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Numerical simulations of a stochastic dynamics leading to cascades and loss of regularity:
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Motivated by the modeling of the spatial structure of the velocity field of three-dimensional turbulent flows,
and the phenomenology of cascade phenomena, a linear dynamics was recently proposed that can generate high
velocity gradients from a smooth-in-space forcing term. It is based on a linear partial differential equation stirred
by an additive random forcing term that is δ-correlated in time. The underlying proposed deterministic mech-
anism corresponds to a transport in Fourier space that aims to transfer energy injected at large scales towards
small scales. The key role of the random forcing is to realize these transfers in a statistically homogeneous
way. Whereas at finite times and positive viscosity the solutions are smooth, a loss of regularity is observed
for the statistically stationary state in the inviscid limit. We present here simulations, based on finite volume
methods in the Fourier domain and a splitting method in time, which are more accurate than the pseudospectral
simulations. We show that our algorithm is able to reproduce accurately the expected local and statistical structure
of the predicted solutions. We conduct numerical simulations in one, two, and three spatial dimensions, and we
display the solutions both in physical and Fourier space. We additionally display key statistical quantities such
as second-order structure functions and power spectral densities at various viscosities.
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I. INTRODUCTION

A. The numerical investigation of a stochastic transport
equation in Fourier space

The purpose of this article is the numerical simulation of
a recently proposed model of fully developed fluid turbulence
[1]. This model is based on a temporal evolution, governed by
a linear partial differential equation (PDE), randomly stirred
by an additive force that is smooth and homogeneous in space
and δ-correlated in time. A similar additive type of forcing
has been traditionally used for numerical investigations of
Navier-Stokes (NS) equations in order to observe the turbu-
lent behavior of the velocity field [2,3]. As explained in the
following, the formulation of the aforementioned model for
the dynamics is especially convenient in Fourier space. The
proposed underlying mechanism, which can transfer energy
as a turbulent cascade would do, is based on a transport
equation in the Fourier domain, and it can be seen as a simple
model of the generation of small scales. These notions will be
properly defined later in the article.
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Preliminary numerical simulations have been performed
in [1] using pseudospectral methods that rely heavily on the
fast Fourier transform (FFT). Unfortunately, using necessarily
Cartesian grids of these periodic boxes, spurious anisotropies
were observed. In this work, we overcome this issue by
applying a finite volume method in the Fourier variables for-
mulation on a mesh that preserves the spherical symmetry
of the model. Our method can accurately describe all the
elements of the dynamics (transport, damping, and random
forcing), and it is well-defined even when solutions need
to be understood as distributions instead of classical regular
functions.

The article is organized as follows. The rest of this sec-
tion is devoted to a short introduction to hydrodynamic
turbulence, the presentation of the model proposed in [1],
and a description of its analytical solution in a continuous
formulation. The second section is devoted to the presentation
of the finite volume and splitting methods that will be applied.
The formulation of these methods is detailed in dimension
d = 1 for pedagogical reasons, and then special attention is
paid to the more physical two- and three-dimensional settings
with a focus on the role of polar and spherical symmetries of
the finite volume mesh. In addition, we present the splitting
method for the temporal discretization, where in particular a
transport problem is solved exactly. In the third section, we
report and discuss the numerical results. We draw conclusions
and discuss possible perspectives in the final section.
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B. Fully developed hydrodynamic turbulence

The phenomenology of three-dimensional fluid turbulence,
although surprisingly unrelated to a wide extent to the un-
derlying equations of motion given by the Navier-Stokes
equations, is now well accepted after decades of experimental
investigations and interpretations [2–4]. Consider the veloc-
ity vector field u(t, x) made up of three components u =
(ui )i=1,2,3 at a given position x ∈ R3 and at time t � 0. In this
article, we will focus on the simplistic situation referred to
as statistically stationary, homogeneous, and isotropic turbu-
lence, meaning that the probability distribution of the solution
is invariant both by rotations and by spatial and temporal
translations. It has been observed that this regime is reached
after a transient evolution for solutions of the randomly forced
Navier-Stokes equations,

∂t u + (u · ∇)u = −∇p + ν�u + f , (1)

where u(t, x) is the velocity field of an incompressible fluid,
ν denotes the viscosity, p(t, x) is the pressure, and f (t, x) is
the random forcing field. We consider a forcing localized at
large scales, i.e., only Fourier modes f̂ (t, k) corresponding
to wave numbers k with norm |k| close to 1/L are populated
with energy [3]. The parameter L is known as the integral
length scale in the turbulence literature. For a general class of
random forcing terms f (t, x) satisfying the condition above,
it has been repeatedly observed that the asymptotic variance
of velocity fluctuations converges to a positive nontrivial limit
σ 2 ∈ (0,∞) in the inviscid regime ν → 0, namely

lim
ν→0

lim
t→∞E|u(t, x)|2 =: σ 2, (2)

where E stands for the mathematical expectation with respect
to the instances of the random forcing f . In (2), the asymptotic
velocity variance σ 2 is a positive and finite number, which
depends, for instance, in an intricate way on the boundary
conditions, if any, and on the details of the forcing field f .
Moreover, the velocity variance (2) is independent of the
position x as a consequence of the observed statistical ho-
mogeneity (i.e., invariance by translations of the underlying
statistical laws). Thus, in order to reach (2), turbulent flu-
ids have to generate a mechanism that can dissipate in a
very efficient way the energy that is injected into the system
in a statistically stationary way such that velocity fluctua-
tions become independent of viscosity, or equivalently as the
Reynolds number Re ≡ σL/ν tends to infinity. This dissi-
pation mechanism requires an energy transfer from large to
small scales. As a result, the velocity field needs to generate
small-scale structures and has a rough behavior, which can be
described in several ways. In the spatial domain, this means
that the solution u(t, x) is only Hölder continuous with respect
to x. In the Fourier domain, roughness can be described by the
behavior of the power spectral density E (t, k) (PSD), which
is defined as the Fourier transform of the velocity correlation
function, i.e.,

E (t, k) =
ˆ

x∈R3
e−2iπk·xE[u(t, 0) · u(t, x)]dx. (3)

The power-law decay of the PSD for large |k|,
lim
ν→0

lim
t→∞ E (t, k) ∝

|k|→∞
|k|−(2H+d ), (4)

where d is the spatial dimension and H is the Hölder reg-
ularity exponent, is expected to hold for a general class of
hydrodynamic turbulence models. For three-dimensional fully
developed turbulence, with d = 3, Kolmogorov predicted that
H ≈ 1/3 by dimensional arguments [2,5]. Note that the PSD
depends on the norm |k| of k only, due to the isotropy of
the model. As a result, averaging over the angle variable and
weighting by the surface 4π |k|2 of the shell of radius |k|, the
power-law decay depicted in (4) leads to the famous |k|−5/3-
law of fully developed fluid turbulence. Even if the Fourier
support of the forcing field f entering in (1) is limited to low
wave numbers, asymptotically in the large time regime the
Fourier transform û of the velocity field u has a full support.
To obtain this behavior and in particular the power-law decay
of the PSD, the nonlinear Navier-Stokes dynamics has some-
how transferred energy from the large scales towards small
ones. This transport through scales is referred to the cascade
phenomenon.

The decay of the amplitude of the Fourier modes on the
right-hand side of (4) is typical of rough, nondifferentiable
fields. However, at low wave numbers |k| � 1, the spectral
energy is expected to remain finite, ensuring in particular a
finite velocity correlation length in the physical space, which
corresponds to, up to a viscous independent multiplicative
factor, the typical length scale L of the random force. Ac-
cordingly, the functional form of the power spectral density is
integrable over k in any space dimension d when 0 < H < 1,
ensuring a finite variance of velocity fluctuations in physical
space, in a consistent manner as required by the phenomenol-
ogy of turbulence (2). Hölder continuous but not differentiable
random fields have a long history in the probabilistic model-
ing of turbulence [6–12]. Indeed, fractional Gaussian fields
are able to reproduce the second-order statistics of turbulent
fluids. Let the velocity increment over a given vector � ∈ Rd

be defined as

δ�u(t, x) = u(t, x + �) − u(t, x), (5)

and refer to its variance as the second-order structure function
in the language of the phenomenology of turbulence. As sug-
gested by many studies, the second-order structure function
behaves at small scales as

lim
ν→0

lim
t→∞E[|δ�u(t, x)|2] ∝

|�|→0
|�|2H , (6)

which is consistent with (4). The power-law behavior of the
second-order structure function when |�| → 0 is known as the
2/3-law of turbulence [2] for H = 1/3.

C. A linear model of the cascade phenomenon

1. Presentation of the model

To the best of our knowledge, the cascade phenomenon de-
scribed above, i.e., the transfer of energy from the large scales
towards smaller ones, has not been rigorously established for
solutions of the randomly forced Navier-Stokes equations (1).
In particular, the property (2) that the variance of velocity
fluctuations is asymptotically independent of viscosity ν in
the fully developed turbulent regime (i.e., when the Reynolds
number goes to infinity) and the Kolmogorov power-law (4)
remain unexplained from first principles (1). In this spirit,
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much progress has been made concerning the easier problem
of the advection of a passive scalar by a given vector field
[13]. In this case, the aforementioned properties of the ve-
locity field are assumed and modeled by some random fields,
with the additional assumption that instances are independent
in time.

Nonetheless, very clear illustrations of this energy cascade
phenomenon can be derived in a rigorous way assuming the
finiteness of the velocity variance (2), and more generally as-
suming the existence of a statistically stationary homogeneous
and isotropic turbulent regime. Formulated early on in terms
of Onsager’s conjecture [14], and known in the turbulence
literature in an averaged sense using the Kármán-Howarth
equation and the 4/5-law [2], several mathematical develop-
ments and arguments have been proposed [15–18]; see, for
instance, the review articles [19,20]. Let us also mention that
several of the aforementioned properties of fluid turbulence,
in particular the independence of velocity variance on viscos-
ity (2), can be reproduced by the Burgers equation [21–23],
without developing a Kolmogorov spectrum (4). However,
those illustrations focus on higher-order statistical quanti-
ties instead of the second-order ones like the variance (2),
the correlation function (3), and the second-order structure
function (5).

The purpose of this article is to design a dedicated and
effective numerical method to investigate the properties of
a model. This model is given by a linear stochastic par-
tial differential equation (SPDE), which is much simpler
than the randomly forced Navier-Stokes equations (1). Al-
though intended to model three-dimensional homogeneous
and isotropic fully developed turbulent flows, the present ap-
proach can be formulated in any dimension d . We will show
that this model is able to reproduce the fundamental second-
order statistical behavior of turbulence, described above: the
property that asymptotically the velocity variance is inde-
pendent of viscosity (2), the power-law decay of the PSD
(4), and the power-law behavior of the second-order struc-
ture function (6). The considered model is given by a linear
evolution equation driven by an additive Gaussian random
forcing. Therefore, the solution is a centered Gaussian random
field, which is fully characterized by studying second-order
statistical quantities. Reproducing different scaling properties
for higher-order statistical quantities is not possible for the
model considered in this work.

