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A note on the homogenization of incommensurate thin films

Irene Anello, Andrea Braides and Fabrizio Caragiulo
SISSA, via Bonomea 265, Trieste, Italy

Abstract

Dimension-reduction homogenization results for thin films have been obtained under hy-
potheses of periodicity or almost-periodicity of the energies in the directions of the mid-plane
of the film. In this note we consider thin films, obtained as sections of a periodic medium
with a mid-plane that may be incommensurate; that is, not containing periods other than
0. A geometric almost-periodicity argument similar to the cut-and-project argument used for
quasicrystals allows to prove a general homogenization result.

1 Introduction

The energy of heterogeneous thin films of a hyperelastic material in Rd+1 can be described by
integral functionals of the form

1

2ε

∫
ω×(−ε,ε)

fε(x,∇u) dx, (1.1)

where fε are hyperelastic energy densities satisfying suitable growth conditions, ω ⊂ Rd is the
middle section of the thin film, 2ε is its thickness, and u : ω × (−ε, ε) → Rm is the displacement
(in the physical case, d = 2 and m = 3). We use dx to denote integration with respect to the
Lebesgue measure in Rk both for k = d and k = d+ 1, which one being clear from the context. In
the seminal paper by Le Dret and Raoult [9], in the case fε = f independent of ε and homogeneous
(i.e., x-independent), the behaviour of such energies as ε → 0 has been proven to be described by
a dimensionally reduced hyperelastic energy of the form∫

ω

fLDR(∇v) dy, (1.2)

where now v : ω → Rm has a domain identified as the mid-section of the film, and fLDR is a
quasiconvex function explicitly described from f . For general energies (1.1) a compactness theorem
[5] ensures that, up to subsequences, their behaviour can be described by a possibly heterogeneous
dimensionally reduced energy ∫

ω

f0(y,∇v) dy, (1.3)

with f0 possibly depending on the subsequence. In the case of a periodic integrand we can suppose,
as this is the relevant case, that the oscillation be at the same scale of the thickness, so that we
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assume fε(x,A) = f
(
x
ε , A

)
with f(·, A) periodic in the coordinate directions. In this case we have

homogenization [5]; that is, the limit f0 is homogeneous and independent of the subsequence of ε,
and described by a suitable asymptotic formula. In order to prove this result, a key argument is
the invariance property of the energies by translations of the form εej for j ∈ {1, . . . , d}, where
{ei : i ∈ {1, . . . , d + 1}} is the canonical orthonormal basis of Rd+1, entailing the translation
invariance of f0. This argument is made possible by the assumption that the middle plane of the
thin film contains a d-dimensional lattice of periods for f ; that is, it is ‘commensurate’ with Zd+1.

In this paper we consider the general case of a periodic energy density f , when the middle plane
of the thin film contains a n-dimensional lattice of periods for f with n ≤ d. ‘Incommensurate’ thin
films are those with n = 0; that is, when the middle plane of the thin film does not contain any
period for f except 0.

In order to treat general, possibly incommensurate, thin films, we introduce some notation,
slightly different from the one used for commensurate thin films, due to the necessity to distinguish
between the periods of the energy density and the directions of the thin film. We choose to maintain
Zd+1 as set of periods, considering a Carathéodory function f̃ : Rd+1 × Mm×(d+1) → [0,+∞)
satisfying the standard p-growth conditions

α|A|p ≤ f̃(x,A) ≤ β(1 + |A|p) (1.4)

for all x ∈ Rd+1 and A ∈ Mm×d+1 and some α, β > 0, which is 1-periodic in all coordinate
directions; i.e.,

f̃(x+ ei, A) = f̃(x,A) (1.5)

for all x ∈ Rd+1, all matrices A ∈ Mm×(d+1) and all vectors ei of the standard orthonormal basis
of Rd+1. We use the notation Mm×k for the space of m× k matrices with real entries.

