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che potrò mai completamente sdebitarmi per la fiducia che mi ha dato in questi anni, e che mi ha

permesso di credere in me stesso e diventare indipendente. Il nostro rapporto ha subito un evoluzione

drastica ed inspettata durante gli anni, sia dal punto di vista umano che professionale, diventando

per me oltre che un supervisor, un amico e un collega. Questo mi ha permesso di usufruire sempre

di piu’ della sua immensa conoscenza e arguzia nel capire ad analizzare i problemi. Ad oggi sento di

avere una visione della fisica molto simile alla sua, cosa che ho sviluppato durante le infinite ore di

discussione in cui niente veniva mai dato per scontato. Potrei continuare per ore ma per ragioni di

spazio vado avanti.

E potrei parlare per anni degli altri due Sissa boys, Giovanni Rizi e Giovanni Galati (Giuà)1.
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Abstract

Quantum Field Theories (QFTs) have a universal protected sector provided by topological operators.

They generalize the ordinary notion of symmetry in various directions, allowing to transport many

familiar concepts (symmetry breaking, anomalies, gauging, etc...) in a much more general framework.

This thesis is devoted to the study of several aspects of these topological properties, and their interplay

with the dynamics. A central tool is provided by a Topological Quantum Field Theory (TQFT) living

in one higher dimension, that encodes all the properties of the topological sector in an elegant way,

and allows to extract, from topology, dynamical constraints that would be inaccessible otherwise.

Some of the applications that we will find include the holographic dual of the so-called categorical

symmetries, constraints on the infrared imposed by generalized symmetries, the discovery of new

topological properties of certain gapless phases, a new class of exotic TQFTs, and the derivation of

the holographic dual of any Goldstone theory describing spontaneous symmetry breaking.
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Introduction

One exciting fact in physics is that, often, completely different phenomena can be described by the

same formalism. The reason for this is not unique. In some cases, the underlying deep fact is that the

phenomena were not really distinct but merely two aspects of the same thing. That is the case for

falling objects on Earth and the motion of planets in the solar system. In other cases, this fascinating

fact can be understood by recognizing that the formalism with which we are working is extremely

broad and powerful. The main example in contemporary physics is Quantum Field Theory (QFT).

This is the language we use to describe a surprisingly large class of systems, ranging from high-energy

physics, including both particle physics and gravity, to critical phenomena in statistical mechanics,

passing through condensed matter systems, quantum computation, and many others. As a by-product

QFT also provided deep insights for basically all branches of mathematics, creating a lot of connections

to these fields.

Probably the main reason why QFT has so diverse applications is that it is very hard, has many

aspects, and encompasses numerous facets. It is so hard that it is not even clear how to define it

rigorously. The only instances in which QFTs have mathematically rigorous definitions are Topolog-

ical Quantum Field Theories (TQFT) and two-dimensional Conformal Field Theories (CFT). In all

other cases, physicists think about QFTs in a heuristic way, defined by some path integral, which is

notoriously ill-defined mathematically. Moreover, even if we accept this lack of a rigorous definition,

a path integral formulation requires a Lagrangian, or equivalently the existence of a classical system

that one quantizes, and this is a luxury that we are often not granted.

Despite lacking a first principle definition, several quantities and the underlying physics have

been computed and analyzed in various cases. The common factor in these successes is that some

QFT properties are so robust that they persist regardless of the precise mathematical definition of

the theory. An example is conformal field theories, where the conformal algebra is so constraining

that some correlation functions are determined by it. An other successful instance is supersymmetry,

especially in the extended case, where several quantities are protected against quantum corrections and

can be determined exactly. While robust properties may be seen merely as a sort of trick to analyze

the system, they can actually be interpreted as instrumental toward giving an actual definition of

the theory. Indeed, the reason why TQFTs and 2d CFTs have mathematically rigorous definitions

is because they are completely determined by their robust properties. In the TQFT case these are

symmetries, localities, and so on, while for 2d CFT is the infinite-dimensional Virasoro algebra.

While supersymmetric and conformal field theories are very good laboratories for our understand-

ing of QFT, it is equally important to understand how much the knowledge we acquired in these toy

models can be applied to more general theories. Analyzing the dynamics of non-supersymmetric the-

ories requires looking for some other robust properties. In recent years there has been a huge activity

in understanding universal robust properties related with the topological sector of QFTs. This is the

set of operators (or defects), whose support is generically extended, with the property that any corre-
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=
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O′(x′)
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Figure 1: The action of a topological codimension one operator when it crosses a charged local operator.

lation function with those operators inserted is independent of the deformation of the supports that

do not change their topological class. The topological class is modified when the operator’s support

moves in a way such that it intersects with another operator. In such scenarios, the adjustment of the

correlation functions can be non-trivial and defines the data of the topological sector. These data are

precisely the robust properties that can be analyzed reliably.

The most basic example of our discussion is provided by conventional global symmetries represented

by a Lie group G. This is associated with some conserved current Jµ(x) = Jaµ(x)T a leading to Ward

identities and, as we will review in Section 1 following [11], we can construct a topological operator

Ug(Σd−1) = exp

(
iϵa
∫
Σd−1

∗Ja
)
.

Here g = eiϵ
aTa ∈ G is a group element labelling the operator, while Ja = Jaµdx

µ is a 1-form so that

its Hodge dual ∗Ja can be integrated on any (d − 1)−dimensional submanifold Σd−1, the support of

the operator Ug(Σd−1). The Ward identities imply that we can reshape the submanifold Σd−1 without

altering the value of the correlation function, as long as we do not intersect a point where a local

operator O(x) is placed. If O(x) transforms in a non-trivial representation R of G, the topological

defect acts on the operator when it is intersected (fig. 1). This property is robust: starting from a

weakly coupled theory and deforming by RG flow or additional interactions, the conclusions hold as

long as symmetry is preserved. Thus, whenever a QFT has a G global symmetry, the operator algebra

and the Hilbert space remain organized in representations of G even at strong coupling. Although

this is very standard, reformulating it as a consequence of a topological operator Ug(Σd−1) is crucial,

as it will allow us to generalize it to less standard situations.

The interplay between the topological operator Ug(Σd−1) and the charged local operators O(x) is

not the only important information. When two or more topological operators intersect in junctions,

modifying their structure can introduce a phase in the correlation functions. This is the manifestation

of a ’t Hooft anomaly for the symmetry G, which is an important and robust datum. Indeed, there

are (at least) two highly non-trivial facts related to ’t Hooft anomalies. First, they are invariant

under continuous deformations of the theory, being a motion in a conformal manifold, an RG flow,

or any continuous deformation. Second, a non-trivial ’t Hooft anomaly is incompatible with a trivial

theory. These two facts have a strong consequence: a weakly coupled theory with a ’t Hooft anomaly,

if deformed and driven to strong coupling, cannot flow to a trivial IR. Moreover, certain anomalies

are incompatible with certain IR theories, for instance, perturbative anomalies of continuous groups

require a gapless sector. Hence in such cases, the theory cannot develop a mass-gap. This highly non-
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= einα
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Figure 2: The action of a U(1) 1-form symmetry in three-dimensions. The topological operator is

labelled by α ∼ α+ 2π and supported on a 1-dimensional manifold Σ1. It can act on a 1-dimensional

line operator Wn(γ1) of charge n ∈ Z, multiplying it by a phase.

trivial result is a modern form of ’t Hooft anomaly matching [12], and follows from the topological

nature of the operator Ug(Σd−1).

While ordinary global symmetries lead to topological operators, the topological sector of QFT is all

but exhausted by them. Starting from [11], the intense activity of the last years focused on identifying

other types of topological operators in QFT, understanding the structure of the topological sector, and

extracting the pieces of information that lead to consequences for the dynamics. These more general

topological operators are commonly called generalized global symmetries, even if the word symmetry

is more appropriate for some of them than for others2.

The generalizations are of various levels of complication. The simpler one concerns topological

operators still labeled by some group G, but whose support is of higher co-dimension p + 1. These

are called higher-form symmetries of degree p, or p−form symmetries. Ordinary symmetries are then

0−form symmetries. If p > 0, a p-form symmetry cannot act on local operators, but on operators of

dimensionality at least p. The action of a p-form symmetry defects on a p−dimensional operator is

by linking (see fig. 2). In fact, in a d−dimensional manifold, submanifolds whose dimensions sum up

to d − 1 can be geometrically linked. Moreover, it turns out that higher-form symmetries must be

Abelian.

If a theory has various higher-form symmetries of different degrees, the corresponding topological

operators can have a non-trivial interplay among themselves. For instance, the topological operators

of a 1-form symmetry can be permuted when they cross a co-dimension one topological defect of a

0-form symmetry:

Va(Σ1)

Ug(Σ2)

Vg(a)(Σ1)

2All the symmetries are the same, but some are more symmetric than others.
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Figure 3: Left: categorification of a group G in terms of a category with a unique object (that can be

thought of as a quantum mechanical system) and endomorphisms labelled by group elements. Right:

the realization of this structure on a (0+1)-dimensional theory, namely a quantum mechanical system,

where the endomorphisms of the category are topological local operators.

There can be more intricate interplay arising from the co-existence of higher-form symmetries of

various degrees, forming a structure called higher-group [13–16], that is well known in mathematics

[17].

This is the simplest non-trivial appearance of higher-categorical structures which will play an

important role. Higher categories are algebraic structures that abstract ordinary notions of groups,

algebras, and so on, allowing very interesting generalizations. Roughly speaking a category C is

a collection of objects a ∈ Ob(C) together with maps among them f : a 7→ b, called morphisms,

that can be composed. A group G can be understood as a category with a unique object, with

endomorphisms labelled by g ∈ G, and whose composition is governed by the group law of G. In

particular all morphisms are invertible, namely are isomorphisms. This is how one may like to think

group-symmetries in Quantum Mechanics (QM): the unique object is the QM system itself, and the

group elements act on it. In QFT language a QM is a (0+1)-dimensional theory, the symmetry

operators are topological local operator, hence being points they do not have higher structures (see

fig. 3 for an illustration). That is the reason why they are described by category theory, as opposite

to higher-category theory.

In a (D + 1)−dimensional QFT the topological operators are extended, so they can have higher-

codimension topological operators placed on it, or more generally there can be topological interfaces

between two difference symmetry group operators. They can be understood as morphisms between

morphisms, or 2-morphisms. These are the building blocks of a higher-category: an algebraic structure

with objects whose morphisms form itself a category with 2-morphsims among them, which again can

form a category with 3-morphisms among them and so on. An n−category is such that there are

morphisms up to degree n. A 0-form group symmetry G in a d-dimensional QFT can be thought of as

a d-category with a unique object (the QFT itself), and 1-morphisms labeled by g ∈ G that compose

according to the group law.

This structure has room to accommodate 1-form symmetry defects that are of dimension d −
2. These are 2-(endo)morphisms of the identity 1-morphism, and are composed according to the
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group law of an Abelian group A. We can then go higher by introducing 2-form symmetry operators

as 3-endomorphisms, and so on up to (d − 1)-form symmetries that are given by topological local

operators. The 2-endomorphisms of the identity 1-morphism must induce 2-endomorphisms of any

other 1-morphism: codimension two defects can be pushed on top of codimension one defects.

A mathematical structure putting together various higher-form symmetries is called a higher-

group, whenever all morphisms are invertible, hence each set of (higher)endomorphism of the identity

form some group. The possible non-trivial interplay among the various layers arise from the various

associativity conditions. For instance taking three 0-form symmetry defects Ug, Uh, Uk, we may com-

pose (UgUh)Uk or Ug(UhUk) and they could not coincide, but being related a non-trivial 2-morphism,

namely a 1-form symmetry defect β(g, h, k) ∈ A. If this is non-trivial we have an interesting interplay

between the 0-form and the 1-form symmetry.

Let us pause for a moment to clarify some terminology. As we discussed, the higher-form symme-

tries of a d-dimensional QFT combine in d-category with a unique object. These categories are called

monoidal. The unique object is the QFT itself. This is a trivial information that does not play a role.

For this reason it is customary to just look at the (d− 1)-category of endomorphisms, whose objects

are the 0-form symmetry defects. Since these objects started their life as morphisms, they inherit an

additional structure from the composition, which is called a tensor product : monoidal d-categories are

often called tensor (d− 1)-categories, and it is often stated that that symmetries of a d-dimensional

QFT are given by a (d − 1)-category. Mathematicians have mostly studied higher-categories with

finitness properties, called fusion categories and are suitable for describing finite symmetries in QFT.

The terminology can be somewhat confusing for physicists, since the world fusion does not really have

to do with the possibility of fusing the objects, which remains true even for continuous symmetries.

At this point, one may ask if there is some reason why the topological sector of QFTs must be

described by these special types of higher categories governed by various layers of group symmetries.

Indeed, there is no such reason, and we can look for general tensor (d − 1)-categories where some

morphism does not have an inverse. After all, we are looking for the most general robust properties,

and these only depend on having topological defects that can be fused and combined in various ways.

These more general structures are often called non-invertible symmetries by physicists, even if the

word symmetry is probably not appropriate here. Symmetry is a word used for some action on some

system that does not change its fundamental properties (e.g. a rotated ball is still a ball, not an ellipse)

and is always reversible. This property does not apply to non-invertible symmetries whose action is

not reversible and often modify some very fundamental properties. For instance, spontaneously broken

non-invertible symmetries can map one vacuum to a physically distinguishable one. Non-invertible

symmetries are really associated with some conservation law (namely a topological operator) that does

not come from any symmetry of the theory. For this reason, it would be much better to call them

non-invertible topological operators, or non-symmetries. Nevertheless, we will use the terminology

non-invertible symmetries since it is now standard in the physics community.

Non-invertible symmetries described by fusion (1-)categories are well known to exist in two-

dimensional Rational Conformal Field Theories (RCFT) since many decades and are provided by

Verlinde lines [18]. However, only in recent years have they been recognized to fit within the framework

of generalized symmetries [19–21]. Many people started to study their structure, ’t Hooft anomaly,

gauging, spontaneous breaking, and all that. This program proved to be extremely successful even

for non-conformal theories obtained by deforming some RCFT with a symmetry preserving relevant

operator, resulting in striking dynamical predictions [22].

The developments in higher dimensions are much more recent, starting with [23–29], constituting
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a very active area of current research. One side of the activity puts a lot of effort into understanding

the general structure of the topological sector of QFTs. The broad question in this business is how to

classify and compute all possible robust data associated with a generalized symmetry structure. An

other side of the activity concerns deriving physically relevant consequences from these structures. Of

course, the two analyses are all but unrelated.

A fundamental role in this story is played by Topological Quantum Field Theories (TQFTs).

Roughly speaking, a TQFT is a theory with a vanishing stress-energy tensor. Since the stress-energy

tensor generates all space-time symmetries, in a TQFT all operators are topological. In a sense,

a TQFT is completely determined by its symmetries and for this reason can be rigorously defined.

Hence, the study of TQFTs is an important and active area of mathematics, which is helpful for physics,

since we can use many results that mathematicians proved for us. For instance, in sufficiently low

dimensions, TQFTs have been essentially classified. There are many reasons why TQFTs are relevant

for non-topological theories. First, they describe the infrared limit of gapped phases. Second, a QFT

with finite symmetry C can be coupled with a TQFT with the same symmetry by stacking the two

theories and gauging the diagonal symmetry [30]. This operation modifies the global properties of the

original theory, for instance changing the number of vacua on non-trivial space-manifolds. Similarly, in

a d-dimensional QFT with a higher-form finite symmetry we can construct further topological defects

by staking on some submanifold a lower-dimensional TQFT with the same finite symmetry, whose

degree is such that the dimensionality of the topological operators match, and again performing a

diagonal gauging on the submanifold [26, 31].

However, there is an other application, much more subtle but also much more general, of TQFTs

to non-topological theories. This has really to do with the fact that symmetries are identified with

topological operators, which intuitively are those that do not interact with the stress-energy tensor.

One may then be tempted to conjecture that the full set of topological operators of any given d-

dimensional QFT produces a consistent d-dimensional TQFT that captures all the properties of the

symmetries. However, this is not true for two distinct reasons. First, standard TQFTs as rigorously

defined and studied by mathematicians can only capture finite symmetries, while general QFTs also

have continuous symmetries. We will see how a new type of TQFTs (Appendix E) can also capture

continuous symmetries in Chapter 8, reviewing [5], but for the moment we restrict to finite symmetries.

However, the temptation above is not valid even with this restriction, for the very basic reason that

among the important robust data relevant for the topological sector, is the interplay of topological

operators with non-topological charged operators.

It turns out that a TQFT capturing completely the data associated with the topological sector of

d-dimensional QFT exists, but it lives in d+ 1 dimensions. In the high-energy community it is called

the Symmetry Topological Field Theory (SymTFT) [11, 32–36], while the same concept appears both in

mathematics and in condensed matter theory with other names3. Roughly speaking, the d-dimension

QFT we want to study lives at the boundary of the SymTFT. An intuitive reason why we need to

go one dimension higher is the following. Both the topological defects of a p−form symmetry, and

the charged operators, arise from topological operators of the TQFT. But while the topological ones

are just d − p − 1 dimensional operators pushed at the boundary, for the charged operators we need

3The first construction was given for a 3d TQFT associated with a fusion category in mathematics by Turaev and Viro

[37, 38], and successively extended by Barrett and Westbury [39, 40], hence it known as Turaev-Viro-Barrett-Westbury

theory. Later on the same technique was used to construct TQFTs in various dimensions from the datum of a fusion

category in one dimension less, and these construction are generically known as state-sums. In the condensed matter

community, on the other hand, the SymTFT is often called bulk-boundary correspondence, or symmetry-topological order

correspondence, generalizing one original construction by Levin and Wen [41].
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some mechanism to make them non-topological. The mechanism is that the p−dimensional charged

operator is the end-surface of a p + 1 dimensional topological defect of the TQFT. We then notice

that a d− p− 1 and a p+ 1 dimensional operators cannot link in d−dimensions, but they can in d+ 1.

More precisely the set-up is the following:

physical

QFT

topological

boundary

condition

SymTFT

The TQFT is placed on a slab with two diffeomorphic boundaries. One supports the physical QFT

we are interested in but is coupled to the TQFT in the bulk. A common terminology is to call this

QFT a relative theory, since once we couple it to a higher-dimensional TQFT it no longer exists on its

own (is not absolute) but it is relative to the TQFT. The precise statement is that it does not have

a unique partition function, but a vector of them. To get a unique partition function and recover an

absolute theory, one needs to project the partition vector onto another given vector. This is realized

by adding the other boundary, which is a topological boundary condition for the TQFT.

Given the original higher category C that we want to describe, we get an additional structure

on the TQFT. We may think of this additional structure as a presentation of the TQFT (a duality

frame). More precisely, the additional structure is the datum of a canonical topological boundary

condition, which projects the partition vector on the partition function of the theory we started with.

The topological boundary condition is equivalent to the prescription of which bulk defects can end on

it. These defects are trivialized if we push them parallel to the topological boundary. All the other

defects can be pushed on the boundary remaining non-trivial but are identified modulo those that can

end. On the other hand, all bulk defects can end consistently at the physical boundary, but their end

points are generically non-topological.

The slab is topological, and we can compactify it with the cost of (at most) a normalization factor.

This operation reproduces the absolute theory, where the topological sector is provided by the bulk

defects that are not trivialized by the topological boundary, while the charged operators are obtained

from the bulk defects that end on both boundaries, as in the picture above.

Then we can start playing with the topological boundary conditions, modifying them away from

the canonical one. This operation reshuffles which bulk defects can end and which stay non-trivial

after the slab compactification. The absolute theories we get will be different versions of the original

one, sharing the same local dynamics but different global properties [34]. They are obtained one from

the other by one of the operations we described above: coupling some of original theory with a TQFT

by the diagonal gauging of some finite symmetry. These are often called topological manipulations,

and these different versions are usually called global variants [42]. They have different symmetries

related by some type of generalized gauging, but they all share the SymTFT. The latter is indeed the

full invariant of this equivalence class of symmetries, called Morita class.

The SymTFT is very powerful since it contains not only the full information on the topological

sector of a QFT, but also those related by topological manipulations. This observation is the starting

point that allows to detect ’t Hooft anomalies of all possible generalized symmetries (including the
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non-invertible ones) using the SymTFT. In fact, anomalies are, roughly speaking, the obstruction in

performing certain topological manipulations, so they can be computed by studying the topological

boundary conditions of the SymTFT [3, 5, 43–45]. This is a very important step, since it allows one to

extract the robust data relevant for constraining the dynamics, from a part of the topological sector

that does not come from ordinary symmetries, and hence it would not be accessible by other (known)

methods.4

The SymTFT allows us to completely disentangle the topological sector from the dynamics, and

concretely provides a framework where one can use tools from topological quantum field theories

in non-topological theories. In a sense, it replaces the complicated study of higher-categories and

their action on QFTs, with the simpler problem of analyzing TQFTs. Moreover some non-invertible

symmetries that cannot be related with invertible symmetries, can be actually understood in terms

of invertible symmetries of the SymTFT, simplifying drastically the analysis [2, 3, 46]. Least but not

last, the SymTFT provides a classification of the possible non-invertible symmetries of d-dimensional

QFTs in terms of classification of d+1 dimensional TQFTs. For instance it provides an explanation of

the richness of topological defect lines of 2d RCFT in terms Wilson lines of 3d Chern-Simons theory,

through the 2d/3d correspondence [47–50], while it rules out finite 0-form non-invertible symmetries

in 4d other than the known ones [45] by using a classification result for 5d TQFTs [51].