In two recent articles [12,24], it has been proposed to
model the energy cascade phenomenon via a transport equa-
tion in Fourier space. In particular, the authors have been able
to design a SPDE for a scalar velocity field, in one space di-
mension (d = 1). In the simplest situation where only a linear
evolution is considered, the resulting velocity field is a Gaus-
sian function when the random forcing is also assumed to be
Gaussian, and it shares many properties with those observed in
fully developed turbulence; see (2), (4), and (6). Unfortunately
in [12,24], the velocity u(t, x) and forcing f (t, x) fields take
complex values, and furthermore, extensions to higher spatial
dimensions, in particular to d = 3, are neither obvious nor
natural. In a recent article [1], the authors fixed those issues
and proposed a version that provides real-valued velocity
fields and in arbitrary spatial dimension d , which we introduce
next.

The Fourier transform, when it exists [25], of a smooth
function ϕ is defined for all wave vectors k ∈ Rd by

ϕ̂(k) = Fϕ(k) =
ˆ

x∈Rd

e−2iπk·xϕ(x)dx. (7)

Let us consider an external force f which is a statistically
homogeneous, isotropic, and stationary real-valued Gaussian
field. Assume also that it is smooth in space and δ-correlated
in time, and that it is centered: E[ f (t, x)] = 0 for all t � 0 and
x ∈ Rd . The field f is thus characterized by the correlations

E[ f (t, x) f (t ′, x′)] = δ(t − t ′)Cf (x − x′), (8)

where the notation δ(t ) stands for the Dirac distribution, and
the correlation function Cf is a smooth real-valued function.
The radial symmetry implies that the correlation depends on
|x − x′| only. Considering the Fourier transform, one obtains
a generalized random field f̂ (t, k) which is centered, i.e., one
has E[ f̂ (t, k)] = 0 for all t � 0 and k ∈ Rd , and with the
correlation

E[ f̂ (t, k) f̂ (t ′, k′)] = δ(t − t ′)δ(k − k′)Ĉ f (k), (9)

where an overbar denotes the complex conjugate, δ(k) stands
for Dirac distribution in dimension d (and is thus the product
of the one-dimensional Dirac distributions for each compo-
nent), and Ĉ f (k) � 0 for all wave numbers k. Since the forcing
f is a real-valued field, the Fourier transform f̂ satisfies the

Hermitian symmetry property f̂ (t, k) = f̂ (t,−k).
As argued above, we consider a forcing term f , such that

its Fourier transform is compactly supported, away from the
origin: there exists κ > 0 and k f � κ such that

|k| /∈ (κ, k f ) ⇒ Ĉ f (k) = 0. (10)

Such a forcing term has been traditionally used in direct nu-
merical simulations (DNSs) of the Navier-Stokes equations.
From a physical point of view, it is expected that energy is
only injected at large scale, as propellers would do in a closed
flow, or following an instability of the layers of a given fluid
(usually air or water) when passing through a grid in a wind
tunnel. As a consequence, the Fourier support of the forcing
is limited to low wave numbers, as it is assumed here (10).
δ-correlation in time is more difficult to justify, beyond the
fact that it simplifies drastically theoretical derivations. Let us
mention that it has been precisely quantified in DNS that a
finite correlation in time of the forcing has very little influence
on the statistical structure of the velocity field at small scales
[26].

Let c > 0 be an additional parameter. The stochastic partial
differential equation proposed in Ref. [1] reads

∂t û+c

[
divk

(
k

|k| û

)
+ H + 1

2

|k| û

]
= −ν(2π |k|)2û + f̂ (11)

for all t � 0 and all k ∈ Rd such that |k| � κ , where divk :=∑
i ∂ki stands for the divergence operator with respect to k. In

addition, the boundary condition

û||k|=κ = 0 (12)

is imposed. Finally, for instance, the initial condition

û|t=0 = 0 (13)

is given.
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On the right-hand side of (11), the term −ν(2π |k|)2û is
the Fourier formulation of the viscous dissipation term ν�u.
Observe that the linear operator appearing on the left-hand
side of (11) can be decomposed as the sum of two terms,

divk

(
k

|k| û

)
= ∂|k |̂u + d − 1

|k| û, ∂|k| := k

|k| · ∇k . (14)

We identify the radial transport operator ∂|k| as a key
ingredient in the dynamics (11). Notice that the radial trans-
port equation ∂t û + c sgn(k)∂kû = 0 obtained choosing ν =
0, d = 1, H = −1/2, and f = 0 has the solution û(t, k) =
û(0, k − sgn(k)t ), meaning that the initial value û(0, k) is
transported to large k → ∞ (k → −∞) when k > 0 (k < 0).
The radial transport equation is thus able to model a cascade
phenomenon.

In this work, we only consider the stochastic evolution
equation (11) considered in the Fourier domain. We mention
that it is possible to consider an equivalent formulation in the
physical space: the field u(t, x) is a solution of

∂t u + Au = ν�u + f , (15)

where the operator A is formally defined by

Au = cF−1

[
divk

(
k

|k| û

)
+ H + 1

2

|k| û

]
, (16)

with F−1 denoting the inverse Fourier transform. We refer to
Ref. [1] for rigorous definitions and analysis. The operator A
is the sum of the operator F−1divk ( k

|k|F ·), which is disper-
sive, and a regularizing operator. Linear equations with such
operators are also common whenever one introduces a disper-
sive perturbation in a hyperbolic system. In such cases, these
operators are used to model wave propagation under strong
dispersive effects and they are responsible for memory effects.
See, for example, Ref. [27] in the context of wave energies,
Ref. [28] in the context of electromagnetic waves propagating
along a coaxial cable, and Refs. [29–34] in the context of
internal or inertial waves (see also subsequent mathematical
developments in Refs. [35,36]).

Let us now explain the role of the parameter κ > 0. The
linear operator appearing on the left-hand side of the evolution
equation (11), see also (14), is ill-defined for |k| = 0. To avoid
this issue, as in Ref. [1], it is imposed that û(t, k) = 0 if
|k| � κ . This is ensured by applying the boundary conditions
(12) and by assuming also that f̂ (t, k) = 0 for |k| � κ . As
explained above and as required by the phenomenology of
fluid turbulence, the random forcing is imposed only at large
scales, therefore it is also assumed that f̂ (t, k) �= 0 only in a
shell of characteristic width 1/L and centered on |k| ≈ 1/L,
where L has the physical meaning of the integral length scale.
As soon as 1/L is chosen larger than κ , the behavior of the
solution û(t, k) does not depend significantly on κ .

Finally, let us comment on the additional linear term enter-
ing on the left-hand side of the evolution equation (11), which
is proportional to |k|−1. As was argued in the recent articles
[1,12], considering the equation

∂t v̂ + c∂|k |̂v = ĝ, (17)

the solution v(t, x) develops a highly singular nature in
space, when t → ∞, close to the regularity of a white

noise. To build rough fields that are Hölder continuous with
Hölder exponent H ∈ (0, 1), an additional (linear) operation
is required, based on a Fourier multiplier given by the power-
law behavior |k|−(H+d/2). Considering the variables û(t, k) =
|k|−(H+d−1/2)̂v(t, k) and f̂ (t, k) = |k|−(H+d−1/2)̂g(t, k), from
(17) one obtains the dynamics (11); see the details in Ref. [1],
Sec. 3.2.

2. Formal solution and its asymptotic behavior

The solution of the evolution equation (11), with the
boundary condition provided in (12) and with the initial value
given by (13), can be expressed as follows: for all t � 0 and
if |k| � κ , one has

û(t, k) =
ˆ t

(t− |k|−κ

c )+

e
4π2ν

3c {[|k|−c(t−s)]3−|k|3}

×
( |k| − c(t − s)

|k|
)H+d− 1

2

× f̂

(
s, [|k| − c(t − s)]

k

|k|
)

ds, (18)

where τ+ = max(0, τ ) denotes the positive part of a real
number τ ; see Ref. [1], Theorem 3.7. With the expression of
the solution given in (18), one gets the following correlation
structure:

E[̂u(t, k )̂u(t, k′)]

= δ(k − k′)|k|−(2H+d )e− 8π2ν
3c |k|3 Fν (t, |k|), (19)

where for all t � 0 and all k ∈ Rd one has

Fν (t, |k|) = (20)⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 for |k| � κ,

1
c

´ |k|
κ

e
8π2ν

3c s3
s2H+dĈ f (s)ds for κ < |k| � ct + κ,

1
c

´ |k|
|k|−ct e

8π2ν
3c s3

s2H+dĈ f (s)ds for |k| > ct + κ;

(21)

see Ref. [1], Eqs. (3.13) and (3.14).
Let us show that the properties (2) of the velocity variance,

(4) of the power spectral density, and (6) of the second-order
structure function are retrieved from (20).

First, observe that

F (|k|) := lim
ν→0

lim
t→∞ e− 8π2ν

3c |k|3 Fν (t, |k|)

= 1|k|�κ

1

c

ˆ |k|

κ

s2H+dĈ f (s)ds, (22)

where 1S denotes the indicator function of a set S. Indeed,
for any fixed wave number k, with |k| � κ , for sufficiently
large t one has |k| � ct + κ . Moreover, recall that the power
spectral density Ĉ f of the forcing is compactly supported due
to (10), therefore the value of F (|k|) = F (k f ) is independent
of |k| � k f for large wave numbers. As a result, since the
power-law function |k|−(2H+d ) is integrable at infinity in any
dimension d � 1 and for H ∈ (0, 1), one obtains

lim
ν→0

lim
t→∞Eu2(t, x) =

ˆ
|k|−(2H+d )F (|k|)dk ∈ (0,∞); (23)

see Ref. [1], Proposition 4.10.
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Let us now study the asymptotic behavior of the PSD: for
all k with |k| � κ one has

lim
ν→0

lim
t→∞ E (t, k) = |k|−(2H+d )F (|k|), (24)

where we recall that F is given by (22) and that F (|k|) is
independent of |k| for |k| � k f , see Ref. [1], Proposition 4.10.

Finally, the second-order structure function remains to be
studied. Due to the power-law decay of the PSD (24), one
obtains

lim
ν→0

lim
t→∞E[[δ�u(t, x)]2]

= 2
ˆ

[1 − cos (2πk · �)]|k|−(2H+d )F (|k|)dk. (25)

One obtains the following when |�| → 0 (see Ref. [1], Corol-
lary 4.12):

lim
ν→0

lim
t→∞E[[δ�u(t, x)]2]

× ∼
|�|→0

2cd |�|2H 1

c

ˆ ∞

κ

s2H+dĈ f (s)ds, (26)

which depends on the function Ĉ f , and where cd is a geomet-
rical factor arising from the integration in the unit sphere of
dimension d − 1 of the scalar product of k with � that enters
in (25). Its general expression in dimension d is cumbersome,
but it reads explicitly in dimension d = 1 as

c1 = 2
ˆ ∞

ρ=0
[1 − cos (2πρ)]ρ−(2H+1)dρ, (27)

in dimension d = 2 as

c2 =
ˆ ∞

ρ=0

ˆ 2π

θ=0
[1 − cos (2πρ cos θ )]ρ−(2H+1)dρdθ, (28)

which could be further simplified using a Bessel function of
the first kind after integration over the angular variable, and
finally in dimension d = 3 as

c3 = 2π

ˆ ∞

ρ=0

ˆ π

θ=0
[1 − cos (2πρ cos θ )]ρ−(2H+1) sin θdρdθ,

(29)

which also can be simplified introducing a sine cardinal after
integration over θ .