We fix a unit vector ν and consider the hyperplane Π = {x : 〈x, ν〉 = 0}. The interesting case,
to keep in mind as the most relevant one, is when Π is an irrational hyperplane in Rd+1; that is,
such that

Π ∩ Zd+1 = {0}. (1.6)

We fix ω̃ a bounded subset of Π, open in the relative topology, h > 0, and for each ε > 0 consider
the functional

Ĩε(u) =
1

2hε

∫
ω̃+(−hε,hε)ν

f̃
(x
ε
,∇u

)
dx, (1.7)

with domain W1,p(ω̃ + (−hε, hε)ν,Rm), which ideally represents the elastic free energy of a thin
film of size 2hε > 0 around ω̃. The introduction of a constant h > 0 amounts to assuming that
thickness and periods are comparable, so that h represents their ratio, which we highlight for possible
future reference. We will prove that there exists a function f̃hom : Mm×d → [0,+∞) satisfying an
asymptotic formula, such that

Γ- lim
ε→0

Ĩε(u) =

∫
ω̃

f̃hom

(
∇u(y)

)
dy.

The Γ-limit is performed in a dimension-reduction fashion, using a convergence of uε ∈ W1,p(ω̃ +
(−hε, hε)ν,Rm) to u ∈ W1,p(ω̃,Rm), where ω̃ is identified with a subset of Rd in order for the
integration to be well defined.

The result is obtained by first resorting to the theory of [5]. To that end we rewrite the
functionals in the form (1.1), with fε(x,A) = f

(
x
ε , A

)
, and f obtained from f̃ by a linear change of
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variables. Using the dimension-reduction convergence of functions as in [9], we can then apply the
compactness theorem in [5] to obtain a limit of the form (1.3). Since f may not be periodic in the
coordinate directions we cannot immediately conclude that homogenization takes place, since an
invariance-by-translation argument does not apply. However, we can use a sort of geometric almost
periodicity property: the set of periods for f̃ which are close to Π (closeness suitably quantified
by a small parameter) is projected to a uniformly dense set in Π. We remark that the former set
corresponds also to the set of periods for f which are close to the hyperplane identified with Rd,
This argument reminds the cut-and-project arguments typical of quasicrystalline structures (see
[7, 2, 8, 10, 6, 3]). The existence of such geometric quasi-periods is not sufficient to prove the
necessary translation-invariance properties for f0 and the homogenization asymptotic formula. To
that end it is necessary to construct test functions by using translation arguments, which are not
directly at hand since translation by a quasi-period may exit the thin film domain. The key technical
point of the paper is a novel lemma, which ensures that in the constructions of test functions it
is sufficient to modify functions defined in a smaller thin film, which is then mapped inside the
original thin film by any of the above-mentioned translations (scaled by ε).

1.1 Statement of the results

We now formalize what we anticipated in the Introduction, rewriting the energies Ĩε in (1.7) in order
to apply the results in [5] with more ease. To that end, we make a change to coordinates more
suitable to the problem: we let φ be the linear isometry in Rd+1 sending e1, . . . , ed to an orthonormal
basis π1, . . . , πd of Π and ed+1 to ν. Let ω be the open set in Rd such that φ−1(ω̃) = ω × {0}, so
that

φ−1
(
ω̃ + (−hε, hε)ν

)
= ω × (−hε, hε) =: Ωε ⊂ Rd × R

After this change of variables, setting

Iε(u) =
1

2hε

∫
Ωε

f
(x
ε
,∇u(x)

)
dx, (1.8)

where u ∈W1,p(Ωε,Rm) and, denoted by R the constant matrix equal to ∇φ, having set

f(x,A) = f̃(φ(x), AR), (1.9)

we have
Iε(u) = Ĩε(ũ), where ũ(x̃) = u(φ−1(x̃)). (1.10)

Hence, the functionals Iε and Ĩε are equivalent, up to a linear change of variables. In order to
simplify the statement of the convergence, as is customary we scale all functionals to a common
domain, obtaining

Fε(u) :=
1

2h

∫
ω×(−h,h)

f
(x
ε
, y,
(
∇xu(x, y)

∣∣∣1
ε
∂yu(x, y)

))
dxdy (1.11)

for u ∈ W 1,p(ω × (−h, h),Rm), so that Fε(u) = Iε(u), where u(x, y) = u(x, εy). Here, we have
rewritten, with a little abuse of notation, a variable in Rd+1 as a pair (x, y) with x ∈ Rd, and
identified a matrix A ∈Mm×d+1 with a pair which we denote (A′|ξ), where A′ ∈Mm×d and ξ ∈ Rm
is a (column) vector. The notation ∇xu denotes the gradient with respect to the coordinates of
x. We will keep the standard notation ∇u when the gradient is performed with respect to all the
variables in the domain, be it in Rd or Rd+1.
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We will use the following notion of convergence.