This thesis is organized as follows. Chapter 1 is a review of some basic concepts in generalized

global symmetries, not including non-invertible topological operators. Before introducing them in

Chapter 3, it is necessary to give an overview on ideas and techniques of TQFTs in Chapter 2. The

background material concludes with Chapter 4 that introduces the SymTFT construction.

The original work of the author is presented in the Chapters 5 6 7 8 9. In Chapter 5, based on

[2], we study how non-invertible self-duality defects arise in theories with a holographic dual. One

important observation is that the supergravity theory contains a topological sector that coincides with

the SymTFT. We will use this to deduce the SymTFT for certain non-invertible defects (confirming

also the finding of [52]), and use it to derive many properties holographically, and in a controlled

setup.

In Chapter 6, which reviews [3], we use the SymTFT derived holographically in Chapter 5 to

study anomalies of non-invertible symmetries. We do this both in 2d, where some results were already

available and we could compare with them, and in 4d where the results are new.

The study of anomalies can be viewed as understanding which symmetries are compatible with a

trivial gapped phase, technically a Symmetry Protected Topological (SPT) phase. Recently, it was

realized that, at least in two space-time dimensions, these phases can also exist in gapless systems,

leading to the notion of gapless SPT (gSPT) phases. Some of them do not have an analog in gapped

systems, hence are intrinsically gapless (igSPT). Chapter 7 is based on the recent work [4], and shows

that we can use the SymTFT approach to understand these (intrinsically) gapless topological phases in

a more general way, which is not tight to two dimensions. Hence, we generalize them to three and four

dimensions. In the last case, in particular, igSPT phases acquire a beautiful physical interpretation

as obstruction to confinement in 4d gauge theories.

In Chapter 8 we review [5] where we extend the formalism of the SymTFT, that traditionally is

restricted to finite symmetries, to include continuous symmetries. The SymTFT describes the struc-

ture of the symmetry, its anomalies, and possible topological manipulations. One should notice that

the bulk theories used here are beyond the standard realm of TQFTs as introduced in Chapter 2, and

4In 2d, thanks to the well-developed theory of fusion categories, alternative methods are often available. However

they are hard to generalize to higher dimensions.
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we provide a hint toward their mathematical definition in appendix E. We also propose an operation

that produces the SymTFT for the theory obtained by dynamically gauging the U(1) symmetry, and

discuss many examples. Finally we propose that the various SymTFTs of theories related by dynam-

ical gauging can be realized as different boundary conditions of a unique d + 2 dimensional TQFT,

that is a dynamical version of the anomaly polynomial.

In the final Chapter 9, that is based on [6], we propose a different interpretation of the TQFTs

usually employed in the SymTFT business. Focusing on continuous symmetries, we propose that these

TQFTs can be viewed as theories of gravity, holographically dual to the universal effective field theory

(EFT) that describe spontaneous symmetry breaking on the boundary. This provides a concrete and

controlled model for holography, where the boundary dynamics arises from edge modes of the bulk,

and can be viewed as a generalization of the CS/WZW correspondence to higher dimensions and

higher symmetries. We also comment on some expectations of how to incorporate this framework as

the limit of standard holography with dynamical gravity.
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Chapter 1

Topological operators in quantum field

theory

In this chapter, we explain that symmetries in QFT give rise to topological operators [11]. We argue

that the latter can be taken as an intrinsic definition and can be used to generalize the notion of

symmetry. The only generalization discussed in detail in this chapter is higher-form symmetries,

which act on extended operators, leaving more drastic generalizations for the next chapters. We

introduce several basic concepts such as anomalies, inflow, gauging, and so on, that are common to

this generalized notion of symmetry, and we discuss several examples.

1.1 Symmetries as topological operators

Consider a d−dimensional local Euclidean QFT. The theory comes with a family of Euclidean opera-

tors (or defects) O(x), L(γ1), S(Σ2), ... labeled by submanifolds of various dimensionality. The theory

can be put into an arbitrary Riemannian manifold Xd (we denote by vol(Xd) its volume form) and pro-

duces Euclidean correlation functions, which can include local and extended operators. Suppose that

the theory has a connected Lie group global symmetry G with conserved currents Ja(x) = Jaµ(x)dxµ

(a is a Lie algebra index, with generators Ta). The currents satisfy Ward identities〈
d ∗ Ja(x)O1(x1) · · · O(xn)

〉
= −i

n∑
i=1

δ(x− xi) vol(Xd)
〈
O1(x1) · · · δaOi(xi) · · · On(xn)

〉
(1.1.1)

where δaOi is the action of the Lie algebra vector Ta on Oi. Assuming Oi is in an irreducible repre-

sentation Ri, δaOi = iRi(Ta) · Oi.
The Ward identities can be rewritten in a finite form as follows [11]. We take an open region

Dd ⊂ Xd whose boundary is a compact, homologically trivial submanifold Σd−1 of codimension one,

and we integrate (1.1.1) on Dd. Defining the extended codimension one charge operator

Qa(Σd−1) =

∫
Σd−1

∗Ja(x) (1.1.2)

the result is〈
Qa(Σd−1)O1(x1) · · · O(xn)

〉
=

n∑
i=1

Lk(Σd−1, xi)
〈
O1(x1) · · ·Ri(Ta)Oi(xi) · · · On(xn)

〉
. (1.1.3)

We introduced the linking number

Lk(Σd−1, x) =

{
1 if x ∈ Dd

0 if x /∈ Dd

(1.1.4)
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Ug(Σd−1)

O(x)

O′(x′)

O′′(x′′)
=

Ug(Σ
′
d−1)

R(g) · O(x)

O′(x′)

O′′(x′′)

Figure 1.1: Graphical representation of the Ward identity.

In general, we can consider Lk(Σp,Σq) for any homologically trivial submanifolds, where:

p+ q = d− 1 . (1.1.5)

It is defined as the number of intersections of Σq with a p+ 1 dimensional filling of Σp, or vice versa1.

For q = 0, the result depends on the orientation of Σd−1.

The linking number is topological: it is invariant under any deformation of one of the submanifolds,

provided that we do not allow them to intersect. In the case p = d−1, q = 0 considered here, this means

that we can deform Σd−1 in any way, as long as the point x stays inside. Then (1.1.3) tells us that

Qa(Σd−1) is a topological operator : correlation functions with its insertions depend only topologically

on the support, but are invariant under small deformations of it. When we move the support from

Σd−1 to Σ′
d−1 crossing exactly one point, say x1, we have〈

Qa(Σ′
d−1)O1(x1) · · · O(xn)

〉
−
〈
Qa(Σd−1)O1(x1) · · · O(xn)

〉
=
〈
R1(Ta)O1(x1) · · · On(xn)

〉
. (1.1.6)

There is one more step we can take. Given any group element g = eiϵaTa ∈ G, we construct

Ug(Σd−1) = exp
(
iϵaQ

a(Σd−1)
)
. (1.1.7)

By expanding it, and using repeatedly (1.1.3), we get〈
Ug(Σd−1)O1(x1) · · · O(xn)

〉
=
〈
R1

(
gLk(Σd−1,x)

)
· O1(x1) · · ·Rn

(
gLk(Σd−1,x)

)
· On(xn)

〉
. (1.1.8)

This relation, that is the finite-group form of the Ward identity, tells that the insertion of the topolog-

ical operator Ug(Σd−1) can be removed at the cost of transforming all the local operators inside Σd−1.

More locally, we may express this as the property that, if we deform the support passing through one

local operator, we act on it with g, as summarized in figure 1.1. In formulae we write

Ug(Σd−1) O(x) = RO(g) · O(x) Ug(Σ
′
d−1) . (1.1.9)

The reason why formulating the Ward identities in terms of Ug(Σd−1) instead of Ja(x) or Qa(Σd−1) is

preferable, is that this makes sense also for discrete symmetries. In that case, there is no current; hence

Ug(Σd−1) will not always have an explicit expression, but the Ward identity formulated as (1.1.8) can

be taken as an intrinsic definition of a discrete symmetry action in the QFT. The punchline is that

• Any global group symmetry in QFT leads to codimension-one topological operators labeled by

g ∈ G.

1The result is independent of this choice
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Ug
Uh

=

Ugh
Ug

Uh

Ugh

Figure 1.2: Left: parallel fusion of two topological operators labelled by g and h, producing a topo-

logical operator labelled by gh. Right: triple junction among topological operators, obtained by

topologically deforming the parallel configuration on the left and using the fusion property.

A crucial property of topological operators is that they are not subject to short-distance diver-

gences. Therefore, there is a perfectly well defined notion of products among them: two or more

topological operators can be fused. From (1.1.8) it follows that

Ug(Σd−1)Uh(Σd−1) = Ugh(Σd−1) . (1.1.10)

This corresponds to the possibility of performing parallel fusion, as in the left picture in figure 1.2.

For this picture to make sense we need to choose an orientation of the codimension one surface inside

the space-time.

The configuration in the left picture of 1.2 can be topologically deformed to the one on the right

of the figure 1.2, by performing the parallel fusion only in half of the surface. This configuration has a

junction of codimension two where two topological defects meet and become a third topological defect

obtained by fusion. This operation, however, is all but trivial, since we are now placing our defects

on singular manifolds. What happens on the singular locus, the junction, is not completely specified

by what happens outside of it; hence, we should specify further data to completely characterize the

symmetry. For invertible symmetries, this leads to the notion of symmetry fractionalization [15, 53,

54] (see Section 1.5 for a review), or even more drastically to higher-groups [15] while it will result in

a richer structure for more general non-invertible categorical symmetries. For the moment the only

important thing to notice is that the right picture in figure 1.2 contains more information than the

left picture.

1.2 Anomalies and inflow

A natural operation with global symmetries is to couple them to background gauge fields: if the

system has a global symmetry G we can introduce a principle G−bundle with connection A, which is

coupled with the QFT. For a continuous symmetry we have conserved currents Ja and the coupling

is achieved by adding a term in the action

S[A] = S + i

∫
Xd

Aa ∧ ∗Ja . (1.2.1)

Consider the U(1) case for simplicity. The gauge field is subject to gauge invariance A 7→ A+ dλ.

For flat backgrounds, the coupling A ∧ ∗J can be interpreted as the insertion of a topological defect

configuration. Indeed, by Poincare’ duality a closed 1-form can be written as A = αδ(d−1)(Σd−1), with
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α ∼ α+ 2π representing the holonomy on a closed curve that crosses Σd−1 once. Hence the coupling

with the current is equivalent to the insertion of

Uα(Σd−1) = exp

(
iα

∫
Σd−1

∗J

)
(1.2.2)

in the path integral, with α determined by the holonomy of the gauge field. A gauge transformation

A 7→ A + dλ modifies Σd−1 into a homologous support, and this does not change the correlation

functions because the operator is topological. Equivalently, gauge invariance is a consequence of the

conservation d ∗ J = 0.

There are interesting situations where, while this conservation equation holds in the absence of

background fields (hence the theory has the symmetry), it is broken as soon as the symmetry is coupled

to the background, and there is no way to rescue this. Hence, even if the theory has a symmetry, it

is impossible to couple it to a background field that preserves the invariance of the partition function

under background gauge transformations: the theory has an ’t Hooft anomaly [12]. A familiar textbook

example is the theory of a 4d free massless Weyl fermion. The 0-form U(1) symmetry rotating the

fermion is associated with a current Jµ, and famously the conservation equation is violated in the

three-point function of the current by a contact term, which in momentum space is

pµ1

〈
Jµ(p1) Jν(p2) Jρ(p3)

〉
=

i

16π3
ϵνρξη p

ξ
2 p

η
3 . (1.2.3)

Equivalently, when the current is coupled with a background field A, since the latter is a source for

the current, the conservation equation is violated by an A dependent term:

d ∗ J =
i

8π2
F ∧ F . (1.2.4)

This means that the partition function coupled with A is not gauge invariant under A 7→ Aλ = A+dλ,

but it takes a phase expressed as a local integral

Z[A] 7→ Z[Aλ] = exp

(
i

8π2

∫
X4

λF ∧ F
)
Z[A] . (1.2.5)

We may try to fix this by modifying the action with a local functional of the background field Sct =∫
X4
Lct(A), namely a local counterterm, such that δλSct = − i

8π2

∫
X4
λF ∧ F . It is easy to see that

there is no such local counterterm. However, if we view X4 as the boundary of a 5d manifold X5,

extending A to the bulk, we can write a local functional

Sinflow(A) =
i

24π2

∫
X5

A ∧ dA ∧ dA , (1.2.6)

whose gauge variation is a boundary term exactly cancelling the anomalous variation. This mechanism

is called anomaly inflow [55, 56].

The exponentiated action Zinflow[A] = e−Sinflow is a phase that can be thought of as the partition

function of a 5d TQFT on X5, coupled to a background A for a U(1) symmetry. Since this is a

phase, the TQFT is trivial: the Hilbert space on any 4-manifold is one-dimensional. Technically we

say that the TQFT is invertible [57, 58], but it has a global U(1) symmetry. In the condensed matter

literature this is called a Symmetry Protected Topological (SPT) phase [59]. The combined 4d/5d

system consisting of a 4d Weyl fermion coupled with the 5d SPT is perfectly gauge invariant when we

couple the U(1) symmetry to A.

The fact that anomalies of global symmetries can be canceled by coupling the system to a higher-

dimensional trivial TQFT by inflow is very deep and powerful. In fact, TQFTs are rigid: their space
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is discrete, and in particular invertible TQFTs are classified, in the bosonic case by group cohomology

[59], and more generally by cobordism [60, 61]. Hence, deformations of the d-dimensional QFT that

preserve the symmetry cannot change the value of the anomaly, simply because the deformations are

continuous and the anomaly cannot jump. Moreover, TQFTs are clearly renormalization group (RG)

invariant; hence ’t Hooft anomalies are also RG invariant. This is essentially a modern version of the ’t

Hooft argument about anomaly matching [12]. This is one of the facts that makes the study of global

symmetries incredibly powerful for studying the dynamics of QFTs: if we compute the anomalies of a

UV theory, any symmetry-preserving relevant deformation generates an RG flow whose IR fixed point

must reproduce the same anomaly. This puts severe constraints on possible strongly coupled RG flows.

Moreover, reformulating anomaly matching in terms of anomaly inflow is a huge step forward. As we

shall see shortly, the anomaly inflow paradigm holds also for the generalizations of global symmetries

we are going to consider, hence it allows us to derive additional constraints.

There are two general disbeliefs about anomalies. One is that they only exist in fermionic systems,

and the other is that they necessarily have to do with some subtle issue concerning the regularization

of the path integral measure. While it is true that anomalies of fermionic systems often come from

the path integral measure, anomalies can very well exist in bosonic systems and they can show up in

much more elementary fashion. The simplest example is a 2d compact boson

S =
R2

4π

∫
X2

dΦ ∧ ∗dΦ , Φ ∼ Φ + 2π . (1.2.7)

This theory has two U(1) symmetries, denoted respectively by U(1)M and U(1)W . The momentum

(or shift) symmetry Φ 7→ Φ + α and the winding (or topological) symmetry that measures how many

times Φ winds around a 1-cycle. The currents are respectively

JM =
iR2

2π
dΦ , JW = ∗dΦ

2π
. (1.2.8)

While JM is conserved because of the equations of motion, JW is conserved off-shell. For this reason,

the winding symmetry is sometimes called a topological symmetry : it follows from the topology of the

field space.

From the currents we can construct the topological operators

Uα(Σ1) = exp

(
−R

2α

2π

∫
Σ1

∗dΦ

)
, Vβ(Σ1) = exp

(
iβ

∫
Σ1

dΦ

2π

)
. (1.2.9)

They act respectively on the vertex operators On(x) = einΦ(x) and on vortices Hw(x), whose insertion

in a correlation function is obtained by path integrating over singular field configurations that wind

w ∈ Z times around x.

We can follow the standard prescription to couple these symmetries to background fields. Let

us start with U(1)M . By adding the current-gauge field coupling iA ∧ ∗JM we modify the action to
R2

4π

∫
(dΦ ∧ ∗dΦ− 2A ∧ ∗dΦ). However, this is not gauge invariant since JM itself changes under gauge

transformations JM 7→ JM + iR2

2π dα. This issue does not represent an anomaly, since it can be fixed
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by adding a local counterterm R2

4πA ∧ ∗A obtaining a new action2

S[A] =
R2

4π

∫
(dΦ−A) ∧ ∗(dΦ−A) . (1.2.12)

Coupling the compact boson to a background B for U(1)W is smoother: we simply have the action

S[B] =
R2

4π

∫
dΦ ∧ ∗dΦ + i

∫
dΦ

2π
∧B (1.2.13)

and this is gauge invariant for B 7→ B + dβ. The troubles come if we try to couple the full U(1)M ×
U(1)W to backgrounds A and B. Indeed the action

S[A,B] =
R2

4π

∫
(dΦ−A) ∧ ∗(dΦ−A) +

i

2π

∫
dΦ ∧B (1.2.14)

fails to be gauge invariant for Φ 7→ Φ +α, A 7→ A+ dα because of the B−coupling. We can try to fix

this by adding a counterterm proportional to A ∧B:

S′[A,B] =
R2

4π

∫
(dΦ−A) ∧ ∗(dΦ−A) +

i

2π

∫
(dΦ−A) ∧B . (1.2.15)

This restores gauge invariance for the momentum symmetry, but is not gauge invariant for B 7→ B+dβ.

The final result is the same as in the massless Weyl fermion: the theory has a U(1)M × U(1)W

symmetry but there is no way to couple it to background fields without breaking the symmetry. This

is again a ’t Hooft anomaly. This time is a mixed anomaly because it involves two symmetry, each

of them by its own being non-anomalous. The origin of the phenomenon appears to be different

with respect to the massless Weyl case. There are no fermions here, and there is no issue with the

regularization of the path integral measure, but the phenomenon is definitely the same.

Also in this case the only way to turn on consistently both backgrounds is to add an invertible

TQFT in one dimension higher that cancels the anomaly by inflow. If we define the coupling as in

(1.2.14) we are lacking gauge invariance for U(1)M as δS[A,B] = i
2π

∫
dα ∧ B, and this is cancelled

by the following inflow action in 3d:

Sinflow =
i

2π

∫
X3

A ∧ dB . (1.2.16)

This action is gauge invariant on closed manifold, but in presence of a boundary fails to be gauge

invariant for A 7→ A + dα by a boundary term that exactly cancel the one of the 2d theory. If we

define the coupling as in (1.2.15) we have δS′[A,B] = − i
2π

∫
A ∧ dβ that is cancelled by the inflow

action

S′
inflow =

i

2π

∫
X3

dA ∧B . (1.2.17)

We see that Sinflow and S′
inflow only differ by a boundary term (they are obtained one from the other

integrating by parts), that is precisely the local counterterm A ∧B we added in the 2d theory.

2Equivalently this can be understood as a modification of the definition of the current when the background is turned

on. Indeed the current can be in general defined through the functional derivative of the action with respect to the

background as

∗J = −i δS[A]
δA

. (1.2.10)

Hence the new current is

J ′
M =

iR2

2π
(dΦ−A) (1.2.11)

and this is gauge invariant.
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This is a general fact: anomalies can appear in different ways by modifying local counterterms in

terms of the background fields, and the corresponding inflow actions will be related by boundary terms.

The non-triviality of the anomaly, namely the impossibility of fixing the lack of gauge invariance by

adding counterterms (as we did for instance in the case of U(1)M alone), is measured by the non-

triviality of the inlow action. The anomaly inflow paradigm is the idea of classifying all possible

anomalies in terms of invertible TQFTs in one dimension higher. As we shall see, this principle is

valid also for finite symmetries, and more generally to the higher-form symmetries that we are going

to introduce. With some modification, this paradigm is valid for any type of generalized symmetry.

1.3 Higher-form symmetries

So far we have arrived at the intrinsic notion of ordinary symmetries as topological codimension

one operators satisfying Ward identities (1.1.8). The simplest generalization considers topological

operators on submanifolds with codimension greater than one. Clearly if the codimension is p + 1,

with p > 0, the surface cannot link with a point operator, but can with an operator supported on a

p−dimensional submanifold (see figure 2). This means that such d − p − 1 dimensional topological

operators cannot lead to non-trivial Ward identities in correlation functions of local operators, but

something interesting can arise if the correlation function contains some extended p−dimensional

operator. If this happens, these new objects are called higher-form symmetries of degree p, or p−form
symmetries. The existence of these symmetries has been clearly stated in [11, 30] for the first time.

