local spin fluctuations, subtracted of the contribution of

Fermi statistics µ2z |FG = 1/8 (from Eq. O.21, evaluated at half-filling). The resemblance

of the two quantities in Figs. 9.5 and 9.6 is unquestionable.

Finally, we recall that in the single-band Hubbard model, the local charge and magnetization

are conserved in ρi , forcing all the off-diagonal elements to vanish [61–65]. As discussed

in section O.5, the diagonal form of ρi (in the spin-orbital occupation basis), makes it a

classically correlated state, with respect to the bipartition in the two local spin states, in the
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sense of section A.3 in the appendix. Hence all the correlation measured by I( ↑ : ↓ ) should

be considered classical, with respect to the local Fock space (our description of the single-

site as an open quantum system). Nevertheless, the global lattice at zero temperature,

at least in the absence of degeneracy, must not contain any classical correlation, as it

is in a pure state [224]. Hence we are readily lead to suspect that classical correlations

in an embedded subsystems, can indeed be generated by quantum correlations in their

environment. In fact, this statement can be precisely formalized, in terms of the so called

Naimark theorem [173, 275]. This last consideration leads us again to the main objective

of the chapter, as the accumulation of a large classical intra-orbital correlation in the

paramagnetic Mott transition (Fig. 9.6), clearly suggest the presence of large nonlocal

quantum correlations.
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Fig. 9.7.: Nearest-neighbor mutual information I⟨i j⟩, and charge and parity superselected nearest-
neighbor entanglement EN(P)-SSR

⟨i j⟩ , as a function of the interaction strength. The shaded
area represents the unconstrained nearest-neighbor entanglement, given the bound
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⟨i j⟩ ⩽ E⟨i j⟩ ⩽ I⟨i j⟩. The latter curves are also reported in log-log scale in the inset,

highlighting the different behavior in the Fermi liquid. Data from the 2×2 CDMFT/ED
simulation with Nbath = 8.

9.3 Entanglement between nearest neighbors
In this section we finally move to the main goal of the chapter, that is to investigate

in detail the quantum correlations between adjacent lattice sites, as described in the

2 × 2 CDMFT/ED solution of the model. Indeed, in section 9.1 we have shown that

a 2 × 2 plaquette is able to capture all the essential features of the local and nearest-

neighbor density matrices. In Fig. 9.7 we show the nearest-neighbor mutual information

I⟨i j⟩ (Eq. 7.5) and the charge (parity) superselected measures of the nearest-neighbor

entanglement EN(P)-SSR
⟨i j⟩ , in the simplified implementation of Eqs. 7.15 and 7.16, as the

system is particle-hole symmetric and we checked numerically the condition on ρi j that is

ensured by a global singlet state. Recalling the bounds EN-SSR
⟨i j⟩ ⩽ EP-SSR

⟨i j⟩ ⩽ E⟨i j⟩ ⩽ I⟨i j⟩,

we can identify a region (the shaded area in Fig. 9.7) in which the unconstrained nearest-

neighbor entanglement E⟨i j⟩ must lie.

Remarkably, both the upper and lower bounds to E⟨i j⟩ show a sudden rise at the Mott

transition, in sharp contrast with the monotonic reduction of the single-site von Neumann

entropy, and in agreement with the physical insight about the nature of a Mott insulator.

This observation is the first signature of a key result of this chapter that we can interpret

as a signature of the intimate relationship between strong correlations at the two-site level

and Mott localization.
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Moreover, we observe that both EP-SSR
⟨i j⟩ and EN-SSR

⟨i j⟩ almost vanish throughout the whole

metallic phase, and quickly saturate to their maximum value once the Mott insulator

is stabilized. The presence of two sharply distinct entanglement scales clearly identifies

the two phases, suggesting that these superselected measures are able to capture the

adiabatic connection to either the noninteracting and the strong coupling limit, at all

intermediate strongly correlated regimes. It is worth remarking that a deeper inspection

(inset in Fig. 9.7) reveals a qualitatively different behavior of EP-SSR
⟨i j⟩ and EN-SSR

⟨i j⟩ in the the

Fermi liquid. After the Mott transition the superselection rules instead become quickly

indistinguishable on the nearest-neighbor entanglement. This can be readily understood by

looking at their expressions, see Eqs. 7.15 and 7.16: the two quantities differ by a term

depending on the populations of doublons and holons, which asymptotically vanish in the

Mott state.

Finally, to further corroborate our results, we compute the nearest-neighbor (logarithmic)

negativity N⟨i j⟩, as defined in Eq. 7.19. Its behavior in the Mott phase closely resembles

that of the nearest-neighbor mutual information. Recalling that I⟨i j⟩ ⩾ E⟨i j⟩ and that

N⟨i j⟩ ⩾ ED⟨i j⟩, where ED⟨i j⟩ ⩽ E⟨i j⟩ is the nearest-neighbor distillable entanglement, we cannot

give any strong upper bound on the nearest-neighbor entanglement beyond what is already

provided by I⟨i j⟩. Yet, one can hypothesize that in the Mott state a good portion of

the entanglement is distillable in pure Bell states, in good agreement with the spectral

decomposition of ρ⟨i j⟩ at strong coupling (panel (d) in Fig. 9.2), that is largely dominated

by a two-site singlet. On the other hand, we find a noninteracting negativity that is much
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closer to the superselected lower bounds, than to I⟨i j⟩. This may suggest that a great

portion of the nearest-neighbor correlations contained in the Fermi liquid could be classical.

Overall, we can safely affirm that all evidenced we have gathered through our upper and

lower bounds to the two-site REE, and the two-site negativity, supports the idea that

the quantum and classical correlations contained in pairs of adjacent sites (essentially the

lattice bonds, in the Hubbard model), are largely increased by the Mott-Hubbard transition,

suggesting that these quantities are able to properly characterize the two phases.

9.4 Role of the SSR on computable quantities
In this section we sharpen our analysis by applying the N-SSR and P-SSR to the other

nonlocal correlation markers we have discussed so far, i.e. the (single-site) von Neumann

entropy, the nearest-neighbor mutual information and the nearest-neighbor negativity. This

enables us to understand in a specific and relevant case the effect of the superselection rules,

with possible practical relevance for the definition of experimentally accessible entanglement

and correlations in realistic protocols based on operations performed onto individual local

electronic degrees of freedom [215–220, 236–242]. Moreover, an assessment on the portion

of correlations that the SSR remove from these computable quantities, will give valuable

insight into what to expect for the non-superselected relative entropy of entanglement, for

which an accessible expression is not available.

In order to measure this effect, we introduce the superselection factors as

ξ
N(P)-SSR
Ei

def
=

Ei

E
N(P)-SSR
i

⩾ 1, (9.2)

ξ
N(P)-SSR
Ii j

def
=

Ii j

I
N(P)-SSR
i j

⩾ 1, (9.3)

ξ
N(P)-SSR
Ni j

def
=

Ni j

N
N(P)-SSR
i j

⩾ 1. (9.4)

As per their definition, the closer these factors are to the unity, the less relevant the

superselection rules become in defining the corresponding restricted measure. The explicit

expressions or the algorithms that define the superselected quantities appearing in the

denominator are given in sections 7.3.1, 7.3.3 and 7.4.

In Fig. 9.9 we report the local entanglement entropy si , the nearest-neighbor mutual-

information I⟨i j⟩ and the nearest-neighbor negativity N⟨i j⟩, together with the respective

superselected lower bounds and the corresponding superselection factors.