Definition 1.1 (convergence to dimensionally reduced parameters). A sequence of functions uε
with uε ∈W 1,p(Ωε,Rm) converges to u ∈W 1,p(ω,Rm) if the corresponding functions uε defined by
uε(x, y) = uε(x, εy) converge to some u weakly in W 1,p(ω × (−h, h),Rm) and u(x, y) = u(x).

We recall that Iε are equicoercive with respect to this convergence, in the sense that if Iε(uε)
is equibounded and uε are bounded in Lp(Ω × (−h, h),Rm) then uε converge to some u, up to
subsequences [5].

Definition 1.2 (convergence to dimensionally reduced energies). We say that Iε Γ-converges to F0

with respect to the convergence of uε above if the corresponding Fε Γ-converge to the functional
F 0 on functions independent of y, defined by F0(u) = F 0(u) if u(x, y) = u(x), with respect to the
weak convergence in W 1,p.

We can then state the homogenization result as follows.

Theorem 1.3 (homogenization theorem). Let ν be a unit vector and Π = {x : 〈x, ν〉 = 0} be a
hyperplane in Rd+1. Let f̃ : Rd+1 ×Mm×(d+1) → R be a Carathéodory function satisfying the p-
growth conditions (1.4) for p > 1 and periodic in the coordinate direction as in (1.5). Let φ be
the linear isometry defined above and let f : Rd+1 ×Mm×(d+1) → R be the Carathéodory integrand
defined by (1.9). Let h > 0, let ω be an open and bounded subset of Rd and let Iε be defined by
(1.8), where Ωε = ω × (−hε, hε). Then Iε Γ-converges to Fhom with respect to the convergence in
Definition 1.1 as ε→ 0, where

Fhom(u) =

∫
ω

fhom(∇u) dx (1.12)

for u ∈W 1,p(ω,Rm), and fhom : Mm×d → R is a quasiconvex function satisfying a p-growth condi-
tions and the asymptotic homogenization formula

fhom(A) = lim
T→+∞

1

T d
inf

u∈WT

{
1

2h

∫
(0,T )d×(−h,h)

f
(
x, y,

(
A+∇xu

∣∣∂yu))dx dy

}
(1.13)

where
WT :=

{
u ∈W1,p

(
(0, T )d × (−h, h), Rm

)
: u = 0 on ∂

(
(0, T )d

)
× (−h, h)

}
.

Remark 1.4 (homogenization on Π). By using (1.10) we can interpret the result as a homogeniza-
tion theorem directly on Π, with the related homogenized energy

F̃hom(u) =

∫
ω̃

fhom(∇u R̃−1) dHd(x),

where R̃ is the matrix related to the restriction of the linear isometry to the subspace of Rd+1 pa-
rameterized as Rd, and the Sobolev space W 1,p(ω̃,Rm) (with underlying measure the d-dimensional
Hausdorff measure restricted to ω̃) is suitably defined.

Remark 1.5 (connections with almost periodicity). The theorem above has been proved in [5] if
f is periodic in the first variable, which is the case if the lattice Π ∩ Zd+1 has dimension d (or,
equivalently, if it spans Π). In the case at hand we will use a sort of geometric quasi-periodicity.
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Figure 1: An irrational Z2-periodic thin film in R2 with an η-neighbourhood of its middle line.

Namely, we will use the fact that, for fixed η > 0 the set Tη of τ ∈ Π such that dist(τ,Zd+1) < η is
uniformly dense in Π; that is, there exists an inclusion length Lη > 0 such that Tη + [0, Lη]d+1 ⊃ Π.
This is an immediate consequence of the periodicity of the function ψ(x) = dist(x,Zd+1) on Rd+1

and the consequent quasi-periodicity of its restriction to Π. This property in turn implies its
uniform almost periodicity (see [1] Definition 1.7), which exactly states that for all η > 0 there
exist a uniformly dense set of η-almost periods; i.e., τ such that |ψ(x+ τ)−ψ(x)| < η for all x ∈ Π.
In particular, taking x = 0, we have that ψ(τ) ≤ η, which proves the claim. Note that this property
is most relevant if Π is irrational, and is trivial if Π ∩ Zd+1 has dimension d + 1. In Fig. 1, in a
two-dimensional setting, we picture an element of Tη on Π (black dot) and its closest element in Z2

(grey dot).