Our model (11) is thus able to reproduce the second-order
statistical behavior of the solutions of the forced Navier-
Stokes equations; see (2), (4), and (6).

Notice that this is not the case for the stochastic heat
equation, which can be seen as (11) with c = 0, i.e., without
the transport in k-space, and removing the boundary condition
(12). The solution of the stochastic heat equation is given by

ûc=0(t, k) =
ˆ t

0
e−8π2ν|k|2(t−s) f̂ (s, k)ds, (30)

and the correlation structure of the Fourier modes is given by

E[̂uc=0(t, k )̂uc=0(t, k′)] = δ(k − k′)Ĉ f (k)
1 − e−8π2ν|k|2t

8π2ν|k|2 .

(31)

Then, similar to how we obtained the limiting behavior of the
variance of the solution of our model (23), the variance of the
solution uc=0(t, x) in physical space of the heat equation will
behave at long time, in the limit of vanishing small viscosities,
as

lim
t→∞E[u2

c=0(t, x)] ∼
ν→0

1

ν

ˆ
Ĉ f (k)

8π2|k|2 dk, (32)

in any dimension d . Note that the right-hand side of (32) is
positive and finite since the support of Ĉ f is assumed to be
compact. Whereas it is expected that the kinetic energy of tur-
bulent fluids is independent of viscosity, that of the stochastic
heat equation is inversely proportional to ν. In other words,
the stochastic heat equation is poorly efficient at dissipating
energy compared to the Navier-Stokes equations and to our
model (for c > 0). This is due to the absence of the cascade
phenomenon for the stochastic heat equation.

II. NUMERICAL METHOD

This section is devoted to a description of the method
employed for the numerical simulation of the model described
above. That model can be studied in both physical (15) and
Fourier (11) formulations. We choose to discretize the for-
mulation (11) of the problem in the Fourier variables. This
is motivated by the presence of the advection operator in the
dynamics, which plays a key role in the cascade phenomenon.
In addition, all the other terms in the dynamics can also
be easily interpreted and computed in the formulation (11).
Finally, discretizing the Fourier variable formulation is also
natural since the boundary conditions (12) are imposed in that
version of the problem.

It is worth mentioning that in this article we are mostly
interested in the statistical behavior of the model, in the
large time regime: it is therefore sufficient to propose nu-
merical algorithms that are efficient for the approximation
in a distribution of the stochastic processes (instead of their
trajectories).

The numerical simulation of the stochastic evolution equa-
tion (11) requires us to solve several nontrivial issues. Indeed,
our objective is to study the long-time behavior of the system
in order to observe the power-law behavior of the generated
fractional random fields. We thus need to ensure first that
the numerical approximation reaches a stationary state, which
depends on the chosen numerical scheme and on the numer-
ical discretization parameters, and second that this stationary
state is an accurate approximation of the stationary state of
the system (11). Even for deterministic dynamical systems,
crude methods may fail, and the design of effective methods
is a nontrivial task. The addition of stochastic external forcing
naturally introduces additional difficulties; see, for instance,
Ref. [37]. In this work, the fact that the external forcing is
δ-correlated in time t and in the Fourier variable k is an
important challenge.

We first describe the discretization in the Fourier domain
using the finite volume method, and we then describe the
temporal discretization using a splitting method and expo-
nential integrators for Ornstein-Uhlenbeck dynamics. Finally,
we will describe the fully discrete schemes. Note that in this
article, we do not investigate the convergence properties of
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the scheme; this question is fundamental but is left for future
works.

In the sequel, we study Fourier transforms ĝ(k) of
real-valued random fields g(x). As a result, the Hermitian
symmetry property ĝ(k) = ĝ(−k) is satisfied, where an over-
bar denotes the complex conjugate. The description of the
correlations of ĝ(k) requires in general to consider both
E[ĝ(k)ĝ(k′)] and E[ĝ(k)ĝ(k′)] for all k, k′. However due to
the Hermitian symmetry property, giving the expression for
E[ĝ(k)ĝ(k′)] for all k, k′ is sufficient.

A. Spatial discretization: Finite volume method

1. General definition of the finite volume method

Since the external stochastic forcing f̂ (t, k) is δ-correlated
in (t, k), the solution û(t, k) of (11) cannot be interpreted in a
classical way, and it needs to be considered in a distributional
sense. However, for any bounded volume, i.e., any subset K ⊂
Dκ = {k ∈ Rd |k| � κ} with volume |K| > 0 in the Fourier
domain, one can average the forcing on K and set

f̂K(t ) =
 
K

f̂ = 1

|K|
ˆ
K

f̂ (t, k)dk.

With that definition, for each volume K, it is straightforward
to check that ( f̂K(t ))t�0 is a complex centered white noise
process in time:

E[ f̂K(t1) f̂K(t2)] = δ(t2 − t1)
1

|K|2
ˆ
K

Ĉ f (k)dk,

E[ f̂K(t1) f̂K(t2)] = δ(t2 − t1)
1

|K|2
ˆ
K∩(−K)

Ĉ f (k)dk,

where −K = {−k; k ∈ K} is the symmetric of K with respect
to the origin. Note that f−K(t ) = fK(t ). More generally, if K1

and K2 are two volumes, then, due to (9), one has

E[ f̂K1 (t1) f̂K2 (t2)] = δ(t2 − t1)
1

|K1||K2|
ˆ
K1∩K2

Ĉ f (k)dk,

E[ f̂K1 (t1) f̂K2 (t2)] = δ(t2 − t1)
1

|K1||K2|
ˆ
K1∩(−K2 )

Ĉ f (k)dk.

Moreover, if K1 ∩ K2 = ∅ and if K1 ∩ (−K2) = ∅, then
( f̂K1 (t ))t�0 and ( f̂K2 (t ))t�0 are independent complex white
noise processes.

The observation above suggests to also average the solution
over volumes: for any volume K, consider

ûK(t ) =
 
K

û = 1

|K|
ˆ
K

û(t, k)dk, (33)

where û(t, k) denotes the solution of (11). The finite volume
method consists in introducing a countable locally finite de-
composition of the domain Dκ into volumes K, and to propose
an evolution equation for ûK(t ).

Let us first observe that integrating the evolution equa-
tion (11) over an arbitrary volume K shows that ûK(t ) is the
solution to the following equation:

∂t ûK + c
 
K

divk

(
k

|k| û

)
+ c

 
K

(H + 1
2 )

|k| û

= −ν

 
K

(2π |k|)2û + f̂K. (34)

Using the Stokes formula, the second term of the left-hand
side of (34) is written as 

K
divk

(
k

|k| û

)
= 1

|K|
ˆ

∂K

k · n
|k| û(t, k)dk, (35)

where ∂K denotes the boundary of K, and n denotes the
outward unit normal vector at k ∈ ∂K.

2. Finite volume meshes with radial symmetry

Let us now choose the form and shape of the finite volume
K, which should be especially well adapted to the symme-
try of our problem. In particular, we would like to simplify,
without making any approximation, the average over K of the
divergence term on the right-hand side of (35). To do so, it
is convenient to use the spherical coordinate system. Recall
that any k ∈ Rd such that k �= 0 can be uniquely written as
k = |k|θ with θ ∈ Sd−1, where Sd−1 = {k ∈ Rd ; |k| = 1} is
the unit sphere of dimension d; see below for some details in
dimensions d = 1, 2, 3.

Using spherical coordinates, we now consider volumes K
of the type

K = {k = |k|θ ; ρ− � |k| � ρ+, θ ∈ �}, (36)

where ρ− � ρ+ are two positive real numbers, and � is a
subset of the unit sphere Sd−1. For any volume K given by
(36), the boundary ∂K is decomposed into three parts,

∂+K = {k = |k|θ ; |k| = ρ+, θ ∈ �},
∂−K = {k = |k|θ ; |k| = ρ−, θ ∈ �},
∂θK = {k = |k|θ ; ρ− < |k| < ρ+, θ ∈ ∂�},

where ∂� denotes the boundary of the set �. The boundary
integral on the right-hand side of (35) obtained by the appli-
cation of the Stokes formula above can then be simplified:

1

|K|
ˆ

∂K

k · n
|k| û(t, k)dk = F+ + F−,

where only the radial fluxes F±,

F± = 1

|K|
ˆ

∂±K

k · n
|k| û(t, k)dk = ±1

|K|
ˆ

∂±K
û(t, k)dk, (37)

across ∂±K contribute, whereas the flux Fθ across the trans-
verse boundary ∂θK vanishes, i.e.,

Fθ =
ˆ

∂θK

k · n
|k| û(t, k)dk = 0, (38)

since k · n = 0 vanishes for k ∈ ∂θK. See Fig. 1(b) for an
illustration. Therefore, choosing the volumes K of the type
considered above is natural: they are adapted to the radial
symmetries of the operators and of the forcing. Moreover, this
choice is adapted to describe the advection behavior in the
radial variable |k|, which is exhibited in the identity (14).

It is worth mentioning that all the calculations performed
so far are exact, in other words no approximation procedure
has been introduced yet. To proceed further, let us describe
more precisely the finite volume mesh that we will consider.
Let (�a)a∈A denote a finite volume decomposition of the
sphere Sd−1 where A is a finite set and assume that the volume
of |�a| does not depend on a. In addition, in order to preserve
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FIG. 1. (a) Representation of the discretization of the plane
spanned by the wave vector k in dimension d = 2 using the finite vol-
umes method; each cell corresponds to a finite volume Ki,a [Eq. (39)]
with radial step �ρi. (b) Representation of a unit cell Ki,a with our
notation. We superimpose the nonvanishing radial fluxes [Eq. (37)].

the Hermitian symmetry of the random fields in the k variable,
the finite volume mesh also needs to satisfy some symmetry
property. Instead of describing this in arbitrary dimension d ,
we give details about the cases d = 1, 2, 3 below.

3. Discretization of the unit sphere in dimensions d = 1, 2, 3

Let us make the description of the volumes �a in the unit
sphere more precise in dimension d = 1, 2, 3.

In dimension d = 1, any k �= 0 can be written as k =
sgn(k)|k|, thus one can consider A = {±1}, and the volumes
�+ = {1} and �− = {−1} are symmetric with respect to 0.
In practice, due to the Hermitian symmetry property, it is
sufficient to deal with �+.