They have properties very similar to ordinary symmetries, which in this context are referred to as

0-form symmetries. Before discussing these properties in general, let us consider a few concrete

examples.

1.3.1 Abelian gauge theories

Maxwell theory One of the simplest examples is pure U(1) gauge theory, namely Maxwell theory

S =
1

4e2

∫
Xd

F ∧ ∗F . (1.3.1)

F = dA is the curvature of a U(1) connection A, and satisfies Dirac quantization condition
∫
Σ2

F
2π ∈ Z,

with Σ2 ⊂ Xd any compact 2-manifold. The path integral sums over all topological classes of U(1)

bundles, meaning that all possible integer values of the fluxes are included, and for each given bundle

we sum over all possible connections A modulo gauge transformations

A 7→ Aλ = A+ λ . (1.3.2)

λ is a globally defined closed 1-form, with quantized periods
∫
γ1
λ = 2πnγ1 , nγ1 ∈ Z. For nγ1 = 0 on

all γ1, λ = dθ is exact and this is a small gauge transformation. If this is not the case, A 7→ Aλ is a

large gauge transformation. In both cases these are redundancies of the path integrals, so no operator

can transform non-trivially under them, and they do not correspond to a global symmetry of any type.

In particular this implies that Wilson line operators

Wn(γ1) = e
in

∫
γ1
A

(1.3.3)

must have integer charge n ∈ Z.

33



The main observation is that, shifting A 7→ A+ ξ by a closed 1-form ξ with non-quantized periods,

we still leave the action invariant. But the Wilson lines transform non-trivially

A 7→ A+ ξ =⇒ Wn(γ1) 7→ eiαWn(γ1) , α =

∫
γ1

ξ ∈ R/2πZ ∼= U(1) , (1.3.4)

hence this is not a redundancy, but a true global symmetry of the type described above, more precisely

a 1-form symmetry. Here α ∼ α+ 2π, because the 2π periods belong to large gauge transformations.

To translate this observation into a robust quantum statement, we need a Ward identity for a

codimension-two topological operator. We derive it by using the same trick that is usually employed:

we change variable in the path integral, applying a symmetry transformation with a non-constant

parameter. For 1-form symmetries, this amounts to changing A into A + ξ where ξ is a non closed

1-form. The action changes by

δS =
1

2e2

∫
Xd

ξ ∧ d ∗ F . (1.3.5)

Therefore we get

〈 1

2e2
d ∗ F (x)Wn1

(
γ
(n1)
1

)
· · ·WnN

(
γ
(nN )
1

)〉
=

N∑
i=1

niδ
d−1

(
γ
(ni)
1

)〈
Wn1

(
γ
(n1)
1

)
· · ·WnN

(
γ
(nN )
1

)〉
.

(1.3.6)

Here δd−1
(
γ
(ni)
1

)
is the Poincare’ dual of γ

(ni)
1 . It is a d − 1 form with the property that for any

1-form η we have ∫
Xd

η ∧ δd−1
(
γ
(ni)
1

)
=

∫
γ
(ni)
1

η . (1.3.7)

Consider a d− 2 dimensional closed, but homologically trivial submanifold Σd−2. It is the boundary

of an open d − 1 dimensional manifold Dd−1 ⊂ Xd−1. The integral of δd−1
(
γ
(ni)
1

)
on Dd−1 gives

the number of intersections of γ
(ni)
1 with Dd−1, that is the linking number Lk

(
Σd−2, γ

(ni)
1

)
. Then

integrating (1.3.6) on Dd−1 we get

〈
Q(Σd−2)Wn1

(
γ
(n1)
1

)
· · ·WnN

(
γ
(nN )
1

)〉
=

N∑
i=1

niLk
(

Σd−2, γ
(ni)
1

)〈
Wn1

(
γ
(n1)
1

)
· · ·WnN

(
γ
(nN )
1

)〉
,

(1.3.8)

where Q(Σd−2) = 1
2e2

∫
Σd−2

∗F . By exponentiating we conclude that

Uα(Σd−2) = exp

(
α

2e2

∫
Σd−2

∗F

)
(1.3.9)

is a topological codimension two operator labelled by an angle α ∼ α+2π and satisfy a relation similar

to (1.1.9), but involving a Wilson line (see figure 1.3):

Uα(Σd−2) ·Wn(γ1) = einα Wn(γ1) Uα(Σ′
d−2) . (1.3.10)

This 1-form symmetry is called electric 1-form symmetry: it acts on Wilson lines that can be thought

of as world-lines electrically charged particles. Its underlying group is U(1), which means that the

defects Uα(Σd−2) fuse according to the U(1) group law.

Maxwell theory has another U(1) higher-form symmetry of degree d−3, called magnetic symmetry:

it acts on ’t Hooft operators Hn(γd−3). They can be defined as disorder operators. Inserting Hn(γd−3)

in a correlator amounts to modifying the path integral domain, including singular connections on γd−3

such that ∫
S2

F

2π
= n , Lk(S2, γd−3) = 1 . (1.3.11)
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Uα(Σd−2)

Wn(γ1)

= einα

Wn(γ1)

Uα(Σ′
d−2)

Figure 1.3: The action of the codimension two topological defect on a Wilson line.

Tautologically, the two-dimensional topological operators are

Vα(Σ2) = exp

(
iα

∫
Σ2

F

2π

)
. (1.3.12)

In d = 3 the Hn(x) is a local operator, the monopole operator, and the magnetic symmetry is a 0-form

U(1) symmetry. For d = 4 it is 1-form symmetry, and Hn(γ1) are ’t Hooft lines.

Inclusion of matter Consider Abelian gauge theories with matter (QED-like theories), bosonic

or fermionic. Suppose that there is a matter field ϕ(x) of charge q ∈ Z, which means the covariant

derivative is D = d − iqA. A gauge transformation A 7→ A + λ acts on the matter field as ϕ(x) 7→
eiqθ(x)ϕ(x), where θ(x) is a compact scalar such that locally λ = dθ.3

While in pure Maxwell theory the Wilson lines must be closed by gauge invariance, now some of

them can be opened, ending on the matter fields: a Wilson line Wn(γ1) of charge n = Nq can end on

the local non gauge-invariant operator ϕ(x)N producing a gauge invariant line operator:

WNq(γ1)ϕ
N (x) =

WNq(γ1)

ϕN (x)

This implies that most of the electric 1-form symmetry defects Uα(Σd−2) = e
α

2e2

∫
Σd−2

∗F
can no longer

be topological. In fact, suppose that Uα(Σd−2) is topological. Putting it in a configuration where it

links with an open Wilson line Wq(γ1)ϕ(x), close to the line. We can unlink it in two ways: directly,

or first sliding it below the end point ϕ(x) and then closing the surface Σd−2. In the first way, we get

a phase eiαq, while nothing happens in the second case. By consistency

α =
2πa

q
, a = 0, ..., q − 1 ∈ Zq . (1.3.13)

All the other operators must be non-topological.

This argument alone does not prove that U 2πa
q

is still topological, but we will show in the next

example – discussing a more general context – that this endability argument works in both directions:

3Even though strictly speaking λ = dθ is only valid locally, the condition
∫
γ1
λ ∈ 2πZ allows to extend the validity

of λ = dθ at the global leave, at the prize of making θ multi-valued, with 2π-periods. Hence, the transformation

ϕ(x) 7→ eiqθ(x)ϕ(x) makes perfect sense.
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a topological operator of the pure gauge theory remains topological if and only if all endable lines are

uncharged under it. Hence, the theory has a discrete electric 1-form symmetry in Zq.
The magnetic symmetry is still there even in presence of matter. In d = 3 it is a 0-form symmetry,

and it can be broken by adding the monopole operator to the action. For d = 4 it is a 1-form symmetry,

and to break it one would need to add magnetically charged matter. For d > 4 the magnetic symmetry

has degree p > 1 and is not broken by any natural operation.

1.3.2 Non-Abelian gauge theories

Consider pure G-Yang-Mills theory, with connection A and field strength F = dA+ iA ∧A:

S =
1

2g2

∫
Xd

Tr(F ∧ ∗F ) (1.3.14)

This discussion generalizes the Abelian case and clarifies previously overlooked subtleties. The path

integral sums over all G bundles and their connections, modulo gauge transformations. It is convenient

to describe a G bundle by decomposing space-time into patches Ui and assigning transition functions

gij : Uij = Ui ∩ Uj → G, satisfying the cocycle condition on triple intersections:

gij gjk gki = 1 . (1.3.15)

The connection A is given by local 1-forms Ai ∈ Ω1(Ui, g) glued on double intersections:

Aj = g−1
ij Ai gij + g−1

ij dgij . (1.3.16)

This is not to be confused with gauge transformations: it’s just the connection’s defining property.

Gauge transformations are redundancies of the path integral that act on both Ai and gij

Ai 7→ U−1
i Ai Ui + U−1

i dUi , gij 7→ Ui gij U
−1
j , (1.3.17)

with Ui : Ui → G a family of locally defined functions. All operators, including the Wilson lines

WR(γ) = TrR P exp

(
i

∫
γ
A

)
, (1.3.18)

are invariant under (1.3.17).

To define the path-ordering exponential (holonomy) on an arbitrary curve γ, we cut small arcs γi ⊂
Ui and use Ai to compute its holonomy holγi(Ai) = P exp

(
i
∫
γi
Ai

)
. Under a gauge transformation,

this transforms into Ui(x1)holγi(Ai)Ui(x2)
−1 (x1, x2 are the initial and final points). The full holonomy

is constructed choosing a base-point x ∈ γi1 :

P exp

(
i

∫
γ
A

)
=
∏
k=1,...

holγik (Aik)gik ik+1
. (1.3.19)

This transforms under conjugation by Ui1(x), hence the Wilson loops are gauge invariant.

Electric 1-form symmetry. The pure Yang-Mills theory has a 1-form center symmetry Z(G)

under which the Wilson loops are charged. Under a transformation by g ∈ Z(G), a Wilson loop in

representation R picks a phase4

χR(g) =
TrR(g)

TrR(1)
∈ U(1) (1.3.20)

4The center is an Abelian group (it is either ZN or Z2×Z2), and every representation of G descents to a representation

of Z(G), hence χR(g) ∈ U(1) it is just its character.

36



To see where this 1-form symmetry comes from, let us first return to the case G = U(1), where

a 1-form symmetry transformation is A 7→ A + λ, with λ a globally defined closed 1-form. In every

patch, we can write λ
∣∣
Ui

= dηi, and completely eliminate its action on the connection by local gauge

transformations with Ui = e−iηi . The prize is that we modify the transition functions as

gij 7→ gijtij , tij = e−i(ηi−ηj) . (1.3.21)

This reproduces the action on the Wilson lines, carefully defined using (1.3.19).

This reformulation has an obvious generalization to the non-Abelian case. We define the action of

the 1-form symmetry directly on transition functions

gij 7→ gijtij . (1.3.22)

To preserve the cocycle condition, all the tij must commute with any possible gij , hence tij ∈ Z(G).

On top of this we must impose

tij tjk tki = 1 . (1.3.23)

A Wilson line WR(γ) transforms as

WR(γ) 7→ χR(g)WR(γ) , g =
∏

γ∩Uij ̸=∅

tij ∈ Z(G) . (1.3.24)

For G = SU(N) the center is ZN , and the 1-form symmetry a ∈ ZN on WR is a multiplication by

e
2πiqa
N , where q = 0, ..., N − 1 is the N−ality of the representation.

The codimension-two topological operators Ug(Σd−2) do not have a very explicit expression. They

can be defined as disorder operators: their insertion in a correlation function is specified by modifying

the path integral summing over connections which are singular on Σd−2, such that

holS1(A) = g ∈ Z(G) , Lk(Σd−1, S
1) = 1 . (1.3.25)

They are usually called Gukov-Witten (GW) operators, since they are similar to those introduced in

[62] in 4d N = 4 SYM.

Magnetic (d−3)−form symmetry. Like in the Abelian case, G−gauge theories have a d−3 degree

magnetic symmetry with the group π1(G)∨. The charged objects are ’t Hooft operators: monopoles

in 3d, ’t Hooft lines in 4d and so on. Contrary to the electric symmetry, the charged objects do not

have an explicit representation, while the topological operators do. We use that G = G̃/Γ, with G̃

the universal cover and Γ ∼= π1(G) ⊂ Z(G̃). There is a characteristic class [w] ∈ H2(Xd, π1(G)) of

G−− bundles —-sometimes called the Stiefel-Whitney (or Breuer) class– measuring the obstruction

to lift them to G̃−bundles, and it is defined as follows. Pick a lift of the transition functions gij ∈ G
to g̃ij ∈ G̃. The cocycle condition is modified:

g̃ij g̃jk g̃ki = wijk ∈ π1(G) ⊂ Z(G̃) . (1.3.26)

On quadruple intersections Uijkl we have

wijk wjkl wkli wlij = 1 . (1.3.27)

Hence wijk defines [w] ∈ H2(Xd, π1(G)). In the G gauge theory we sum over all possible G bundles,

hence [w] is dynamical and we can construct 2-dimensional topological operators

Vχ(Σ2) = χ
(
e
i
∫
Σ2

w
)
, χ ∈ π1(G)∨ (1.3.28)
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Gauge theories with matter. Let us add matter in representation R of G. This will not affect

the magnetic symmetry, but the electric 1-form symmetry will be generally reduced to a subgroup.

Indeed, the Wilson lines in representation R can end on the matter field. For the same argument as

in the Abelian case, the operators Ug labeled by central elements g ∈ Z(G) that are non-trivial in the

representation R, can no longer be topological. We remain with the subgroup

ΓR =
{
g ∈ Z(G)

∣∣∣ χR(g) = 1
}
⊂ Z(G) . (1.3.29)

Let us argue now that we indeed have this 1-form symmetry. A matter field ϕ is given by a family of

locally defined ϕi on each Ui, valued in the R, and glued on the double intersections as5

ϕj = R(gij) · ϕi (1.3.30)

A 1-form symmetry transformation gij 7→ gijtij affects the matter field modifying the gluing condition,

unless tij ∈ ΓR. If this condition is satisfied, the matter field does not see the action of the 1-form

symmetry transformation, hence it remains a good symmetry.

1.3.3 General properties of higher-form symmetries

The first important observation is that higher-form symmetries are always Abelian: when we fuse

two topological operators of codimension greater than one, there is no concept of ordering and the

multiplication of the labels must be commutative.

Also, higher-form symmetries cannot act on local operators and therefore cannot be explicitly

broken by adding interactions, in sharp contrast with ordinary 0-form symmetries. As discussed, 1-

form symmetries realized as center symmetries of some gauge group G can be broken adding matter.

For this reason, these symmetries are often emergent: they arise in the IR of some theories with

massive matter charged under the center of the gauge group. However, in contrast with emergent

0-form symmetries, emergent 1-form symmetries are not violated by any irrelevant operator.

Background fields and anomalies. As for ordinary symmetries, p−form symmetries can be cou-

pled with background gauge fields, which are p+1 forms. A U(1) p−form symmetry has a (p+1)−form

conserved current d ∗ Jp+1 = 0. The topological operators are exp
(
iα
∫
Σd−p−1

∗Jp+1

)
. We can couple

the symmetry to a background Bp+1 as

S[B] = S + i

∫
Xd

Bp+1 ∧ ∗Jp+1 . (1.3.31)

The background field gauge transformation is Bp+1 7→ Bp+1 + dλp, with λp a p−form gauge field.

If the background field is flat dBp+1 = 0, (1.3.31) can be understood as the insertion of a topological

defect. Indeed, by Poincare’ duality, a closed p + 1 form gauge field can be realized as Bp+1 =

αδ(p+1)(Σd−p−1) for a closed submanifold Σd−p−1 and a certain α ∼ α+ 2π (its holonomy). Then∫
Xd

Bp+1 ∧ ∗Jp+1 ⇐⇒ insertion of exp

(
iα

∫
Σd−p−1

∗Jp+1

)
. (1.3.32)

A gauge transformation Bd+1 7→ Bp+1 +dλp deforms Σd−p−1, and this does not modify anything since

the operator is topological. Equivalently, gauge invariance is a consequence of d ∗ Jp+1 = 0.

As for 0-form symmetries, higher-form symmetries can have anomalies: it might be impossible to

couple the symmetry to a background field in a gauge-invariant way, unless we add a d+ 1 invertible

5Mathematically ϕ is a section of an associated vector bundle.
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TQFT. We will discuss the discrete case in Section 1.4. In the continuous world, the simplest example

is Maxwell theory, say in 4d. The currents for the electric and magnetic 1-form symmetries are

respectively

Je =
i

2e2
F , Jm =

∗F
2π

(1.3.33)

They have a mixed anomaly similarly to 2d compact boson: coupling U(1)e to a background Be

amounts to shifting F 7→ F −Be in the action6. On the other hand, U(1)m is coupled to a background

Bm by adding a coupling
i

2π

∫
X4

F ∧Bm (1.3.34)

that is not gauge invariant for U(1)e. It might be made so by adding a counterterm − i
2πBe ∧ Bm,

which spoils gauge invariance for U(1)m. This clash represents an anomaly with a 5d inflow action

Sinflow = − i

2π

∫
X5

Be ∧ dBm (1.3.35)

Selection rules. In compact space-times a p−form symmetry implies selection rules for correlation

functions of p−dimensional operators: a correlator containing extended operators wrapping non-trivial

homologous p−cycles γp,1, γp,2, ..., γp,n can be non-zero only if the p−form symmetry charges of the

operators sum up to zero. Moreover, this selection rule is valid independently for each homology class

of cycles.

The derivation is straightforward. In the correlator, we nucleate a topological operator for the

symmetry element eiα, whose support is not linked with any operator. Then we enlarge the support,

crossing various operators until we shrink the topological operator back to a point. For each crossing,

we get a phase e±iαq, with q the charge of the operator. This process can be done in topologically

distinct ways, each crossing only the operators on a given cycle. The final result, for each distinct

process, is that the correlation function gets multiplied by a phase

exp

(
iα

n∑
i=1

qi

)
(1.3.36)

which must be one to allow a non-zero correlator. For a U(1) symmetry, this implies
∑

i qi = 0, while

for a ZN symmetry, this implies
∑

i qi = 0 mod(N).

Spontaneous breaking and phases of gauge theories. If the space-time is non-compact this

argument may fail. After the topological operator crosses all the extended operators, we remain with

a very big topological operator in the exterior of the region containing all operator insertions. Hence,

to make the previous argument work, we need the extra assumption that this big operator is still the

identity. This is the same as requiring that the vacuum state is invariant, namely that the symmetry

is not spontaneously broken. If this is not the case, then the selection rules are not valid.

To possibly have a violation of the selection rule due to spontaneous symmetry breaking, we

need to place charged extended operators on homologically non-trivial cycles. Consider a 4d SU(N)

gauge theory with adjoint matter (having 1-form symmetry ZN ) on R3 × S1. Place a Wilson loop

in the fundamental representation on S1 and examine its VEV. If non-zero, the 1-form symmetry is

spontaneously broken. In the decompactification limit of S1, the theory is on R4 with the Wilson loop

6As in the 2d compact boson, this includes a counterterm Be ∧ ∗Be that is necessary for gauge invariance
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on a straight line closed at infinity. If the theory confines, the Wilson loop obeys area law, and the

VEV of a large Wilson loop vanishes:

confinement:
〈
W (S1)

〉
∼ e−σA(D2) −→ 0 . . (1.3.37)

If the theory does not confine, this VEV is either a constant (Coulomb phase) or follows perimeter

law. In the second case we can modify the definition of the operator by a counterterm localized on

the line (its line element) to make the VEV a non-zero constant. Hence in both cases we have

deconfinement:
〈
W (S1

∞)
〉
−→ c ̸= 0 . . (1.3.38)

This observation puts confinement and deconfinement phases in the realm of Landau paradigm, which

identifies phases of QFTs in terms of their symmetries and how they are realized on the vacuum [11].

The confinement criterion we discussed, Wilson criterion [63], uses electric probes (Wilson lines),

and cannot be applied if the gauge group does not have a center. However, a second criterion due to ’t

Hooft [64] can be used when π1(G) ̸= 1, and hence there is a magnetic 1-form symmetry. The idea is

that confinement is dually described in terms of monopole condensation, and hence in the presence of

a magnetic symmetry it is detected by spontaneous breaking of it. On the other hand, deconfinement

takes place if ’t Hooft loops have area law.

Spontaneous breaking of finite symmetries: topological order. For ordinary 0-form symme-

tries, spontaneous breaking implies degeneracy of vacua. One might expect the same to be true for

higher-form symmetries. There is, however, a very interesting difference: the number of such ground

states depends on the topology of space. This phenomenon is known as topological order [65, 66].

