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Abstract

We explore a novel interpretation of Symmetry Topological Field Theories (SymTFTs) as theories

of gravity, proposing a holographic duality where the bulk SymTFT (with the gauging of a suitable

Lagrangian algebra) is dual to the universal effective field theory (EFT) that describes spontaneous

symmetry breaking on the boundary. We test this conjecture in various dimensions and with

many examples involving different continuous symmetry structures, including non-Abelian and

non-invertible symmetries, as well as higher groups. For instance, we find that many Abelian

SymTFTs are dual to free theories of Goldstone bosons or generalized Maxwell fields, while non-

Abelian SymTFTs relate to non-linear sigma models with target spaces defined by the symmetry

groups. We also extend our analysis to include the non-invertible Q/Z axial symmetry, finding it to

be dual to axion-Maxwell theory, and a non-Abelian 2-group structure in four dimensions, deriving

a new parity-violating interaction that has implications for the low-energy dynamics of U(N) QCD.
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1 Introduction

A profound insight by E. Witten is that Topological Quantum Field Theories (TQFTs), due to their

general covariance, can be seen as theories of quantum gravity [1]. Unlike in more conventional

examples, general covariance is not achieved by integrating over metrics but rather by not introducing

them at all. Consequently, these theories lack any semiclassical description involving weakly interacting

gravitons. In traditional gravitational theories, one selects a background metric and expands around

it, thereby breaking general covariance spontaneously. Therefore, TQFTs can be viewed as theories of

quantum gravity with unbroken general covariance — where gravitons are, in a certain sense, confined.

This old story requires some important refinements. A full quantum-gravity theory should not

depend on the background topology. TQFTs, on the other hand, are sensitive to spacetime topology
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through their global symmetries, broadly defined in terms of their topological operators [2], which

are expected to form some higher category [3–12]. One way to achieve such an independence is to

sum over all topologies, which can be done in low dimensions [13–17]. Alternatively, one can use

TQFTs that do not even depend on topology [18], hence that are free of global symmetries and

then trivial (or invertible) [19, 20]. These can be obtained by gauging a maximal non-anomalous

set of topological defects, called a Lagrangian algebra, in a nontrivial TQFT. Not all TQFTs have

Lagrangian algebras (the typical example is 3d Chern–Simons theory), but those that have them

admit topological (or gapped) boundary conditions. In fact, given a Lagrangian algebra L, one can

construct such a boundary condition as an interface between the TQFT and the gauged TQFT [21–24].

Equivalently, the boundary condition is defined by allowing the defects insideL to end on the boundary.

TQFTs with topological boundary conditions have recently gained attention for their role as Sym-

metry Topological Field Theories (SymTFTs) in the context of generalized symmetries (see [25–28]

for reviews). SymTFTs are (d+1)-dimensional TQFTs Z(C) associated with symmetry structures C
in d dimensions, capturing all properties of the symmetries regardless of the specific QFTd realizing

them [2, 11, 29, 30]. The TQFT Z(C) is placed on a slab with two boundaries. The left one supports

the physical QFTd of interest, coupled with the bulk. The right one is the topological boundary

condition that one is free to choose, determined by a Lagrangian algebra L. Defects inside L become

trivial on the topological boundary, while all other ones (modulo those inside L) give rise to topological

operators of the symmetry C, after the slab is squeezed. The endpoints of defects inside L inherit a

braiding with the generators of C from the bulk braiding, hence they become the charges of the sym-

metry [31,32]. SymTFT has been shown to be a powerful tool for studying global symmetries, also of

non-invertible type [33–37] and their anomalies [38–42], as well as to characterize phases [43–47].

Although originally restricted to finite symmetries, the framework has been recently extended to

continuous symmetries [48–50].1 The prize to pay is to introduce a new type of TQFTs with gauge

fields valued in both U(1) and R, and to have a continuous and/or non-compact spectrum of operators,

thus going beyond the standard TQFTs well studied by mathematicians (we provide a more precise

mathematical definition in Appendix B). This idea has been shown to be applicable to all possible non-

finite and continuous symmetries, with or without anomalies, possibly with higher-group structures,

and even including non-invertible and non-Abelian symmetries. By now the picture is that to any

possible symmetry structure C in d dimensions one can canonically associate a (d + 1)-dimensional

TQFT Z(C).

Our aim here is to give a different interpretation to these TQFTs Z(C), not as SymTFTs but as

theories of gravity. More precisely, we want to establish holographic dualities in which the bulk theory

is a SymTFT. The main proposal of this paper is the following:

• Thought of as a theory of gravity, the SymTFT Z(C) for a symmetry C is the holographic dual to

the universal effective field theory (EFT) that describes the spontaneous breaking of C.

It is a general principle of quantum field theory that any theory with a certain continuous global

1See [51] for a different proposal involving non-topological theories.
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symmetry that is spontaneously broken, in the far infrared (IR) flows to the same universal theory

of Goldstone bosons [52, 53]. This is roughly speaking always a sigma model, although the target

space can be infinite dimensional (e.g., it is the classifying space BpG in the case of higher-form

symmetries).2 As for the SymTFT, this EFT is also canonically determined by the symmetry C
without any further information. For this reason, it is natural to expect that, even though they

appear to be completely different objects — a (d + 1)-dimensional TQFT and a d-dimensional EFT

— the two can be somehow related as they both have the same input datum. We will prove by means

of many examples that this correspondence is holography.

A crucial part of the story is the proper choice of boundary conditions. These will be non-

topological and of the Dirichlet type for some combination of the bulk fields. Since bulk fields are

gauge fields A, these boundary conditions break some gauge invariance, making it a global symmetry

of the boundary theory. This agrees with the general principle in holography that boundary global

symmetries correspond to bulk gauge fields. The non-triviality of the system really comes from the

boundary conditions that, being non-topological, generate dynamics on the boundary. The boundary

theory can be thought of as a theory of edge modes. Our setup has several similarities with, and

may be understood as a generalization of, the Chern–Simons/WZW correspondence [56, 57] and its

reinterpretation as a full-flagged holographic duality by means of bulk anyon condensation [18].

We find that for the simple Abelian TQFTs introduced in [48, 49] as the SymTFTs for U(1),

the dual boundary theory is the free theory of an S1 Goldstone boson, or generalized Maxwell field

when the symmetry is of higher form. More precisely, these boundary theories have topological sectors

(e.g., winding for a compact scalar, or magnetic fluxes for a photon), and the nontrivial TQFT without

gauging the Lagrangian algebra is only dual to a fixed topological sector. The latter is not a physical

theory and is the non-chiral analog of the conformal blocks in the CS/WZW correspondence. The

physical theory is obtained by summing over various topological sectors, and we will show that this sum

is reproduced by the gauging of the Lagrangian algebra. These Abelian TQFTs have various interesting

modifications describing chiral anomalies, higher groups, and non-invertible Q/Z symmetries [48]. We

include all of them in our analysis, showing that their holographic duals are the theories describing

the spontaneous breaking of the corresponding symmetries. In particular the SymTFT for the non-

invertible chiral symmetry is the gravity dual to axion-Maxwell theory.

For non-Abelian continuous symmetriesG, the SymTFT was also conjectured in [48,49] and further

analyzed in [50]. In the simplest case, it is a TQFT introduced many years ago by Horowitz [58] and

is written in terms of a G connection and a Lie-algebra-valued higher-form field in the adjoint of G.

When employing this theory in our story, it proves to be the dual to a non-linear sigma model with

target space G at the boundary. For d = 4 this in the pion Lagrangian describing the low-energy

dynamics of massless QCD in the chiral symmetry breaking phase. We also show that including a

term that describes an ’t Hooft anomaly we obtain a WZW term in the sigma model [59].

A particularly interesting example is that of a non-Abelian 2-group in 4d, mixing a non-Abelian

continuous symmetry G and a U(1) 1-form symmetry [60]. The Goldstone theory for this symmetry

2It is not clear to us how to make this precise for non-invertible symmetries, for instance for the Q/Z chiral symmetry

discovered in [54,55].
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structure was not determined before, and we use our holographic conjecture to derive it. It consists of

a non-linear sigma model and a photon, coupled through a parity-violating interaction whose leading

term is proportional to kfabcϵ
µνρσAµ ∂νπa ∂ρπb ∂σπc, where πa are the pions, fabc are the structure

constants of G, while k ∈ Z is a quantized coefficient that governs the 2-group structure. This term

encodes the coupling of the photon to the current for a topological 0-form symmetry of the sigma

model. This result has a concrete application to the low-energy dynamics of 4d U(N) QCD. For

low enough number of flavors, the chiral symmetry is spontaneously broken and quarks form pion

bound states as in SU(N) QCD. However, here the theory also contains an Abelian gauge field A for

the baryon number symmetry with quarks charged under it, hence in the IR this photon cannot be

decoupled. The photon-pion term encodes the coupling of A to the baryon number current in the IR.

We argue that the theory has a spontaneously-broken 2-group symmetry, implying that the leading

photon-pion interaction coincides with the one we determined from our conjecture.

Since our work utilizes TQFTs with an infinite number of (simple) topological operators, as an

aside in Appendix B we explore some of their properties and show (in a simple example) that while

their path integrals on closed Euclidean manifolds are divergent, the path integrals on open manifolds

can be made finite.

The rest of the paper is organized as follows. In Section 2 we explain the general setup and

clarify some issues about holography with TQFTs in the bulk. In the rest of the sections we present

several interesting examples. Section 3 concerns the vanilla example of Abelian symmetries without

additional structures. In Section 4 we include chiral anomalies and higher group structures, showing

that the Goldstone theory is the same as in the vanilla case but it couples differently to background

fields, a fact that is interpreted in terms of symmetry fractionalization. The non-invertible example

is discussed in Section 5 after we warm up with a similar but simpler example in 3d that produces

Maxwell–Chern–Simons theory. The non-Abelian cases (including higher groups) are finally studied

in Section 6.

2 Topological field theories as holographic duals

The bulk theories we use in this paper are TQFTs of the type introduced in [48–50] to describe

SymTFTs for continuous symmetries. In the simplest cases, they have a Lagrangian formulation as3

S =
i

2π

∫
Xd+1

bd−p−1 ∧ dAp+1 (2.1)

where Ap+1 is a U(1) (p + 1)-form gauge field, while bd−p−1 is an R (d − p − 1)-form gauge field.

In the whole paper, we adopt this convention in which uppercase letters indicate U(1) gauge fields,

while lowercase letters indicate R gauge fields. Understood as a SymTFT, this describes a p-form

U(1) symmetry in d dimensions. The topological operators of the theory are [48]:

Vn(γp+1) = e
in

∫
γp+1

Ap+1
, Uβ(γd−p−1) = e

iβ
∫
γd−p−1

bd−p−1
, n ∈ Z , β ∈ R/Z ∼= U(1) . (2.2)

3We only consider Euclidean manifolds and normalize our actions so that the weight in the path integral is e−S .
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Figure 1: Left: the SymTFT setup. The TQFT is placed on a slab, whose right boundary is topological

and determined by a Lagrangian algebra L. Right: the holographic setup considered here. There is

only one boundary with non-topological boundary conditions, while the Lagrangian algebra L is gauged

to make the bulk invertible.

The partition function of (2.1) on a generic closed manifold diverges, but infinities are avoided on

certain classes of manifolds with boundaries (see Appendix B). These are the relevant ones for both

the SymTFT and the holographic setup considered in this paper. Moreover, normalized correlators

are always finite, and capture the braiding of topological defects:〈
Vn(γp+1)Uβ(γ

′
d−p−1)

〉
= exp

[
2πi n β Link

(
γp+1, γ

′
d−p−1

)]
. (2.3)

In the following we will consider several modifications of the vanilla case (2.1) that take into account

anomalies, higher groups, non-invertible symmetries, as well as extensions to non-Abelian groups.

However let us focus here on this simplest case as an illustration of the basic ideas and setup.

In SymTFT, (2.1) is placed on a slab with two boundaries, one of which is topological and de-

termines the symmetry after the slab is squeezed. This topological boundary is characterized by a

maximal set of mutually transparent objects, which we generically refer to as a Lagrangian algebra L.
In this example a natural Lagrangian algebra consists of all Vn(γp+1), while the Uβ(γd−p−1) become

the generators of the U(1) p-form symmetry of the boundary theory.

In this paper, instead, we consider a different setting in which (2.1) is placed on a manifold Xd+1

with a unique connected boundary Md = ∂Xd+1, which we endow with a Riemannian structure. On

Md we fix non-topological boundary conditions 4

Ap+1 + iC ⋆ bd−p−1 = Ap+1 . (2.4)

Here ⋆ is the Hodge star operator of the boundary, Ap+1 is a fixed (p + 1)-form on the boundary,

and C is a generically dimensionful constant with mass dimension [C] = 2p+ 2− d.5 Moreover, the

4Such boundary conditions in BF theory, and the edge modes they lead to, have recently been studied in [61].
5The introduction of such a scale is necessary since the components of Ap+1 have dimension p+1 while those of bd−p−1

have dimension d− p− 1. In this way the forms Ap+1 and bd−p−1 are dimensionless, the action in (2.1) is dimensionless,

but ⋆ bd−p−1 has dimension d− 2p− 2.
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Lagrangian algebra L that was used to define the topological boundary in the SymTFT setup must

now be gauged in the bulk Xd+1, and the final bulk theory Z(C)/L is an invertible TQFT. See Fig. 1

for a comparison of the two setups.

In this second setup we want to establish a precise holographic duality with a certain local QFTd

living on the boundary, which we need to determine. More precisely, the equality we need to show is

the standard one [62–64]:

ZTQFTd+1

[
φ
∣∣
∂
= A

]
= ZQFTd

[Md,A] . (2.5)

Here TQFTd+1 is the result of gauging L in Z(C), φ denotes generically some bulk fields (for instance

φ = Ap+1 + iC ⋆ bd−p−1 in the example (2.1)), while A is introduced as a boundary value from the

bulk viewpoint and plays the role of a background field for the boundary QFT. Although SymTFT

superficially resembles holography, the two are fundamentally different. SymTFT only captures sym-

metries and disregards dynamics, allowing any QFT with the specified symmetry. In contrast, in

holography the dual QFTd is uniquely determined by the bulk theory and its boundary conditions,

encoding both symmetries and dynamics as in (2.5).6

We will determine the dual QFTd explicitly in the many examples considered below, providing

strong evidence for the conjecture that the dual theory to Z(C)/L is always the symmetry-breaking

EFT for C. Some of these checks are quite subtle and highly nontrivial. For instance, the Goldstone

theory for a U(1) symmetry with a cubic ’t Hooft anomaly in 4d is still a compact boson with no

additional terms as in the non-anomalous case,7 but the background field for the symmetry is coupled

non-minimally to the theory. We discuss this in Section 4.3 (in particular (4.20) is the additional

coupling) to which we refer for more details. The SymTFT for a 4d anomalous U(1) is [48]

S =
i

2π

∫
X5

b3 ∧ dA1 +
ik

24π2

∫
X5

A1 ∧ dA1 ∧ dA1 . (2.6)

Forgetting about the boundary value A1 appearing in the boundary condition (2.4), the additional

cubic term does not affect the dual boundary QFT4. However we will show in Section 4.2 that keeping

track of A1 we reproduce exactly the non-minimal coupling expected for an anomalous U(1).