In dimension d = 2, one has the polar decomposition
k = |k|(cos ϑ, sin ϑ ) with angle ϑ ∈ [0, 2π ] for any k �= 0.
Let �ϑ = π/Nϑ for some integer Nϑ . Then one can con-
sider A = {0, . . . , 2Nϑ − 1}, and for all a ∈ A, one can
set �a = {(cos ϑ, sin ϑ ); a�ϑ � ϑ � (a + 1)�ϑ}. Observe
that one has −( cos(ϑ ), sin(ϑ )) = ( cos(ϑ + π ), sin(ϑ + π )),
therefore for any a ∈ {0, . . . , Nϑ − 1}, the volumes �a+Nϑ

and
�a are symmetric with respect to 0. In practice due to the
Hermitian symmetry property, it is thus sufficient to deal with
�a for a ∈ {0, . . . , Nϑ − 1}.

In dimension d = 3, one has the spherical decompo-
sition k = |k|(cos ϑ, sin ϑ cos ϕ, sin ϑ sin ϕ) with angles
(ϑ, ϕ) ∈ [0, π ] × [0, 2π ] for any k �= 0. Note that
one has −(cos ϑ, sin ϑ cos ϕ, sin ϑ sin ϕ) = ( cos(π −
ϑ ), sin(π − ϑ ) cos(ϕ + π ), sin(π − ϑ ) sin(ϕ + π )). Given
�ϑ = π/(Nϑ ) and �ϕ = π/Nϕ , with integers Nϑ and Nϕ ,
one can consider A = {(aϑ , aϕ ); 0 � aϑ � Nϑ − 1, 0 �
aϕ � 2Nϕ − 1}, and for all a = (aϑ , aϕ ) ∈ A one can
set �a = {(cos ϑ, sin ϑ cos ϕ, sin ϑ sin ϕ); aϑ�ϑ � ϑ �
(aϑ + 1)�ϑ, aϕ�ϕ � ϕ � (aϕ + 1)�ϕ}. The volumes
�(Nϑ−1−aϑ ,aϕ+Nϕ ) and �a are symmetric with respect to 0.
In practice, due to the Hermitian symmetry property, it is
thus sufficient to deal with �a for a ∈ {(aϑ , aϕ ); 0 � aϑ �
Nϑ − 1, 0 � aϕ � Nϕ − 1}.

The description could be extended to higher dimensions,
but the details are omitted since we only deal with dimensions
d = 1, 2, 3 in practice.

4. Discretization of the radial component

It remains to make the discretization of the radial compo-
nent |k| of the wave vector k more precise. Let (ρi− 1

2
)i�1 be

an increasing sequence of positive real numbers, and assume
that ρ 1

2
= κ . Then for all i � 1 and all a ∈ A, we set

Ki,a = {k = |k|θ ; ρi− 1
2
� |k| � ρi+ 1

2
, θ ∈ �a}. (39)

See Fig. 1(a) for a representation of the discretization method
using finite volumes Ki,a given by (39) in dimension d = 2.

For all i � 1, define the radial step size

�ρi = ρi+ 1
2
− ρi− 1

2
. (40)

As will be explained below, it is crucial that �ρi depends
on i � 1. Therefore, the mesh is not uniform in the radial
component, as can be observed in Fig. 1(a). The values of
ρi+ 1

2
and of �ρi are imposed below depending on the time

step size �t . In Fig. 1(b), we represent a volume Ki,a (39)
with the corresponding nonvanishing radial fluxes (37) and
the vanishing transverse fluxes (38).

5. Approximation of the integrals

To define the finite volume semidiscrete scheme, it is nec-
essary to approximate the integrals appearing in (34) for each
volume K = Ki,a. First, we employ the upwind scheme [38]
to deal with the advection (recall that c > 0): we obtain the
following approximations for the radial fluxes (37), for i � 1
and a ∈ A,

1

|Ki,a|
ˆ

∂+Ki,a

û(t, k)dk ≈ |∂+Ki,a|
|Ki,a| ûi,a(t ),

1

|Ki,a|
ˆ

∂−Ki,a

û(t, k)dk ≈ |∂−Ki,a|
|Ki,a| ûi−1,a(t ).

Note that the volumes of Ki,a and ∂±Ki,a are given by

|Ki,a| = |�a|
ρd

i+ 1
2
− ρd

i− 1
2

d
,

|∂±Ki,a| = |�a|ρd−1
i± 1

2
.

As a result, one obtains the following approximation for the
advection term (35) that enters in the evolution (34):

c
 
Ki,a

divk

(
k

|k| û

)
≈ c

|∂+Ki,a|
|Ki,a| ûi,a − c

|∂−Ki,a|
|Ki,a| ûi−1,a

= c
dρd−1

i− 1
2

ρd
i+ 1

2

− ρd
i− 1

2

(ûi,a − ûi−1,a)

+ cd
ρd−1

i+ 1
2

− ρd−1
i− 1

2

ρd
i+ 1

2

− ρd
i− 1

2

ûi,a.

The last expression above can be written as

c
ûi,a − ûi−1,a

hi
+ diûi,a (41)
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with auxiliary parameters hi > 0 and di > 0 defined for all
i � 1 by

hi =
ρd

i+ 1
2
− ρd

i− 1
2

ρd−1
i− 1

2

,

di = cd
ρd−1

i+ 1
2

− ρd−1
i− 1

2

ρd
i+ 1

2

− ρd
i− 1

2

. (42)

In the approximation (41) of the advection term from (34), the
first term c ûi,a−ûi−1,a

hi
accounts for the advection in the radial co-

ordinate, whereas the second term diûi,a can be interpreted as
a numerical dissipation term (di � 0) due to the numerical ap-
proximation procedure. This is not a physical dissipation but
appears in the numerical method due to considering curved
mesh elements Ki,a. Note that the values of hi and di depend
on the choice of the sequence (ρi− 1

2
)i�1.

For the other integral terms appearing in (34), a midpoint
approximation is applied: for all i � 1, set

ρi =
ρi− 1

2
+ ρi+ 1

2

2
. (43)

Then we consider the approximations
 
Ki,a

(
H + 1

2

)
|k| û ≈

(
H + 1

2

)
ρi

ûi,a,

 
Ki,a

|k|2û ≈ ρ2
i ûi,a.

6. Final spatial discretization method

Finally, combining the approximations above, we obtain
the finite volume method: for t � 0, i � 1, and a ∈ A, one
has

∂t ûi,a(t ) + c
ûi,a(t ) − ûi−1,a(t )

hi
+ Diûi,a(t ) = f̂i,a(t ), (44)

where

f̂i,a(t ) = f̂Ki,a (t ) =
 
Ki,a

f̂ (t, k)dk

and with the auxiliary parameters Di defined for all i � 1 by

Di = di +
(
H + 1

2

)
ρi

+ ν(2πρi )
2.

The expression Diûi,a(t ) in (44) can be interpreted as a dissi-
pation term, which combines several effects. Recall that di is
not a physical dissipation term; it results from the numerical
approximation procedure. On the contrary, the two other terms
in the definition of Di have a physical meaning as dissipation
terms.

The finite volume method (44) needs to be supplemented
with initial and boundary conditions

ûi,a(0) = 0, i � 1, a ∈ A,

û0,a(t ) = 0, t � 0, a ∈ A.

The structure of the stochastic forcing ( f̂i,a)i�1,a∈A is sim-
ple: these are independent δ-correlated temporal white noise

processes: one has

E[ f̂i,a(t ) f̂ j,b(s)] = δ(t − s)δi, jδa,b
1

|Ki,a|2
ˆ

Ki,a

Ĉ f (k)dk, (45)

where we have used the notation δi, j for the Kronecker delta
function. In the finite volume method (44), the advection
behavior only takes place in the |k| variable in (11), and this
is represented in the numerical method (44) by the index i,
whereas a ∈ A can be considered as a parameter.

So far, we have only taken into account the spatial dis-
cretization in the construction of the finite volume method
(44). We must still deal with the temporal discretization.

B. Temporal discretization: Splitting integrator

Let us denote by �t > 0 the time step. The objective is to
define a computable approximation denoted by ûn

i,a of ûi,a(tn)
at discrete times tn = n�t for integers n � 0. To propose an
approximation scheme for (44) that can capture accurately the
stationary state of the exact solution, we cannot rely on the
standard explicit Euler scheme. We propose to apply a split-
ting method; see, for instance, Refs. [39,40]: this consists in
decomposing the evolution into subsystems that can be solved
exactly or approximately (starting from any initial condition)
and in combining the results at each time step to define a
numerical approximation of the full system.

The evolution equation for the finite volume scheme (44)
contains three terms: an advection term, a dissipation term,
and a stochastic forcing term. There are several possible
choices to combine them. The choice we propose in this article
is made to treat carefully all three contributions.

On the one hand, we consider the dissipation and stochastic
forcing terms together (and the advection term is omitted): we
obtain the subsystems

∂t û
sd
i,a(t ) + Diû

sd
i,a(t ) = f̂i,a(t ), (46)

parametrized by i � 1 and a ∈ A [with boundary condition
ûsd

0,a(t ) = 0 for all t � 0 and a ∈ A]. Observe that (46) is a
system of independent Ornstein-Uhlenbeck dynamics, inde-
pendence being considered up to the Hermitian symmetry
property. For the subsystem (46) we propose an exponential
integrator in time that is exact in distribution.

On the other hand, we consider the advection term only
(and the dissipation and stochastic forcing terms are omitted):
we obtain the subsystem

∂t û
ad
i,a(t ) + c

ûad
i,a(t ) − ûad

i−1,a(t )

hi
= 0 (47)

for i � 1, a ∈ A, with the boundary condition ûad
0,a(t ) = 0.

Note that (47) is a deterministic system. For the system
(47) we propose an explicit Euler scheme for temporal dis-
cretization, which turns out to represent exactly the advection
phenomenon in the fully discrete setting.

Below we explain the resolution of the two subsystems (46)
and (47) and then how to combine the solutions in a splitting
scheme.
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1. Integration of the Ornstein-Uhlenbeck dynamics (46)

Given the solution ûsd (tn) at time tn, the solution of (46) at
time tn+1 = tn + �t has the following expression:

ûsd
i,a(tn+1) = e−�tDi ûsd

i,a(tn) +
ˆ tn+1

tn

e−(tn+1−s)Di f̂i,a(s)ds.

To define an algorithm that allows us to compute the value of
ûsd

i,a(tn+1) as a function of ûsd
i,a(tn), it is sufficient to give the

distribution of the random variables

ĝn
i,a =

ˆ tn+1

tn

e−(tn+1−s)Di f̂i,a(s)ds.

Indeed, as previously mentioned, we are interested only in
the statistical properties of the spatiotemporal random fields.
Being able to sample ûsd

i,a(tn+1) from ûsd
i,a(tn) and ĝn

i,a is a con-
sequence of the Markov property for the Ornstein-Uhlenbeck
dynamics. Since the forcing is δ-correlated in time and in the
variables i and a, see (45), the ĝn

i,a are independent centered
Gaussian random variables: using (45), the correlation struc-
ture is given by

E
[
ĝn

i,aĝm
j,b

] = δm,nδi, jδa,b
1 − e−2�tDi

2Di

1

|Ki,a|2
ˆ
Ki,a

Ĉ f .