Consider a gapped theory with spontaneously broken discrete p−form symmetry. Below the gap we

do not have local excitations, hence we can only find a discrete set of vacua. These vacua are mapped

to each other by the action of the topological operators that generate the symmetry. However, if the

space is Sd−1 and p > 0, there is no p− cycle in space, and the symmetry defect acting on the vacuum

is necessarily trivial: even if the symmetry is broken the number of local vacua, namely the vacua on

the sphere, is one. To obtain multiple vacua, we need the space to contain p−cycles. For example, if

Xd−1 = Sd−p−1 × Sp (we assume d ̸= 2p+ 1), then we can wrap the d− p− 1 dimensional topological

symmetry defects on Sd−p−1, and by acting on the vacuum we generate other states. If we have a

symmetry breaking pattern A → B ⊂ A, we will have
∣∣A/B∣∣ vacua. More generally, the number of

vacua on a spatial manifold Xd−1 is the cardinality of

Hd−p−1(Xd−1,A/B) . (1.3.39)

We can reinterpret this fact in terms of an effective low-energy theory below the gap. Since there

are no local excitations, this theory must be topological. Consider again the example of 4d gauge

theories with 1-form center symmetry ZN , and assume it to be in a deconfined gapped phase. All

Wilson lines have perimeter law; hence, they have zero tension at low energy and become topological.

Moreover, we have N topological surfaces Ua=0,...,N−1(γ2) for the 1-form symmetry, which produce

a braiding phase e2πi
ab
N when passing a Wilson line of N−ality b = 0, ..., n − 1. There is a simple

topological theory with N lines and N surfaces with this braiding: a ZN gauge theory. It can be

presented in the continuum [30] in terms of two U(1) gauge fields, a 1-form A and a 2-form B:

S =
iN

2π

∫
X4

A ∧ dB . (1.3.40)
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This is called a BF theory, and we will analyze these simple TQFTs in more detail in Chapter 2.

For the moment let us just notice that it has lines Wa(γ1) = e
ia

∫
γ1
A

and surfaces Ub(γ2) = e
ib
∫
γ2
B

with braiding phase e2π
ab
N . Gauge invariance requires a, b,∈ Z, while the braiding phase is periodic

for shifts of a and b by N , hence a, b ∈ ZN . From the viewpoint of the UV gauge theory, the surfaces

Ub(γ2) are identified with the topological operators of the center symmetry, while the lines Wa(γ1) are

identified with the IR limit of the Wilson lines.

The theory (1.3.40) nicely encodes the vacuum structure. Let us take the spatial manifold to be

S2 × S1, and consider the operators Wa(S
1) and Ub(S

2) acting on the Hilbert space. Due to the

braiding phase they do not commute, but

Wa(S
1) Ub(S

2) = e2πi
ab
N Ub(S

2) Wa(S
1) . (1.3.41)

This is called Heisenberg algebra. The states can be labeled in terms of their eigenvalues for Wa(S
1):

Wa(S
1) |b⟩ = e

2πiab
N |b⟩ . (1.3.42)

By using the algebra we realize that

Ub(S
2) |b′⟩ = |b+ b′⟩ . (1.3.43)

We conclude that there are N ground states mapped among each other by the action of the 1-form

symmetry defect wrapped on S2, and distinguished by the phase of the VEV of the Wilson lines.

Spontaneous breaking of continuous higher-form symmetries. While spontaneous breaking

of finite higher-form symmetries in gapped phases implies topological order, breaking continuous

higher-form symmetries produces Goldstone bosons and requires a gapless theory. For a p−form U(1)

symmetry the Goldstone bosons are p−form gauge fields Ap with a Maxwell action [11]:

S =
1

4e2

∫
Xd

dAp ∧ ∗dAp . (1.3.44)

In the modern perspective the photon is interpreted as the Goldstone boson of the spontaneously

broken magnetic U(1) 1-form symmetry. Indeed, while in a 4d QED-like theories7 the electic 1-form

symmetry is generically explicitly broken by the presence of charged matter, the magnetic symmetry

is robust but spontaneously broken by the VEV of ’t Hooft line operators. Notice that the IR will

contain a decoupled Maxwell sector8, hence also an electric U(1) 1-form symmetry. This is an emergent

symmetry: the matter must be integrated out below the energy scale set by the masses, and hence

the Wilson lines can no longer be cut open at those scales.

Another example is 4d non-Abelian gauge theories in the Coulomb phase. This can be realized

with adjoint scalars that condense and generically break the gauge group as G 7→ U(1)r, with r the

rank of G. In the UV there might be no 1-form symmetry at all. However, below the scale of the

condensation, the theory is effectively Abelian and there is an emergent magnetic 1-form symmetry.

This is also spontaneously broken and implies the existence of r photons in the low-energy spectrum.

How do we understand the explicit breaking of this magnetic symmetry at high energy? The breaking

pattern G 7→ U(1)r implies the presence of dynamical monopoles labeled π2 (G/U(1)r), with a mass

of the order VEVs. The ’t Hooft lines of the low-energy Abelian gauge theory are world-lines of these

massive monopoles that ere effectively probes in the IR. Hence, going up in energy, at scales where the

monopoles become dynamical, the ’t Hooft lines become endable on the monopoles, and the 1-form

magnetic symmetry is broken.

7We assume all the matter fields to be massive, in order to avoid IR divergences that would make the theory ill-defined.
8The electric charge is determined by the smallest mass. Indeed, the running coupling stops at that scale.
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1.4 Gauging finite symmetries

1.4.1 Background fields and anomalies

As we have seen, coupling a continuous symmetry to a flat background is equivalent to inserting

a topological operator. For discrete symmetries we do not have currents, but we extrapolate this

principle and define the coupling with background fields as a network of topological defects. By

construction, a background field for a discrete symmetry A is necessarily flat. The defects of the

network intersect in junctions, as in the right picture in Figure 1.2. For a p−form symmetry the

generic junction is not in codimension two, but in codimension p + 2, and it is made by p + 3 defect

Ua1 , ..., Uap+3 . For consistency

a1 · a2 · · · ap+3 = 1 . (1.4.1)

Using this cocycle condition repeatedly, it is easy to convince himself that, if we go around a con-

tractible cycle, the product of all symmetry transformations is 1. Only if we go around a non-

contractible cycle we can have a non-trivial transformation. This path must be orthogonal to the

planes of the network, hence the cycle needs to be of complementary dimension to the defects: it is

(p+ 1)−cycle.

We can make this description more systematic by using a simplicial decomposition, or triangulation,

S ofXd. A d−dimensional simplex is an open subset bounded by (d+1)−many codimension-one planes,

and we cover Xd with simplices, joining along the planes. S has planes of all possible dimensions: each

plane of dimension n is bounded by n+1 planes of dimension n−1. The topological defects are placed

on the dual triangulation S∗: we place a point at the center of each simplex and join the various points

through edges orthogonal to the codimension one faces of the simplex. We then have two-dimensional

planes orthogonal to codimension-two planes of S, and so on. This means that m−dimensional planes

of S∗ meet in (d −m + 2)−valent junctions9. The defects of a p−form symmetry are of dimension

m = d− p− 1, so their junctions are (p+ 3)−valent, as we wanted.

It is natural to introduce a function that, to any (p+ 1) dimensional plane ∆p+1 of S∗, associates

the symmetry element A(∆p+1) ∈ A of the defect placed on the (d − p − 1)−dimensional orthogonal

simplex Σd−p−1. It is convenient to label the vertices of S∗ with i = 1, 2, ..., so that ∆p+1 is identified

by the p+ 2 vertices delimiting it, and the function A(∆p+1) is represented in components:

Ai0,i1,...,ip+1 ∈ A (1.4.2)

This is called a co-chain A ∈ Cp+1(Xd,A). The cocycle condition (1.4.1) becomes (using additive

notation for A)

(δA)i0,i1,...,ip+2
:= Ai1,i2,...,ip+2 −Ai0,i2,...,ip+2 + · · ·+ (−1)p+2Ai0,i1,...,ip+1 = 0 (1.4.3)

This means that A is a cocycle A ∈ Zp+1(Xd,A) in singular cohomology. This is the precise mathe-

matical concept for a discrete gauge field, and makes much more manageable the definition in terms

of network of topological defects. One way to think about A ∈ Zp+1(Xd,A) is as a map that assigns

an holonomy to each (p+ 1)−dimensional cycle

hol(γp+1) =

∫
γp+1

A ∈ A (1.4.4)

9Indeed m−dimensional planes are orthogonal to (d−m)−dimensional simplices of S, and (d−m+2) of them bound

a (d−m+ 1)−dimensional simplex of S.
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where the integral is obtained by decomposing γp+1 in (p+ 1)−simplices, and summing over the value

of A on all of them.

To gauge the discrete p−form symmetry A, we need to compute the partition function Z[A] as a

function of the background A, and sum over it. Notice that the choice of the precise location of the

simplices is arbitrary and the independence of Z[A] on it is ensured by the topological nature of the

defects. There is one more redundancy that we need to mod-out though. The network of defects can

be modified locally near junctions, using the so-called Pachner moves. For instance, for line defects

in 2d we can perform

a1 a2 a3

a1a2a3

a1a2

a1

a1a2a3

a2 a3

a2a3

This does not change the holonomy hol(γp+1), and the two configurations should be physically indis-

tinguishable. Indeed, one can easily convince himself that they are obtained one from the other by

nucleating a topological defect from a point, and enlarging to adhere to other defects of the network.

In this specific example, it is Ua2 . From the point of view of the cocycle A ∈ Zp+1(Xd,A), this

operation adds a coboundary

A 7→ Aλ = A+ δλ , λ ∈ Cp(Xd,A) , (1.4.5)

and it is interpreted as a gauge transformation for A.

As we emphasized at the end of Section 1.1, introducing junctions requires specifying further data

there. There is no a priori reason why the local modification of the junction must leads to a strict

equality, and might in principle introduce a phase. In the 2d example above it is α(a1, a2, a3) ∈ U(1).

In terms of the gauge field A, we may generically have

Z[A] 7→ Z[Aλ] = α(A;λ)Z[A] (1.4.6)

with α(A;λ) ∈ U(1) that should be expressed as a local function of A and λ. If this phase cannot

be eliminated by redefining the coupling of the theory with A, this represents an inconsistency in

coupling with background: it is a ’t Hooft anomaly. Indeed, even if the symmetry is there and produces

topological operators, as soon as we couple the symmetry with a background, the topological nature of

the defects is broken: nucleating a bubble of the defects does not lead to an equivalent configuration.

A natural example of a discrete ’t Hooft anomaly of this kind arises in 4d N = 1 SYM theory

with gauge group SU(N). The theory has a classical U(1)R R-symmetry, but it suffers from an ABJ

anomaly that reduce the true quantum-machanical symmetry to Z2N ⊂ U(1)R. This inherits the

standard cubic anomaly of the classical U(1)R, hence Z2N has an anomaly (only the Z2 = (−1)F

subgroup is anomaly free), which can be captured by a Pachner move similar to the one above, with

the only difference that it involves five 3-dimensional defects joining to create a sixth one.

If the symmetry is of higher-form, p > 0, there are other types of local modifications of the network

that we should take care of. The prototypical example is for d = 3, p = 1 (with a straightforward

generalization for any d odd and p = d−1
2 ). The topological operators are lines, and they can link
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non-trivially inside the network. Thus, a possible move is

a1 a2 a1 a2

and in general we may get a phase α(a1, a2). If this is non-trivial, we have an ’t Hooft anomaly.

This phase is detected with the action by linking of a symmetry generator on the other: an ’t Hooft

anomaly of this kind arises if the symmetry generator are charged among themselves. The typical

example of this kind of anomaly is 3d U(1)N Chern-Simons theory (see Section 2.3 for details)

S =
iN

4π

∫
X3

A ∧ dA . (1.4.7)

There is a 1-form symmetry ZN generated by the lines Wa = eia
∫
A, a = 0, ..., N−1, that also coincide

with the charged objects since two linked lines of charges a and b give rise to a braiding phase e2πi
ab
N .

This example has many generalizations, but the important thing to notice is that this kind of anomaly

by linking can arise whenever we have two higher-form symmetries of degree p and q, whose topological

defects have the right dimensionality to link, namely p+ q = d− 1.

As for continuous symmetries, also anomalies of discrete symmetries can be canceled by inflow with

a (d+ 1)−dimensional invertible TQFT, which it is coupled with A. Hence, the partition function of

this anomaly theory is Zinflow = e
i
∫
Xd+1

Linflow[A]
, with Linflow[A] a (d + 1)−form that depends locally

on A. An alternative description of the gauge field A, is as a map

A : X → Bp+1A (1.4.8)

with Bp+1A = K(A, p + 1) the classifying space, or, in this case, the Eilenberg-MacLane space [67].

We can generate Linflow[A] taking a class ω ∈ Hd+1(BpA,R/Z) and setting

Linflow[A] = 2πiA∗(ω) . (1.4.9)

Indeed it turns out that the group Hd+1(Bp+1A,R/Z) classifies (bosonic) anomalies for a p−form

symmetry A in d−dimensions.

The specific form of the anomaly theory, written in terms of the background, can often distinguish

between the types of anomalies. For instance, the Pachner move type of anomaly for ZN 0-form

symmetries exists for d even, is classified by Hd+1(BZN , U(1)) ∼= ZN and has inflow action

2πik

N

∫
Xd+1

A ∪ β(A)d/2 , k = 0, ..., N − 1 , (1.4.10)

with β : H1(X,ZN )→ H2(X,ZN ) the Bockstein map associated with the sequence 1→ ZN → ZN2 →
ZN → 1. On the other hand, the braiding type of anomaly can exist as a mixed anomaly between

a p−form symmetry A and a q−form symmetry B, if one group can be understood as the set of

charges for the other, namely B = Hom(A,R/Z) = A∨, and p+ q = d− 1. The two backgrounds are

respectively A ∈ Zp+1(X,A), B ∈ Zd−p(X,A∨), and the anomaly theory is

2πi

∫
Xd+1

A ∪B (1.4.11)
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with ∪ the cup product associated with the canonical pairing A×A∨ → R/Z. If p = q = d−1
2 the two

symmetries can also coincide, but for the anomaly to be non-trivial we need p odd. This is precisely

the case of U(1)N CS theory.

1.4.2 Gauging: twisted sectors and dual symmetry

When the anomaly is non-trivial, the symmetry cannot be gauged. If it vanishes, the gauge invariant

content of the background field is obtained by modding out coboundaries; hence it is described by the

singular cohomology group Hp+1(Xd,A). Now we assume to have a theory T with non-anomalous

p−form symmetry A, and we want to describe the theory T /A after gauging the symmetry. The

partition function is, up to a normalization constant,

ZT /A =
∑

A∈Hp+1(Xd,A)

ZT [A] . (1.4.12)

The topological operators Ua(Σd−p−1) that generates A in the theory T , become trivial in T /A.

Indeed, if we try to insert a topological operator, it can be reabsorbed into the network of defects we

use for the gauging, and since we are summing over all possible networks this operation has no effect.

Equivalently, if we turn on a background A′ the summand becomes ZT [A + A′], and we can simply

shift A 7→ A−A′ in the sum.

However, we can turn on a different background field, that is (d−p−1)−form gauge field valued in

A∨ = Hom(A,R/Z), the Pontryagin dual: given B ∈ Zd−p−1(Xd,A∨) we can modify the path integral

(1.4.12) as

ZT /A[B] =
∑

A∈Hp+1(Xd,A)

exp

(
2πi

∫
Xd

B ∪A
)
ZT [A] . (1.4.13)

Here ∪ is the cup product associated with the natural pairing A × A∨ → R/Z. This suggests that

T /A has a dual symmetry of degree d− p− 2 and based on the group A∨ [11]10. Notice that B must

be a cocycle to not spoil gauge invariance under A 7→ A + δλ. It is already clear from (1.4.13) that

A∨ is anomaly free (B 7→ B + δξ leves ZT /A[B] invariant since δA = 0) and gauging it in T /A brings

back to T (eventually up to an outer automorphism of A):

(T /A) /A∨ ∼= T . (1.4.14)

Indeed (1.4.13) is a sort of discrete Fourier transform, that it is involutive

Z(T /A)/A∨ [A′] =
∑

B∈Hd−p−1(Xd,A∨)

∑
A∈Hp+1(Xd,A)

exp

(
2πi

∫
Xd

(
A′ ∪B +B ∪A

))
ZT [A] = ZT [ϕ ·A] .

(1.4.15)

Here ϕ : A → A is 1 if d is odd, or d and p + 1 are both even, while it is ϕ(a) = −a if d is even and

p+ 1 is odd.

We can describe the dual symmetry concretely. The upshot is that the topological operators

Ũα(Σp+1) are the holonomies of the dynamical gauge field

Ũα(Σp+1) = exp

(
2πiα ·

∫
Σp+1

A

)
, α : A→ R/Z (1.4.16)

while the charged operators are the twisted sectors of A.

10In two dimension this was well known [68].
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Twisted sectors. Let us expand on the second statement. In theory T we have topological operators

Ua(Σd−p−1), and we can try to open the support on a boundary ∂Σd−p−1 = γd−p−2. This operation is

all but trivial: the operator placed on an open manifold is, in general, non-gauge invariant unless we

specify something on the boundary, eventually placing there a non-gauge invariant operator τa(γd−p−2)

that compensates for the anomalous variation. This is called a twisted sector operator (or twist defect)

of theory T : it is a non-genuine (d−p−2)−dimensional operator living at the boundary of a topological

operator. As such, the twist defects are labeled by a ∈ A.

One important observation is that, if the symmetry A acts faithfully, namely there are operators

charged by linking under it, the twist defects cannot be topological: if they were so, we could trivialize

the linking by cutting the topological operator on the twisted sector and contracting it.

Similarly, if the symmetry is faithfully acting but the charged operators are also topological, then

the twisted sector must be empty. Indeed, it must be impossible to cut the topological operator (even

on a non-topological twisted sector), or otherwise we could trivialize the linking by moving the charged

object. This is related with the fact that a symmetry whose charged objects are topological has an ’t

Hooft anomaly.

To give a simple concrete example, consider 4d Maxwell theory, and we focus on the subgroup

ZN ⊂ U(1) of the magnetic 1-form symmetry. Their topological operators are

Ua(Σ2) = exp

(
2πi

a

N

∫
Σ2

F

2π

)
, a = 0, ..., N − 1 . (1.4.17)

Making Σ2 open, ∂Σ2 = γ1, is inconsistent unless we add a wrongly quantized Wilson line on the

boundary

W a
N

= e
ia
N

∫
γ1
A
. (1.4.18)

Therefore this wrongly quantized line lives in the twisted sector of the magnetic 1-form symmetry.

A general explicit description of the twisted sectors can be given in the cochain description of the

background field A ∈ Cp+1(Xd,A). A sensible background field is closed δA = 0, and this is equivalent

to satisfying the cocycle condition at all junctions. If, however, we want to include an open defect, we

need to relax δA = 0 at the location of the boundary. Specifically we impose

δA = z , z ∈ Zp+2(Xd,A) . (1.4.19)

The cocycle z specifies the location of the twist defect: it is the Poincare’ dual of γd−p−2, where the

defect is located. This means that if we allow Ua(Σd−p−1) to end on τa(γd−p−2), the cocycle z assigns

a ∈ A to the (p+ 2)−simplex ∆p+2 orthogonal to γd−p−2. In particular, the boundary Γp+1 = ∂∆p+2

links with γd−p+2, and we have

a =

∫
∆p+2

z =

∫
Γp+1

A = hol(Γp+1) . (1.4.20)

This has a clear interpretation: the holonomy of A around a cycle that links with the support of the

twist defect is nothing but the symmetry transformation going around this cycle, that is the label of

the twist defect.

Notice that a twisted sector can contain several operators. For instance if the theory has genuine

(d−p−2)−dimensional operators, we can bring them at the boundary of Ua(Σd−p−1), thus producing

various different twist defects that specify the same holonomy of A around them. One case to notice is

when p = d−2
2 , since d−p−2 = p and so the operators charged under A have the same dimensionality of

the twist defects, and we can construct new operators by bringing them at the boundary of Ua(Σd−p−1).

The resulting twist defects will also get a charge by linking under A.
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When we gauge A we only keep A-invariant operators: inserting a non-invariant operator in a

correlation function gives a vanishing answer. Moreover, the A symmetry defect becomes trivial, and

as a consequence the A-singlet operators living in the twisted sectors become genuine. These are

τa(γd−p−2), explaining why the dual symmetry is of degree d − p − 2, and the underlying group is

A∨: A ∼= (A∨)∨ is now the set of charges. In fact, from the description we just gave of the twisted

sectors, it is clear why τa(γd−p−2) is charged under the new topological operators Ũα(Σp+1) defined in

(1.4.16): they evaluate the holonomy around Σp+1 in the representation α ∈ A∨, but by construction

the holonomy around a twist defect is a, hence we get a braiding phase e2πiα(a).