This quasi-periodicity argument also shows that if f̃ is continuous in the first variable uniformly
with respect to the second one, then f is almost periodic in the x-directions uniformly with respect
to the second variable, and we can apply the results of [4] Chapter 24. This observation suggests
that we can then generalize Theorem 1.3 by supposing that for all η > 0 there exists a uniformly
dense set Tη in Π such that for all τ ∈ Tη there exists zτ ∈ Rd+1 such that ‖τ − zτ‖ < η and

|f̃(x + zτ , A) − f̃(x,A)| ≤ η(1 + |A|p) for all x ∈ Rd+1 and A. This trivially holds if f̃ is periodic
as above taking zτ ∈ Zd+1.

The geometric quasi-periodicity property highlighted above must be complemented by a lemma,
which will be used to cope with the fact that periods may not belong to Π, so that translation
arguments within the thin film cannot be directly applied.

Lemma 1.6. Let h > 0 and let g : [0, h]→ [0,+∞) be an integrable function and define

C :=

∫ h

0

g(y) dy < +∞.

Then, for every δ > η > 0, the set

Eη :=

{
y ∈ [h− δ, h] : (h+ η − y)g(y) ≤ C

log
(
δ/η
)} (1.14)

has positive measure.
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Proof. Suppose, by contradiction, that for some δ there exists a η such that Eη has null measure,
then

(h+ η − y)g(y) >
C

log
(
δ/η
) , for almost all y ∈ [h− δ, h].

Thus the strict inequality would persist under integration, and

C ≥
∫

[h−δ,h]

g(y) dy >
C

log
(
δ/η
) ∫

[h−δ,h]

1

h+ η − y
dy

=
C

log
(
δ/η
)( log(δ + η)− log(η)

)
= C

log
(
δ/η + 1

)
log
(
δ/η
) > C

providing a contradiction.

R

 z
τ
ν + R

τ+ z
τ
ν

τ+R

Figure 2: Translation of a rectangle R by an η-almost period.

The key geometric argument in the proof will be the use of Lemma 1.6 to define test functions on
translated copied of sets by an almost period. In Fig. 2 we have drawn a cartoon in two dimensions
of the argument in the original irrational thin-film geometrical setting (that is, before changing
variables with φ), supposing f̃ periodic: we have a function uR defined on a rectangle R inside
the thin film and need to define a function in the translation of R by some η-almost period τ ∈ Π
with an energy that differs very little from that of the original function. We cannot directly use
a translation by the period corresponding to τ , which in this setting is of the form τ + zτν ∈ Z2,
since to do this we would need that the function be defined on the (slightly) translated rectangle
zτν + R. We then restrict the original function uR slightly inside R is such a way that we control
the energy on the upper and lower boundary (dotted lines) and extend this restriction to a function
ũR defined on the whole strip orthogonal to the thin film, with controlled energy. This can be
done by a construction that uses Lemma 1.6. It is then possible to simply use a translation of this
extended function by τ + zτν, and restrict it to τ +R.
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2 Proof of the homogenization theorem

We directly prove the theorem under the more general assumptions in Remark 1.5, which can be
stated as follows for the function f : for all η > 0 there exists Lη > 0 and Tη in Rd such that

Tη + [0, Lη]d = Rd,

and for all τ ∈ Tη there exists zτ ∈ R such that |zτ | < η and

|f(x+ (τ, zτ ), A)− f(x,A)| ≤ η(1 + |A|p) (2.1)

for all x ∈ Rd+1 and A.
We first note that, by the compactness theorem for thin structures ([5] and [4] Theorem 24.20)

for every sequence {εk}k of positive real numbers, εk → 0, there exist a subsequence (still denoted
by εk) and a Carathéodory function f0 : Rd ×Mm×d → [0,+∞) satisfying

0 ≤ f0(x,A) ≤ β(1 + |A|p),

for all x ∈ ω and A ∈Mm×d such that

Γ- lim
k→+∞

Iεk(u) =

∫
ω

f0(x,∇u) dx (2.2)

for all u ∈ W 1,p(ω,Rm) with respect to the convergence in Definition 1.1. We then have to prove
that f0 does not depend on the space variable and is given by formula (1.13), which also implies
that it does not depend on the subsequence εk. To that end, we will use localization arguments
and results ensuring the possibility of fixing boundary values taken from [5] and Lemma 1.6.

