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Abstract

Rotation is always known as an important ingredient in stellar models. Study-
ing the impacts of rotation on stellar structure and evolution is the goal of
my thesis. PARSEC models is being widely used in the astronomical com-
munity over the last decade. Nevertheless, for the first time, the PARSEC
rotating stellar tracks and isochrones are provided to the community, with a
suitable range of masses and metallicities. Specifically, we consider the mod-
els from very low mass up to 14M⊙, and the metallicity ranges from 0.004 to
0.017. The PARSEC V2.0 code is used to perform the calculations, and the
dedicated sites are created for delivering them to users.

The concurrence between rotation and the convective core overshooting
phenomenon has been carefully calibrated in previous works. In this project,
I inherit this result and adopt the maximum value of core overshooting ef-
ficiency parameter λov,max = 0.4. A linear growth from zero of stars that
do not develop a convective core to this maximum value where stars already
have a fully convective core is adopted for stars with masses in the transition
region. The shellular rotation is treated as a purely diffusive process under
the assumption of Roche model. Seven initial rotation rates are considered
from zero to the extremely close critical velocity (namely, ωi = 0 − 0.99).
The mass loss process is now applied during the evolution of stars due to
the enhancement caused by rotation, with the suitable adopted rates that
depend on the mass range. In this project, the low-mass (0.8 ≳ M ≳ 2M⊙)
and intermediate-mass (2 ≳ M ≳ 14M⊙) are the main targets of the analysis
in this thesis. The effects of geometrical distortion and rotational mixing
are clearly seen in the Hertzsprung-Russell diagram of our tracks. We have
seen the rotating stars spend their time longer in the Main-Sequence phase
with respect to their non-rotating counterparts. Also, the higher core mass
they would have at the post-main-sequence phases. Especially in the case
of intermediate-mass stars, where the CNO-cycles are the main channel of
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nuclear burning during the main-sequence, the enhancement (depletion) of
surface nitrogen and helium (carbon and oxygen) are the most evidence of
rotational mixing. Indeed, the faster stars rotate the more enhancement/de-
pletion. As a consequence, with our new models, we can reproduce very well
the hook feature of the open cluster M67, as well as the “global” fitting.
Furthermore, we also see a hint of at least two populations that harbour in
the open cluster NGC 6633 to explain the extended main-sequence and the
position of the three He-clump stars. Finally, this new collection of stellar
tracks and corresponding isochrones are available online at the dedicated
websites, and most suitably used for studies of young and intermediate-age
open clusters.
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Chapter 1

Introduction

In general, stars can be divided into three classes based on their initial masses:
low-mass stars (LMSs), intermediate-mass stars (IMSs), and massive stars.
Low-mass stars are usually defined as stars that develop a strong degenerate
He-core after the H-burning phase and thus undergo a so-called He-flash.
These stars are generally having masses below ∼ 2M⊙ depending on metal-
licity. A transition mass MHeF, is then introduced to distinguish LMS and
its next class (IMS), which is defined as the maximum mass at which the
star ignites He in the central region under a strongly degenerative condition.
Stars with masses below this limit are called low-mass stars. Besides that,
in this class stars with very low mass (≲ 0.8M⊙, depend on Z) so that the
time they spend in the MS phase burning hydrogen is much larger than the
age of the Universe (∼ 13.7 Gyr). They are usually subdivided and called
by very-low-mass stars (VLMS). Moreover, the lowest mass that is required
for hydrogen burning to occur is about 0.08M⊙, hence it sets the lower limit
for VLMS classification.

In contrast, intermediate-mass stars (IMSs) undergo a so-called quiet He-
burning phase after the MS, i.e., their He-core remains non-degenerate after
the H-burning phase and ignites He in a stable condition. After the central
He-burning phase, IMSs also develop a carbon-oxygen core that becomes
degenerate. Therefore, the second mass limit,Mup ∼ 8M⊙, is then introduced
to distinguish the IMSs and massive stars, which is the maximum mass at
which a star ignites carbon in a strongly degenerative condition. In another
word, stars with mass aboveMHeF and belowMup are defined as intermediate-
mass stars. Both MHeF and Mup depend on metallicity.

Therefore, by definition stars with mass above the limit Mup are called
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CHAPTER 1. INTRODUCTION 2

massive stars. The upper mass limit for massive stars is still uncertain.
However, a rough value can be relied on is about ∼ 300M⊙ (Crowther et al.,
2010) and rather be Z-dependent (Vink, 2018). At this point, it is worth to
note that we consider stars up to 14M⊙ only in this thesis.

Simulations of stellar evolution have been pursued since decades ago (e.g.,
Schwarzschild et al., 1957). The methodology to solve the system of nonlin-
ear partial equations of stellar structure and evolution was first introduced
by Henyey et al. (1964) and further improved by Kippenhahn et al. (1967).
Since then, many stellar evolutionary codes base on this approach to model
the evolution of stars and consequently provide knowledge of their internal
structure have been published until today. For example, the Dartmouth
Stellar Evolution Program (DSEP, Dotter et al., 2008), the Geneva stel-
lar evolution code (GENEC, Eggenberger et al., 2008), the Frascati Raphson
Newton Evolutionary Code (FRANEC, Chieffi and Limongi, 2013), the Mod-
ules for Experiments in Stellar Astrophysics (MESA, Paxton et al., 2011) and
the PAdova and tRieste Stellar Evolutionary Code (parsec, Bressan et al.,
2012).

The parsec code was first implemented in Bressan et al. (2012) and then
used in several works, aimed at producing large grids of stellar evolutionary
tracks and isochrones. For instance, Chen et al. (2014) extended the cal-
culation to very low-mass star models, Tang et al. (2014) and Chen et al.
(2015) pursued massive stars up to 350 M⊙, and Fu et al. (2018) studied the
evolution with α-enhanced compositions. Extended sets of isochrones us-
ing parsec tracks were described in Bressan et al. (2012) and Marigo et al.
(2017). More recently, a significant development was presented in Costa et al.
(2019b), where rotation, for the first time, was included in the parsec code.

The concept of star’s rotating is simply understood under the conservation
of angular momentum, Ωr2 = const; for example, a star with radius of
∼ 1011 cm, born from a slow-rotating molecular cloud with a typical radius
of ∼ 1017 cm, after the collapsing process should rotates very fast. In 1909
Schlesinger observed the rotation of stars by measuring the limb-effect in
the eclipsing variables δ-Librae and λ-Tauri. In 1922, Hellerich provided
further evidence with observations during the time of eclipse in a number of
Algol-type variables, (see Shajn and Struve, 1929). Several studies from both
theoretical (e.g, von Zeipel, 1924a,b; Kippenhahn et al., 1970; Zahn, 1992;
Meynet and Maeder, 1997; Endal and Sofia, 1981) and observational (e.g.,
Oke and Greenstein, 1954; Abt et al., 1972; Mora et al., 2001) side show that
rotation can not be ignored in stellar evolutionary codes.
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Rotating stars evolve in a different way than non-rotating ones. In gen-
eral, they become more luminous and cooler, they spend longer time in the
MS phase, enrich the surface chemical abundances with products from inter-
nal H-burning regions, and built-up a heavier core. The key points to explain
these differences in rotating stars can be counted by the effects of centrifugal
force and the extra-mixing, induced by rotation.

In this thesis, I will focus on the case of low- and intermediate-mass range,
and target the effects of rotation on these stellar models. This thesis will be
structured and organised in six chapters, as follow.

The classical model of stellar structure and evolution is described in Chap-
ter. 2, in which I will recall the standard equations of stellar structure and
evolution under the assumption of spherical symmetry of stars, i.e., non-
rotating.

In Chapter. 3, the stellar structure equations are re-derived for rotating
stars. The effects of geometrical distortions due to rotation are shown and
the methodology that is used in parsec is delineated.

In Chapter. 4, the treatment of angular momentum transport in rotating
stars is discussed. The effects of meridional circulation and shear instabilities
are explicitly studied in this chapter, as well as the chemical mixing caused
by rotation. The mass loss process is also described in this chapter.

In Chapter. 5, the intensive calculations of stellar evolutionary tracks
with parsec v2.0 code are presented. Several updates on the convective
overshooting, treatment of turbulent mixing, and nuclear reaction networks
are included, as well as rotation. The computed tracks are then studied in
view of the degree of initial rotation. The comparison with previous version
parsec v1.2s and other databases will also be shown in this chapter.

In Chapter. 6, the corresponding isochrones from the computed tracks are
shown. A briefly summary of the methodology of obtaining isochrones from
trilegal code will be shown, before presenting the full sets of isochrones
accompanied by preliminary tests on the CMD of two open clusters, M67
and NGC 6633. For easy use of the new collection of tracks and isochrones
from the community, a dedicated web-interfaces has been built and it will be
described in the last section of this chapter.

In Chapter. 7, I will present a synthesis of my future work on the en-
hancement of α-elements in the low metallicity domain. In particular, the
collection of chemical abundances estimates for the globular cluster M92, and
calculations of evolutionary tracks with these abundances. Preliminary tests
of the corresponding isochrones on this cluster will be also presented.



Chapter 2

Stellar Structure and Evolution

The basic standard system of equations that used to model stellar structure
and its evolution will be introduced in this chapter. The assumption of spher-
ical symmetry is remained throughout this chapter, which means no rotation
is yet considered. The methodology to solve these partial derivative equa-
tions to obtain the properties of stars as implemented in our parsec code
(Bressan et al., 2012) will be the main target of this chapter. In Sect. 2.1, the
system of partial derivative equations which are used to model the structure
and evolution of a star is introduced. The EOS and opacity will be discussed
in Sect. 2.2. Section. 2.3 focuses on the energy transfer in convective re-
gions. In Sect. 2.4, the update of treatment of turbulent mixing and nuclear
network in parsec v2.0 code will be described. Finally, the boundary con-
ditions which are used to solve the structure equations will be explained in
Sect. 2.5.

2.1 Equations of stellar structure and evolu-

tion

The structure of a star is determined, in the assumptions of spherical sym-
metry (non-rotating) and complete equilibrium (thermal and mechanical),
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CHAPTER 2. STELLAR STRUCTURE AND EVOLUTION 5

by solving the four equations for:

mass conservation:
∂m

∂r
= 4πr2ρ, (2.1)

hydrostatic equilibrium:
∂P

∂r
= −ρ

Gm

r2
, (2.2)

thermal conservation:
∂L

∂r
= 4πr2ρq, (2.3)

radiative transfer:
∂T

∂r
= − 3

4ac

κρ

T 3

L

4πr2
(2.4)

in which, the independent variable is the radial coordinate, r. Besides chem-
ical composition Xi, the functions stellar mass (m), pressure (P ), luminosity
(L), and temperature (T ), characterise the structure of the star. Other pa-
rameters that are related to these quantities are: density ρ = ρ(P, T,Xi),
nuclear energy generation rate q = q(ρ, T,Xi), and opacity κ = κ(ρ, T,Xi)
(see sections below for a detailed discussion of opacities and nuclear gener-
ation rate). The values of the physical constants that appear in the above
equations adopted in this work are G = 6.6738 × 10−11m3kg−1s−2 (gravi-
tational constant), a = 7.5657 × 10−16Jm−3K−4 (radiation constant), c =
2.9979× 108ms−1 (light speed).

In practise, it is often more useful to use the Lagrangian formalism where
m is the independent variable, instead of the Euler formalism where r is the
independent variable. This is because, during evolution, the mass of stars al-
most doesn’t change except for the red-giant-branch (RGB) and asymptotic-
giant-branch (AGB) of low and intermediate-mass and the massive ones.
In contrast, the radius of stars changes dramatically during their evolution.
Therefore, it is convenient to re-write the four structure equations above in
m-coordinate:

∂r

∂m
=

1

4πr2ρ
, (2.5)

∂P

∂m
= − Gm

4πr4
, (2.6)

∂L

∂m
= ϵn − ϵν + ϵg, (2.7)

∂T

∂m
= −T

P

Gm

4πr4
∇rad, with ∇rad =

3

16πacG

κLP

mT 4
, (2.8)

where m varies from 0 to the total mass of the star and ∇rad is the radiative
temperature gradient. Note that in the Eq. 2.7 the energy generation rate on
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the right-hand side is now having contribution not only from nuclear reactions
(ϵn), but also from neutrino loss (ϵν) and gravitational work -contraction or
expansion- (ϵg).

Energy can be transported also by convection. In this case, the actual
gradient ∇ will replace ∇rad in the Eq. 2.8,

∂T

∂m
= −T

P

Gm

4πr4
∇. (2.9)

The expression of ∇ is rather complicated: i) in the deep interior, where a
negligible excess of ∇ over the adiabatic value is sufficient to transport the
whole luminosity, ∇ = ∇ad, ii) in the upper part of the outer convective
envelope, the value of ∇ will be somewhere between ∇ad and ∇rad, with an
exact solution provided by solving the equations of the mixing length theory
(See Sect. 2.3.1). The adiabatic temperature gradient is written as,

∇ad =
Pδ

TρcP
, (2.10)

where δ = −
(
∂ ln ρ
∂ lnT

)
P
is the thermo-dynamical derivative and cP is the specific

heat capacity at constant pressure.
The stability of the medium against convection depends on ∇rad and a

critical gradient,

∇cr = ∇ad +
ϕ

δ
∇µ, (2.11)

where ϕ =
(

∂ ln ρ
∂ lnµ

)
P,T

is a thermo-dynamical derivative and ∇µ = ∂ lnµ
∂ lnP

is

the molecular weight gradient. In particular, if ∇rad > ∇cr, then small
perturbations will increase to finite amplitude until the whole region becomes
interested, by convective motions. In this case, the local flux is carried by
convection. In contrast, if the layer is stable which means ∇rad < ∇cr, there
will be no convective motions occur, and hence the transportation is driven
by radiation. This is known as the Ledoux criterion for dynamical stability.
Specifically, in the case where the layer is stable and chemically homogeneous
(∇µ = 0) one has the Schwarzschild criterion for dynamical stability where
the condition ∇rad < ∇ad reaches. Therefore, in the deep stellar interiors,
the equation of energy transport is then usually written as,

∂T

∂m
= −T

P

Gm

4πr4
min [∇ad,∇rad] . (2.12)
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In more external convective layers, where convection may be inefficient, the
actual temperature gradient may be as high as ∇ = ∇rad.

The chemical composition directly affects the properties of stars, for ex-
ample, through the absorption of radiation or the generation of energy by
nuclear reactions. These reactions, in turn, alter the chemical composition.
Therefore, the variation of chemical composition with time is an essential in-
gredient that must be known with high accuracy. If we can neglect diffusion,
in radiative regions the evolution of chemical composition of a star is given
by,

∂Xi

∂t
=

Ai

ρ
(Σrji − Σrik), (2.13)

where Xi = Xi(m, t) is the mass fraction of any element i = 1...I and I is
the total number of elements that are considered in the nuclear network. rlm
is the nuclear reaction rate, that is the number of reactions per unit volume
and time that transform nuclei from type l into type m, and Ai is the atomic
mass of element i.

2.2 Equation of state, opacity and energy sources

The stellar structure is determined by the 4+ I variables such as r, P , T , L,
X1,. . . , XI , obtained from the left-hand side of Eqs. 2.5-2.8 and 2.13, while
the properties of it are contained in the right-hand side of these equations.
An equation of state of the stellar matter describes the relation of each these
quantities as a function of the structure’s parameters which means a number
of thermodynamic relations:

ρ = ρ(P, T,Xi), (2.14)

cP = cP (P, T,Xi), (2.15)

δ = δ(P, T,Xi), (2.16)

∇ad = ∇ad(P, T,Xi), . (2.17)

(2.18)

In parsec, the sets of EOS are computed by using the freeeos code
(Irwin, 2012) which is freely available at 1. The freeeos package is fully

1http://freeeos.sourceforge.net/

http://freeeos.sourceforge.net/
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implemented in the code and it may be used as “on-the-fly” or by interpo-
lating between the pre-computed tables. The comparison between the two
methods gives a negligible difference on the HR diagram (see Bressan et al.,
2012). Since the pre-computed tables are sufficiently accurate for most of
our purposes, the second method is then used as the standard option. The
contribution of several elements from hydrogen to nickel is taken into ac-
count, and many values of metallicity (Z) for any specified distribution of
heavy elements {Xi/Z} are considered. The EOS tables are different be-
tween the “H-rich” regime and the “H-free” regime. Namely, the “H-rich”
set contains 10 tables that chracterised by different values of H-abundance
for the H-burning phase, and the “H-free” set contains 31 tables which are
used for the advanced phases such as He-burning. For each desired initial
metallicity, a set of EOS tables are computed with this exact metallicity and
partitions. This set is then inserted into the EOS database for interpolation
purpose when the global-Z changes during the evolution.

We also need equations for the opacity, the reaction rates, the nuclear
energy generation rate, and the rate of neutrino losses:

κ = κ(P, T,Xi), (2.19)

rlm = rlm(P, T,Xi), (2.20)

ϵn = ϵn(P, T,Xi), (2.21)

ϵν = ϵν(P, T,Xi), (2.22)

ϵgrav = ϵgrav(P, T, δ t,Xi). (2.23)

The opacity is a physical quantity that characterises the degree to which
the radiation intensity is reduced by the presence of matter. It determines the
rate at which the energy that is going out of a star, hence it determines the
value of luminosity. Therefore, opacity plays a key role in stellar properties.
In thermodynamic equilibrium, the opacity κ is deduced from the diffusive
flux of radiation, which is a mean value over all frequencies ν and is given as,

1

κ
=

π

acT 3

∫ ∞

0

1

κν

∂B

∂T
dν, (2.24)

which is also known as Rosseland mean opacity. In the equation above, B is
the Planck function for the intensity of black-body radiation, and κν is the
frequency-dependent opacities.

It is clear that we need to know κν to calculate the Rosseland mean κ.
Depending on physical processes that contribute to the stellar opacity, κν

has different forms, they mainly are from:



CHAPTER 2. STELLAR STRUCTURE AND EVOLUTION 9

• Electron scattering: Namely, the free electrons exchange momentum
with radiation (photons); this is also known as “Thomson scattering”.
This effect become important at high temperatures, roughly T > 108

K (depending on density), (see Kippenhahn et al., 2013). In this case,
κν is frequency-independent and is written as,

κν = 0.2(1−X), (2.25)

where X is the mass fraction of hydrogen.

• Free-free absorption: This process happens when a free electron
passes sufficiently close to an ion, they are can absorb or emit radiation.
The absorption coefficient has been classically derived by Kramers and
has a form,

κν ∼ Z2ρT−1/2ν−3, (2.26)

where Z is the charge number of the ion. If this process is the only
source, the opacity is the so-called “Kramers opacity”. It is most effec-
tive at high densities and intermediate temperatures (matter must be
ionized).

• Bound-free transition: A neutral atom (or ion) might be ionised
by a photon and releases an electron. In this case, the relative num-
ber of atoms in the different stages of excitation nion and the absorp-
tion coefficient of each ion aν are needed to know before obtaining the
frequency-dependent opacity,

κν =
aνnion

ρ
. (2.27)

A special case in which the ion is negative hydrogen ion. In this case,
the number of H− ion is given by the Saha formula.

• Bound-bound transition: the absorbed photon has just enough en-
ergy to excite the electron from a lower level to a higher level. This
is the case of bound-bound transition. The absorption coefficient κν is
therefore written as the sum over all transitions nn′ and elements j,

κν(j) =
∑
j

∑
nn′

κν,nn′(j). (2.28)
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• Molecular opacities: For low temperatures (< 104 K) the formation
of molecules in the envelopes of cool stars becomes important since
they are important absorbers due to their rich system of energy levels.
Molecular opacities depend on atomic abundances, on the formation
and stability of the various molecules, and on their energy level spec-
trum. The calculations including all these processes rather be com-
plicated, however, the largest sets of such tables have been provided
by Alexander and Ferguson (Alexander and Ferguson, 1994; Ferguson
et al., 2005) and more recently by Marigo and Aringer (2009).

In parsec, the opacities at a given chemical abundance distribution are
obtained by interpolating the pre-computed tables of Rosseland mean opac-
ities as a function of density, temperature, and composition in a wide range
of parameters to cover up all values that we meet in the stellar structure,
during the evolution. The tables are computed with different programs:

• In the high temperature regime, 4.2 ≤ log(T/K) ≤ 8.7, the opacity
tables are provided by the Opacity Project At Livermore (OPAL; see
Iglesias and Rogers, 1996).

• In the low temperature regime, 3.2 ≤ log(T/K) ≤ 4.1, we generate the
opacity tables with the AESOPUS tool (Marigo and Aringer, 2009).

• In the transition region, 4.1 ≤ log(T/K) ≤ 4.2, the opacities are lin-
early interpolated between the OPAL and AESOPUS values.

• At high densities also conduction becomes important. The contribution
from conduction is computed following Itoh et al. (2008).

In practice, at a given metallicity distribution {Xi/Z}, the tables are
constructed into two sets as mentioned above, which are “H-rich” and “H-
free” opacities. For both sets, each opacity table includes a rectangular region
defined by the interval of temperature (3.2 ≤ log(T/K) ≤ 8.7) and interval
of the quantity R = ρ/T6, (−8 ≤ logR ≤ 1), where T6 = T/106 K. These
tables are loaded alongside with the EOS tables before the computation of
evolutionary tracks. A number of tables with different values of Z are loaded
preliminarily in order to cover in detail any changes in the local metal content
due to, for example, mixing processes by convection, diffusion, and rotation.
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2.3 Mixing-length theory and convective over-

shooting

This section deals with the contribution of convection to the energy transport
and mixing. We discuss the adopted value of the mixing-length coefficient
used in parsec and the overshooting efficiency, i.e. the efficiency of extra-
mixing beyond the formal borders of convective regions.

2.3.1 Mixing-length theory for convective flux

The total energy of a star is partially transported by convective motions,
besides radiation which is always present. The model that is commonly
used to describe this process is the so-called “mixing-length theory” (MLT)
(Böhm-Vitense, 1958). The mass elements are assumed to move an average
vertical distance lMLT which is called by the mixing length before they dissolve
into their surroundings and deliver their excess energy content. Both the
hotter upward moving elements and the cooler downward moving elements
contribute to the outward transport of energy. Usually, the mixing length is
computed by

lMLT = αMLTHP with HP ≡ − dr

d lnP
, (2.29)

where αMLT is the MLT coefficient, and HP is pressure scale height which
has dimension of length.

The average flux that resulted from convective motions of elements which
have an average velocity v and an average temperature excess ∆T over their
surrounding can be written as,

Fcon = ρCPv∆T . (2.30)

Assume that at first, all elements start with a very small perturbation, and
thus ∆T and v are zero. The ∆T and v increase when the elements rise (or
sink) until they break after a distance lMLT. The average excess temperature
is then defined as

∆T

T
=

1

T

(
dTint

dr
− dT

dr

)
lMLT

2
= (∇−∇int)

1

HP

lMLT

2
, (2.31)
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with Tint, T are the internal and external temperatures of the elements. The
average velocity is obtained by assuming half of the work done by radial
buoyancy force goes into the kinetic energy while the other half is transferred
to the surroundings (viscosity):

v2 = gδ(∇−∇int)
l2MLT

8HP

, (2.32)

where g is gravity and δ = −
(
∂ ln ρ
∂ lnT

)
P
is the thermo-dynamical derivative.

Hence, with the expressions of ∆T and v, the convective flux becomes,

Fcon = CPρT (gδ)
1/2 (∇−∇int)

3/2 l2MLT

4
√
2H

3/2
P

. (2.33)

Besides that, the change of the temperature Tint inside the elements is
caused by the adiabatic expansion2 (or compression) and by the radiative
exchange of energy to their surroundings. Considering the total change of
temperature per unit length leads to an equation that links ∇, ∇int and v,

∇int −∇ad

∇−∇int

=
6acT 3

κρ2CP lMLTv
. (2.34)

Putting together, the Eqs. 2.32, 2.33, 2.34 with the total and radiative
flux,

Frad + Fcon =
4ac G

3

T 4m

κPr2
∇rad, Frad =

4ac G

3

T 4m

κPr2
∇, (2.35)

gives a solution for Frad, Fcon, v, ∇int and ∇, if the local properties of matter
are known: P , T , ρ, lMLT, m, CP , ∇ad, ∇rad and g.

As shown above, the mixing-length contains a free parameter αMLT. It is
worth to note that the adopted value of αMLT is slightly different in different
stellar evolutionary codes. This is due to the solar model calibration needed
to constrain such free parameter, in which each stellar evolutionary code
uses different input physics such as the adopted solar-scaled mixtures, EOSs,
opacities, and the nuclear reaction rates. Some examples of αMLT value are
displayed in Table. 2.1. It is also interesting to mention that Viani et al.
(2018) suggests a dependency of αMLT/αMLT⊙ on gravity, effective tempera-
ture and metallicity. Another study in FGK stars, Song et al. (2020), mainly
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Table 2.1: Summaried values of αMLT in different stellar evolution codes.

Name Chemical αMLT EOS Opacities Nuclear Reference
mixture reaction rate

STAREVOL AGSS09 1.973 Modified OPAL NACRE II Amard et al. (2019)
PTEH95 F05

DSEP GS98 1.938 CK95 OPAL Adelberger+98 Dotter et al. (2008)
FreeEOS4 F05

FRANEC AS05 1.68 OPAL06 OPAL BP92 Tognelli et al. (2011)
F05 LUNA

MESA AGSS09 1.82 OPAL+SCVH95 OPAL JINA REACLIB Choi et al. (2016)
MDM12 F05

PARSEC Caffau+11 1.74 FreeEOS OPAL JINA REACLIB Bressan et al. (2012)
AESOPUS

AGSS09: Asplund et al. (2009); GS98: Grevesse and Sauval (1998); AS05: Asplund et al. (2006); Caffau+11: Caffau et al. (2011)
PTEH95: Pols et al. (1995); CK95: Chaboyer and Kim (1995); OPAL06: Rogers and Nayfonov (2002);

SCVH95: Saumon et al. (1995); MDM12: MacDonald and Mullan (2012); OPAL: Iglesias and Rogers (1996);

F05: Ferguson et al. (2005); NACRE II: Xu et al. (2013); Adelberger+98: Adelberger et al. (1998);

BP92: Bahcall and Pinsonneault (1992); LUNA: Bemmerer et al. (2006); JINA REACLIB: Cyburt et al. (2010).

focuses on the dependence on metallicity. These new suggestions could cer-
tainly be inspirations for future works on this important problem.

In parsec the calibration of solar model had been done in Bressan et al.
(2012), with the adopted input physics shown in Table. 2.1. The calibration
gives αMLT = 1.74, this value of the mixing-length efficiency parameter is
used for the calculations of stellar tracks in this thesis that will be presented
in Chapter 5.

2.3.2 Convective overshooting

The convective unstable region is defined in the framework of Schwarzschild
criterion, Schwarzschild (1958). This condition however is a local condition,
i.e., defined using quantities computed locally: ∇rad, ∇ad, ∇µ. As such,
the Schwarzschild (or Ledoux) condition defines the acceleration field and
not the velocity field. In reality, convective elements can travel beyond the
formal border where the acceleration becomes null, up to a certain point at
which their velocity drops to zero. This phenomenon is called convective
overshooting.

• Core overshooting: The determination of the edge of the true con-
vective core was described in Bressan et al. (1981). The velocity in
overshooting region is computed by a ballistic approximation, v2(r) ∝∫ r

ri
g∆ρ/ρdr, where densities ρ and ∆ρ are expressed as in Maeder

2the moving mass elements do not exchange heat or mass with their surroundings, and
pressure remains balanced as long as motions are subsonic.
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(1975) and Bressan et al. (1981). The integral limits are bounded by
condition, r − ri ≤ 0.5lov, which is defined as the mean free path of
the convective element’s bubbles in presence of a convective border, so
that they can travel a further distance before their velocity drops to
zero. The core overshooting length is expressed in units of the pressure
scale height HP , namely, lov =

1
2
λovHP , with λov is the core overshoot-

ing efficiency parameter. In general, λov is a calibrated parameter and
depends on stellar masses, (see Claret and Torres, 2016, 2017, 2018,
2019). In parsec, the overshooting efficiency parameter may depend
on the star’s initial mass. A detailed review of the adopted λov in this
thesis will be discussed below.

• Envelope overshooting: The existence of a downward overshoot at
the base of the convective envelope was introduced to explain the obser-
vations of the location of Red-Giant-Branch bump (RGBB) in low-mass
stars and to explain the extension of blue loops in intermediate-mass
stars. In particular, Alongi et al. (1991) was the first to consider the ef-
fects of envelope overshooting where they found that only models with
envelope overshooting length Λe ∼ 0.7HP could well fit the location of
the RGBB in the HR diagram of globular clusters. Latter on, Cassisi
et al. (2002) provided a lower limit of Λe ≥ 0.5HP , after computing
several stellar models with varying values of Λe = 0.1− 0.75HP . How-
ever, the comparison with helioseismic data by Christensen-Dalsgaard
et al. (2011) favoured a value of convective overshooting for solar mod-
els of about 0.37HP . Furthermore, Tang et al. (2014) claimed that in
order to reproduce the observed blue-loop of IMSs, the EOV required
a mixing length scale of 2HP -4HP which is extremely large in compar-
ison with other estimates. Shortly after, Fu et al. (2015) showed that
the Li-abundance in the pre-main-sequence (PMS) phase and the ob-
served Spite plateau and its falling branch at low temperatures could
be very well reproduced by the models of low-mass stars with a wide
range of extra-mixing scale length. However, by calibration with the
globular cluster 47 Tuc, Fu et al. (2018) concluded that the model with
Λe = 0.5HP produces a very good agreement with the observational
data. The adoption of Λe at a given mass model in this thesis will be
described detail in Chapter 5.