An equivalent way of deriving this fact is by noting that inserting Ũα(Σp+1) with Σp+1 a contractible

surface that links with γd−p−2, is equivalent to activating a specific configuration of B = δξ in ZT /A[B],

with
∫
γd−p−2

ξ = α. This does not modify the partition function, but it is a non-trivial operation if we

insert a twist defect τa(γd−p−2): A fails to be closed there, and

2πi

∫
Xd

B ∪A = (−1)d−p2πi

∫
Xd

ξ ∪ z = (−1)d−p2πi

∫
γd−p−2

ξ(a) = 2πiα(a) . (1.4.21)

Discrete torsion. When we gauge the p−form symmetry A we can, in general, twist the sum

(1.4.13) by adding discrete torsion. We take a cohomology class ν ∈ Hd(BpA,R/Z) and construct the

theory T /Aν whose partition function is

ZT /Aν [B] =
∑

A∈Hp+1(Xd,A)

exp

(
2πi

∫
Xd

B ∪A+A∗(ν)

)
ZT [A] . (1.4.22)

This can be understood as a two-steps process:

1. First, we stack a d−dimensional SPT phase on T . The SPT phase has p−form symmetry A
and partition function ZSPT[A] = e

2πi
∫
Xd

A∗(ν)
. This operation is the same as modifying T by a

local counterterm.

2. Second, we gauge A is the combined system T +SPT.

The first operation makes the twist defects τa(γd−p−2) no longer transparent to the action of the

topological operators Ub(Σd−p−1). In fact, inserting a twist defect modifies the cocycle condition to

δA = z, and the term 2πi
∫
A∗(ν) will generally fail to be gauge invariant under A 7→ A+ δλ.

It is complicated (and not very illuminating) to try to determine in full generality the interplay be-

tween the twist defects and the symmetry A, since the net effects are qualitatively different depending

on d, p and the discrete torsion ν. Moreover, depending on the actual effect, the sharp consequence of

the gauging is different. We will see various examples later on. Here we just point out one possibility.

If p = d−2
2 , notice that (d− p− 2) + (d− p− 1) = d− 1, so the symmetry defect Ub(Σd−p−1) can link

with τa(γd−p−2). Moreover, for dimensional reasons, in this case A∗(ν) can be a quadratic function

of A. For example, for d = 2, p = 0, an element ν ∈ H2(BA,R/Z) defines an antisymmetric product

χν : A× A→ R/Z [69] and

2πi

∫
X2

A∗(ν) = 2πi

∫
X2

χν (A,∪A) . (1.4.23)

Similarly for d = 4, p = 1, ν ∈ H4(B2A,R/Z) defines a symmetric product χν : A × A → R/Z
that allows to write a similar expression. In both cases, if we perform a gauge transformation A 7→
A+δλ that corresponds to shrinking the defect Ub(Σd−p−1) around τa(γd−p−2) (namely

∫
γd−p−2

λ = b),

we see that the discrete torsion makes the twist defect charged under A, giving a braiding phase

exp (2πiχν(a, b)). Because of this, when we gauge A the twist defects are not gauge invariant and do
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not become genuine (d − p − 2)−dimensional operator of T /Aν . Rather, we need to combine them

with other charged objects under A, which also become non-gauge invariant, to create gauge invariant

defects.

The result is that the theory T /Aν still has dual symmetry A∨, but the charged objects are a

combination of the twist defects and the operators charged under A in T . The story for p ̸= d−2
2 and

different forms of the discrete torsion can be qualitatively different.

1.4.3 Examples

2d Ising CFT. The 2d Ising CFT is the simplest minimal model (see [70]). It has c = 1
2 and three

primaries:

1 : (h, h) = (0, 0) , σ(x) : (h, h) =

(
1

16
,

1

16

)
, ϵ(x) : (h, h) =

(
1

2
,

1

2

)
. (1.4.24)

The CFT can be realized as the phase transition of the 2d ϕ4 theory

L = (∂ϕ)2 +m2ϕ2 + λϕ4 . (1.4.25)

This has a Z2 symmetry ϕ 7→ −ϕ. For large m2 > 0 the theory is gapped and Z2 is preserved, while

for large m2 < 0 the theory is still gapped, but Z2 is spontaneously broken and there are two vacua.

Hence, there is a phase transition on the m2 axis (conventionally we can take it at m2 = 0), which

turns out to be of second order, and is described by the Ising CFT. σ(x) is the low energy limit of

ϕ(x), while ϵ(x)↔ ϕ2(x). Hence, the Z2 0-form symmetry acts on the CFT flipping the sign of σ(x),

while leaving ϵ(x) invariant.

Let us denote by η the topological line that generates the Z2 symmetry. It can end on a point

operator µ(x), the disorder operator

η

µ(x)

Modular invariance of the torus partition function with the η line inserted, relates the trace of the

identity operator on the twisted Hilbert space, with the trace of η on the untwisted Hilbert space.

This can be used to show that µ(x) has the same conformal weights (h, h) =
(

1
16 ,

1
16

)
as σ(x) (see,

e.g., [71] for a detailed discussion). Moreover, µ(x) is neutral under the Z2 symmetry11.

Gauging Z2 amounts to sum over all networks of η, or equivalently a gauge field A ∈ H1(X2,Z2).

η becomes transparent, while we get a new topological line

η̃ = eiπ
∫
A (1.4.26)

that generates the dual Z2 = Z∨
2 0-form symmetry. µ(x) becomes a genuine local operator and is

charged under the dual symmetry. On the other hand σ(x) is no longer a gauge invariant operator,

since it transforms under a non-trial representation of the gauge symmetry. We can make a gauge

11There are other two operators ψL(x), ψR(x) in the twisted sector, with weights
(
1
2
, 0
)
and

(
0, 1

2

)
, and they are

charged under Z2.
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invariant operator by attaching σ(x) at the end of a Wilson line constructed with the Z2 gauge field:

this is nothing but η̃. Therefore, in Ising/Z2, σ(x) lives in the twisted sector of the dual Z2 symmetry.

Notice that the situation is perfectly symmetric between σ(x) and µ(x) in the two theories, Ising

and Ising/Z2. Gauging Z2 has just reshuffled the information between the twisted and untwisted

sectors, but nothing physical really changed.

Moreover, while most of the things we said are valid in any 2d theory with a Z2 symmetry, the

Ising CFT is completely determined by its primaries and their conformal dimensions. Therefore, the

CFT Ising/Z2 is physically indistinguishable from Ising: the two theories are dual. This is the famous

Kramers-Wannier duality [72].

Finally, we notice that we cannot twist this story with discrete torsion, since H2(BZ2,R/Z) = 0.

Four-dimensional gauge theories. We consider 4d gauge theories whose gauge group has Lie

algebra su(N). The discussion here applies to both Yang-Mills theories or gauge theories with only

adjoint matter. As emphasized in [42], to completely specify the theory, one needs to choose a global

form of the gauge group, and to specify what the set of genuine line operators is inside the lattice of

all possible Wilson-’t Hooft lines [73]. All of these choices are obtained one from the other by gauging

the 1-form symmetry, possibly with discrete torsion [30].

Let us start from the SU(N) gauge theory. Here we have Wilson lines in all representations that are

charged under the electric 1-form symmetry ZN . To understand the result of the gauging, we use again

the description in patches Ui of the 1-form symmetry, which acts by redefining the transition functions

gij 7→ gijtij , tij ∈ Z(SU(N)) = ZN , and tijtjktki = 1. Turn on a background field B ∈ H2(X4,ZN ) for

the 1-form symmetry. Since δB = 0, locally B = δt, with t a locally defined 1-cochain, valued in ZN .

This modifies the transition functions as gij 7→ g̃ij = gijtij . However, the new transition functions do

not satisfy the SU(N) cocycle condition, but

g̃ij g̃jk g̃ki = wijk ∈ ZN , wijk = tij tjk tki = Bijk . (1.4.27)

This is not a good SU(N) bundle: it is a ”singular” bundle, that is a PSU(N) = SU(N)/ZN bundle

whose characteristic class [w] ∈ H2(Xd,ZN ) is fixed to be w = B.

The bottom line is that the partition function ZSU(N)[B] of the SU(N) theory coupled with a

background B ∈ H2(X4,ZN ) for the 1-form symmetry is obtained by performing the path integral

over all PSU(N) connections whose characteristic class is w = B. If follows immediately that by

gauging the 1-form symmetry we get the PSU(N) gauge theory:∑
B∈H2(X4,ZN )

∫
w=B

D[APSU(N)] e
−S =

∫
D[APSU(N)] e

−S (1.4.28)

The dual symmetry is generated by the surfaces operators

Ũα(Σ2) = e
i α
N

∫
Σ2

B
(1.4.29)

and because B = w, these are nothing but the topological operators (1.3.28) for the magnetic 1-form

symmetry π(PSU(N))∨ = Z∨
N
∼= ZN : the dual of the electric symmetry is the magnetic one.

Regarding the charged objects, we already know that line operators charged under the magnetic

symmetry are the ’t Hooft lines. In the SU(N) theory they are indeed non-genuine, and only exist

at the boundary of the electric 1-form symmetry generators. In other words, they are twist defects

that become genuine after the electric symmetry is gauged. Conversely, the Wilson lines of the SU(N)

theory become non gauge invariant in the PSU(N) version. Since we know that gauging the magnetic

49



symmetry of PSU(N) should bring us back to the SU(N) theory, the Wilson lines must be non-genuine

and live in the twisted sector of the magnetic symmetry. Specifically, a Wilson line in a representation

R on N−ality α ∈ ZN lives at the boundary of Ũα.

From this presentation is appears manifest the parallel with the Ising story: we just replaced 2d

with 4d, 0-form with 1-form, and Z2 with ZN . Clearly, however, a generic SU(N) gauge theory has

many more element and operators that Wilson and ’t Hooft lines, hence differently from the Ising case

we cannot claim that the SU(N) and the PSU(N) theories are equivalent. It turns out, however, that

is some special theories the matching of the 1-form symmetries is one of the ingredients that strongly

suggest the existence of a duality between the two theories. This is the case in N = 4 SYM theory at

τ = i, and the duality is the Montonen-Olive duality, or S-duality [74].

Obviously, there are other global forms of the gauge group. If N has a divisor k, then there is a

subgroup Zk ⊂ ZN of the center and we can have the group SU(N)/Zk. It should be clear from the

above discussion that this can be realized by gauging the subgroup Zk ⊂ ZN of the electric 1-form

symmetry of SU(N).

These are not all global variants of SU(N) gauge theories: there can be theories with the same

gauge group, but a different choice of genuine lines. They are obtained from the SU(N) theory by

gauging the 1-form symmetry with discrete torsion. Indeed H4(B2ZN ,R/Z) ∼= Zgcd(N,2)N , and we can

modify the SU(N) theory coupled with a background B ∈ H2(X4,ZN ) by stacking an SPT phase12

2πir

2N

∫
X4

B ∪B , r = 0, ..., N − 1 . (1.4.30)

As we explained below (1.4.23) this modifies the charges of the twisted sectors, namely the ’t Hooft

lines here, under the electric 1-form symmetry. In particular, a ’t Hooft line Ha of charge a ∈ ZN
under the magnetic 1-form symmetry of PSU(N), in the theory SU(N) + 2πir

2N

∫
X4
B ∪ B becomes

charged under the electric 1-form symmetry, with charge (ra) mod(N). If this is non-trivial, after

gauging Ha will not become a genuine line. This does not mean that the dual symmetry is modified

or acts non-faithfully: we can combine Ha with a Wilson line of charge −ramod(N) under the electric

symmetry, to create a dyonic line. This dyonic line lives in the same twisted sector as Ha is the

SU(N) variant, but being uncharged under the electric symmetry becomes genuine after gauging ZN .

The resulting theory is denoted by PSU(N)r. It is a gauge theory with gauge group PSU(N), but

where the lines with fundamental charge under the magnetic 1-form symmetry is HW−r, with H the

fundamental ’t Hooft line and W−r the Wilson line of N−ality (−r) mod(N).

For instance, if N is a prime number, all ’t Hooft lines are charged under the electric symmetry,

and hence in PSU(N)r all the lines are dyonic if r ̸= 0. In total, there are N + 1 global variants, the

SU(N) theory and N PSU(N)r theories with r = 0, ..., N − 1.

An other interpretation of r, or more precisely of 2πr
N , is as a discrete theta-angle. To understand

this, let us consider how the story considered so far is modified by adding a theta-term in the SU(N)

theory

Sθ =
iθ

8π2

∫
X4

Tr(F ∧ F ) = iθ

∫
X4

c2(A) . (1.4.31)

Here c2(A) ∈ H4(X4,Z) is the second Chern-class of the SU(N) bundle, and its integral is an integer.

Therefore, θ is 2π periodic.

We then gauge ZN (without discrete torsion) to obtain the PSU(N) theory. The crucial step

(1.4.28) is still valid, but is less innocent than for θ = 0. In fact, in a PSU(N) bundle, the instanton

number 1
8π2

∫
Tr(F ∧F ) is not necessarily an integer, but can be an integral multiple of 1/N . PSU(N)

12Here we assume X4 to be spin, so that
∫
X4
B ∪B is even. Hence r ∼ r +N also for N even.
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bundles with integral instanton numbers are precisely those that can be lifted to SU(N) bundles, while

in general
1

8π2

∫
X4

Tr(F ∧ F ) =

∫
X4

c2(A) +
2π

2N

∫
X4

w ∪ w . (1.4.32)

The immediate consequence is that θ is no-longer 2π-periodic, but θ ∼ θ+ 2πN . Moreover, since w is

identified with B ∈ H2(X4,ZN ), shifting θ 7→ θ+2πr in the PSU(N) theory is equivalent to modifying

the action by

∆S =
2πir

2N

∫
X4

B ∪B . (1.4.33)

This is precisely the discrete torsion (SPT) (1.4.30) we added to construct the PSU(N)r theory.

Therefore, different gauge theories with PSU(N) gauge group are obtained one from the other shifting

θ by an integer multiple of 2π.

This fact also provides a nice physical interpretation for the modification of the genuine line

operators in the various versions: the ’t Hooft lines get a charge under the electric 1-form symmetry

if r ̸= 0 because of the Witten effect [75]. A magnetic monopole of magnetic charge qm acquires an

electric charge in the presence of a theta-angle

qe =
qmθ

2π
. (1.4.34)

The integer part of θ
2π precisely reproduce the charge of the ’t Hooft line under the electric 1-form

symmetry.

4d N = 1 SU(N) SYM. 4d N = 1 SYM theory with gauge group SU(N) provides an interesting

example of a mixed ’t Hooft anomaly involving the 1-form symmetry. The theory has a chiral Z2N

0-form symmetry acting on the gaugino

Z2N : λ→ e
2πim
2N λ , m = 0, ..., 2N − 1 (1.4.35)

and we have already seen that it has a pure anomaly. However, there is also a 1-form symmetry ZN ,

and the two have a mixed anomaly.

To see this we use that the the theory has a classical symmetry U(1)R, λ → eiαλ which does not

leave invariant the path integral measure, changing it by the exponential of

δαS =
iαN

4π2
Tr(F ∧ F ) . (1.4.36)

This is equivalent to a shift of the theta-angle

λ→ eiαλ ⇐⇒ θ → θ + 2Nα . (1.4.37)

The subgroups Z2N ⊂ U(1)R remains at the quantum level because for α = 2πr
2N , θ shifts by 2πr.

However, this is not a trivial operation as soon as we turn on a background field B ∈ H2(X4,ZN )

for the 1-form symmetry. As we have seen, the action shifts by (1.4.33). Unlike what happened in

the PSU(N) theory, we do not go to a different global variant, but we multiply the path integral by

a B-dependent phase. To be more precise, consider coupling the theory both to B and a background

field A ∈ H1(X4,Z2N ) for the Z2N 0-form R-symmetry. A gauge transformation A → A + δη with

η = r ∈ Z2N constant is equivalent to θ → θ + 2πr and produces a phase in the path integral

exp

(
2πir

2N

∫
X4

B ∪B
)
. (1.4.38)
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This cannot be cancelled by modifying the action with a local counterterm of A and B. It represents

a mixed anomaly between Z2N and ZN with inflow action

Sinflow =
2πi

2N

∫
X5

A ∪B ∪B . (1.4.39)

A very similar anomaly exists in pure SU(N) Yang-Mills (YM) theory at θ = π, involving time

reversal and the 1-form center symmetry, and provides a very strong evidence that time reversal is

spontaneously broken [76].

1.5 Symmetry fractionalization

The coexistence of various symmetries, generally of different degrees, can make the computation of

their anomalies ambiguous, as pointed out in [15, 53, 54] which we briefly review. The phenomenon

discussed here will be relevant for Chapter 6 and Section 9.3.3. The slogan is that:

• Since anomalies are a lack of invariance of the path-integral under background gauge transforma-

tions, they can be uniquely determined only once we specify completely how the theory couples

to background fields.

If the theory has various symmetries, the coupling to the background can mix them by activating

certain fractionalization classes.

Consider, for instance, a 4d theory with a finite Abelian 0-form symmetry G, and a finite Abelian

1-form symmetry A, with mixed anomaly13

Smixed = 2πi

∫
X5

µ(A) ∪P(B) (1.5.2)

with A ∈ H1(X,G), B ∈ H2(X,A) and µ ∈ H1
(
BG,H4(B2A,R/Z)

)
the class specifying the anomaly.

The mixed anomaly of 4d N = 1 SYM is an example of this for G = Z2N and A = ZN .

The 0-form symmetry can also have a pure, cubic anomaly

Spure = 2πik

∫
X5

A ∪ β(A)2 (1.5.3)

specified by a class k ∈ H5(BG,R/Z). However, its value is ambiguous. It can be shifted by modifying

how the theory couples to the background fields, formally replacing

B 7→ B′ = B +A∗(η) (1.5.4)

where η ∈ H2(BG,A) is called fractionalization class. This modifies Spure by

∆Spure = 2πi

∫
X5

µ(A) ∪P(A∗(η)) = 2πi∆k(µ, η)

∫
X5

A ∪ β(A)2 . (1.5.5)

∆k(µ, η) ∈ H5(BG,R/Z) is the shift of the anomaly.

13See Appendix C for discussion of this topological action. The bottom line is that P(B) = B∗P ∈ H4(X,Γ(A)), with
P ∈ H4(B2A,Γ(A)) the Pontryagin square, and Γ(A) ∼= H4(B2A,R/Z)∨ the universal quadratic group. The anomaly is

specified by a class µ ∈ H1
(
BG,H4(B2A,R/Z)

)
and written as

2πi

∫
X5

µ(A) ∪P(B) , (1.5.1)

with the cup product associated with the canonical pairing Γ(A)∨ × Γ(A) → R/Z.
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The shift (1.5.4) has the following interpretation. If we started from a reference coupling of G and

A to the backgrounds, the shift tells us that the new background for A is B +A∗(η). In particular, a

background A for the 0-form symmetry also activates a background for the 1-form symmetry. At the

level of topological defects, a network of G defects must also introduce A defects. Since η ∈ H2(BG,A),

A∗(η) is quadratic in A, which means that the (codimension two) junctions of codimension one defects

Ug(Σd−1) of the 0-form symmetry are dressed by a defect Va(Σd−2) of the 1-form symmetry, with

a = η(g, h):

Ug(Σd−1)

Uh(Σ′
d−1)

Ugh(Σ′′
d−1)

Vη(g,h)(Σd−2)

The fact that η(g, h) must be a 2-cocycle is a consequence of requiring associativity of the fusion of

G-defects. This is the same as asking the absence of a non-split 2-group structure [15, 53].14.

Since there are lines charged under the defects Va(Σd−2) of the 1-form symmetry A, a non-trivial

fractionalization class η ∈ H2(BG,A) implies that these lines transform non-trivially under the 0-form

symmetry G. Since this effect arises only by putting two G-defects together, η specifies a projective

representation of the lines under the 0-form symmetry.

This observation has a beautiful physical interpretation that explains the name symmetry frac-

tionalization. The theory we are discussing can arise as the IR of some microscopic model where the

1-form symmetry is absent because of the presence of massive degrees of freedom that screen the lines

at higher energy. The IR lines are thought of as the world-lines of these massive particles. The fact

that they transform projectively under G, means that the massive particles in the UV also transform

projectively. Hence the faithfully acting 0-form symmetry group in the microscopic theory is a central

extension

1 −→ A −→ G̃ −→ A −→ 1 (1.5.6)

specified by η ∈ H2(BG,A).

From the UV point of view, we just started from a larger 0-form symmetry group G̃, where the

only degrees of freedom charged under A ⊂ G are also charged under the center of a gauge group G.