In the following result we prove that f0 depends only on the gradient, f0(x,A) = f0(A).

Proposition 2.1. For any sequence {εk}k such that the Γ-limit in (2.2) exists, f0 depends only on
the gradient; that is, f0(x,A) = f0(A).

Proof. For any open subset U ⊂ ω we consider the localized functionals

Fεk(u, U) :=
1

2h

∫
U×(−h,h)

f
(
ε−1
k x, y,

(
∇xu

∣∣ε−1
k ∂yu

))
dxdy

F0(u, U) :=
1

2h

∫
U×(−h,h)

f0(x,∇xu) dxdy.

Let Bdρ(x) denote the ball of radius ρ and center x in Rd. It suffices to prove that given any

x′, x′′ ∈ ω and ρ > 0 such that Bdρ(x′) b ω and Bdρ(x′′) b ω, and any A ∈ Rm×d, we have

F0

(
Ax,Bdρ(x′)

)
= F0

(
Ax,Bdρ(x′′)

)
. (2.3)

Up to fixing lateral boundary values, we find a sequence {uk}k ∈ W1,p
(
Bdρ(x′) × (−h, h),Rm

)
with uk = 0 on

(
∂Bdρ(x′)

)
× (−h, h) and such that uk → 0 in Lp(Ω1,Rm) and

lim
k→+∞

Fεk
(
Ax+ uk, B

d
ρ(x′)

)
= F0

(
Ax,Bdρ(x′)

)
(2.4)
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(see [5]).
Let δ > 0 be fixed, and let η ∈ (0, δ). From now on we use the shorthand ∂y for the partial

derivative with respect to y. Applying Lemma 1.6 to the integrable functions

g(t) =

∫
Bdρ(x′)

∣∣(A+∇xuk(x, t)
∣∣ε−1
k ∂yuk(x, t)

)∣∣p dx

for t ∈ [0, h], we get the existence of y+
η ∈ (h− δ, h) such that∫ h+η

y+η

∫
Bdρ(x′)

∣∣(A+∇xuk(x, y+
η )
∣∣ ε−1
k ∂yuk(x, y+

η )
)∣∣p dxdy

≤ 1

| log(δ/η)|

∫
Bdρ(x′)×(0,h)

∣∣(A+∇xuk(x, y+
η )
∣∣ ε−1
k ∂yuk(x, y+

η )
)∣∣p dxdy

≤ Ck
α| log(δ/η)|

,

where Ck := Fεk(Ax+ uk, B
d
ρ(x′)). Hence, we obtain∫ h+η

y+η

∫
Bdρ(x′)

f
(
ε−1
k x, y,

(
A+∇xuk(x, y+

η )
∣∣ ε−1
k ∂yuk(x, y+

η )
))

dx dy

≤ β

(
|Bdρ(x′)|(δ + η) +

Ck
α| log(δ/η)|

)
, (2.5)

= β

(
cρd(δ + η) +

Ck
α| log(δ/η)|

)
, (2.6)

being c := |B1|. Similarly, we obtain the existence of y−η ∈ (−h,−h+ δ) such that∫ y−η

−h−η

∫
Bdρ(x′)

f
(
ε−1
k x, y,

(
A+∇xuk(x, y−η )

∣∣ ε−1
k ∂yuk(x, y−η )

))
dxdy

≤ β

(
cρd(δ + η) +

Ck
α| log(δ/η)|

)
. (2.7)

Define ũk : Bdρ(x′)× R→ Rm as

ũk(x, y) :=


uk(x, y+

η ) if y ≥ y+
η

uk(x, y) if y−η ≤ y ≤ y+
η

uk(x, y−η ) if y ≤ y−η .