Let us start by discussing the behavior of the local entanglement under both superselection

rules: in the noninteracting limit the structure of ρi is well understood as a statistical mixture
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Fig. 9.9.: Effect of charge and particle superselection rules on the local entanglement entropy
(left), nearest-neighbor mutual information (middle) and nearest-neighbor negativity
(right). The respective superselection factors ξ□-SSR

◦ = ◦/◦□-SSR, elucidate the filtering
power of the superselection rule on each quantity, for the different regimes. Data from
the 2× 2 CDMFT/ED simulation with Nbath = 8.
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of doublons, holons ans single-electron states (in either of the two spin polarizations),

whose weights are all equal. As discusses in section 9.1, this is a clear explanation for the

value of si = 2 log(2), as the local reduced density matrix is maximally entangled. The

parity superselection rule halves the corresponding local entanglement to EP-SSR
i = log(2),

as can be explicitly seen in Eq. 7.10. The further restriction to the charge superselection

rule results in a further halving EN-SSR
i = log(2)/2, as again directly encoded in the relevant

expression Eq. 7.9. As can be readily seen by looking at the corresponding superselection

factors (respectively 4 and 2, for U = 0), the depletion grows larger and larger with the

increasing interaction, eventually suppressing the single-site entanglement, in the strong

coupling limit. Hence, in general, the highly nonlocal nature of the information that is

shared by a single site and the rest of the whole system, makes more and more difficult to

extract the corresponding entanglement, as the interaction increases, within protocols that

involve only operations that commute with either the local electron number, or its parity.

Deep in the Mott state the effect is drastic, as the superselected single-site entanglement

asymptotically vanishes.

The nearest-neighbor mutual information, behaves much similarly to the single-site entan-

glement in the noninteracting metal, with even larger superselection factors. However,

once the interaction is switched on, entering the interacting metal described by Fermi

liquid theory, both factors start to quickly decrease, up to the point where the qualitative

behavior becomes completely the opposite: the unrestricted mutual information decreases

with U/D, whereas its superselected lower bounds increase. Eventually, once the MIT is

reached, the superselection factors are significantly close to unity, and start approaching it

asymptotically. Furthermore, we have also a full coalescence of the two superselection rules

in the Mott phase, which can be explained as above, with the near-vanishing of double

occupancy (and holon population, by particle-hole symmetry), which renders the effect of

the two restrictions imposed by SSR effectively equivalent.

Finally, the behavior of the nearest-neighbor negativity under the charge and parity supers-

election rules, is remarkably similar to what observed on the mutual information, in the

Mott insulator. The fact that the remaining "tails" in the superselection factors are larger

for the negativity, with respect to the mutual information, gives probably no significant

insight: as the two quantities define upper bounds for different measures of entanglement,

their values are not strictly related. We just observe that the qualitative behavior in the

Mott state is essentially equivalent. On the contrary, the negativity superselected factors

appear to have a strongly varying behavior in the Fermi liquid, which is not monotonic and

so does not resemble either of the two other quantities. However, a direct observation

of the superselected negativities, reveals that the variations in the superselection factors

are just exasperated by the already small value of N⟨i j⟩, in the weakly interacting metal.

Overall, the correct deduction is that nearest-neighbor negativity is the only computable

quantity that is not significantly depleted in the Fermi liquid, by enforcing the SSR. As the
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negativity does not measure, in principle, any classical correlation (in stark contrast to the

mutual information), we could again hypothesize that the two-site correlations in the Fermi

liquid are mostly classical and can be ascribed to the itinerant nature of the electronic

state. Then, the comparison of the negativity and mutual information superselection

factors at low U/D would suggest that the two-site classical correlations are significantly

more affected by the superselection rule, if compared with the entanglement.

Overall, the fact that I⟨i j⟩ and N⟨i j⟩ are much less affected by the SSR, with respect

to the single-site entanglement, suggests that the nearest-neighbor (or more in general

two-site) quantities are better suited for the characterization of correlated insulators.

Furthermore, the superselected measures of mutual information and negativity display a

step-like character that is significantly similar to what observed for EP-SSR
⟨i j⟩ and EN-SSR

⟨i j⟩ ,

suggesting that such behavior might be an intrinsic typical feature of the superselection

rules. Indeed, the signature of Mott physics is the freezing of local charge fluctuations,

thus the N-SSR would constitute a natural physical stage to reveal the underpinning role

of strong correlations.
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9.5 Entanglement beyond nearest neighbors
In the previous sections we have established that the two-site entanglement between

nearest-neighbor sites has several desired features that allow us to overcome the limitations

of the local Von Neumann entropy. In this section we explore the entanglement between

pair of sites at larger distances. To this end we consider a 4× 2 embedded cluster, which

we solve in CDMFT/ASCI.

In Fig.9.10 we show the mutual information Ii j between two lattice sites i and j , at distances

d = a,
√
2a, 2a,

√
5a, 3a, where a is the lattice constant. Recalling that Ii j represents an

upper bound for the two-site quantum correlations, including entanglement (see appendix

A, in particular Eq. A.17), we can readily infer that all the quantum correlations between

pairs of sites are decay fast with the distance between the two chosen sites, even if they

essentially share the same qualitative behavior of the nearest-neighbor quantity. This result

suggests that the nearest-neighbor mutual information is indeed the key quantity that

provides an effective characterization of the paramagnetic Mott transition of the Hubbard

model in terms of entanglement.

We can push further the resulting physical picture thanks to a comparison between the

local entanglement entropy and the nearest-neighbor mutual information. Elaborating on

the strong subadditivity property of the von Neumann entropy [339] we can write the

following inequality (see appendix B):

⟨Ii j ⟩cluster
def
=

1

ℓ− 1
∑
j ̸=i

Ii j ⩽ 2si , (9.5)

where ℓ is the number of sites in the cluster and we recall that Ii j represents the mutual

information between two arbitrary sites i and j . Hence the local entanglement entropy

bounds from above the cluster-averaged two-site mutual information ⟨Ii j ⟩cluster.

The expression for ⟨Ii j ⟩cluster contains ζ identical terms, all equal to I⟨i j⟩, where ζ is the

number of nearest neighbors of site i in the cluster.

In light of our results (Fig. 9.10), we can assume that the remaining terms in the expression

for ⟨Ii j ⟩cluster decay with the inter-site distance. Their contribution is then at most a

negative additive shift to the value of the local entanglement entropy. This explains the

similar tail behavior1 of si and I⟨i j⟩ in the Mott regime.

The latter observation further underlines the quasilocal nature of the two-site entangle-

ment across the whole phase diagram of the model, as the asymptotic behavior of the

entanglement between a single-site and all the rest of the lattice is determined by the

1en passant, the dependency of the tail on the number of nearest neighbors ζ, explains why the 2× 2
plaquette and the 4× 2 ladder have a significantly different tail in Figs. 9.10: the plaquette is severely
underconnected!
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Fig. 9.10.: Two-site mutual information Ii j as a function of inter-site distance d/a (with a the
lattice spacing) and interaction strength U/D. For d/a = 1 it reduces to the nearest-
neighbor mutual information I⟨i j⟩ (see main text). The shaded area represents the
inequality Ei j ⩽ Ii j , as well as the bound on all correlation functions (Eq. 7.5). Data
from ASCI calculations on the 4×2 cluster (squares) and ED calculations for d/a = 1
on the 2× 2 cluster (filled symbols and dotted line).
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Fig. 9.11.: Two-site negativity Ni j as a function of inter-site distance d/a (with a the lattice
spacing) and interaction strength U/D. For d/a = 1 it reduces to the nearest-neighbor
negativity N⟨i j⟩ (see main text). The shaded area represents the inequality EDi j ⩽ Ni j ,
namely a range in which lies the two-site distillable entanglement. Data from ASCI
calculations on the 4× 2 cluster (squares) and ED calculations for d/a = 1 on the
2× 2 cluster (filled symbols and dotted line).
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nearest-neighbor mutual information, modulo a rigid shift. In particular, we then expect

the Mott insulator to have a shorter range than its parent Fermi liquid state.