Before moving to the various examples, let us clarify a conceptual point. The assertion that certain

dynamical QFTs have a TQFT as holographic dual might be perplexing at first. The origin of the

confusion is that, even though TQFTs are good theories of gravity, the non-appearance of a metric

tensor gµν is puzzling for holography: the metric should be dual to the stress-energy tensor Tµν of

the boundary QFT. While this observation is in general correct, in a few special cases it might have

a loophole: the stress tensor might not be an independent operator. For instance, this is the case

in the CS/WZW correspondence [56, 57]. In 2d WZW models the stress tensor of the CFT, using

the Sugawara construction, is made out of the currents which are dual to the gauge fields of the 3d

Chern–Simons bulk theory. Something very similar happens in our examples. Indeed, the EFTs for

symmetry breaking are very special QFTs in which everything, including the stress-energy tensor, is

determined by the currents and their correlation functions. This is at the core of the universality of

6See [65] for a general description of symmetry operators in holography.
7This is different from the non-Abelian case, in which an anomaly implies a WZW term in the sigma model.
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those EFTs. For instance, in the theory of a U(1) Goldstone boson with action

S =
R2

4π

∫
Md

dΦ ∧ ⋆ dΦ , (2.7)

the U(1) current is Jµ = iR2

2π
∂µΦ and the stress tensor is a composite operator of Jµ:

Tµν =
R2

4π

(
∂µΦ ∂νΦ− 1

2
δµν (∂Φ)

2

)
=

π

R2

(
1

2
δµν J

2 − JµJν

)
. (2.8)

Through the boundary conditions, the bulk SymTFT provides background fields for the global sym-

metries of the boundary theory, which are sources for the boundary currents. Hence the TQFT can

compute correlation functions of the currents, and by universality correlation functions of all oper-

ators, including those of the stress tensor, even without an explicit source gµν . This is a general

statement: in the EFTs for spontaneous breaking the currents completely determine all operators and

the holographic duals do not need a graviton field.

It is expected, however, that embedding our models into RG flows and taking into account non-

universal features would require to reintroduce dynamical gravity into the game. Indeed, a related

observation is that the boundary theories we obtain are either free or non-renormalizable. The reason

why a TQFT, which is expected to be UV complete and finite, can be dual to a non-renormalizable

theory is the choice of non-topological boundary conditions, which introduce an energy scale in the

theory. This scale sets a limit below which both the bulk and boundary theories are well defined.

Above this threshold, the boundary theory requires the inclusion of more and more operators to tame

UV divergencies. This issue has to carry over to the bulk TQFT as well — albeit in a way unclear to

us — making the TQFT description incomplete. The expectation is that, to make sense of the bulk

theory above the scale of the boundary condition, one has to allow for dynamical gravity in the bulk

in a way that is similar to the embedding of an EFT for spontaneous breaking into a UV complete

theory. It would be interesting to understand this point better.

3 U(1) Goldstone bosons

The simplest cases to test our conjecture are those of U(1) symmetries of generic degree. We warm

up with the textbook example of a spontaneously broken U(1) 0-form symmetry in generic dimension

and then move on to the case of higher-form symmetries, whose Goldstone bosons are (free) U(1)

higher-form gauge fields [2].

3.1 0-form symmetries

Consider the following TQFT in d+ 1 dimensions:

S =
i

2π

∫
Xd+1

bd−1 ∧ dA1 , (3.1)

7



where A1 is a U(1) gauge field while bd−1 is an R (d− 1)-form gauge field. We endow the boundary

Md = ∂Xd+1 with a Riemmanian metric and impose the boundary condition

⋆A1 = − i

R2
bd−1 + ⋆A1 . (3.2)

Here R is a parameter of mass dimension (d− 2)/2, while A1 is a fixed background 1-form on Md.

Notice that only in d = 2 this boundary condition is conformally invariant. In order to get a consistent

variational principle with this boundary condition we must add a boundary term S∂ to (3.1). Indeed,

the variation of the action produces a boundary piece

δS
∣∣
Md

= (−1)d−1 i

2π

∫
Md

bd−1 ∧ δA1 =
1

2πR2

∫
Md

bd−1 ∧ ⋆ δbd−1 , (3.3)

which requires a boundary term

S∂ = − 1

4πR2

∫
Md

bd−1 ∧ ⋆ bd−1 . (3.4)

Since the boundary condition (3.2) breaks gauge invariance on the boundary, we have to be careful

in specifying the group of transformations we quotient by in the bulk: we choose to allow only gauge

transformations that are trivial on the boundary. This implies that the bulk gauge symmetries become

global on the boundary. For any global symmetry we should be able to turn on a background. In our

setup this operation has a very natural realization: instead of freezing gauge transformations on the

boundary, we allow them but transform the boundary data so as to render the boundary condition

invariant. For instance, we can make (3.2) gauge invariant under gauge transformations of A1 by

demanding that A1 7→ A1 + dλ0 is accompanied by a transformation of the fixed background A1:

A1 7→ A1 + dλ0 . (3.5)

With this choice, A1 is interpreted as a background gauge field for the global U(1) symmetry on the

boundary. Notice that with our choice of boundary term the whole system is gauge invariant.

We can also restore the gauge transformations bd−1 7→ bd−1 + dνd−2 by transforming

A1 7→ A1 − (−1)d
i

R2
⋆ dνd−2 , (3.6)

which however are not proper background gauge transformations. A clearer and equivalent possibility

is to parametrize the boundary condition as

⋆A1 = − i

R2

(
bd−1 − Bd−1

)
, (3.7)

where Bd−1 is another fixed background on the boundary that transforms as Bd−1 7→ Bd−1 + dνd−2.

It can be understood as a background field for the global (d−2)-form symmetry on the boundary. Yet

another possibility is to restore both gauge transformations, for instance through the parametrization

⋆
(
A1 −A1

)
= − i

R2

(
bd−1 − Bd−1

)
. (3.8)
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We can use it to discover information about the boundary theory. Indeed, with the choice of boundary

term in (3.4), the system is not gauge invariant, rather under a gauge transformation we find

δ(S + S∂) = (−1)d−1 i

2π

∫
Md

dνd−2 ∧A1 −
1

4πR2

∫
Md

(
2 dνd−2 ∧ ⋆Bd−1 + dνd−2 ∧ ⋆ dνd−2

)
. (3.9)

The second piece can be cancelled by modifying the boundary term with the addition of

1

4πR2

∫
Md

Bd−1 ∧ ⋆Bd−1 , (3.10)

that can be understood as a local counterterm. However the first piece in (3.9) cannot be removed

while preserving background gauge invariance for the U(1) 0-form symmetry. This is a sign that the

two symmetries have a mixed ’t Hooft anomaly. Indeed, as we are going to see, the theory we are

describing is the holographic dual to a d-dimensional compact boson. In what follows we will turn on

only the background for the U(1) 0-form symmetry, i.e., we will use the boundary condition (3.2).

In order to rewrite the path integral of this TQFT as that of the compact boson we proceed in

analogy with [57,66, 67] (see also [68]). We assume that Xd+1 contains an S1 factor parametrized by

t ∼ t+ β, interpreted as Euclidean time, hence Xd+1 = Xd × S1 and ∂Xd+1 ≡ Md = Md−1 × S1.

For simplicity, we also choose the metric of ∂Xd+1 to be diagonal in Md−1 and S1 so that

⋆ dt = (−1)d−1VolMd−1
∈ Ωd−1(Md−1) (3.11)

with VolMd−1
the volume form of Md−1. We decompose the bulk fields as

A1 = At
0 dt+ Ã1 , bd−1 = btd−2 ∧ dt+ b̃d−1 , (3.12)

where forms with a tilde live on the spatial manifold Xd. The time components At
0 and btd−2 appear

linearly and can be treated as Lagrange multipliers. Integrating them out enforces

d̃Ã1 = 0 , d̃ b̃d−1 = 0 . (3.13)

We now make a choice for Xd and take it to be a d-dimensional ball so that Md = Sd−1 × S1. Then

(3.13) are solved by introducing a compact scalar Φ0 and a (d− 2)-form R gauge field ωd−2 as

Ã1 = d̃Φ0 , b̃d−1 = d̃ωd−2 . (3.14)

Rewriting both the bulk action and the boundary term using Φ0 and ωd−2, the system reduces to the

boundary action

S =
i

2π

∫
Md

[
(−1)d d̃ωd−2 ∧

(
∂tΦ0 −At

0

)
dt

− i

2

(
R2

(
d̃Φ0 − Ã1

)
∧ ⋆

(
d̃Φ0 − Ã1

)
+

1

R2
d̃ωd−2 ∧ ⋆ d̃ωd−2

)]
.

(3.15)

This action is not covariant, and time derivatives appear linearly. For d = 2, the action contains

two scalars and is a manifestly self-dual formulation of the compact boson known in the condensed

matter literature as the Luttinger liquid Lagrangian (see, e.g., [69] for a recent discussion). It has the
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advantage of making both U(1) symmetries explicit, at the expense of hiding Lorentz invariance. The

action (3.15) is a d-dimensional generalization of it and it makes both the 0-form and the (d−2)-form

U(1) symmetries manifest.

Path integrals with an action linear in time derivatives are interpreted as phase-space path integrals.

One can typically obtain a configuration-space path integral by integrating out the momenta that

appear quadratically. Indeed, here d̃ωd−2 is the conjugate momentum to Φ0 and we can recast the

theory in a Lorentz-invariant form by integrating out ωd−2. An important observation is that the

action has zero modes that need to be eliminated. One way to see this is via the equations of motion

for ωd−2. These are

d̃

[(
∂tΦ0 −At

0

)
dt + (−1)d

i

R2
⋆ d̃ωd−2

]
= 0 (3.16)

with solution

d̃ωd−2 = iR2
(
∂tΦ0 −At

0

)
⋆ dt− iR2 ⋆ d̃γ0 . (3.17)

Notice that, since
(
∂tΦ0 −At

0

)
⋆ dt is a (d− 1)-form supported only on space, we have d̃ ⋆ d̃γ0 = 0.

The scalar γ0 is integrated over but its path integral is naively divergent because γ0 has vanishing

action, i.e., it is a zero-mode. Therefore in order to get a consistent theory we have to gauge fix

γ0 = 0. Plugging d̃ωd−2 in (3.15) we get the final action

S =
R2

4π

∫
Md

(
dΦ0 −A1

)
∧ ⋆

(
dΦ0 −A1

)
, (3.18)

corresponding to a d-dimensional compact boson with radius R. Had we integrated out Φ0 from

(3.15), we would have found the dual formulation in terms of the (d−2)-form ωd−2. The background

field A1 corresponds to the U(1) shift symmetry of the boson and the anomalous shift we discussed

above corresponds to the mixed ’t Hooft anomaly with the winding symmetry.

One might be puzzled by the fact that we have one bulk gauge symmetry U(1), but we still obtain

two global symmetries on the boundary, which might seem to clash with the usual holographic expec-

tations. However, for the compact boson this is not really a contradiction: all correlation functions of

one current can be obtained from those of the other. Indeed, the backgrounds of the two symmetries

are obtained one from the other using the ⋆ operator (modulo counterterms, which correspond to

contact terms in correlators); thus, functional derivatives of the partition function with respect to a

single background already contain the information of all correlators of both currents (see [70] for a

related discussion).

Before going on, let us mention an alternative, quicker way to arrive at the final result that does

not pass through the Luttinger-liquid-like formulation (3.15). It requires Xd+1 to be a ball, and hence

Md = Sd. After determining the boundary conditions (3.2) and the boundary term (3.4), we just

integrate the entire bd−1 out, imposing dA1 = 0. Since the bulk is now topologically trivial, this is

solved by A1 = dΦ0. Using the boundary condition to express the boundary term (3.4) in terms of

A1, and plugging back A1 = dΦ0, we immediately get (3.18).
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3.2 Higher-form symmetries

The higher-form case is very similar and we only flash the 1-form symmetry example, just to highlight

one small subtlety. The TQFT we start with has action

S =
i

2π

∫
Xd+1

fd−2 ∧ dG2 , (3.19)

with fd−2 and G2 being an R and U(1) gauge field, respectively. On Xd+1 with boundary Md, that

we endow with a Riemannian metric (if d = 4 a conformal structure is enough) we set the boundary

condition (see also [61]):

⋆G2 = (−1)d+1 ie
2

π
fd−2 + ⋆G2 , (3.20)

where [e2] = 4− d. We must also add a boundary term

S∂ = − e2

4π2

∫
∂Xd+1

fd−2 ∧ ⋆fd−2 . (3.21)

When solving the constraints imposed by the integral over time components as

f̃d−2 = d̃ωd−3 , G̃2 = d̃A1 , (3.22)

we introduce (time-dependent) forms ωd−3 and A1 only on the spatial manifold Xd, namely without

time components. The boundary action one obtains is

S =
i

2π

∫
Md

[
(−1)d d̃ωd−3 ∧

(
∂tA1 + Gt

1

)
∧ dt

− i

2

(
e2

π
d̃ωd−3 ∧ ⋆ d̃ωd−3 +

π

e2
(
d̃A1 − G̃2

)
∧ ⋆

(
d̃A1 − G̃2

))]
.

(3.23)

This is a higher-form generalization of (3.15) and integrating out ωd−3 we obtain

S =
1

4e2

∫
Md

(
dA1 − B2

)
∧ ⋆

(
dA1 − B2

)
, (3.24)

where B2 = −Gt
1 ∧ dt + G̃2 is a 2-form background field. This is a Maxwell action in d dimensions

coupled to a background field B2 for its electric 1-form symmetry.

The subtlety we want to point out is that A1 does not have the time component, hence this

is a gauge-fixed Maxwell action.8 There is a gauge choice that arises naturally in this reduction

procedure, that is, the temporal gauge. The same story goes through for any higher-form gauge field:

the boundary action is always a generalized Maxwell theory in the temporal gauge (see [68] for a

discussion on this point). It is important to keep this small subtlety in mind when looking at more

complicated TQFTs that produce further interactions involving the photon. For instance, in Section 5

we will obtain Chern–Simons terms on the boundary, and we will have to keep in mind that they

always arise in the temporal gauge.

8This subtlety does not arise in the quicker procedure described at the end of the last section.
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3.3 Lagrangian algebras and topological sectors

There is one very important caveat in the discussion of the previous two sections. Let us focus on the

0-form symmetry case for definiteness. We have shown that with the boundary condition we chose,

the path integral of the TQFT can be rewritten as a path integral with the action of a compact boson

(3.18). However, the domain is not the one of the physical theory. The reason is that when we solve

(3.13) introducing Φ0 and ωd−2 as in (3.14), these fields cannot wind around the time circle S1. Hence

what we established in Section 3.1 is that the TQFT partition function is equal to the zero-winding

sector of a compact boson.9

However, it turns out that we can produce the path integral in any fixed winding sector, simply by

inserting a Wilson line ein
∫
S1A1 along the time circle in the bulk. The line pierces the spatial manifold

Xd at a point P , creating a nontrivial (d − 1)-cycle Σd−1 ⊂ Xd and introducing a monodromy for

b̃d−1 around it: ∫
Σd−1

b̃d−1 = 2πn . (3.25)

To get the TQFT partition function with this insertion, consider a generator
ηd−1

2π
ofHd−1(Xd∖P ;Z),

namely
∫
Σd−1

ηd−1 = 2π. The second equation in (3.13) is now solved by

b̃d−1 = n ηd−1 + d̃ωd−2 . (3.26)

With the same steps as before we obtain a path integral on boundary fields Φ0 and ωd−2, again over

configurations of Φ0 with zero winding around the time circle, but with a modified action with respect

to (3.15):

Sn =
i

2π

∫
Md

[
(−1)d d̃ωd−2 ∧

(
∂tΦ0 −At

0

)
dt

− i

2

(
R2

(
d̃Φ0 − Ã1

)
∧ ⋆

(
d̃Φ0 − Ã1

)
+

1

R2
d̃ωd−2 ∧ ⋆ d̃ωd−2

)]
− (−1)d

in

2π

∫
Md

At
0 η̂d−1 ∧ dt+

n2

4πR2

∫
Md

η̂d−1 ∧ ⋆ η̂d−1 .