More precisely, the total (global times gauge) UV group is(
G̃× G

)
/A . (1.5.7)

The matter charged under A is massive, and integrating it out gives rise to an emergent 1-form

symmetry A at low energy. The non-trivial extension determines a non-trivial fractionalization class.

If the emergent 1-form symmetry has a mixed anomaly with the quotient G = G̃/A, then this also

determines an emergent anomaly for G (see Chapter 7 for a class of very similar phenomena).

14This is measured by the Postnikov class β ∈ H3(BG,A), that is in fact sometimes called obstruction to symmetry

fractionalization [77].
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Let us remark that not only a mixed anomaly, but also a pure anomaly for the 1-form symmetry

can do the job. For instance in 3d the 1-form symmetry can have a pure anomaly that is quadratic

in the background field (e.g. if we have a gauge group with a Chern-Simons level), and a non-trivial

fractionalization class can induce a pure anomaly for the 0-form symmetry15.

Although this nice interpretation in terms of symmetry extension in the UV is really tight to the

mixture of 0- and 1-form symmetries, the idea that changing the coupling to the background of the

higher-form symmetry can modify the 0-form symmetry anomaly is general. If we have a p−form

symmetry A and a 0-form symmetry G, the generic junction of (p + 1) 0-form symmetry defects

Ug1 , ..., Ugp+1 to create a further one Ug1···gp+1 , is of codimension p+ 1, and can be dressed by a defect

Vη(g1,...,gp+1) of the p−form symmetry. Here η ∈ Hp+1(BG,A). This amounts to modify the coupling

with background fields by shifting

Bp+1 7→ B′
p+1 = Bp+1 +A∗(η) , Bp+1 ∈ Hp+1(Xd,A) , A ∈ H1(Xd, G) . (1.5.8)

A mixed G − A anomaly, or a pure anomaly for A, will modify the pure anomaly for G. We will

continue to refer to this phenomenon as (higher) symmetry fractionalization, although the name is

more appropriate to the case p = 116. In Section 9.3.3 we will also see a generalization to the case of

continuous symmetries.

15This requires G to be the product of at least two cyclic groups, since H4(BZN ,R/Z) = 0.
16In Chapter 6, to offer a unified viewpoint, we will use the same name also in the case p = 0, where what happens is

just coupling the background to a diagonal symmetry.
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Chapter 2

A TQFT primer

In this chapter we introduce the basic tools of Topological Quantum Field Theories (TQFTs) that will

be of great importance in the following chapters. Physically, TQFTs are a special type of QFTs with

vanishing stress-energy tensor. As such, they provide the low-energy effective description of gapped

systems. All observables are independent on the space-time metric; hence these theories can be

formulated on smooth manifolds, without introducing a Riemannian structure. Intuitively, this means

that the theory does not have propagating degrees of freedom. This is the basic fact that allows to

define in a mathematically rigorous way the path integral of the theory. We start by reviewing these

definitions somewhat abstractly, and we gradually move to more concrete approaches and techniques

that will be used in the rest of the thesis.

2.1 TQFT axioms

The idea to define a d−dimensional TQFT [78], is to extrapolate the properties that a path integral

based on a generally covariant action should have, and promote them to axioms (see [79] for a detailed

review on the material of this subsection). We view the path integral as a function of the space-time

manifoldMd. This that can be closed, hence the path integral must give back a number Z(Md) ∈ C,

the partition function, or can have a boundary Xd−1 = ∂Md. In the second case, to get a number,

we need to fix boundary conditions for the field Φ|Xd−1
= φ. Hence we have a functional Z(Md)[φ]

of the boundary condtion φ, that we view as an element of a vector space HXd−1
associated with

the boundary Xd−1. This is a model of a space-like slice, to which the quantum theory associates a

states-space. Moreover, ifMd has two boundaries, the path integral computes the evolution from the

state in one boundary to that in the other. This is a linear map between the two vector spaces.

The space of manifolds, on which the path integral is seen as a function, is formalized in terms of

oriented bordism category BordSO
d . Objects are closed-oriented (d− 1)−dimensional manifolds Xd−1,

while morphisms Yd : Xd−1 → X ′
d−1 are oriented bordisms. This is a d−dimensional oriented manifold

Yd with boundary ∂Yd = Xd−1 ⊔ X
′
d−1 (the bar denotes the orientation reversal), together with a

choice of incoming and outgoing components, Xd−1 and X
′
d−1, respectively. This choice is a pair

of embeddings ιin : Xd−1 → ∂Yd, ιout : X ′
d−1 → ∂Yd, where the first preserves the orientation, and

the second reverses it. Notice that the same manifold Yd can be viewed as a bordism in various

ways, depending on the choices of the in- and out-components. The composition of two bordisms

Yd : Xd−1 → X ′
d−1, Y

′
d : X ′

d−1 → X ′′
d−1 is obtained as follows. By definition ∂Yd = Xd−1 ⊔ X

′
d−1,

∂Y ′
d = X ′

d−1⊔X
′′
d−1, so that we can construct a manifold Y ′

d#Yd by gluing along X ′
d−1, which appears

with opposite orientations in the two factors. The result of the gluing is seen as a bordism Y ′
d ◦ Yd :
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Xd−1 → X ′′
d−1. The category BordSO

d also has a monoidal structure, namely there is a sense of

compositing two objects, simply taking the disjoint union of closed (d− 1)−dimensional manifolds.

Atiyah [78] defines a d−dimensional TQFT as a symmetric monoidal functor

Z : BordSO
d → VecC . (2.1.1)

The target is the monoidal category of topological complex vector spaces, where the monoidal structure

is given by the tensor product. The functor assigns a vector space HXd−1
= Z(Xd−1) to any closed

manifold, with the property that

Z(Xd−1 ⊔X ′
d−1) = Z(Xd−1)⊗ Z(X ′

d−1) . (2.1.2)

Given a bordism Yd : Xd−1 → X ′
d−1, the functor Z associates a linear map

Z(Yd) : HXd−1
→ HX′

d−1
. (2.1.3)

Functoriality means that, if Yd : Xd−1 → X ′
d−1 and Yd : X ′

d−1 → X ′′
d−1 are glued to create Y ′

d ◦ Yd :

Xd−1 → X ′′
d−1, the linear map Z(Y ′

d ◦ Yd) : HXd−1
→ HX′′

d−1
is the composition

Z(Y ′
d ◦ Yd) = Z(Y ′

d) ◦ Z(Yd) . (2.1.4)

This is the basic property that we want to ask to the path integral, namely locality : if we perform the

path integral on a manifold, we must be able to cut it in smaller pieces, compute the path integral on

each of them and then reconstruct the full answer by putting the pieces together.

Let us list some immediate consequences of the definition.

• The empty d− 1 dimensional manifold is the identity for the disjoint union, hence H∅ = C.

• A closed manifold Yd can be viewed as a bordism ∅ → ∅, hence the functor produces a linear

map C→ C that is uniquely identified with a number

Z(Yd) ∈ C . (2.1.5)

This is the partition function on the closed manifold.

• Given a manifold Yd with boundary ∂Yd = Xd−1, we can view it as bordism in two ways. Either

Y
(out)
d : ∅ → Xd−1 or Y

(in)
d : Xd−1 → ∅. In the first case, the functor produces a linear map

C→ HXd−1
that selects a vector

V (Yd) = |Yd⟩ ∈ HXd−1
(2.1.6)

as the image of 1 ∈ C. In the second case, we get HXd−1
→ C, namely a linear functional

α(Yd) = ⟨Yd| ∈ H∨
Xd−1

(2.1.7)

• The orientation reversal Y d has boundary ∂Y d = Xd−1, hence we have a bordism Y
(out)
d :

∅ → Xd−1 and a bordism Y
(in)
d : Xd−1 → ∅. These define respectively |Y d⟩ ∈ HXd−1

and

⟨Y d| ∈ H∨
Xd−1

. By composing Y out
d : ∅ → Xd−1 above with Y

in
d : Xd−1 → ∅ we get a bordism

Md : ∅ → ∅ associated with the closed manifold constructing by gluing Yd with its orientation

reversal along the common boundary. The functor gives

Z(Md) = ⟨Y d|Yd⟩ =
〈
V (Yd) , V (Yd)

〉
∈ C , (2.1.8)
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that is the norm of the vector V (Yd). More generally, given two manifolds Yd, Y
′
d with the

same boundary Xd−1 we can glue them constructing a closed manifold Yd#Y
′
d and its partition

function is

Z(Yd#Y
′
d) = ⟨Y ′

d|Yd⟩ =
〈
V (Y ′

d) , V (Yd)
〉
∈ C , (2.1.9)

which is the scalar product between states V (Yd), V (Y ′
d).

Notice that we have not endowed the Hilbert spaces HXd−1
with an extra inner structure: this is

automatically given by the functor Z and the composition of bordisms. However, if we want a unitary

TQFT we need to further require the scalar product to be Hermitian and positive definite.

Cylinder constructions Given a closed Xd−1 we can construct the cylinder Xd−1 × [0, 1]. It can

be viewed as a bordism in three distinct ways.

1. As I : Xd−1 → Xd−1. We can represent it graphically as a straight cylinder:

I =

X
(in)
d−1 X

(out)
d−1

This satisfies I2 = I, that is, Z(I) : HXd−1
→ HXd−1

is a projector. Up to restricting every

vector space to the image of Z(I), we can assume1

Z(I) = idHXd−1
. (2.1.10)

Physically, this is the statement that the time-evolution is trivial, hence the Hamiltonian on any

space-like slice is zero, and so is the stress-tensor. In particular, the theory does not have any

propagating degree of freedom.

2. As a bordism Xd−1 ⊔Xd−1 → ∅, that we represented as the downwards horseshoe

Xd−1 Xd−1

The image under the functor η(Xd−1) : HXd−1
⊗HXd−1

→ C is a bilinear pairing between HXd−1

and HXd−1
. Choosing two basis {ea}, {ea} this can be represented by

ηab = η(ea, eb) ∈ C . (2.1.11)

3. As a bordism ∅ → Xd−1 ⊔Xd−1, that we represent graphically as the upwards horseshoe

Xd−1 Xd−1

1Without this restriction the theory is non-unitary
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The image under the functor γ(Xd−1) : C→ HXd−1
⊗HXd−1

gives a distinguished vector, as the

image of 1. In a basis

γ(Xd−1)(1) =
∑
a,b

γab ea ⊗ eb . (2.1.12)

These three maps constructed out of the cylinder have a relation among them: gluing the left out-going

boundary of the upwards horseshoe with the right in-coming boundary of the downwards horseshoe

we get the cylinder Xd−1 → Xd−1. Similarly gluing the right out-going boundary of the upwards

horseshoe with the left in-coming boundary of the downwards horseshoe gives the oppositely oriented

cylinder Xd−1 → Xd−1. These translate into a conditions for ηab and γab:∑
ab

η(v, ea)ebγ
ab = v ,

∑
ab

η(eb, v)eaγ
ab = v , ∀v ∈ HXd−1

, ∀v ∈ HXd−1
. (2.1.13)

Setting v = ec, v = ec we get ∑
a

ηcaγ
ab = δ bc ,

∑
b

γabηbc = δab (2.1.14)

namely γ and η are one the inverse of the other. In particular η(Xd−1) gives a non-degenerate pairing

that produces an isomorphism

HXd−1

∼= H∨
Xd−1

. (2.1.15)

Gluing rules Practically, to define a TQFT in this language, one wants to define a certain set of data,

namely the result under the functor of simple bordisms that can be glued together to construct more

complicated ones. The objects just introduced (η and γ) are important to reverse the orientations. In

particular η can convert an out-going boundary Xd−1 into in in-coming boundary Xd−1, while γ does

the opposite.

In practice, we choose a basis for any Hilbert space HXd−1
, and for any d−dimensional manifold

Yd with connected boundary components incoming and outgoing, respectively Xi
d−1,in, i = 1, 2, ...

and Xj
d−1,out, j = 1, 2, ... we assign a tensor Z(Yd){ai},{bj}. This specifies the linear map

⊗
iHin,i →⊗

j Hout,j

Z(Yd)

(
ea1 ⊗ ea2 ⊗ · · ·

)
=
∑
bj

Z(Yd){ai},{bj}

(
eb1 ⊗ eb2 ⊗ · · ·

)
. (2.1.16)

Clearly, a disconnected bordism gives a tensor that is just the product of the two. Then we can start

attaching various pieces and generate other tensors. The common boundaries along which we glue

must have opposite orientations. However, while the gluing is simply the composition in the case in

which one boundary is incoming and the other is outgoing, when are both incoming (or both outgoing)

we use ηa,b. More concretely, let Yd be a (possibly disconnected) bordism ⊔iXi
d−1,in → ⊔jX

j
d−1,out. If

X1
d−1,in = X1

d−1,out, then we can generate Ỹd by gluing the two, and the associated tensor is

Z
(
Ỹd

)
{a2,...,},{b2,...}

=
∑
a1

Z (Yd){a1,a2,...,},{a1b2,...} . (2.1.17)

If instead X1
d−1,in = X

2
d−1,in, the tensor associated with the manifold obtained by gluing along these

boundary components is

Z
(
Ỹd

)
{a3,...},{b1}

=
∑
a1,a2

Z(Yd){a1,a2,a3,...},{b1,...}η
(
X1
d−1,in

)
a1,a2

. (2.1.18)

An immediate consequence of these considerations concerns the partition function on Xd−1 × S1.

In fact, this manifold can be obtained from the straight cylinder by gluing the outgoing boundary
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with the incoming one. Equivalently, it is obtained gluing the upwards and downwards horseshoes,

and the result is the trace of idHXd−1
, that is

Z(Xd−1 × S1) = dimHXd−1
(2.1.19)

All of these pieces of data cannot be assigned randomly. Indeed, if a manifold can be obtained

in two different ways by gluing smaller pieces, the results must coincide. Ideally, one would like to

define the tensors associated with the few bordisms that constitute the building blocks of all possible

manifolds, and write down a finite set of consistency conditions that ensure the independence on the

decomposition. In practice, this is incredibly complicated except in very low dimensions (2 and 3),

because we do not know what these building blocks are.

Two-dimensional TQFTs In 2d the situation is particularly easy for two reasons.

• Any 1-dimensional closed manifold is the disjoint union of circles, hence the only Hilbert space

we need to define is HS1 .

• Any 2-dimensional manifold has a decomposition in pair of pants.

Because of the second point, the only other bordism that one needs on top of the horseshoes, is the

pair of pants µ : HS1 ⊗HS1 → HS1

µcab =

a b

c

required to be symmetric. This endows HS1 with an algebra structure. Sometimes it is also necessary,

in order to construct closed 2-manifolds, to fill the holes attaching a disk, hence we also need to specify

ha =

a

that defines a distinguished state

|HH⟩ =
∑
a

haea ∈ HS1 (2.1.20)

called the Hartle-Hawking state. It behaves as the unit for the algebra defined by µ. Hence µcab and

ha are required to satisfy ∑
b

µcab h
b = δ ca . (2.1.21)

The only other consistency condition is the independence on the pair of pants decomposition,

which is reduced to the so-called Froboenius condition. This is nothing but the associativity of the

product µ: ∑
c

µca,bµ
e
c,d =

∑
c

µea,cµ
c
b,d . (2.1.22)

These facts completely characterize 2d TQFTs, and imply the famous result that these theories

are classified by commutative Froboenius algebras [80].
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Example: 2d ZN gauge theories Let us consider a simple non-trivial example in 2d. We take

HS1
∼= CN with a basis |a⟩, a = 0, ..., N . It is easy to verify that the data

ha = δa,0 , ηab = δa,−b , µcab = δa+b,c (2.1.23)

satisfy (2.1.21) and (2.1.22), hence they define a good TQFT. The sphere S2 is obtained by gluing

two disks, hence we have Z(S2) = 1, while we already know that Z(T 2) = dimHS1 = N . A torus

with a boundary, instead, is constructed by gluing one in-coming boundary of a pair of pants with the

out-going boundary. Denoting by a the label of the remaining boundary the result is

Z(T 2 ∖ Pa) =
∑
b

µbab = Nδa,0 . (2.1.24)

This piece allows to attach a handle to other 2d-manifolds. For instance a genus-two surface can be

constructed by gluing two of these pieces along the common boundary, the result being Z(Σ2) = N2.

Proceeding in this way we can construct any Riemann surface and in general

Z(Σg) = Ng =
√∣∣H1(Σg,ZN )

∣∣ . (2.1.25)

2.2 Discrete gauge theories and BF theories

While the approach of the previous subsection is mathematically rigorous and clean, it is not very

manageable especially when we want to discuss operators and defects. Moreover, in physics, TQFTs

have many connections with non-topological theories, either because a dynamical theory can flow to

a TQFT in the IR, or because we may want to couple a dynamical theory with a TQFT. To this aim,

we introduce a more heuristic approach based on topological actions and path integrals. However, it is

important to keep in mind the axiomatic formulation, which is sometimes useful to fix some subtleties

in the path integral formulation.

2.2.1 Discrete gauge theories

Cohomological formulation We start with path integrals in terms of discrete gauge fields A ∈
Hp(Xd,ZN ). First, consider a vanishing action, hence the path integral is just a finite sum

Z = C(Xd)
∑

A∈Hp(Xd,ZN )

, (2.2.1)

where C(Xd) is normalization constant, generically depending on Xd, that we will fix later on by

comparison with the axiomatic formalism. This theory is called the pure p−form ZN gauge theory.

One class of operators that we can consider are electric defects

Uχ(γp) = exp

(
2πi

χ

N

∫
γp

A

)
, χ ∈ Z∨

N
∼= ZN , (2.2.2)

with γp any p−cycle, possibly also homologically trivial. Since A is closed, the operators are topo-

logical. There are also magnetic (or ’t Hooft) defects Va(γ
′
d−p−1) supported on d− p− 1 dimensional

cycles γ′d−p−1, and labeled by a ∈ ZN . This is defined declaring that inserting it into a correlator

modifies the path integral, summing over discrete gauge fields on Xd ∖ γ′d−p−1 such that∫
Sp
A = a (2.2.3)
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Group Topological operators Charged objects

p− form A Va∈A(γ′d−p−1) Uχ∈A∨(γp)

(d− p− 1)− form A∨ Uχ∈A∨(γp) Va∈A(γ′d−p−1)

Table 2.1: Symmetries of the pure p−form A gauge theory in d−dimensions.

where Sp is a sphere linking with γ′d−p−1. Hence, by construction〈
Uχ(γp)Va(γ

′
d−p−1)

〉
= exp

(
2πiχa

N
Lk(γp, γ

′
d−p−1)

)
(2.2.4)

where Lk(γp, γ
′
d−p−1) is the linking number. More generally we can establish an operator equation,

namely an identity valid in any correlation function:

Uχ(γp)

Va(γ
′
d−p−1)

= B(χ, a)

Uχ(γp)

Va(γ
′
d−p−1)

B(χ, a) is called braiding phase and is given by

B(χ, a) = exp

(
2πiχa

N

)
. (2.2.5)

Moreover, both classes of Uχ and Va can be fused, and they follow the group low of Z∨
N and ZN

respectively.

All of this can be summarized saying that the theory has two (generically) higher-form symmetries:

a p−forms symmetry ZN generated by Va(γ
′
d−p−1) with charged objects Uχ(γp), and a (d−p−1)−form

symmetry Z∨
N generated by Uχ(γp) with charged objects Va(γ

′
d−p−1). Notice that this discussion stays

untouched if we replace ZN with any other finite Abelian group A: the p−form symmetry is A, while

the (d− p− 1)−form symmetry is given by its Pontryagin dual A∨. This is summarized in table 2.1.

The braiding phase is given by the canonical pairing A× A∨ → R/Z:

B(χ, a) = exp (2πiχ(a)) ∈ U(1) . (2.2.6)

Co-chain formulation From this discussion notice that there is a symmetry for the replacement

A←→ A∨ , p←→ p∨ = d− p− 1 (2.2.7)

A pure p−form A gauge theory is equivalent to a pure p∨−form A∨ gauge theory. The only difference

is that the defects defined electrically in one formulation become magnetic in the other and vice-versa.

This is called electro-magnetic duality of the discrete gauge theory.