In this regard we highlight that a rigorous theorem proven by Wolf et al. [74], relates the

decay of two-point correlations (hence the two-site mutual information, in a lattice) with

entanglement area laws, which have been often allowed to classify traditional and exotic

states of matter, in a rigorous unified framework [70, 71, 207–209, 228]. This important

relationship has been recently confirmed in cold-atom experiments, by Tajik et al. [245],

opening an exciting research avenue. In particular, the simulation of larger clusters, or

longer-range correlations in alternative frameworks, could allow a determination of the

area law classification of strongly correlated electronic systems, with the possibility of

experimental verification in quantum simulators.

Finally, we report in Fig. 9.11 the spatial decaying of the two-site negativity Ni j , again

with a rapid decay as a function of the distance, further corroborating the physical picture

obtained by the mutual information. Most remarkably, it has recently been shown that

the logarithmic negativity of two disjoint subsystems is exponentially suppressed with

their distance, in a large class of resonating-valence-bond states [246], thus providing a

possible path to test the seminal idea of Anderson, that a Mott-Hubbard insulator might

be described in terms of resonating valence bonds [24], with significant consequences in

the understanding of cuprates [25].

9.6 Summary and outlook
The local entanglement entropy has been extensively studied through the last decade

as a first natural tool to attempt to revisit the physics of the Mott-Hubbard transition

under the lens of quantum information theory [61–64]. Although this quantity allows for a

full characterization of the quantum phase transition and both its sub- and super-critical

thermal signatures, its physical interpretation has been hindered by the lack of a clear

distinction between genuinely local and nonlocal contributions [70].

Based on a cluster dynamical mean-field theory analysis of the two dimensional Hubbard

model we clarified the role of local and quasilocal entanglement and correlations across

the Mott transition. In particular, we leveraged the notion of entanglement between local

single-particle states (orbitals), to analyze the bipartite entanglement between adjacent

and distant sites with no reference to the rest of the system. The two-site entanglement

has been shown to give a genuine account of the quasilocal quantum correlation in the

Fermi liquid and Mott phases of the paramagnetic Hubbard model.

Despite being well defined as the relative entropy of entanglement (REE), namely the

minimal quantum relative entropy (QRE) with respect to the set of two-site separable states,

such two-site entanglement has no accessible general expression and its determination
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represents an open problem in quantum information theory [271–273]. To circumvent

this limitation, we carefully analyze upper and lower bounds to the REE. The former is

obtained by a rigorous interpretation of the mutual information as the minimal QRE with

respect to the set of uncorrelated states. In this framework several inequalities can be

proven (see appendix A), establishing the two-site mutual information as an upper bound

for all possibile two-site correlation, as well for the two-site REE and the two-site measure

of quantum and classical correlations. The latter are based on recently derived expression

for the two-site REE, under charge and parity superselection rules (SSR) [219], amounting

to constrain the accessible coherent superposition of quantum states to those conserving

the local electron number or its parity, respectively.

For the Mott-Hubbard insulator found in the two-dimensional Hubbard model on the

square lattice we proved that the nearest-neighbor total correlation is almost unaffected

by the charge and parity SSR. Moreover, the charge and parity superselected two-site

entanglement formulas have been proven indistinguishable in the Mott phase, as a direct

consequence of charge freezing and localization. Hence we propose the two-site measures

of entanglement and correlation as reliable markers for the study of localized phases of

matter.

Following the evolution of the entanglement bounds as a function of the interaction strength,

we predict a sharp increase of the nearest-neighbor entanglement at the transition point

between a metal and a paramagnetic Mott insulator, in contrast with the well-known

picture provided by the single-site entanglement entropy, which decreases mononotonically

as a function of the interaction, mirroring the behavior of the double occupancy.

Consequently, while the Mott insulator might globally result less spatially entangled than

the weak coupling Fermi liquid state according to the single-site entanglement entropy,

we argue that the genuine quasilocal quantum correlation is actually increased by Mott

localization, thus reconciling with the paradigmatic view of a Mott insulator as a strongly

correlated localized system. Further evidence about the quasilocal nature of the two-site

entanglement, in both the Fermi liquid and Mott regimes, has been secured by extending

our analysis beyond nearest neighbors. Here we use the expression quasilocal precisely to

mean that the nonlocal quantum correlation is indeed rapidly decaying with the distance

and the main contribution comes from the closest possible sites, the nearest neighbors,

even if the qualitative behavior as a function of U is the same for all the distances we

could access in our numerical analysis.

All the results have been finally benchmarked with a more conventional, yet less rigorous,

measure of the two-site entanglement: the logarithmic negativity, defined as a suitable

quantification of violations in the Peres-Horodecki PPT separability criterion, that does

not increase under local operations and classical communication, and provides an upper
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bound to the distillable entanglement. The physical pictures enlighted by the REE and the

negativity are essentially the same, corroborating our findings and their interpretation.

Overall, our results shed new light on the mechanism underlying the transformation of

a Fermi liquid metal into a strongly correlated insulator, in the absence of symmetry

breaking, bridging the fertile field of quantum information theory with the notoriously

tough problem of describing strongly correlated electrons. The analysis is based on CDMFT

calculations with clusters sizes ranging up to 8 sites, hence providing a reasonably complete

description of the essential physics of the Mott transition, as extensively benchmarked

against complementary methods [317, 340]. The addressed cluster sizes allow us for a

systematic and computationally affordable study in a well-documented setting. Hence, we

emphasize that our results provide a clear characterization of the entanglement properties

of the metallic and insulating solutions in the paramagnetic two-dimensional Hubbard

model, whose essential details are expected to be valid regardless of the approximation

we used to identify it. Yet, there are several directions to verify the robustness of our

results, including the analysis of larger clusters within CDMFT or the dynamical cluster

approximation (DCA) [189], or even the adoption of different algorithms ranging from

quantum Monte Carlo to tensor networks [305–307] and finally the recently demonstrated

possibility of measuring the two-site mutual information in cold-atom quantum simulators.

Different fruitful research directions can be envisaged in this respect. Our information

theory perspective can indeed provide precious information on the intriguing analogy

between nonlocal correlations of the single-band Hubbard model and correlations between

different atomic orbitals in multi-orbital systems [109, 112, 341] and, in more general

terms, identify a conceptual framework to address the role of nonlocal correlations arising

from local interactions in multi-component quantum systems, including unconventional

superconductors [115, 116], correlated topological insulators [93] and SU(N) cold-atom

systems [125–127].
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10Quasilocal entanglement of a
pseudogap metal

In this final chapter of the second part of the thesis, we want to briefly extend our analysis

of local classical correlations and quasilocal quantum entanglement in the two-dimensional

Hubbard model, beyond half-filling.

As we have discussed in the introductory section O.7, while the Mott transition at half-

filling represents the most direct signature of electron-electron correlations, the effect

of doping a Mott insulator has proven to be a natural path to exotic strongly correlated

phases of matter and it is widely believed to be at least the main ingredient behind

high-temperature superconductivity[26]. In this perspective, the pseudogap metal found

in copper oxides at intermediate hole-doping and relatively high-temperature (just above

the superconducting dome, see Fig. O.8), has attracted a lot of attention, due to both

its very peculiar experimental features [55, 104] and contrasting theoretical insights from

field-theoretical treatments and numerical simulation on the Hubbard model and close

relatives. In particular there has been, on a hand, a growing consensus on the leading role

of short-range antiferromagnetic correlations [198–200] and possibly entanglement [202,

338, 342]. On the other hand significant insights have come from detailed analyses of

correlation effects on the Fermi surface, [109, 308, 314–316], even relating the onset of

the pseudogap with a Lifshitz transition (a sudden change of the Fermi surface topology),

for the Hubbard model on the square lattice, in the limit of zero temperature [318].