(3.27)

Here η̂d−1 is the pull-back of ηd−1 on Md. It is a top form on ∂Xd ≡ Md−1 and one can make a

choice for the representative ηd−1 in (3.26) such that η̂d−1 = 2π
v
VolMd−1

with v =
∫
Md−1

VolMd−1

the volume of the boundary spatial slice. In particular ⋆ η̂d−1 =
2π
v
dt. Plugging this back into (3.27)

we obtain

Sn = S0 − inθ +
πβn2

vR2
where θ = (−1)d

∫
S1

At
0 dt . (3.28)

Here S0 is the action (3.15) written in terms of the periodic scalar in the Luttinger liquid form, which

could be rewritten in the Lorentz covariant form (3.18) that makes manifest its nature as a boson of

radius R. Notice that θ ∼ θ + 2π has the interpretation of a chemical potential for the U(1) 0-form

9For d = 2 the boundary spatial manifold is S1, and since Φ0 is compact the path integral includes a sum over all

windings around that spatial circle, but not around the time circle.
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symmetry. The partition function with the line inserted is then

Zn = Zpert exp

(
inθ − πβ

vR2
n2

)
(3.29)

where Zpert is the perturbative contribution due to a periodic boson.

We want to show our claim that, after we condense a Lagrangian algebra in the bulk, the partition

function includes the sum over all topological sectors of the compact scalar, hence reproducing the

physical partition function. The simplest Lagrangian algebra contains all the lines Wn = ein
∫
A1

and no surfaces Vα = eiα
∫
bd−1 . Due to our choice of geometry, gauging this algebra is the same as

summing over all lines inserted along the time circle, hence summing over all n in (3.29). The bulk

interpretation of this sum is that we are computing the partition function of the SPT phase obtained

by gauging the algebra, which we are taking as our theory of gravity. Hence using Poisson’s summation

formula we find10

Zgravity =
∑
n∈Z

Zn = Zpert

∑
w∈Z

exp

[
−πvR

2

β

(
w +

θ

2π

)2
]
. (3.30)

The right hand side is precisely the partition function of a compact boson of radius R (with chemical

potential θ).

More generally, the bulk TQFT has other Lagrangian algebras consisting of the linesWkm and the

surfaces Vm′/k for an integer number k ∈ Z. Condensing one of them produces a different SPT phase

in the bulk, hence a different theory of gravity. In the SymTFT story this corresponds to gauging

the Zk subgroups of the U(1) symmetry at the boundary [48]. Because of the chosen geometry, there

are no (d − 1)-cycles in the bulk and hence condensing this algebra simply means summing over all

Wilson lines of charge multiple of k. The result is

Z ′
gravity =

∑
m∈Z

Zkm = Zpert

∑
w∈Z

exp

[
−πv
β

(R
k

)2(
w +

kθ

2π

)2
]

(3.31)

and the right-hand side can be interpreted as the partition function of a compact boson of radius

R′ = R/k. This is an orbifold of the previous boundary theory, which could be thought of as a

different global form of the same theory.

We want to comment on a slightly different way to obtain a holographic dual to compact bosons,

which also fits our proposal. We could have started with the TQFT of two R gauge fields described

by the action

S =
i

2π

∫
Xd+1

bd−1 ∧ da1 . (3.32)

In this TQFT the charges of the Wilson lines Wα = eiα
∫
a1 are not quantized, and since there is no

sum over fluxes,11 there is no identification among the charges of Vβ = eiβ
∫
bd−1 . The spectrum of

10Here we are neglecting an extra factor
√

β/vR2, since normalizations of the path integrals do not play a role in this

paper. A similar factor is neglected in (3.31).
11An R gauge field admits a gauge in which the connection is globally defined, therefore the field strength is an exact

form and its integrals on compact submanifolds vanish.
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bulk operators is then larger, labelled by R× R, and the corresponding braiding is the phase e2πiαβ.

Lagrangian algebras are classified by the choice of a real number Q ∈ R+ and are given by [18]

LQ =
{
WQn, VQ−1m

∣∣ n,m ∈ Z
}
. (3.33)

It was shown in [48] that this TQFT is the SymTFT for two U(1) symmetries, namely a 0-form and

a (d− 2)-form, with a mixed anomaly. While this is a different symmetry structure from just a single

U(1), the second higher-form symmetry arises universally in the IR whenever the 0-form symmetry

is spontaneously broken. Hence the two symmetry structures share the same EFT that describes the

broken phase and, according to our proposal, they should both be the holographic dual to a compact

boson. Indeed there is no much difference between the two theories: the non-topological boundary

conditions can be chosen to be the same, and the computations of Section 3.1 give the same result.

The considerations explained in this section can be repeated for any higher-form symmetry. How-

ever, in order to detect the various global structures of a boundary p-form Maxwell theory, one needs

to properly choose the geometry. Indeed the fluxes are supported on (p+ 1)-dimensional cycles, and

thus a natural choice is to take Xd+1 = Bd−p × T p+1 with Bd−p a ball. One of the S1 factors of the

torus plays the role of a time circle, and Xd = Bd−p × T p. The bulk TQFT has action

S =
i

2π

∫
Xd+1

bd−p−1 ∧ dAp+1 (3.34)

where bd−p−1 is an R gauge field whilst Ap+1 is a U(1) gauge field. One can obtain an SPT phase

by gauging the Lagrangian algebra given by Wn = ein
∫
Ap+1 , and this is realized by inserting these

defects along the T p+1 factor in the bulk. This sum indeed reproduces the sum over fluxes of the

p-form Maxwell theory on the boundary. The choice of other Lagrangian algebras modifies the value

of the electric charge and corresponds to discrete gaugings of the 1-form symmetry.

4 Abelian anomalies and higher groups

We can enrich the analysis of U(1) symmetries by including anomalies (Sections 4.1 and 4.2) or a

2-group structure (Section 4.4). We show here that, when doing it, the dual boundary theory gets

coupled to background fields in a non-minimal way. In Sections 4.3 and 4.5 we provide a field-theoretic

interpretation of our results in terms of symmetry fractionalization.

4.1 Chiral anomaly in 2d

The SymTFT for an anomalous U(1) symmetry in 2d has action [48]:

S =
i

2π

∫
X3

b1 ∧ dA1 +
ik

4π

∫
X3

A1 ∧ dA1 . (4.1)

The additional bulk Chern–Simons term significantly affects the consistent boundary conditions. To

establish a proper variational principle with a non-topological boundary condition, it is essential to
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include the boundary term

S∂ = − 1

4πR2

∫
∂X3

(
b1 +

k

2
A1

)
∧ ⋆

(
b1 +

k

2
A1

)
(4.2)

together with the following Dirichlet boundary condition:12

⋆ δA1 = − i

R2
δ

(
b1 +

k

2
A1

)
. (4.3)

In order to properly turn on a background for the boundary U(1) symmetry we have to render the

boundary condition invariant under gauge transformations of A1. This is most naturally done by

introducing a 1-form A1 as

⋆ (A1 −A1) = − i

R2

(
b1 +

k

2
(A1 −A1)

)
. (4.4)

This boundary condition is invariant under δA1 = δA1 = dλ0, allowing us to interpret A1 as a

background field for the U(1) symmetry on the boundary. Notice that our choice does not modify

(4.3) and is thus just a particularly convenient parametrization.

Before deriving the dual boundary theory, we can already establish that it has an ’t Hooft anomaly.

Indeed, under a gauge transformation δA1 = δA1 = dλ0 the total action S + S∂ transforms as

δ(S + S∂) = − ik

4π

∫
M2

dλ0 ∧ A1 −
k2

16πR2

∫
M2

(
2 dλ0 ∧ ⋆A1 + dλ0 ∧ ⋆ dλ0

)
(4.5)

where M2 = ∂X3. The second term can be cancelled by adding the following counterterm to the

boundary action:

Sc.t. =
k2

16πR2

∫
M2

A1 ∧ ⋆A1 . (4.6)

However the remaining total gauge variation

δ
(
S + S∂ + Sc.t.

)
= − ik

4π

∫
M2

dλ0 ∧ A1 (4.7)

cannot be cancelled by any local boundary counterterm: it is precisely the anomalous variation cor-

responding to a perturbative U(1) anomaly.

To derive the boundary theory we follow the steps outlined in Section 3. The constraints imposed

by the path integral over time components again allow us to write Ã1 = d̃Φ0 and b̃1 = d̃ω0. The

boundary action expressed in terms of these variables, after introducing F = A1 − ik
2R2 ⋆ A1 for

convenience, reads:

S =
i

2π

∫
M2

[(
d̃ω0 +

k
2
d̃Φ0

)(
∂tΦ0 −F t

0

)
∧ dt (4.8)

− i

2

(
R2

(
d̃Φ0 − F̃1

)
∧ ⋆

(
d̃Φ0 − F̃1

)
+

1

R2

(
d̃ω0 +

k
2
d̃Φ0

)
∧ ⋆

(
d̃ω0 +

k
2
d̃Φ0

))]
+ Sc.t .

12One can check, by writing all possible boundary terms and imposing consistency of the variational principle, that

these boundary data are the only possible choice.
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This is the same action as in (3.15) for d = 2 but with ω0 7→ ω0 +
k
2
Φ0. Integrating ω0 out we find

S =
R2

4π

∫
M2

(
dΦ0 −A1

)
∧ ⋆

(
dΦ0 −A1

)
+
ik

4π

∫
M2

Φ0 dA1 . (4.9)

This action describes a compact boson of radius R, but with an unusual coupling to a background

for the momentum symmetry. Such a coupling reproduces the anomalous shift (4.7) that is indeed

cancelled by the inflow action

Sinflow = − ik

4π

∫
3d

A1 ∧ dA1 . (4.10)

Notice that the extra coupling Φ0 dA1 in (4.9) has a form similar to the coupling with the winding

symmetry. In a sense, we are prescribing that a background A1 for the momentum symmetry also

activates a background B1 = kA1 for the winding symmetry. In other words, A1 is not coupled with

the momentum symmetry but rather with a diagonal combination of momentum and winding.13 Since

the two symmetries have a mixed anomaly, this diagonal U(1) inherits a pure anomaly.

4.2 Chiral anomaly in 4d

The treatment of anomalies in higher dimensions presents a further conceptual difference. As a

representative case, we consider d = 4 and the TQFT with action

S =
i

2π

∫
X5

b3 ∧ dA1 +
ik

24π2

∫
X5

A1 ∧ dA1 ∧ dA1 . (4.11)

To get a good variational principle we need to impose

⋆ δA1 = − i

R2
δ

(
b3 +

k

6π
A1 ∧ dA1

)
(4.12)

and add a boundary term

S∂ = − 1

4πR2

∫
∂X5

(
b3 +

k

6π
A1 ∧ dA1

)
∧ ⋆

(
b3 +

k

6π
A1 ∧ dA1

)
. (4.13)

These choices however do not allow us to turn on a background by simply changing the parametrization

of the boundary condition, as we did in 2d. Indeed, if we try to restore the gauge transformations of

A1, the boundary condition shifts by terms that depend on the field A1 itself and cannot be cancelled

by adding counterterms in the background only. Turning on a background in d > 2 requires us to

change the boundary data in a nontrivial way. In Appendix A we explain an iterative procedure

that, starting from the data above, produces a consistent variational principle together with a gauge-

invariant boundary condition. The result for d = 4 is

⋆
(
A1 −A1

)
= − i

R2

(
b3 +

k

6π

(
A1 −A1

)
∧ dA1 +

k

12π

(
A1 −A1

)
∧ dA1

)
(4.14)

13More precisely, it is the diagonal combination between momentum and a Zk extension of the winding symmetry.
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with boundary term14

S∂ = − 1

4πR2

∫
∂X5

(
b3+

k

6π

(
A1−A1

)
∧dA1+

k

12π
A1∧dA1

)2
+

ik

24π2

∫
∂X5

A1∧A1∧dA1 . (4.15)

When setting A1 = 0 we recover the previous boundary data, but in general there are new terms

that mix background and dynamical fields. As in 2d, one can show that the system has an anomaly

performing a gauge transformation δA1 = δA1 = dλ0: up to a counterterm the gauge variation is

δ
(
S + S∂ + Sc.t.

)
=

ik

24π2

∫
∂X5

λ0 dA1 ∧ dA1 . (4.16)

The procedure to determine the dual boundary theory is completely analogous to the examples we

have already presented. Integrating the time components out, we introduce Ã1 = d̃Φ0 and b̃3 = d̃ω2.

To simplify our expressions, we denote F1 = A1 − ik
12πR2 ⋆ (A1 ∧ dA1). Then the boundary action,

in its non-covariant presentation, is

S =
i

2π

∫
M4

[(
d̃ω2 +

k
12π

d̃Φ0 ∧ d̃Ã1

)(
∂tΦ0 −F t

0

)
dt− i

2

(
R2

(
d̃Φ0 − F̃1

)
∧ ⋆

(
d̃Φ0 − F̃1

)
+

1

R2

(
d̃ω2 +

k
12π

d̃Φ0 ∧ d̃Ã1

)
∧ ⋆

(
d̃ω2 +

k
12π

d̃Φ0 ∧ d̃Ã1

))]
+ Sc.t. (4.17)

where M4 = ∂X5. As before we can integrate out ω2 and the final action reads

S =
R2

4π

∫
M4

(
dΦ0 −A1

)
∧ ⋆

(
dΦ0 −A1

)
+

ik

24π2

∫
M4

Φ0 dA1 ∧ dA1 . (4.18)

This represents a compact scalar with a non-standard coupling to a background associated with the

shift symmetry, akin to the situation in 2d. The additional interaction accounts for the anomalous

variation described by (4.16). Nevertheless, unlike in the 2d scenario, we cannot view this altered

interaction as a combination of the shift and winding symmetries since the two have different degree.

4.3 Anomaly matching in the broken phase

Let us provide a purely field-theoretic interpretation of the result in the previous section. For any

Lie-group symmetry G, the Goldstone theory describing the symmetry breaking phase is a non-linear

sigma model with target space G. In even spacetime dimensions d, the symmetry G can suffer from

perturbative anomalies and the question is how these are matched in the sigma model.

For non-AbelianG it is well known that the anomaly is reproduced by a WZW term [59]. This is an

additional interaction with important dynamical consequences. Perturbative anomalies are classified

by Hd+2(BG;Z), which determines a (d + 1)-dimensional Chern–Simons action that cancels the

anomaly by inflow. On the other hand, WZW terms in d dimensions are classified by Hd+1(G;Z).
Anomaly matching is mathematically represented by a map

τ : Hd+2(BG;Z) → Hd+1(G;Z) (4.19)

14We used the shorthand notation ω2 ≡ ω ∧ ⋆ω.
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called transgression [71]. For d = 2 this map also underlines the map of levels in the CS/WZW

correspondence [72]. For the simple Lie group G = SU(n), the transgression map τ is injective [72],

meaning that any perturbative anomaly is matched by a WZW term.15 However this is not the general

case, and if τ has a nontrivial kernel, the corresponding anomalies require some new ingredient to be

matched in the sigma model.

Here we focus on the extreme case G = U(1) for which Hd+1
(
U(1);Z

)
= 0, namely there is

no WZW term at all, and any anomaly must be matched in a different way. From our holographic

analysis we know the answer to this question: the dynamics of the sigma model is unchanged with

respect to the non-anomalous case, but the symmetry is coupled non-minimally to the background A1

through the extra topological term

ik

(2π)d/2
(
d
2
+ 1

)
!

∫
Md

Φ0

(
dA1

)d/2
. (4.20)

This term reproduces the anomaly, but at this level it seems a bit ad hoc. We want to clarify why

it arises from a UV viewpoint and how we understand it in the IR. This is important to understand

why there is a difference in how anomaly matching works in the Abelian and non-Abelian cases.