Concerning the changes in the core overshooting distance, lov, we have to
say that it directly impacts on the amount of mixing of chemical elements
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and thus on the evolution of stars. Many approaches are used to constrain
the core overshooting efficiency parameter λov, such as the colour-magnitude
diagrams (CMDs) of star clusters (Woo et al., 2003; Rosenfield et al., 2017),
bump Cepheids (Keller and Wood, 2006), asteroseismology of red clump stars
(Bossini et al., 2017), or detached double-lined eclipsing binaries (DLEBs
Claret and Torres, 2018; Constantino and Baraffe, 2018; Higl et al., 2018). A
series of works (e.g., Demarque et al., 2004; Pietrinferni et al., 2004; Bressan
et al., 2012; Mowlavi et al., 2012) suggest that there is a transition region of
the overshooting efficiency, namely, a growth from 0 for stars with radiative
core (Mi ∼ 1− 1.2M⊙) to a constant value for stars that have well developed
fully convective cores (Mi ∼ 1.5− 2M⊙).

A detailed analysis to investigate the possible combined effects of the
core overshooting and rotation performed on observed DLEBs (Costa et al.,
2019b) of well known masses, provides an insightful reference, especially when
rotation is involved such as the case of this thesis. By using the Bayesian
method to treat the binary data using the PARAM code (see da Silva et al.,
2006; Rodrigues et al., 2014, 2017), the 2D joint probability density function
(JPDF) for age and λov, at a given metallicity, is obtained for each binary
system. The same methodology is adopted for rotation rate with a fixed
value of λov. The analysis is performed for 38 DLEBs in total. The results
show that a mild value of λov = 0.4, in combination with rotation rates from
0 ≤ ω ≤ 0.8 ( 1 is the critical value) is the solution that better reproduces the
observed as a function of the initial mass Mi ≳ 1.9M⊙ (Costa et al., 2019b).
It is convenient to notice here that in this thesis, we will use this calibrated
value of λov = 0.4 as the maximum efficiency of core overshooting when the
stars already develop a full convective core, as we will see in Chapter. 5.

2.4 Treatment of turbulent mixing and nu-

clear network

In the previous version parsec v1.2s, the nuclear reaction networks and
the transport of elements were solved separately. First, all the abundances
changes by nuclear reactions were solved with a semi-implicit extrapolation
scheme (see Marigo et al., 2001), and then the mixing of elements by mi-
croscopic diffusion or by the turbulent convection was added. In the latest
version parsec v2.0, nuclear reactions and the mixing are solved at the
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same time. The variation of elements i is given by,

∂Yi

∂t
=

1

ρr

∂

∂r

(
r2ρD

∂Yi

∂r

)
± ΣjYjλk(j)± Σj≥kYjYk[jk], (2.36)

where Yi = Xi/Ai with Xi and Ai being the mass faction and atomic mass
of element i; D is turbulent diffusion coefficient which is computed in the
MLT framework, i.e., D = DMLT = 1

3
vlMLT with v being the velocity of the

convective mass elements, and YjYk[jk] describes the two body reactions.
As we will see later, the diffusion coefficient can also contain the effects of
rotational mixing. The fully implicit method is used to solve this equation.

The nuclear reaction network has been recently updated and now contains
32 isotopes from hydrogen to zinc. It includes the p-p chains, CNO tri-cycle,
Ne-Na and Mg-Al chains, and the α-capture reactions. In total, 72 reac-
tion rates are considered. These have been updated from JINA REACLIB
database Cyburt et al. (2010), with their 6th April, 2015 recommendations,
from which the rates and the reaction energy Q were provided. The electron
screening factors are from Dewitt et al. (1973) and Graboske et al. (1973).

2.5 Boundary conditions

The boundary conditions at the centre and surface of the star are required to
solve the structure equations, Eqs. 2.5-2.8. They are simply set, at the centre
region, m = 0, and at the surface, m = M . In reality, there is a gradual and
rather extended transition to the values of P and T at the outer regions of
the star. Therefore, in practice, the star is sub-divided into three regions: 1)
the inner region is solved all the structure equations; 2) the envelope, where
no reactions are allowed to occur and the luminosity is kept constant (ϵn=0,
ϵν=0, ϵgrav=0 ); 3) the atmosphere where the mass is equal to the total mass,
and the luminosity is kept constant.

2.5.1 The inner region

At the centre, the mass, radius and luminosity are null. Therefore, in order
to obtain the central pressure and density, we need to use an approximation
by expanding the formulas in power of m, in which m → 0. The structure
equations that describe the quantities at the surface of central small sphere
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of mass m (where P,T,r,L are defined) then become,

P − Pc = −G

2

(
4π

3

)1/3

ρ4/3c m2/3, (2.37)

r =

(
3m

4πρc

)1/3

, (2.38)

L = ϵcm, (2.39)

T 4 − T 4
c = −κϵc

2ac

(
3

4π

)1/3

ρ4/3c m2/3, (2.40)

lnT − lnTc = −
(π
6

)1/3 G

Pc

ρ4/3c m2/3∇ad, (2.41)

where ϵc is the total energy generation rate at the centre. The last two
equations are for either the radiative case or convective case.

2.5.2 The atmosphere region

The atmosphere is supposed to begin at infinity where gas density falls to
zero. It ends at the photosphere where R=stellar radius and L= stellar
luminosity. It is supposed to give a negligible contribution to the total mass so
that also M=constant. Then, from the hydrostatic equilibrium, the pressure
and temperature are deduced from,

∂P

∂r
= −ρg, (2.42)

where ρ is the density of the material and g is the gravity of the star at the
atmosphere region. Combining this equation with the definition of optical
depth, dτ = ρκdr, we obtain the relation,

dτ

d logP
=

κP

g
ln 10. (2.43)

At the infinite radius, the pressure is only due to radiation, thus P (∞) =
Prad = 1

3
aT 4 where a = 7.57 × 10−15erg cm−3K−4 is the radiant density

constant. We integrate Eq. 2.43 from the infinity, where τ = 0, to the region
where τ = 2/3 as the definition of the atmosphere. The run of temperature
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with τ is provided by the modified Eddington approximation for radiative
transport,

T 4(τ) =
3

4
T 4
eff(τ + q(τ)), (2.44)

where q(τ) is the Hopf function. The two equations Eqs. 2.42 and 2.44 can
be integrated and provide T (=Teff) and P at r=R, remembering also that
R2=L/(4π σ T4

eff). Note that equation 2.44 may be substituted with more
appropriate relations taken from suitable atmosphere models.

2.5.3 The envelope region

The envelope places in between the atmosphere and the inner structure.
Therefore, its upper bound is at which τ = 2/3, and the lower bound is set
at the point where the mass m/Mtot = (1 − 10−5). The latter definition
prevents to have high temperature so that the ignition of nuclei does not
occur in this region. Since the luminosity is kept constant there are only
three physical quantities (r, P , m) needed to be solved from the structure
equations. Since the mass varies very little in this region, pressure is used
as the independent variable since it varies monotonically with m. Thus, the
structure equations of the envelope are,

∂ ln r

∂ lnP
= − Pr

GρM
, (2.45)

∂ lnM

∂ lnP
= −4πr4P

GM2
, (2.46)

∂ lnT

∂ lnP
= min [∇ad,∇rad] . (2.47)

The integration is performed starting from the external photosphere, from T,
P, M, and R at τ = 2/3, until m/Mtot. At this point, an iterative procedure
matches the external solution with the internal one until one gets the solution.
The treatment of radiative and convective envelopes are explicitly described
in Kippenhahn et al. (1967). Figure. 2.1 shows the sketch of three regions in
mass coordinate in parsec models.
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Figure 2.1: Sketch of three regions in parsec models: inner part, envelope,
and atmosphere. The inner part directly connects to the central region from
the mesh point mass M1, the envelope is the inter-region between M1 and the
innermost border of the atmosphere where τ = 2/3, and forward to infinity
is the atmosphere. In which, Mfit is chosen to be 1 − 10−5. The figure is
adopted from Costa (2019).



Chapter 3

Stellar Model with Rotation

Rotation had been known to be one of the ingredients to explain many fea-
tures from observations such as stellar population, (e.g., Milone et al., 2017a;
Costa et al., 2019a) or the enrichment of surface abundances (e.g., Hunter
et al., 2009; Martins et al., 2015). From a theoretical point of view, the
impacts of rotation on stellar structure and evolution were successfully de-
rived from many pioneering works (e.g., Endal and Sofia, 1981; Chaboyer and
Zahn, 1992; Zahn, 1992; Meynet and Maeder, 1997). In this chapter, I will
focus on describing the equations of stellar structure for rotating-stars. The
content of this chapter is mainly based on Maeder (2009). In Sect. 3.1, the
basic assumptions which are used to study the rotating stars are summarised.
The surface’s properties of rotating stars are then shown in Sect. 3.2. The
hydrostatic equation will be derived in Sect. 3.3. Next is the continuity equa-
tion will be re-derived in Sect. 3.4, and the energy conservation in Sect. 3.5.
In Sect. 3.6, the transportation of energy in rotating-stars are discussed. A
summary of derived structure equations will be shown in Sect. 3.7 for conve-
nience, together with the calculation of the form factors that will be derived
and shown in Sect. 3.8. Finally, Sect. 3.9 shows the changes of effective tem-
perature along the co-latitude as a result of geometrical distortion in rotating
stars.

3.1 Basic assumptions

The full scheme to study the effects of rotation would require a 3D simula-
tion, however, under some assumptions, it is possible to cast these effects in

20
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a 1D scheme. In particular, Kippenhahn and Thomas (1970) adopted four
assumptions and developed a methodology to include the geometric distor-
tion caused by rotation in the structure equations of stellar models. The four
assumptions are:

1. The star is divided into shells which are delimited by equipotential
surfaces (or isobars). The shells are not spherical as in the case of non-
rotating models

2. In each shell, the angular velocity (Ω) has a cylindrical symmetry

3. The Ω is constant along the latitude angle (θ) of the shells

4. The Roche approximation is used to define the shape of the surface of
rotating stars.

These assumptions lead to a remarkable advantage to define the shape
of isobars of a rotating star. We will see later that the system of structure
equations for rotating stars remains the same as the non-rotating case but
with only two “form factors” (fP and fT) that are inserted to model the
effects of rotation. They are introduced to take into account the mechanical
and thermal distortion caused by rotation. As a first step, we should define
the isobar and its properties, which will be presented in the next section.

3.2 The Roche model and stellar surface

In Roche model, all the mass is assumed to be concentrated in the central
region where R = 0. There are two scenarios to describe an isobar, the
so-called “baroclinic” scheme where the angular velocity Ω and the total
potential Ψ are constant, and the so-called “barotropic” scheme where the
pressure P is constant over the stellar surface. In this thesis, calculations
to define an isobar follow the “baroclinic” scenario. In this case, the total
potential of rotating stars is written as

Ψ(R, θ) = −GM

R
− 1

2
Ω2R2 sin2 θ = const, (3.1)

where the first component is the gravitational potential, with M being the
mass enclosed inside a sphere of radius R, and the second component is the
potential caused by centrifugal acceleration.
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The effective gravity is defined as,

geff =
1

ρ
∇P = −∇Ψ−R2 sin2 θ Ω∇Ω, (3.2)

from Eq. 3.1 one can expand geff vector in form of,

geff =

[
− GM

R2(θ)
+ Ω2R(θ) sin2 θ

]
er +

[
Ω2R(θ) sin θ cos θ

]
eθ, (3.3)

where er and eθ are the unity vectors in the radial and latitudinal directions.
Thus, the modulus value of effective gravity geff = |geff | is

geff =

[(
− GM

R2(θ)
+ Ω2R(θ) sin2 θ

)2

+ (Ω2R(θ) sin θ cos θ)2

]1/2
. (3.4)

At the equator, the modulus of centrifugal force is balanced with the
modulus of gravitational force. The so-called critical velocity (or break-up
velocity, Ωcrit) is then defined as the surface angular velocity of the star at
the point θ = π/2 (equator), where geff = 0. Therefore, from Eq. 3.4 it is
written as,

Ωcrit =

√
GM

R3
e,crit

, (3.5)

where Re,crit is the equatorial radius at the critical rotation.
At the pole, the centrifugal force is null, thus the equation of an isobar

becomes,

GM

R
+

1

2
Ω2R2 sin2 θ =

GM

Rpol

. (3.6)

If we consider a point at the equator, it should obey the relation above with
the critical angular velocity and radius, therefore, we obtain a relationship
between the equatorial radius and the polar radius,

Re,crit

Rpol

=
3

2
. (3.7)
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Figure 3.1: Shape of rotating stars’ surface. Left : The variation of the
radius ratio R(θ)/Rpol with different latitude angles in degree unit. Right :
The shape of a rotating star in 1D with many considered rotation rates (ω),
the arrow implies the direction of θ from pole-on (0o) to equator-on (90o).

The rotation rate ω is then defined as the ratio of angular velocity and
its critical value,

ω2 =
Ω2

Ω2
e,crit

=
Ω2R3

e,crit

GM
=

27

8

Ω2R3
pol

GM
. (3.8)

With this definition of ω, the equation of an isobar can be rewritten as

1

R/Rpol

+
4

27
ω2

(
R

Rpol

)2

sin2 θ − 1 = 0. (3.9)

We can see that at a given ω model, this equation is purely geometrical,
i.e., its root (R/Rpol) is the radii at a fixed latitude angle. For this purpose,
the left panel of Fig. 3.1 shows the variation of R(θ)/Rpol with θ in many
ω-models. It is obvious that when the star rotates, it is stretched outwardly
in terms of distance. The more we go to the equator, the more it is extended.
This increases as increasing rotation rate. In order to provide a better illus-
tration, the right panel of Fig. 3.1 shows the shape of the surface of many
rotating models from zero to the critical one, at which the latitude angle
varies from top-left down to bottom-right as in from the pole to equator.
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In summary, we have obtained Eq. 3.9 which is the equation of stellar
surfaces of rotating stars (or isobars). At a given rotation rate ω, the equation
gives a solution of radius R as a function of latitude angle R = R(θ), in
another word, rotating stars lose their geometrical symmetry.

3.3 Hydrostatic equilibrium

As mentioned above, the individual shells have no longer spherical symmetry
and thus any quantity that is not constant over an isobaric surface would be
considered by means of a mean value. Inside an isobar with enclosed radius
rP , the corresponding volume is written as VP = 4π/3r3P , and the mean value
of a quantity q is computed as,

< q >=
1

SP

∫
Ψ=const

qdσ. (3.10)

Here, SP is the surface over an isobar, and dσ is the element surface,

dσ =
r2 sin θdϕdθ

cos ξ
, (3.11)

with ϕ being the longitude coordinate, and ξ an angle which is given by,

cos ξ =
1
x2 − 8

27
ω2x sin2 θ√(

− 1
x2 +

8
27
ω2x sin2 θ

)2
+
(

8
27
ω2x sin θ cos θ

)2 , (3.12)

where x = R/Rpol, and we will come back to the definition of SP and ξ in
Sect. 3.8.1 while at the moment we temporarily adopt it.

From the Roche model, the effective gravity is expressed in the form of
equipotential and angular velocity,

geff = −∇Ψ− r2 sin2 θ Ω ∇Ω. (3.13)

Thus, the equation of hydrostatic equilibrium ∇P = ρ geff becomes,

∇P = −ρ
(
∇Ψ+ r2 sin2 θΩ∇Ω

)
. (3.14)

From this form we can see that vector ∇P must be parallel with both vectors
∇Ψ and ∇Ω. This is likely because Ω is constant on isobars and so do Ψ,



CHAPTER 3. STELLAR MODEL WITH ROTATION 25

which means that vector ∇Ω is parallel to vector ∇Ψ, and hence Eq. 3.14
valid only if vector ∇P is parallel to them.

Since ∇Ω is parallel to ∇Ψ, we can write

∇Ω = −α ∇Ψ with α =

∣∣∣∣dΩdΨ
∣∣∣∣ . (3.15)

From Eq. 3.13 the modulus of geff is then simply written as,

geff = (1− r2 sin2 θ Ω α)
dΨ

dn
, (3.16)

with dn ≡ drP being the average distance between two isobars. The hydro-
static equilibrium Eq. 3.14 then becomes,

dP

dn
= −ρ

(
1− r2 sin2 θ Ω α

) dΨ
dn

. (3.17)

The convenience of using the mass coordinate was already mentioned
before, thus it is useful to express the mass MP inside an isobar,

dMP =

∫
Ψ=const

ρ dn dσ = dΨ

∫
ρ
(1− r2 sin2 θ Ω α)

geff
dσ (3.18)

= ρ(1− r2 sin2 θ Ω α) SP < g−1
eff > dΨ. (3.19)

In the second equality, we already used the relation Eq. 3.16. The last equal-
ity is obtained by using the definition of mean value Eq. 3.10 and the fact
that ρ(1 − r2 sin2 θ Ω α) is constant on isobars. Thus, from Eq. 3.17, we
obtain an equation of hydrostatic equilibrium in Lagrangian coordinate,

dP

dMP

=
−1

< g−1
eff > SP

= −GMP

4πr4P
fP . (3.20)

Here, fP is the form factor over an isobaric surface which is defined as,

fP =
4πr4P

GMPSP

1

< g−1
eff >

. (3.21)

Therefore, from relation Eq. 3.20, we can see that apart from the form factor
fP , the equation of hydrostatic equilibrium in case of rotating model keeps
the same form it has in the case of non-rotating stars. Moreover, it is obvious
that in case of non-rotating, the effective gravity is a gradient of gravitational
potential, hence fP become unity which leads Eq. 3.20 to the classical hy-
drostatic equilibrium equation.
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3.4 Continuity equation

The second equation we consider is the mass continuity equation. First, we
need to consider the volume of a shell between two isobars which is defined
as,

dVP =

∫
Ψ=const

dn dσ = 4πr2PdrP . (3.22)

By using Eq. 3.16 to express dn, and with the definition of the mean value
(Eq. 3.10) we obtain the expression of dVP ,

dVP = dΨSP

[
< g−1

eff > − < g−1
eff r

2 sin2 θ > Ωα
]
= 4πr2PdrP . (3.23)

Hence, we can get the continuity equation for shellular rotation by using
the relation between dΨ and dMP in Eq. 3.19,

drP
dMP

=
1

4πr2Pρ
, with ρ =

ρ
(
1− r2 sin2 θ Ωα

)
< g−1

eff >

< g−1
eff > − < g−1

eff r
2 sin2 θ > Ωα

. (3.24)

We can see that ρ is the average density of the shell between two isobars.
Together, Eqs. 3.20 and 3.24 are the equations of hydrostatic equilibrium
and mass conservation for shellular rotation stars.

3.5 Energy conservation

Similarly, we consider the net energy outflow from a shell between two isobars,
which is given by,

dLP =

∫
Ψ=const

ϵ ρ dndσ, (3.25)

where ϵ = ϵnucl − ϵν + ϵgrav is the total rate of energy production in the shell
from nuclear reactions (ϵnucl), neutrino losses (ϵν) and gravitational energy
(ϵgrav). Using Eq. 3.16 and the condition that ρ(1− r2 sin2 θ Ω α) is constant
on an isobar, we obtain

dLP = dΨ <
ϵ

geff
> SP ρ

(
1− r2 sin2 θ Ωα

)
. (3.26)
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Finally, from relation Eq. 3.19 we can deduce the equation of energy produc-
tion in rotating stars in mass coordinate,

dLP

dMP

=
< ϵ g−1

eff >

< g−1
eff >

. (3.27)

Because of the non-constancy of density and temperature on isobars, one
can consider them as dependent variables. Hence, one can make an approx-
imation for the energy conservation,

< (ϵnucl − ϵν + ϵgrav) g−1
eff >

< g−1
eff >

≈ ϵnucl(ρ, T )− ϵν(ρ, T ) + ϵgrav(ρ, T ). (3.28)

Therefore, one can rewrite Eq. 3.27,

dLP

dMP

= ϵnucl − ϵν + ϵgrav, (3.29)

in which the energy generation rates are now written with the average values
of density and temperature.

3.6 Transport of energy

3.6.1 Radiative transfer

The radiative flux at a given point on the isobar is given by,

F = −4acT 3

3κρ

dT

dn
= −4acT 3

3κρ

dT

dMP

ρ < g−1
eff > SP geff , (3.30)

in which we already used Eq. 3.16 to express dn and Eq. 3.19 to relate dΨ
and dMP and finally using definition Eq. 3.10 to have the last equality of the
equation above. Integrating the flux over the isobar, one obtains the energy
transfer equation,

LP = −4ac

3
< g−1

eff > S2
P <

T 3geff
κ

dT

dMP

> . (3.31)

Similarly, we can expand the last average term in the equation above as
a function of the two dependent variables (ρ and T ) on an isobar, as we did
for the energy conservation,

<
T 3geff
κ

dT

dMP

>≈ T
3
< geff >

κ(ρ, T )

dT

dMP

. (3.32)
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Thus, one has from Eqs. 3.31 and 3.32,

dT

dMP

= − 3

4ac

κ

T
3

LP

S2
P

1

< geff >< g−1
eff >

. (3.33)

with κ ≡ κ(ρ, T ). Using the definition of radiative gradient in shellular
rotation, ∇rad = 3

16πacG
κLPP

MPT
4 , one can rewrite the equation above, such as

dT

dMP

= −T

P

GMP

4πr4P
∇rad

(
4πr2P
SP

)2
1

< geff >< g−1
eff >

. (3.34)

We can easily see that, apart from the last two terms in the expression
above, the equation of radiative transfer is similar to the non-rotating model.
By introducing the so-called form factor,

fT =

(
4πr2P
SP

)2
1

< geff >< g−1
eff >

, (3.35)

the equation of radiative transfer of rotating stars is written as,

d lnT

dMP

= −GMP

4πr4P

1

P
fT∇rad, (3.36)

in which, we used d lnT = dT/T .

3.6.2 Convective transport

As once mentioned in Sect. 2.1, the energy can be transported by convection
and can be rather complicated in its treatment. In this section, we examine
the convective transport in the interior region of a star, where the tempera-
ture gradient is the adiabatic gradient. We then can write the average

< ∇ad >=<
d lnT

d lnP
>≈ d lnT

d lnP
= ∇ad(ρ, T ). (3.37)

Recalling the relation between dP and dMP from Eq. 3.20, one obtains

d lnT

dMP

= −GMP

4πr4P

1

P
fP∇ad, (3.38)
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with fP being the form factor which was introduced in Eq. 3.21, and the
adiabatic gradient being

∇ad =
Pδ

TρcP
with δ = −

(
∂ ln ρ

∂ lnT

)
P,µ

. (3.39)

Therefore, in general, the energy transport equation of rotating stars is
written as,

d lnT

dMP

= −GMP

4πr4P

1

P
fP min

[
∇ad,∇rad

fT
fP

]
, (3.40)

taking into account either radiative transport or convective transport of en-
ergy.

3.7 Stellar structure equations with rotation

We have re-derived the stellar structure equations for rotating stars in the
sections above. For convenience to readers, I summarize those equations in
this section. With the changes in dependent variables on an isobar (i.e., ρ, T )
and the approximations, we rewrite the set of stellar structure equations for
rotating stars,

continuity equation:
∂rP
∂MP

=
1

4πr2Pρ
, (3.41)

hydrostatic equilibrium:
∂P

∂MP

= −GMP

4πr4P
fP , (3.42)

energy conservation:
∂LP

∂MP

= ϵnucl − ϵν + ϵgrav, (3.43)

energy transfer:
∂ lnT

∂MP

= −GMP

4πr4P

1

P
fP min

[
∇ad,∇rad

fT
fP

]
. (3.44)
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with

fP =
4πr4P

GMPSP

1

< g−1
eff >

, (3.45)

fT =

(
4πr2P
SP

)2
1

< geff >< g−1
eff >

, (3.46)

∇rad =
3

16πacG

κLPP

MPT
4 , (3.47)

∇ad =
Pδ

TρcP
, (3.48)

where δ = −
(
∂ ln ρ
∂ lnT

)
P,µ

is the thermo-dynamical derivative. We should notice

that a quantity such as x represents the average value over a volume of the
shell in between two neighboring isobars, while < x > denotes the average
value over a given isobar surface. The set of equations keeps the same form as
the classical for non-rotating models (Eqs. 2.5 - 2.8, together with Eq. 2.9 in
the convective zones). The only difference is the presence of the form factors
(fP and fT ), describing the effects of rotation.

As mentioned in Chapter. 2, the star is divided in three regions, i.e.,
inner region, envelope, and atmosphere. We will see below that rotation
impacts both outer regions (envelope and atmosphere). However, due to
the boundary condition at the centre for angular velocity

(
dΩ
dr

)
c
= 0, the

structure equations at the centre can be adopted from non-rotating model.

3.7.1 Equations for stellar envelope

Provided that we use an envelope with a tiny mass, (menvelope/Mtot ≪ 1), we
may assume that the envelope rotates with an angular velocity equal to the
outermost layer of the interior. Contrary to the mass, the pressure varies in a
wide range of values in the envelope region and thus the latter is conveniently
used as the independent variable in this part of the star. Using the relation
between ∂P and ∂MP in Eq. 3.42, one obtains the stellar structure equations
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for the envelope which are,

∂ ln rP
∂ lnP

= − rPP

GMPρ

1

fP
, (3.49)

∂ lnMP

∂ lnP
= −4πr4PP

GM2
P

1

fP
, (3.50)

∂ lnT

∂ lnP
= min

[
∇ad,∇rad

fT
fP

]
. (3.51)

3.7.2 Equations for stellar atmosphere

In the atmosphere, the mass, the radius, and the luminosity are constant,
thus only the equation of hydrostatic equilibrium and of energy transfer is
needed to be considered. In this region, we suppose that Ω is constant
(independent on the depth of the atmosphere) and equal to the outermost of
the envelope. In this case, one can clearly see that α = |dΩ/dΨ| = 0, thus
from Eqs. 3.17, 3.19 and 3.24 one has,

dP

dΨ
= −ρ, (3.52)

dΨ

dMP

=
ρ−1

SP < g−1
eff >

, (3.53)

dMP

drP
= 4πr2Pρ. (3.54)

Again we combine those three equations with the definition of optical depth
dτP = −κρdrP , and obtain the variation of pressure along the optical depth,

dP

dτP
=

1

κ

4πr2P
SP < g−1

eff >
, (3.55)

which can be transformed into,

dτP
d logP

= κ
SP < g−1

eff >

4πr2P
P ln 10. (3.56)

Rotation also modifies the equation of radiative transport. One can write
the radiative pressure variation in an average distance dn,

dPrad

dn
=

dPrad

drP

drP
dMP

dMP

dΨ

dΨ

dn
. (3.57)
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Using relation in Eqs. 3.53, 3.54, and 3.16 with α = 0, one obtains

dPrad

dn
=

dPrad

drP

SP < g−1
eff >

4πr2P
geff . (3.58)

In the diffusive approximation, the local radiative pressure is written as

dPrad

dn
= −κρ

c
F, (3.59)

with c being the speed of light and F the energy flux. Therefore, we can
basically deduce the term dPrad/drP from Eq. 3.58. Furthermore, with the
definition of optical depth above, we eventually obtain the relation,

dPrad

dτP
=

4πr2P
SP < g−1

eff >

1

c

F

g
. (3.60)

Integrating the derivative equation above from τP to the surface where
P → 0, we get

Prad(τP ) =
F

geff

1

c

[
4πr2P

SP < g−1
eff >

+ q(τP )geff

]
, (3.61)

where q(τ) is the Hopf function. Then we apply the theorem of von Zeipel
(1924a) which states that,

F = −ρ
4acT 3

3κρ

dT

dMP

dMP

dP
geff , (3.62)

and use Eq. 3.33, and Eqs. 3.52 - 3.53, to get

F

geff
=

L

SP < geff >
. (3.63)

Eventually, by using the expression of L = SPσT
4
eff and Prad = 4

3
σ
c
T 4 in

thermal equilibrium, one gets

T 4(τP ) =
3

4
T 4
eff

[
SP

4πr2P
fT τP + q(τP )

geff
< geff >

]
. (3.64)

In the approximation of Roche model, geff is given by Eq. 3.4.
In summary, under the effects of rotation, the equations of stellar struc-

ture in the envelope are described by Eqs. 3.49 - 3.51, while Eqs. 3.56 and
3.64 express the structure of the atmosphere region of rotating stars. Be-
sides that, at the centre, from the boundary condition, the radius is null and
thus the angular momentum. Therefore, the structure equations are kept the
same as in the classical non-rotating model.
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Figure 3.2: The angle ξ between the effective gravity and the radius on an
isobar of rotating stars. The firgure is adopted from Maeder (2009).

3.8 Calculation of the form factors

As demonstrated above, the rotation is characterised by the two form fac-
tors that appear in the structure equations. Therefore, evaluating these two
factors is the next step to do. From Eqs. 3.45 and 3.46, in order to calculate
fP , fT we need to know the isobar surface (SP ), the average effective gravity
(< geff >), its inverse average (< g−1

eff >) and the “volumetric” radius (rP ).