In the following we attack this subject within the quasilocal picture that we derived at half

filling, extending our analysis of the interaction-driven metal-insulator transition. We will

leave an analysis of the momentum structure of the entanglement in the doped Hubbard

model for future study. Some perspectives on this regard will be given at the end of the

thesis (chapter "Conclusion: future directions").
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10.1 CDMFT modeling of the pseudogap metal
In the last two decades, cluster dynamical mean-field theory has proven to capture the

essential physics of the pseudogap metal in the square lattice in many respects [109,

198, 199, 308, 309, 314, 317, 343, 344], in stark contrast to single-site DMFT, which

features a direct transition from the half-filled Mott-Hubbard insulator to the hole-doped

Fermi liquid, as long as one considers only single-orbital interactions [345]. In particular,

even in the basic 2 × 2 plaquette theory, the transition between the hole-doped Fermi

liquid and the strongly-correlated pseudogap metal, can be tracked by a discontinuous

jump in the local density [343]. In Fig. 10.1 we report our own CDMFT/ED calculation

of the single-site electron density ⟨ni ⟩, at fixed interaction strength U/D = 2.3 and

varying chemical potential µ/D, for the usual 2× 2 plaquette that has lead the stage in

chapter 9. To allow a clean analysis of the entanglement properties of the encountered

electronic phases we solve the model at zero temperature, constraining the solution to not

develop any magnetic or superconducting ordering. Consistently with the low-temperature

results of Sordi et al. [343], starting from deep in the hole-dominated Fermi liquid metal,

we obtain a linearly increasing density ⟨ni ⟩ < 1 up to a critical value of the chemical

potential, at which the computed density experiences the aforementioned discontinuous

jump. This marks a first-order transition into the pseudogap phase of the plaquette

CDMFT. The resulting pseudogap metal has approximately the same compressibility of

the Fermi liquid, resulting in the same linear increase of the density (except for the obvious

upwards shift). Finally, the half-filled Mott-Hubbard insulator is approached smoothly,

hinting at a second order transformation from one strongly correlated solution to the

other. Our estimates of the critical chemical potential values for the two transitions are,

respectively, µpg/D = [−0.72,−0.71] and µmit/D = −0.48. For easier reference they will

be indicated, as vertical dotted lines, in all figures reporting our data. Before proceeding,

we point out that our choice for the interaction strength (U/D = 2.3) placed the half-filled

point in a "weak" (nearly-localized) Mott insulator (compare with the data presented

in chapter 9). This will have significant consequences in the following discussion of the

observed entanglement properties.
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Fig. 10.1.: Hole-doping of the Mott-Hubbard insulator, for U/D = 2.3 at zero temperature, in
plaquette CDMFT/ED with 2 × 2 impurities and 8 bath sites. The starting point
of the calculation is at large doping, deep in hole-dominated the Fermi liquid metal.
At intermediate doping a discontinuous jump in the computed density signals a first-
order transition into the strongly-correlated pseudogap metal. Approaching half-filling
(⟨ni⟩ = 1), the insulating solution is recovered with a smooth, second-order transition.

10.2 Hole-doping phase diagram
A schematic representation of the phase-diagram of the model, on the whole (µ, U) plane

is given in the left panel of Fig. 10.2, where the black arrow gives a visual indication of

how we traverse the parameter space in our calculations. As a function of the chemical

potential, the Mott-Hubbard phase extends more and more as the interaction strength is

increased. This is a consequence of the ever-growing gap between the Hubbard bands,

approximately linear in U, that has to be overcome by the chemical potential, to introduce

a finite doping.

In the right panel of Fig. 10.2 we show, instead, the (δ, U) version of the same phase-

diagram, where δ = 1 − n is the fraction of injected holes in the doped system. Two

notable differences immediately strike our eyes: the Mott-Hubbard phases shrinks in the

δ = 0 line, as the insulator can exist only at exact half-filling; the boundary between the

Fermi liquid metal and the pseudogap phase is "fractured" by the discontinuity in the

density: at a given U/D, for certain density values, no solution can be found.

While in principle the two parametrizations in terms of µ and δ are completely equivalent,

we choose to always present our data in function of the chemical potential µ as we

are interested in probing the robustness of the results for the Mott-Hubbard insulators

discussed in chapter 9, for which a study of the µ-dependence of our quasilocal entanglement

measures is highly desired.
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Fig. 10.2.: Qualitative phase-diagram of the hole-doped Hubbard model on the square lattice, at
low (zero) temperature and with the exclusion of magnetic ordering. On the left we
measure the horizontal axis in values of chemical potential. On the right, instead, we
parameterize the phase diagram with the fraction of injected holes δ = 1− n. Uc is
the critical interaction for the metal-insulator transition at half filling (δ = 0). The
arrows indicate the direction of our fixed-interaction traversal. Finally the grey area in
the right panel indicates the first-order phase transition separating the hole-dominated
Fermi liquid and the pseudogap metal. Adapted from Walsh et al. [63].

10.3 Single-site von Neumann entropy and local
classical correlations

Before delving in the zero temperature analysis of entanglement and correlations, let us

briefly give an intuition for the doping dependence of the single-site von Neumann entropy.

For that we take intermediate temperature data from Walsh et al. [63], where the evolution

is smooth and easy to follow in all the regimes. We recall that, in all generality for a

single-orbital Hubbard model, the single-site density matrix is diagonal, with elements

corresponding to (for the i-th site) p1 = 1 − ⟨ni ⟩ − ⟨ni↑ni↓⟩ = δi −Di , p2 = ⟨ni↑⟩ −Di ,

p3 = ⟨ni↓⟩ −Di and p4 = Di , where Di is the double occupancy and δi is the fraction of

injected holes (see section O.5). Hence all the properties of the single-site von Neumann

entropy will directly descend from the behavior of the density and double occupancy.

In the noninteracting limit, marked in Fig. 10.3 with a solid yellow line, the single-site von

Neumann entropy decreases monotonically from its value at half-filling, to zero. This can

be directly understood from the fact that the the double occupancy is simply given by

Di = n
2
i /4, so that one can easily prove that p1 gradually approaches the unity, for an

increasing hole-doping δi , and p2, p3 and p4 all decrease monotonically towards zero. In
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Fig. 10.3.: Doping dependency of the single-site von Neumann entropy at T = 0.1, for several
values of the Hubbard interaction. Please not that here U is expressed in units of
t = 0.25D, and that the entropies are expressed in natural units, rather than bits.
The solid yellow line marks the noninteracting limit U = 0 and the dashed aquamarine
line represents the atomic limit t = 0. Adapted from Walsh et al. [63].

the language of information theory, the more holes are injected into the system, the less

uncertain the local electronic configuration becomes, resulting in a ever-decreasing entropy.

On the contrary, in the atomic limit t = 0 (dashed aquamarine line in Fig. 10.3) one has

a perfect atomic Mott insulator at half-filling δi = 0, that is progressively delocalized by

doping, with a consequent increase of the entropy up to a given maximum value of log(3)

[63]. After that it starts to decrease and eventually vanishes, also in this case because of

the complete removal of the uncertainty in the local configuration (given that for δi = 1

there are only empty sites in the lattice).

For generic finite interaction values (all the other curves in Fig. 10.3) the results follow

qualitatively one or the other behavior, depending on whether the half-filled solution is

metallic or insulating. The reduction of si at δi = 0 reflects the well-known behavior of

the single-site entropy accross the interaction driven metal-insulator transition, discussed

at length in chapter 9. However, we observe that all the curves in Fig. 10.3 are almost

indistinguishable for δi >∼ 0.7, signaling the presence of a strong competition between the

interaction-driven Mott localization and a density-driven delocalization, supported by Fermi

statistics.
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Hence, as usual, the single-site local entropy is very sensitive to the local physics of the

system and interprets well the behavior of the fluctuations in the single-site electronic

configuration. Furthermore, as for the case if the interaction-driven Mott transition, Walsh

et al. demonstrate how it can be used to track the position of the supercritical Widom

line, the critical end-point and, at low temperatures the first-order transition between the

pseudogap metal and the weakly correlated Fermi liquid metal.