We can show in a simple model that when the background field is turned on in the UV, the

additional coupling (4.20) is generated along the RG flow by integrating out massive fields. Consider

a 4d theory with a massless Dirac fermion ψ and a complex scalar ϕ, coupled via a Yukawa interaction:

L ⊃ ϕψψ . (4.21)

The theory has an axial symmetry U(1)A under which both Weyl components of ψ have charge

1, while ϕ has charge −2. U(1)A has a cubic anomaly with k = 2. Choosing a potential V (ϕ)

that induces condensation of ϕ, the axial symmetry gets spontaneously broken to Z2 = (−1)F . By

decomposing ϕ = ρ eiΘ into its radial and angular parts, the VEV ⟨ρ⟩ = v gives mass to both ρ and

ψ. The angular part Θ remains massless and is the only degree of freedom at low energy: it is the

Goldstone boson. The faithful symmetry in the IR is U(1) = U(1)A/Z2 that shifts Θ. In order to

reproduce the anomaly, the coupling to a background A must include the term

i

24π2
Θ(dA)2 . (4.22)

Indeed this term arises when integrating out the fermion. To see this notice that, for fixed ϕ and

A, if ϕ is real and positive then the fermion path integral can be regularized in a way such that the

measure is positive [73–75]. Clearly this is not true on a generic configuration, but we can make it true

by performing an axial rotation of parameter eiα, with α = −1
2
Θ. A textbook computation [76, 77]

shows that the path integral measure of the fermion changes by a phase

D[ψ] 7→ D[ψ] exp

(
ik

24π2

∫
α (dA)2

)
. (4.23)

Setting α = −1
2
Θ this precisely reproduces the coupling (4.22). Now the Yukawa coupling becomes

ρψψ, that for fixed ρ is essentially a positive mass term for the fermion, hence integrating out the

fermion becomes a safe operation that does not introduce extra phases.

15The transgression map is expected to be injective for all simple Lie groups.
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Returning to the general case, we want to interpret the extra coupling (4.20) as specifying a

(higher) symmetry fractionalization class for the U(1) symmetry. This reinterpretation will be crucial

to understand the analogous story for higher groups in the following sections. A 0-form symmetry

G can fractionalize in the presence of a discrete 1-form symmetry Γ. This means that when two

topological defects g, h ∈ G fuse to produce gh ∈ G, their codimension-two junction gets covered by

a topological defect ω(g, h) ∈ Γ of the 1-form symmetry [78–80], where ω ∈ H2(BG; Γ). Equivalently,

a background A1 for G turns on a background B2 = A∗
1 ω for the 1-form symmetry. In this formula,

we think of A1 as a map Md → BG and of B2 as an element of H2(Md,Γ) so that we can use A1

to pull back ω. With this interpretation it becomes clear that, if G and Γ have a mixed anomaly,

a non-trivial fractionalization class modifies the pure anomaly for G, possibly making it nontrivial

even when it vanished originally [79, 80]. This has a natural generalization to the case that Γ is a

discrete p-form symmetry: when p + 1 topological defects g1, . . . , gp+1 ∈ G fuse in generic position,

they create a codimension-(p + 1) junction that can be dressed by a defect ω(g1, . . . , gp+1) of the

p-form symmetry Γ, where ω is a class in Hp+1(BG; Γ). Equivalently, a background A1 turns on a

background Bp+1 = A∗
1 ω for Γ.

The compact boson theory that describes the breaking of a U(1) 0-form symmetry also possesses

a U(1) (d − 2)-form winding symmetry, and the two have a mixed anomaly. For this reason, a

pure anomaly for the 0-form symmetry can be induced by fractionalizing it with the (d − 2)-form

symmetry. One minor modification with respect to what we described above is necessary because

the p-form symmetry (here p = d − 2) is continuous. Its most natural description is not in terms

of a background potential Bp+1, which is not a cohomology class in general, but in terms of its field

strength 1
2π
dBp+1 ∈ Hp+2(Md;Z). As a consequence the fractionalization class, instead of being an

element of Hp+1
(
BU(1);U(1)

)
, is more naturally an element of Hp+2(BU(1);Z) ∼= Z. This is the

datum that determines a (p+ 1)-dimensional Chern–Simons level, or equivalently the corresponding

Chern class in (p + 2) dimensions. Hence, in analogy with the discrete case, we prescribe that a

background A1 for the 0-form symmetry activates a background Bd−1 for the (d− 2)-form symmetry

whose field strength is
1

2π
dBd−1 =

k

(2π)d/2
(
d
2
+ 1

)
!

(
dA1

)d/2
. (4.24)

Recalling that the (d− 2)-form symmetry is coupled to its background field through the action term
i
2π

∫
Md

Φ0 dBd−1, this reproduces the coupling (4.20) in agreement with our holographic result.

4.4 Abelian 2-groups

We consider a 2-group symmetry in four dimensions formed by a U(1) 0-form symmetry and a U(1)

1-form symmetry. This can be obtained by starting from a theory with two U(1) 0-form symmetries

with a cubic mixed anomaly and gauging the U(1) that appears linearly in the anomaly polynomial

[60,81]. The 1-form symmetry participating in the 2-group structure is the magnetic symmetry of the

photon. The SymTFT for such a 2-group symmetry has action [48]:

S =
i

2π

∫
X5

(
b3 ∧ dA1 + h2 ∧ dC2 +

k

2π
h2 ∧ A1 ∧ dA1

)
. (4.25)
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Here A1 and C2 are U(1) gauge fields, while b3 and h2 are R gauge fields. The topological operators

that implement the symmetry are the Wilson surfaces of b3 and h2. On the other hand, the endpoints

of ei
∫
A1 are local operators charged under the 0-form symmetry, and the endlines of ei

∫
C2 are ’t Hooft

lines charged under the magnetic 1-form symmetry. The gauge transformations are:16

δA1 = dλ0 , δh2 = dξ1 , δb3 = dγ2 −
k

2π
dξ1 ∧A1 , δC2 = dη1 +

k

2π
dλ0 ∧A1 . (4.26)

We place this TQFT on a manifold with boundary, X5 = B4×S1 for simplicity, and we interpret it

as a theory of gravity, holographically dual to some 4d quantum field theory on the boundary. The last

term in (4.25) contains a derivative, therefore it affects the boundary contribution to the variational

principle, similarly to the case of chiral anomalies. To fix the boundary terms S∂ and the boundary

conditions on the fields, we use the same logic as in that case. We find the boundary conditions

⋆
(
A1 −A1

)
= − i

R2

[
b3 +

k

2π
h2 ∧

(
A1 −A1

)]
, ⋆ h2 =

ie2

π

(
C2 − C2 −

k

2π
A1 ∧ A1

)
(4.27)

and a corresponding boundary term

S∂ = − i

2π

∫
∂X5

h2 ∧
(
C2 − k

2π
A1 ∧ A1

)
− e2

4π2

∫
∂X5

(
C2 − k

2π
A1 ∧ A1

)
∧ ⋆

(
C2 − k

2π
A1 ∧ A1

)
− 1

4πR2

∫
∂X5

[
b3 +

k

2π
h2 ∧

(
A1 −A1

)]
∧ ⋆

[
b3 +

k

2π
h2 ∧

(
A1 −A1

)]
. (4.28)

Here A1, C2 are fixed gauge fields on the boundary that transform as a proper 2-group background:

δA1 = dλ0 , δC2 = dη1 +
k

2π
dλ0 ∧ A1 . (4.29)

This makes the boundary conditions gauge invariant, provided we add a counterterm e2

4π2

∫
∂X5

C2∧⋆ C2.

With the usual procedure, we obtain that the dual boundary theory has action:

S =
R2

4π

∫
∂X5

(
dΦ0 −A1

)
∧ ⋆

(
dΦ0 −A1

)
+

1

4e2

∫
∂X5

da1 ∧ ⋆ da1

+
i

2π

∫
∂X5

C2 ∧ da1 +
ik

4π2

∫
∂X5

Φ0 da1 ∧ dA1 .

(4.30)

Naively one may think that a1 is an R gauge field, because it comes from the trivialization of h2.

However, we have to take into account the condensation of the appropriate Lagrangian algebra in the

bulk, necessary to trivialize the TQFT and making it independent of the topology. Specifically, here

the relevant Lagrangian algebra is

L =
{
ein

∫
A1 , eim

∫
C2

∣∣∣ n,m ∈ Z
}
. (4.31)

Following the same logic as in Section 3.3, this introduces a sum over the fluxes of da1 that effectively

makes a1 into a U(1) gauge field.

16There is some freedom in the choice of transformations that leave (4.25) invariant. In particular, the transformation

δA1 = dλ0 could be accompanied by an action on both b3 and C2 as δb3 = −ϵ k
2π

dλ0 ∧ h2 and δC2 = (1− ϵ) k
2π

dλ0 ∧ A1

for any choice of ϵ. Here we chose ϵ = 0 which matches the transformations in the boundary theory.
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Turning off the background A1 we obtain a free compact scalar and a free photon (coupled to a

background field C2 for its magnetic symmetry), enjoying a U(1) 0-form symmetry with conserved

current J1 =
iR2

2π
dΦ0, and a U(1) 1-form symmetry with conserved current J2 =

1
2π
⋆da1, respectively.

However, as soon as we turn on a background A1 for the 0-form symmetry, the 2-group structure

manifests itself through the nonstandard coupling between the photon and the scalar, which modifies

the currents and the background gauge transformations [60]. This is very similar to what happened

in the case of the chiral anomaly, and we will provide a similar interpretation in terms of symmetry

fractionalization in the next section.

Let us show that the theory in (4.30) reproduces the 2-group symmetry [60]. First, notice that

the gauge transformation

δΦ0 = λ0 , δA1 = dλ0 , δC2 = dη1 +
k

2π
dλ0 ∧ A1 (4.32)

leaves the action invariant. This is indeed the background gauge transformation for a 2-group. Second,

in the presence of a background the currents get modified to:17

J1 =
iR2

2π

(
dΦ0 −A1

)
+

k

4π
⋆
(
dΦ0 ∧ da1

)
, J2 =

1

2π
⋆ da1 , (4.33)

and these satisfy modified conservation equations

d ⋆ J1 +
k

2π
dA1 ∧ ⋆ J2 = 0 , d ⋆ J2 = 0 , (4.34)

that are the correct conservation equations for a 2-group symmetry.

4.5 Abelian 2-groups in the broken phase

The unusual coupling to the background A1 in (4.30), responsible for the 2-group structure of the

symmetry, is quite similar to the coupling (4.20) responsible for a chiral anomaly, that we interpreted

in terms of symmetry fractionalization. Indeed we can give a similar interpretation here too. While

it is intuitively clear why symmetry fractionalization can induce a pure anomaly, and this fact has

been studied extensively [79, 80], the necessity of symmetry fractionalization to match higher-group

structures has not been much appreciated. There is indeed one important difference, namely the

nature of the symmetry used to fractionalize the U(1) 0-form symmetry in question: it is a composite

symmetry [82].

In general, if we have two U(1) symmetries of degrees p and q with currents Jp+1 and Jq+1

respectively, if p+ q ≥ d− 1 we can construct a third U(1) symmetry simply because the current

Jp+q−d+2 = ⋆
(
(⋆ Jp+1) ∧ (⋆ Jq+1)

)
(4.35)

is automatically conserved. This symmetry is of degree p + q − d + 1. In general, it is not a

particularly interesting symmetry because its consequences are already implied by the constituent

17For a U(1) p-form symmetry we use the convention that the current Jp+1 is defined by ⋆ Jp+1 = −i δS
δAp+1

where

Ap+1 is the background field.
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symmetries. However, it plays a role in our discussion. The IR theory of a 4d compact boson has an

emergent 2-form symmetry: the winding symmetry of the scalar with current J3 = − 1
2π
⋆ dΦ0. This

is the symmetry we used to fractionalize the 0-form symmetry in the case of the chiral anomaly. In

this case, since we also have the magnetic 1-form symmetry of the photon with current J2 =
1
2π
⋆ da1,

we can construct

Ĵ1 = ⋆
(
(⋆ J3) ∧ (⋆ J2)

)
=

1

4π2
⋆
(
dΦ0 ∧ da1

)
(4.36)

that generates a 0-form symmetry. Using this symmetry to fractionalize the shift symmetry of the

compact boson, as described in Section 4.3, we obtain precisely the non-canonical coupling in (4.30).

5 Boundary Chern–Simons-like terms

In this section we study bulk models obtained by adding terms without derivatives. These do not affect

the boundary terms in the variational principle and hence do not modify the boundary conditions.

Thus the dual theory couples minimally to the background fields, but it contains extra interactions,

typically Chern–Simons-like terms. Our main motivation here is to verify our conjecture in a case with

a non-invertible symmetry, the Q/Z chiral symmetry in four dimensions [54, 55],18 and to provide a

framework to study aspects of its spontaneous breaking. We also consider in Section 5.1 a bulk

4d TQFT introduced in [48], which was argued to be related to 3d gauge theories with Chern–

Simons interactions. We use our formalism to establish a precise holographic duality confirming the

expectation of [48].

5.1 Holographic dual to Maxwell–Chern–Simons theory

We consider the 4d TQFT with action

S =
i

2π

∫
X4

(
A1 ∧ db2 +

ϕ

4π
b2 ∧ b2

)
, (5.1)

where b2 is an R 2-from gauge field, A1 is a standard U(1) gauge field, and ϕ is a parameter. On

closed manifolds the theory is invariant under the following gauge transformations:

δA1 = dρ0 −
ϕ

2π
λ1 , δb2 = dλ1 . (5.2)

The gauge-invariant operators include surfaces Uα(γ2) = e
iα

∫
γ2

b2 and the generically non-genuine

lines Wn(γ1, D2) = e
in

∫
γ1

A1+
inϕ
2π

∫
D2

b2 that need an attached two-disk D2 bounded by γ1. The label

α ∼ α + 1 is circle valued, while n ∈ Z. The coupling ϕ is 2π periodic.

We will be mostly interested in the case

ϕ =
2π

k
with k ∈ Z . (5.3)

18See [83] for a recent proposal to recover the full U(1) chiral symmetry.
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In this case the lines Wmk become genuine, and an interesting Lagrangian algebra19 is obtained by

taking all the genuine lines together with the surfaces Ul/k with l ∈ Zk. Used in SymTFT [48], this

Lagrangian algebra describes the symmetry U(1)
[0] × Z[1]

k : the first factor is a 0-form symmetry, the

second factor is an anomalous 1-form symmetry (with coefficient 1), and there is a mixed anomaly

between the two.

We place the theory on a manifold with boundary, where we impose the boundary condition

⋆
(
A1 −A1

)
= − iπ

k2e2
b2 . (5.4)

In order to have a good variational principle we must add the boundary term

S∂ = −k
2e2

4π2

∫
∂X4

A1 ∧ ⋆A1 =
1

4k2e2

∫
∂X4

(
b2 +

ik2e2

π
⋆A1

)
∧ ⋆

(
b2 +

ik2e2

π
⋆A1

)
. (5.5)

The gauge transformation δA1 = dρ0 is restored by δA1 = dρ0 that makes (5.4) invariant. The full

system is gauge invariant, provided that we also add a counterterm Sc.t. =
k2e2

4π2

∫
∂X4

A1 ∧ ⋆A1.

We take the bulk to be the product of a three-dimensional ball B3 and the time circle S1, so that

∂X4 ≡ M3 = S2 × S1. Integrating out the time components At
0, b

t
1 we get delta functions imposing

d̃ b̃2 = 0 , d̃Ã1 +
1
k
b̃2 = 0 , (5.6)

that are solved introducing Φ0 and â1 through

b̃2 = d̃ â1 , Ã1 = d̃Φ0 − 1
k
â1 . (5.7)

With this, the bulk path integral reduces to a boundary path integral with action

S + S∂ + Sc.t. =
i

2π

∫
M3

[
∂tâ1 ∧

(
d̃Φ0 − 1

k
â1

)
∧ dt+ 1

2k
â1 ∧ dâ1 + d̃ â1 ∧ At

0 dt (5.8)

− i

2

(
π

k2e2
d̃ â1 ∧ d̃ â1 +

k2e2

π

(
d̃Φ0 − Ã1 − 1

k
â1

)
∧ ⋆

(
d̃Φ0 − Ã1 − 1

k
â1

))]
.