3.8.1 Surface of an isobar

The surface of an isobar is calculated by integrating the element dσ over the
whole surface,

SP =

∫
Ψ=const

dσ, with dσ =
r2 sin θ dϕdθ

cos ξ
, (3.65)

where r = r(θ), the radius, depends only on the latitude angle and ξ is the
angle between effective gravity and radius (−geff and r), which is defined as

cos ξ = − geff · r
|geff ||r|

. (3.66)

The angle ξ is zero only at the pole or equator as illustrated in Fig. 3.2.
Inserting dσ we have,

SP = 4πR2
pol

∫ π
2

0

x2 sin θ

cos ξ
dθ = 4πR2

polS
′. (3.67)
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Note that, in the first equality we already expanded the integral of dϕ from
0 to 2π, taking into account the symmetry of two parts above and below the
equator. We also used the notation x = x(θ) = r(θ)/Rpol. The dimensionless
surface S ′ has been introduced in the equation above and is defined as,

S ′ =

∫ π
2

0

x2 sin θ

cos ξ
dθ. (3.68)

In order to compute SP we need to know the expression of cos ξ. From
Sect. 3.2 one already has the expression of the effective gravity both in vector
and modulus forms. Therefore, we can easily insert Eqs. 3.3 and 3.4 into 3.66,
which becomes

cos ξ =
GM
R2 − Ω2R sin2 θ[(

− GM
R2(θ)

+ Ω2R(θ) sin2 θ
)2

+ (Ω2R(θ) sin θ cos θ)2
]1/2 . (3.69)

If we define x = R/Rpol and use the rotation rate ω from Eq. 3.8, instead of
the angular velocity Ω, we can rewrite the equation above into

cos ξ =
1
x2 − 8

27
ω2x sin2 θ[(

− 1
x2 +

8
27
ω2x sin2 θ

)2
+
(

8
27
ω2x sin θ cos θ

)2]1/2 . (3.70)

As one can see, cos ξ depends only on ω and latitude angle θ (since x ∝ R(θ)).
Therefore, the dimensionless S ′ in Eq. 3.68 depends only on rotation rate ω
eventually. To this purpose, Table. 3.1 lists the values of S ′ for different ω.
We now are able to calculate the isobar surface SP from S ′ by multiplying it
with the classical spherical surface, i.e., 4πR2

pol.

3.8.2 Average effective gravity

From the definition of an average value we get

< geff >=
1

SP

∫
Ψ=const

geffdσ =
4πR2

pol

SP

∫ π
2

0

geff
x2 sin2 θ

cos ξ
dθ. (3.71)

With the introduction of x and ω, one should rewrite geff in Eq. 3.4 for
convenience, which becomes

geff =
GM

R2
pol

[(
− 1

x2
+

8

27
ω2x sin2 θ

)2

+

(
8

27
ω2x sin θ cos θ

)2
]1/2

. (3.72)
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Using Eq. 3.67 for SP , the average effective gravity becomes,

< geff >=
GM

R2
pol

1

S ′

∫ π
2

0

geff
x2 sin2 θ

cos ξ
dθ. (3.73)

If we do the same for the average of the inverse effective gravity, we should
obtain

< g−1
eff >=

GM

R2
pol

1

S ′

∫ π
2

0

1

geff

x2 sin2 θ

cos ξ
dθ. (3.74)

With S ′ from Table. 3.1 for different values of ω, expression of cos ξ from
Eq. 3.70 and geff from Eq. 3.72, we are able to calculate the average of effective
gravity as well as its inverse average on an isobar of rotating stars.

3.8.3 Volumetric radius

Recall again the definitions x = R/Rpol and ω = 27
8

Ω2R3
pol

GM
. One can rewrite

the equation of an isobar (Eq. 3.9) in form of x and ω, which is

4

27
ω2x3 sin2 θ − x+ 1 = 0. (3.75)

Clearly, this relation gives us an insight into the shape of the surface of a
rotating star at a given rate ω. Namely, by solving this third degree equation
we obtain the radius as a function of latitude angle θ and rotation rate ω,
i.e., R = RpolR

′ where R′ = R′(θ, ω) is a dimensionless parameter obtained
from the root of the equation above. It would be convenient to consider also
the volume enclosed by it, V = V (ω), which is called volumetric volume and
depends only on the rotation rate. By definition, we have

V =

∫
dRdσ =

∫
RpoldR

′ (RpolR
′)2 sin θdϕdθ

cos ξ
=

4

3
πR3

polV
′, (3.76)

with the dimensionless volume being

V ′ = 3

∫
dR′R

′2 sin θdθ

cos ξ
= V ′(ω), (3.77)
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We can see that V ′ is a function of only ω and its values are listed in Ta-
ble. 3.1, for different values of ω. On the other hand, we have V = 4

3
πr3P ,

namely we have

V =
4

3
πr3P =

4

3
πR3

polV
′, (3.78)

or

rP = Rpol(V
′)1/3. (3.79)

This important relation gives us a connection between the volumetric radius
to the polar radius.

3.8.4 Computing the form factors

We have so far obtained all the quantities that are needed to compute fP
and fT . They have been obtained by means of dimensionless quantities and
the polar radius Rpol as showed in Eqs. 3.67, 3.73, 3.74 and 3.79. Therefore,
at each time step during the evolution, one needs to derive and update the
value for the polar radius. In order to do this, from Eq. 3.8, one needs at
least to know the current ω. For this purpose, one again needs a relation
that links the physical quantities to the dimensionless quantities. We can
find such a relation by combining Eqs. 3.8 and 3.78 which is

V ′ω2 =
27

8

Ω2r3P
GMP

. (3.80)

The value of V ′ω2 is unique since V ′ depends only on ω, and is listed in
Table. 3.1.

In another word, at each time-step, for each shell that is identified by the
mass MP , enclosed inside a volumetric radius, rP , and an angular velocity
Ω, one gets the specific ω by using V ′ω2 from Eq. 3.80 and Table. 3.1. Once
we know ω, the dimensionless quantities can then be derived and thus the
form factors can be calculated.
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ω S ′ V ′ fP fT V ′ω2

0.00 1.000 1.000 1.000 1.000 0.000
0.20 1.008 1.012 1.000 0.992 0.040
0.40 1.034 1.051 0.999 0.966 0.168
0.50 1.056 1.084 0.997 0.943 0.271
0.60 1.086 1.130 0.992 0.912 0.407
0.70 1.127 1.193 0.982 0.869 0.585
0.80 1.186 1.285 0.960 0.804 0.823
0.90 1.282 1.434 0.900 0.694 1.162
0.95 1.363 1.558 0.821 0.593 1.406
0.99 1.485 1.733 0.622 0.413 1.698
1.00 1.580 1.826 0.000 0.000 1.826

Table 3.1: The dimensionless quantities as function of rotation rate ω. In
which, S ′ is the surface, V ′ is volume, fP , fP are the form factors and the
product V ′ω2.

3.9 The Von Zeipel theorem and the surface

temperature

The Von Zeipel theorem defines a relationship between the radiative flux of
a rotating star and the local effective gravity which is,

F = − L

4πGM∗geff with M∗ = M

(
1− Ω2

2πGρM

)
, (3.81)

where ρM is the average density of the star. The dimensionless quantity that
multiplies the mass is indeed related to the product ω2V ′, namely

Ω2

2πGρM

=
(ω2Ω2

crit)V

2πGMP

=
ω2

2πGMP

(
8

27

GMP

R3
pol

)(
4

3
πR3

polV
′
)

=
16

81
ω2V ′.

(3.82)

This means that, once we know ω, we can get the dimensionless ratio by
the dimensionless product (V ′ω2) which is written in the last column of
Table. 3.1.

On the other hand, since the total flux emitted from a star is proportional
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Figure 3.3: Ratio of effective temperature between rotating model and its
non-rotating counterpart varies with the latitude angle in degree unit. Many
rotation models are shown with different colors.

to its effective temperature at the surface (at fourth power), one can obtain

Teff(ωs, θ) =

(
1− Ω2

s

2πGρM

)1/4

geff(ωs, θ)
1/4. (3.83)

It is clear that both Teff and geff depend on both the rotation rate and the
latitude angle. It is convenient to deduce a relation between the Teff in case
of rotation, and also its non-rotating counterpart (Teff(0)). We get

T 4
eff(ωs, θ)

T 4
eff(0)

=

(
1− Ω2

s

2πGρM

)−1
geff(ωs, θ)

geff(0)
, (3.84)

where geff(0) = GM/R2
pol, is the effective gravity in case of non-rotating star.

From Eq. 3.72 for geff , we have

T 4
eff(ωs, θ)

T 4
eff(0)

=

[(
− 1

x2 +
8
27
ω2
sx sin2 θ

)2
+
(

8
27
ω2
sx sin θ cos θ

)2]1/2(
1− Ω2

s

2πGρM

) (3.85)
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Figure. 3.3 shows us the variation of surface temperature at different
latitude angles from the pole (0o) to the equator (90o) for several rotation
models. First, the blue line indicates the non-rotating model, i.e., the ratio
is unity. Second, we can see how the effective temperature varies along the
latitude angle, in the case of rotating stars. In particular, they become hotter
in the polar region and cooler towards the equator. Third, the faster the star
rotates the hotter it is at the pole, and vice versa at the equator.

We have proved that rotation changes the geometrical structure of a star.
As a result, the effective temperature is not constant over the whole surface
of a star, but instead, Teff varies along the latitude angles. The faster a star
rotates, the more distorted it becomes. This is called geometrical distortion
effect that is caused by rotation in rotating models.



Chapter 4

Angular Momentum Transport

Besides the geometrical distortion, rotation also induces instabilities that
causes a redistribution of chemical elements and of the angular momentum,
throughout the star. Due to rotation, the mixing of chemical elements might
occur also in radiative zones, something which doesn’t occur in non-rotating
models. Depending on rotation rate, this extra-mixing may have strong
impact on the evolution of stars. It is well known that two main rotational
instabilities may cause the extra-mixing:

• Meridional circulation: This instability is due to the thermal imbalance
in rotating stars. The stellar material thus might make a macro motion
from the poles to the equator, and hence induces a mixing throughout
the star.

• Shear instability : The differences in rotation velocity between two
neighborhood shells cause a turbulent mixing of chemical elements be-
tween layers. It is called shear instability in rotating stars.

Besides that, mass loss plays an important role in the transport of an-
gular momentum since it is the main mechanism with which a star can lose
its angular momentum after the zero-age-main-sequence (ZAMS). Therefore,
this chapter will be dedicated to the angular momentum transport and mix-
ing. In Sect. 4.1, the model of meridional circulation will be discussed in
detail. Section. 4.2 is devoted to shear instability. The transport equation
of angular momentum due to rotational instabilities is shown in Sect. 4.3.
Next, the chemical mixing will be discussed in Sect. 4.4. In Sect. 4.5 we
will discuss also how the angular velocity changes when we enter the do-
main of low-mass stars since it is acknowledged from the observation that

40
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LMSs are slow- or even non-rotating stars. Empirical mass loss recipes for
low- and intermediate-mass stars will be discussed in Sect. 4.6, while a new
self-consistent formula from Cranmer and Saar (2011) will be discussed in
Sect. 4.7.

4.1 Meridional circulation

The imbalance of temperature on the meridian plane of rotating stars gen-
erates a global circulation motion, the so-called meridional circulation. The
problem of meridional circulation was first studied in Eddington (1926) and
revisited over the years, in which a huge improvement was done by Chaboyer
and Zahn (1992) and Zahn (1992). The solution is based on the assumption
that the internal rotation depends essentially on the radii and little on the
latitude, because of the existence of strong horizontal turbulence. One might
then write,

Ω(r, θ) = Ω(r) + Ω̂(r, θ), with Ω̂ ≪ Ω. (4.1)

The horizontal average Ω is defined as the angular velocity of a shell that
rotates like a solid body, and Ω̂ expresses the differential rotation part. The
main parameter that chractersies meridional circulation is its velocity (U).
In the second-order limit of Legendre polynomials, the meridional circulation
velocity is given by

U = U2(r)P2(cos θ)er + V2(r)
dP2(cos θ)

dθ
eθ, (4.2)

with U2(r) is the amplitude of radial component, V2(r) is of the horizontal
component, and P2(cos θ) =

1
2
(3 cos2 θ − 1). If the anelastic approximation is

applied, a relation between the radial and horizontal components of velocity
U can be deduced, which obeys

1

r

d

dr

[
ρ r2U2(r)

]
− 6ρV2(r) = 0. (4.3)

The full derivation of Eq. 4.3 can be found in Maeder (2009). This implies
that the horizontal component can be provided once we know U2(r).

On a given isobar at a surface level r, the velocity U2(r) is calculated by

U2(r) =
P

ρgcPT
(
∇ad −∇+ ϕ

δ
∇µ

) [ L(r)

M∗(r)
(EΩ + Eµ) +

cP
δ
T
∂Θ

∂t

]
. (4.4)
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Figure 4.1: Circulation current of a rotating star in the middle of H-burning
phase. Figure is adopted from Maeder (2009).

Here, the pressure P , average temperature T , density ρ, effective gravity g,
and luminosity L(r) are provided by the equations of stellar structure. The
cP is the specific heat at constant pressure, ∇ad and∇ temperature gradients,
the mean molecular weight gradient ∇µ = d lnµ

d lnP
, thermodynamic derivatives

δ =
(
∂ ln ρ
∂ lnT

)
P,µ

and ϕ =
(

∂ ln ρ
∂ lnµ

)
P,T

. The effective massM∗ is given in Eq. 3.81.

The density fluctuation, Θ = ρ̃
ρ
= 1

3
r2

g
dΩ2

dr
, that is a measure of the differential

rotation in the radial direction which is zero in case of uniform rotating.
The two terms EΩ and Eµ depend on the distribution of Ω and µ respec-

tively. In the case of uniform rotation, the term depending on Ω is expressed
as,

EΩ = 2

[
1− Ω2

2πGρ
− (ϵ+ ϵgrav)

ϵm

]
g̃

g
. (4.5)

where ϵm = L(r)/M(r) is the sum of nuclear and gravitational energy pro-
duced within the considered radius r, and ϵ, ϵgrav are the average energy
production rate due to nuclear reaction and gravitational respectively, g̃/g
is the fluctuation of the mean effective gravity on an isobar. In general, the
last two terms in the bracket are negligible and thus EΩ is positive, which
means that the circulation goes up along the polar axis and moves inward
on the equatorial plane, which transports the angular momentum inwardly,
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as illustrated by the inner loop of Fig. 4.1. In contrast, in regions close to
the surface where EΩ might become negative due to the increase of the term
Ω2/2πGρ. In this case, the circulation moves in the opposite direction which
makes an outward transport of angular momentum (outer loop in Fig. 4.1).

The term depending on mean molecular weight µ-variations is not zero
only in regions where µ-gradient is not zero. It is significant in regions around
the convective core. The full expression of Eµ can be found in Chapter. 11
of Maeder (2009), but not showing here due to the complex form of it.

In parsec code, there are three different approaches available for express-
ing U2(r):

• For solid rotation model, it is given by,

UKip =
8

3
k2 L

Mg

γ − 1

γ

1

∇ad −∇

(
1− Ω2

2πGρ

)
, (4.6)

where k2 = Ω2r2P/GM is the local ratio of centrifugal acceleration to
gravity, and γ = cP/cV is the specific heat ratio (see Kippenhahn et al.,
2012);

• Inlcuding the correction by “stabilising” circulation from the molecular
weight barrier, Heger et al. (2000) gives

UHeg = max (|UKip| − |Vµ|, 0) , (4.7)

with Vµ = HP

τKH

ϕ∇µ

δ(∇−∇ad)
is the molecular current, τKH is the local Kelvin-

Helmholtz timescale, ∇µ = d lnµ
d lnP

is µ-gradient;

• In the case of stationary and uniform rotation, Maeder (2009) and
Potter et al. (2012) give an approximate form of Eq. 4.4 in regions
with homogeneous composition, which is

UMaed =
8

3

P

ρgcPT
(
∇ad −∇+ ϕ

δ
∇µ

) L

M∗

[
1− Ω2

2πGρ
− ϵ+ ϵgrav

ϵm

]
Ω2r30
GM

,

(4.8)

with r0 is the radius at which P2(cos θ) = 0. This takes into account
the molecular barrier and tends to zero both near the surface regions
and at the centre.

The latter recipe is used in the new version parsec v2.0, i.e., U2 = UMaed.
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4.2 Shear instability

If two neighbouring layers rotate with different velocities, the velocities gra-
dient between them may create a shear instability. The condition for shear
instability is expressed by the Richardson criterion, which is defined as

Ri ≡ g

ρ

dρ/dz

(dV/dz)2
<

1

4
= Ricrit, (4.9)

with Ricrit = 1/4 is the critical Richardson number. The condition for shear
instability to occur is the Ri must be smaller than its critical value. With
further development on the expression of the Richardson number, the relative
density along the horizontal direction dρ/dz can then be expressed in terms
of Brunt-Väisälä frequency, and thus Eq. 4.9 becomes,

Ri =
N2

(dV/dz)2
< Ricrit. (4.10)

In which, the Brunt-Väisälä frequency is contributed from thermal gradient
and mean molecular weight gradient,

N2 = N2
T +N2

µ =
gδ

HP

(
∇int −∇+

ϕ

δ
∇µ

)
, (4.11)

with N2
T = gδ

HP
(∇int − ∇), and N2

µ = gϕ
HP

∇µ. The HP is the pressure scale

height, g is effective gravity, δ, ϕ are thermo-derivatives, ∇int = d lnTint

d lnP
,

∇ = d lnText

d lnP
are the temperature gradients of the internal and external layers,

correspondingly, and ∇µ is µ-gradient.
Combination of both effects by thermal diffusion and by horizontal tur-

bulence. The diffusion coefficient by shear instability is given by

Ds.i. =
(8/5)Ricrit

(
r dΩ
dr

)2[
N2

T,ad/(K +Dh)
]
+N2

µ/Dh

, (4.12)

whereK = 4acT 3/3κρ2cP is the thermal diffusivity, Dh = |rU2(r)| is the hori-
zontal diffusion coefficient of the elements (Zahn, 1992), N2

T,ad = (gδ/HP )(∇ad−
∇) and N2

µ = (gϕ/HP )∇µ, (see also Talon and Zahn, 1997; Chieffi and
Limongi, 2013, for more details).
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4.3 Transport of angular momentum

In the presence of rotational instabilities, one needs to write down the equa-
tions describing the transport of angular momentum and the mixing of chem-
ical elements. For angular momentum transportation, there are two different
approaches. The first one is in which the transport of angular momentum
obeys the advection-diffusion equation. In Lagrangian coordinates, the equa-
tion is given by

ρ
∂

∂t

(
r2Ω
)
=

1

5r2
∂

∂r

(
ρr4ΩU(r)

)
+

1

r2
∂

∂r

(
ρDr4

∂Ω

∂r

)
. (4.13)

The first term in the right-handed side of the above equation represents
the advection while the second term is for diffusion, with D is the total
diffusion coefficient. This scheme is adopted in some stellar evolutionary
codes, such as GENEC (Eggenberger et al., 2008), ROSE (Potter et al.,
2012), and FRANEC (Chieffi and Limongi, 2013).

The second method, which is used in this version of parsec v2.0 code,
in which the transport of angular momentum is treated as a purely diffusive
process, the transport equation is thus simplified to,

ρ
∂ (r2Ω)

∂t
=

1

r2
∂

∂r

(
ρr4D

∂Ω

∂r

)
, (4.14)

where D is the total diffusion coefficient which represents many instabilities
that transport the angular momentum. In this case, they are from the con-
vective transfer, meridional circulation, and shear instability,

D = DMLT +Dm.c. +Ds.i.. (4.15)

The diffusion coefficient due to shear instability, Ds.i., is given in Eq. 4.12.
The Dm.c. is the coefficient that is caused by meridional circulation which is
given by Chaboyer and Zahn (1992),

Dm.c. ≃
|rU2(r)|2

30Dh

. (4.16)

The diffusion in convective zones is computed by the mixing-length-theory
(Böhm-Vitense, 1958) with coefficient,

DMLT =
1

3
vlMLT with lMLT = αMLTHP . (4.17)
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Figure 4.2: Distribution of diffusion coefficients that appear in Eq. 4.15 for a
14M⊙ star at the stage where the current central hydrogen content Xc ≈ 0.3
during the MS. The model is computed with initial rotation rate ωi = 0.80,
initial metallicity Z = 0.017, Y = 0.279.

In the expressions above, Dh is the horizontal diffusion coefficient, U2(r) is
the radial velocity of meridional circulation, v is the velocity of bubbles that
rise or sink in the convective regions and their mean free path lMLT, HP is
the pressure scale height, and αMLT is the MLT parameter.

Figure. 4.2 shows the internal distribution of the total diffusion coefficient
(Dtot), the diffusion coefficient in convective zones (DMLT), and the coeffi-
cients caused by meridional circulation (Dm.c.) and shear instability (Ds.i.),
of a 14M⊙ star. It is obvious that the DMLT is non-zero only in the con-
vective regions and in the overshooting regions, and is the dominant at the
central. The contribution from rotational instabilities becomes important in
the radiative regions. In particular, the meridional circulation coefficient is
about 10 orders of magnitude larger than the shear instability coefficient in
the inner part while in the outer part they tend to have equally impact.
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4.4 Chemical mixing and the calibration of

parameters

The equation of chemical mixing follows the form of Eq. 2.36 in Sect. 2.4.
The extra mixing induced by rotational instabilities is contained in the total
diffusion coefficient Dtot which is written by,

Dtot = DMLT + fc (Ds.i. +Dm.c.) . (4.18)

Here, the free parameter fc was introduced to control the efficiency of rota-
tional mixing which is needed to be calibrated so that it directly controls the
speed of mixing without affecting the transport of angular momentum, (see
Pinsonneault et al., 1989; Heger et al., 2000; Brott et al., 2011). The possible
value of fc ranges from 0 to 1, where fc = 0 implies that no material mixing
caused by rotation and fc = 1 means that the processes that mix material
would have the same efficiency on their transport of angular momentum.

Another free parameter is fµ that is multiplied to the gradient of molec-
ular weight, namely,

∇eff
µ = fµ ×∇µ. (4.19)

The introduction of fµ is necessary because it controls the molecular barrier
“strength”. This is due to the fact that the inclusion of ∇µ strongly inhibits
the transport of chemical composition as implied in many works Bressan
et al. (1981); Pinsonneault et al. (1989); Chaboyer et al. (1995); Meynet and
Maeder (1997).

The calibration of these two parameters is still an open issue. The two
parameters are compensated to each other in a way such that the factor fµ
tends to inhibit the mixing process while fc tends to enhance the mixing (see
Costa et al., 2019b). Therefore, they render the calibration more difficult.
Heger et al. (2000) proposed a method, in which the two parameters were
calibrated to reproduce the ratio of surface nitrogen and helium abundances
between the TAMS and the ZAMS for models from 10 − 20 M⊙ with solar
metallicity and an adopted ZAMS rotational velocity of ∼ 200 km/s. The
results with fc = 1/30 and fµ = 0.05 were claimed to be the best values of
their calibration.

Another work was done by Brott et al. (2011), who used a sample con-
taining B-stars in the LMC of the FLAMES survey to calibrate their models.
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Table 4.1: Values of rotational mixing efficiency parameters, fc and fµ.

fc fµ Reference
0.033 0.05 Heger et al. (2000)
0.0228 0.1 B111 and Y062

0.17 0.45 Costa et al. (2019b)
1B11 for Brott et al. (2011).
2Y06 is for Yoon et al. (2006).

The models of 13 M⊙ with various rotational velocities are performed. The
trend of surface nitrogen abundances at the TAMS with projected rotational
velocities is aimed to reproduce the trend from measurements. The resulted
fc = 0.0228 was obtained, in combination with the adopted value of fµ = 0.1
from Yoon et al. (2006) where the surface helium abundance was used for
calibration.

In parsec v2.0, the calibration is done in three steps: i) first, the stars
reported in Brott et al. (2011) are used to initialise the chemical partitions
to compute the evolutionary models; ii) the overshooting parameter from
convective core is calibrated by using the eclipsing binaries and are used
in computing the evolutionary models as mentioned in Sect. 2.3.2; iii) the
surface nitrogen abundances ratio between the TAMS and ZAMS is used to
compare with the results of Brott et al. (2011). As a result, fc = 0.17 and
fµ = 0.45 are found as a preliminary calibration as claimed in Costa et al.
(2019b). Table. 4.1 summaries the values of fc and fµ in these three works,
it should be mentioned that the adopted values from Costa et al. (2019b) are
used throughout this project.

Besides that, it is also worthy to mention that the more complete solution
for chemical mixing in rotating stars should take into account other processes
that could possibly influence the stability of the medium such as the stabiliz-
ing or destabilizing effect of the distribution of angular momentum, radiative
losses, etc... This more general model is already discussed in Maeder et al.
(2013). However, those processes in general are not considered because the
total diffusion coefficient already contains two free parameters that needed
to be calibrated from observations.

It is also important to stress that the conservation of total angular mo-
mentum is checked at each time step. In parsec v2.0, the rotation is applied
just before the star reaches the ZAMS. At first, the angular velocity (Ω) is
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Figure 4.3: Distribution of angular momentum velocity (in rad/day) with
stellar masses in the sample of McQuillan et al. (2014) (red dots). The
angular momentum velocities of different mas-models that are computed with
initial rotation rate ωi = 0.30 from the ZAMS to the TAMS are shown by
the solid lines.

assigned to the initial velocity which is provided by the initial rotation rate
ω = Ω/Ωcrit (Eq. 3.8) and it is kept constant in the whole star. After that,
the angular velocity is let to evolve freely under the conservation of the to-
tal angular momentum, taking into account internal transport and losses of
angular momentum from the star, e.g. by stellar winds.

4.5 The transition from non rotating to ro-

tating, low-mass stars

Speaking of angular velocity, it is convenient for later discussions to briefly
review the current status on the rotation rates of stars in the lower main
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sequence. The analysis of McQuillan et al. (2014) aimed at deriving rotation
periods in more than 34000 main-sequence stars from the Kepler mission,
gives us an insightful look to the period-mass distribution. Figure. 4.3 shows
the observed angular momentum velocity (Ω in rad/day) against masses from
the sample of McQuillan et al. (2014), in which to derive the angular velocity
from the reported periods we use the formula Ω = 2π/P . The trend of Ω is
rather obvious, namely, the angular velocity increases at increasing mass. In
another word, low-mass stars are expected to rotate slowly or no-rotating at
all.

For this reason, the initial rotation rate of a model of a given mass must
be set with care. To be clearer at this point, in Fig. 4.3 the angular velocity of
many models of mass smaller than 1.27M⊙ with initial rotation rate ωi = 0.30
during the evolution from ZAMS to TAMS are shown by the solid lines. There
are a few things that we can take from this figure: i) the angular velocities
from our rotating models are inside the trend of the observed data. ii) The
smallest computed mass in this set of ωi = 0.30 is 1.16M⊙. This cut-off is
reasonable because at a given value of ωi, a smaller mass leads to a larger
Ωcrit due to strong dependence on Rpol. The angular velocity will thus be
larger, falling outside the trend of observed data. iii) The models with lower
ωi are expected to fall into the smaller mass range in the figure. However, we
did not calculate models with values between ωi = 0 and ωi = 0.30 since, in
that case, the effects of rotation will be negligible (for a detailed discussion
see Chapter. 5).

Keeping this in mind, we now introduce a relation to set the maximum
value of the initial rotation rate in the transition mass range MO1 - MO2,
describing the growth of the convective cores. We introduce a parameter,
ωmax, to control the desired maximum initial rotation rate for a given mass,
which is written as

ωmax = 0.99

(
Mi −MO1

MO2 −MO1

)
, (4.20)

where MO1 is the largest initial mass of a star showing a vanishing convective
core during the early hydrogen-burning phase, calculated without overshoot-
ing, and MO2 = MO1 + 0.3M⊙. The initial rotation rate that can be applied
to a given initial mass model must be smaller than the value of ωmax. Since
MO1 depends on metallicity, Table. 4.2 lists the values of ωmax at each ini-
tial mass from MO1 to MO2 in six sets of metallicity that are studied in this
project and will be described in Chapter. 5.
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Z= 0.017 Z= 0.014 Z= 0.01 Z= 0.008 Z= 0.006 Z= 0.004
ωmaxMi/M⊙ Mi/M⊙ Mi/M⊙ Mi/M⊙ Mi/M⊙ Mi/M⊙

MO1 1.18 1.16 1.14 1.14 1.09 1.06 0
1.20 1.18 1.16 1.16 1.11 1.08 0.06
1.22 1.20 1.18 1.18 1.13 1.10 0.13
1.24 1.22 1.20 1.20 1.15 1.12 0.198
1.26 1.24 1.22 1.22 1.17 1.14 0.264
1.28 1.26 1.24 1.24 1.19 1.16 0.33
1.30 1.28 1.26 1.26 1.21 1.18 0.396
1.32 1.30 1.28 1.28 1.23 1.20 0.462
1.34 1.32 1.30 1.30 1.25 1.22 0.528
1.36 1.34 1.32 1.32 1.27 1.24 0.594
1.38 1.36 1.34 1.34 1.29 1.26 0.66
1.40 1.38 1.36 1.36 1.31 1.28 0.726
1.42 1.40 1.38 1.38 1.33 1.30 0.792
1.44 1.42 1.40 1.40 1.35 1.32 0.858
1.46 1.44 1.42 1.42 1.37 1.34 0.924

MO2 1.48 1.46 1.44 1.44 1.39 1.36 0.99

Table 4.2: The values of ωmax at different initial masses.