In Fig. 10.4 we report our CDMFT/ED data at zero temperature, for the single-site

entropy si , the single-spin entropy siσ (Eq. O.33) and the intra-orbital classical correlation

I( ↑ : ↓ ) (Eq. O.34). The first quantity correctly captures the discontinuous transition, as

an obvious consequence of the behavior of the local density (see Fig. 10.1). Hence we

readily confirm the low-temperature predictions of Ref. [63].

The two single-spin entropies coincide exactly at all chemical potential values as the

calculation is enforced to be paramagnetic (to avoid antiferromagnetism). They are not,

however, fixed at log(2), as the average spin-orbital occupation is decreased by doping.

Finally, the intra-orbital correlation between the two spin-orbitals provides once more a

physically sound account of the development of strong correlations across the density-driven

MIT. We start with a moderately correlated configuration, corresponding to the Fermi

liquid at low density, then we transition with a significant jump to a regime in which I( ↑ : ↓ )
grows more than linearly and finally we reach a highly correlated state, corresponding to

the half-filled Mott-Hubbard insulator. We remark that the zero-doping limit in Fig. 10.4

does not correspond to the maximally correlated spin-orbital pair that we predicted in

section O.5 for a deep Mott insulating phase. This is just a consequence of the relatively

small value of the interaction we use in the calculation.

Once again, the development of strong classical correlations in an embedded part of a

quantum many-body system often implies the presence of large quantum entanglement in

the environment (see sections O.5 and 9.2). We proceed to analyze its presence via upper

and lower bounds to the nearest-neighbor entanglement in the following section.

10.4 Two-site entanglement and a hint on the
quasilocal nature of the pseudogap

In Fig. 10.5 we report, on the left panel, the upper and lower bounds for the nearest-

neighbor relative entropy of entanglement (REE) and on the right panel the nearest-neighbor

logarithmic negativity, bounding from above the corresponding distillable entanglement.

In the Mott-Hubbard phase (at half-filling), the mutual information I⟨i j⟩ and the negativity

N⟨i j⟩ confirm the similarity of their behavior. Similarly, in the hole-dominated Fermi liquid,

both these quantities are significantly smaller with respect to the other phases. In fact,
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Fig. 10.4.: Evolution of the single-site si and single-spin siσ von Neumann entropy and of the
intra-orbital correlation I( ↑ : ↓ ), for U/D = 2.3 at zero temperature, in plaquette
CDMFT/ED with 2× 2 impurities and 8 bath sites. The green-shaded area represent
all classical correlations in ρi , according to Eq. O.28.
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especially the negativity assumes a value that is almost identical to the one of the half-filled,

weakly interacting metal (compare with Fig. 9.8).

On the other hand, both the charge and parity superselected REE resemble very closely the

scenario we have discussed for the interaction-driven MIT: they are essentially vanishing in

the Fermi liquid metal, while they are almost pinned to a single value in the Mott-Hubbard

insulator. With respect to Fig. 9.7 we see a significant difference in the N-SSR and P-SSR

values for the Mott insulator, consistently to the choice of an intermediate interaction

value, defining a nearly-localized Mott insulator in which the double occupancy has still an

appreciable finite value.

Finally, we come to the intermediate pseudogap regime. Therein, we observe that the

nearest-neighbor entanglement varies very rapidly with the chemical potential, essentially

interpolating within the large window defined by the values in the strongly correlated insu-

lator and the in the weakly correlated metal. Yet, it appears to be connected continuously

(though not necessarily smoothly, in the derivatives) to the Mott insulator, whereas it

is separated by a (comparatively small) discontinuity from the Fermi liquid. Thus, we

have evidence of a strongly correlated metallic phase that, despite being delocalized and

thus subject in principle to large classical correlations, stemming just from the itinerant

character of the underlying many-body state, has entanglement properties that possibly

suggest an intriguing closer similarity to the Mott-Hubbard state.

10.5 Final remarks
In this chapter, we first gave an overview of some literature results on the single-site

entropy in marking distinct feature of the hole-doped phase diagram of the two-dimensional

Hubbard model, with an highlight on the physical interpretation in terms of quantification

of the local fluctuations in the electronic occupation. Then we reconnected to the leitmotiv

of this thesis, namely measuring the correlation between two orbitals (or spin-orbitals), first

within a single site, so to analyze the classical intra-orbital correlation across the density-

driven Mott-Hubbard transition, and finally the inter-orbital entanglement (and correlations)

between adjacent sites. Remarkably, a comparison of Figs. 10.4 and 10.5 reveals that, even

more that in the case of an interaction-driven MIT, the density-driven Mott transition has a

very similar description in terms of classical and local inter-spin correlations or quantum and

nonlocal inter-site entanglement. This finding further emphasizes the intimate connection

between large nonlocal entanglement and strong local correlations of classical nature,

suggesting pathways to make quantum information concepts and tools popular in the realm

of local or quasilocal many body methods.
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Fig. 10.5.: On the left, nearest-neighbor entanglement, as bounded by the mutual information I⟨i j⟩
and the charge and parity superselected relative entropy of entanglement EN(P)-SSR

⟨i j⟩ .
The shaded area represents the region in which E⟨i j⟩ must lie. On the right, nearest-
neighbor distillable entanglement, as bounded from above by the logarithmic negativity
N⟨i j⟩. The shaded area represents the region in which ED⟨i j⟩ must lie. Data for
U/D = 2.3 and zero temperature, computed in plaquette CDMFT/ED with 2 × 2
impurities and 8 bath sites. The vertical lines mark the two quantum phase transitions.
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Conclusion: future directions

In this thesis we have discussed different aspects of strongly correlated electronic systems,

analyzed under the lens of quantum information theory. While we have provided conclusive

thoughts for each main line, namely in chapters 5, 9 and 10, with a focus generally confined

to the specific topic or area of interest, here we want to give a bird-eye view of what has

been discussed and examine broader aspects that deserve further investigation.

In the first part, we focused on the description of the local physics of interacting topological

insulators, as provided by dynamical mean-field theory (DMFT) on the Kane-Mele-Hubbard

model [87, 88, 130]. We complemented a standard analysis of antiferromagnetic transitions,

in terms of the magnetic order parameter and the single-particle gap, with a quantum-

information inspired notion of pseudo-distance from the set of uncorrelated states, as

provided by mutual information in the framework of the quantum relative entropy. This

quantity, defined for two localized spin-orbitals, has been proven to exactly vanish in any

Hartree-Fock calculation, giving a valuable interpretative key for the difference between

the two methods and their characterization of the model and its phase diagram.

Furthermore, the same analysis has been applied to the paramagnetic Mott transition

of topological Dirac fermions, demonstrating the development of maximal correlations

between the two local spin orbitals. This in turn has suggested the possible presence of

nonlocal quantum entanglement in Mott-Hubbard insulators, according to the principle

that classical correlations in an open quantum system, at zero temperature, are usually

generated by quantum correlations in its environment [173].

Guided by this intriguing result, in the second part of the thesis, we turned to the

popular two-dimensional Hubbard model, for which we have constructed and computed

suitable measures of quasilocal (short-range) quantum correlation, in terms of the bipartite

entanglement between two electronic orbitals located at different lattice sites. Our results,

obtained within a well-studied and successful cluster extension of DMFT (CDMFT), confirm

the physical intuition and expectations for Mott-Hubbard insulators, as strongly correlated

localized systems, and, most importantly, shed new light on the quasilocal properties of the

doped pseudogap metal, suggesting a deep connection with the Mott state. However, the

pseudogap has yet a Fermi surface, whose strongly anisotropic features hint at a significant

interplay between the quasilocal picture and the long-distance properties. We prospect a
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careful extension of our analysis, targeting the bipartite entanglement between k points (or

patches) and eventually complementing the existing description of the pseudogap metal as

a momentum-selective Mott phase [308, 314–316]. This program could be tackled both

within the dynamical cluster approximation (DCA), an alternative extensions of DMFT

that naturally lives in k-space, or by periodizing the reduced density matrix of the full

cluster in CDMFT and subsequently tracing from it the reduced density matrices for given,

discrete, reciprocal lattice points (see section 8.3).