Since the volume |Ki,a| of Ki,a only depends on i and not on
a, and since Ĉ f only depends on the radial component |k| of
k, one has

E
[
ĝn

i,aĝm
j,b

] = δm,nδi, jδa,b�
2
i ,

where

�i =
√

1 − e−2�tDi

2Di|Ki,a|2
ˆ

Ki,a

Ĉ f .

In other words, one has the equality in distribution

ĝn
i,a = �iγ̂

n
i,a,

where (γ̂ n
i,a)i�1,a∈A,n�0 are independent standard complex

Gaussian random variables (independence being understood
up to Hermitian symmetry):

E
[
γ̂ n

i,aγ̂
m
j,b

] = δm,nδi, jδa,b.

Setting ûn,sd
i,a = 0 and for all n � 0,

ûn+1,sd
i,a = e−�tDi ûn,sd

i,a + �iγ̂
n
i,a, (48)

provides an algorithm that computes exactly in distribution
the solution of the Ornstein-Uhlenbeck subsystem (46): one
has the equality in distribution

ûn,sd
i,a =

(law)
ûsd

i,a(n�t ),

or all i � 1, a ∈ A, and n � 0 and for any choice of the time-
step size �t .

Using the exact simulation in distribution (48) of the
Ornstein-Uhlenbeck dynamics (46) is elementary and allows
us to capture correctly the asymptotic behavior of the model.
This would fail if, for instance, the explicit or the implicit
Euler schemes were considered. We refer, for instance, to [37]

for a description of this issue when discretizing the stochastic
heat equation.

2. Integration of the discrete advection dynamics (47)

The deterministic system of equations (47) can be approx-
imated using the explicit Euler scheme: for all n � 0, one
obtains

ûn+1,ad
i,a − ûn,ad

i,a + c�t

hi

(
ûn,ad

i,a − ûn,ad
i−1,a

) = 0 (49)

for all i � 1 and a ∈ A. The fully discrete scheme (49) can
be interpreted as the upwind scheme applied to the auxiliary
radial advection equation of a given field v̂ad (t, |k|, θ ), which
would read

∂t v̂
ad (t, |k|, θ ) + c∂|k|v̂ad (t, |k|, θ ) = 0 (50)

parametrized by θ , with time-step size �t and with a mesh
size hi that will be chosen to be nonconstant.

Usually, the stability of the scheme (49) above is ensured
when the Courant-Friedrichs-Lewy (CFL) condition

c
�t

hi
� 1, ∀ i � 1, (51)

is satisfied. In addition, numerical dissipation occurs if the
equality does not hold. To capture the long-time behavior and
the low regularity properties of the random field, it is desirable
to minimize numerical dissipation. This leads us to impose the
condition

c
�t

hi
= 1 (52)

for all i � 1. Observe that when the condition (52) is satisfied,
then the expression of the solution of the numerical scheme
(49) is simple: one has for all n � 0 and all i � 1, a ∈ A

ûn+1,ad
i,a = ûn,ad

i−1,a, (53)

taking into account the boundary conditions ûn,ad
0,a = 0. The

algorithm to compute ûn+1,ad
i,a from ûn,ad

i,a is straightforward,

and one can compute all values of ûn,ad
i,a once the initial values

û0,ad
i,a are imposed.

Notice that the explicit Euler scheme (49) does not provide
the exact solution of the advection subsystem (47), even if
the condition (52) is satisfied. However, in fact it provides the
exact solution of the auxiliary advection problem (50) at grid
points of the spatiotemporal mesh.

The condition (52) implies that hi = c�t does not depend
on i. Using the definition (42) of hi, one obtains the recursion
formula for ρi+ 1

2
,

ρd
i+ 1

2
= ρd

i− 1
2
+ hiρ

d−1
i− 1

2
= ρd

i− 1
2

(
1 + c�t

ρi− 1
2

)
, (54)

for all i � 1, where ρ 1
2

= κ . Therefore, the mesh is not uni-
form if d � 2, i.e., �ρi depends on i � 1. Choosing a constant
hi for numerical reasons thus imposes the geometry of the
mesh, which is not standard in the scientific computing lit-
erature.
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3. Splitting integrator

We have now presented all the ingredients in order to pro-
vide the definition of the fully discrete scheme. We consider
the mesh given by (39) and (54), and we recall that the time-
step size is denoted by �t and that tn = n�t . Assume that the
condition (52) is satisfied. The initial value is given by

û0
i,a = 0, ∀i � 1, a ∈ A,

but one may also consider more general initial values. In
addition boundary conditions

ûn
0,a = 0

are also imposed for all n � 1.
We consider a Lie-Trotter splitting scheme, which com-

bines two steps. Assume that the approximation (ûn
i,a)i�1,a∈A

has been computed. Then ûn+1
i,a is given by

û
n+ 1

2
i,a = e−�tDi ûn

i,a + �i γ̂
n
i,a,

ûn+1
i,a = û

n+ 1
2

i−1,a (55)

for all i � 1 and a ∈ A, using (48) in the first step and (53) in
the second step.

Note that at each iteration only linear operations on the
solutions and the addition of independent Gaussian random
variables are performed. As a result, the numerical scheme is
a Markov and Gaussian process.

We recall that in this article we are not interested in proving
rigorous convergence results when the time-step and the mesh
sizes vanish. We investigate in the next section the behavior
of the scheme, and we show that it is able to capture the
power-law behavior predicted by theoretical analysis for the
power spectral density (24) and for the second-order structure
function (26), as well as the asymptotic behavior of the veloc-
ity variance (23).

III. PRESENTATION OF THE NUMERICAL RESULTS

A. General comments regarding simulation in dimensions
d = 1, 2, and 3

In the following, recalling previous developments pre-
sented in Sec. II, we will be conducting numerical simulations
of the evolution depicted in Eq. (34), for a finite viscosity
ν > 0, where the wave vectors k are discretized according to
the finite volume method in the spherical symmetry shown in
Eq. (36). In all subsequent simulations, we make the choice to
take the mesh size hi = h [Eq. (42)] along the radial direction
to be constant, i.e., independent of the index i, and it will be
expressed in units of the cutoff parameter κ . Also, we will be
working with a unit Courant number [Eq. (52)], such that the
discrete advection dynamics [Eq. (49)] is solved in an exact
fashion according to the relation pointed in Eq. (53). As a
consequence, the time step �t is automatically set to the value
h/c following Eq. (52). The remaining linear part of the dy-
namics, within the splitting approach described in Sec. II B 1,
will eventually be solved according to the exponential scheme
defined in Eq. (48). The full integration procedure is summa-
rized by the two steps described in (55). Hereafter, without
loss of generality, all simulations will be conducted with the
value c = 1. Henceforth, to simplify the notation, we will be

using the frequent misuse of language ûK(t ) to refer to the
fully discretized version of the finite volume Fourier mode
ûn

i,a at time t = tn for the cell K = Ki,a located at the radial
coordinate ρi and the angular coordinate a.

Notice that choosing the mesh size hi = h [Eq. (42)] to be
constant, in units of the cutoff parameter κ , is different from
assuming a constant radial step size �ρi = ρi+ 1

2
− ρi− 1

2
, as

it is represented in Fig. 1(a). It is nonetheless true that the
correspondence h = �ρi = �ρ is exact in dimension d = 1,
but it is no longer the case for d � 2. Thus, to compute ρi

under the midpoint approximation (43), we use the recursion
relation (54) to compute ρi− 1

2
and ρi+ 1

2
, which yields �ρi.

Furthermore, the discretization procedure of the unit
sphere Sd−1 is detailed in Sec. II A 3, and finally, we enforce
the Hermitian symmetry of ûK(t ) at each time step while
time evolving the relevant Fourier modes, and completing if
necessary the remaining modes located at the opposite side of
the origin.

Overall, the computational cost associated with these sim-
ulations is very advantageous compared to direct numerical
simulations of the Navier-Stokes equations. Indeed, numeri-
cal simulations were performed using a MATLAB code on a
laptop. Typically, for the simulations with the lowest value of
the viscosity, it took a few minutes to run for d = 1, a few
tens of minutes for d = 2 and a few hours for d = 3. In the
present case, the limiting step is due to the shift of the array to
compute the transport term (53). Still, performing back-and-
forth fast Fourier transforms, as is required in a pseudospectral
approach, is much more costly.

B. Estimation of the relevant statistical quantities taking time
and volume averaging

We will first estimate the power spectral density E (t, k) de-
fined in (3), where the expectation is taken over the instances
of the random forcing. This is crucial for the statistical char-
acterization of the regularity of the solution, and it consists of
several steps.

First of all, for a given value of the viscosity ν, the so-
lution reaches a statistically stationary state as proved in
Ref. [1], in which the variance of the solution becomes finite,
and independent of viscosity for sufficiently low viscosities
[Eq. (23)]. Starting from a vanishing initial condition, the
characteristic time scale at which the system reaches this
statistically stationary state should exclusively depend on ν

if all wave numbers were numerically accessible. For a re-
alistic simulation with a finite number of accessible wave
numbers, viscosity has to be chosen such that the spectral
energy of the highest accessible wave number is negligible,
following an exponential decrease as expected from the for-
mal solution written in Eq. (18). It is easy to get convinced
that the underlying linear transport mechanism that enters in
the present dynamics [Eq. (11)] would transfer an initially
injected amount of energy at low wave numbers towards high
wave numbers |k| in a time of order |k|/c, such that, in the
best-case scenario, the system will take a characteristic time
of order T � = kmax/c to reach the end of the spectral domain,
where kmax = ρN , with N being the number of finite volumes
K along the radial direction. Chosen values of viscosity will
be such that energy at kmax is negligible, i.e., exponentially
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small, compared to, say, energy at low wave numbers, thus
T � can be considered as an optimistic upper-bound for the
beginning of the statistically stationary state.

Hereafter, estimation of various expectations entering in
forthcoming statistical quantities will be based on empirical
averages starting at time T �. Each instance in these empirical
averages will be taken at various instants such that they can
be considered, in a good approximation, as being statistically
independent. The time lag between these samples will be
specified later when discussing our numerical results in var-
ious space dimensions.

Because we only have access to the finite volume averaged
ûK(t ) Fourier mode (33) of the velocity field, we need to spec-
ify its relationship with the genuine PSD E (t, k) defined in
(3). We thus define the periodogram EK(t ) as the expectation
of the square of the amplitude of ûK(t ), which is linked to the
PSD E (t, k) as

EK(t ) ≡ E|ûK(t )|2

= 1

|K|2
ˆ
K

E (t, k)dk, (56)

which follows from the expressions given in (3) and (33). As
a consequence of (56), using the exact expression of E (t, k)
obtained in (24), which eventually behaves proportionally to
a pure power-law |k|−(2H+d ) as |k| → ∞ in the statistically
stationary state and when ν → 0, |K|EK is also expected to
behave as a similar power-law ρ

−(2H+d )
i if the finite volume K

is far from the origin, i.e., when ρi → ∞, with a remaining
multiplicative factor that can be derived from (56). In the fol-
lowing, because of the statistical isotropy in Fourier space, we
will only display angle-averaged versions E�

K of EK defined
by

E�
K (t ) = 1

�d

ˆ
�∈Sd−1

EK(t ), (57)

where �d is the surface of the unit sphere in dimension d ,
given explicitly by the formula

�d = 2πd/2

�(d/2)
, (58)

with � standing for the usual gamma function.