4.6 Mass loss

The mass loss process has a direct impact on the transport of angular mo-
mentum. In previous version of parsec as well as previous models from
the same group (Girardi et al., 2000a; Bertelli et al., 2008), the mass loss of
low-mass stars is applied only at the stage of isochrones calculation. This
approximation is acceptable due to the fact that the RGB evolution of low-
mass stars is very small affected by this process that, eventually, becomes
important only very near the RGB-tip. Therefore, mass loss just causes a de-
crease in mass between RGB and the stage of ZAHB. This decrease is easily
taken into account when interpolating the helium-burning tracks to calculate
isochrones.

However, the inclusion of mass loss along the evolution of stars cannot be
longer decoupled from the calculation of stellar evolution, in case of rotating
stars. This is because mass-loss is the only way for the star to directly loose
angular momentum. Furthermore, rotation may enhance mass loss due to
the lower effective gravity caused by centrifugal forces. This may become
a dramatic problem when the star is close to the critical velocity. Thus
calculation of evolutionary tracks cannot be done without the inclusion of
mass-loss. This is a big difference with respect to previous parsec and
other Padova models.
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In order to describe the enhancement of mass loss due to rotation, Friend
and Abbott (1986) introduced an enhanced factor that depends on the es-
cape velocity of the star at the surface. By fitting their numerical results,
Bjorkman and Cassinelli (1993) provides the mass loss rate of a rotating star
Ṁ(ω), which is given by

Ṁ(ω) = Ṁ(ω = 0)

(
1− v

vcrit

)−ξ

with ξ = 0.43, (4.21)

where v is surface tangential velocity. The critical tangential velocity at the
surface of rotating stars (or break-up velocity) is usually defined as,

v2crit =
Gm

r
(1− Γe), (4.22)

where G, m, r are the gravitational constant, mass, and radius in solar units
and Γe is the Eddington factor. In general, Γe depends also on the angular
momentum velocity, this dependence becomes more important in the extreme
cases when the rotation rate is close to the critical value, (see Maeder and
Meynet, 2000, for more detailed discussions). However, in this project, we
neglect this dependence of Γe, and this should be kept in mind as a caution.
This dependence should be carefully tested in cases of extremely fast rotating
stars and will be reserved for future projects.

The Ṁ(ω = 0) in Eq. 4.21 is the mass loss rate in case of classical non-
rotating model. It is well known that the low mass stars loses mass in different
way than intermediate-mass or even massive stars. Therefore, the next two
subsections will describe them separately.

4.6.1 Low-mass stars

The most widely used recipe for mass-loss in low-mass stars is the empirical
law by Reimers (1975), which is

ṀReimers = η
LR

M
, (4.23)

where L, R and M are luminosity, radius and mass in solar units, respec-
tively. The parameter η represents the efficiency of the model which is gener-
ally calibrated against observations of the CMDs of globular clusters. Many
calibrations had been presented over the years and gave a level to the uncer-
tainty of η, for instance, Renzini and Fusi Pecci (1988) provided η = 0.35,
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or Aaronson and Mould (1982) gave η = 0.5 − 0.7, or Miglio et al. (2012)
claimed η = 0.2.

A modification of the Reimers’ law was done by Schröder and Cuntz
(2005). There, the wind is assumed to result from the spillover of the ex-
tended chromosphere, and associated with the action of Alfvén waves. There
are two new factors introduced to the standard formula of Reimers, one re-
flects the dependence of mechanical energy flux on effective temperature and
the second one describes how the chromospheric height depends on gravity.
The modified mass loss rate is written as,

ṀSC = η1
LR

M

(
Teff

4000 K

)3.5(
1 +

g⊙
4300 g

)
, (4.24)

with Teff is effective temperature in K, the stellar gravity g and the so-
lar gravity g⊙ are in cgs units, η1 is a fitting parameter that is calibrated
from observations. In which, the sonic point is used as a reference at which
Teff = 4000 K and log g = 0.8 base on the calibration to the well-studied K
supergiant ξ-Aurigea, (see Schröder and Cuntz, 2005; Baade et al., 1996).

This modified formula of Schröder and Cuntz gives an improvement to
a more physical picture of the original formula, and still contains a fitting
parameter that needed to be calibrated from observation.

4.6.2 Intermediate-mass and massive stars

The mass loss becomes critical for our understanding of the evolution and
fate of the intermediate-mass and massive stars in the Universe. During their
evolution, the IMSs evolve towards the asymptotic giant branch where the
mass loss becomes important and leads to either planetary nebula or type Ia
supernovae explosion. The typical value of mass loss rate during the AGB
phase of these stars is from ∼ 10−8−10−4M⊙/yr (Höfner and Olofsson, 2018;
Decin et al., 2020).

In the case of massive stars, mass loss effects on their luminosity, burning
lifetime, and effective temperature due to its high efficiency. It also has a cru-
cial role in determining the type of resulting supernova explosion, depending
on the strength of mass loss a red supergiant can evolve to the luminous-blue-
variable phase or totally can avoid this phase (see review of Smith, 2014).
Another example on the importance of mass loss to the fate of massive stars,
consider a star of 60M⊙ with Z = 0.04 either it remains intact and dies as
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a ∼ 25M⊙ black hole if its mass loss rate is about ∼ 2 times smaller than
the rate at which it will die as a neutron star due to the evaporating of the
envelope, see review of Vink (2022), (see also Meynet et al., 1994a).

In parsec model, the mass loss rate is adopted differently for different
phases. Towards the supergiant phases (Teff ≤ 12000 K), the mass loss rate
provided by de Jager et al. (1988) is adopted. In the blue supergiant phase
(Teff ≥ 12000 K) or the luminous-blue-variables, the formula of Vink et al.
(2001) is adopted. The formula from Nugis and Lamers (2000) is adopted
for WR phases.

In principle, the mass-loss rates are expected to be smaller for stars of
low metallicity. This dependency was pioneered by Abbott and Lucy (1985)
and then persuaded by many works. In general, it is written as,

Ṁ ∝ Zm, (4.25)

with m ranging from 0.5 to 1. For example, Leitherer et al. (1992) gives a
scale relation Ṁ ∝ Z0.8, while Vink et al. (2001) gives m = 0.69 for hot stars
with Teff ≥ 25000 K and m = 0.64 for B-supergiants with Teff ≤ 25000 K, or
Mokiem et al. (2007) finds m = 0.83± 0.16 for O-and early B-type stars.

However, a later study of Gräfener and Hamann (2008) shows that the
mass loss is strongly enhanced when stars approach the Eddington limit
(Γe → 1). Therefore the dependence on Γe must be considered in the regions
near the Humphrey-Davidson limit where Γe close to 1. Such dependency
is also described in Vink et al. (2011), in which the mass loss rate becomes
significantly enhanced when Γe > 0.7. Besides that, Gräfener and Hamann
(2008) also shows that at low values of Γe the mass loss rate obeys the relation
Ṁ ∝ (Z/Z⊙)

0.85, and as increasing Γe the metallicity dependence disappears.
However, a more comprehensive analysis of the dependence of mass loss rate
to both metallicity and Γe is still missing. A scaling relation is introduced
to express this dependency of mass loss rate on Γe and Z in parsec models,
which is given by

Ṁ ∝
(

Z

Z⊙

)α

with α = 2.45− 2.4× Γe, (4.26)

where Γe is limited from 2/3 to 1. At low Γe, Eq. 4.26 follows the formulism
of Gräfener and Hamann (2008), and at high-Γe it becomes negligible.

In practise, in order to take into account the effect of Γe, the maxi-
mum value between the standard mass loss recipes and the one computed
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by Eq. 4.26 multiplied with the mass loss rate from Vink et al. (2011) (say
ṀΓe) is assigned. Namely, towards the supergiant phases, the mass loss
rate of de Jager et al. (1988) is compared with ṀΓe so that the larger value
will be used. Similarly, in the region of blue-supergiant or luminous-blue-
variable, the maximum value between the rate of Vink et al. (2001) and ṀΓe

is adopted.
Finally, for numerical purposes, at each time step ∆t, the new massMnew,

that is reduced by mass loss, is computed from the previous current mass
Mold. Indeed, when Ṁ is already defined, the new current mass is Mnew =
Mold − Ṁ∆t.

4.7 Self-consistent physical mass loss rate

The mechanism responsible for producing mass loss in low-mass stars (cool,
late-type) that described so far is basically the adoption from empirical for-
mulas which include at least one calibrated parameter as we have seen in
the section above. In this section, we will review the first theoretical model
that expresses the mass loss mechanism directly from the star’s fundamental
properties. The material of this section is mainly from Cranmer and Saar
(2011). The theoretical description is explicitly derived in Appendix A, while
only a summary of important points is shown in this section.

4.7.1 Theoretical description

From the equation of energy conservation that is written in terms of the
radiative energy loss and the total flux per cross-section area unit,

P 2

4k2
BT

2
Λ(T ) +

1

A

∂

∂r
[A (FC + FM + FW + FA)] = 0, (4.27)

in combination with the conservation of mass and momentum,

ρuA = constant, (4.28)

ρu
∂u

∂r
= −∂P

∂r
− ρ

GM

r2
− ∂

∂r

⟨δB2⟩
8π

, (4.29)

are the basic equations to derive the mass loss rate for cool, late-type stars
(see Withbroe, 1988).
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In the above formulas, the first term on the right-hand side of Eq. 4.27 is
the expression of radiative energy loss, with kB = 1.3807×10−16 cm2gs−2K−1

is Boltzmann’s constant, P is the pressure, T is temperature, and Λ(T ) is the
radiative loss function (see Cranmer et al. (2007)). In the second term, the
total flux is contributed from four components, i.e., thermal conduction (FC),
mechanical energy transport (FM), stellar wind (FW ), and Alfvén wave (FA)
(see Hammer (1982); Withbroe (1988)). The u is outflow speed and ⟨δB2⟩ is
the mean square wave magnetic field.

The model is divided into two scenarios: the outflow wind can be driven
by gas pressure which corresponds to hot corona regions; or by wave pressure
which corresponds to cool, extended chromosphere regions. We will discuss
more details about these two driven-mechanisms in the next following sec-
tions.

Hot coronal mass loss rate

Assume that we are considering a plasma fluid with a high gas pressure, this
may cause an acceleration to produce a transition region (TR) from the base
(cool chromosphere) to the hot corona region (illustrated in Figure. 4.4). As
a consequence, the outflow speed in hot corona region is much larger than
the Alfvén wave speed. More precisely, the Alfvén wave flux is expected to
depend strongly on the gravity in such a way as Eq. 4.38, hence in the region
of hot coronal the effect of Alfvén wave is negligible. The energy conservation
law in Eq. 4.27 now becomes,

P 2

4k2
BT

2
Λ(T ) +

1

A

∂

∂r
[A (FC + FM + FW)] = 0. (4.30)

By integrating the equation above for the region of hot coronal, i.e., from
the transition region to the outflow part (R → ∞) and using the definition
of mass loss rate Ṁ = jA, with j is the mass flux and A is the cross-section
area. The hot coronal mass loss rate is expressed in terms of the fluxes at
the boundaries, which is

Ṁ =
ATR (FM,TR − FC)

V 2
esc

, (4.31)

where Vesc is the escape velocity which is assumed to be the outflow speed

at far distance, Vesc = u∞ =
√

2GM∗
R∗

, with M∗, R∗ are the mass and radius
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Figure 4.4: Illustration of transition region in cool star, the f∗, fTR, f∞ are
the filling factors correspond to each regions.

at the outermost border of the photosphere. The cross-section area at the
level of the transition region is ATR = 4πR2

TRf
θ
∗ , with the radius at the TR

level approximately equal to the radius of the photosphere RTR = R∗, the
filling factor f∗ which characterises for the geometrical of the fluid tube, and
θ is a dimensionless constant between 0 and 1 and is chosen to be 1/3, (see
Cranmer and Saar, 2011; Kopp and Holzer, 1976).

By definition, the mechanical energy flux is the flux of heat transferring
between radiation and matter in corona zones. Thus, the mechanical flux at
the TR level is given by

FM,TR ≡ QTRR∗h with h = [0.5, 1.5]. (4.32)

The heating rate at transition region, QTR, is computed by,

QTR =

(
α̃TRQ∗

α̃∗

)8/7(
m2

H

ρ2∗Λmax

)1/7

f 4(1−θ)/7
∗ , (4.33)

with θ = [0, 1], mH is the hydrogen mass, Λmax is the maximum of radiative
loss function which depends on metallicity as given in Cranmer and Saar
(2011),

Λmax

10−23erg cm3 s−1
≈ 7.4 + 42

(
Z

Z⊙

)1.13

, (4.34)
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α̃∗ = 0.5 and the α̃TR is computed by a relation, α̃ = 0.5R(1+R)
√
2

(1+R2)3/2
, with

R ≈ (VA − u∞)/(VA + u∞). In turn, VA = B/(4πρ)1/2 is the Alfvén speed
and B is the magnetic field strength. The heating rate at the photosphere,
Q∗, is computed through the Alfvén flux as shown in Appendix A.

The conductive flux at the inner corona is given by,

FC = cradPTR with crad ≈ 14× 105

√
Λmax(Z)

Λmax(Z⊙)
, (4.35)

and PTR is the pressure at the transition region.

Cold-wave driven mass loss rate

In this scenario, a fluid tube in which the neutral and ion species move
together as a whole and the temperature of all pieces is equal. Besides that,
in a high density stellar atmosphere, the mechanical heating may balance
with the radiative loss energy. Moreover, the contribution of conductive
energy can be neglected if the outflow wind region is isothermal (see Holzer
et al., 1983). In another word, the total flux now only has contribution from
stellar wind and Alvén wave, i.e., F = FW+FA. In that case, the gas pressure
can’t be enough to drive a significant outflow, and the cooling wave starts to
become a dominant.

From the definition of mass loss rate Ṁ = jA = ρuA is constant. Assume
that the region is isothermal so that there should be a critical point where
the temperature at this point doesn’t change and thus we have,

Ṁ = ρcucAc. (4.36)

Follow the dirivation in Appendix A, we will see that the critical cross-section
area Ac and outflow speed uc are computed through the critical radius (rc),
which are

Ac = 4πr2c and uc =

√
1

2

GM∗

rc
, (4.37)

where rc ≈ R∗
7/4

1+(v⊥∗/Vesc)2
, and the transverse velocity at the photosphere is

computed through the Alfvén wave flux, v⊥∗ =
√

FA∗
ρ∗VA∗

. The form of Alfvén
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wave flux is adopted from Musielak and Ulmschneider (2002) which is,

FA∗ = F0

(
Teff

T0

)η

exp

[
−
(
Teff

T0

)25
]
, (4.38)

where,

F0

109[erg.cm−2.s−1]
= 5.724 exp

(
− log g

11.48

)
, (4.39)

T0

103[K]
= 5.624 + 0.6002 log g, (4.40)

η = 6.774 + 0.5057 log g, (4.41)

g is the gravitational acceleration. The Alfvén wave velocity at the photo-
sphere is VA∗ = B∗/(4πρ∗)

1/2. The critical density of the plasma fluid is com-
puted from the energy conservation of wave action condition S̃ = constant.
As a result, it is written as

ρc = 4π

(
ρ∗v

2
⊥∗VA∗A∗

v2⊥,cBcAc

)2

, (4.42)

with the critical transverse velocity, v⊥,c = 2uc, and magnetic strength, Bc =(
R∗
rc

)2
f∗B∗ with B∗ is the magnetic strength at the photosphere.

Combining the hot and cold mass loss rates

In order to express the contribution from both driven mechanisms, the total
mass loss is the summation,

Ṁ ≈ Ṁcold + Ṁhot exp
(
−4M2

A,TR

)
, (4.43)

with Ṁhot is given in Eq.4.31, and Ṁcold is given in Eq.4.36. The Mach
number at transition region, MA,TR = uTR/VA,TR is introduced to control
the efficiency of the hot coronal mass loss, due to the fact that there are
stars that do not have corona. In which, the TR outflow speed is deduced
from the hot coronal region through mass flux conservation which is,

uTR =
Ṁhot

4πR2
∗fTRρTR

, with ρTR =

[
α̃TRQ∗m

2
H

α̃∗ρ
1/4
∗ Λmax

]4/7
f 2(1−θ)/7
∗ . (4.44)
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The Alfvén speed at TR is computed by,

VA,TR =
BTR√
4πρTR

, (4.45)

where BTR = f 1−θ
∗ B∗, and B∗ = 1.13

√
8πρ∗kBTeff

µ mH
with the mean atomic weight

µ ≈ 7
4
+ 1

2
tanh

(
3500−Teff

600

)
.

To summarise, the total mass loss is computed by Eq. 4.43, where the
contribution from hot corona regions is given in Eq. 4.31 while the contribu-
tion from cold-wave driven is from Eq. 4.36. All the quantities that contained
in these two component mass loss rates are either computed from the fun-
damental properties of the considered star such as the mass, radius, density
at the photosphere level, effective temperature, and the given metallicity, or
the filling factor, f∗. Therefore, knowing f∗ is necessary to proceed forwards.

Filling factor determination

In parsec model, f∗ is chosen to be the minimum limit of f(r) from Cranmer
and Saar (2011), which is

f∗ =
0.5

[1 + (x/0.16)2.6]1.3
, (4.46)

where x ≡ Ro/Ro⊙, and Ro ≡ Prot/τc which is called by Rossby number,
used to describe the chromospheric flux ratio (see Noyes et al., 1984, for more
details), with the solar Rossby number Ro⊙ = 1.96.

The τc appears in the Rossby number above is the convective turnover
time (in days) which is computed by (see Gunn et al., 1998),

τc = 314.24 exp

[
−
(

Teff

1952.5 K

)
−
(

Teff

6250 K

)18
]
+ 0.002. (4.47)

Prot is the rotation period. The rotation period in general depends on mass,
radius, and time. We introduce an expression of Prot(M,R, t) follows the
power law in radius,

Prot(M,R, t) = PMS(M, t)

(
R

R⊙

)ξ

, (4.48)
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Table 4.3: Adopted coefficients.

Mamajek’s formula Sekiguchi’s formula
a 0.407± 0.021 t0 −813.3175± 42.5
b 0.325± 0.024 t1 684.4584± 34.3

c 0.4095± 0.010 t2 −189.923± 9.23

n 0.566± 0.008 t3 17.40875± 0.827

f1 1.2136± 0.038

f2 0.0209± 0.0006

d1 −0.294± 0.010

g1 −1.166± 0.028

e1 0.3125± 0.0076

with ξ = 0.7 by fitting the data from Cranmer and Saar (2011). The PMS

is the rotation period of stars at the MS phase. In parsec, there are two
approaches to adopt PMS. First, the constant value PMS = 25 days is adopted,
based on the rotation period of the Sun (shown as FORM1 hereafter). The
second way to obtain PMS is doing calibration with the observed rotation
period of MS stars that we find in literature (shown as FORM2 hereafter).
This latter method will be described further below.

The dependence of PMS on mass and age is adopted from Mamajek and
Hillenbrand (2008) and Sekiguchi and Fukugita (2000) which is given by

PMS(M, t) = PMS(M)tn with n = 0.566, (4.49)

t is the age in Myr. The mass-dependent component in Eq. 4.49 can be
obtained by calibration with observed data. For this purpose, the simple
polynomial function PMS(M) = a0 + a1M + a2M

2 + a3M
3 is used to fit the

measured data from McQuillan et al. (2014), the details in deducing PMS(M)
will be shown below.

Deducing the rotation period

We use the full sample of 34030 KEPLER MS stars in McQuillan et al. (2014)
to produce the relation of PMS ≡ PMS(M). First, the distribution of rotation
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Figure 4.5: The sample of 34 000 MS stars of McQuillan et al. (2014) (red-
dots), superimposed with the estimated period by using the formula of Ma-
majek and Hillenbrand (2008) (green-dots). The position of the Sun is shown
by black-asterisk.

period is reproduced by adopting the theoretical formula from Mamajek and
Hillenbrand (2008), which is written as

PMS(B − V, t) = a [(B − V )0 − c]b tn, (4.50)

with coefficients a, b, c, n are given in Table. 4.3. In which, the colour (B−V )0
is converted to effective temperature by using the transformation form of
Sekiguchi and Fukugita (2000),

(B − V )0 =t0 + t1 log Teff + t2 (log Teff)
2 + t3 (log Teff)

3 + f1[Fe/H]

+ f2[Fe/H]2 + d1[Fe/H] log Teff + g1 log g + e1 log g log Teff .

(4.51)

With the provided log g and Teff and the chosen [Fe/H]=0, the estimated
rotation period with solar age t = 4.65 Gyr is shown by the green-dots in
Fig. 4.5 overplotted with the data from McQuillan et al. (2014) in red-dots,
the location of the Sun is shown by black-asterisk.

The second step, we interpolate the obtained theoretical distribution
above by using the polynomial function with the variable is only Teff and
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so we get the relation PMS = PMS(Teff). From this simple relation, we se-
lect a subsample that contains stars which are inside the range of PMS ± 2.0
(days).

Then, the final step, from this subsample we perform a simple polynomial
fit to the observed data with the variable is now the mass (M) to obtain the
relation PMS(M). As a result of the interpolation by using the function
PMS = a0 + a1M + a1M

2 + a3M
3, the coefficients ai are,

a0 = 0.5666± 0.0102, a1 = −0.6668± 0.0454,

a2 = 0.8944± 0.0619, a3 = −0.5674± 0.0264.
(4.52)

Therefore, to summary, the rotation period that is needed to calculate
the filling factor, Eq. 4.48, can be computed either in two ways: one with
the constant value of PMS ≈ 25 days, or the deduced

PMS(M, t) = PMS(M)t0.566, PMS(M) = a1+a2M+a3M
2+a4M

3, (4.53)

with the interpolated coefficients ai are listed in Eq.4.52.
Figure. 4.6 shows the theoretical relation between log Ṁ and logL of

three selected models 0.9, 1.0 and 1.2M⊙ with Z = 0.017 by using this self-
consistent mass loss scheme over with the data taken from Cranmer and
Saar (2011). The prediction by using both ways of PMS as discussed above is
shown with distinguished labels, namely, “FORM1” is by using the constant
PMS and “FORM2” is by using the deduced relation in Eq. 4.53. We find
our model of 1M⊙ predicts very well the mass loss rate of the Sun in both
cases. We find Ṁ ≈ 3.04 10−14M⊙/yr by using the FORM1 scheme, while the
FORM2 gives Ṁ ≈ 2.3 10−14M⊙/yr against the observed value from Cranmer
and Saar (2011), Ṁ = (2.0−3.16) 10−14M⊙/yr. However, we should mention
that more detailed calibrations should be done before we provide any further
useful information on this subject as well as the computed tracks, and will
be reported in the coming works.
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Figure 4.6: Mass loss rate as function of luminosity. The data is displayed
in grey-crosses with the highlighted position of the Sun in black-dot. The
relation from selected models of 0.9, 1.0 and 1.2M⊙ are shown in colour-lines.



Chapter 5

PARSEC V2.0: Stellar tracks
with rotation

In this chapter, I will present the new comprehensive collection of stellar
evolutionary tracks with the rotation that is computed with the PARSEC
V2.0 code. For this purpose, calculations of rotating low- and intermediate-
mass stellar models are intensively performed with this most updated version.
The recent calibration of the extra mixing from overshooting and rotation is
included in combination with several improvements in nuclear reaction net-
work, treatment of convective mixing, mass loss, and other physical input
parameters. This chapter is based on the paper Nguyen et al. (2022) and
will be structured in four sections. Section 5.1 will show the motivations and
aims that we want to achieve in this project. Section. 5.2 reviews the main
input physics used in this present calculation. The particular attention is
paid to differences with respect to the previous non-rotating models, given
the important physical input changes. In Sect. 5.3, the effects of rotational
mixing on the evolution of our new stellar models will be shown. The com-
parison of our current models with previous non-rotating ones as well as with
other existing models in the literature will be discussed in Sect. 5.4.

5.1 Motivation and aims

The PAdova and tRieste Stellar Evolutionary Code (parsec) was first im-
plemented in Bressan et al. (2012) and then used in several works aimed
at producing large grids of stellar evolutionary tracks and isochrones. For
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instance, Chen et al. (2014) extended the calculation to very low-mass star
models, Tang et al. (2014) and Chen et al. (2015) pursued the calculation of
massive stars up to 350 M⊙, and Fu et al. (2018) studied the evolution with
α-enhanced compositions. Extended sets of isochrones using parsec tracks
were described in Bressan et al. (2012) and Marigo et al. (2017). More re-
cently, a significant development was presented in Costa et al. (2019b), who
included the effects of rotation in the new version of the code, parsec V2.01.

As described in von Zeipel (1924a), von Zeipel (1924b), Kippenhahn et al.
(1970), Zahn (1992), Meynet and Maeder (1997), Chieffi and Limongi (2013),
and Chieffi and Limongi (2017), rotation might have a significant impact on
the stellar structure induced by geometrical distortion, extra mixing, and
enhanced mass-loss rates. Observational evidence regarding the large frac-
tions of rapidly rotating stars among the Milky Way field stars (e.g. Royer
et al., 2007) and in star clusters in Magellanic Clouds (e.g. Dupree et al.,
2017; D’Antona et al., 2017) suggests that rotation may indeed become an
important driving agent for stellar evolution. Furthermore, it may be con-
current with other physical processes that drive extra mixing, such as con-
vective overshooting (see e.g. Jermyn et al., 2018; Costa et al., 2019b). The
effect of extra mixing caused by overshooting from the unstable core was
introduced a few decades ago (e.g. Saslaw and Schwarzschild, 1965; Maeder,
1975; Roxburgh, 1978; Bressan et al., 1981, 1986; Bertelli et al., 1984, 1990b;
Bressan et al., 1993; Meynet et al., 1994b; Fagotto et al., 1994a,b; Girardi
et al., 2000b) and is now incorporated into most libraries of stellar evolu-
tionary tracks (e.g. Demarque et al., 2004; Pietrinferni et al., 2004; Weiss
and Schlattl, 2008; Paxton et al., 2011, 2018; Mowlavi et al., 2012; Bressan
et al., 2012; Bossini et al., 2015; Spada et al., 2017; Hidalgo et al., 2018).
Many authors also suggest a variation in the overshooting efficiency, usually
parameterised by the efficiency parameter λov, with the initial mass (see e.g.
Pols et al., 1998). Analysis of double-lined eclipsing binaries (DLEBs; Claret
and Torres, 2016, 2017, 2018, 2019) supports a growing efficiency in the mass
range ∼ 1−1.7 M⊙ with a plateau in λov above this range. However, the best
fits of the DLEB parameters require a certain degree of stochasticity in some
other important parameters, such as the mixing length scale, which in our
opinion is difficult to accept, particularly in the case of binary components
with the same mass. Indeed, Costa et al. (2019b) show that the observa-

1Stellar tracks and isochrones computed in this work are available at the following links:
http://stev.oapd.inaf.it/PARSEC and http://stev.oapd.inaf.it/cmd, respectively.

http://stev.oapd.inaf.it/PARSEC
http://stev.oapd.inaf.it/cmd
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tions of DLEBs could be well explained by the interplay between a ‘fixed’
overshooting efficiency and a varying initial rotational velocity. In fact, the
latter also depends on environmental conditions. The results obtained by
Costa et al. (2019b) can thus be considered an important step in the calibra-
tion of the efficiency of the overshooting phenomenon, at least in the domain
of low- and intermediate-mass stars. This calibration has been subsequently
supported by a combined analysis of Cepheids in the Large Magellanic Cloud
(LMC) star cluster NGC1866 and the CMDs of its multiple stellar popula-
tions (Costa et al., 2019a).

Following these initial tests performed with the new code, we present
in this chapter the new sets of evolutionary tracks and the corresponding
isochrones in the next chapter for the parsec models with rotation. The
initial mass range presented in this chapter goes from 0.09 M⊙ to 14 M⊙.
Models of more massive stars have already been computed for some partic-
ular purposes (Spera et al., 2019; Goswami et al., 2021; Costa et al., 2021;
Goswami et al., 2022; Costa et al., 2022), but the full set including rotation
is still in preparation and will be presented in a dedicated paper.

All the tracks start at the PMS phase and are terminated at a stage that
depends on the initial mass: at ages largely exceeding the Hubble time; at the
initial stages of the thermally pulsing asymptotic giant branch (TP-AGB); or
at carbon exhaustion for more massive stars. The tracks are computed with
an initial metal content ranging from Z = 0.004 to 0.017 and with an initial
He mass fraction that follows a linear enrichment law (Bressan et al., 2012).
Tracks at lower metallicity are computed with an enhanced partition, and
the details of these models with rotation will be presented in an upcoming
paper. For every metallicity, we consider initial rotation rates from zero to
the critical value. The theoretical isochrones are then derived and converted
into several photometric systems which will be presented in Chapter 6.