At this point, it is important for us to provide a brief discussion about the possible limitations

of our approach, in particular concerning the evaluation of reduced density matrices, a

wavefunction-based object, within a Green’s function method. The dynamical mean-field

theory, as well as its cellular extension, is formulated around a self-consistency at the

single-particle level [38], whereas the reduced density matrices for a two-orbital subsystem,

or even a single-orbital subsystem, are respectively four-particle and two-particle operators.

We observe, however, that the long wielded expectation value for the population of double

occupied orbitals, the double occupancy, is a two-particle property that has been frequently

and extensively analyzed in DMFT calculations, with the appearance of careful studies

on the best strategy to evaluate it, starting from a self-consistent single-particle Green’s

function [346]. The resulting predictions are indeed always qualitatively correct and often

essentially accurate. Hence we can assume that our analysis of entanglement properties is

likely to inherit at least the qualitative truthfulness of established CDMFT literature.

The straightforward quantitative extension of our analysis is naturally rooted in diagram-

matic extensions of dynamical mean-field theory [293–295], which bring the theory beyond

the single-particle level, with the nontrivial bonus of inserting long-range correlations into

the picture. In light of this perspective, a particularly interesting work by Roosz et al. [65]

has captured our attention, as it gives a closed expression for two-orbital reduced density

matrices in terms of two-particle Green’s functions. The result is remarkable in a twofold

way: (i) as mentioned above, the two-orbital reduced density matrix is in principle a four-

particle quantity, so we find particularly fortunate that it can be expressed in terms of the

two-particle propagator and (ii) two-particle vertices and Green’s functions are a common

language of a great multitude of many body methods, whereas our ad hoc evaluation of the

reduced density matrices is inherently bound to applying exact diagonalization and closely

related methods to the solution of the auxiliary impurity problem. Hence, we prospect

a flourishing interconnection between our proposed physical interpretation of two-orbital

measures of entanglement, as a guiding light for the understanding of exemplary phases of

strongly correlated electrons, and this new universal methodology, which gives access to

the relevant quantities to the broader field of diagrammatic many-body methods.

On the other hand, the recent advent of alternative, wavefunction-based, quantum

embedding schemes [347–352] gives the potential to extend our analysis also beyond the
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DMFT world, in a class of methods that are increasingly proving to be well-suited to

treat strongly correlated electrons in realistic models for solid-state materials [353] and

molecular systems [354], at a fraction of the computational cost.

Finally, in the area of fundamental quantum mechanics of many-body systems, we find

particularly interesting the investigation of possible strong connections between the long-

standing framework of Fermionic entanglement constrained by superselection rules [215–

218, 220, 236–242] and the concept of symmetry-resolved entanglement, as recently

introduced in statistical physics and gauge theory [267, 285–289].

periodization

RISB++

Pictorial representation of some future directions to extend the research reported in this thesis.
The Feynman diagram represents diagrammatic extensions of DMFT, such as the dynamical
vertex approximation (DΓA), "periodization" is referred to direct extensions to momentum space
within CDMFT or the dynamical cluster approximation (DCA) and "RISB++" stands for quantum
embedding schemes based on the rotationally invariant slave-boson (RISB) formalism [347],
such as the cluster-RISB method [348, 349] and the ghost-Gutzwiller variational approximation
[350–353]. The "hardness" of the paths represents a rough estimation of the numerical complexity
of the different methods, with no reference to conceptual challenges.
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AGeometrical approach to
entanglement and correlations

In this appendix we briefly review a relative entropy based, geometrical method to measure

and classify different kind of bipartite correlations, valid for generic mixed quantum states.

We mainly follow Refs. [72, 73, 260, 280], but the reader can find a broader account

to the emerging field of quantum information geometrical in Refs. [262, 263], where the

discussion is extended also to multipartite entanglement. For a general introduction to the

theory of entanglement measures, please refer to Refs. [247, 248].

A.1 An information distance for quantum states
Let us start by considering a complex Hilbert space H of dimension d . The corresponding

set D of density matrices is given by all Hermitian operators ρ acting on the corresponding

Fock space F [356–358], that are positive semi-definite and have normalized trace:

D =
{
ρ : F

linear7−−−→ F
∣∣∣ ρ† = ρ, ⟨ψ|ρ|ψ⟩ ⩾ 0 ∀ |ψ⟩∈ F, tr(ρ) = 1

}
. (A.1)

As sketched in Fig. A.1, D is a convex set [359], given that λρ + (1 − λ)ρ′ ∈ D for

any two density matrices ρ, ρ′ ∈ D and real λ ∈ [0, 1]. Moreover, D is bounded and

closed (i.e. compact) and we can relate its boundary with an important limit in quantum

information theory. Indeed, it can be proved that a density matrix ρ lies on the boundary

of D if at least one of its eigenvalues vanishes and that if all eigenvalues but one vanish

then ρ which cannot be written as a convex combination [359] of other elements of D.

Hence, the set of extreme points of D is given by all pure states in F:

extreme(D) =
{
ρ : F

linear7−−−→ F
∣∣∣ ρ = |ψ⟩⟨ψ| ∀ |ψ⟩∈ F

}
. (A.2)

It follows that, for Hilbert spaces of dimension d = 2 (describing qubits), the boundary of

D degenerates into the two pure states.

A general and natural way to quantify the similarity of quantum states entails the intro-

duction of a notion of distance in the D space. The main advantage of a distance-based

comparison lies in the universality of its predictions: whenever two density matrices are close

to each other in D, their expectation values for any observable are close in R, coalescing

in the limit of zero distance. The generality of this approach ultimately allows a unified
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Fig. A.1.: Schematic illustration of the state space D. The subsets of uncorrelated (D⊗), classi-
cally correlated (Dcl) and separable states (Dsep) are shown in green, yellow and red,
respectively. The geometric measures of total correlation Tρ, quantum correlation Qρ
and entanglement Eρ are given by the quantum relative entropy of ρ, minimized with
respect to those sets, with corresponding “closest states” π∗, χ∗ and σ∗. The measure
of classical correlations Cρ arises as the distance between the closest uncorrelated π∗
and the closest classically correlated χ∗ states. Picture adapted from Refs. [73, 247,
248]. A realistic representation of the geometry of D for a simple system of two qubits
can be found in [355].

and rigorous quantification of quantum and classical correlations, on the basis of quantum

geometry.

In principle, the choice of a distance for the space of quantum states is completely arbitrary,

as long as it satisfies a minimal set of required properties. A prominent choice is given by

the quantum relative entropy [72, 73, 257–260, 270, 280, 360, 361]:

S(ρ||ρ′) def
= tr (ρ log ρ− ρ log ρ′) . (A.3)

In a strict mathematical sense the quantum relative entropy does not define a metric,

as it is not symmetric (i.e.S(ρ||ρ′) ̸= S(ρ′||ρ)) and does not obey the triangle inequality.