Note that ũk(x, y) = 0 if x ∈ ∂Bdρ(x′).
Let {τk}k be a sequence in εkTη (the set of scaled almost-periods) such that τk → x′′−x′. Such

a sequence exists by the uniform density of Tη. Let zk = zτk be such that (2.1) holds, and define
vk(x, y) = ũk(x− τk, y− zk). Noting that vk can be extended by 0 outside

(
τk +Bdρ(x′)

)
× (−h, h)

we get from almost-periodicity, (2.5) and (2.7):

Fεk
(
Ax+ vk, τk +Bdρ(x′)

)
8



=
1

2h

∫(
τk+Bdρ(x′)

)
×(−h,h)

f

(
x

εk
, y,
(
A+∇xvk

∣∣∣ 1

εk
∂yvk

))
dxdy

=
1

2h

∫
Bdρ(x′)×(−h−zk,h+zk)

f

(
x

εk
+
τk
εk
, y + zk,

(
A+∇xũk

∣∣∣ 1

εk
∂yũk

))
dxdy

≤ 1

2h

∫
Bdρ(x′)×(−h−η,h+η)

f

(
x

εk
+
τk
εk
, y + zk,

(
A+∇xũk

∣∣∣ 1

εk
∂yũk

))
dxdy

≤ βcρd(η + δ)

h

+
1

2h

(
1 +

2β

α| log(δ/η)|

)∫
Bdρ(x′)×(−h,h)

f

(
x

εk
+
τk
εk
, y + zk,

(
A+∇xuk

∣∣∣ 1

εk
∂yuk

))
dx dy

≤ βcρd

h
+

1

2h

(
1 +

2β

α| log(δ/η)|

)∫
Bdρ(x′)×(−h,h)

f

(
x

εk
, y,
(
A+∇xuk

∣∣∣ 1

εk
∂yuk

))
dxdy

+
η

2h

(
1 +

2β

α| log(δ/η)|

)∫
Bdρ(x′)×(−h,h)

(
1 +

∣∣∣(A+∇xuk
∣∣∣ 1

εk
∂yuk

)∣∣∣p)dx) dy

≤ βcρd(η + δ)

h
+
(

1 +
2β

α| log(δ/η)|

)
Fεk
(
Ax+ uk, B

d
ρ(x′)

)
+
η

2h

(
1 +

2β

α| log(δ/η)|

)(
2hcρd +

1

α
Fεk
(
Ax+ uk, B

d
ρ(x′)

))
.

Fix now r > 1, and note that for k large enough we have τk +Bdρ(x′) ⊂ Bdrρ(x′′) b ω. Since vk → 0

in Lp
(
Bdrρ(x

′)× (−h, h),Rm
)
:

F0

(
Ax,Bdρ(x′′)

)
≤ F0

(
Ax,Bdrρ(x

′′)
)

≤ lim inf
k→+∞

Fεk
(
Ax+ vk, B

d
rρ(x

′′)
)

≤
(

1 +
η

α

)(
1 +

2β

α| log(δ/η)|

)
lim inf
k→+∞

Fεk
(
Ax+ uk, B

d
ρ(x′)

)
+
cρdη

h

(
1 +

2β

α| log(δ/η)|

)
+
βcρd(η + δ)

h

+
β

h

(
1 + |A|p

)∣∣Bdrρ(x′′) \Bdρ(x′′)
∣∣

≤
(

1 +
η

α

)(
1 +

2β

α| log(δ/η)|

)
F0

(
uk, B

d
ρ(x′)

)
+
cρdη

h

(
1 +

2β

α| log(δ/η)|

)
+
βcρd

h
(η + δ)

+
β

h

(
1 + |A|p

)∣∣Bdrρ(x′′) \Bdρ(x′′)
∣∣.

Letting first r → 1, then η → 0 and eventually δ → 0, we finally obtain the inequality

F0

(
Ax,Bdρ(x′′)

)
≤ F0

(
Ax,Bdρ(x′)

)
.

9



By symmetry we then obtain also equality and the claim.