5.2 Input physics

5.2.1 Solar metallicity, opacities, nuclear reactions, mix-
ing length, equation of state

The exact abundance of elements heavier than 4He in the Sun is still known
with some uncertainty. The early compilation by Grevesse and Sauval (1998),
consisting of the abundances of 90 elements from lithium to uranium, yielded
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the solar metallicity Z⊙ = 0.017. Later, Asplund et al. (2006) and Asplund
et al. (2009) claimed lower values, Z⊙ = 0.0122 and Z⊙ = 0.0134, respec-
tively, or Lodders et al. (2009) with Z⊙ = 0.0141. Recent solar wind mea-
surements give Z⊙ = 0.0196± 0.0014 (von Steiger and Zurbuchen, 2016). In
this work, we adopt the solar-scaled mixtures by Caffau et al. (2011) where
the current solar metallicity is Z⊙ = 0.01524, which is an intermediate value
between those preferred by Asplund et al. (2009) and von Steiger and Zur-
buchen (2016). Further extensions to other metallicity ranges with more
suitable input physics, for example, α−enhanced mixtures, will be provided
in the forthcoming works.

The Rosseland mean opacities, κrad, are the same as those of parsec
V1.2S. In the high temperature regime, 4.2 ≤ log(T/K) ≤ 8.7, the opacity
tables are provided by the Opacity Project At Livermore (OPAL; see Iglesias
and Rogers, 1996), while in the low temperature regime 3.2 ≤ log(T/K) ≤
4.1 we generate the opacity tables with the AESOPUS tool (see Marigo and
Aringer, 2009, for details). In the transition region 4.1 ≤ log(T/K) ≤ 4.2,
the opacities are linearly interpolated between the OPAL and AESOPUS
values. The contribution from conduction is computed following Itoh et al.
(2008).

The transport of convective energy is described by the mixing length the-
ory of Böhm (1958), adopting the value of mixing-length parameter αMLT =
1.74 calibrated on the solar model by Bressan et al. (2012) (see also Sonoi
et al. 2019 for more calibrations). It is interesting, however, to note that the
variation in αMLT for different stars has recently been remarked upon; for ex-
ample, Viani et al. (2018) suggest a dependence of αMLT/αMLT⊙ on gravity,
effective temperature, and metallicity, while the study of Song et al. (2020) in
FGK stars mainly focuses on the impact from metallicity. While these recent
studies might be an inspiration for future works, at the moment we use the
solar mixing-length parameter for all calculations, αMLT = αMLT⊙ = 1.74.
The EOS in parsec V2.0 is computed with the freely available FREEEOS
code developed by A.W. Irwin2.

The nuclear reaction network, after the updates by Fu et al. (2018) and
Costa et al. (2021), includes the p-p chains, the CNO tri-cycle, the Ne-Na,
and Mg-Al chains, 12C, 16O and 20Ne burning reactions, and the α-capture
reactions up to 56Ni, for a total of 72 different reactions tracing 32 isotopes:
1H, D, 3He, 4He, 7Li, 7Be, 12C, 13C, 14N, 15N, 16O, 17O, 18O, 19F, 20Ne, 21Ne,

2http://freeeos.sourceforge.net/
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22Ne, 23Na, 24Mg, 25Mg, 26Mg, 26Al, 27Al, 28Si, 32S ,36Ar, 40Ca, 44Ti, 48Cr,
52Fe, 56Ni, and 60Zn. We note that in the present calculations we do not go
beyond the central carbon burning (but see Costa et al., 2021, for massive
stars).

5.2.2 Convective Overshooting

Core overshooting (COV): The convective unstable region is well defined
within the framework of the Schwarzschild criterion (Schwarzschild, 1958).
However, in reality, the convective elements can travel up to a certain point
beyond the border of the unstable region until their velocity drops to zero.
This phenomenon is called overshooting. The determination of the edge of
the true convective core was described in Bressan et al. (1981). In parsec,
the overshooting parameter (λov) is taken across the unstable border; there-
fore, the COV length is lov ∼ 1

2
λovHP , where HP is the local pressure scale

height.
Envelope overshooting (EOV): The overshooting downwards from the

base of the convective envelope has been invoked to explain the observa-
tions of the location of the red-giant-branch bump (RGBB) or the extension
of blue loops in the CMD (Alongi et al., 1991; Cassisi et al., 2002; Tang et al.,
2014; Fu et al., 2018). Solar calibration with helioseismic data has been done
by Christensen-Dalsgaard et al. (2011).

In parsec models, the treatment of overshoot from both the convective
core and envelope are related to the initial masses. For this reason, we
describe the values of overshooting parameters that we use in our calculations
more completely in the next subsection.

5.2.3 Mass Range for Core and Envelope Overshooting

In a narrow interval of masses around 1 M⊙, there is a transition between
stars that burn central hydrogen in a radiative core and those that burn hy-
drogen in a convective core due to the predominance of the CNO-cycle over
the pp-cycle. Assessing the efficiency of COV in this mass range is a par-
ticularly delicate matter both theoretically (e.g. Bertelli et al., 1986, 1990a;
Aparicio et al., 1990; Ventura et al., 1998; Mowlavi et al., 2012; Higl et al.,
2021) and observationally (e.g. Torres et al., 2014; Claret and Torres, 2016,
2018; Noll et al., 2021). This happens because the inclusion of overshooting
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Figure 5.1: Transition masses (MO1, MO2, MHeF) as a function of metallicity
in the case of no rotation. The red and green lines indicate MO1 and MO2,
respectively; The blue line indicates MHeF. The red area indicates models
with a radiative core without convective overshooting. The yellow area de-
lineates the region of growing overshooting efficiency, while full overshooting
efficiency occurs in the region above the green line. The vertical dotted grey
lines mark the six computed initial metallicities. The solar metallicity is
Z⊙ = 0.01524, from Caffau et al. (2011).

modifies the structure and the following evolution of the stars in an irre-
versible way. In fact, the smallest stars in this mass range reach the zero-age
main sequence (ZAMS) with small convective cores that disappear as the
central H-burning proceeds. If we apply an efficient overshooting to these
models, the convective cores do not disappear, but instead tend to become
larger and larger, producing a significantly different evolution. To avoid this
behaviour, which is not favoured by observations (Costa et al., 2019b; Girardi
et al., 2000a), we define the limiting mass MO1 as the largest initial mass of a
star showing a vanishing convective core during the early hydrogen-burning
phase, calculated without overshooting. This mass depends on the initial
chemical composition adopted. On the other hand, slightly above this mass



CHAPTER 5. PARSEC V2.0: STELLAR TRACKS 71

limit, observations favour an already well-developed overshooting efficiency,
with λov = λov,max. This second mass limit is defined asMO2 = MO1+0.3M⊙.

In parsec V2.0, we define an initial mass range where the transition from
models with a radiative core to models with a fully grown convective core
takes place, MO1 ≤ Mi ≤ MO2. For initial masses Mi below MO1, the core
is stable against convection and energy is transported by radiation. For Mi

between MO1 and MO2, the overshooting parameter is let to increase linearly
from λov = 0 up to a maximum value λov,max, in order to have a smooth
transition in the properties of the stars. For Mi ≥ MO2, the overshoot is
applied with its maximum efficiency, λov = λov,max = 0.4 following Costa
et al. (2019b). This value corresponds to an overshooting length, lov, which
extends about 0.2 HP above the Schwarzschild border.

As far as the envelope overshooting is concerned we recall that, for stars
with mass Mi < MO1, we adopted Λe = 0.5 HP , as inspired by Fu et al.
(2018); for stars with mass Mi > MO2, we applied the maximum efficiency,
as we did for COV; therefore, Λe = 0.7 HP , as used in Alongi et al. (1991)
and Bressan et al. (2012). In the transition region, Λe of a star is linearly
interpolated between 0.5 HP and 0.7 HP . Table 5.1 shows the values of λov

and Λe adopted for each initial mass.

5.2.4 Rotation

With parsec V2.0 we compute evolutionary tracks of rotating stars using
the methodology developed by Kippenhahn and Thomas (1970) and Meynet
and Maeder (1997), implemented and described in Costa et al. (2019a) and
Costa et al. (2019b). The basic quantity describing the effect of rotation in
the stellar structure is the angular rotation rate, ω, defined as

ω =
Ω

Ωc

, Ωc =

(
2

3

)3/2
√

GM

R3
pol

, (5.1)

where Ω is the angular velocity, Ωc is the critical angular velocity (or breakup
velocity), that is, the angular velocity at which the centrifugal force is equal
to the effective gravity at the equator. G is the gravitational constant, M is
the mass enclosed by Rpol that is the polar radius.

We considered a wide range of initial rotation rates, from non-rotating
models (ωi = 0) to models initially very near the critical breakup rotational
velocity (ωi = 0.99). It is commonly accepted that LMSs do not reach high
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values of the rotational speed, compared to intermediate and high-mass stars.
McQuillan et al. (2014) reports a sample of the rotation period of more than
34,000 MS stars. In their Figure 1, there is a clear trend for larger periods in
smaller masses. This trend inevitably implies that stars with lower masses
have lower initial rotational speeds.

On the other hand, rotation may reach high initial values for masses
where convection is well developed (Costa et al., 2019b). For this reason, in
analogy to what we did for the efficiency of convective COV, rotation was
not considered for Mi≤ MO1 while, for Mi≥ MO2, models were computed for
the following initial rotation rates: ωi = 0.0, 0.30, 0.60, 0.80, 0.90, 0.95, 0.99.
For stars with an initial mass in the range MO1 ≤ Mi< MO2 we computed
models with an initial rotation rate up to a maximum value of

ωi,max(M) ≡ 0.99

(
M −MO1

MO2 −MO1

)
. (5.2)

It is also important to mention that, in this version, the rotation is
switched on a few models before the ZAMS phase. At this stage, the code
computes the angular velocity Ω that corresponds to the initial rotation rate
ωi and assigns it to each shell of the star, forcing a solid body rotation. From
the ZAMS on, the solid body rotation constraint is relaxed, and the stellar
rotation evolves accordingly with the conservation and the transport of an-
gular momentum.

5.2.5 Transport of angular momentum and chemical
mixing

The transport of angular momentum is treated using the pure diffusive ap-
proximation (Heger et al., 2000), where the total diffusion coefficient comes
from three components,

D = Dmix +Ds.i. +Dm.c., (5.3)

where Dmix is the diffusion coefficient in the convective zones. The last two
terms are related to shear instability and meridional circulation. To compute
the diffusion coefficient of the shear instability, we use the formula by Talon
and Zahn (1997), which reads

Ds.i. =
8

5

Ric(rdΩr/dr)
2

N2
T/(K +Dh) +N2

µ/Dh

, (5.4)
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where the Brunt-Väisälä frequency is split into N2
T and N2

µ, Ric = 1/4 is
the critical Richardson number, K is the thermal diffusivity, and Dh is the
coefficient of horizontal turbulence.

When angular momentum transport is treated with the diffusive ap-
proach, the diffusion coefficient for the meridional circulation remains to be
defined. Some authors define it as the product of circulation velocity and its
typical length scale (Heger et al., 2000), while others use the same coefficient
provided for chemical transport (Chieffi and Limongi, 2013). For the sake of
simplicity, we decided to follow the latter approach. Therefore, we adopt the
coefficient by Chaboyer and Zahn (1992), which reads

Dm.c. ≃
|rU |2

30Dh

, (5.5)

where U is the radial component of the meridional circulation velocity (see
also Maeder, 2009; Potter et al., 2012). It should be noted that, as discussed
by Chaboyer and Zahn (1992) and Zahn (1992), this coefficient takes into
account the net effect of the meridional current and horizontal diffusion for
chemical species. A more detailed description of angular momentum trans-
port should include meridional circulation as an advective process. However,
due to the difficult numerical implementation of the advective-diffusive treat-
ment, and the fact that the angular momentum redistribution goes in the
direction of flattening ω profiles during the MS phase (Chieffi and Limongi,
2013), we decided to use the simpler diffusive approach.

Future parsec versions will include the full advective-diffusive treatment
for angular momentum transport. We refer to Costa et al. (2019b) for more
details on the numerical implementation of rotation.

Another important difference of this new version, parsec V2.0, with
respect to parsec V1.2S concerns chemical mixing. While in the latter
version the gas was chemically homogenised within convective regions, in the
present version we adopt a diffusive approach and solve a unique equation
for chemical variation due to nuclear reactions, turbulent motions, molecular
diffusion, and rotational mixing. The turbulent diffusion coefficient is cal-
culated with the usual approximation DT = 1

3
vclc where the velocity of the

eddies, vc, and their mean free path, lc are obtained from the mixing length
theory (Böhm-Vitense, 1958).

We note that, while all the above processes can be treated at once, molec-
ular diffusion can be switched off in models where the COV reaches its max-
imum efficiency (above M ≥ MO2), because, in such models, the effects
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of molecular diffusion become negligible with respect to turbulent diffusion
and, eventually, rotational mixing. This allows a speed-up of the calculations
without loss of generality. We discuss the effects brought by adopting either
of the aforementioned mixing schemes later on.

5.2.6 Mass loss rates

The effects of mass loss in the evolution of low and IMSs have been exten-
sively studied in many papers (e.g. Reimers, 1975; Bloecker, 1995; Schröder
and Cuntz, 2005; Cranmer and Saar, 2011; Rosenfield et al., 2014; Kalirai
et al., 2008; Catalán et al., 2008; Salaris et al., 2009). In parsec models, as
well as in previous models of the same group (Girardi et al., 2000a; Bertelli
et al., 2008), mass loss was not activated in the calculations of the low-mass
tracks but only at the stage of isochrone calculations. This approximation has
been tested in many different applications and has always been considered
acceptable from our group. It derives from the fact that the RGB evolution
of LMSs is just marginally affected by this process, which eventually be-
comes important only very near to the tip of the red-giant branch (TRGB).
Therefore, mass loss just causes a decrease in mass between the RGB and
the ‘zero-age horizontal branch’ (ZAHB) stage. This decrease was easily
taken into account when interpolating the helium-burning tracks to prepare
isochrones. This method allows a great flexibility (different mass-loss pre-
scriptions can be tested without recomputing the evolutionary tracks) and
speed-up at the level of isochrone calculation. In the more advanced phases
of low and IMSs, typically from the early up to the end of the TP-AGB
phase, mass-loss is one of the main processes driving the evolution and can-
not be neglected. However, the evolution of stars in these phases is computed
subsequently with the colibri code (Marigo et al., 2013), where the most
updated mass-loss rates are implemented.

With the inclusion of rotation, mass loss cannot be decoupled from evo-
lution anymore and must be included in all evolutionary phases. This is
because rotation may enhance the mass loss, affecting the evolutionary path
of the star. This may become dramatic when the star is evolving in the
proximity of the critical breakup velocity.

In this work, we apply the Reimers (1975) and Reimers (1977) law for
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non-rotating LMSs, which is

Ṁ(ω = 0) = η × 1.343× 10−5 L1.5

mT 2
eff

, (5.6)

where Ṁ is the mass-loss rate in M⊙/yr, L andm are the luminosity and mass
in solar units, respectively, and Teff is the effective temperature in K. The η is
an efficiency coefficient that is generally calibrated against CMDs of globular
clusters, for instance in Renzini and Fusi Pecci (1988) where the derived η is
0.35, or Aaronson and Mould (1982) who claimed that η = 0.5− 0.7 fits well
their data of the red globular clusters in the Magellanic Clouds. In this work,
we adopt η = 0.2, as more recently indicated from the asteroseismic analysis
of the two old open clusters NGC 6791 and NGC 6819 by Miglio et al. (2012).
As described in Chen et al. (2015), for non-rotating intermediate-mass and
massive stars we adopt the mass-loss rate from de Jager et al. (1988) and
Vink et al. (2001), respectively, both corrected by a factor that assumes the
same dependence on the surface metallicity (i.e. Ṁ ∝ (Z/Z⊙)

0.85 M⊙/yr).
In the case of rotating stars, the mass-loss rates are enhanced by a factor

that depends on the surface tangential velocity, v, as expressed in Costa et al.
(2019a) and Costa et al. (2019b). By numerically solving the fluid equations
of a radiation-stellar wind model, Friend and Abbott (1986) yield a relation
where the mass-loss rate of a rotating star is modified by a factor with respect
to the mass loss of a non-rotating model, which is

Ṁ(ω) = Ṁ(ω = 0)

(
1− v

vcrit

)−ξ

, (5.7)

where ξ = 0.43 is provided in Bjorkman and Cassinelli (1993) by fitting the
numerical result of Friend and Abbott (1986). Ṁ(ω = 0) is the mass-loss
rate in case of zero rotation and vcrit is the surface critical velocity, which is
usually defined as (Heger et al., 2000)

v2crit =
Gm

r
(1− Γe), (5.8)

where G, m, and r are the gravitational constant, mass, and radius in solar
units, respectively, and Γe is the Eddington factor. In this recent work, the
dependence of Γe with the angular velocity is neglected, instead, it should be
considered for angular velocities near the critical one (Maeder and Meynet,
2000).
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5.3 Evolutionary tracks

Before going into more detail on the analysis of our stellar evolutionary
tracks, we summarise some of the main points on the adopted input physics.
Firstly, we computed models with six initial metallicities: Z = 0.004, 0.006,
0.008, 0.01, 0.014, 0.017, which are relevant for the study of young and
intermediate-age star clusters in the Milky Way disc and the Magellanic
Clouds. The initial helium mass fraction follows the enrichment law: Y =
Yp +

∆Y
∆Z

Z, where Yp = 0.2485 is the primordial He abundance (Komatsu
et al., 2011); the helium-to-metal enrichment ratio ∆Y/∆Z = 1.78 is based
on the solar calibration in Bressan et al. (2012). More specifically, the cor-
responding initial He mass fraction is Y = 0.256, 0.259, 0.263, 0.267, 0.273,
0.279; and the initial hydrogen abundance X = 0.740, 0.735, 0.729, 0.723,
0.713, 0.704.

Second, the initial rotation rate is parameterised by ωi: for each set of
metallicity above, we compute models with rotation rates going from zero to
very near the critical value, ωi = 0.00, 0.30, 0.60, 0.80, 0.90, 0.95, 0.99. The
treatment of rotation rate for every single star in terms of mass is described
in Sect. 5.2.4.

Third, the convective overshoot: we apply the overshoot from both the
convective core and envelope in the calculations as described in Sects. 5.2.2
- 5.2.3.

Lastly, the mass intervals: For convenience, we describe the evolutionary
tracks in three mass ranges: (i) VLMSs have initial masses Mi ≲ Mvlm,
where Mvlm is the smallest initial mass of a star that is able to ignite helium
within the Hubble timescale. Stars with mass smaller than this limit spend
their lifetime mainly on the hydrogen-burning phase; (ii) LMSs have initial
masses between Mvlm and MHeF, which includes MO1 and MO2 as mentioned
above; and (iii) IMSs with Mi > MHeF. MHeF is defined as the transition
mass between stars that develop an electron-degenerate core after the MS
and hence develop an extended RGB with a He-flash at its tip, and those
that do not, hence quietly igniting He-core burning in a non-degenerate core.

Figure 5.1 shows the dependence of MO1, MO2 and MHeF as a function
of metallicity, for non-rotating models. We also draw the six metallicities
computed in this project. Table 5.1 lists the values of λov and Λe adopted
for each initial mass. Finally, the database of all stellar evolutionary tracks
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Table 5.1: Values of COV and EOV parameters, λov and Λe/Hp, respectively,
which correspond to each initial mass, Mi/M⊙, in six metallicities (Zs). The
value of the transition masses, Mvlm, MO1, and MO2, of each metallicity is
also noted.

λov Λe/Hp
Z= 0.017 Z= 0.014 Z= 0.01 Z= 0.008 Z= 0.006 Z= 0.004

Note
Mi/M⊙ Mi/M⊙ Mi/M⊙ Mi/M⊙ Mi/M⊙ Mi/M⊙

0.000 0.000 < 0.80 < 0.80 < 0.75 < 0.75 < 0.70 < 0.70 Mvlm

0.000 0.500 < 1.18 < 1.16 < 1.14 < 1.14 < 1.09 < 1.06
0.000 0.500 1.18 1.16 1.14 1.14 1.09 1.06 MO1

0.027 0.513 1.20 1.18 1.16 1.16 1.11 1.08
0.053 0.527 1.22 1.20 1.18 1.18 1.13 1.10
0.080 0.540 1.24 1.22 1.20 1.20 1.15 1.12
0.107 0.553 1.26 1.24 1.22 1.22 1.17 1.14
0.133 0.567 1.28 1.26 1.24 1.24 1.19 1.16
0.160 0.580 1.30 1.28 1.26 1.26 1.21 1.18
0.187 0.593 1.32 1.30 1.28 1.28 1.23 1.20
0.213 0.607 1.34 1.32 1.30 1.30 1.25 1.22
0.240 0.620 1.36 1.34 1.32 1.32 1.27 1.24
0.267 0.633 1.38 1.36 1.34 1.34 1.29 1.26
0.293 0.647 1.40 1.38 1.36 1.36 1.31 1.28
0.320 0.660 1.42 1.40 1.38 1.38 1.33 1.30
0.347 0.673 1.44 1.42 1.40 1.40 1.35 1.32
0.373 0.687 1.46 1.44 1.42 1.42 1.37 1.34
0.400 0.700 1.48 1.46 1.44 1.44 1.39 1.36 MO2

0.400 0.700 > 1.48 > 1.46 > 1.44 > 1.44 > 1.39 > 1.36

that we produced in this work is available at 3.

5.3.1 Very-low-mass stars

The parsec models for VLMSs (0.09 M⊙ ⩽ Mi ≲ Mvlm) were described in
Chen et al. (2014) and successfully calibrated against the mass-radius rela-
tion of a sample of eclipsing binaries. For this purpose, the authors slightly
modified the T − τ relations provided by PHOENIX (BT-Settl) atmosphere
models (see Asplund et al., 2009; Allard et al., 2012). After this calibration,
the corresponding isochrones were able to reproduce well the very low ZAMS
of old globular clusters NGC 6397 and 47 Tuc, and of the open clusters M67
and Praesepe. These models were also adopted to fit Gaia DR2 CMD di-
agrams (Gaia Collaboration, 2018a). Here, we continue to use these very
low-mass evolutionary tracks, referring to Chen et al. (2014) for all details.

3http://stev.oapd.inaf.it/PARSEC

http://stev.oapd.inaf.it/PARSEC
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Figure 5.2: HRD of stars with initial masses of 1.44 M⊙ and 5 M⊙ with
the composition Z = 0.008, Y = 0.263 for initial rotation rates ωi = 0.00,
0.30, and 0.90 (cyan, red, and orange lines, respectively). We do not plot the
evolution of the PMS phase, for sake of clarity.

5.3.2 Low-mass stars

From the PMS to the tip of the RGB

We computed models of LMSs with initial masses in the interval from Mvlm

to MHeF. The mass step is 0.05 M⊙ in the mass range from Mvlm to 0.8 M⊙,
0.02 M⊙ for the range from 0.8 M⊙ to MO2, and 0.1 M⊙ for masses above
MO2. All the LMSs tracks begin from the PMS phase and end at the TRGB,
where the star ignites its central He under strongly degenerate conditions
(the so-called He flash).

Figure 5.2 shows the Hertzsprung-Russell diagram (HRD) of 1.44 M⊙
stars with different initial rotation rates. It should be noted that, for rotat-
ing stars, Teff is actually an average value over the isobaric surface; more
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precisely it is the value that a non-rotating star with the same ‘volumetric
radius’ would have to produce the same total luminosity. The volumetric
radius is defined as the radius of a sphere with the same volume as that
of a rotating star. The local effective temperature characterising different
points at the surface of the star, instead, is a quantity that varies along the
co-latitude angle (θ = 0◦ aligns with the rotation axis), becoming cooler to-
wards the equator. This can be explained by the proportionality between T 4

eff

and effective gravity geff , based on von Zeipel’s theorem (von Zeipel, 1924b;
Espinosa Lara and Rieutord, 2007). In turn, the local effective gravity is
reduced by the centrifugal force, which is higher for a higher rotation rate.
Therefore, as we see in Fig. 5.2, the higher the rotation rate, the cooler the
star is (by means of the average value) during the MS. In the post-MS phases,
the conservation of angular momentum forces the surface angular velocity to
drop down when the star expands, hence causing the star to evolve along the
same path as non-rotating stars.

Another effect of rotation is that the faster the stars rotate, the longer
they stay in the MS phase (Eggenberger et al., 2010; Ekström et al., 2012;
Costa et al., 2019a). Fig. 5.3 shows the ratio of the MS duration between
models with different ωi and their standard non-rotating counterparts, ωi = 0,
as a function of the initial mass Mi and for Z = 0.01. We see that this ratio
is higher than 1 for all rotating models and becomes higher as ωi increases.
In the low-mass range (M ≲ 1.8 M⊙) the ratio remains modest, while it
increases significantly in the domain of intermediate-mass and massive stars.
This is understandable because of the lower efficiency of rotational mixing
in LMSs with respect to intermediate and massive ones, as will be discussed
later in Sect. 5.3.3.

We also find that in the low-mass range, the size of the convective core
does not depend significantly on ωi. This can be seen in Fig. 5.4 for the
models of Mi = 1.44 M⊙ and Z = 0.017.

After the formation of the H-exhausted core, the star enters into the sub-
giant phase and then ascends the RGB. Expansion of the envelope leads to
a decrease in surface rotation velocity. This impact is illustrated in Fig. 5.5,
where the equatorial tangential velocity drastically decreases after leaving the
MS. The drop-down on rotation rate results in evolution as a non-rotating
star, as already mentioned and as illustrated in the HRD of Fig. 5.2. We
found that the luminosity at the TRGB phase is almost the same for any
applied rotational rates (see also Ekström et al., 2012; Georgy et al., 2013).

For instance, the TRGB luminosity of the Z=0.004, Mi = 1.36 M⊙ star
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Figure 5.3: Ratio between the MS lifetimes of rotating and non-rotating
models of the same mass, as a function of initial mass in the set Z = 0.01, Y =
0.267. This lifetime is measured from the ZAMS until the exhaustion of the
central H (Xc < 10−5). Different values of ωi, from 0 to 0.99, are considered,
as indicated in the legend.
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Figure 5.4: Time evolution of the mass of the convective core (Mc/Mtot)
during the H-burning phase for the model of Mi = 1.44 M⊙ and Z = 0.017.

is logL/L⊙ = 3.38771, 3.38934 and 3.38919 for the models with ωi = 0.00,
0.60 and 0.90, respectively. We see that the difference is less than 0.0016 dex
in any case, and this is due to the slightly heavier He-core mass discussed
above. In general, we found that the TRGB luminosity of our models with
M ≤ 1.5 M⊙ is about logL/L⊙ ∼ 3.385 − 3.420, depending on the initial
metallicity. This result is important in the context of the TRGB method of
distance determinations, and the recent ‘tension’ in the values of the Hubble
constant H0 (see Freedman et al., 2019, 2020, and references therein for more
details).

On the other hand, we also checked the effect of rotation on the mass-
loss rate. Fig. 5.6 shows the mass-loss rate of the 1.39 M⊙ model with
metallicity Z = 0.006, for three initial rotation rates, ωi = 0.00, 0.30 and
0.95. We plot log Ṁ from the ZAMS to the end of the RGB. As expected
from equation (5.7), during the MS phase the star with higher rotation rates
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Figure 5.5: Evolution of surface tangential velocity at the equator, Veq, versus
the time, t, scaled to the MS duration, τMS. The four selected mass models
– 1.44 M⊙ (red), 1.6 M⊙ (green), 5 M⊙ (blue), and 13 M⊙ (orange) – are
shown, with two initial rotation rates – ωi = 0.60 (solid line) and ωi = 0.90
(dotted line) – from the set with Z = 0.014, Y = 0.273.

has higher mass-loss rates. However, in the RGB phase, because of the
decline of the surface rotational velocity, it evolves as a non-rotating star
but with a slightly older age. In general, stars lose their mass at a rate
of about (0.6 − 6) × 10−8 M⊙/yr at the TRGB stage. This result is based
on the Reimers law that we adopted in our models. Interesting alternative
models for mass loss have been proposed (Cranmer et al., 2007; Cranmer and
Saar, 2011), which will be the subject of other subsequent work. We note
that during the stellar contraction phase just after the end of the MS, the
tangential velocity may reach its critical value, at least for models with the
highest initial rotation rates. This is the case for the model with ωi =0.95
shown in Fig. 5.6. In this case, the mass loss as provided by equation (5.7),



CHAPTER 5. PARSEC V2.0: STELLAR TRACKS 83

Figure 5.6: Mass-loss rate as a function of time of star Mi = 1.39 M⊙,
Z = 0.006 for three rotation rates, ωi = 0.00, 0.30, and 0.95 (cyan, red, and
orange lines, respectively).

is enhanced by mechanical effects (Georgy et al., 2013; Costa et al., 2019a)
as shown by the relative peak of about two orders of magnitude with respect
to the other tracks, before entering the RGB phase.

Concerning the total mass lost on the RGB, we find that it is higher for
the smaller initial masses. For non-rotating models of Z = 0.004, the stars
with initial masses Mi = 0.9 M⊙, 1.16 M⊙ and 1.36 M⊙ lose about 11%, 6%
and 4% of their initial mass, respectively. The total mass lost by the stars
at the TRGB is illustrated in Fig. 5.7 for all six sets of metallicity and for
two initial rotation rates, ωi = 0.00 and 0.95 (the solid- and dashed-lines,
respectively). From this figure, we also see that the key role in the total
mass lost by the stars is taken, in decreasing order, by mass, metallicity, and
rotation.