C. Back to physical space and averaging procedure for the
second-order structure function

Of tremendous importance from the physical point of
view is the evaluation of the velocity field in the physical
space as the inverse Fourier transform of the finite volume
Fourier modes ûK(t ). Recall first that, as a function of a
continuous wave vector, the finite volume Fourier mode ûK(t )
is a piecewise-constant function of the coarse-grained dis-
tributional Fourier transform û(t, k) (33). Furthermore, in
space-dimension d � 2, because the shape and volume of the
finite volume K depend on its location in the spectral domain,
see for instance the cartoon displayed in Fig. 1, we cannot
define the coarse-graining procedure over K as a convolution
of û(t, k) with a given windowing function. For these reasons,
the relationship between the inverse Fourier transform of the

piecewise-constant function ûK(t ) and the continuous field
u(t, x) is not obvious.

Nonetheless, going back to the discrete formulation, we
propose to define the following field ũ�(t, x), at a given time
t and for a given position x ∈ Rd :

ũ�(t, x) =
N∑

n=1

∑
a∈A

e2iπx·kn ûKn,a (t )ρd−1
n �ρn��a, (59)

where A is the discretized subset of Sd−1, defined in
Sec. II A 3, kn = ρnθ with θ ∈ �, the radial resolution �ρn,
and the corresponding differential solid angle ��a at the
angular coordinate a. The validity of that approximation is a
nontrivial question that we do not treat in this work. Note that
in dimension d � 2, ρd−1

n goes to infinity when n increases
due to imposing the condition (52) on hi, therefore the con-
vergence when N → ∞ in (59) needs to be considered with
care.

Let us notice that, overall, the proposed model consists in
a linear evolution forced by a Gaussian random term. The
finite volume approach that is adopted here, and leading to the
numerical solution ûK, with altogether the proposed inversion
formula (59), preserves the linearity of the dynamics. As a
consequence, the numerical solution ũ�(t, x) is a Gaussian
random field. We have checked that subsequent simulations in
any dimensions give one-point probability density functions
(PDFs) of ũ�(t, x) that are consistent with Gaussian functions
(data not shown).

Then, following a similar time-averaging procedure to that
for the estimation of the PSD that is described in the previ-
ous section, we define the respective second-order structure
function as follows:

〈(δ�ũ�)2〉 ≡ 〈[̃u�(t, x + �) − ũ�(t, x)]2〉, (60)

where the brackets 〈·〉 stand for the empirical average of
the expectation over time, as previously done for the pe-
riodograms, but also over space, i.e., averaging over all
positions x at which the field ũ� (59) is computed. As we will
see, positions x will be distributed over a Cartesian grid, using
a uniform resolution �x, that will be chosen in units of k−1

max
in every direction, where kmax is the largest accessible wave
number.

D. Experiments and comments

1. One dimensional (d = 1) simulations

We conduct numerical simulations as described in
Sec. III A, and we begin performing these simulations in space
dimension d = 1. In Fig. 2(a), we display the absolute value
of a snapshot of the volume-averaged spectral field ûKn,a (t )
in the statistically stationary regime, which is reached after a
transient at time t > T �, where T � is defined and commented
in Sec. III B. Relevant additional parameters of the simula-
tions are provided in the caption of Fig. 2.

As we can see in Fig. 2(a), at a given time in the statistically
stationary regime, the logarithmic representation of ûKn,a (t )
displays a clear power-law decrease as a function of the radial
component when ρi remains in the so-called inertial range.
Moreover, we observe a rough behavior, as expected given
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FIG. 2. Solution to the dynamics in Fourier space and physi-
cal space in the statistically stationary regime. All simulations are
conducted with H = 1/3, c = 1, �ρ = h = κ = 2−3, and Ĉf (k) =
1κ � |k|�k f [see (45)], with k f = 4κ . (a) Volume-averaged Fourier
mode amplitude |ûKn,a (t )| in the statistically stationary regime (i.e.,
for t > T �), choosing ν = 10−9 and using N = 212 collocation points
in the radial direction, as a function of the radial coordinate ρi (43).
(b),(c) Physical space representation of the solution in the statisti-
cally stationary regime for ν = 10−5 and 10−9 using correspondingly
N = 27 and 212, at a given time in the statistically stationary regime,
as a function of the nondimensional variable xk f . The physical space
representations are obtained using the inversion formula (61) over
|x| � Ltot/2, with the spatial resolution �x = 1/kmax with kmax =
κ + N�ρ, and the total length Ltot of the physical domain chosen
to be Ltot = 1/�ρ.

the regularity of a white noise, i.e., the independence of the
instances as a function of the radial coordinate.

In one spatial dimension d = 1, we propose the inversion
formula (59)

ũ�(t, x) =
N∑

n=1

∑
m=±1

e2iπxmρn ûKn,m (t )�ρ, (61)

with ρn = n�ρ and the Hermitian symmetry ûKn,−1 (t ) =
ûKn,1 (t ) being understood for any integers 1 � n � N .

In Figs. 2(b) and 2(c), we display the profiles of the inverse
Fourier transform ũ�(t, x) (61) as a function of space x at two
different viscosities. It is clear that, as viscosity decreases by
four orders of magnitude, ν = 10−5 in Fig. 2(b) and ν = 10−9

in Fig. 2(c), the solution becomes rougher and rougher, i.e.,
it develops smaller and smaller length scales, as is expected
from the theoretical analysis. Also, we notice that the typical
correlation length of the profile is of order of k−1

f , as predicted
in the theoretical analysis.

Let us now focus on the estimated statistical quantities
that have been obtained following the procedure described
in Sec. III B. Recall that in dimension d = 1, averages in
the statistically stationary range are obtained as empirical
averages over time, every 10 time units. In Fig. 3(a), we
display the periodogram E�

K (57), based on the finite-volume
Fourier mode ûKn,a (t ), properly weighted by the volume of
the unit cell |K| to make it independent of the resolution �ρ,
for decreasing values of viscosities (provided in the caption).
As we can see, once averaged at various instants of time,
which corresponds to the average of the profile represented
in Fig. 2(a) at a given viscosity, periodograms are smooth
functions of the radial component ρi, and they show at higher
wave numbers than k f and smaller than the characteristic
dissipative ones a power-law behavior of exponent −2H − 1.
Recall that we have chosen here the particular value H =
1/3, thus this power-law decrease, governed by the exponent
−2H − 1 = −5/3, corresponds to the one suggested by the
phenomenology of fluid turbulence. As viscosity decreases,
the inertial range gets larger and larger, after which the power
law is replaced by an exponential decrease, as is expected
from the action of a viscous Laplacian in the dynamics.

Let us next derive the precise power laws that are observed
in Fig. 3(a) in order to make our theoretical analysis clear
and to check the fine statistical properties of our numerical
simulations. This will also allow us to establish a link between
the continuous and spectrally finite volume approaches. We
first note that the asymptotic value of the function F (22)
entering in the expression of the power spectral density (24)
can be easily computed when we take Ĉ f (k) = 1κ � |k|�k f [see
(45)]. Indeed, in any spatial dimension d , the PSD (24) reads

lim
ν→0

lim
t→∞ E (t, k) = 1

c

1κ � |k|�k f

2H + d + 1

[
|k| −

(
κ

|k|
)2H+d

κ

]

+ 1

c

1|k|�k f

2H + d + 1

× [
k2H+d+1

f − κ2H+d+1
]|k|−(2H+d ). (62)

Taking into account that the volume of the cell |Ki,a| depends
solely on the radial index i and is independent of the angle
coordinate a, the volume-averaged periodogram E�

K (t ) (57)
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FIG. 3. Numerical estimation of second-order statistical quan-
tities for the one-dimensional d = 1 fields: (a) Periodograms E�

K
(57) as a function of the radial coordinate ρi, and (b) second-order
structure functions 〈(δ�ũ�)2〉 (60). In both figures, the representation
is made in a logarithmic fashion, and the darker the curve, the lower
is the viscosity. These quantities have been estimated while averaging
over 103 instances in the statistically stationary regime, every 10 time
units. All the simulations are conducted with the same parameters
h, c, H , h = κ , k f , and Ĉf (k) as they are given in the caption of
Fig. 2. Values of viscosity correspond to, from lighter to darker,
ν = 10−5, 10−6, 10−7, 10−8, 10−9, with the corresponding number of
collocation points along the radial direction N = 27, 28, 29, 210, 211.
With dashed lines, we superimpose the theoretical predictions of the
power-law behaviors in (a) based on (63) with the particular value
d = 1, and in (b) based on (26), with a geometrical factor c1 (27).

satisfies

lim
ν→0

lim
t→∞ E�

K (t ) ∼
ρi→∞

1

c

�ρi

|Ki,a|2
k2H+d+1

f − κ2H+d+1

2H + d + 1
ρ

−(2H+1)
i .

(63)

We superimpose in Fig. 3(a) with a dashed line the ex-
pected asymptotic power law provided in (63), and we observe
a perfect matching with the estimates obtained based on our
numerical simulations, without any fitting procedure. Notice
that, as a consequence of the averaging procedure of the
finite volume K, recalling that in dimension d = 1 the vol-
ume |Ki,a| = �ρi = �ρ is constant and independent of the
index i, the periodogram EK is expected to be also inversely
proportional to the radial discretization �ρ, as it is clari-
fied in (63). The fact that the periodogram diverges as the
volume K shrinks to 0, i.e., �ρ → 0, is reminiscent of the

distributional nature of the continuous solution [see, in par-
ticular, the correlation structure of the continuous modes (19)
that are proportional to a Dirac function].

In a similar fashion to how the periodograms were
obtained, we estimate the second-order structure function
〈[δ�ũ�(t, x)]2〉 (60), where the expectation is estimated using
an empirical average over both time and space, by summing
over all computed positions x. Once again, our estimates have
been obtained in the statistically stationary range, and results
are expected to be independent of time. We display the results
of our simulations and averaging procedure in Fig. 3(b) as a
function of the scale |�| and for various viscosities. At large
length scales |�| � k f , i.e., above the correlation length scale
of the velocity profile ũ�(t, x) (59) in physical space, the
second-order structure function (60) reaches a plateau that
coincides, in a good approximation, with 2σ 2, where σ 2 is
the variance of the continuous solution (23). Indeed, we could
compute in the present situation, with the same Ĉ f (k) as we
already specified before, in the limit �ρ much smaller that k f ,
that, in any spatial dimension d ,

lim
ν→0

σ 2 = 1

c

�d

2H (d + 1)

(
kd+1

f − κd+1
)
, (64)

which is obtained as the integration over k ∈ Rd of the PSD
(62). Once nondimensionalized by 2σ 2, using the formula
provided in (64) with the particular value d = 1 and the
relevant values of the other parameters, we can see from
inspection of Fig. 3(b) that second-order structure functions
reach a plateau of value unity. A power-law behavior of ex-
ponent 2H follows at smaller scales |�| � k−1

f , which remain
larger than the dissipative length scale, i.e., in the so-called
inertial range of scales, as expected from the asymptotic con-
tinuous prediction given in (26). Furthermore, we once again
observe a perfect match between theory and the results of
our simulations when including the multiplicative constant
entering in this asymptotic power-law behavior, whose exact
expression is also given in (26), using in particular the value of
the geometric factor c1 (27) predicted in this situation. Finally,
in the dissipative range, which is seen at smaller and smaller
length scales as the viscosity decreases, we observe the trivial
power law of exponent 2, which is reminiscent of a smooth
behavior, due to the action of the viscous Laplacian in the
dynamics.