We can then proceed in the proof of Theorem 1.3. Take ω = (0, 1)d and let {εk} be a subsequence
given by (2.2). The Γ-limit of the family Fεk exists and, for Proposition 2.1, is equal to

F0(u) =

∫
(0,1)d

f0(∇u) dx.

This functional is sequentially weakly lower semicontinuous on W1,p(Ω1,Rm) so the function f0 is
W1,p-quasiconvex. This means we can write

f0(A) = min

{∫
(0,1)d

f0(A+∇u) dx : u = 0 on ∂(0, 1)d
}

(2.8)

for all A ∈Mm×d. From the property of convergence of minima for Γ-convergence and a change of
variable in the right-hand side we obtain

f0(A) = min

{∫
(0,1)d

f0(A+∇u) dx : u = 0 on ∂(0, 1)d
}

= min

{
1

2h

∫
(0,1)d×(−h,h)

f0(A+∇xu) dx : u = 0 on ∂
(
(0, 1)d

)
× (−h, h)

}
= lim

k→+∞
inf

{
1

2h

∫
(0,1)d×(−h,h)

f

(
x

εk
, y,
(
A+∇xu

∣∣∣ 1

εk
∂yu

))
dxdy : u ∈ W1

}
= lim

k→+∞
inf

{
1

2hT dk

∫
(0,Tk)d×(−h,h)

f
(
x, y, (A+∇xu|∂yu)

)
dxdy : u ∈ WTk

}
, (2.9)

where Tk = 1/εk.
The following proposition states the existence of the limit in (1.13), giving in particular the

independence of f0 from the subsequence.

Proposition 2.2. For every A ∈Mm×d the following limit exists

fhom(A) = lim
T→+∞

inf
u∈WT

{
1

2hT d

∫
(0,T )d×(−h,h)

f
(
x, y, (A+∇xu|∂yu)

)
dxdy

}
. (2.10)

Proof. For every T > 0 let

gA(T ) := inf
u∈WT

{
1

2hT d

∫
(0,T )d×(−h,h)

f
(
x, y, (A+∇xu|∂yu)

)
dxdy

}
.

Fix δ > 0 and let η be such that δ > η > 0. Now fix T > 0 and let uT ∈ WT be such that

1

2hT d

∫
(0,T )d×(−h,h)

f
(
x, y, (A+∇xuT |∂yuT )

)
dx dy︸ ︷︷ ︸

=:CT

≤ gA(T ) +
1

T
.

We want to estimate gA(S) in terms of gA(T ) when S � T . For this purpose, we construct test
functions uS ∈ WS by a patchwork procedure, and we then exploit the almost-periodicity of the

10



energy density f , extending uT to a function which has an energy contribution of o( 1
η )CT . More

precisely, we apply Lemma 1.6 to the integrable functions defined for t ∈ [0, h] by

g(t) :=

∫
(0,T )d

|A+∇xuT (x,±t), ∂yuT (x,±t)|p dx.

We then obtain two values y+
η ∈ (h− δ, h) and y−η ∈ (h,−h+ δ) such that∫

[0,T ]d×(y+η ,h+η)

f
(
x, y,

(
A+∇xuT (x, y+

η )
∣∣ ∂yuT (x, y+

η )
))

dx dy

≤ β

∫
[0,T ]d×(y+η ,h+η)

(
1 +

∣∣(A+∇xuT (x, y+
η )
∣∣ ∂yuT (x, y+

η )
)∣∣p)dxdy

≤ βT d|h+ η − y+
η |+

β

| log(δ/η)|

∫
[0,T ]d×(−h,h)

∣∣(A+∇xuT (x, y+
η )
∣∣ ∂yuT (x, y+

η )
)∣∣p dx dy

≤ β

(
T d(η + δ) +

CT
α| log(δ/η)|

)
(2.11)

and ∫
[0,T ]d×(−h−η,y−η )

f
(
x, y,

(
A+∇xuT (x, y+

η )
∣∣ ∂yuT (x, y+

η )
))

dxdy

≤ β
(
T d(η + δ) +

CT
α| log(δ/η)|

)
. (2.12)