Figure 5.8 shows the difference in He-core mass at the TRGB between
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Figure 5.7: Total mass lost until the TRGB versus initial mass for six different
metallicity sets. Solid and dashed lines represent models with ωi = 0.00 and
ωi = 0.95, respectively.
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Figure 5.8: Difference in He-core mass at the TRGB phase between the ro-
tating models and their non-rotating counterparts, ∆MTRGB

He−core. Three initial
rotating rates are considered: ωi = 0.30, 0.60, 0.95 (solid, dashed, and dotted
line, respectively). The colours represent different initial metallicities. The
solid grey line marks the reference line for ωi = 0 models.

rotating models and their non-rotating counterparts, for three values of ωi =
0.30, 0.60, 0.95 and for six metallicities. The higher the initial rotation rate,
the larger the He-core mass the star has at the tip, at any metallicity. While
the surface rotation at this stage is small even for the largest ωi, in the core
it is still significant, as can be seen in Fig. 5.9. The larger the rotation,
the less concentrated the core is, and a larger core mass is needed to reach
the conditions for He ignition. At the larger initial masses, there is also a
contribution of the more efficient rotational mixing during the MS phase. In
general, the difference is ≤ 0.006 M⊙, depending on ωi. We note that these
differences might affect the location of red clump stars in the HRD. This
issue will be further investigated in a subsequent work.
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Figure 5.9: Internal distribution of angular velocity, Ω. Three selected stages
of models with Z = 0.014, Mi = 1.44 M⊙ are presented: at which the central
hydrogen Xc ≈ 0.3 during the MS (solid lines), at the base of the RGB phase
(dashed lines), and near the TRGB with logL ≈ 3.35 (dotted lines). The
colours represent different selected initial rotation models.

From the ZAHB to the TP-AGB

Low-mass stars develop an electron-degenerate core and climb the RGB until
they undergo the He flash. The latter requires large amounts of CPU times
to be computed in detail (see Kippenhahn et al., 2012; Mocák et al., 2008,
for more details). Therefore, the computation of the evolutionary track is
interrupted during the He-flash and restarted from a ZAHB model with the
same He-core mass and surface chemical composition as the last RGB model.
The initial ZAHB model is built following the method described in Bressan
et al. (2012), taking into account the fraction of He that has been burned
into carbon during the flash so that the degenerate core is lifted into a non-
degenerate state. Then, the star is evolved along the horizontal branch and
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Figure 5.10: He-burning phase of LMSs in the set with Z = 0.01, Y = 0.267.
Tracks with ZAHB masses between 0.481 and 1.95 M⊙ were computed in this
case. A few of these tracks are marked with a different colour (with their
mass in M⊙ indicated in the legend) for reference.

the evolution is terminated again after it experiences a few pulses of the
TP-AGB phase. The evolutionary tracks in the HRD during the post-ZAHB
phases of LMS are illustrated in Fig. 5.10, just for a single set of metallicity.
Similar grids are available for all metallicities.

It is important to point out a few details in these calculations. First,
rotation is turned off for the entire evolution beyond the ZAHB, simply
because at those stages the rotational velocities have become small enough
to not imply significant evolutionary effects.

Second, with respect to the previous version of parsec, the new tracks
include mass loss starting from the ZAMS. Thus, for any given initial metal-
licity, we have different relations MTRGB(Mi) for different ωi. These relations
are merged to obtain a complete unique sequence ofMZAHB(Mi), withM i

ZAHB
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spanning the range from the largest MTRGB to the lowest value compatible
with the thinnest envelope mass along the ZAHB sequence. We also pay
attention to carefully sample the mass interval close to MHeF. We then inter-
polate on the sequence of non-rotating models to obtain a unique complete
Mcore(M

i
ZAHB) relation, which is used to construct the ZAHB model sequence.

5.3.3 Intermediate-mass and massive stars

Intermediate-mass stars are defined as having masses larger than the MHeF

limit and smaller than the Mup threshold for C ignition in the core. Both
limits depend on the initial metallicity and the rotation rate. Massive stars
are computed up to 14 M⊙, leaving more massive stars to a dedicated paper,
which is in preparation. Models with initial masses between MHeF and 2.2
M⊙ are computed with a mass step ∆Mi = 0.05 M⊙; from 2.2 M⊙ up to 6
M⊙, ∆Mi = 0.2 M⊙; up to 10 M⊙, ∆Mi = 0.5 M⊙ and ∆Mi = 1 M⊙ above
Mi = 10 M⊙. All these tracks start on the PMS phase and are interrupted
either after the first few thermal pulses along the AGB or after the ignition
of carbon in the core. All evolutionary tracks in this mass range have been
computed with the maximum overshooting efficiency, (i.e. with λov = 0.4
and Λe = 0.7 HP ) and for all initial rotation rates from ωi = 0.00 to 0.99
(Sect. 5.2.4). The mass-loss rates of rotating stars follow the description in
Sect. 5.2.6, while the formulation of de Jager et al. (1988) was adopted for
non-rotating models.

In Figure 5.2 we have already compared the evolution of a 5 M⊙ model
calculated with three different rotation rates, ωi = 0.0, 0.30, 0.90, with that
of a 1.44 M⊙ model with the same ωi. Rotation impacts the evolution of
IMSs in a way different from the LMSs. At the beginning of the evolution,
only the geometrical effects of rotation are visible: in both cases, the mod-
els that rotate faster are less luminous and cooler. As evolution proceeds,
IMSs develop a convective core surrounded by a radiative envelope where
the meridional circulation works efficiently. As a result, rotational mixing
provides more fresh fuel to the central core, and hence a more massive core
is built up (see Fig. 5.11). This causes the IMSs models that rotate faster
to become more luminous and to increase their MS lifetimes significantly (as
shown in Fig. 5.3). Due to the larger core masses, the higher luminosity is
maintained during all post-MS evolutionary phases. In contrast, in low-mass
models even in the case with the largest rotation rate, the growth of the core
is never so high to make it more luminous than the non-rotating one. At
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Figure 5.11: Evolution of the mass of the convective core (Mc/Mtot) during
the H-burning phase for the model of Mi = 5.0M⊙ and Z = 0.017.

lower masses, rotation affects the effective temperature more than the lumi-
nosity.

Another consequence of rotational mixing during the MS phase is the
transport of nuclear-burned products from the central region to the surface.
This effect does not occur in non-rotating stars until dredge-up events occur
when the stars become red giants. In rotating stars, instead, significant
mixing can occur at much earlier stages. The most evident effect of this
mixing is an enhancement in the surface nitrogen and helium, followed by a
depletion of both oxygen and carbon. Fig. 5.12 shows the evolution of He, C,
N, O abundance, luminosity, effective temperature, and ω, in three stars of
mass 3 M⊙, 5 M⊙, and 9 M⊙, for several initial rotation rates. The faster the
star rotates on the MS, the more N and He appear at the surface, and the
more C and O are depleted. The increase (decrease) in surface abundances
develops gradually during the MS but suddenly jumps up (down) during the
first dredge-up event that occurs after the end of the MS, when the star
becomes a red giant. Afterward, rotational mixing is no longer efficient,



CHAPTER 5. PARSEC V2.0: STELLAR TRACKS 90

and the surface abundances remain constant until, eventually, the advent of
the second dredge-up, which affects higher-mass IMSs, after the core-helium
burning phase.

As can be seen in Figs. 5.2 and 5.12, the increased rotation rates on the
MS also reduce the extension (in Teff) of the blue loop during the central
He-burning phase. This is also an effect of the enhanced mixing caused by
rotation (see the discussion of Costa et al., 2019a, and references therein).

The transition between LMSs and IMSs is set at a mass MHeF, above
which He ignition takes place quietly in a non-degenerate core. Fig. 5.14
shows the value of MHeF as a function of initial rotation rates for the six
metallicities computed in this project. The plot has a resolution of 0.05 M⊙,
which is the mass separation between successive tracks computed around
this mass range. First, lines of different colours illustrate the well-known
dependence of MHeF on the initial metallicity. Second, the dependence of
MHeF on the initial rotation rate. For instance, the Z = 0.004 models have
MHeF values of either 1.85 M⊙ or 1.90 M⊙, while those with Z = 0.017 the
values of 2.00 or 2.05 M⊙. We find that at increasing rotation rates, the
value of MHeF also tends to increase with respect to the non-rotating models.
However, when the initial rotation rate increases to values close to the critical
breakup velocity, MHeF declines again, returning to the value of non-rotating
stars. This behaviour of MHeF cannot be discussed in much detail because
all changes occur within the mass separation step of 0.05 M⊙. However, it is
remarkable that rotation appears to have a limited impact on MHeF.
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Figure 5.12: Evolution of logL, log Teff , rotation rate, ω, and surface abun-
dances of N, C, O, and He at the surface for many initial rotation rates from
ωi = 0.00 to 0.99 (from cyan to grey colours, respectively), for the cases of 3
and 5 M⊙ stars (in the three sets of panels from top to bottom, respectively)
with Z = 0.008, Y = 0.263. The abundances of N, O, and C are by number
and relative to the hydrogen abundance. For He, instead, we present the
surface mass fraction Y .
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Figure 5.13: As in Figure. 5.12 but for the case of 9M⊙ stars.

Figure 5.14: Maximum mass at which the star burns He in the central region
under a strongly degenerative condition, MHeF, versus the initial rotation
rates. The colour refers to six computed metallicities in this work, as indi-
cated in the legend.
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Figure 5.15: HRD comparing tracks between parsec v2.0 (this work, red
lines) and the previous version (parsec v1.2S, green lines) for non-rotating
stars of Z = 0.017 and Y = 0.279. The left-hand panel shows the HRD of
two LMSs with 0.8 and 1.4 M⊙. Their PMS phase is not shown, because
it is essentially the same in the two versions. The inset details the region
around the RGBB for tracks in the mass range 0.8 to 1.4 M⊙ with a step of
0.1 M⊙. The middle panel zooms into the MS regions of the 0.8 and 1.4 M⊙
tracks. The right panel instead compares intermediate-mass models for four
different masses, as indicated.

5.4 Comparison with parsec V1.2S and other

databases

In Figure 5.15 we show a comparison between the selected tracks calculated
with the new version of the code, parsec V2.0, hereafter PS2, and with
the older version, V1.2S, hereafter PS1. In both versions, we use the same
initial chemical composition. In the leftmost panel, we show the case of a
LMS with Mi= 0.8 M⊙. Since this star does not possess a convective core
during the H-burning phase, the HRD is the same for the two versions.

Instead, we recall that during the RGB evolution in the older version,
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PS1, overshooting at the bottom of the convective envelope has not been
considered in the mass range (≤ MO1), producing RGBBs that were too
luminous with respect to the observed ones (Fu et al., 2018). To cope with
this evident discrepancy, in the new version PS2, we include EOV in LMSs
as described in Sects. 5.2.2 - 5.2.3. The effect of adding an extra mixing at
the bottom of the convective envelope is highlighted in the inset of the left
panel in Fig. 5.15, where the RGBBs of stars with masses 0.8 M⊙ ≤ Mi ≤
1.4 M⊙, are shown.

However, in the mass range where stars develop a convective core in the
MS (as in the case of Mi = 1.4M⊙), COV and EOV are fully considered in
both versions of the parsec code. In PS2, we adopt a smaller value of the
maximum COV parameter λov,max = 0.4, instead of the λov,max = 0.5 in PS1.
Furthermore, in PS2 we adopt a diffusive treatment for convective mixing,
where the diffusion equations are coupled with the nuclear reaction rates
for all elements in the turbulent regions. In the PS1 version, the convective
zones are ‘instantaneously’ homogenised at every time step. These differences
already affect the MS phase of stars with convective cores (with Mi > MO1),
as shown in the middle panel in Fig. 5.15. The PS2 track with 1.4 M⊙ presents
a hotter and slightly fainter MS phase, and a fainter sub-giant phase.

On the other hand, the RGB phase has the same slope in both versions
of parsec tracks. The new tracks show a brighter and cooler TRGB. These
differences in the TRGB are caused by the more massive He-core and the
more extended envelope at the tip. This is mainly due to the different over-
shoot parameters used in PS2 and the fact that in this new calculation mass
loss was implemented along the evolution while, in PS1, models were evolved
at constant mass, and mass loss was applied at the stage of isochrone calcu-
lation only.

In Fig. 5.16 we compare the luminosity at the TRGB of the PS2 models
with that of PS1, Bag of Stellar Tracks and Isochrones (BaSTI; Hidalgo
et al. 2018), and MESA Isochrones and Stellar Tracks (MIST; Choi et al.
2016) evolutionary tracks. The latter two databases also include convective
overshooting and diffusion in their models. We can see that PS2 predicts
a quite constant TRGB luminosity and, generally, above the luminosity of
other models shown in the plot. The difference between the new and old
versions of parsec is about ∼ 0.01 − 0.02 dex. BaSTI gives an increased
trend of TRGB luminosity with initial masses, which is in contrast with the
trend from MIST. The PS2 TRGBs are ∼ 0.04 dex brighter than MIST.

The right-hand panel of Figure 5.15 shows the comparison between non-
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Figure 5.16: Luminosity at the TRGB as a function of initial mass for the
tracks produced in this work (with ωi = 0; red stars), in parsec v1.2S (green
circles), and BaSTI (blue pentagons). The BaSTI tracks for a solar-scaled
composition are taken from Hidalgo et al. (2018) with Z = 0.01721, Y =
0.2695.

rotating models of IMSs of the two parsec code versions. In this case, the
impact of the COV parameter is clear. The difference between PS1 and
PS2’s tracks starts from the MS and continues up to the He-burning phase.
In particular, the new tracks are less luminous than the previous ones, due
to their smaller λov,max value.

Recently, Amard et al. (2019) published grids of starevol models in
which rotation is included for masses from 0.2 M⊙ to 1.5 M⊙. starevol
tracks are provided for three values of initial rotation rates, ωi = 0.20, 0.40,
and 0.60, while in this work we provide ωi = 0.30, 0.60, 0.80, 0.90, 0.95, 0.99.
To facilitate the comparison, we perform a few parsec V2.0 calculations
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Figure 5.17: Comparison on HRD of rotating tracks between this work (red
lines) and starevol (green lines) with the same Z = 0.0134 and Y = 0.269.
Left-hand panel: Slow-rotating tracks with a ωi = 0.20 and 1.3 M⊙ star.
Right-hand panel: Same as the left panel but with ωi = 0.60 and Mi =
1.5 M⊙.

with exactly the same initial composition (Z = 0.0134 and Y = 0.269)
and the same initial rotation rate as starevol. Fig. 5.17 compares the
models of 1.3 M⊙ and 1.5 M⊙ produced by both parsec v2.0 (red line)
and starevol (green line). The differences between our and starevol
models are significant. First, the starevol tracks evolve until the end of
the MS phase, while our tracks extend up to the He flash. Second, for the
same initial mass, rotation rate, and composition, our MS stars are hotter
and brighter. This might be explained by the many differences in the input
physical parameters between the two codes. For example, Amard et al. (2019)
do not include overshooting in their calculations, while we consider it for
both the convective core and the envelope. Third, there are differences in
the implementation of rotation in each code, namely, starevol implements
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rotation from the PMS while we assign the rotation (and let it evolve) just
before the ZAMS. It is also worth mentioning that there are other differences
between the two codes; for example, they adopt the mixing-length parameter
αMLT = 1.973 and the nuclear reaction rates from the NACRE II database
(Xu et al., 2013).

However, despite the differences listed above, the two codes give similar
ages at the terminal-age-MS (TAMS). For instance, for the 1.3 M⊙ star with
ωi = 0.2 PS2 gives 3.74 Gyr while starevol gives 3.94 Gyr.

Another similarity is in the mass-loss rates: at the TAMS, the 1.5 M⊙
star with ωi = 0.6 loses its mass with a rate of log Ṁ = −11.70 (M⊙/yr)
in PS2 while starevol gives log Ṁ = −11.62 (M⊙/yr), even though the
codes use different schemes for the mass-loss rate. In particular, we use the
enhanced formula from the Reimers law with η = 0.2 for rotating stars while
starevol uses the recipe of Cranmer and Saar (2011). However, we should
note that at these early stages, mass loss does not play a crucial role yet.



Chapter 6

PARSEC V2.0: Isochrones
with rotation

The main aim of this chapter is to present the isochrones of the correspond-
ing stellar tracks that we computed and presented in Chapter. 5. This is the
second part of the paper Nguyen et al. (2022). For producing isochrones, the
most recent version of trilegal code is used for this purpose (Girardi et al.,
2005; Marigo et al., 2017). The bolometric correction tables for rotating stars
are explicitly presented in Girardi et al. (2019) and already implemented in
the code (see also Chen et al., 2019). Several rotating isochrones are pre-
sented for different values of the inclination angle, to show the corresponding
effects in the photometry.

This chapter will be divided into three sections. Section. 6.1 discusses the
methodology of the interpolation to produce isochrones. Examples of these
new obtained isochrones will be shown and analysed in this section, in which
the effects of photometry changes due to rotation are consistently taken into
account. Discussion and conclusions on this new collection of tracks and
isochrones will be presented in Sect. 6.2. The quality of the new isochrones
is preliminarily tested on two open clusters M67 and NGC6633. Finally, in
Sect. 6.3 I will describe the web-interface dedicated to the new stellar tracks
and isochrones.

98
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Figure 6.1: Theoretical isochrones calculated with the trilegal code. Left-
hand panel: Isochrones of non-rotating models for the ages log(t/yr) =
7.8, 8.2, 8.6, 9.0, 9.4, 9.8, 10.1 and seven different metallicities from 0.005 to
0.017 are shown in different colours, from grey to cyan, as indicated in the
legend. Right-hand panel: Corresponding CMD in Gaia passbands of the
theoretical isochrones shown in the left panel.

6.1 Production of isochrones

For all sets of evolutionary tracks described in the previous sections, we have
constructed the corresponding isochrones. The initial phase begins from the
PMS, and the final stage is either the beginning of the TP-AGB phase for
low- and intermediate-mass models or the C-exhaustion for higher masses.
As explained in Sect. 5.2.4, at a given initial metallicity and rotation rate, a
certain number of low-mass models were not computed, due to our choice of
decreasing ωmax at decreasing Mi, in the transition towards LMSs (Eq. 5.2).
While computing the isochrones, the missing tracks of a given ωi are replaced
by the track with the nearest initial mass in the set of tracks with the same
metallicity and with ωi immediately smaller. This ensures that the isochrones
gradually shift from the required ωi to the non-rotating case in the mass
interval between MO2 and MO1.

After selecting all the stellar tracks in each set, based on the initial metal-
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licity and rotation rate, the computation of isochrones proceeds through the
following steps. First, the computed stellar evolutionary tracks in each set
are homogeneously divided into phases separated by characteristic ‘equiva-
lent evolutionary points’. Then, for a given age, the isochrone is constructed
by interpolating all stellar properties between points of different initial mass
but equivalent evolutionary stages. More details of the interpolation scheme
can be found in Bertelli et al. (1990a) (see also Bertelli et al. 2008). In
this work, the isochrones are produced by a recent version of the trilegal
code (Girardi et al., 2005; Marigo et al., 2017), which interpolates all the ad-
ditional quantities needed to characterise rotating stars. Several isochrones
have been produced with metallicity in the range from 0.004 to 0.017 in steps
of 0.001 and ages in the range from 10 Myr to ∼ 13 Gyr at intervals of 0.05
in the scale log and for the seven sets of initial rotation rates from zero to
ωi = 0.99. As an example, the left-hand panel of Fig. 6.1 shows the theoret-
ical isochrones of non-rotating stars for selected ages and metallicities.

The theoretical isochrones provide the intrinsic properties of the stars,
such as the luminosity, mean effective temperature, angular velocity, and
radius at the pole and the equator. Then they are complemented with pho-
tometric magnitudes in several filters for comparison with observed CMDs.
For non-rotating stars, this is usually done by using tables of bolometric cor-
rections (BCs) as a function of effective temperature, surface gravity, and
metallicity (see Girardi et al., 2002); eventually these tables also consider
the interstellar extinction in a star-to-star basis, as in Girardi et al. (2008).
The right-hand panel of Fig. 6.1 shows non-rotating isochrones in the Gaia
passbands, corresponding to those shown in the left-hand panel, where Gaia
EDR3 photometry is adopted (see Riello et al., 2021).

Bolometric correction tables for rotating stars have at least two more
parameters than those for non-rotating stars: the rotation rate ω and the
inclination angle, i, of the line of sight with respect to the stellar rotation
axes. Such BC tables are described in Girardi et al. (2019). They are already
implemented in the ybc database1 of BCs by Chen et al. (2019) and in the
trilegal code we use to produce the present isochrones. The left-hand
panel of Fig. 6.2 shows some selected rotating isochrones. The two panels on
the middle and right-hand side of Fig. 6.2 illustrate the result of applying the
BCs to isochrones with rotation ωi, and how the photometry changes when
observing rotating stars from i = 0◦ (pole-on) and i = 90◦ (equator-on). The

1http://stev.oapd.inaf.it/YBC/

http://stev.oapd.inaf.it/YBC/
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changes in the photometry are the most remarkable for the stars close to the
upper MS, since they are the stars that still retain a large fraction of their
initial rotational velocity.

For cool red giants, the BC tables for rotating stars do not cover the
complete range of low effective temperatures that might be necessary to
build the isochrones containing fast-rotating stars. For instance, for ω = 0.9
and log g = 2 the BC tables defined in Girardi et al. (2019) are limited to
effective temperatures above ∼ 4000 K. Fortunately, inspection of our final
isochrones reveals that this limitation is not a practical problem: it turns
out that all giants with Teff smaller than ∼ 5000 K are slow rotators, with
ω ≲ 0.2. Since these slow rotators have nearly spherical configurations, we
decide to apply the BC tables for non-rotating stars from Chen et al. (2019)
(YBC) to all stars with Teff < 5250 K, for all values of ωi. This choice ensures
a smooth behaviour of the colours, as can be appreciated in the middle and
right panels of Fig. 6.2. To conclude this section, we stretch that the database
of isochrones in several photometry systems is available at 2.

6.2 Discussion and conclusions

We have presented a new library of evolutionary tracks with rotation for
LMSs and IMSs produced with parsec V2.0. Masses from 0.09 M⊙ to
14 M⊙ and metallicities between Z=0.004 and Z=0.017 are considered, for
seven values of the initial rotation rate in the range ωi = 0.00 − 0.99. The
major differences between the last version of parsec, V2.0, and the previous
one are: (i) the inclusion of rotation; (ii) the inclusion of mass loss along
the evolution of all the stars because, for rotating models, it constitutes
an important sink of angular momentum (Friend and Abbott, 1986); and
(iii) the treatment of turbulent mixing as a diffusive process together with
rotational mixing, nuclear processing, and molecular diffusion (for LMSs). In
particular, concerning the last point, we recall that, to estimate the efficiency
of overshooting from the convective core, we were guided by the work of
Costa et al. (2019b), where the maximum COV parameter was calibrated in
a well-studied sample of eclipsing binary systems (Claret and Torres, 2018),
obtaining λov = 0.4.

We also calculated the isochrones up to the beginning of the TP-AGB
phase or up to the end of the central C-burning phase. Using the trilegal

2http://stev.oapd.inaf.it/cmd

http://stev.oapd.inaf.it/cmd
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code, they can be interpolated in metallicity between Z = 0.004 and 0.017
and in the age range 7.0 ≤ log(t/yr) ≤ 10.1.

To illustrate some important consequences of the above differences, we
show in Fig. 6.3 and Fig. 6.4 are two preliminary fits to the observed CMD
of the open clusters M67 and NGC 6633, respectively. M67 (NGC 2682) is a
well-known test bench for studying the internal physics of stellar models of
LMSs with typical turnoff masses around 1.2 M⊙. In particular, its CMD was
used to calibrate the efficiency of convective overshooting, due to the well-
developed convective core in stars around its turnoff region. Furthermore,
the cluster, together with other known open clusters, was also used to obtain
the age-metallicity relation for the Milky Way disc stars (e.g. Viscasillas
Vázquez et al., 2022). Its age has been repeatedly estimated over the years:
Sarajedini et al. (2009) reported an age between 3.5 and 4.0 Gyr; from the
asteroseismic properties of the giant and red clump stars, Stello et al. (2016)
derived an age of the cluster of 3.46±0.13 Gyr; more recently, using the data
from the Gaia Second Data Release (hereafter GDR2), Bossini et al. (2019)
derived a distance modulus (m−M)0 = 9.726 mag, an interstellar extinction
coefficient AV = 0.115 mag, and an age of 3.639 ± 0.017 Gyr (see Arenou
et al., 2018; Gaia Collaboration, 2018a,b,c, for more details about GDR2).

The M67 CMD, shown in Fig. 6.3, was obtained from the data provided
by Cantat-Gaudin et al. (2018), who determined photometry, memberships,
mean distances, and proper motions of stars in 1229 open clusters. It should
be noted that the stars are limited to apparent G ≲ 18 mag to keep the
photometric precision in Gaia’s passbands at the level of a few millimag (see
Godoy-Rivera et al., 2021; Bossini et al., 2019; Evans et al., 2018, for more
details). Also plotted in Fig. 6.3 are a number of our isochrones selected
with the following criteria. Lines labeled PS2 indicate our best-fit parsec
V2.0 isochrones. The fit was obtained by adopting the distance modulus
obtained by Bossini et al. (2019), (m − M)0 = 9.726 mag, but correcting
it for a zero-point offset of -30µarcsec (Gaia Collaboration, 2018c). The
final corrected distance modulus is (m − M)0 = 9.69 mag. For an initial
composition of Z = 0.015 ([Fe/H]∼0), Y = 0.275 (our corresponding He
value), the best fit was obtained by adopting an extinction AV = 0.1 mag
and an age of log(t/yr) = 9.57. Plotted in the figure are both a non-rotating
isochrone (dashed red line) and one for a slow rotation (solid red line). For
both isochrones, we use the same best-fit parameters because the adopted
low rotation only marginally affects the region above the cluster turnoff.

In the same figure, we also show the results we obtain using parsec
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Figure 6.3: CMD of open cluster M67 (NGC 2682) from GDR2 data,
overplotted with the isochrones that are produced in this work (solid and
dashed red lines, labeled PS2) and those from the previous version, parsec
V1.2S (dashed green and cyan lines, labeled PS1). The parameters of the
isochrones, DM=(m−M)0, AV, Z, log t/yr and ωi, are displayed in the leg-
end. The inset figure zooms into the turnoff region of this cluster.
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Figure 6.4: CMD of the open cluster NGC 6633 from GDR2. The displayed
isochrones are for metallicity Z = 0.012, log(t/yr) = 8.85, (m−M)0 = 7.841,
and AV = 0.451 mag. The red line represents the non-rotating case, and
the two cyan lines are for rotating isochrones with the same ωi = 0.80, and
inclination angles i = 0◦ (solid line) and i = 90◦ (dashed line). The green line
is the isochrone obtained with parsec V1.2S assuming the same parameters
of the previous non-rotating case.
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V1.2S, labeled ‘PS1’. For the model represented by the dashed green line,
we adopt the same fit parameters as the PS2 solutions. The inset in the
figure is a zoomed-in look at the turnoff region to highlight the differences
between the isochrones. We see that this parsec V1.2S isochrone has a
more pronounced hook at the same fitting parameters. This is an evident
feature of models computed with a larger COV parameter. Instead, the
dashed cyan isochrone was drawn to reproduce the fit obtained with PS1
models, keeping only the metallicity fixed and letting the other parameters
vary within reasonable uncertainties. For this second PS1 model, which
runs almost on top of the PS2 isochrones, we adopted a slightly shorter
distance modulus, (m − M)0 = 9.62, a larger extinction, AV = 0.15 mag,
and a 5% older age, log(t/yr) = 9.59. We note that all four isochrones
run almost superimposed onto one another in the sub-giant branch, which,
being an almost horizontal feature in the CMD, is a robust indicator of
the apparent distance. The new fitting parameters result from the need to
diminish the hook extension that, with parsec V1.2S, can only be done
by using a slightly older age for a fixed metallicity. The variation in the
distance modulus and the attenuation almost compensate for each other, but
the latter is also needed to improve the fitting of the colours of the turnoff
region. The differences of the parameters between this fit and the PS2 ones
should be representative of the differences obtained by using the new version
of parsec instead of the previous V1.2S version in this age domain.

Recently, it has been shown that M67 harbours an interesting spectro-
scopic binary system located near the turnoff region, WOCS 11028, that
challenges theoretical models (see Sandquist et al., 2021, for a thorough dis-
cussion). Briefly, the mass of the primary component is estimated to be
MWOCSa = 1.222 ± 0.006 M⊙, while current predictions using different stel-
lar evolution codes (including parsec V1.2S) give values that are lower
by δm = 0.05 M⊙ (i.e. about 8σ lower). We confirm that we also get the
same result with the new version of parsec and leave this problem to a
more exhaustive investigation using new parsec models with varying initial
metallicity and He content (see also Sandquist et al., 2021).