2. Two-dimensional (d = 2) simulations

Let us now present the results of our simulations in spatial
dimension d = 2. To do so, we need to discretize also the
angle of the polar decomposition used in our finite-volume
approach, as detailed in Sec. II A 3. Once again, we propagate
the solution in time according to the splitting method (55) un-
til time T �, commented in Sec. III B, which can be considered
as the beginning of the statistically stationary range.

In Fig. 4(a), we display a logarithmic representation of
the finite volume Fourier modes ûK(t ) in the spectral plane,
spanned by the wave vector k = (kx, ky), with kx = ρi cos ϑ

and ky = ρi sin ϑ . As we can observe, the spectral repartition
of energy is clearly isotropic, and it is expected to be statisti-
cally invariant by rotation. Also, we notice a rough behavior
as a function of the location of the finite volumes, as expected
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FIG. 4. Snapshot of the solution for the 2D dynamics, in
(a) Fourier and (b) physical spaces, at a time pertaining to the statis-
tically stationary regime. In both cases, we have used the following
parameters: ν = 10−5, N = 27, H = 1/3, c = 1, h = 2−7, Nϑ = 29,
κ = 1, and Ĉ f (k) = 1κ � |k|�k f [see (45)], with k f = κ + 3h. Notice
that to get the inverse Fourier transform ũ�(t, x, y), represented in
(b), based on the modes ûK(t ) displayed in (a), we have used the
inversion formula based on (65).

from the independence of the modes, which yields homogene-
ity in space. This is clear progress with respect to former
numerical approaches that were based on pseudospectral sim-
ulations, presented in Ref. [1], where strong anisotropies were
observed mainly along the horizontal (ϑ = 0) and vertical
(ϑ = π/2) lines. This fully justifies our choice to develop a
finite volume approach, beyond the aforementioned theoreti-
cal arguments. As we will see later (see Fig. 5), the spectral
energy will distribute according to a power-law, and will ulti-
mately be exponentially damped by the action of viscosity.

To get a numerical representation of the counterpart in the
physical space of the finite-volume Fourier modes represented
in Fig. 4(a), we propose the inversion formula provided in
(59), which reads explicitly in two-dimensional space d = 2
as

ũ�(t, x, y) =
N∑

n=1

2Nϑ−1∑
m=0

e2iπ (xρn cos ϑm+yρn sin ϑm )

× ûKn,m (t )ρn�ρ�ϑ, (65)

FIG. 5. Numerical estimations of the second-order statistical
quantities for the two-dimensional case (d = 2). In both figures, the
darker the curves are, the lower are the viscosities. These quantities
are computed in the statistically stationary regime with 500 instances
of the corresponding fields, every 10 units of time. All the simula-
tions are conducted with H = 1/3, c = 1, h = 2−7, Nϑ = 29, κ = 1,
k f = κ + 3h, and the same Ĉf (k) used in Fig. 4. Chosen values of
viscosities are ν = 10−5, 10−6, 10−7, 10−8, 10−9 with, respectively,
N = 210, 211, 212, 213, 214 collocation points in the radial direction.
(a) Angle averaged periodograms E θ

K (57), as a function of the radial
coordinate ρi, weighted by the corresponding volume of unit cells
|Ki,a| (which is independent of the angle coordinate a). (b) Second-
order structure functions 〈[δ�ũ�(t, x)]2〉 (60) for different values of
the viscosity (solid line). We superimpose with dotted lines in (a) the
precise asymptotic power-law behavior given in (63), and in (b) the
predicted asymptotic power-law based on (26) with corresponding
geometrical factor c2 (28). In (b), we also indicate as a guide to the
eyes the dissipative behavior �2.

where �ϑ = π/Nϑ and ϑm = m�ϑ (see Sec. II A 3 for de-
tails), and we recall the Hermitian symmetry ûKn,Nϑ +m = ûKn,m ,
where Nϑ + m is taken modulo 2Nϑ since ϑ is defined modulo
2π . Contrary to the one-dimensional case (d = 1), only the
parameter hi = h (42) is chosen to be a constant, and as a
consequence, the radial coordinate ρn (43), or equivalently the
radial stepping �ρn, of the volumes Kn,a that enters in the
expression (65) has to be determined following the recursion
procedure specified in (54). The inversion formula (65) can be
further simplified in order to make its numerical computation
more efficient. First, let us split the sum over the angular
variable into a sum over m between 0 and Nθ − 1 and a
second sum for m ranging from Nθ to 2Nθ − 1. Shifting the
summation variable of −Nϑ in the second sum and exploiting
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the Hermitian symmetry, we end up with

ũ�(t, x, y)

= 2Re
N∑

n=1

Nϑ−1∑
m=0

e2iπρn (x cos ϑm+y sin ϑm )ûKn,m (t )ρn�ρ�ϑ,

(66)

where Re sands for the real part. The transform (66) is more
efficient than (65) from a computational standpoint since it
requires half the operations.

We perform the double series entering in (66) for each posi-
tion (x, y) ∈ [−Ltot/2, Ltot/2], which are chosen on a uniform
Cartesian grid, using �x = 1/kmax as the spatial resolution in
any direction. The largest accessible wave number is given by
kmax = ρN , in a box of length Ltot = 1/h. We display the result
of this inversion in Fig. 4(b).

As we can see, the solution ũ�(t, x, y) does not exhibit
any preferential directions, as is expected from theoretical
predictions and from the statistical homogeneity. Also, the
field ũ�(t, x, y) is clearly correlated over a finite length scale,
which can eventually be related to the characteristic inverse
wave number k−1

f . Finally, the field seems to develop rough-
ness in the inertial range of scales, and it becomes smooth
at the smallest scales, i.e., in the dissipative range. This
rough behavior will be precisely quantified later while com-
puting respective periodograms and second-order structure
functions. Once again, the present numerical method is real
progress compared to pseudospectral simulations performed
in Ref. [1].

Similarly to the one-dimensional case, we now focus on the
estimation of the relevant second-order statistical quantities,
including the angle-averaged periodograms E θ

K (57). To aver-
age in time in the statistically stationary regime, we follow the
procedure given in Sec. III B, and we additionally average in
this d = 2 situation over the polar angle ϑ (see the caption of
Fig. 5 for further details on the statistical sample). We display
in Fig. 5(a) the results of our estimations for various viscosi-
ties. Notice that in dimension d = 2, the volume of the cell
is given by |Ki,a| = ρi�ρi�ϑ , which depends on the radial
index i, thus one must not forget the remaining multiplicative
factor �ρi/|Ki,a|2 in (63), which has a nontrivial dependence
on i. In particular, because of this factor, E θ

K is not expected
to behave as a power law in the inertial range. As a matter of
fact, a power-law behavior is only expected for the quantity
|Ki,a|E�

K , as displayed in Fig. 5(a), with an exponent given
by −(2H + 2). Indeed, in Fig. 5(a) we superimpose the exact
formula provided in (63) and observe that it is in very good
agreement with our estimations in the inertial range of scales
based on our simulations, without any fitting procedure. Once
again, for larger wave numbers in the dissipative range, we
observe an exponential decrease.

Let us now display the results for the second-order struc-
ture function 〈[δ�ũ�(t, x)]2〉 (60), which are estimated using
the field ũ� defined in (66). A value is represented in Fig. 4(b)
at a given viscosity ν. Let us recall that we perform an average
in time in the statistically stationary regime, and an additional
average in space. We display the results of our estimations
in Fig. 5(b) as a function of the scale �, for various values
of the viscosities and in a logarithmic representation. Once
again, when nondimensionalized by twice the variance σ 2 of

the solution in physical space, using the formula provided in
(64) for the particular case d = 2, we observe that structure
functions at various viscosities reach a plateau of unit value at
large scales � � k−1

f . A power-law behavior with the expected
exponent 2H follows at smaller scales, in the inertial range.
This is in fairly good agreement with the one predicted in (26),
without any fitting parameter, when taking into account the
proper multiplicative factor, which includes the geometrical
factor c2 (28). At even smaller scales than those of the inertial
range, i.e., in the dissipative range where viscosity acts, the
smooth behavior is once again recovered with the characteris-
tic power-law exponent 2.

3. Three-dimensional (d = 3) simulations

We finally explore the instances and statistical behaviors
of the solution of our proposed dynamics in space dimen-
sion d = 3. In this situation, when compared with the d = 2
case, the numerical complexity gets multiplied by the number
of discretization points of the second angle ϕ entering the
spherical decomposition of the solution ûKi,a (see Sec. II A 3).
A similar remark could be made on a representation of the
solution in physical space through an inversion formula (59).
In this case, this inversion formula reads

ũ�(t, x, y, z) =
N∑

n=1

Nϑ−1∑
m=0

2Nϕ−1∑
p=0

ûKn,(m,p) (t )

× e2iπρn(xk̃x,(m,p)+ỹky,(m,p)+z̃kz,(m,p) )

× ρ2
n sin ϑm�ρ�ϑ�ϕ, (67)

where �ϑ = π/(Nϑ − 1), �ϕ = π/Nϕ such that 0 � ϑm =
m�ϑ � π and 0 � ϕp = p�ϕ < 2π . In (67), k̃(m,p) =
(̃kx,(m,p), k̃y,(m,p), k̃z,(m,p) ) corresponds to the projection of
the unit vector in spherical coordinates, that is, k̃(m,p) =
(sin ϑm cos ϕp, sin ϑm sin ϕp, cos ϑm). The Hermitian symme-
try now reads ûKn,(Nϑ −1−m,p+Nϕ ) = ûKn,(m,p) . Similarly to the
two-dimensional case, p + Nϕ is taken modulo 2Nϕ . This
symmetry allows us once again to simplify further (67). As
in the two-dimensional case, we split the sum over p into
a sum for p between 0 and Nϕ − 1 and a second one for p
between Nϕ and 2Nϕ − 1. After changing the variables for
l = Nϑ − 1 − m and q = p − Nϕ the second sum reads

N∑
n=1

0∑
l=Nϑ−1

Nϕ−1∑
q=0

ρ2
n sin ϑmûKn,(Nϑ −1−l,q+Nϕ ) (t )

× e2iπρn(xk̃x,(Nϑ −1−l,q+Nϕ )+ỹky,(Nϑ −1−l,q+Nϕ )+z̃kz,(Nϑ −1−l,q+Nϕ ) ).
(68)

The definition of the angles along with the one of the spherical
unit vector k̃(m,p) yield k̃(m,p) = −k̃(Nϑ−1−m,p+Nϕ ). This relation
combined with the Hermitian symmetry and a rearrangement
of the sum over l in (68) yields

ũ�(t, x, y, z) = 2 Re
N∑

n=1

Nϑ−1∑
m=0

Nϕ−1∑
p=0

ûKn,(m,p) (t )

× e2iπρn(xk̃x,(m,p)+ỹky,(m,p)+z̃kz,(m,p) )

× ρ2
n sin ϑm�ρ�ϑ�ϕ. (69)
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FIG. 6. Plane cuts of the solution to the 3D Fourier space dynamics. The figures represent the Fourier modes in the planes (kx, ky, 0)
(a), (kx, 0, kz ) (b), and (0, ky, kz ) (c), respectively. Parameters are H = 1/3, c = 1, κ = 1, h = 0.15 κ , N = 28, Nθ = Nϕ = 27, k f = κ + 3h,
Ĉ f (k) = 1κ � |k|�k f , and ν = 10−6. In physical space, the Cartesian grid is computed over a cubic box of side Ltot = 1/(2h) with a resolution
�x = 1/ρN in every direction.