Attempting to integrate out â1 to derive a covariant action for the scalar field, as we did in Section 3.1,

results in a non-local action.20 However, there is no problem in integrating out Φ0 from (5.8) and we

obtain a local and covariant boundary theory with action

S =
1

4k2e2

∫
M3

dâ1 ∧ ⋆ dâ1 +
i

4πk

∫
M3

â1 ∧ dâ1 +
i

2π

∫
M3

dâ1 ∧ A1 . (5.9)

This might seem like a U(1) gauge theory with an improperly quantized Chern–Simons level.

However we must be careful in identifying the correct U(1) gauge field, by considering the condensation

of the Lagrangian algebra that trivializes the bulk. This includes all genuine lines as well as k surfaces:

L =
{
Wkm = eikm

∫
A1 , Ul/k = e

il
k

∫
b2
∣∣∣ m ∈ Z , l ∈ Zk

}
. (5.10)

19A more natural Lagrangian algebra consists of all surfaces Uα. Used in SymTFT it describes an exotic Z 1-form

symmetry with anomaly parametrized by ϕ [48], while holographically we expect it to describe its breaking.
20A similar (even though less transparent) problem would have arisen if we tried to obtain the boundary theory using

the second method described at the end of Section 3.1, i.e., by integrating out directly the whole b2: the latter does not

appear linearly in the bulk action.
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On the geometry that we are considering, condensing L amounts to inserting the lines Wkm along the

time circle and summing over m, while the surfaces have no effect. The insertion of Wkm modifies

the path integral so as to impose that
∫
S2 b2 = 2πkm for any two-sphere in B3 that surrounds the

Wilson line. This in particular includes the boundary spatial manifold. From the boundary theory

viewpoint, this is a topological sector of the path integral with flux∫
S2

dâ1
2π

= km . (5.11)

Hence the canonically normalized U(1) gauge field is a1 = â1/k, in terms of which the boundary

theory has action

S =
1

4e2

∫
M3

da1 ∧ ⋆ da1 +
ik

4π

∫
M3

a1 ∧ da1 +
ik

2π

∫
M3

da1 ∧ A1 . (5.12)

This is Maxwell–Chern–Simons theory at level k, coupled to a background field for the topological

U(1) symmetry acting on monopoles. More precisely, the background field for this symmetry is

A′
1 = kA1, whileA1 is the background for a larger non-faithful U(1) symmetry obtained by extending

the topological symmetry with a trivially-acting Zk.
21

It should be noted that this example has a slightly different flavor than all other ones discussed

in this paper. The UV symmetry is U(1)
[0] × Z[1]

k , however only Zk is spontaneously broken, indeed

there are no Goldstone bosons in the IR since the photon is massive due to the Chern–Simons term.

We consider this example as a warm up for the next one.

5.2 Spontaneously broken non-invertible Q/Z chiral symmetry

In 4d theories of massless Dirac fermions coupled with dynamical U(1) gauge fields (QED-like the-

ories) the classically preserved axial symmetry U(1)A suffers from an ABJ anomaly that spoils the

conservation of its current: d ⋆ J
(A)
1 = k

8π2 F2 ∧ F2 [84, 85]. Traditionally, this was interpreted as the

absence of U(1)A in the quantum theory. Recently [54,55] showed that axial transformations labelled

by rational numbers survive at the quantum level, but they obey non-invertible fusion rules. The

SymTFT for this non-invertible chiral symmetry was derived in [48]:

S =
i

2π

∫
X5

(
b3 ∧ dA1 + f2 ∧ dG2 +

k

4π
A1 ∧ f2 ∧ f2

)
. (5.13)

Here A1, G2 are U(1) gauge fields, while b3, f2 are R gauge fields. The gauge transformations are

δA1 = dρ0 , δb3 = dξ2 −
k

4π
λ1 ∧ dλ1 −

k

2π
λ1 ∧ f2 ,

δf2 = dλ1 , δG2 = dη1 −
k

2π
ρ0

(
f2 + dλ1

)
− k

2π
λ1 ∧ A1 .

(5.14)

21The reason why we got this coupling is that the TQFT we started with describes this larger symmetry, implemented

by the operators eiα
∫
b2 , but the subgroup Zk was condensed in the bulk, and acts trivially in the boundary theory. As

discussed in Section 3.1, we did not explicitly introduce a background for the Zk 1-form symmetry.
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As shown in [48], the gauge-invariant genuine topological defects are:

Wn(γ1) = e
in

∫
γ1

A1 , U p
kq
(γ3) = e

i p
kq

∫
γ3

b3 Aq,p(γ3; f2) ,

Vα(γ2) = e
iα

∫
γ2

f2 , Tm(γ2) = e
im

∫
γ2

G2 Zkm(γ2;A1, f2) .
(5.15)

Here n,m ∈ Z and α ∈ R/Z, while p/q ∈ Q with gcd(p, q) = 1 and p ∼ p + kq so that the

label p/kq ∈ Q/Z. Then Zkm(γ2;A1, f2) denotes a pure 2d Zkm gauge theory on γ2, whose 0-form

and 1-form symmetries are coupled, respectively, to A1 and f2. Similarly, Aq,p(γ3; f2) is the minimal

Abelian TQFT with Zq 1-form symmetry and anomaly labeled by p introduced in [86], whose 1-form

symmetry is coupled to f2. Stacking these TQFTs is necessary in order to make the operators gauge

invariant and topological. The theories Aq,p are nontrivial for any q ̸= 1, so that only a Zk subgroup

of the operators U p
kq

(those with q = 1) are invertible, while all other ones obey non-invertible fusion

rules. Similarly, Tm are non-invertible. In the SymTFT approach it is natural to choose topological

boundary conditions associated with the Lagrangian algebra

L =
{
Wn , Tm

∣∣∣ n,m ∈ Z
}
. (5.16)

The remaining operators U p
kq
(γ3) and Vα(γ2) implement the non-invertible symmetry and the mag-

netic 1-form symmetry, respectively.

Continuing with the approach we have followed so far, we want to consider a theory of gravity

based on (5.13) with the condensation of L in the bulk. We place this theory on a manifold X5 with

a boundary and impose the non-topological boundary conditions

⋆A1 = − i

R2
b3 + ⋆A1 , ⋆G2 = −iπ

e2
f2 + ⋆G2 . (5.17)

We need to add a boundary term:

S∂ = − 1

4πR2

∫
∂X5

b3 ∧ ⋆ b3 −
1

4e2

∫
∂X5

f2 ∧ ⋆ f2 . (5.18)

As before we would like to assign gauge transformation rules to the boundary fields A1, G2 in order

to restore some of the gauge transformations on the boundary, corresponding to the symmetries that

become global there. However, while we can restore δG2 = dη1 by transforming δG2 = dη1, the

gauge transformation δA1 = dρ0 cannot be restored. Indeed, while the first eqn. in (5.17) could

be made gauge invariant by prescribing that δA1 = dρ0, the second one would not be invariant

because G2 transforms as δG2 = − k
2π
ρ0f2. This term cannot be reabsorbed by modifying the gauge

transformations of G2, since f2 is a dynamical field. Thus the only way to make the boundary

conditions gauge invariant is to freeze the boundary value of ρ0, as those of λ1 and ξ2.

To get the boundary theory, as before, we integrate out the time components imposing

d̃Ã1 = 0 , d̃f̃2 = 0 , d̃ b̃3 +
k

4π
f̃2 ∧ f̃2 = 0 , d̃ G̃2 +

k

2π
Ã1 ∧ f̃2 = 0 , (5.19)

which are solved by

Ã1 = d̃Φ0 , f̃2 = d̃a1 , b̃3 = d̃ω2 −
k

4π
a1 ∧ d̃a1 , G̃2 = d̃C1 −

k

2π
Φ0 d̃a1 . (5.20)
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The total action reduces to a boundary theory with action:

S =
i

2π

∫
M4

[(
d̃ω2 − k

4π
a1 ∧ d̃a1

)
∧
(
∂tΦ0 −At

0

)
dt−

(
d̃C1 − k

2π
Φ0 d̃a1

)
∧ ∂ta1 ∧ dt

− i

2

(
R2

(
d̃Φ0 − Ã1

)
∧ ⋆

(
d̃Φ0 − Ã1

)
+

1

R2

(
d̃ω2 − k

4π
a1 ∧ d̃a1

)
∧ ⋆

(
d̃ω2 − k

4π
a1 ∧ d̃a1

))
− i

2

(
π

e2
d̃a1 ∧ ⋆ d̃a1 +

e2

π

(
d̃C1 − k

2π
Φ0 d̃a1 − G̃2

)
∧ ⋆

(
d̃C1 − k

2π
Φ0 d̃a1 − G̃2

))
+ d̃a1 ∧ Gt

1 ∧ dt+
ik

4π
Φ0 da1 ∧ da1

]
(5.21)

where M4 = ∂X5. We can then integrate out both ω2 and C2 obtaining

S =

∫
M4

[
R2

4π

(
dΦ0 −A1

)
∧ ⋆

(
dΦ0 −A1

)
+

1

4e2
da1 ∧ ⋆ da1 +

ik

8π2
Φ0 da1 ∧ da1 +

i

2π
da1 ∧G2

]
.

(5.22)

As in the cases of the Abelian 2-group and of Maxwell–Chern–Simons theory, gauging the Lagrangian

algebra introduces fluxes for a1 turning it into a standard U(1) gauge field. The theory in (5.22)

describes a compact boson Φ0 and a photon a1 interacting via an axion coupling. This is called

axion-Maxwell theory, and the full structure of its symmetries (including some emergent ones) has

been studied in great detail in [87]. From the discovery of the non-invertible chiral symmetry, it has

been suspected that axion-Maxwell theory universally describes its symmetry breaking [55, 87, 88].22

Our result confirms that. Notably, this is the first interacting boundary theory we found among the

examples considered so far.

Some comments on the coupling to the background fields are in order. As we already noticed after

(5.18), there is no sensible gauge transformation rules that we could assign to A1 and G2 to make the

boundary condition invariant under δA1 = dρ0, hence we needed to freeze it. In the action (5.22), A1

should not be thought of as the background field for the 0-form non-invertible symmetry, but rather

just as an external source that couples with the operator J
(A)
1 . This is enough for holography, but it

might seem a bit unsatisfactory from a symmetry viewpoint. However, this is really the hallmark of

the non-invertible nature of the symmetry: ordinary background gauge fields seem not to exist, and

they are effectively replaced by boundary values of dynamical fields in one dimension higher [35]. The

underlying reason is that non-invertible symmetries map untwisted sectors to twisted sectors, hence the

gauge transformations of a background gauge field necessarily involve an interplay among backgrounds

that do not exist simultaneously in the theory, but only in the SymTFT (or in holography) where

all global variants are on the same footing. This is the reason why SymTFT is the main tool for

discussing anomalies [38–41].

22For instance, the 4d CP1 non-linear sigma model enjoys a Q/Z non-invertible symmetry [89] and it was argued in [88]

that its breaking leads to axion-Maxwell theory.
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6 Non-Abelian Goldstone bosons

A very interesting class of examples are those of spontaneously broken non-Abelian symmetries. In

these cases the boundary EFTs that we derive are interacting and generically non-renormalizable.

In the 2d/3d case we will be able to recover and somewhat generalize the CS/WZW correspondence

outside of the conformal point, while in higher dimensions we will obtain the pion Lagrangian on the

boundary. We start with the non-Abelian generalization of the theories considered in Section 3 and

then add an anomaly term, which corresponds to WZW terms in various dimensions. Finally we show

how our setup is able to produce an EFT for spontaneously broken non-Abelian 2-group symmetries.

6.1 Holographic dual to the pion Lagrangian

Let G be a connected and compact Lie group (with Lie algebra g). The SymTFT for a non-Abelian

0-form symmetry G in d dimensions is the TQFT with action [48–50]:23

S =
i

2π

∫
Xd+1

Tr
(
bd−1 ∧ F2

)
, (6.1)

where F2 = dA1 + iA1 ∧ A1 is the field strength of a G connection A1 while bd−1 is a g-valued

(d− 1)-form. The gauge transformations are

A1 7→ ΛA1 Λ
−1 + i dΛΛ−1 , bd−1 7→ Λ bd−1 Λ

−1 (6.2)

as well as

bd−1 7→ bd−1 +DAλd−2 . (6.3)

Here DA = d+ i[A1, · ]± is the covariant derivative that acts on p-forms valued in the Lie algebra as

DAηp = dηp + i
(
A1 ∧ ηp − (−1)p ηp ∧ A1

)
. (6.4)

The topological defects of this TQFT include the Wilson lines

WR(γ1) = TrR Pexp

(
i

∫
γ1

A1

)
(6.5)

labelled by the irreducible representations R of G, as well as (d− 1)-dimensional Gukov–Witten op-

erators U[g](γd−1) labelled by conjugacy classes [g] of G and defined by prescribing that the holonomy

of A1 around U[g] be in [g] [90]. The two classes of operators have a canonical linking given by the

character χR([g]). A natural Lagrangian algebra that we will condense consists of the Wilson lines in

all representations of G.

We use the following non-topological boundary condition and boundary term on Md = ∂Xd+1:

⋆
(
A1 −A1

)
= − i

f 2
π

bd−1 , S∂ = − 1

4πf 2
π

∫
Md

Tr
(
bd−1 ∧ ⋆ bd−1

)
. (6.6)

23For d = 3 this theory was first considered by Horowitz [58]. Curiously, the motivation was precisely to view it as an

exactly solvable theory of gravity.
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We can recover the gauge transformations on the boundary by assigning the transformation rule

A1 7→ ΛA1Λ
−1+ idΛΛ−1 so that A1 is interpreted as a background field for a global symmetry G.24

We can proceed with the usual steps to derive the dual boundary theory. Taking the spacetime to be

Xd+1 = Bd × S1, the path integral over time components imposes

F̃2 = 0 , DÃ1
b̃d−1 = 0 . (6.7)

The first equation can be solved in terms of a G-valued scalar field U as

Ã1 = i d̃U U−1 . (6.8)

To solve the second one, since the covariant derivative with respect to a flat connection squares to

zero (i.e., it becomes a differential), we set

b̃d−1 = D̃ωd−2 (6.9)

where ωd−2 is a g-valued (d−2)-form, and D̃ denotes the covariant derivative with respect to i d̃U U−1.

By plugging these back, the theory reduces to a boundary action:

S = (−1)d
i

2π

∫
Md

Tr

[
D̃ωd−2 ∧

(
i ∂tU U

−1 −At
0

)
dt

]
(6.10)

+
1

4π

∫
Md

Tr

[
1

f 2
π

D̃ωd−2 ∧ ⋆ D̃ωd−2 + f 2
π

(
i d̃U U−1 − Ã1

)
∧ ⋆

(
i d̃U U−1 − Ã1

)]
.

One important difference with respect to the Abelian case is that U and ωd−2 do not appear symmet-

rically. While U appears in a complicated way, the action is still quadratic in ωd−2 that can thus be

integrated out using its equation of motion

D̃
(
∂tU U

−1 + iAt
0

)
∧ dt+ (−1)d−1

f 2
π

D̃ ⋆ D̃ωd−2 = 0 . (6.11)

Eliminating a zero-mode as in the Abelian case, we can use this equation to determine D̃ωd−2, and

we find the manifestly covariant form of the boundary theory:

S =
f 2
π

4π

∫
Md

Tr

[(
i dU U−1 −A1

)
∧ ⋆

(
i dU U−1 −A1

)]
. (6.12)

This describes a sigma model with target G, coupled to a background field A1 for the symmetry G

that acts as U 7→ gU with g ∈ G. The sigma model is a non-renormalizable theory that provides

the leading universal term in an expansion in number of derivatives (in 4d this is chiral perturbation

theory), describing the EFT of any theory with spontaneously broken symmetry G [52, 53].