Another object we present in this project as a preliminary check of the new
models is the young open cluster NGC 6633, also present in the GDR2 cat-
alogue. High-resolution spectroscopy for NGC6633 comes from the analysis
by Casamiquela et al. (2021), who studied the age metallicity relation of the
Milky Way using 47 open clusters observed with Gaia. Bossini et al. (2019)
derived for NGC 6633 (m−M)0 = 7.866+0.024

−0.025 mag, log(t/yr) = 8.888+0.006
−0.032,



CHAPTER 6. PARSEC V2.0: ISOCHRONES WITH ROTATION 107

and AV = 0.451+0.025
−0.02 mag. With the same procedure used for M67, we fit-

ted the CMD of NGC 6633 with the new isochrones, adopting Z = 0.012,
Y = 0.270, AV = 0.451 mag, and distance modulus (m−M)0 = 7.841 mag,
including a −30µarcsec offset in Gaia parallaxes, and the age of log(t/yr) =
8.85 (Fig. 6.4). Both non-rotating and rotating isochrones are displayed with
values indicated in the corresponding labels. The lower MS is very well fit-
ted, while the extended MS turnoff region is fully reproduced by rotating
isochrones, also taking the effects of inclination angles into account, which,
in this cluster, are clearly seen. Furthermore, the different rotational veloci-
ties in this cluster can also explain the particular feature visible near the red
clump. Indeed, if only rotating models had been used, as needed by the fit
of the turnoff region, it would have been difficult to explain the position of
the three stars that clearly fall below the corresponding He clump, given the
much shorter corresponding evolutionary lifetimes. They are instead fully
compatible with the He clump of non-rotating models of similar age. Thus,
even in NGC 6633 there are hints for the presence of at least one population
of non-rotating stars and another of fast rotators, as in the case of the young
LMC cluster NGC 1866 (Costa et al., 2019a).

6.3 Web-interfaces

This new collection of stellar evolutionary tracks and isochrones contains non-
rotating and rotating models are stored in two dedicated web-interfaces. The
first one is used for stellar tracks which can be found at: http://stev.oapd.
inaf.it/PARSEC/tracks_v2.html. Fig. 6.5 shows the front interface where
the PARSEC V2.0 tracks are made available to download. The database
is categorised by a combination of initial metallicity and rotation rate (Z,
ω). With a desired (Z, ω), a set of tracks from 0.09M⊙ up to 14M⊙ can be
downloaded directly from the page. Specifically, in case the user wants to
have the tracks of all rotation rates from 0.0 to 0.99 with the same metallicity,
they can get the set directly from the second column of the table, where the
header appears as “ALL”. Note that in this site, the user can also download
the tracks from previous version PARSEC V1.2S by going to the section
“PARSEC V1.2S” (Fig. 6.6).

The second web-interface is dedicated for obtaining the corresponding
isochrones, which can be visited at: http://stev.oapd.inaf.it/cgi-bin/
cmd_3.7. Fig. 6.7 shows the front page of this webpage where users can

http://stev.oapd.inaf.it/PARSEC/tracks_v2.html
http://stev.oapd.inaf.it/PARSEC/tracks_v2.html
http://stev.oapd.inaf.it/cgi-bin/cmd_3.7
http://stev.oapd.inaf.it/cgi-bin/cmd_3.7
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Figure 6.5: Web-interface for stellar tracks that are presented in this work.
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Figure 6.6: Stellar tracks from previous version PARSEC V1.2S.
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(a) Step 1

(b) Step 2

(c) Step 3

Figure 6.7: Web-interface for isochrones.
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obtain the desired isochrones. The fist step is selecting the available stellar
tracks from different versions of PARSEC code. Especially, with the option
of PARSEC V2.0 the user can choose the desired initial rotation rate. The
TP-AGB tracks that are computed by COLIBRI code is also available to
chose as shown in Fig. 6.7a. The second step is choosing the photometry
system and the BC tables as can be seen in Fig. 6.7b. A briefly description
for all the available photometry systems is made available to read on the
sided-line. And finally, the user should specify the initial mass function to
use and the desired age and metallicity ranges. The age and metallicity can
be declared in linear-scale or log-scale, from the initial value to the final value
with a fine step as the user refers. The last action to do is to submit the
request, as can be seen in Fig. 6.7c.



Chapter 7

Globular cluster M92

7.1 General background

The parsec stellar models have been widely used in the community since
they were first published in Bressan et al. (2012). Many updates and im-
provements were provided over the years. For instance, Chen et al. (2014)
extended the calculations to very-low-mass domain with the implementation
of T-τ relation in the atmosphere model. The models of massive stars up to
350M⊙ were provided in Chen et al. (2015), and Fu et al. (2018) studied the
α-enhanced stellar models with the calibration of GC 47Tuc. Most recently,
rotation was implemented in the parsec code, Costa et al. (2019b). A large
grid of stellar tracks and isochrones for several initial rotation rates were pro-
vided in Nguyen et al. (2022) with many updated input physics, e.g., mass
loss is attached along the evolution of stars, the chemical mixing scheme,
and the nuclear reaction networks. Moreover, the authors used solar-scaled
mixtures from Caffau et al. (2011) for their calculations.

As a subsequent work to Nguyen et al. (2022), we would like to extend
the calculations to the lower metallicity domain where α-element abundances
(i.e. of O, Ne, Mg, Si, S, Ar, Ca and Ti) may be different from the solar
ones and may play an important role. The existence of α-enhancement in
globular clusters have been confirmed in many works (e.g., Carney, 1996;
Pritzl et al., 2005; Puzia et al., 2006; Amarsi et al., 2019). Besides that, it is
well known that the solar-scaled mixtures can not be applied to all types of
stars, therefore, including the α-enhanced mixtures in calculations of stellar
models becomes necessary, especially in studying stars in GCs, in the galactic

112
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bulge (Gonzalez et al., 2011) or in the thick-disc (Ruchti et al., 2010).
For this purpose, we first use the GC M92 to calibrate our α-enhanced

models. One needs to know the chemical compositions of the cluster. This
will be discussed in Sect. 7.2. The new opacity as well as the EOS tables
are re-computed to complement with the new collected compositions. Since
part of the work on M92 is devoted to the analysis of the main sequence
stars that will be targeted by JWST observations, we will first present in
Sect. 7.3 the input physics includes the calibration of the mass-radius relation
performed with the new parsec v2.0 version, and the preliminary results
on the computed tracks and isochrones, as well as the CMD fits with HST
data of M92. A discussion on the next steps to do for this ongoing project
will be presented in Sect. 7.4.

7.2 Chemical mixtures

The chemical abundances are usually given in literature as the absolute value
scaled to the iron content and referred to the solar value, i.e., [X/Fe] =
log(NX/NFe) − log(NX/NFe)⊙, where NX is the number distribution of an
element X. In this project, we use the solar mixture from Caffau et al. (2011)
to refer the standard solar abundances, with Z⊙ = 0.1524, for conversion from
the original data. Other values can be found in Grevesse and Sauval (1998);
Asplund et al. (2006); Lodders et al. (2009); Caffau et al. (2011) and von
Steiger and Zurbuchen (2016).

The existence of multiple stellar populations in M92 has been investigated
in many works. For example, Milone et al. (2017b) indicated that M92 hosts
at least two populations: the first generation inherits the chemical proper-
ties from the molecular cloud from which it is formed; the second generation
consists of stars that are enriched in nitrogen and depleted in oxygen, likely
formed from the material processed by the first generation stars. Recently,
Mészáros et al. (2020) investigates many chemical pieces of a large sample of
stars in 31 globular clusters from the APOGEE survey. From the analysis of
the distribution of aluminum abundance, they show a clear separation in the
density histograms of Al and the Al-Mg anticorrelation maps which indicate
an existence of two populations, that are separated by at least ∼ 0.2 dex
in the [Al/Fe] abundance ratio. In particular, a population with enriched
[Al/Fe] which is called second generation (SG), and a so-called first genera-
tion (FG) with [Al/Fe]< 0.3 dex. In this project, we follow this procedure by
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Table 7.1: Adopted chemical abundances of GC M92.

[el/Fe] FG SG ref.
C -0.3750 -0.2507 a
N 0.9523 1.0150 a
O 0.7852 0.5620 a
Ne 0.4000 0.4000 *
Na 0.0000 0.5000 c
Mg 0.3904 0.1675 a
Al -0.1624 0.7502 a
Si 0.4450 0.5245 a
P 1.1800 1.1800 g
S 0.4000 0.4000 d
Ar 0.4000 0.4000 *
K 0.6520 0.6473 a
Ca 0.2800 0.3260 a
Sc 0.1600 0.1600 f
Ti 0.3000 0.3000 e
V 0.4800 0.4800 f
Cr 0.0000 0.0000 e
Mn -0.2200 -0.2200 f
Co 0.2400 0.2400 f
Ni -0.0500 -0.0500 e
Zn 0.1500 0.1500 e
Y -0.0800 -0.0800 f
Zr 0.4700 0.4700 f
Ba -0.2900 -0.2900 e
La 0.3100 0.3100 f
Ce 0.0920 -0.0680 a
Nd 0.3700 0.3700 f
Eu 0.5600 0.5600 f
Ho 0.8000 0.8000 f
Er 0.7700 0.7700 f

a: Mészáros et al. (2020)

c: Carretta et al. (2009)

d: Kacharov et al. (2015), NLTE analysis

e: Bensby et al. (2014)

f: Roederer and Sneden (2011)

g: Hubrig et al. (2009)

*: estimated
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setting [Al/Fe] = 0.3 as a reference to separate the two generations in M92,
and then derive the abundance of each chemical element in each group. The
abundance of elements such as C, N, O, Mg, Al, Si, K, Ca, and Ce in the
two generation groups are deduced from Mészáros et al. (2020), and listed
in Table. 7.1. In order to be more complete in the abundances table for
our purposes, the abundance of other elements is adopted from other works.
For example, Carretta et al. (2009) provides the abundances of Na for 1958
RGB stars in 19 GCs from FLAMES/GIRAFFE spectra, in a wide range of
metallicity −2.4 ≤ [Fe/H] ≤ 0.4 dex. Sulphur is one of the members of the
α-element group, and there are very few measurements of [S/Fe] for stars in
GCs, even nowadays. We adopt the mean value provided by Kacharov et al.
(2015), where they derive the mean [S/Fe] in RGB stars of three GCs M4,
M22, and M30. Since there is no evidence of difference [S/Fe] between two
populations, we use the same value for both FG and SG. A similar situation
holds for other elements such as Sc, Ti, V, Cr, Mn, Co, Ni, Zn, Y, Zr, Ba,
La, Ce, Nd, Eu, Ho, Er; for those elements, we adopt the abundances pro-
vided by Hubrig et al. (2009), Roederer and Sneden (2011) and Bensby et al.
(2014) and, when they are available, no different for both generations. The
other two elements that belong to α-element group are Ne and Ar, but since
we are not able to find them in literature, we assume they have the same
enhancement of S.

The iron abundance ([Fe/H]) of the two generations is taken fromMészáros
et al. (2020). In this work, there is only a slight difference, of ∼ 0.048 dex,
between the FG and the SG. In particular, the FG has [Fe/H] = −2.2360 dex,
and the SG has [Fe/H] = −2.1885 dex, in agreement with many other esti-
mates in literature (e.g, Zinn and West, 1984; Carretta and Gratton, 1997).

In this work, we consider that the α-elements are O, Ne, Mg, Si, S, Ar, Ca,
and Ti. With the adopted abundances listed in Table. 7.1 and the referred
solar mixtures from Caffau et al. (2011), the [α/Fe] ratio of the FG and SG are
0.715 and 0.524 dex correspondingly. The difference between the FG and SG
in [α/Fe] values are mainly driven by the different oxygen abundances. The
corresponding metallicities in mass fraction of the two generations are then
derived, ZFG = 0.0005 and ZSG = 0.0003. It is important to emphasise that,
at the moment, we follow the enrichment law to calculate the He abundance,
which is

Y = Yp +
∆Y

∆Z
Z (7.1)
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Table 7.2: Metallicity, [α/Fe] ratio and helium abundance of M92.

FG SG
[Fe/H] -2.2360 -2.1885
[α/Fe] 0.7151 0.5241

Z 0.0005 0.0003
Y 0.250 0.250

where Yp = 0.2485 is the primordial He abundance (Komatsu et al., 2011)
and the helium-to-metal enrichment ratio ∆Y

∆Z
= 1.78 is based on the solar

calibration in Bressan et al. (2012). Table. 7.2 summarises the values of
metallicity in terms of both number and mass fraction for the FG and SG,
as well as the [α/Fe] ratio and He content, for convenience.

For this preliminary study, we will perform the calculations adopting only
one single metallicity value, Z = 0.0003. The results of using both FG and
SG chemical mixtures at this metallicity value will be shown and discussed
below. The input physics that’s used for these calculations will be described
in Sect. 7.3.1. The checks on mass-radius relation will be shown in Sect. 7.3.2
for the sake of using T-τ relation in the atmosphere of stellar models of very
low mass stars. In Sect. 7.3.3, we will show the preliminary computed tracks
and isochrones. The fit to the observed CMD of M92 from HST data will be
also shown in this section.

7.3 Calibration with M92

7.3.1 Input physics

The main difference of the input physics in this calculation with respect to
the previous version of parsec v2.0 is the new adopted chemical mixtures
and thus the α-enhanced opacity tables. It is worth to note that rotation is
not considered for M92.

As mentioned in Sect. 2.2 the opacity tables are necessarily recomputed
due to the new adopted chemical mixtures of M92 for both generations.
In the high temperature regime, 4.2 ≤ log(T/K) ≤ 8.7, the opacity tables
are provided by the Opacity Project At Livermore (OPAL; see Iglesias and
Rogers, 1996), while in the low temperature regime 3.2 ≤ log(T/K) ≤ 4.1
the opacity tables are generated with the AESOPUS tool (see Marigo and
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Aringer, 2009, for details). In the transition region 4.1 ≤ log(T/K) ≤ 4.2,
the opacities are linearly interpolated between the OPAL and AESOPUS
values. The contribution from conduction is computed following Itoh et al.
(2008).

Figure. 7.1 shows the distribution of κR in the case of FG and SG-mixtures
in the plane of log T -logR, and the comparison of κR-ratios between the
FG, SG and the standard solar-mixtures. The “H-free” table (X = 0) of
metallicity Z = 0.0003 is used to show in Fig. 7.1, while the case of “H-rich”
tables is shown in Fig. 7.2.

It is also worth to note that the abundances of M92 that are listed in
Table. 7.1 have already been re-scaled to the solar values provided by Caffau
et al. (2011).

We also keep using the most updated nuclear networks as we used in
previous work (Nguyen et al., 2022). The nuclear networks include the p-p
chains, the CNO tri-cycle, the Ne-Na, and Mg-Al chains, 12C, 16O and 20Ne
burning reactions, and the α-capture reactions up to 56Ni, for a total of 72
different reactions tracing 32 isotopes: 1H, D, 3He, 4He, 7Li, 7Be, 12C, 13C,
14N, 15N, 16O, 17O, 18O, 19F, 20Ne, 21Ne, 22Ne, 23Na, 24Mg, 25Mg, 26Mg, 26Al,
27Al, 28Si, 32S ,36Ar, 40Ca, 44Ti, 48Cr, 52Fe, 56Ni, and 60Zn. The reaction
rates and corresponding Q values are taken from JINA REACLIB database
Cyburt et al. (2010).

We also adopt the standard mass loss rate by Reimers (1977) for our
calculations, which is given by

Ṁ = η × 1.343× 10−5 L1.5

mT 2
eff

, (7.2)

where Ṁ is the mass-loss rate in M⊙/yr, L and m are the luminosity and
mass in solar units, respectively, and Teff is the effective temperature in K.
The parameter η = 0.2 is adopted from the asteroseismic analysis of the two
old open clusters NGC 6791 and NGC 6819 by Miglio et al. (2012).

7.3.2 Mass-Radius relation

Concerning the very-low-mass models (< 0.75M⊙), Chen et al. (2014) use a
realistic T-τ relation, provided T-τ relation from phoenix (BT-Settl) model
atmosphere (Allard et al., 2012), to determine the boundary conditions. The
T-τ relations in phoenix (BT-Settl) cover a wide range of log Teff/K =
[2600, 700000] and log g = [0.5, 6] (cm/s2).
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Figure 7.1: Maps of Rosseland mean opacities in the log T -logR plane. The
referenced metallicity Z = 0.0003 of “H-free” tables are used to show in this
figure. The top panels are the distribution map of log κR in the case of FG
and SG mixtures respectively, while the other three panels show the ratios
of κR between different adopted mixtures, namely FG, SG and solar-scaled.
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Figure 7.2: Maps of Rosseland mean opacities in the log T -logR plane as
shown in Fig. 7.1 but for “H-rich” tables where X = 0.7.
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Figure 7.3: Mass-radius relation. The observed data is from DEBCat cat-
alogue for the primary and secondary components with their errorbars are
displayed by the filled-circles in black and grey colours. The superimposed
isochrones in terms of M and R with several ages, the solar metallicity are
shown in solid-lines. The bottom panel shows the differences between ob-
served data and theoretical model of age 4.46 Gyr-isochrone.

Chen et al. (2014) calibrated the very low mass models against the ob-
served mass-radius relation of the Detached Eclipsing Binary stars. To re-
produce this relation they were forced to introduce a shift in the low temper-
ature regime, namely, ∆ log(T/Teff) = 0 at log Teff = 3.675 linearly grows to
∆ log(T/Teff) = 0.06 dex at log Teff = 3.5. The solar model calibration with
these atmospheres gives αMLT = 1.77. With the new data of the Detached
Eclipsing Binary stars (DEBCat; Southworth, 2017), we first re-check the
mass-radius relation by adopting the models with T-τ relation as described
above. For this purpose, we recompute the very-low-mass models following
the same procedure as Chen et al. (2014), adopting αMLT = 1.77, with the
initial metallicity Z = 0.017. Figure. 7.3 shows the isochrones with several
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ages spanning from ∼ 1 Gyr to ∼ 12.5 Gyr, superimpose with the observed
data from DEBCat catalogue. We can clearly see that over the range from
0.1 to 0.6M⊙, the theoretical relation fits very well the observed data. In
the higher mass domain, ≳ 0.75M⊙ the radii are sensitive to stellar age and
thus tend to spread a wide range of values. In the transition region from
∼ 0.6− 0.75M⊙, the three stars that fall below the isochrones become diffi-
cult to explain with the current model, while the upper stars can be explained
with the older age relation. However, if we expect these stars to have similar
age to the Sun, the prediction from current models is not able to fit the data.
Obviously, more detailed checks should be done in the future to understand
better this region. One possibility could be that we neglect rotation, since
these stars are binaries. However here we keep using the model that was
carefully studied in Chen et al. (2014) to obtain the first preliminary models
for the case of GC M92.

7.3.3 Preliminary track and isochrones fitting

We perform a calculation for a set of very low mass stars from 0.08M⊙ up
to 0.72M⊙ with a step mass of 0.02M⊙, using the T-τ relation as described
above with αMLT = 1.77. Then, we add to the set the higher masses from
0.74 up to 0.84M⊙ using the parameter αMLT = 1.74 without the modification
of T-τ relation, and similar to a set of models with masses from 1.75M⊙ to
2.2M⊙ with the step of 0.5M⊙. We do not compute the mass models in the
transition region at the moment because they are not needed for ages as old
as those expected for M92 and because we are focusing on the lower-MS part
of M92. The calculation for horizontal-branch models is also done for the
sake of producing complete isochrones.

Figure. 7.4 shows the computed tracks, divided into three panels which
correspond to the very low mass, the low mass, and the HB tracks, for both
sets of chemical mixtures (i.e., FG and SG correspond to the top and bottom
panels). At the moment, we present only one metallicity Z = 0.0003 to have a
first test on our models. More complete and detailed models will be presented
in a forthcoming paper. All the tracks begin from the PMS (dotted-lines).
At first, there is no nuclear reactions are allowed to occur and the models
are fully convective and homogeneous in chemical compositions. The stars
then evolve along the contraction during the PMS phase. Determining the
ZAMS point is important since it marks the beginning of the central H-
burning phase, this point is defined to be the location of the model when
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Figure 7.4: HRD of computed tracks by using the chemical mixtures of
the FG (top-panel) and of the SG (bottom-panel) with the same value of
metallcity Z = 0.0003.
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the evolutionary speed in the HRD abruptly drops (i.e., a decrease by more
than two orders of magnitude in a very short time). As we can see in the left
panel of Fig. 7.4 low mass stars spend a very long time to burning hydrogen
in the centre and the models are forced to stop at an age of about 30 Gyr.

Low-mass-stars with masses ≳ 0.7M⊙, after burning the central-H, expe-
rience a strong envelope expansion and evolve along the subgiant phase before
climbing along the RGB. Eventually, they reach the condition of degenera-
tion in the He-core and undergo the so-called He-flash. The computation of
this phase is rather expensive in CPU time. Therefore, the calculations of
LMSs are stopped at the early stage of the He-flash. The He-burning phase
of LMSs is then restarted from a suitable ZAHB model with the same core
mass and surface chemical compositions as when they left the tip of the RGB
phase. The evolution of He-burning phase of these stars is shown in the right
panel of Fig. 7.4. As we can see in the middle panel of Fig. 7.4 the evolution
of some IMSs up to 2.2M⊙. These stars do not reach the degenerate condi-
tion in the central core but are able to burn He in a stable way, that leads
to the appearance of the blue bloop. These stars are forced to stop at the
first few models of the thermal pulse asymptotic giant branch (TP-AGB) in
the parsec code. A subsequent calculation for low-mass and IMSs at more
advanced phases, especially from the early to the end of TP-AGB phase, can
be achieved with the colibri code (Marigo et al., 2013).

The next step is to produce the isochrones from the computed tracks.
Though we should emphasise that due to the limitation in time there would
be more checks and works to be operated after this thesis. However, at the
moment we are able to show at least the first look to the CMD of M92 in
the Hubble Space Telescope (HST) data.

The isochrones are produced in the way as described in previous works
(e.g., Bressan et al., 2012; Nguyen et al., 2022). First, briefly summary, the
computed stellar evolutionary tracks are homogeneously divided into phases
separated by a few characteristic ‘equivalent evolutionary points’. Then, for
a given age, the isochrone is constructed by interpolating all stellar properties
between points of different initial masses but equivalent evolutionary stages.
The bolometric correction is taken from the ybc database1, where we use
the HST/ACS WFC filter (Sirianni et al., 2005) to convert our theoretical
isochrones to the photometric magnitudes for the CMD fitting purpose below.

Globular cluster M92 is among the oldest clusters in the galactic stellar

1http://stev.oapd.inaf.it/YBC/

http://stev.oapd.inaf.it/YBC/
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Figure 7.5: Colour-magnitude diagram of GC M92. The data is taken from
Sarajedini et al. (2007), superimposed by the selected isochrones with Z =
0.0003 and distance modulus (m−M)0 = 14.65 mag. The isochrones with age
t = 11.09 Gyr is shown in the left panel, while the isochrone with t = 13.03
Gyr is in the right panel. The color lines represent for either the FG or the
SG.

system. For instance, VandenBerg et al. (2002) derived an age of 13.5± 1.5
Gyr, while Paust et al. (2007) found an age of 14.2±1.2 Gyr by comparing the
theoretical and observed luminosity function. A lower age was found by Di
Cecco et al. (2010), which is about 11± 1.5 Gyr. Or recently Nardiello et al.
(2022) use the JWST data to compare with the theoretical isochrones taken
from BaSTI-IAC database (Pietrinferni et al., 2021), and find a well-fit by
the isochrone of 13 Gyr. They also determine the distance modulus for M92,
they find (m−M)0 = 14.65±0.07 mag. This result is in agreement with the
literature, for example, Carretta et al. (2000) gives (m−M)0 = 14.72± 0.07
including binary correction, or Sollima et al. (2006) bases on the near-infrared
period-luminosity relation of RR Lyrae stars gives (m −M)0 = 14.65 ± 0.1
mag.

For the benefit of fitting the observed CMD of M92, we adopt here the
distance modulus (m −M)0 = 14.65 mag to our isochrones. Fig. 7.5 shows
the observed HST data of M92 from Sarajedini et al. (2007). It should
be noted that we use the formulation and coefficients from Sirianni et al.
(2005) to transform the original ground-base data (VI -magnitudes) to the
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WFC VEGAMAG photometric system. The isochrones with an age of 11.09
Gyr and 13.03 Gyr are used to do the fit. The extinction coefficient AV is
chosen so that to obtain a good-fit to the observed data. We can see that
the age and AV are compensate to each others, i.e., if we use the younger
age isochrone, the value of AV is higher than the one that with older age.
However, with the first preliminary check we at least can see that the cluster
might have an age between 11 − 13 Gyr with the possibly extinction value
from 0.15− 0.25 mag. More detail and careful consideration in the sense of
model computation would be carried on in future, while this results should
be emphasised as preliminary checks on our current models.

Focusing on the low-MS, the difference in [α/Fe] values does not fully
help us to explain the broad extension in the F606W − F814W colour of
M92. Interestingly, Milone et al. (2017b) suggested a difference in He content
between the two populations, namely, the second generation is enriched in
helium content while the first generation inherits the original compositions
from the molecular cloud that labours them. Indeed, this was already shown
in Fu et al. (2018) for the case of GC 47Tuc. More detailed and carefully
tests on this aspect would be a part of this project and will be updated after
this thesis.

7.4 Preliminary conclusions, remarks and next

steps

We have presented our first preliminary results on the comparison of the new
α-enhanced tracks with GC M92. For this purpose, we use the most updated
version of parsec code to perform the calculations. A preparatory work has
been done to collect the chemical abundances of the cluster. This is not an
easy task since the stars are very old, and it is not clear if their observed
abundances are the initial abundances from which the star cluster formed.
There is evidence of multiple populations but, even in that case, it is not
possible to assess the previous statement. Sedimentation effects and convec-
tive dredge-up may have acted to change the observed abundances, besides
the effects already known. In any case, we searched for as many chemical
elements, as possible for the sake of completeness, from carbon, nitrogen,
oxygen to erbium. The selection of 31 elements is shown in Table. 7.1 with
the abundances that scaled to the adopted solar-abundances, for the FG and
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SG of M92. As a result, we found the metallicity of the two populations
which are [Fe/H]= −2.2360 and −2.1885 correspond to the FG and SG, as
well as the α-iron ratio, [α/Fe]= 0.7151 and 0.5241, respectively.

The opacity tables are then calculated with respect to these mixtures of
M92 for both FG and SG (see Sect. 7.3.1).

Based on the mass-radius relation, we perform a calculation of the solar
model with this new version of the code. Especially at the very-low-mass
regime, it was concluded by Chen et al. (2014) that a modification of the
theoretical T-τ relation is needed to explain the very-low-mass region of the
observed relation. However, we recognise that also in the mass range from
∼ 0.6−0.75M⊙ the theoretical relation may not be appropriate to fit the new
observed data. At the moment, we don’t know yet what is needed to explain
the observed data in this regime, but we could think of rotation. Although,
we are using data from detached eclipsing binaries where stars should not be
affected by rotation. However, the stars could have been interacting in the
past and the effects of rotation could be visible also now. Another possibility
could be to consider the magnetic field within the star, which again calls for
future work to be done. Pragmatically we could see if a small revision of the
T-τ relation that we use now can cure this discrepancy.

In spite of this limitation on the M-R relation in the region from 0.6 −
0.75M⊙, we may make a first look to the CMD of M92. Especially, we
pay attention to the low-MS part of the cluster which, supposedly, harbours
multiple stellar populations. We performed the calculations using both the
adopted FG and SG-mixtures with the initial total metallcity Z = 0.0003 and
Y = 0.25. This choice of (Z, Y ) combination is based on the enrichment law,
Y = 0.2485 + 1.78 × Z, as usually done in parsec models. The computed
mass range in this set is from 0.08M⊙ up to 1.0M⊙.

Roughly, we find the age of M92 could be between 11 − 13 Gyr with a
variation of extinction coefficient AV = 0.15−0.25. Though we can see there
is a separation between the two generation-isochrones at the low-MS part,
this is not enough to explain the widely broad colour range of the observed
data. We find that it could due to the He content as suggested in Milone
et al. (2017b), while in our calculations we use a unique value Y = 0.25, for
both generations.

More details will be obtained from the comparison of the models with the
Discretionary Early Release Science (ERS program 1334) that targeted the
lower main sequence of M92 (Boyer et al., 2022).

PI: Daniel Weisz, University of California - Berkeley, Investigators. Ti-
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Figure 7.6: Evolution of surface chemical abundances from the ZAMS to
the tip of RGB phase. Left panel : The variation of current surface He, C,
N, O, Ne, Mg, and metallicity Z of four selected stars with masses from
0.74 − 0.84M⊙ in the set of FG-mixtures (Z=0.0003). Right panel : The
variation of surface abundances normalised to their initial values (taken at
the ZAMS).

tle: The Resolved Stellar Populations Early Release Science Allocation: 27.5
hours allocation (program Completed).

After the calibration with M92, a new collection of stellar evolutionary
tracks and isochrones with α-enhanced mixtures for several initial metallici-
ties with detailed descriptions will be delivered to the community.

We finally conclude this chapter by comparing the initial surface abun-
dances adopted for this cluster with those predicted by our calculations in
different evolutionary phases. This latter could represent the observed ones,
allowing us to get a posterior evaluation of the possible evolutionary correc-
tions to be applied to observed abundances in old stars. Figure. 7.6 shows
the changes of surface abundances from the ZAMS up to the tip of RGB
phase of four selected models, with initial mass ranging from Mi = 0.75 M⊙
to Mi = 0.85 M⊙ . These models have been selected because they are repre-
sentative of the upper main sequence of the globular cluster M92, which is
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known to have an age of about ∼ 11− 13 Gyr.
Despite the significant change during the MS due to the diffusion process,

the surface abundances tend to be re-homogenised when stars reach the RGB,
when the first dredge-up event begins. A factor of changing with respect to
their initial abundance is clearly seen in the left-panel of Fig. 7.6, different
for different elements. The absolute value of this factor is also different in
different mass models. I plan to carry out this work in more detail in my
future career.