Nevertheless, it is always non-negative, vanishing only for ρ ≡ ρ′ [66, 270], and it can

be seen as a measure of the information distance of the two density matrices ρ and ρ′

[258, 259, 270], similarly to how two classical probability distributions can be compared

by computing their Shannon relative entropy [76, 362]. Other choices, as e.g. the Bures-

Wootters-Fisher metric or the trace distance, have been explored [261, 363–366] with

great success for the extension to multipartite systems [247, 255, 263].
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A.2 Quantifying correlations
The quantum information concepts of correlation and entanglement in a quantum state

ρ cannot be defined without a notion of partition into subsystems [66, 69]. While the

usual subsystems studied in quantum information theory are individual particles, effectively

distinguishable by virtue of a significant spatial separation, in condensed matter systems the

so-called particle picture remains much less understood [215, 218, 268] and most progress

has been achieved in the alternative orbital picture: in this framework, the system is

partitioned in orbital space and the fundamental subsystems are not particles but localized

single-particle states [216, 218], which are naturally distinguishable by application of local

operations. Therefore, in order to discuss bipartite entanglement and correlations within

condensed matter systems, we will consider a Fock space in the form

F = FA ⊗ FB, (A.4)

where A and B are two complementary orbital subsets of the whole system. The tensor

product structure of the Fock space arises naturally in second quantization, from a direct

sum decomposition of the single particle Hilbert space H = HA ⊕ HB [211, 356–358].

Local measurements in A and B are represented by Hermitian observables OA and OB

acting respectively on FA and FB. The correlation between these two measurements is

described by the correlation function

corr(OA,OB) = ⟨OA ⊗OB⟩ρ − ⟨OA ⊗ 1B⟩ρ⟨1A ⊗OB⟩ρ
= ⟨OA ⊗OB⟩ρ − ⟨OA⟩ρA⟨OB⟩ρB , (A.5)

where ρ{A,B} = tr{B,A}(ρ) is the reduced density matrix for subsystem A or B and 1{A,B}
the identity operator acting on the local Fock space F{A,B}.

A density matrix ρ is uncorrelated with respect to the bipartition into subsystems A and B

if and only if Eq. A.5 vanishes for all pairs of local Hermitian observables OA,OB. This is

equivalent to the factorization of ρ into its reduced density matrices:

corr(OA,OB) = 0 ∀OA,OB ⇔ ρ = ρA ⊗ ρB. (A.6)

The corresponding set of uncorrelated (i.e. product) states,

D⊗
def
= {π ∈ D | π = πA ⊗ πB} , (A.7)

is schematically illustrated in Figure A.1 as a solid green line. We observe that a product

state π ∈ D⊗ is pure if both its reduced density matrices πA and πB are pure. Hence all

pure product states must lie on the extreme of D (Eq. A.2).
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Having identified the set of all uncorrelated states, with respect to the F = FA ⊗ FB
bipartition, a natural geometrical measure of the total correlation contained in a quantum

state ρ is given as its minimal relative quantum entropy with respect to the D⊗ set

Tρ(A : B)
def
= min

π∈D⊗
S(ρ||π) , (A.8)

Remarkably, the set minimization in A.8 can be performed analytically [72], finding the

closest uncorrelated state as π∗ = ρA ⊗ ρB and identifying the total correlation with the

mutual information between A and B

Tρ(A : B) ≡ I(A : B) def
= s(ρA) + s(ρB)− s(ρ) , (A.9)

where s(◦) = − tr(◦ log ◦) denotes the von Neumann entropy. As already mentioned in

the main text (see section O.5), all bipartite correlation functions (Eq. A.5) are bound

from above as

|corr(OA,OB)|√
2∥OA∥ ∥OB∥

⩽
√
Tρ(A : B) (A.10)

(corresponding to Eq. O.28 in the main text)

where ∥O◦∥ denotes the Euclidean operator norm of O◦, namely its largest singular value.

Eq. A.10 reveals the quantitative power of the geometrical approach based on the quantum

relative entropy, given that whenever a quantum state results arbitrarily close to D⊗,

correlation functions must vanish for any choice of local observables OA,OB.

A.3 Classifying correlations
Due to the statistical meaning of the quantum relative entropy [76, 259, 270, 362], the

total correlation (Eqs. A.8 and A.9) quantifies the additional information content that the

state ρ carries with respect to the product state ρA ⊗ ρB. The adjective “total” has been

traditionally used [72, 260] to emphasize that Tρ(A : B) includes both classical and quantum

correlations. Given that physical systems and their states cannot really be decomposed

in separate classical and quantum parts, all attempts in classifying phenomena as either

classical or genuinely quantum keep generating heated debates, especially in relation to the

possibility of devising quantum protocols that outperform any classical counterpart, in data

processing and computational tasks [66, 366–373]. In the following we will define suitable

supersets of D⊗, allowing a clear definition of disentangled (separable) and classically

correlated (pseudo-classical) states. The pseudo-metric induced by the quantum relative

entropy will then allow a rigorous quantification of entanglement, quantum correlations

beyond entanglement and classical correlations, all within the same unified geometrical

picture [72, 73, 260].
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A.3.1 Separable states and entanglement
Separable states are defined as the density matrices that can be using only local operations

and classical communication (LOCC) [66, 69, 247]. With local operations we mean, in

this context, all Hermitian operators acting on the subsystem Fock spaces FA and FB.

These allow two independent (possibly distant) parties to prepare any uncorrelated state

ρ = ρA ⊗ ρB, given that all necessary information is contained in the two reduced states

alone. Classical communication between the parties further allows the preparation of

arbitrary statistical mixtures of uncorrelated states. Hence, the set of separable states can

be defined as the convex hull [359] of D⊗:

Dsep
def
=

{
σ ∈ D

∣∣∣∣∣ σ =∑
i

pi σ
i
A ⊗ σiB, pi ⩾ 0,

∑
i

pi = 1

}
. (A.11)

Any state ρ that is not separable is called entangled and, given the impossibility to be

prepared by LOCC, can in principle be used as a resource in quantum information and

quantum computing protocols [66, 69, 366, 367]. We observe that the extreme points of

the separable states (the pure product states), are also extreme points of the set of all

states [extreme(Dsep) ⊆ extreme(D)] as illustrated in Fig. A.1. Furthermore, any separable

state can be written as a convex combination of d + 1 extreme points, as assured by

Carathéodory’s theorem [359, 374]. Nevertheless, the complete characterization of the

Dsep set, i.e. the determination of its volume and boundary for general quantum systems is

a formidable open problem in quantum information theory (known as separability problem)

[271, 272].

Much as for the total correlation, the bipartite entanglement contained in a given state ρ

can be quantified through the quantum relative entropy, as the minimal pseudo-distance

between ρ and the Dsep set [257, 258]:

Eρ(A : B)
def
= min

σ∈Dsep
S(ρ||σ) = S(ρ||σ∗) . (A.12)

The result of the minimization, S(ρ||σ∗), is traditionally called relative entropy of entan-

glement (REE) [259, 270] and can be proven to fulfill all the requirements for a faithful

measure of bipartite entanglement: it is always non-negative, vanishing only for separable

states, it does not increase under LOCC, it does not change under local unitary operations

(changes of basis in FA and FB) [247, 257, 270]. Unfortunately, no general closed expres-

sion exists for the REE and its numerical evaluation can be proven to be NP-complete,

as it is equivalent to the separability problem [273]. However, for pure states ρ = |ψ⟩⟨ψ|,
the minimization in Eq. A.12 can be carried out analytically, recovering the von Neumann

entropy [257, 270]

E|ψ⟩⟨ψ|(A : B) ≡ s(ρA) ≡ s(ρB). (A.13)
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A.3.2 Pseudo-classical states and quantum discord
Entanglement has proven to be a key concept in quantum information theory and many

body physics [73, 203–214], with a broad relevance as a resource for quantum information

and quantum computing tasks [66, 366, 367]. Yet, quantum correlations are not limited

to entanglement, as they can be detected and exploited as a quantum resource on (mixed)

separable states too, giving rise to the notion of quantum discord [173, 375–380]. The

necessary and sufficient conditions to observe quantum discord are well-known [355] and

lead to the definition of pseudo-classical (classically correlated) states, as the family of

separable states with zero quantum correlation [72, 73, 378, 381]:

Dcl
def
=

{
χ ∈ Dsep

∣∣∣∣∣ χ =∑
a,b

pab |a⟩⟨a|⊗|b⟩⟨b|
}
. (A.14)

where {|a⟩} and {|b⟩} could be any bases for the two local Fock spaces FA and FB,

respectively and pab ⩾ 0,
∑

ab pab = 1. To understand why the states in Dcl should

be regarded as effectively classical, we observe that there exists joint (simultaneous)

local measurements {Pa ⊗Pb} which leave the state χ unchanged, as {Pa} and {Pb} are

projectors onto the local eigenstates {|a⟩} and {|b⟩}, respectively. Therefore all correlations

encoded in the resulting joint probability distribution {pab} are to be considered of a classical

nature [72, 260, 381]. Any state not in Dcl then contains quantum correlations, either

beyond entanglement or comprising it, depending on whether the state is separable or not.