However, the way we presented the theory is not manifestly symmetric. A manifestly self-dual

formulation is obtained by performing the path integral over general (non-necessarily closed) co-chains

A ∈ Cp(Xd,A), integrating in another co-chain B ∈ Cd−p−1(Xd,A∨), and using the action

S = 2πi

∫
Xd

A ∪ δB . (2.2.8)
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Here ∪ is the cup product associated with the canonical pairing A × A∨ → R/Z. Integrating out B

we get a delta function imposing δA = 0, hence we recover the original formulation of the p−form

A gauge theory. If we integrate out A instead, the path integral over B is reduced to co-cycles and

we get the formulation as a (d − p − 1)−from A∨ gauge theory. In this way of formulating the path

integral, we need to mod-out by the redundancies

A 7→ A+ δλ , λ ∈ Cp−1(Xd,A) , B 7→ B + δη , η ∈ Cd−p−2(Xd,A∨) . (2.2.9)

These are gauge transformations, and modding them out has the very important role of reducing the

final path integral from a sum over co-cycles to a sum over cohomology. The formulation (2.2.8) is

manifestly symmetric in the two fields, and both classes of defects have an electric presentation

Uχ(γp) = exp

(
2πiχ

∫
γp

A

)
, Va(γ

′
d−p−1) = exp

(
2πia

∫
γd−p−1

B

)
. (2.2.10)

Electro-magnetic symmetry A special feature arises if d is odd and

p =
d− 1

2
. (2.2.11)

In this case p∨ = p, and electro-magnetic duality gives rise to a 0-form symmetry of the theory that

exchange A and B or, more intrinsically, exchanges Uχ and Va. Notice that this requires that we

specify a map of the labels, namely an isomorphism

ϕ : A ∼−−−−→ A∨ . (2.2.12)

A finite Abelian group is always isomorphic to its Pontryagin dual, but it is non canonically so, hence

defining this symmetry requires a choice. Importantly, ϕ cannot be any isomorphism: it must preserve

the braiding phase (2.2.6)

ϕ(a)
(
ϕ−1(χ)

)
= χ(a) . (2.2.13)

This condition is made more explicit by introducing the non-degenerate bi-character γ : A×A→ R/Z
as γ(a, b) = ϕ(a)b. Hence the condition is that γ must be symmetric2.

Naively one may think this symmetry is Z2. This is not always true. To see this, notice that for

p = p∨ the most general defects are dyons

Dχ,a(γp) = Uχ(γp)Va(γp) = exp

(
2πi

∫
γp

(χA+ aB)

)
, (2.2.14)

and we have a p−forms symmetry group A×A∨. The braiding B
(
(χ1, a1), (χ2, a2)

)
is a bilinear form

on this group, and involve both χ1(a2) and χ2(a1). However there is possibly a relative sign between

these two terms, that arise because to compare the two one needs to use the action (2.2.8) integrated

by parts, namely B ∪ δA, and this picks a minus sign if p is even. Therefore

B
(

(χ1, a1), (χ2, a2)

)
= exp

(
2πi

(
χ1(a2) + (−1)p+1χ2(a1)

))
(2.2.15)

The electro-magnetic symmetry is an automorphism of the p−forms symmetry group, Φ : A× A∨ →
A × A∨, that must preserve the braiding. Since the two terms in (2.2.15) will be exchanged by the

action of the symmetry, for p even we need to twist the naive action by a minus sign:

Φ(a, χ) =


(
ϕ−1(χ), ϕ(a)

)
p odd(

−ϕ−1(χ), ϕ(a)
)

p even
(2.2.16)

2This is the same as requiring that ϕ∨ = ϕ, where for any homomorphism of Abelian groups f : A → B we define

f∨ : B∨ → A∨ as f∨(β)a = β(f(a)).
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For this reason Φ2 = −1 if p is even. The −1 automorphism is typically called charge conjugation

and denoted by C. Hence charge conjugation extends non-trivially electromagnetic duality for p even,

while it is a decoupled factor for p odd. Thus the electro-magnetic symmetry is

Gem =

 Z2 p odd

Z4 p even
(2.2.17)

Dijkgraaf-Witten theories: two dimensions The discrete gauge theories have certain twisted

modifications, known as Dijkgraaf-Witten (DW) theories [81]. Let us first focus on the case p = 1,

and consider a group-cohomology class ω ∈ Hd(BA,R/Z). The discrete gauge field A ∈ C1(Xd,A)

can be equivalently represented as map A : Xd → BA, that we can use to pull-back ω and produce

A∗ω ∈ Hd(Xd,R/Z). In the cohomological formulation, where A ∈ H1(Xd,A) and we do not introduce

B, the DW theory consists in modifying the path integral into

Z = C(Xd)
∑

A∈H1(Xd,A)

e
2πi

∫
Xd

A∗(ω)
(2.2.18)

In the cochain formulation, on the other hand, we modify the action as

S = 2πi

∫
Xd

(A ∪ δB +A∗(ω)) . (2.2.19)

To make it gauge invariant we need to modify the gauge transformations, in a way that A 7→ A+δλ also

acts on B. The precise modification must be studied case-by-case. Dijkgraaf-Witten theories can also

be generalized to p > 1, but they are not classified by group cohomology. Indeed A ∈ Cp(Xd,A) can

be realized as a map A : Xd → Bp+1A, and this can be used to pull-back a class ω ∈ Hd(Bp+1A,R/Z).

Here we discuss in some detail the 2d case for illustration, leaving some higher-dimensional cases for

the coming sections. A key fact (that will be of utmost importance in Chapter 6) is that H2(BA,R/Z)

is canonically isomorphism to the group Alt(A) of alternating bicharacters on A, namely

χ(a+ a′, b) = χ(a, b) + χ(a′, b) , χ(a, a) = 0 . (2.2.20)

In particular χ is antisymmetric. The isomorphism is [69]3

H2(BA,R/Z) ∋ ω 7→ χω(a, b) = ω(a, b)− ω(b, a) . (2.2.21)

This is clearly a well defined homomorphism (it is independent on the representative of ω), and χω is

alternating. The proof that it is an isomorphism is more complicated and can be found in [69]. The

alternating bicharacter defines an antisymmetric pairing A×A→ R/Z. This allows us to construct a

cup product ∪χω , that is non-vanishing on cochains of odd degree. The DW action is

S = 2πi

∫
X2

A ∪ δB +A ∪χω A . (2.2.22)

For instance if A is the direct product of K ZN factors, an alternating bicharacter is given by an

antisymmetric K ×K matrix χij with ZN entries, a 1-cochain is given by A = (A1, ..., AK) with Ai a

ZN gauge field (and similarly for the 0-cochain B = (B1, ..., BK)) and the DW twist is [82]

2πi

N

∫
X2

∑
i<j

χijAi ∪Aj . (2.2.23)

3Here we are using the additive notation for all Abelian groups. In other places it will be more convenient to use the

multiplicative notation, and this should be clear from the context.
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Here ∪ is the standard cup product associated with the ring structure of ZN .

For A = ZN there is no alternating bicharacter, and the simplest example of non-trivial DW twist

arises for, A = ZN × ZN (see [30] for more details on this example). An alternating bicharacter is

determined by a single number p ∈ ZN the corresponding DW theory is

S =
2πi

N

∫
X2

(A1 ∪ δB1 +A2 ∪ δB2 + pA1 ∪A2) . (2.2.24)

The gauge transformations are4

A1 7→ A1 + δλ1 , A2 7→ A2 + δλ2 , B1 7→ B1 − pλ2 , B2 7→ B2 + pλ1 . (2.2.25)

This modifies the set of gauge invariant operators. In fact V
(i)
m (x) = e

2πim
N

Bi(x) is no longer gauge

invariant, but can be made so by attaching a line defect to it:

Ṽ (1)
m (x;L) = exp

(
2πim

N
B1(x) +

2πipm

N

∫
L
A2

)
, Ṽ (2)

m (x;L) = exp

(
2πim

N
B2(x)− 2πipm

N

∫
L
A1

)
.

(2.2.26)

Here L is an open line ending on x. The topological operators supported on open manifolds are

essentially trivial5: there is no non-trivial configuration of defects we can make with them, and we

can always deform them topologically to the trivial defect.

If p and N are coprime, all local operators are non-genuine, and all line operators e
2πin
N

∫
A can

be opened on some point operator. Hence the theory is essentially trivial. If gcd(N, p) ̸= 1, some

local operators become genuine and some of the lines cannot be cut-opened. Defining k = N
gcd(N,p) , we

notice that Ṽ
(i)
lk loose their dependence on L, hence

Ṽ
(i)
lk (x;L) = V

(i)
lk (x) , l = 0, ..., gcd(N, p)− 1 ∈ Zgcd(N,p) ⊂ ZN (2.2.27)

are genuine topological operators.

In addition, the lines that can be opened and become trivial are U
(i)
n (γ) with n = pamod(N) for

some a, or equivalently n = gcd(N, p)a′ mod(N) for some a′. These form the subgroup Zk ⊂ ZN ,

hence the unbreakable lines are

U (i)
n (γ) , n = 0, ..., gcd(N, p)− 1 ∈ ZN/Zk ∼= Zgcd(N,p) . (2.2.28)

These lines detect the genuine local operators through non-trivial braiding:

U
(i)
n (γ)

V
(j)
lk (x)

= exp
(

2πinl
gcd(N.p)δij

)
U

(i)
n (γ)

V
(j)
lk (x)

At the level of genuine and unbreakable operators, this theory is essentially equivalent to the

untwisted pure Zgcd(N,p) × Zgcd(N,p) gauge theory in 2d. However, the theory is different in the fact

that the trivialized subgroup Zk×Zk has a non-trivial SPT phase, as can be detected by studying the

theory on manifolds with boundary [30]. In particular, if gcd(N, p) = 1, the DW theory is an SPT for

ZN × ZN .

4Bi are 0-forms, hence they do not have their own gauge transformations.
5We will see shortly that non-triviality of these objects arise on space-times with boundary. Intuitively, that is because

the end-points can be on the boundary.
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2.2.2 Continuous fields formulation

We can introduce another formulation of discrete gauge theories, in terms of standard U(1) gauge

fields [30, 83–85]. This approach is mathematically less rigorous, but is often more manageable, and

allows one to incorporate TQFTs into dynamical theories. For definiteness, we consider A = ZN , but

everything can be extended to any finite Abelian group. We consider the BF theory

S =
iN

2π

∫
Xd

Ap ∧ dBd−p−1 . (2.2.29)

Ap and Bd−p−1 are U(1) gauge fields, respectively a p−form and a (d − p − 1)−from. The gauge

transformations that we have to mod out in the path integral are

Ap 7→ Ap + dλp−1 , Bd−p−1 7→ Bd−p−1 + dξd−p−2 , (2.2.30)

with dλp−1 and dξd−p−2 closed forms with periods multiple of 2π. When they are exact (vanishing

periods), this is a small gauge transformation, otherwise it is a large gauge transformation.

This way of writing the theory does not really make sense, since it involves integration of the gauge

potential. The problem is very similar to that of correctly defining Wilson lines, and the solutions are

also analogous (see [86] for a discussion)

• If we assume the existence of a (d + 1)−dimensional manifold Yd+1 such that ∂Yd+1 = Xd+1,

then we can define

S := 2πiN

∫
Yd+1

dAp
2π
∧
dBd−p−1

2π
(2.2.31)

from which we immediately read the quantization N ∈ Z as a requirement for the independence

on the extension Yd+1, due to the integrality of the periods of
dAp
2π ,

dBd−p−1

2π . However, this

definition requires the existence of the extension Yd+1, which is not guaranteed for d ≥ 4, where

the bordism group is nontrivial.

• One can define the action patchwise, choosing a local trivialization of all bundles and local

representatives of the connection. This approach is quite cumbersome, since it requires precisely

defining higher-form bundles, formalized in terms of gerbes [87].

• Finally, it is possible to correctly define the action using differential cohomology [88] (see [89]

for a review).

The gauge invariant operators are

Un(γp) = exp

(
in

∫
γp

Ap

)
, Vm(γ′d−p−1) = exp

(
im

∫
γ′d−p−1

Bd−p−1

)
(2.2.32)

with n,m ∈ Z to ensure gauge invariance under large gauge transformations. The equations of motion

dAp = 0 , dBd−p−1 = 0 (2.2.33)

impose that Ap and Bd−p−1 are flat connections. Hence, the operators Un, Vm are topological. More-

over, by taking into account that Ap and Bd−p−1 are not globally defined differential forms, but U(1)

connection, we also have

UN = VN = 1 (2.2.34)
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hence n ∼ n + N,m ∼ m + N , and therefore n,m ∈ ZN . To show this fact we can decompose one

of the fields, say Bd−p−1, into a globally defined part B̃d−p−1 and a representative β of the bundle,

namely
dβ

2π
∈ Hd−p(Xd,Z) . (2.2.35)

The action is rewritten as

iN

2π

∫
Xd

(
Ap ∧ dβ − (−1)pB̃d−p−1 ∧ dAp

)
= iN

∫
PD−1( dβ2π )

Ap − (−1)p
iN

2π

∫
Xd

B̃d−p−1 ∧ dAp (2.2.36)

where PD−1
(
dβ
2π

)
∈ Hp(Xd,Z) is the Poincare’ dual cycle of dβ

2π , and we can decompose it into a basis

PD−1

(
dβ

2π

)
=

bp(Xd)∑
j=1

ajΣj , Σj ∈ Hp(Σp,Z) , aj ∈ Z . (2.2.37)

The path integral over Bd−p−1 decomposes into a path integral over B̃d−p−1, and sums over the integers

aj ∈ Z. The first gives a delta function that imposes dAp = 0. Hence, the path integral over Ap is

reduced to an integral over flat U(1) connections. Moreover the sums over aj give

∏
j

∑
aj∈Z

exp

(
iNaj

∫
Σj

Ap

)
=
∏
j

δ
(
e
iN

∫
Σj
Ap − 1

)
(2.2.38)

and this implies UN = 1. The same argument reversing the role of Ap and Bd−p−1 proves that VN = 1.

It is not hard to compute the correlation function of linking defects〈
Un(γp)

Vm(γ′d−p−1)〉
(2.2.39)

Here γp, γd−p−1 are both homologically trivial inside Xd, but each one is non-trivial in the space-time

where the other is removed. Inserting the defects is equivalent to modifying the action into∫
Xd

(
iN

2π
Ap ∧ dBd−p−1 − inAp ∧ PD(γp)− imBd−p−1 ∧ PD(γ′d−p−1)

)
. (2.2.40)

Integrating out Ap, we produce a delta function that imposes

N

2π
dBd−p−1 = nPD(γp) . (2.2.41)

This is solved by

Bd−p−1 =
2πn

N
PD(Dp+1) +B′

d−p−1 (2.2.42)

with Dp+1 a disk with boundary γp, and B′
d−p−1 a flat connection. The path integral over it reproduces

the partition function, cancelled by the denominator in normalized correlation functions. The result

is given by the remaining piece of the action, evaluated in the non-homogeneous term of the solution

(2.2.42)
2πinm

N

∫
Xd

PD(Dp+1) ∧ PD(γ′d−p−1) . (2.2.43)

The integral counts the number of intersections of Dp+1 and γ′d−p−1, namely Lk(γp, γ
′
d−p−1) = 1:〈

Un(γp)Vm(γ′d−p−1)
〉

= e
2πinm
N . (2.2.44)
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This is the same as (2.2.4). Given the matching of gauge-invariant operators and their correlators,

the BF theory (2.2.29) is simply another representation of the pure ZN gauge theory6 [84, 85].

We can also deduce a heuristic rule for going from discrete to continuous gauge fields. The discrete

gauge field formulation is7

S =
2πi

N

∫
Xd

Ap ∪ δBd−p−1 , Ap ∈ Cp(Xd,ZN ) , Bd−p−1 ∈ Cd−p−1(Xd,ZN ) . (2.2.46)

A discrete field Ap has integers periods defined mod (N), while the continuous field Ap has periods

that are integer multiples of 2π
N . Also, by matching the operators (2.2.2) with (2.2.32), we are led to

identify Ap with N
2πAp. The ∪ is identified with the ∧. To match δ with the ordinary differential,

one notices that
δBd−p−1

N is the Bockstein homomorphism, that is the discrete analogue of the first

Chern-class
dBd−p−1

2π . To summarize we got the dictionary

Ap ←→
N

2π
Ap , ∪ ←→ ∧ ,

δBd−p−1

N
←→

dBd−p−1

2π
. (2.2.47)

As a check notice that this replacement maps (2.2.46) into (2.2.29).

Mixed anomaly The p−form A gauge theory has a p−form symmetry A and a (d − p − 1)−form

symmetry A∨, and, in virtue of the braiding, the two symmetries have a mixed anomaly: inserting

the defects of the two symmetries is equivalent to coupling them to background fields, and un-linking

two defects is a background gauge transformation that modifies the partition function by a phase.

Using the BF theory formulation (2.2.29), allows us to describe the inflow action concretely. Here

we focus on A = ZN . We describe background fields with flat U(1) gauge fields αp+1, βd−p with periods

multiple of 2π
N . Coupling the p−form symmetry with αp+1 amounts to modifying the action into

S[αp+1] =
iN

2π

∫
Xd

(Ap ∧ dBd−p−1 + (−1)pαp+1 ∧Bd−p−1) . (2.2.48)

Indeed, a way to understand the p−form symmetry in the continuous fields formulation is as a shift

Ap 7→ Ap + λp, with dλp = 0 and
∫
γp
λp ∈ 2π

N Z. The coupling above makes the action invariant, even

if it is dλp ̸= 0, provided that we transform αp+1 7→ αp+1 + dλp.

Similarly, coupling the (d− p− 1)−symmetry with βd−p is achieved by

S[βd−p] =
iN

2π

∫
Xd

(Ap ∧ dBd−p−1 −Ap ∧ βd−p) , (2.2.49)

with βd−p 7→ βd−p + dξd−p−1 while shifting Bd−p−1 7→ Bd−p−1 + ξd−p−1.

6There is a caveat in this statement. In the BF theory, it makes sense to consider non-genuine p−dimensional and

(d− p− 1)−dimensional operators,

Ũα(Dp+1) = exp

(
iα

∫
Dp+1

dAp
2π

)
, Ṽβ(D

′
d−p) = exp

(
iβ

∫
D′

d−p

dBd−p−1

2π

)
(2.2.45)

with Dp+1 and D′
d−p disks bounded by γp and γ′

d−p−1. Here α, β ∈ R, and these operators become genuine and coincide

with Un, Vm for integer values. For α, β ∈ (0, 1), they have no analogue in the discrete ZN gauge theory. If the boundary

γp of Dp+1 links with the support γ′
d−p−1 of Vm, it creates a braiding phase exp 2πiαm

N
that breaks the identification

m ∼ m+N . Thus, with these additional operators, UN = VN = 1 is not true. Indeed, the argument around (2.2.36) is

invalid if such operators are in the path integral. However, it is consistent to consider the BF theory truncation excluding

these continuous operators. This truncation coincides with the ZN gauge theory.
7We are changing notation with respect to the previous discussion to distinguish discrete from continuous.
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The ability of making the action gauge invariant by coupling the two symmetries singularly to

backgrounds, reflects the absence of pure anomalies. The mixed anomaly, on the other hand, is

detected by coupling both symmetries to backgrounds:

S[αp+1, βd−p] =
iN

2π

∫
Xd

(
Ap ∧ dBd−p−1 + (−1)pαp+1 ∧Bd−p−1 −Ap ∧ βd−p

)
. (2.2.50)

Notice that there is no topological local counterterm that can be added. This is not gauge invariant:

S[αp+1+dλp, βd−p+dξd−p−1] = S[αp+1, βd−p]+
iN

2π

∫
Xd

(
(−1)pαp+1∧ξd−p−1+(−1)pdλp∧ξd−p−1−λp∧βd−p

)
.

(2.2.51)

The anomalous variation can be cancelled by inflow with the SPT

Sinflow =
iN

2π

∫
Xd+1

αp+1 ∧ βd−p . (2.2.52)

Anomalies that are quadratic in the background fields are tight in having symmetry generators charged

among themselves by braiding.

Example: canonical quantization 2d ZN gauge theories. The continuous fields formulation is

useful to canonically quantize the TQFT. We consider the example of d = 2 and A = ZN , which allows

us to make a connection with the axiomatic formulation of Section 2.1 and the example discussed at

the end of that Section (see Appendix E for a discussion of the non-compact case, relevant for Chapters

8 and 9).

We discuss the theory

S =
iN

2π

∫
X2

ϕdA (2.2.53)

where ϕ ∼ ϕ+ 2π is a compact scalar and A is a U(1) gauge field. We want to construct the Hilbert

space on the circle HS1 by canonical quantization. We place the theory on S1 × R with time t ∈ R,

and decompose A = At0dt+ Ã, d = ∂tdt+ d̃ (all the tildas denote the spatial S1 part). Hence

dA = −∂tÃ ∧ dr + d̃At0 ∧ dt S = − iN
2π

∫
S1×R

(
ϕ∂tÃdt+ d̃ϕAt0dt

)
. (2.2.54)

We can choose the temporal gauge At0 = 0, that imposes the Gauss law d̃ϕ = 0. This means that ϕ

only depends on time, and after introducing the holonomy

χ =

∫
S1

Ã (2.2.55)

(that also depends on time) the action becomes a quantum mechanical system

S = − iN
2π

∫
dt ϕ(t) ∂tχ(t) . (2.2.56)

Notice that ϕ ∼ ϕ+ 2π, χ ∼ χ+ 2π. This system can be quantized canonically, identifying coordinate

and canonical momentum as

q = χ , p = −N
2π
ϕ (2.2.57)

with canonical commutation relation:

[ϕ, χ] =
2πi

N
=⇒ eiχ eiϕ = e

2πi
N eiϕ eiχ . (2.2.58)

The operators eiNϕ, eiNχ commute with all other operators (because ϕ, χ are not good operators), hence

they are proportional to the identity in any irreducible representation. Without loss of generality, we
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take them to be the identity. This means that the eigenvalues of eiϕ, eiχ are N ’th roots of unity. To

construct a representation we start from an eigenstate of eiχ:

eiχ|k⟩ = e
2πik
N |k⟩ , k = 0, ..., N − 1 . (2.2.59)

Acting on |k⟩ with eiϕ we get an eigenstate of eiχ with eigenvalue e
2πi(k+1)

N . Since eiϕ is unitary we

can take

eiϕ|k⟩ = |k + 1⟩ . (2.2.60)

We conclude that the Hilbert space HS1 is N dimensional and generated by states |k⟩, k = 0, ..., N−1.