Chapter 8

Conclusion

In order to conclude this thesis, a short summary of the works that I have
done during my PhD will be presented in this chapter. Producing the new
collection of stellar evolutionary tracks and corresponding isochrones with
rotation is the main target of my PhD thesis. Essentially, I focus on the
low- and intermediate-mass range, however including also a range of massive
stars. For this purpose, first, after the introduction in Chapter. 1, I sum-
marised the standard classical model of spherical symmetry stellar structure
and evolution in Chapter. 2. Then, in Chapter. 3, I describe the structure
equations of stars under the impact of rotation, from the theoretical point
of view. The effect of geometrical distortions that leads to the redistribution
of effective temperature along the latitude angle is clearly shown. They are
due to the changes of surface gravity caused by centrifugal forces in rotating
models. In Chapter. 4, I discuss the transport of angular momentum and the
mixing of chemical elements in rotating stars. The pure diffusive scheme is
adopted to solve the transport equation of angular momentum. The chemi-
cal mixing is also described by the pure diffusive scheme. The total diffusive
coefficient is the sum of all processes that are at work. Namely, in the con-
vective zones turbulent diffusion, and in the regions where the two rotational
instabilities actively work, i.e., meridional circulation and shear instability.
The calibration of these two parameters is necessary before any calculations
and is done in PARSEC V2.0 (Costa et al., 2019b). Another process that
directly impacts the transport of angular momentum is mass loss. It be-
comes even more important due to the enhancement in the case of rotating
stars. Many adopted empirical formulas from literature are available, but I
have also considered a self-consistent mass loss rate from Cranmer and Saar
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(2011) that I plan to apply in the future to low-mass stars.
In Chapter. 5, I present the new collection of stellar tracks that are com-

puted with rotation by using the PARSEC V2.0 code. The effects of rotation
are carefully studied for both cases of low-mass and intermediate-mass stars.
In the HRD, we find that rotating stars tend to be cooler and more lumi-
nous with respect to their non-rotating counterparts, an effect that is due
to the loss of spherical symmetry and due to the extra mixing caused by
rotation. Besides that, the stars spend a longer time in the MS phase and
build a heavier He-core in the post-MS phases. The angular velocity of the
He-cores slowly increases after the TAMS. However, their rotation rates are
rather modest. We also find the enhancement of the CNO-cycle products at
the surface in the case of intermediate-mass/massive stars. In Chapter. 6, I
present the corresponding isochrones. The isochrones are constructed using
the TRILEGAL code, and are complemented with photometric magnitudes
in many filter systems. The BC tables for rotating stars take into account
several inclination angles. To show the result of our new models we compare
them with the Gaia CM diagrams of two open clusters, M67 and NGC 6633.
We find that our new isochrone reproduces very well the hook feature of M67
as well as the “global” fitting of the cluster, with an age of ∼ 3.72 Gyrs for
[Fe/H]∼ 0, (m −M)0 = 9.69 and AV = 0.1 mag. We find a hint of at least
two populations that are harboured in the cluster NGC 6633. In particu-
lar, one population with fast rotating stars that can explain the extended
MS turn-off region, while the second population is composed of non-rotating
stars that is used to explain the location of the three stars at the He-clump.
To provide our new models to the community, we developed a web-interface
for tracks at 1 and at 2 for isochrones. A detailed description of these two
interfaces and the corresponding databases is presented in this chapter.

In Chapter. 7, I present my ongoing projects on the calculation of α-
enhanced mixtures for the study of GCs, galactic bulge, and the Milky Way
thick disc. The detailed chemical abundances of GC M92 for both FG and
SG are carefully collected from literature. The new opacity tables as well
as the EOS tables are updated with these new chemical compositions. At
the moment, we focus on the very-low-mass range and do a first preliminary
comparison using the metallicity Z = 0.0003 for both FG- and SG-mixtures.
We suspect that the He-content may play a role to explain the broadness of

1http://stev.oapd.inaf.it/PARSEC/tracks_v2.html
2http://stev.oapd.inaf.it/cgi-bin/cmd_3.7

http://stev.oapd.inaf.it/PARSEC/tracks_v2.html
http://stev.oapd.inaf.it/cgi-bin/cmd_3.7
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the lower main sequence of M92. We also focus on the mass-radius relation,
since we are dealing with the VLM stars. We see that the calibrated T-
τ relation (Chen et al., 2014) is good to explain the observed data below
∼ 0.6M⊙, while in the region between∼ 0.6−0.75M⊙ there is still a mismatch
between the models and the observed data. Rotation and/or magnetic fields
could play a role in this aspect. However, we need to carefully study these
effects before we can draw any firm conclusions on this subject.



Appendix A

Self-consistence mass loss rate

Mass Loss is a process refers to the fact that the stars lose their material
during their evolution, study the mass loss rate can help us understand the
final state of stars in their evolution. Let us start from the definition of mass
and energy’s conservation law of a spherical symmetry star,

∂r

∂m
=

1

4πr2ρ
(A.1)

∂L

∂m
= ϵ− T

∂S

∂t
(A.2)

with r is radius of the sphere in [cm]; m is the mass (in [g]) corresponds
to a sphere of radius r; ρ is the correspond density in [g cm−3]; L is the
luminosity in [erg s−1]; ϵ is the energy generated rate which is in unit of
[erg s−1 g−1]; T is the temperature in K; S is the entropy which characterizes
for the thermodynamic state of the system in [erg K−1 g−1].

Using the definition of total flux F = L/4πr2 which is the energy received
per unit area (in [erg cm−2 s−1]) and substitute Eq. A.1 to Eq. A.2 we would
obtain a relation,

1

ρ

1

4πr2
∂4πr2F

∂r
= ϵ− T

∂S

∂t
. (A.3)

Now, we consider a single fluid of pure hydrogen plasma which is assumed
in a steady state. As a consequence of this assumption, the entropy term
would be vanished in the right hand side of Eq. A.3. For convenience of latter
calculations, we denote A = 4πr2 is the cross-section area of the fluid, and
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hence Eq. A.3 becomes

− ρϵ+
1

A

∂(AF )

∂r
= 0. (A.4)

Note, the term −ρϵ in the right-hand side of Eq. A.4 is called by the
radiative energy loss which is in unit of [erg.cm−3.s−1]. The radiative energy
loss is written as

− ρϵ = N2Λ(T ) =
P 2

4k2
BT

2
Λ(T ). (A.5)

In which, N is the total number density in the fully ionized system; P =
2NkBT is the gas pressure, the number 2 is due to the fact that there are
2 particles considered (e−, p); and Λ(T ) is the radiative loss function (see
Cranmer et al. (2007)).

The total energy flux is now described as a sum of contribution due to
thermal conduction (FC), mechanical energy transport (FM), stellar wind
(FW ) and Alfvén wave (FA) (see Hammer, 1982; Withbroe, 1988),

F = FC + FM + FW + FA. (A.6)

For latter conveniences we rewrite the energy conservation law,

P 2

4k2
BT

2
Λ(T ) +

1

A

∂

∂r
[A (FC + FM + FW + FA)] = 0. (A.7)

In combine with the conservation of mass and momentum (see Withbroe,
1988),

ρuA = constant, (A.8)

ρu
du

dr
= −dP

dr
− ρ

GM

r2
− d

dr

⟨δB2⟩
8π

, (A.9)

the three equations, Eq. A.7-A.9, are the basic equations for deducing the
mass loss rate of cool stars, which will be described in more details in the
following sections.

The model of cool-star mass loss was studied in Cranmer and Saar (2011),
in which the authors analyse the winds in two scenarios. The outflow wind
can be driven by gas pressure or wave pressure which corresponds to a hot
corona and cool, extended chromosphere regions. We will discuss in more
details about both these mechanisms in the next following sections.
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A.1 Hot coronal Mass Loss

In this section we are considering a plasma fluid with a high gas pressure,
this may cause an acceleration to produce a transition region (TR) from the
base (cool chromosphere) to the hot corona region (the illustration of this
phenomenon is showing in Fig. 4.4). As a consequence, the outflow speed in
hot corona region is much larger than the Alfvén wave speed. More precisely,
the Alfvén wave flux is expected to depend strongly on the gravity (Eq. A.54),
(see also Cranmer and Saar, 2011), hence in the region of hot coronal, the
effect of Alfvén wave is negligible. The energy conservation law in Eq. A.7
now becomes,

P 2

4k2
BT

2
Λ(T ) +

1

A

∂

∂r
[A (FC + FM + FW )] = 0. (A.10)

Now, we will consider one by one the energy fluxes in Eq. A.10 above.
First, the energy flux driven by stellar winds. It is a sum of kinetic energy
flux and potential energy flux (see Cranmer and Saar, 2011; Hammer, 1982),
which is

FW = j

(
u2

2
− GM

r

)
, (A.11)

in which, j = ρu is the mass flux in unit of [g cm−2 s−1] and u is the outflow
speed in cm s−1.

Due to the inward direction of conductive energy flux, it is more conve-
nience that we replace FC to −FC , knowing that FC now is understood as
the magnitude of conductive flux. The energy conservation equation is now
becomes,

P 2

4k2
BT

2
Λ(T ) +

1

A

∂

∂r

{
A

[
FM − FC + j

(
u2

2
− GM

r

)]}
= 0. (A.12)

By integrating the equation above from TR region to r → ∞ and have
in mind the assumption that the radiative loss energy is balanced with both
the energy transported toward the stellar surface by thermal conduction and
the energy deposited by the mechanical energy from the far distanced hot
corona layers (see Withbroe, 1988). This lead us to a relation,

ATR (FM,TR − FC)− (jA)TR
GM∗

R∗
= (jA)∞

u2
∞
2
. (A.13)
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Note that, in the expression above the kinetic energy at TR is assumably
negligible, but a dominant at large distances. Besides, if the corona is a
low corona, the transition region could be considered as a thin area. As a
consequence, the mass and radius at TR are the stellar mass and radius,
MTR = M∗, RTR = R∗.

By the definition of conservation of mass, jA is a constant. The mass
loss rate is defined as Ṁ ≡ jA so that it obeys Eq. A.13,

ATR (FM,TR − FC) = Ṁ

(
u2
∞
2

+
GM∗

R∗

)
. (A.14)

In the study of Cranmer and Saar (2011), they assumed the outflow speed
at far distance is equal to the escape velocity, which is

u∞ = Vesc =

√
2GM∗

R∗
. (A.15)

Thus, the mass loss rate is now written as,

Ṁ =
ATR (FM,TR − FC)

V 2
esc

. (A.16)

The expression of mechanical flux and conductive flux will be discussed
in the following subsections due to their complexities. Besides, it’s worth to
mention about the cross-section area A. As introduced before that the area
A = 4πr2, however, this classical definition can not be able to describe the
cross-section area of a complexity plasma fluid. The cross-section area is now
defined as,

A = 4πr2f(r), (A.17)

where f(r) is called by the filling factor which characterizes for the geomet-
rical of the fluid tube, which is a dimensionless factor and tends to increase
with height to a completely symmetry shape of fluid at ∞, by definition
f∞ = 1. As shown in Fig. 4.4, the filling factor at transition region is falling
somewhere in between it’s value at the photosphere and at the far distance,
f∗ < fTR < f∞. In Cranmer and Saar (2011), the filling factor at TR is as-
sumed to relate to photosphere filling factor f∗ by a power law that fTR = f θ

∗ ,
with θ is a dimensionless constant between 0 and 1. In this project θ is cho-
sen to be 1/3. (see also Kopp and Holzer (1976))
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A.1.1 Mechanical energy flux

The mechanical energy flux is the flux of heat transferring between radiation
and matter in corona regions. In the special case, in which the heat rate
Q ∝ r−β and A ∝ rγ, with β, γ are constant and will be compressed into the
scaling factor h as a single variable, Cranmer and Saar (2011). Formally, Q
is computed by

Q =
1

A

∂(AF )

∂r
=

α̃ρv3⊥
λ⊥

, (A.18)

thus we can deduce the mechanical flux from this relation by integrating
both sides of the equation above from the base of TR to infinity. In static
atmosphere model that the mechanicalheating energy is negligible, thus the
mechanical flux at TR is computed by

(AFM)TR =

∫ ∞

R∗

Q(r)A(r)dr. (A.19)

Using the expression of Q and A above with an assumption that Q(∞) ≪
QTR, we finally get the expression of TR mechanical flux,

FM,TR ≡ QTRR∗h. (A.20)

where, h = 1/|β − γ − 1| = [0.5, 1.5] is a dimensionless scaling factor; QTR

denote for the heating rate at TR. The transverse velocity v⊥ ∝ ρ−1/4 at
near the photosphere and the effective correlation length λ⊥ ∝ A1/2 ∝ B−1/2.
Then, taking the ratio between heating rate at TR and at photosphere, we
would have

QTR

Q∗
=

α̃TR

α̃∗

(
ρTR

ρ∗

)1/4(
BTR

B∗

)1/2

. (A.21)

Besides that, from the relation between A and B, we get a relation of mag-
netic field strength ratio with the filling factor ratio, which is

BTR

B∗
=

A∗

ATR

=
f∗
fTR

= f 1−θ
∗ . (A.22)

Making another assumption that the heating rate at TR is equal to the
maximum of radiative cooling function Qcool (see Cranmer et al. (2007)), that
is written as,

QTR = max|Qcool| =
ρ2TRΛmax

m2
H

. (A.23)
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From this relation we could be able to deduce the density at TR by inserting
QTR in Eq. A.21 into Eq. A.23, as a result the stellar density at TR is
obtained as

ρTR =

[
α̃TRQ∗m

2
H

α̃∗ρ
1/4
∗ Λmax

]4/7
f 2(1−θ)/7
∗ . (A.24)

And then, put ρTR above back into Eq. A.21 in combine with Eq. A.22 we
can obtain the expression of heating rate at TR,

QTR =

(
α̃TRQ∗

α̃∗

)8/7(
m2

H

ρ2∗Λmax

)1/7

f 4(1−θ)/7
∗ , (A.25)

in which θ = [0, 1]; mH = 1.67333× 10−24 (g) is hydrogen mass; Λmax is the
maximum of radiative loss function which depends on metallicity as given in
Cranmer and Saar (2011),

Λmax

10−23erg cm3 s−1
≈ 7.4 + 42

(
Z

Z⊙

)1.13

. (A.26)

α̃∗ = 0.5 and the α̃TR is computed by a relation,

α̃ = α0
R(1 +R)

√
2

(1 +R2)3/2
, (A.27)

α̃ is the efficiency factor which depends on the effective reflection coefficient
R, in turns, R describes for the fact that stars create upward waves give rise
to the downward waves as a reflection. The chosen α0 = 0.5 is based on the
turbulent transport model of Breech et al. (2009),

R ≈ (VA − u∞)/(VA + u∞), (A.28)

where VA = B/(4πρ)1/2 is the Alfvén speed and B denote for the magnetic
field strength; and u∞ is the asymtotic outflow speed in a coronal wind which
is assumed to be equal to escape velocity u∞ = Vesc as mentioned above.

The heating rate at photosphere, Q∗, is computed by

Q∗ =
α̃∗ρ∗v

3
⊥∗

λ⊥∗
, (A.29)

where λ⊥∗ = λ⊥⊙ (H∗/H⊙) is an effective correlation length for the largest
eddies in the turbulent cascade which called by perpendicular length scale.
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The solar values are λ⊥⊙ = 300 km and H⊙ = 139 km, (see Cranmer and
Saar, 2011). The transverse velocity amplitude of Alfvén wave in the photo-
sphere, v⊥∗ is determined by the energy flux FA∗,

v⊥∗ =

√
FA∗

ρ∗VA∗
(A.30)

see more details in section. A.2

A.1.2 Conductive energy flux

In the inner corona, the conductive energy flux is given by (see Hammer
(1982))

FC = −κ
dT

dr
(A.31)

with thermal conductivity,

κ = (1.89× 10−5 erg.cm−1.s−1.K−7/2)
T 5/2

ln Λ(T )
. (A.32)

As mentioned in Withbroe (1988), for a static atmosphere with a neg-
ligible mechanical heating energy, one can consider the thermal conduction
energy is balanced by the radiative energy loss. Therefore, Eq. A.10 is now
reduced to

1

A

∂

∂r
(AFC) = − P 2

4k2
BT

2
Λ(T ) or − 4k2

BT
2

P 2

1

Λ(T )
∂(AFC) = A∂r.

(A.33)
Assume that we are in a low corona so that the TR cross-section area is very
thin, thus the equation above can be reduced to a simpler form,

− 4k2
BT

2

P 2

1

Λ(T )
dFC = dr. (A.34)

Substituting dr above to Eq. A.31, we have

− 4k2
BT

2

P 2

1

Λ(T )
FCdFC = −κdT or FCdFC =

κP 2

4k2
BT

2
Λ(T )dT. (A.35)
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Now, integrate both sides of the equation above we will obtain,

1

2

[
F 2
C(T0)− F 2

C(TTR)
]
=

∫ T0

TTR

κP 2

4k2
BT

2
Λ(T )dT (A.36)

= −1.89× 10−5 P 2

4k2
B

∫ TTR

T0

ΛT 1/2

ln Λ
dT, (A.37)

where T0 is the temperature at cool photosphere and TTR is the temperature
at TR. We also assume that the conductive flux at the TR is much higher
than at the photosphere FC(TTR) ≫ FC(T0), and thus we have

FC =

(√
1.89× 10−5

2k2
B

∫ TTR

T0

ΛT 1/2

ln Λ
dT

)
PTR = cradPTR, (A.38)

where crad is a constant (in unit of speed cm/s) which is expressed in Cranmer
and Saar (2011),

crad ≈ 14× 105

√
Λmax(Z)

Λmax(Z⊙)
; (A.39)

and PTR = (2ρTR/mH)kBTTR is the pressure at the TR, Λmax is in Eq. A.26.
Besides, TTR = 2× 105 K and the TR density is given in Eq. A.24,

ρTR =

[
α̃TRQ∗m

2
H

α̃∗ρ
1/4
∗ Λmax

]4/7
f 2(1−θ)/7
∗ . (A.40)

A.2 Cold-wave driven Mass Loss

In this section, we will consider one fluid in which the neutral and ion species
move together as a whole and the temperature of all pieces are equal. Be-
sides that, in a high density stellar atmosphere, the mechanical heating may
balance with the radiative loss energy and thus the total energy flux is now
contributed only from stellar wind, thermal conduction and Alfvén wave,
F = FW + FC + FA (see Cranmer and Saar (2011)). However, the contribu-
tion of conductive energy can be neglected according to Holzer et al. (1983)
by considering the isothermal outflow wind model, thus the conductive en-
ergy flux is ignorable in case of cold-wave wind. In that case, the gas pressure
can’t be enough to drive a significant outflow, and the cooling wave starts to
become a dominant.
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Rewrite the conservation of mass and momentum in Eq. A.8 and Eq. A.9,

ρuA = constant, (A.41)

ρu
du

dr
= −ρ

dv2T
dr

+
ρ

2

dV 2
esc

dr
− d

dr

(
⟨δB2⟩
8π

)
, (A.42)

where v2T = P/ρ is thermal speed, P is gas pressure and ⟨δB2⟩ is the mean
square wave magnetic field which related to mean square velocity field ⟨δv2⟩
through energy density ξ,

ξ =
⟨δB2⟩
4π

= ρ⟨δv2⟩. (A.43)

Since we are considering the simplest case of cold-wave driven wind which
is based on the condition that v2T ≪ ⟨δv2⟩ and MA ≪ 1. Therefore, to obtain
the equation of motion of this flow we will insert ⟨δB2⟩ from Eq. A.43 into
Eq. A.42, simplify ρ in both sides and apply the two conditions of cold wave,
as a result we will get an equation

d

dr

(
u2 − ⟨δv2⟩ − V 2

esc

)
= 0. (A.44)

Now, from the definition of mass loss rate Ṁ = ρuA = constant and we
assume that the region is isothermal so that exists a critical point where the
temperature at this point doesn’t change and thus we have,

Ṁ = ρcucAc. (A.45)

First of all, in order to determine the critical density ρc we base on the
energy conservation of wave action, which is,

S̃ ≡ ρv2⊥VAA = constant or ρc =
ρ∗v

2
⊥∗VA∗A∗

v2⊥,cVA,cAc

, (A.46)

thus the critical radius would be the first parameter that we must know.
From the equation of motion Eq. A.44, we have

u2
c −⟨δv2c ⟩− V 2

esc,c = u2
0 −⟨δv20⟩− V 2

esc,0 = −V 2
esc,0

(
1 +

⟨δv20⟩ − u2
0

V 2
esc,0

)
. (A.47)
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Besides that, from Hammer (1982) we know that at the critical point we
would have two equations,

u2
c −

1

4
⟨δv2c ⟩ = 0,

⟨δv2c ⟩ −
V 2
esc,c

β
= 0.

(A.48)

where β = (r/2A)(dA/dr). Therefore, we can reduce the left-hand side of
Eq. A.47 to only V 2

esc,c by using the relation in Eq. A.48, we will have the
final relation as

− V 2
esc,c

(
1 +

3

4

1

β

)
= −V 2

esc,0

(
1 +

⟨δv20⟩ − u2
0

V 2
esc,0

)
, (A.49)

or,
rc
R∗

=

(
1 +

3

4

1

β

)/(
1 +

⟨δv20⟩ − u2
0

V 2
esc,0

)
; (A.50)

if the flow is spherical symmetric, i.e., β = 1; and assume that the outflow
speed at photosphere is very small u0 ≪ 1, thus we have the relation of
critical radius and photosphere radius which as follows

rc
R∗

≈ 7/4

1 + (v⊥∗/Vesc)2
(A.51)

with v2⊥∗ ≡ ⟨δv20⟩ is the transverse velocity at the photosphere.
Starting from the Alfvén wave energy flux,

FA = ξVA = ρ⟨δv2⟩VA (A.52)

with ξ is taken from Eq. A.43. Therefore, the transverse velocity at photo-
sphere can be computed by,

v⊥∗ =

√
FA∗

ρ∗VA∗
. (A.53)

In turn, the Alfvén wave energy flux at photosphere is given in Cranmer and
Saar (2011), in which they utilized the model of Musielak and Ulmschneider
(2002) with a mixing length α = 2, and B = 0.85Beq to get the analytic fit,

FA∗ = F0

(
Teff

T0

)η

exp

[
−
(
Teff

T0

)25
]
, (A.54)
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where,

F0

109[erg.cm−2.s−1]
= 5.724 exp

(
− log g

11.48

)
, (A.55)

T0

103[K]
= 5.624 + 0.6002 log g, (A.56)

η = 6.774 + 0.5057 log g, (A.57)

log g = 0, 1, 2, 3, 4, 5 are the gravitational acceleration.
Therefore, the critical cross-section area is determined through Ac = 4πr2c

by considering that the flowing fluid is symmetry at the critical point. For the
Alfvén wave velocities, we use the assumption of magnetic flux conservation,
BA = constant, so that ⟨δB2/4π⟩ = B2/4π and ⟨δv2⟩ = V 2

A , then put those
onto Eq. A.43 and we will get

VA =
B

(4πρ)1/2
. (A.58)

Using Eq. A.58 for both photosphere region and critical point we will
obtain the VA,∗ and VA,c in Eq. A.46. The magnetic field strength at photo-
sphere is given in Cranmer and Saar (2011) which is,

B∗ = 1.13Beq = 1.13

√
8πρ∗kBTeff

µmH

, (A.59)

with µ is the mean atomic weight which is computed through effective tem-
perature Teff ,

µ ≈ 7

4
+

1

2
tanh

(
3500− Teff

600

)
, (A.60)

and the magnetic field strength at critical point is computed from the mag-
netic flux conservation that,

B∗A∗ = BcAc or Bc =

(
R∗

rc

)2

f∗B∗. (A.61)

The final parameter that we need to know in order to determine the
critical density is the transverse velocity at this point, v⊥,c. As pointed out
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in Holzer et al. (1983) that the flow speed at critical point is a sound speed
modified by Alfvén waves

v2s = v2T +
1

4

(
1 + 3MA

1 +MA

)
⟨δv2⟩, (A.62)

hence, apply for cold-wave driven wind (i.e., v2T ≪ ⟨δv2⟩ and MA ≪ 1) we
would have the transverse velocity at critical point is

v⊥,c = 2uc. (A.63)

Finally, it is obvious from Eq. A.48 with β = 1 that,

uc =

√
1

4
V 2
esc,c =

√
1

2

GM∗

rc
. (A.64)

Due to the appearance of ρc while computing VA,c we should rewritten
the formula of ρc in Eq. A.46, such that

ρc = 4π

(
ρ∗v

2
⊥∗VA∗A∗

v2⊥,cBcAc

)2

. (A.65)

A.3 Combining hot and cold mass loss rate

The total mass loss rate is the sum from both contributions, i.e., hot coronal
and cold-wave driven. However, based on a fact that there are stars that has
no corona, thus the total mass loss is expressed in the form as,

Ṁ = Ṁcold + Ṁhot exp
(
−4M2

A,TR

)
, (A.66)

where the Ṁhot is given in Eq. A.16; Ṁcoldis given in Eq. A.45 and the TR
Mach number, MA,TR = uTR/VA,TR.

The TR outflow speed is deduced from the hot coronal region through
the mass flux conservation which is,

uTR =
Ṁhot

4πR2
∗fTRρTR

. (A.67)
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In the expression above, the filling factor at TR is assumed to be fTR = f θ
∗ ;

and the TR density is given in Eq. A.24,

ρTR =

[
α̃TRQ∗m

2
H

α̃∗ρ
1/4
∗ Λmax

]4/7
f 2(1−θ)/7
∗ , (A.68)

all the parameters in the expression above are described in section. A.1.1
The Alfvén speed at TR is computed by,

VA,TR =
BTR√
4πρTR

, (A.69)

where BTR is given in Eq. A.22, BTR = f 1−θ
∗ B∗; and in turn, B∗ is computed

by Eq. A.59.
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Medeiros, A. Hatzes, M. P. Döllinger, and A. Weiss. Basic physical param-
eters of a selected sample of evolved stars. A&A, 458(2):609–623, November
2006. doi: 10.1051/0004-6361:20065105.

Francesca D’Antona, Antonino P. Milone, Marco Tailo, Paolo Ventura, Enrico
Vesperini, and Marcella di Criscienzo. Stars caught in the braking stage in
young Magellanic Cloud clusters. Nature Astronomy, 1:0186, August 2017. doi:
10.1038/s41550-017-0186.

C. de Jager, H. Nieuwenhuijzen, and K. A. van der Hucht. Mass loss rates in the
Hertzsprung-Russell diagram. A&AS, 72:259–289, February 1988.

L. Decin, M. Montargès, A. M. S. Richards, C. A. Gottlieb, W. Homan, I. Mc-
Donald, I. El Mellah, T. Danilovich, S. H. J. Wallström, A. Zijlstra, A. Baudry,
J. Bolte, E. Cannon, E. De Beck, F. De Ceuster, A. de Koter, J. De Ridder,
S. Etoka, D. Gobrecht, M. Gray, F. Herpin, M. Jeste, E. Lagadec, P. Kervella,



BIBLIOGRAPHY 153

T. Khouri, K. Menten, T. J. Millar, H. S. P. Müller, J. M. C. Plane, R. Sahai,
H. Sana, M. Van de Sande, L. B. F. M. Waters, K. T. Wong, and J. Yates.
(Sub)stellar companions shape the winds of evolved stars. Science, 369(6510):
1497–1500, September 2020. doi: 10.1126/science.abb1229.

Pierre Demarque, Jong-Hak Woo, Yong-Cheol Kim, and Sukyoung K. Yi. Y2

Isochrones with an Improved Core Overshoot Treatment. ApJS, 155(2):667–
674, December 2004. doi: 10.1086/424966.

H. E. Dewitt, H. C. Graboske, and M. S. Cooper. Screening Factors for Nuclear
Reactions. I. General Theory. ApJ, 181:439–456, April 1973. doi: 10.1086/
152061.

A. Di Cecco, R. Becucci, G. Bono, M. Monelli, P. B. Stetson, S. Degl’Innocenti,
P. G. Prada Moroni, M. Nonino, A. Weiss, R. Buonanno, A. Calamida, F. Ca-
puto, C. E. Corsi, I. Ferraro, G. Iannicola, L. Pulone, M. Romaniello, and A. R.
Walker. On the Absolute Age of the Globular Cluster M92. PASP, 122(895):
991, September 2010. doi: 10.1086/656017.

Aaron Dotter, Brian Chaboyer, Darko Jevremović, Veselin Kostov, E. Baron, and
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Léo Girardi, Julianne Dalcanton, Benjamin Williams, Roelof de Jong, Carme Gal-
lart, Matteo Monelli, Martin A. T. Groenewegen, Jon A. Holtzman, Knut A. G.
Olsen, Anil C. Seth, Daniel R. Weisz, and ANGST/ANGRRR Collaboration.
Revised Bolometric Corrections and Interstellar Extinction Coefficients for the
ACS and WFPC2 Photometric Systems. PASP, 120(867):583, May 2008. doi:
10.1086/588526.
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