24Differently from the Abelian case, here we cannot turn on another background to rescue the other gauge symmetry

as well. The reason is that the gauge transformation (6.3) of bd−1 cannot be reabsorbed in the boundary condition

by replacing bd−1 with bd−1 − Bd−1 and assigning a transformation rule to Bd−1. Indeed, this transformation would

necessarily involve the dynamical field A1, instead of the background A1.
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6.2 Non-Abelian chiral anomaly

For any even d we can add a Chern–Simons term to the bulk theory (6.1):25

SCS =
iκd
2π

∫
Xd+1

Tr
(
CSd+1(A1)

)
, κd =

k

(2π)
d
2
−1
(
d
2
+ 1

)
!
, k ∈ Z , (6.13)

that describes the presence of a perturbative anomaly for G. In this case, differently from the Abelian

one, anomaly matching requires a WZW term in the spontaneously broken phase [59]. We want to

show that this fact is implied by our conjecture. We also consider the case of d = 2 where, strictly

speaking, our conjecture does not apply because there is no spontaneous breaking of a continuous

symmetry in two dimensions.

Two dimensions

In the case of d = 2, we use the boundary condition

⋆
(
A1 −A1

)
= − i

f 2
π

(
b1 +

k

2

(
A1 −A1

))
(6.14)

that is gauge invariant under A1 7→ ΛA1Λ
−1 + idΛΛ−1, A1 7→ ΛA1Λ

−1 + idΛΛ−1, and add the

boundary term

S∂ = − 1

4πf 2
π

∫
∂X3

Tr

[(
b1 +

k
2
A1

)
∧ ⋆

(
b1 +

k
2
A1

)]
(6.15)

to make the variational principle well defined.

As a preliminary consistency check, we compute the gauge variation. The total gauge-transformed

action differs by

∆
(
S + S∂ + Sc.t.

)
=
ik

4π

∫
∂X3

Tr
(
A1 ∧ iΛ−1dΛ

)
+

k

24π

∫
X3

Tr
(
(iΛ−1dΛ)3

)
(6.16)

from the original one.26 Upon expanding Λ = 1 + λ0 and retaining only the linear order in λ0, this

reduces to the usual form of the consistent anomaly:

δ
(
S + S∂ + Sc.t.

)
=
ik

4π

∫
∂X3

Tr
(
A1 ∧ idλ0

)
. (6.17)

One can proceed in determining the dual boundary theory similarly to the non-anomalous case.

Since the boundary condition is essentially the same (simply written in a different parametrization),

the only difference is the bulk Chern–Simons term which gives rise to a WZW term in the boundary

theory:

S =
f 2
π

4π

∫
M2

Tr
[(
i dU U−1 −A1

)
∧ ⋆

(
i dU U−1 −A1

)]
+

k

12π

∫
X3

Tr
[(
iU−1dU

)3]
− ik

4π

∫
M2

Tr
[
A1 ∧ i dU U−1

]
. (6.18)

25Here we assume G to be simple and simply connected.

26Here Sc.t. =
k2

8πf2
π

∫
∂X3

Tr
(
A1 ∧ ⋆A1

)
is a counterterm we add to simplify the final result.
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We notice that there is also a non-standard coupling to the background field, that in our approach arises

because of the boundary conditions, similarly to the Abelian case. Differently from that case, however,

in a purely field theoretic analysis this is not interpreted as a coupling to a diagonal symmetry (since

a winding symmetry is absent here), but rather it arises from the standard trial-and-error procedure

to couple the G symmetry to a background in the presence of the WZW term, similarly to the 4d

analysis in [59].

For generic values of f 2
π the theory is not conformally invariant at the quantum level. However

choosing f 2
π = k

2
the theory has a conserved holomorphic current which generates a Kac–Moody

symmetry algebra, and it displays conformal invariance [91]. In this case we recover a form of the

CS/WZW correspondence, which is more general on one side, being valid even outside of the conformal

point, but less general on the other side, since in the conformal case it automatically produces the full

physical WZW model instead of its chiral halves.

Four dimensions

In the case of d = 4, the 5d Chern–Simons term is

Tr
(
CS5(A1)

)
= Tr

(
A1 ∧ (dA1)

2 +
3i

2
A3

1 ∧ dA1 −
3

5
A5

1

)
. (6.19)

As one might suspect already from the Abelian case, in order to obtain a gauge-invariant boundary

condition with a consistent variational principle we need to introduce extra terms in the boundary

condition that mix background and dynamical fields. We use the same iterative procedure discussed

in Appendix A for the Abelian anomaly, even though the computations are clearly more tedious here.

We find the following solution. The boundary condition is

⋆
(
A1 −A1

)
− iκ4
f 2
π

(
1

2

(
A1F2 + F2A1

)
− i

2
A3

1

)
= − i

f 2
π

Ω3 (6.20)

where F2 is the field strength of A1 while

Ω3 = b3+κ4

(
F2

(
A1−A1

)
+
(
A1−A1

)
F2−

i

2

((
A1−A1

)3
+A1

)3
+

1

2

(
A1F2+F2A1

))
(6.21)

and the boundary term is

S∂ = − 1

4πf 2
π

∫
∂X5

Tr
(
Ω3 ∧ ⋆Ω3

)
+ Stop + Sc.t. ,

Stop =
iκ4
2π

∫
∂X5

Tr

[
1

2
F2A1A1 +

1

2
A1 F2A1 −

i

4
A1A1A1A1 +

i

2
A3

1A1

]
.

(6.22)

The counterterm Sc.t. is used to simplify the final expression, and it is convenient to choose it as

Sc.t. =
κ24

4πf 2
π

∫
∂X5

Tr
[
ϕ(A1) ∧ ⋆ ϕ(A1)

]
, ϕ(A1) =

1

2

(
A1 ∧ dA1 + dA1 ∧ A1 + iA3

1

)
. (6.23)
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The boundary condition is gauge invariant under the transformation A1 7→ ΛA1Λ
−1 + idΛΛ−1,

A1 7→ ΛA1Λ
−1 + idΛΛ−1 and one can compute the total gauge variation

∆
(
S + S∂

)
= −iκ4

2π

∫
∂X5

Tr

[(
iΛ−1dΛ

)
∧ ϕ(A1) +

i

4

(
A1 ∧ iΛ−1dΛ

)2 − i

2

(
iΛ−1dΛ

)3 ∧ A1

]
− iκ4

20π

∫
X5

Tr
[(
iΛ−1dΛ

)5]
. (6.24)

Expanding U = 1 + λ0 to linear order, we recover the usual form of the consistent anomaly in four

dimensions:

δ
(
S + S∂

)
= − ik

48π2

∫
∂X5

Tr
[
idλ0 ∧

(
A1 ∧ dA1 + dA1 ∧ A1 + iA3

1

)]
. (6.25)

We can then proceed, as before, with the reduction of the action on the boundary. We find

S =
f 2
π

4π

∫
M4

Tr

[(
idU U−1 −A1

)
∧ ⋆

(
idU U−1 −A1

)]
− ik

240π2

∫
X5

Tr

[(
iU−1dU

)5]
+

ik

48π2

∫
M4

Tr

[
idU U−1 ∧

(
A1 ∧ F2 + F2 ∧ A1 −A3

1

)]
(6.26)

+
k

48π2

∫
M4

Tr

[
1

2
idU U−1 ∧ A1 ∧ idU U−1 ∧ A1 −

(
idU U−1

)3 ∧ A1

]
.

Turning off the background gauge field A1 we recognize a non-linear sigma model with target space

G with a properly normalized WZW term, that describes the dynamics of Goldstone bosons. The

coupling to the background A1 is completely fixed by the requirement of a gauge-invariant boundary

condition, and correctly captures the anomaly of the non-linearly realized G symmetry.

6.3 Non-Abelian 2-group symmetries

In 4d one can have 2-group symmetries whose 0-form part is a non-Abelian group G, while the 1-form

part is U(1). These symmetry structures arise, e.g., if one starts from a theory with a 0-form symmetry

group U(1)×G with an ’t Hooft anomaly that is linear in U(1) and quadratic in G:

Sinflow =
ik

8π2

∫
X5

dV1 ∧ Tr

(
A1 ∧ dA1 +

2i

3
A3

1

)
, (6.27)

and then gauges the U(1) symmetry [60]. The 1-form symmetry involved in the 2-group is the magnetic

symmetry of the gauged U(1). The SymTFT for this non-Abelian 2-group symmetry can be derived

using the dynamical gauging procedure described in [48]. Indeed one starts from the SymTFT for the

U(1)×G 0-form symmetry:

S ′ =
i

2π

∫
X5

[
g3 ∧ dV1 + Tr

(
b3 ∧ F2

)
+

k

4π
dV1 ∧ Tr

(
A1 ∧ dA1 +

2i

3
A3

1

)]
(6.28)

where g3 and V1 are an R and a U(1) gauge field, respectively, b3 is g-valued and A1 is a G connection

(F2 is its field strength). Then one applies the map introduced in [48] that implements the dynamical
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gauging of U(1) on the boundary from the viewpoint of the SymTFT. The net effect is the replacement

dV1 7→ h2, g3 7→ dC2, thus the resulting SymTFT has action

S =
i

2π

∫
X5

[
h2 ∧ dC2 + Tr

(
b3 ∧ F2

)
+

k

4π
h2 ∧ Tr

(
A1 ∧ dA1 +

2i

3
A3

1

)]
. (6.29)

The gauge transformations are:27

h2 7→ h2 + dξ1 , A1 7→ ΛA1Λ
−1 + idΛΛ−1 ,

b3 7→ b3 −
k

4π
ξ1 ∧ F2 , C2 7→ C2 + dη1 −

k

4π
Tr

(
A1 ∧ iΛ−1dΛ

)
+
ik

6π
TrΘ2 ,

(6.31)

where Θ2 is a locally defined real 2-form with the property that Tr
(
(iΛ−1dΛ)3

)
= dTrΘ2.

Again, we can use an iterative procedure to determine a set of gauge-invariant boundary conditions

together with a boundary term that provide a good variation principle. The boundary conditions are

⋆
(
A1 −A1

)
= − i

R2

(
b3 +

k

4π

(
A1 −A1

))
, ⋆ h2 =

ie2

π

(
C2 − C2 −

k

4π
Tr

(
A1 ∧ A1

))
(6.32)

while the boundary term is

S∂ = − i

2π

∫
∂X5

h2 ∧
(
C2 −

k

4π
Tr

(
A1 ∧ A1

))
− e2

4π2

∫
∂X5

(
C2 −

k

4π
Tr

(
A1 ∧ A1

))
∧ ⋆

(
C2 −

k

4π
Tr

(
A1 ∧ A1

))
− 1

4πR2

∫
∂X5

Tr

[(
b3 +

k

4π

(
A1 −A1

))
∧ ⋆

(
b3 +

k

4π

(
A1 −A1

))]
.

(6.33)

The boundary condition becomes gauge invariant by assigning the following transformations to the

backgrounds A1 and C2:

A1 7→ ΛA1Λ
−1 + idΛΛ−1 , C2 7→ C2 + dη1 −

ik

4π
Tr

(
A1 ∧ Λ−1dΛ

)
+

ik

12π
TrΘ2 . (6.34)

These reproduce the background gauge transformation of [60] for a non-Abelian 2-group symmetry

upon expanding U = 1+ λ0 at first order:

δA1 = iDA1λ0 , δC2 = dη1 −
ik

4π
Tr

(
A1 ∧ dλ0

)
. (6.35)

It is also easy to see that the whole bulk-boundary system is gauge invariant under transformations

of A1 and C2 provided we add a counterterm Sc.t. =
e2

4π2

∫
∂X5

C2 ∧ ⋆ C2.

27Recall that the variation of the three-dimensional Chern–Simons term is:

Tr
(
CS3(A1)

)
7→ Tr

(
CS3(A1)

)
+ dTr

(
A1 ∧ iΛ−1dΛ

)
− i

3
Tr

((
iΛ−1dΛ

)3)
. (6.30)
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We can apply our usual machinery to get the dual boundary theory. We obtain a G-valued scalar

field U from A1, and a Maxwell field a1 from h2, with the following boundary action:

S =
f 2
π

4π

∫
M4

Tr

[(
idU U−1 −A1

)
∧ ⋆

(
idU U−1 −A1

)]
+

1

4e2

∫
M4

da1 ∧ ⋆ da1

+
k

24π2

∫
M4

a1 ∧ Tr
[(
iU−1dU

)3]
+

i

2π

∫
M4

da1 ∧ Tr
[
A1 ∧ iU−1dU

]
+

i

2π

∫
M4

C2 ∧ da1 .

(6.36)

In the first line we recognize a non-linear sigma model with target space G and a Maxwell theory. The

last line describes the coupling to the background field C2 for the magnetic U(1) 1-form symmetry, as

well as a nonstandard coupling to the background A1 for the symmetry G, similar to the one arising

in the Abelian case in Section 4.4. The most interesting new thing here is the term in the second line

that describes a coupling between the photon and the pions. This is a linear coupling of the photon to

the current of a topological symmetry that exists in any sigma model with target G. According to our

conjecture, this model is the universal EFT that describes the IR of any theory with a spontaneously

broken non-Abelian 2-group symmetry. To the best of our knowledge, this universal EFT was not

derived elsewhere.

Some comments on the extra Wess–Zumino-like coupling are in order. First, in any RG flow that

breaks the 2-group spontaneously, this coupling must be generated as a consequence of the 2-group

matching. In a sense, it is similar to the presence of the WZW term in the EFT of a spontaneously

broken anomalous non-Abelian symmetry. Quite like that term, it breaks a symmetry of the EFT that

would be there if k = 0. Indeed, for k = 0 the theory is separately invariant under four Z2 symmetries:

parity P0 : xi 7→ −xi for i = 1, 2, 3; photon charge conjugation C1 : a1 7→ −a1; non-Abelian charge

conjugation28 C2 : U 7→ UT; pion number mod-2 (−1)Nπ : U 7→ U−1. All these four symmetries are

violated by the photon-pion coupling, but the product of any two of them is preserved. Therefore the

discrete symmetry for k ̸= 0 is (Z2)
3 generated by

P = P0 (−1)Nπ , C = C1C2 , C̃ = C1 (−1)Nπ . (6.37)

The photon-pion coupling allows, for instance, a process involving three pions and one photon, which

would have been forbidden otherwise. We summarize the various symmetry actions and charges in

Table 1.

Second, the 2-group symmetry we started with could suffer from a perturbative cubic chiral

anomaly for G as well. This would be described by the addition of a 5d Chern–Simons term (6.19) to

the bulk action in (6.29), and would result in an extra WZW term SWZW = − ik
240π2

∫
X5
Tr

[
(iU−1dU)5

]
in the 4d boundary action (6.36).29 This term would further break the discrete symmetry of the EFT

to (Z2)
2 generated by P and C, as it is clear from Table 1.

28The reason for this name will be clear in the upcoming discussion of U(N) QCD.
29We did not work out the detailed form of the coupling to the background fields.
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Definition xi a1Tr
[(
iU−1dU

)3]
Tr

[(
iU−1dU

)5]
P0 xi 7→ −xi −1 −1 −1

C1 a1 7→ −a1 1 −1 1

C2 U 7→ UT 1 −1 1

(−1)Nπ U 7→ U−1 1 −1 −1

Table 1: The four Z2 symmetries, and the corresponding phases acquired by the coordinates,

the photon-pion coupling term, and the standard WZW term, respectively. Notice that while

Tr
[
(iU−1dU)5

]
is invariant under U 7→ UT, the term Tr

[
(iU−1dU)3

]
changes sign.

An application: U(N) QCD. Let us present a concrete application of the effective action (6.36).