Because of the increase in numerical complexity due to space
dimension, we are eventually limited to exploring the behavior
of the numerical solution at very low viscosities, which would
ask for high values of the radial (N) and angular (Nϑ and Nϕ)
numbers of collocation points. We nonetheless managed to
perform simulations with reasonable computing power able
to represent behaviors expected in an inviscid asymptotic
state. In particular, as we will see, our numerical solutions
will exhibit power-law behaviors that are characteristic of the
asymptotic solutions in the inertial range of scales [see, in
particular, (63) and (64)].

In Figs. 6(a), 6(b) and 6(c), we display the values of the
volume-averaged Fourier modes ûKn,(m,p) (t ) at a given instant
in the statistically stationary range and for a given value of
viscosity (see the caption) in the three planes defined by,
respectively, k̃x,(m,p) = 0, k̃y,(m,p) = 0, and k̃z,(m,p) = 0. As we
can see, similarly to the d = 2 case [Fig. 4(a)], the energy
is distributed in a statistically isotropic way, i.e., in a rota-
tion invariant way, in all three different planes. Also, notice
the rough nature of this distribution, which is reminiscent
of the statistical independence of these modes. Once again,
this is real progress compared to pseudospectral simulations
performed in Ref. [1] where a strong anisotropy was observed
along the axes in the Fourier space.

In Figs. 6(d), 6(e) and 6(f), we represent the physical
counterpart ũ�(t, x, y, z) (69) of the Fourier modes ûKi,a

displayed in Figs. 6(a), 6(b) and 6(c). These fields are statis-
tically homogeneous and isotropic in a good approximation,
with nonetheless some weak anisotropies along the Carte-
sian directions. We believe that these weak anisotropies are
a consequence of the finiteness of radial �ρ and angular
�ϑ and �ϕ steps. We indeed performed other simulations
with larger steps (data not shown) which gave stronger
anisotropies. Nonetheless, we will see that these spurious
anisotropies barely pollute the estimation of forthcoming sta-
tistical analyses, which will eventually be in good agreement
with theoretical predictions.

As we did at lower space dimensions, we now present
the results of the estimation of angular-averaged PSDs and
second-order structure functions at various viscosities, and we
display our results in Fig. 7. We obtain similar results, which
include power-law behaviors for E�

K (57) [see Fig. 7(a)] and
E(δ�ũ�(t, x))2 (60) in the inertial range of scales, correspond-
ing to exponents −(2H + 3) [in very good agreement with the
analytical prediction provided in (63) once the nontrivial de-
pendence on the radial coordinate of the volume |Ki,a| of the
cells has been taken into account] and 2H [also in excellent
agreement with the prediction (26) with the corresponding
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FIG. 7. Statistical estimation in the three-dimensional case. The
statistical sample corresponds to five instances of the fields in time
every one unit of time. The grayscale of each solid line corresponds
to various viscosities. Parameters of the simulations are the same as
those provided in the caption of Fig. 6, but for various values of
viscosities ν = 10−5, 10−6, 10−7, 10−8, 10−9 with increasing values
of the number of collocation points in the radial coordinate N =
28, 29, 210, 211, 212. We superimpose with dashed lines the expected
asymptotic behaviors in the inertial range, in (a) based on (63), and in
(b) based on (26) with the corresponding geometrical factor c3 (29).
In the two cases, we do not make use of additional fitting parameters.
In (b), we also indicate the dissipative range with corresponding
smooth behavior (i.e., proportional to �2).

geometrical factor c3 (29)], respectively. The action of vis-
cosity can be observed at the highest wave numbers or at the
smallest scales. As a final remark, the variance of the fields
ũ� is very close to the prediction obtained in the continuous
framework in the limit of vanishing viscosities (64). Interest-
ingly, at the highest value of viscosity ν = 10−5, we notice
that the variance of our numerical simulation underestimates
the predicted asymptotic value (64). This can be understood
by realizing that for such a high value of viscosity, the system
is not yet representative of the asymptotic regime ν → 0 for
which the variance is expected independent of ν. Actually, this
transient dependence on viscosity can be clearly quantified
while deriving a prediction of the variance at a finite ν, thus
before taking the limit ν → 0 and obtaining the prediction
given in (64). To do so, we could replace in (23), which we
have used to obtain (64), the contribution associated with
the function F (|k|) (22) by the limit at large time t → ∞
of exp ( − 8π2ν|k|3/(3c))Fν (t, |k|), where the expression of
Fν (t, |k|) is provided in (20). This would fully account for
the dependence on ν of the plateau observed at large scales
�k f � 1 in Fig. 7(b). The same is true for the power-law
behavior in the inertial range. Nonetheless, we can see that

as ν gets smaller and smaller, both the variance of the solution
and the power-law behaviors in the inertial range of scales get
closer and closer to the asymptotic predictions.

IV. CONCLUSION AND PERSPECTIVES

In this article, we have presented an original numerical
simulation of a recently proposed dynamics that can be written
in Fourier (11) or in physical (15) domains. The underlying
physical mechanism is based on a transport of the solution
in Fourier space, which must be treated with great care from
both a theoretical and a numerical point of view. Previous
simulations based on pseudospectral methods [1] were able
to give results that are consistent with analytical predictions
in a statistical sense, but failed to give correct solutions.
The numerical method proposed in this article is based on a
finite-volume approach that first allows us to give a proper
meaning to the Fourier modes of the solution, and second
is amenable to effective numerical simulations. Numerical
results are in excellent agreement with theoretical predictions,
both for fields and for their statistical behaviors.

This investigation leaves room for many possible exten-
sions and further improvements, which are discussed below.

First, we plan to provide rigorous results on the con-
vergence of the numerical method proposed in this work.
This is challenging because one needs to identify appropriate
functional spaces where the exact and numerical solutions
can be compared quantitatively. Due to the loss of regularity
phenomenon on the considered model, the solutions at finite
times are more regular than at infinite time in the statisti-
cally stationary regime. Being able to state rigorously that the
proposed numerical method reproduces this behavior, and in
particular reaches a statistically stationary regime, is also an
interesting question. When considered in the Fourier domain,
the solution is rough due to the white noise forcing, which
is a nonstandard and nontrivial situation for finite volume
methods, hence the need to develop new tools in the numerical
analysis of the scheme. In addition, the temporal discretiza-
tion is based on a splitting method, where solving the radial
transport dynamics exactly is crucial. The condition (52) is
thus imposed, and it has been explained that it has important
consequences on the geometry of the mesh. In practice, to
increase the stability property of the numerical method or to
be able to introduce other terms in the dynamics, it would be
desirable to impose the more standard and less stringent CFL
condition (51) instead of (52). Under this CFL condition, the
radial transport dynamics is not solved exactly anymore and
it is well known that numerical dissipation and regularization
effects appear [41–43]. In that setting, it is not clear whether
the numerical method would be able to reproduce the quali-
tative behavior of the model. Finally, note that we are mainly
interested in the approximation of the probability distribution
of the solution. This calls for the application of weak error
analysis techniques to obtain error estimates, which need to
be developed for the considered model.

Secondly, we also need to give a proper meaning to the
physical-space counterpart of the finite-volume spectral field
û(t, k) (33). We have proposed here an approximation ũ�(t, x)
of such a field based on the inversion formula (59). It would
be insightful to make a clear link between this approximation
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and the solution u(t, x) of the continuous formulation (15).
From a physical viewpoint, obtaining the solution in physical
space allows us to answer several questions regarding fluid
mechanics. Indeed, the present approach focuses on the Eule-
rian framework, that is, obtaining a modeled field that depends
on space and time. Another description of fluids, called the
Lagrangian formulation, focuses on the flow of velocity fields,
i.e., the velocity of tagged fluid particles along their trajectory
X (t ). The path X (t ) is defined as the solution of the flow
equation dX/dt = u(t, X ) given an initial position X (t0), in a
unique fashion if the advecting field is smooth in space, while
u has been possibly generalized to a divergence-free vector
valued field. The Lagrangian investigation of laboratory and
numerical turbulent flows has been intensively developed over
the past 30 years, as reviewed in [44–46], following an in-
tense and vast effort aimed at characterizing with precision
the statistical behavior of the Eulerian velocity field [2]. An
important question would pertain to the consequences on
the regularity of the velocity v(t ) = dX/dt along trajectories
while imposing a given Hurst exponent H on the Eulerian field
u(t, x), as it has been preliminary explored in a different setup
in [47].

As a last important perspective, let us recall that we have
focused here on modeling fluid turbulence at a statistical
level up to second order. Observations based on experimental
and numerical investigations of the turbulent velocity field
show that velocity fluctuations are non-Gaussian, which is

usually referred to in the turbulence literature as the inter-
mittency phenomenon [2]. In the present approach, we could
explore how to include the intrinsically non-Gaussian nature
of the fluctuations at the finest scales. A first proposition was
made in Ref. [12], and it consisted in defining the partic-
ular case H = 0, which leads to logarithmically correlated
Gaussian fields, corresponding to the Gaussian free field in
space dimension d = 2 [48], which, when exponentiated, are
known to lead to a Gaussian multiplicative chaos measure
[49,50]. Additional heuristics were then provided in Ref. [12]
to include such a probabilistic object in a dynamical picture,
leading to nonlinear (quadratic) corrections to the evolution of
the type proposed in (15), in a different, but complementary,
spirit from the approach developed in Ref. [51]. The analysis
of such a nonlinear evolution gets much more complicated,
and we wonder whether tractable approaches could be de-
signed amenable to rigorous treatments. We also keep these
developments for future investigations.
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