Thus, we can modify uT setting

ũT (x, y) :=


uT (x, y+

η ) if y ≥ y+
η

uT (x, y) if y−η ≤ y ≤ y+
η

uT (x, y−η ) if y ≤ y−η

Let Lη be the inclusion length related to Tη and let S > T + Lη. Define

IS = Zd ∩
[
0,
⌊ S

T + Lη

⌋
− 1
)d

and, for every ` ∈ IS , choose

τ` ∈
(
(T + Lη)`+ [0, Lη]d)

)
∩ Tη,

and the related z`. We then define a new test function by

uS(x, y) =

{
ũT (x− τ`, y − z`) (x, y) ∈

(
τ` + (0, T )d

)
× (−h, h)

0, otherwise,

for every (x, y) ∈ (0, S)d × (−h, h).
Note that uS is equal to zero on the set

QS :=
(

(0, S)d \
⋃
`∈IS

τ` + (0, T )d
)
× (−h, h).

11



We have

|QS | ≤ 2hSd
(

1−
( T

T + Lη
− T

S

)d)
.

We can now estimate gA(S) using (2.11) and (2.12)

2SdgA(S) ≤
∫

(0,S)d×(−h,h)

f
(
x, y,A+∇xuS(x, y), ∂yuS(x, y)

)
dxdy

=
∑
`∈IS

∫
(τ`+(0,T )d)×(−h,h)

f
(
x, y,A+∇xũT (x− τ`, y − z`), ∂yũT (x− τ`, y − z`)

)
dxdy

+

∫
QS

f(x,A) dxdy

≤
∑
`∈IS

∫
(0,T )d×(−h,h)

f
(
τ` + x, z` + y,A+∇xuT (x, y), ∂yuT (x, y)

)
dxdy

+
⌊ S

T + Lη

⌋d 2βCT
α| log(δ/η)|

+
⌊ S

T + Lη

⌋d
2T dβ(δ + η) +

∫
QS

f(x,A) dx dy

Now, exploiting the almost-periodicity of f we get

2SdgA(S) ≤
⌊ S

T + Lη

⌋d(∫
(0,T )d×(−h,h)

f
(
x, y,

(
A+∇xuT (x, y)

∣∣∂yuT (x, y)
)

dxdy

+ η

∫
(0,T )d×(−h,h)

1 +
∣∣∣(A+∇xuT (x, y)

∣∣∂yuT (x, y)
)∣∣∣p dx dy

)
+
⌊ S

T + Lη

⌋d 2βCT
α| log(δ/η)|

+
⌊ S

T + Lη

⌋d
2T dβ(δ + η) +

∫
QS

f(x,A) dx dy

Using the p-growth conditions

2SdgA(S) ≤
(

1 +
η

α

)⌊ S

T + Lη

⌋d∫
(0,T )d×(−h,h)

f
(
x, y,

(
A+∇xuT (x, y)

∣∣∂yuT (x, y)
)

dxdy

+ 2ηhT d
⌊ S

T + Lη

⌋d
+
⌊ S

T + Lη

⌋d 2βCT
α| log(δ/η)|

+
⌊ S

T + Lη

⌋d
2T dβ(δ + η)

+ 2βhSd
(

1−
( T

T + Lη
− T

S

)d)(
1 + |A|

)p
We now exploit CT /(2T

d) ≤ gA(T ) + 1/T

gA(S) ≤
( T

T + Lη

)d(
1 +

η

α

)(
1 +

2β

α| log(δ/η)|

)(
gA(T ) +

1

T

)
+
(
ηh+ β(δ + η)

)( T

T + Lη

)d
+ βh

(
1−

( T

T + Lη
− T

S

)d)(
1 + |A|

)p
Taking the limit, first as S →∞ and then as T →∞

lim sup
S→+∞

gA(S) ≤
(

1 +
η

α

)(
1 +

2β

α| log(δ/η)|

)
lim inf
T→+∞

gA(T ) + ηh+ β(δ + η)

12



We first send η → 0 and obtain

lim sup
S→+∞

gA(S) ≤ lim inf
T→+∞

gA(T ) + βδ,

and then conclude by the arbitrariness of δ.

Eventually, it suffices to remark that Proposition 2.2 implies that f0(A) is independent on the
subsequence {εk}, so that we simultaneously have the existence of the limit as ε → 0 and the
representation (1.12), which concludes the proof of the theorem.
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