By invoking again the geometrical picture of quantum states (Fig. A.1), we quantify

quantum correlations as the minimum relative entropy of the given state, with respect to

the set of pseudo-classical states [72, 73, 260, 361]:

Qρ(A : B)
def
= min

χ∈Dcl
S(ρ||χ) = S(ρ||χ∗). (A.15)

We observe that D⊗ ⊆ Dcl, since every uncorrelated state can be written in the form of

Eq. A.14:

ρA ⊗ ρB =
(∑

a

pa |a⟩⟨a|
)
⊗
(∑

b

pb |b⟩⟨b|
)
. (A.16)

Indeed taking a factorized joint probability pab = pa × pb is equivalent to assume the

outcomes of measurements on the two subsystems as independent variables, in classical

probability theory. On the other hand, the set Dsep is a superset of Dcl, as the reduced

states {σiA} and {σiB} in Eq. A.11 are typically not simultaneously diagonalizable for all i .

Thanks to the geometrical properties of the quantum relative entropy, these inclusion

relations result in the following inequality chain:

D⊗ ⊆ Dcl ⊆ Dsep ⇐⇒ Tρ(A : B) ⩾ Qρ(A : B) ⩾ Eρ(A : B). (A.17)
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For pure states ρ = |ψ⟩⟨ψ|, the only possible source of quantum correlations is entanglement,

so that quantum discord and the REE coalesce into the von Neumann entropy [376]

Q|ψ⟩⟨ψ|(A : B) = E|ψ⟩⟨ψ|(A : B) ≡ s(ρA) ≡ s(ρB). (A.18)

As for the REE, the computation of quantum discord for generic mixed states is NP-

complete [382] and closed formulas are known only for some classes of two-qubit systems

[381, 383, 384]. Numerical computation is still viable for a small enough dimension of the

Hilbert space (d), resorting to statistical sampling of the Dcl set [73].

A.3.3 Classical correlations and correlation sum rule
Granted that quantum correlations can exist beyond entanglement and are measured by

the relative entropy with respect to the closest pseudo-classical state Eq. A.15, a natural

way to define classical correlations would be to compute the quantum relative entropy

between the closest classically correlated state and the closest uncorrelated state/

To further motivate this choice, we first rewrite Eq. A.15 as [381]

Qρ(A : B) = min
{Pi
A,P

j
B}
S

ρ
∥∥∥∥∥∥
∑
i j

Pi
A ⊗P

j
B ρ Pi

A ⊗P
j
B

 (A.19)

where Pi
A and P

j
B are two projective measurements, satisfying

(
Pi
{A,B}

)2
= Pi

{A,B} and∑
i P

i
{A,B} = 1{A,B}. The closest classical state χ∗ is then the state resulting from ρ

after the optimal projective measurements has been performed. Accordingly, the total

correlation in χ∗ is then nothing else than the classical correlation in ρ [72]

Cρ(A : B) ≡ T (χ∗). (A.20)

Since quantum states cannot be dissected into classical and quantum parts in a strict

mathematical sense, it is not surprising that our measures do typically not obey the relation

Tρ(A : B) = Qρ(A : B) + Cρ(A : B). However, this exact additive relation is valid whenever

the closest pseudo-classical state χ∗ and the closest uncorrelated state π∗ have the same

eigenstates. When instead χ∗ and π∗ are not simultaneously diagonalizable, a general

inequality applies, relating the total, quantum, and classical correlation as [73]

Tρ(A : B) ⩾ Qρ(A : B) + Cρ(A : B). (A.21)
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A.4 Effect of restrictions on local operations
Before ending this appendix, let us briefly demonstrate the effect of any restriction on the

set of allowed local operations {OA} and {OB}. In Eq. A.6 we have defined the notion

of uncorrelated state as equivalent to a state that does not produce a finite correlation

function corr(OA,OB), for any possible pair of Hermitian operators OA and OB. However,

if we restrict to a subset of the Hermitian operators, for either fundamental or operational

reasons, there would be some correlated states that we cannot classify as such, for that

we have no access to the corresponding finite correlation functions. Correspondingly, the

set of observable correlated states is reduced and the measure of total correlation is

decreased. As we have discussed above, the set of separable states is obtained by applying

classical communication to the set of uncorrelated states, so that the enlargement of the

latter implies also a decrease of the relative entropy of entanglement, i.e. the geometrical

measure of bipartite entanglement. In general, all the correlation measures based on the

quantum relative entropy and the geometry of quantum states are always decreased by

the introduction of restrictions on the set of allowed local operations, providing a natural

path for the construction of lower bounds to the relative entropy of entanglement and

the quantum discord. In chapter 7 of the main text, we report two recently introduced

examples of such strategy, providing lower bounds to the two-orbital relative entropy of

entanglement (i.e. the system is made of two electronic orbitals and the bipartition is in

orbital A and orbital B). In particular Ding et al. [219, 220] have leveraged the physically

and operationally motivated charge and parity superselection rules to restrict the set of

allowed operators to those commuting with the local (in this case single-orbital) electron

number or only its parity, respectively.
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BSum-rule for the two-site mutual
information

For any state of a generic quantum tripartite system, either HABC = HA ⊗ HB ⊗ HC or

FABC = FA ⊗ FB ⊗ FC, a strong subadditivity property has been proven to relate the von

Neumann entropies of all its subsystems and the whole density matrix ρABC. In standard

notation it reads [339]

s(ρABC) + s(ρB) ⩽ s(ρAB) + s(ρBC). (B.1)

Adding the von Neumann entropy of subsystem A on both sides, we can recast the inequality

in terms of suitable mutual informations, as

s(ρABC) + s(ρA) + s(ρB) ⩽ s(ρAB) + s(ρA) + s(ρBC)

s(ρA) + s(ρB)− s(ρAB) ⩽ s(ρA) + s(ρBC)− s(ρABC)

I(ρA : ρB) ⩽ I(ρA : ρBC) (B.2)

Let us consider the CDMFT solution for the Hubbard model and take A and B as single-site

orbitals i , j in the cluster and C as the rest of the impurity model. Equation B.2 then

becomes Ii j ⩽ Ii{k ̸=i}. Since the ground state of the impurity model is pure, we have

Ii{k ̸=i} = si + s{k ̸=i} = 2si and we can further recast the inequality as

Ii j ⩽ 2si , ∀ i ̸= j (B.3)

Finally we fix a reference site i and sum over all other possible cluster sites j ̸= i , to get

Nimp∑
j=1

Ii j(1− δi j) ⩽
Nimp∑
j=1

2si(1− δi j)

∑Nimp
j=1 Ii j(1− δi j)
2
∑Nimp

j=1 (1− δi j)
⩽ si (B.4)

which is equivalent to Eq. 9.5 in the main text.
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