Consider a 4d gauge theory with U(N) gauge group and Nf flavors of massless Dirac fermions, so that

there is a chiral symmetry SU(Nf )L × SU(Nf )R. It can be obtained by gauging the baryon number

symmetry U(1)B in ordinary SU(N) QCD, hence it contains an Abelian gauge field Aµ on top of

the non-Abelian gauge fields. Being weakly coupled at low energy, Aµ is not expected to drastically

modify the strong coupling dynamics of the non-Abelian sector. Hence for Nf small enough, the quark

bilinear takes VEV and spontaneously breaks the chiral symmetry:30

SU(Nf )L × SU(Nf )R → SU(Nf )V (6.38)

producing at low energy massless pions that interact as a non-linear sigma model with target space

SU(Nf ). The pions are neutral under the non-Abelian gauge symmetry SU(N), whose gluons are

confined. However the Abelian gauge field Aµ remains even in the deep IR and there is no reason why

it should be decoupled from the non-linear sigma model. Indeed, while the pion fields themselves are

neutral under U(1), being bound states of quarks it is a priori unclear whether there is a low-energy

remnant of the quark-photon interaction.

We can answer this question using our result, and showing that the photon is not decoupled.

Indeed there is a U(1) magnetic 1-form symmetry from the Abelian gauge field (that is its Goldstone

boson), which forms a non-trivial 2-group with SU(Nf )L (and also with SU(Nf )R, but we can just

focus on one of the two). To see this, we notice that there is a triangle anomaly U(1) -SU(Nf )
2
L

whose anomaly polynomial is

PU(1) -SU(Nf )
2
L
=

N

8π2
dA ∧ Tr

(
F ∧ F

)
, (6.39)

where F = dG + iG ∧G is the field strength of the background field G for SU(Nf )L. The coefficient

N comes because all left-moving fermions have charge 1 under U(1) and are in the fundamental

30Notice that the usual argument [92] based on ’t Hooft anomaly matching in SU(N) QCD is also valid here, hence

we do not really need to make the assumption that the photon does not affect chiral symmetry breaking.
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representation of the non-Abelian gauge symmetry SU(N). By comparison with (6.27) we read

off that the U(1) 1-form symmetry and SU(Nf )L form a 2-group with k = N . Because of chiral

symmetry breaking and spontaneous breaking of the 1-form symmetry, the 2-groups is fully broken

and, from our result above, the low-energy EFT describing pions and photon is (6.36), plus the

standard WZW term (also with coefficient N) for the pions due to the cubic SU(Nf )L anomaly:31

SIR =
f 2
π

4π

∫
M4

Tr
[(
idU U−1

)
∧ ⋆

(
idU U−1

)]
+

1

4e2

∫
M4

dA ∧ ⋆ dA

+
N

24π2

∫
M4

A ∧ Tr
[(
iU−1dU

)3]− iN

240π2

∫
X5

Tr
[(
iU−1dU

)5]
.

(6.40)

Thus, while the pions themselves are uncharged under the U(1) gauge group, the photon A is coupled

with an effective current

JB = − N

24π2
⋆ Tr

[(
iU−1dU

)3]
. (6.41)

This current is conserved, and in the absence of the pion-photon interaction it generate a global

U(1) symmetry of the sigma model: the topological symmetry due to the non-trivial homotopy group

π3
(
SU(Nf )

)
= Z. The integral of ⋆ JB gives indeed the winding number:

w(M3) = − i

24π2

∫
M3

Tr
[(
iU−1dU

)3] ∈ Z . (6.42)

In the U(N) theory, configurations with nontrivial winding have a U(1) gauge charge. These con-

figurations are Skyrmions: solitonic objects which, in the SU(N) theory, are identified with the

baryons [59,94]. This is confirmed by our finding: the U(N) theory is obtained from ordinary SU(N)

QCD by gauging the baryon number symmetry, hence the baryons are no longer gauge invariant, but

rather are coupled with A.

We can make this more precise as follows. In the absence of the photon-pion coupling, the operators

charged under the topological U(1) symmetry are local operators Bq(x) defined as disorder operators

which impose that

w(S3) = q ∈ Z (6.43)

on a 3-sphere S3 that links with x. Similarly to the monopole operator in Chern–Simons theory,

Bq(x) gets a gauge charge Nq due to the coupling with the photon.

Also, in the absence of the 2-group structure, the low-energy effective theory would have an

emergent electric U(1) 1-form symmetry shifting A → A + λ (with the periods of λ in the interval

[0, 2π]) and acting on the Wilson lines Wn(γ) = ein
∫
γ A. Because of the photon-pion coupling,

however, only a ZN ⊂ U(1) subgroup of this 1-form symmetry emerges. Indeed using the quantization

(6.42), shifting A → A + λ leaves the exponentiated action invariant only if the periods of λ are

multiples of 2π
N
. An equivalent way to see this is that the Wilson line Wn=N can terminate on the

312-group structures in sigma models arising in the IR of QCD-like theories have been recently considered also in [93].

The IR there, however, is purely scalar, and the 2-group is not fully spontaneously broken (the 1-form symmetry is

preserved). The interaction responsible for the 2-group is not a photon-pion coupling, but rather a coupling between

pions parametrizing two different target spaces. Indeed the UV model studied in [93] can be obtained from U(N) QCD

by adding scalars charged under U(1)B that Higgs the Abelian gauge field.
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Baryon operator B1(x). Notice that the microscopic theory does not have this ZN 1-form symmetry,

because the quarks have unit charge under the gauged U(1)B. The emergence of ZN has a clear

interpretation: the quarks are confined and the only dynamical particles charged under U(1)B at low

energy are baryons, with charges multiple of N .

As a final comment, notice that among the three Z2 symmetries P , C, C̃ defined in (6.37) that

are preserved by the photon-pion coupling, only P and C are preserved also by the standard WZW

term, while C̃ is explicitly broken (see Table 1). This has to do with the fact that in U(N) QCD,

C2 : U 7→ UT is the low-energy remnant of the non-Abelian charge conjugation that, in the UV, also

acts on the SU(N) gauge bosons, confined in the IR. In the U(N) theory this charge conjugation is

not independent from the Abelian charge conjugation C1 acting on the photon, since the fermions are

in the fundamental representation of both. Hence, only the product C = C1C2 is a symmetry of the

theory.
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A Anomalous boundary conditions

In this appendix we present an iterative procedure to consistently turn on a background for boundary

theories with a U(1) anomalous symmetry in generic even dimension. For the sake of concreteness we

present this procedure in the simplest case of a U(1) symmetry with anomaly, but the same idea can

be used for higher groups and in the non-Abelian cases discussed in the main text. In general, the

method presented here is necessary to determine consistent boundary conditions whenever the simple

BF theory is modified by some non-Gaussian term containing derivatives.

Consider the TQFT with action

S =
i

2π

∫
Xd+1

(
bd−1 ∧ dA1 + κdA1 ∧ (dA1)

d
2

)
, κd =

k

(2π)
d
2
−1
(
d
2
+ 1

)
!
, (A.1)

and k ∈ Z. In the presence of a boundary, the variation of the action produces a term

− i

2π

∫
∂Xd+1

(
bd−1 +

d

2
κdA1 ∧ (dA1)

d
2
−1

)
δA1 . (A.2)
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This can be cancelled by imposing the boundary condition

⋆A1 = − i

R2

(
bd−1 +

d

2
κdA1 ∧ (dA1)

d
2
−1

)
︸ ︷︷ ︸

T0

+ ⋆A1 (A.3)

and adding the boundary term

S
(0)
∂ = − 1

4πR2

∫
∂Xd+1

(
bd−1 +

d

2
κdA1 ∧ (dA1)

d
2
−1

)
∧ ⋆

(
bd−1 +

d

2
κdA1 ∧ (dA1)

d
2
−1

)
. (A.4)

However, there is no gauge transformation of A1 that makes the boundary condition gauge invariant.

The only way to have a gauge-invariant boundary condition is to add terms that mix A1 with the

dynamical fields. The simplest such modification is to replace T0 in (A.3) with

T ′
0 = T0 −

d

2
κd A1 ∧ (dA1)

d
2
−1 . (A.5)

Consequently we must modify the boundary term into

− 1

4πR2

∫
∂Xd+1

T ′
0 ∧ ⋆ T ′

0 . (A.6)

However, since the boundary condition now imposes δT ′
0 = iR2 ⋆δA1, we get an extra unwanted term

in the variational principle:

− i

2π

∫
∂Xd+1

d

2
κd A1 ∧ (dA1)

d
2
−1 ∧ δA1 . (A.7)

This can be cancelled by adding a topological term proportional to A1 ∧ A1 ∧ (dA1)
d
2
−1 to the

boundary term. Indeed∫
∂Xd+1

δ
(
A1A1 (dA1)

d
2
−1
)
=

∫
∂Xd+1

(
d
2
A1 (dA1)

d
2
−1 δA1−

(
d
2
−1

)
dA1A1 (dA1)

d
2
−2 δA1

)
. (A.8)

However, this also produces an extra term that must be cancelled. This is easily achieved by modifying

both the boundary condition and the boundary term by the addition of this extra term to T ′
0 . This

produces

T1 = T ′
0 + κd

(
d
2
− 1

)
dA1A1 (dA1)

d
2
−2 . (A.9)

At the same time we modify the boundary term that, including the new topological term, becomes

S
(1)
∂ = − 1

4πR2

∫
∂Xd+1

T1 ∧ ⋆ T1 +
i

2π

∫
∂Xd+1

κd A1 ∧ A1 ∧ (dA1)
d
2
−1 . (A.10)

These new boundary condition and boundary term give a consistent variational principle. However,

the boundary condition is again non gauge invariant because of the last term we added to T1, and we

have to repeat the procedure above.

At each step, the non-gauge-invariant piece in the boundary condition becomes of one lower degree

in A1 (and one higher in A1). Hence, the procedure stops when we reach a term linear in A1: we can
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make the boundary condition gauge invariant by adding a term purely in A1, which does not modify

the variational principle. The procedure stops after (d/2− 1) steps, yielding the boundary condition

⋆
(
A1 −A1

)
= − i

R2

(
Ωd−1 − κd A1 (A1)

d
2
−1
)

(A.11)

where

Ωd−1 = bd−1 + κd

d
2
−2∑

r=0

(
d
2
− r

)
(dA1)

r
(
A1 −A1

)
(dA1)

d
2
−1−r + κd (dA1)

d
2
−1A1 . (A.12)

The corresponding boundary term is

S∂ = − 1

4πR2

∫
∂Xd+1

Ωd−1 ∧ ⋆Ωd−1 +
iκd
2π

d
2
−2∑

r=0

∫
∂Xd+1

A1 (dA1)
r A1 (dA1)

d
2
−r−1 . (A.13)

As a sanity check, we can verify that the boundary theory is anomalous under U(1) gauge trans-

formations. Under δA1 = δA1 = dλ0 the topological terms on the boundary produce

iκd
2π

d
2
−2∑

r=0

∫
∂Xd+1

(
dλ0 (dA1)

r A1 (dA1)
d
2
−r−1 +A1 (dA1)

r dλ0 (dA1)
d
2
−r−1

)

=
iκd
2π

d
2
−2∑

r=0

∫
∂Xd+1

λ0

(
(dA1)

r+1(dA1)
d
2
−r−1 − (dA1)

r(dA1)
d
2
−r
)

=
iκd
2π

∫
∂Xd+1

(
λ0 (dA1)

d
2
−1 (dA1)− λ0 (dA1)

d
2

)
.

(A.14)

Then, using the boundary condition,

δS∂ =
iκd
2π

∫
∂Xd+1

dλ0 (dA1)
d
2
−1
(
A1 −A1

)
− κ2d

2πR2

∫
∂Xd+1

dλ0 (dA1)
d
2
−1 ∧ ⋆

(
(dA1)

d
2
−1A1

)
(A.15)

− κ2d
4πR2

∫
∂Xd+1

dλ0 (dA1)
d
2
−1 ∧ ⋆

(
dλ0 (dA1)

d
2
−1
)
+
iκd
2π

∫
∂Xd+1

(
λ0 (dA1)

d
2
−1(dA1)− λ0 (dA1)

d
2

)
.

The bulk contributes with a term

δS = −iκd
2π

∫
∂Xd+1

dλ0A1 (dA1)
d
2
−1 (A.16)

which, together with the last term in (A.14), combines to a total derivative (on the boundary) and

can be neglected. We remain with

δStot = −iκd
2π

∫
∂Xd+1

dλ0 (dA1)
d
2
−1A1 − δ

[
κ2d

4πR2

∫
∂Xd+1

(
A1 (dA1)

d
2
−1
)
∧ ⋆

(
A1 (dA1)

d
2
−1
)]

.

(A.17)

We can isolate the anomalous variation adding a final counterterm

Sc.t. =
κ2d

4πR2

∫
∂Xd+1

(
A1 (dA1)

d
2
−1
)
∧ ⋆

(
A1 (dA1)

d
2
−1
)
. (A.18)
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B Non-compact TQFTs

In this appendix we provide a mathematical definition and details on the TQFTs with infinitely many

operators introduced in [48, 49] and used as holographic duals. The main issue is defining the theory

with cutting and gluing while avoiding infinities from inserting a complete basis of states. We argue

that this is possible if all manifolds have at least one non-empty boundary component. On the other

hand, the partition functions on closed manifolds will be generically infinite.

Review of standard TQFTs. Recall that standard TQFTs in d dimensions are defined by a sym-

metric monoidal functor Z : BordSO
d → VecC from the category of oriented bordisms to the category

of complex vector spaces [95] (see e.g. [96] for a detailed review). A vector space HXd−1
= Z(Xd−1)

is assigned to any closed codimension-one manifold and a linear map Z(Yd) :HXd−1
→ HX′

d−1
to any

bordism Yd :Xd−1 → X ′
d−1, namely an oriented manifold with boundary ∂Yd = Xd−1 ⊔X

′
d−1 (here

bar means orientation reversal) with in and out components given by Xd−1 and X ′
d−1 respectively.32

Functoriality implies that the vector space for a disjoint union is the tensor product, and gluing Yd
with Y ′

d along a common boundary corresponds to composing linear maps.

In practice, it is convenient to work with an explicit basis. Hence, to concretely construct a TQFT

we need the following ingredients:

• Vector spaces HXd−1
with a basis |a⟩. We also denote by |ā⟩ a basis of HXd−1

.

• For any d-dimensional manifold Yd with incoming and outgoing connected boundary components,

respectively, X i
d−1,in, i = 1, 2, . . . and Xj

d−1,out, j = 1, 2, . . . we assign a tensor Z(Yd){ai},{bj}.

This specifies the linear map
⊗

i Hin,i →
⊗

j Hout,j

Z(Yd)

(
|a1⟩ ⊗ |a2⟩ ⊗ · · ·

)
=

∑
bj

Z(Yd){ai},{bj}

(
|b1⟩ ⊗ |b2⟩ ⊗ · · ·

)
. (B.1)

Notice that the vector spaces HXd−1
are not endowed with a scalar product as an extra datum:

this simply arises from the composition of bordisms. To see this notice that, for any Xd−1, we can

construct the cylinder Xd−1 × [0, 1] that can be viewed both as the straight cylinder, namely a

bordism Xd−1 → Xd−1, or as the horseshoe, namely a bordism Xd−1 ⊗ Xd−1 → ∅.33 In the first

case the functor Z associates the identity map IdHXd−1
:HXd−1

→ HXd−1
, while in the second case it

gives a bilinear pairing η(Xd−1) :HXd−1
⊗HXd−1

→ C. In components these read:

δa,b =

a b

η(Xd−1)ab̄ =

a b̄

32The same manifold, with the same orientation, can be viewed as a bordism X
′
d−1 → Xd−1.

33The vector space associated with the empty (d− 1)-dimensional manifold is H∅ = C.
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One can show that η(Xd−1) is a non-degenerate pairing that defines an isomorphism HXd−1

∼= H∨
Xd−1

.

This allows us to identify the basis |ā⟩ ofHXd−1
with the dual basis ⟨a| ofH∨

Xd−1
defined by ⟨a|b⟩ = δa,b:

|b̄⟩ =
∑
a

ηa,b̄ ⟨a| . (B.2)

With these pieces of data, it is clear how to glue various bordisms along common boundaries

to generate others. The common boundaries must have opposite orientations. When one boundary

is incoming and the other one is outgoing, the gluing is just the composition. On the other hand,

if both are incoming (or both outgoing), we use η(Xd−1)a,b̄. More concretely, let Yd be a (possibly

disconnected) bordism
⊔

iX
i
d−1,in →

⊔
j X

j
d−1,out. If X

1
d−1,in = X1

d−1,out we can generate Ỹd by gluing

the two, and the associated tensor is

Z
(
Ỹd
)
{a2,...},{b2,...}

=
∑

a1
Z(Yd){a1,a2,...},{a1,b2,...} . (B.3)

If instead X1
d−1,in = X2

d−1,in the tensor associated with the manifold obtained by gluing along these

boundary components is

Z
(
Ỹd
)
{a3,...},{b1}

=
∑

a1,a2
Z(Yd){a1,a2,a3,...},{b1,...} η

(
X1

d−1,in

)
a1,a2

. (B.4)

Clearly, these pieces of data cannot be arbitrary: if the same manifold Yd can be constructed in

different ways by gluing smaller pieces, the results must coincide. Once these consistency conditions

are satisfied, we can compute the tensor associated with any manifold starting from those associated

with the more elementary pieces. By performing enough gluings to get a closed manifold, the result

is a number: the partition function. For instance, gluing the outgoing and the incoming boundary of

a cylinder Xd−1 × [0, 1] we get Xd−1 × S1, hence

Z
(
Xd−1 × S1

)
=

∑
a
δa,a = dim

(
HXd−1

)
. (B.5)

The non-compact case. Already the fact (B.5) suggests that in the non-compact case closed

bordisms should not be included in the definition. We want to argue that, avoiding closed manifolds,

there are classes of manifolds in which we can give a precise definition of the U(1)/R BF-like theories

S =
i

2π

∫
Md

bd−p−1 ∧ dAp . (B.6)

As an illustration, we consider the case of d = 2 with p = 1. Hence b0 = ϕ is a non-compact scalar,

and A is a U(1) gauge field. The Hilbert space HS1 can be constructed by canonical quantization.

We set M2 = S1 × R, with R parametrized by t, and split A = Ã+ At
0 dt. Then

S = − i

2π

∫
S1×R

(
At

0 d̃ϕ ∧ dt+ ϕ ∂tÃ ∧ dt
)
. (B.7)

We choose the temporal gauge At
0 = 0, and we need to impose the Gauss law d̃ϕ = 0, namely

ϕ = ϕ(t) is independent of the spatial coordinate. Introducing

q(t) =

∫
S1

Ã , p(t) =
1

2π
ϕ(t) , (B.8)
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we see that q(t) ∼ q(t) + 2π is a periodic variable, and the action becomes

S = −i
∫
R
p ∂tq dt . (B.9)

This is a free infinitely-massive particle on a circle of radius 2π. The quantization is straightforward.

We have the commutation relations

[q̂, p̂] = i ⇒ eiαp̂ · einq̂ = eiαn einq̂ · eiαp̂ . (B.10)

Here n ∈ Z because of the periodicity of q̂, while α is a generic real number. However the operator

e2πip̂ commutes with the whole operator algebra, hence it is a number that we can set to 1. Therefore

the operators acting on the Hilbert space are

Ôα = eiαp̂ with α ∈ [0, 2π) , Ŵn = einq̂ with n ∈ Z , (B.11)

with algebra

Ôα Ôβ = Ôα+β (mod 2π) , Ŵn Ŵm = Ŵn+m , Ôα Ŵn = eiαn Ŵn Ôα . (B.12)

Starting from a simultaneous eigenstate of the Ŵn’s such that

Ŵn |θ⟩ = einθ |θ⟩ , (B.13)

using the algebra we find

Ôα |θ⟩ = |θ − α⟩ . (B.14)

Hence we get a basis labelled by a compact continuous variable θ ∈ U(1). We can also use a non-

compact but countable basis, starting with an eigenstate of Ôα:

Ôα |k⟩ = eiαk |k⟩ . (B.15)

It must be k ∈ Z to respect the periodicity α ∼ α + 2π. Then using the algebra we infer

Ŵn |k⟩ = |k + n⟩ . (B.16)

The relation between the two basis is

|k⟩ = 1√
2π

∫ 2π

0

dθ eikθ |θ⟩ , |θ⟩ = 1√
2π

∑
k∈Z

e−ikθ |k⟩ . (B.17)

Since the Hilbert space is infinite dimensional, the partition function on T 2 is infinite. Let us

show that, on the other hand, we can consistently define a functor on the category of open oriented

bordisms. In 2d the huge computational simplifications are that the only Hilbert space is HS1 , and

that every 2d manifold has a pair of pants decomposition. Eventually, one also needs to fill holes by
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attaching a disk. Hence, on top of the horseshoe ηab, the only other data one needs to assign are the

disk and the pair of pants:

ha =

a

µc
ab =

a b

c

The numbers ha define a distinguished state |HH⟩ =
∑

a ha|a⟩, called the Hartle–Hawking state.

These two data must satisfy the obvious condition that if we fill one of the two incoming holes of the

pair of pants with the Hartle–Hawking state we get the cylinder:∑
b
µc
ab hb = δa,c . (B.18)

The only other consistency condition is the independence from the chosen pair of pants decomposition,

that reduces to the Froboenius condition [97]:∑
c
µc
a,b µ

e
c,d =

∑
c
µe
a,c µ

c
b,d . (B.19)

Let us use the continuous basis |θ⟩. The cylinder (identity) becomes a delta function δ(θ1 − θ2).

Moreover, we define

hθ = δ(θ) , ηθ1,θ2 = δ(θ1 + θ2) , µθ3
θ1,θ2

= δ(θ1 + θ2 − θ3) . (B.20)

Also, all sums are replaced by integrals on [0, 2π) in this basis. The condition (B.18) is obviously

satisfied, while the Froboenius condition (B.19) reads∫ 2π

0

dθ δ(θ1 + θ2 − θ) δ(θ + θ3 − θ4) =

∫ 2π

0

dθ δ(θ1 + θ − θ4) δ(θ2 + θ3 − θ) (B.21)

which is satisfied since both sides are equal to δ(θ1+θ2+θ3−θ4). The choice of these data is motivated

by the fact that the continuous basis |θ⟩ is related, by the state/operator correspondence, with the

local operators Oα(x) = ei
α
2π

ϕ(x), and the pair of pants must reproduce their OPE Oα Oβ = Oα+β.

Then the Hartle–Hawking state is fixed by (B.18).

With these pieces of data, we can compute the value of the functor for arbitrary bordisms with a

non-empty boundary. The simplest nontrivial such manifold is the torus with a puncture. This can

be obtained from the pair of pants by gluing one of the two incoming boundaries with the outgoing

one. Denoting by θ the label of the puncture, namely the non-glued circle, the result is34

Z
(
Σ1 ∖ Pθ

)
=

∫ 2π

0

dθ′ δ(θ) = 2π δ(θ) . (B.22)

34We denote a genus g Riemann surface as Σg.
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This is a projector on the Hartle–Hawking state. Another simple example is the torus with two

punctures that can be obtained from the previous result by gluing the remaining boundary to the

outgoing boundary of another pair of pants. Hence, the result is

Z
(
Σ1 ∖

{
Pθ1 , Pθ2

})
=

∫ 2π

0

dθ′ δ(θ1 + θ2 − θ′) 2πδ(θ′) = 2π δ(θ1 + θ2) . (B.23)

We can now put these two examples together, gluing the boundary of a torus with one puncture to

one of the two boundaries of the torus with two punctures, resulting in a genus-two surface with a

puncture:

Z
(
Σ2 ∖ Pθ

)
=

∫ 2π

0

dθ′ 2πδ(θ + θ′) 2πδ(θ′) = (2π)2 δ(θ) . (B.24)

Proceeding in this way it is not hard to prove the general result. The value of the functor an a genus

g surface with n incoming boundaries labelled by θ1, . . . , θn and m outgoing boundaries labelled by

θ′1, . . . , θ
′
m is given by

Z
(
Σg ∖

{
Pθ1 , . . . , Pθn , Pθ′1

, . . . , Pθ′m

})
= (2π)g δ

(
θ1 + . . .+ θn − θ′1 − . . .− θ′m

)
. (B.25)

The important observation is that the partition function on compact Riemann surfaces is infinite.

Indeed, a compact Riemann surface of genus g is obtained by closing the hole of a one-punctured

Riemann surface Σg ∖Pθ by means of gluing the Hartle–Hawking state. The result is clearly infinite:

Z(Σg) =

∫ 2π

0

dθ (2π)g δ(θ) δ(θ) = (2π)g δ(0) . (B.26)

We conclude that the TQFT is well defined on the category of open oriented bordisms.

Let us remark that, given the Hilbert space we constructed, there is another set of data that can

be formulated, which is essentially the same as the one we discussed but in the discrete basis |k⟩:

h′k = δk,0 , η′k1,k2 = δk1,−k2 , (µ′)k3k1,k2 = δk1+k2,k3 . (B.27)

With these data one gets infinite answers even on open manifolds, as soon as they have a non-trivial

topology. It must be noticed that, indeed, these are not merely the data (B.20) written in a different

basis: translating (B.20) in the discrete basis using (B.17) we get

hk =
1√
2π

, ηk1,k2 = δk1,k2 , µk3
k1,k2

=
√
2π δk1,k2 δk1,k3 . (B.28)

We conclude that (B.20) and (B.27) really define two different TQFTs.

How did we choose one instead of the other? As we already pointed out, in 2d TQFT the choice

is really dictated by the fact that the pair of pants is related with the OPE of local operators. The

data (B.27) would then be relevant for the TQFT with Lagrangian formulation

S ′ =
i

2π

∫
M2

Φ da1 , (B.29)

where Φ ∼ Φ + 2π is a compact scalar, while a1 an R gauge field. Canonical quantization produces

the same Hilbert space as the theory with non-compact scalar and U(1) gauge field; however, here
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the local operators On(x) = einΦ(x) are labeled by an integer, and hence are related with the discrete

basis by the state/operator correspondence. For this reason, in contrast to the previous case, the

quantization of this theory produces the data (B.27) in which the pair of pants gives the Abelian

fusion algebra in the discrete basis.
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[6] Y. Choi, C. Córdova, P.-S. Hsin, H. T. Lam, and S.-H. Shao, “Noninvertible duality defects in

3+1 dimensions,” Phys. Rev. D 105 (2022) 125016, arXiv:2111.01139 [hep-th].

[7] J. Kaidi, K. Ohmori, and Y. Zheng, “Kramers-Wannier-like Duality Defects in (3+1)D Gauge

Theories,” Phys. Rev. Lett. 128 (2022) 111601, arXiv:2111.01141 [hep-th].

[8] K. Roumpedakis, S. Seifnashri, and S.-H. Shao, “Higher gauging and non-invertible

condensation defects,” Commun. Math. Phys. 401 (2023) 3043–3107, arXiv:2204.02407

[hep-th].

[9] L. Bhardwaj, L. E. Bottini, S. Schafer-Nameki, and A. Tiwari, “Non-invertible

higher-categorical symmetries,” SciPost Phys. 14 (2023) 007, arXiv:2204.06564 [hep-th].

[10] A. Antinucci, G. Galati, and G. Rizi, “On continuous 2-category symmetries and Yang-Mills

theory,” JHEP 12 (2022) 061, arXiv:2206.05646 [hep-th].

[11] D. S. Freed, G. W. Moore, and C. Teleman, “Topological symmetry in quantum field theory,”

arXiv:2209.07471 [hep-th].

[12] R. Argurio, F. Benini, M. Bertolini, G. Galati, and P. Niro, “On the symmetry TFT of

Yang-Mills-Chern-Simons theory,” JHEP 07 (2024) 130, arXiv:2404.06601 [hep-th].

[13] A. Maloney and E. Witten, “Quantum Gravity Partition Functions in Three Dimensions,”

JHEP 02 (2010) 029, arXiv:0712.0155 [hep-th].

[14] P. Saad, S. H. Shenker, and D. Stanford, “A semiclassical ramp in SYK and in gravity,”

arXiv:1806.06840 [hep-th].

44

http://dx.doi.org/10.1007/BF01223371
http://dx.doi.org/10.1007/JHEP02(2015)172
http://dx.doi.org/10.1007/JHEP02(2015)172
http://arxiv.org/abs/1412.5148
http://dx.doi.org/10.1142/9789814324359_0133
http://arxiv.org/abs/1004.2307
http://dx.doi.org/10.1007/JHEP03(2018)189
http://arxiv.org/abs/1704.02330
http://dx.doi.org/10.1007/JHEP01(2019)026
http://arxiv.org/abs/1802.04445
http://arxiv.org/abs/1802.04445
http://dx.doi.org/10.1103/PhysRevD.105.125016
http://arxiv.org/abs/2111.01139
http://dx.doi.org/10.1103/PhysRevLett.128.111601
http://arxiv.org/abs/2111.01141
http://dx.doi.org/10.1007/s00220-023-04706-9
http://arxiv.org/abs/2204.02407
http://arxiv.org/abs/2204.02407
http://dx.doi.org/10.21468/SciPostPhys.14.1.007
http://arxiv.org/abs/2204.06564
http://dx.doi.org/10.1007/JHEP12(2022)061
http://arxiv.org/abs/2206.05646
http://arxiv.org/abs/2209.07471
http://dx.doi.org/10.1007/JHEP07(2024)130
http://arxiv.org/abs/2404.06601
http://dx.doi.org/10.1007/JHEP02(2010)029
http://arxiv.org/abs/0712.0155
http://arxiv.org/abs/1806.06840


[15] D. Stanford and E. Witten, “JT gravity and the ensembles of random matrix theory,” Adv.
Theor. Math. Phys. 24 (2020) 1475–1680, arXiv:1907.03363 [hep-th].

[16] A. Maloney and E. Witten, “Averaging over Narain moduli space,” JHEP 10 (2020) 187,

arXiv:2006.04855 [hep-th].

[17] N. Afkhami-Jeddi, H. Cohn, T. Hartman, and A. Tajdini, “Free partition functions and an

averaged holographic duality,” JHEP 01 (2021) 130, arXiv:2006.04839 [hep-th].

[18] F. Benini, C. Copetti, and L. Di Pietro, “Factorization and global symmetries in holography,”

SciPost Phys. 14 (2023) 019, arXiv:2203.09537 [hep-th].

[19] D. S. Freed, “Short-range entanglement and invertible field theories,” arXiv:1406.7278

[cond-mat.str-el].

[20] D. S. Freed and M. J. Hopkins, “Reflection positivity and invertible topological phases,” Geom.
Topol. 25 (2021) 1165–1330, arXiv:1604.06527 [hep-th].
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[60] C. Córdova, T. T. Dumitrescu, and K. Intriligator, “Exploring 2-group global symmetries,”

JHEP 02 (2019) 184, arXiv:1802.04790 [hep-th].

[61] J. R. Fliss and S. Vitouladitis, “Entanglement in BF theory II: Edge-modes,”

arXiv:2310.18391 [hep-th].

[62] J. M. Maldacena, “The large N limit of superconformal field theories and supergravity,” Adv.
Theor. Math. Phys. 2 (1998) 231–252, arXiv:hep-th/9711200.

[63] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, “Gauge theory correlators from noncritical

string theory,” Phys. Lett. B 428 (1998) 105–114, arXiv:hep-th/9802109.

[64] E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2 (1998) 253–291,

arXiv:hep-th/9802150.
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