The same Hilbert space HS1 can also be obtained by radial quantization, placing the theory on

X2 = R2 with time going radially. The states on S1 are obtained, by state/operator correspondence,

placing local operators eikϕ(x) at the origin. Identifying |0⟩ with the state prepared by the empty disk,

namely the Hartle-Hawking state, we recognize that

state/operator map: |k⟩ ←→ eikϕ(x) . (2.2.61)

This observation allows to make connections with both the Euclidean treatment in terms of defects

and their braiding, as well as with the axiomatic formulation. Regarding the first, the operator einχ is

nothing but the line operator Un(γ) = ein
∫
γ A placed on the space-like slice. In radial quantization we

can start contracting it toward the origin and making it disappear. However, at some point, it must

pass the operator eikϕ(x) that creates the state, thus producing a phase exp
(
2πikn
N

)
that is precisely

the eigenvalue of eiχ.

The connection with the axiomatic formulation is that we are now able to derive the data (2.1.23).

The Hartle-Hawking state is obtained with the path integral on the disk with no insertion, hence it

is |0⟩, in agreement with hk = δk,0. Since the states |k⟩ are created with the unitary operators eikϕ,

taking the orientation reversal amounts to consider the state created by
(
eikϕ

)†
= e−ikϕ, hence ηk,k′

that determines the isomorphism H∨
S1
∼= H

S
1 is ηk,k′ = δk,−k′ . Regarding µk

′′
k,k′ , this defines an algebra

structure on HS1 , but by state/operator correspondence this must coincide with the OPE of local

operators eikϕeik
′ϕ = ei(k+k

′)ϕ, and hence µk
′′
k,k′ = δk+k′,k′′ .

We can also use the axiomatic formulation to fix the normalization of the path integral in (2.2.1) for

d = 2. In fact, we already computed, using the axiomatic formulation, that Z(Σg) =
√
|H1(Σg,ZN )|.

Hence we have

C(Σg) = |H1(Σg,ZN )|−1/2 . (2.2.62)

Fixing the normalization constant for d > 2 and for general degree p of the form is slightly more

complicated, but can always be done by comparison with the axiomatic formulation that guarantees

the consistency under cutting and gluing [90].

2.2.3 3d Dijkgraaf-Witten theory

We consider 3d 1-form Dijkgraaf-Witten theory with twist ω ∈ H3(BA,R/Z) [81]. We do not attempt

to write the topological action for general A, since it would involve several different terms depending

on ω (see e.g. [82]). Some of them are cubic in the gauge fields, and are morally similar to the DW

twist we discussed in 2d. Instead, for simplicity we just study A = ZN (for which these cubic terms

are absent) and we can write the most general action, that involves a genuinely new term.

We have H3(BZN , U(1)) ∼= ZN , and the DW theory with twist k ∈ ZN is

S =
2πi

N

∫
X3

(
A ∪ δB +

k

N
A ∪ δA

)
(2.2.63)
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with A,B 1-form ZN gauge fields. To arrive at this form of the action starting from A∗(ωk), ωk ∈
H3(BZN ,R/Z), there are several steps with an interpretation that is interesting to explain. The

explicit expression of the cocycle ωk : Z3
N → R/Z is (see e.g. [91])

ωk(a, b, c) =

(
kc

(a+ b)− (a+ b) mod(N)

N2

)
mod (1) =

{
0 if a+ b < N

kc
N mod (1) if a+ b ≥ N

(2.2.64)

This can be canonically identified with the cocycle ϵk ∈ H2(BZN ,Z∨
N ) ∼= ZN whose explicit expression

is (here we think Z∨
N as Hom(ZN ,R/Z)):

ϵk(a, b) · c =

(
kc

(a+ b)− (a+ b) mod(N)

N2

)
mod (1) = ωk(a, b, c) . (2.2.65)

ϵk determines an Abelian extension ΓN,k:

1→ Z∨
N → ΓN,k → ZN → 1 . (2.2.66)

In turns, this determines a long exact sequence of singular cohomology groups, with connecting map

the Bockstein βk : Hn(X,ZN ) → Hn+1(X,Z∨
N ). In particular, from the gauge field A ∈ C1(X3,ZN )

we can construct βk(A) ∈ C2(X3,Z∨
N ), hence the term

SDW = 2πi

∫
X3

A ∪ βk(A) (2.2.67)

with ∪ associated with the canonical pairing ZN × Z∨
N → R/Z. To get the expression (2.2.63) from

(2.2.67) we use an isomorphism Z∨
N
∼= ZN to convert the cup product and divide by N , and we notice

that βk = kβ, with β(A) = δA
N the Bockstein associated with the sequence 1→ ZN → ZN2 → ZN → 1.

For k = 1, we have ΓN,k=1
∼= ZN2 . Indeed, using the expression of ϵk we see that N times the

generator of the quotient ZN , gives the generator of the subgroup Z∨
N . For general k = 0, ..., N − 1,

N times the generator of ZN gives k times the generator of Z∨
N , hence

ΓN,k ∼=
〈
x, y

∣∣ xN = yk , yN = 1 , xy = yx
〉
∼= ZN2/gcd(N,k) × Zgcd(N,k) . (2.2.68)

We want to show that all this mathematics has a nice physical interpretation in the TQFT (2.2.63).

Unlike the 2d case, the presence of δ in the DW twist makes its effect very different. It does not modify

the gauge transformations, but it modifies the braiding. It is easier to discuss this in the continuum

formulation. Using the dictionary (2.2.47) we get the continuous field theory

S =
iN

2π

∫
X3

A ∧ dB +
ik

2π

∫
X3

A ∧ dA . (2.2.69)

It turns out that the second term can be further divided by 2, at the prize of introducing an extra

structure on X3, namely a spin-structure, on which the theory will depend [81]

S =
iN

2π

∫
X3

A ∧ dB +
ik

4π

∫
X3

A ∧ dA . (2.2.70)

In this notation k ∈ Z2N , but needs to be even in order for the theory to be strictly topological.

TQFTs that can be only formulated on spin-manifolds are called spin-TQFTs [92]. We will assume k

even for simplicity in the following.

The most general (topological) line operator is a dyon labeled by a, b ∈ Z

Ua,b(γ) = exp

(
ia

∫
γ
A+ ib

∫
γ
B

)
. (2.2.71)
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With the same computation that led to (2.2.44) one obtains〈
Ua,b(γ)Ua′,b′(γ

′)
〉

= exp

[
2πi

N

(
ab′ + a′b− k

N
bb′
)]

. (2.2.72)

Because of the last term, this is no longer invariant under separate shifts of a and b by N . Instead

the correct identifications are

(a, b) ∼ (a+N, b) , (a, b) ∼ (a+ k, b+N) . (2.2.73)

Therefore the 1-form symmetry Γ of the theory is not ZN ×ZN , but it is the quotient of Z×Z by the

identification above. Γ has a subgroup isomorphic to ZN , generated by U1,0. The quotient Γ/ZN ∼= ZN
can be taken to be generated by U0,−1, and has the property that

UN0,−1 = U0,−N = Uk,0 = Uk1,0 . (2.2.74)

Therefore we conclude that the 1-form symmetry is precisely the group extension discussed above

Γ = ΓN,k ∼= ZN2/gcd(N,k) × Zgcd(N,k) . (2.2.75)

2.2.4 Kapustin-Seiberg TQFT in four-dimensions

In 4d a 2-form A gauge theory is equivalent to a 1-form A∨ gauge theory, since in the cochain formu-

lation this is

S = 2πi

∫
X4

B ∪ δA , B ∈ C2(X4,A) , A ∈ C1(X4,A∨) . (2.2.76)

Viewed as a 2-form A gauge theory, it has an interesting modification discussed in [14, 93] on the

lattice, and in [13, 30] in the continuum. It consists of adding a twist, that is the integral of B∗ω ∈
H4(X4,R/Z), with ω ∈ H4(B2A,R/Z). This group is isomorphic to the group Q(A) of R/Z−valued

quadratic functions on A. A quadratic function q : A→ R/Z satisfies

χ(a, b) = q(a+ b)− q(a)− q(b) bilinear in a, b , q(−a) = q(a) . (2.2.77)

Intuitively the twist is given by a quadratic function of B, but to understand precisely the form of the

term we need to introduce the universal quadratic group Γ(A) and the Pontryagin square (see [15, 93]

for more details).

Γ(A) is a group endowed with a quadratic function Q : Γ(A)→ A, such that for any Abelian group

V and a quadratic function q : A→ V there is a linear map q̃ : Γ(A)→ V such that

q(a) = q̃ (Q(a)) . (2.2.78)

This means that the groupQ(A, V ) of V -valued quadratic functions on A is isomorphic to Hom(Γ(A), V ).

The universal quadratic group enters in the game because one can show that [67]

H4(B
2A,Z) = Γ(A) . (2.2.79)

The universal coefficients theorem then implies that

H4(B2A, V ) ∼= Hom(Γ(A), V ) ∼= Q(A, V ) . (2.2.80)

There are two interesting choices of V . First, taking V = R/Z, we identify H4(B2A,R/Z) with

R/Z−valued quadratic functions, as we stated above. Second, taking V = Γ(A), we can consider the
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identity in Hom(Γ(A),Γ(A)), and it will correspond to a distinguished element P ∈ H4(B2A,Γ(A)),

called the Pontryagin square. In turn, this can be identified with a quadratic function A→ Γ(A).

Now, given B ∈ C2(X4,A) we can consider

P(B) := B∗P ∈ H4(X4,Γ(A)) . (2.2.81)

Then for any discrete torsion class in H4(B2A,R/Z), represent it as a quadratic function q : A→ R/Z,

and let q̃ : Γ(A)→ R/Z be the associated linear map, we construct the action

S = 2πi

∫
X4

(
B ∪ δA+ q̃ (P(B) )

)
(2.2.82)

Following Seiberg and Kapustin [30], for A = ZN we can describe this TQFT with continuous U(1)

gauge fields A,B, respectively a 1−form and a 2−form. The most general quadratic function on ZN
is q(a) = pa2

2N mod(1), where p ∈ Z2N and must be even if N is odd, hence taking values in ZN ⊂ Z2N .

This agrees with the fact that Γ(ZN ) ∼= ZN for N odd, while Γ(ZN ) = Z2N for N even. The twist

should be a quadratic term in B, hence the only possibility is to write

S =
iN

2π

∫
X4

B ∧ dA+
iNp

4π

∫
X4

B ∧B . (2.2.83)

p is identified with the number determining the quadratic function. To argue this, we have to show

that it must be an integer defined modulo 2N , and must be even if N is odd. Using the dictionary

(2.2.47) the action is

S =
2πi

N

∫
X4

B ∪ δA+
2πip

2N

∫
X4

B ∪B . (2.2.84)

Hence p must be integer, and the second term is trivial for p = 2N , so that p ∼ p+ 2N . Moreover, to

make the second term invariant (up to 2πi) under shifts of B by a cochain proportional to N we need

Np ∈ 2Z.

To analyze the theory, let us use the continuous fields formulation for definiteness. The quadratic

term in B modifies the gauge transformation into

B 7→ B + dλ , A 7→ A+ dϕ− pλ. (2.2.85)

ϕ is a compact scalar, while λ a 1-form U(1) gauge field, namely the periods of dλ
2π are integers. Under

(2.2.85) the action changes by

δS = 2πiN

∫
X4

dλ

2π
∧ dA

2π
− 2πi

Np

2

∫
X4

dλ

2π
∧ dλ

2π
. (2.2.86)

The first term is multiple of 2πi, and the same is true for second provided Np ∈ 2Z. In this formulation

we also see that the second condition can be relaxed on a spin 4-manifold, since the integral of dλ
2π ∧

dλ
2π

is even. The theory for N and p both odd however, will depend on the choice of a spin-structure. This

is similar to the 3d DW theory we discussed in the last Section, and as in that case we will assume p

even if N is odd for simplicity.

Let us look at the gauge invariant operators. While

Ub(γ2) = exp

(
ib

∫
γ2

B

)
(2.2.87)

are gauge invariant provided b ∈ Z, the lines of A are generically not gauge invariant under B 7→ B+dλ,

A 7→ A− pλ, and require an open surface of B attached:

La(γ1;D2) = exp

(
ia

∫
γ1

A+ ipa

∫
D2

B

)
. (2.2.88)
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Here ∂D2 = γ2. The braiding between a (generically non-genuine) line and a surface is given by

〈
La(γ1;D2)Ub(γ2)

〉
= exp

(
2πiab

N
Lk(γ1, γ2)

)
, (2.2.89)

from which we read the usual identification a ∼ a+N , b ∼ b+N .

However, the non-genuine lines are essentially trivial operators, as well as the surfaces that can be

cut-opened. The situation is very similar to that of the 2d ZN ×ZN DW theories discussed above. La

becomes genuine when the dependence on the surface disappears, namely if pa is proportional to N .

Introducing k = N
gcd(N,p) , this is the case in which a is proportional to k. Hence there are gcd(N, p)

genuine lines La(γ1), a = nk, n = 0, ..., gcd(N, p) − 1, generating the subgroup Zgcd(N,p) ⊂ ZN , that

is the non-trivial 2-form symmetry of the theory. Moreover, surfaces Ub can be cut open on a line if

b is proportional to gcd(N, p), hence the subgroup Zk ⊂ ZN forms a trivial 1-form symmetry. The

non-trivial one is described by the quotient ZN/ZK ∼= Zgcd(N,p). These surfaces are also the charges

of the non-trivial 2-form symmetry.

As in 2d DW theory, at the level of genuine and unbreakable operators, the theory seems equivalent

to the untwisted Zgcd(N,p) 2-form gauge theory. However, the Zk subgroup has a non-trivial SPT phase.

In particular, the Kapustin-Seiberg theory is by itself a 1-form ZN SPT if gcd(N, p) = 1 [30].

2.3 Abelian TQFTs in three-dimensions

Three space-time dimensions are very special for TQFTs, because of the existence of Chern-Simons

theory [47]. The Abelian theory with gauge group U(1) has Lagrangian description

S =
ik

4π

∫
X3

A ∧ dA (2.3.1)

with A a U(1) gauge field and k ∈ Z. If k is odd, the theory requires the choice of a spin structure.

As for the BF theory, the correct definition of the action requires extending X3 = ∂Y4 and writing the

integral of F
2π ∧

F
2π on Y4. The independence on the choice of Y4 implies that k is an integer on spin

manifolds, and an even integer on non-spin manifolds.

Everything is encoded in the topological lines

Wa(γ) = exp

(
in

∫
γ
A

)
(2.3.2)

that have braiding

Wa(γ)

Wb(γ
′)

= exp
(

2πiab
k

) Wa(γ)

Wb(γ
′)

It seems this identifies a ∼ a + k and reduces the set of lines to Zk. This is not quite true because

of a subtle effect called framing anomaly [47]: the lines of Chern-Simons theory are framed, namely

they require a choice of a section of the normal bundle to γ ⊂ X3. Intuitively, this is a specification

of a normal direction to any point of the curve that can be interpreted by saying that the lines are
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effectively ribbons. The effect is detected by a non-trivial phase θa arising in

Wa
= θa

Wa (2.3.3)

θa is called the topological spin of the line, and measures a sort of self-braiding due to the ribbon

nature of the line. Notice that the braiding B(a, b) = exp
(
2πiab
k

)
defines a bilinear form on the set

of lines. By comparison between the braiding and the definition of θa, we see that θa is a quadratic

refinement of B(a, b) (in comparing with (2.2.77) notice that this is written in the multiplicative

notation):

B(a, b) =
θa+b
θaθb

. (2.3.4)

Up to an arbitrary (and unphysical) gauge choice, we have

θa = exp

(
2πia2

2k

)
. (2.3.5)

If k ∈ 2Z this formula is well defined over Zk (namely θa+k = θa), but if k is odd, θk = −1. In this

case Wk has trivial braiding with all other lines but has nontrivial (-1) spin: it is called a transparent

fermion. The set of lines for k ∈ 2Z + 1 should be enlarged to Z2k, where the second k lines are

obtained by fusing the first k lines with the transparent fermion.

We will focus on k ∈ 2Z for simplicity. In a sense, the U(1)k Chern-Simons theory is the square

root of the 3d Zk gauge theory. The latter has a Zk × Zk 1-form symmetry with a mixed anomaly,

while CS only has Zk with a self-anomaly: the generators are charged among themselves. The inflow

action, written in terms of a background B ∈ H2(X,Zk), is

Sinflow =
2πi

2k

∫
X4

B ∪B . (2.3.6)

This can be derived in the very same way we arrived at the mixed anomaly for the ZN gauge theory

(2.2.52)

The intuition that U(1)k is a square root of the Zk gauge theory is actually precise: U(1)k×U(1)−k

is exactly equivalent to the Zk gauge theory, as can be shown by taking the sum and difference of

the two Chern-Simons gauge fields. More generally, it turns out that any 3d Abelian TQFT can be

written as a Chern-Simons theory with gauge group U(1)r:

SK =
r∑

i,j=1

iKij

4π

∫
X3

Ai ∧ dAj . (2.3.7)

Here Ai=1,...,r are U(1) gauge fields, and K is an r× r symmetric non-degenerate matrix with integer

entries. The theory is bosonic if Kii ∈ 2Z, while it requires a spin structure otherwise. We focus on

the bosonic case (see [92] for the general case). The line operators are labelled by a vector of integers

a = (a1, ..., ar)
T ∈ Zr:

Wa(γ) = exp

(
i

r∑
i=1

ai

∫
γ
Ai

)
(2.3.8)

and have braiding

B(a, b) = exp
(

2πiaTK−1b
)
. (2.3.9)

The lines Wb with b = Kn, n ∈ Zr, have trivial braiding with all other lines, and are therefore trivial.
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The set of non-trivial lines is given by the quotient of lattices

D(K) =
Zr

KZr
. (2.3.10)

This is a finite Abelian group called discriminant group. This is the 1-form symmetry group of the

theory, and it is easy to see that

|D(K)| = det(K) . (2.3.11)

The braiding B(a, b) defines a symmetric bilinear form on the discriminant group. A quadratic refine-

ment of it gives the topological spin θa of the lines

B(a, b) =
θa+b
θaθb

. (2.3.12)

We conclude that the spins completely determine the theory.

2.4 Topological boundary conditions

An important application of TQFTs in this thesis will be the Symmetry Topological Field Theory

(SymTFT), which will be introduced in Chapter 4, and used in all the following chapters. This consists

in coupling a dynamical QFT to a TQFT in one dimension higher and then studying its topological

boundary conditions. For this reason, in this section we want to briefly explain the basic methods to

deal with these boundary conditions. Many other aspects will be explained in detail in the coming

chapters when necessary. Here we just want to illustrate the very important principle that

P: Topological boundary conditions are specified by maximal sets of mutually transparent objects.

We will refer to these maximal sets as Lagrangian algebras. This correspondence, strictly speaking,

is not one to one for d > 3: from any topological boundary condition we can always produce others

by stacking a (d − 1)−dimensional TQFT on the boundary8. However, what is always true is that

a Lagrangian algebra specifies a topological boundary condition. Roughly speaking, defects in the

Lagrangian algebra are allowed to terminate on the boundary.

In general, a condensable algebra A of a TQFT is a set of topological defects that constitute an

anomaly free symmetry, hence can be gauged. The condensable algebra is called Lagrangian, and

denoted by L, if it is maximal, in the sense that we cannot add other defects to it while preserving

the anomaly free condition. This means that any other defect is charged under at least one element

of the Lagrangian algebra. Hence by gauging (or condensing) L we get rid off all defects not in L.

On the other hand, the defects inside L becomes trivial, and the resulting theory is completely empty.

One may wonder about the dual symmetry arising from the gauging. However this would act on the

twisted sectors, and those are always empty in TQFT. We conclude that an equivalent characterization

of Lagrangian algebras is the following

C: Lagrangian algebras of a TQFT are anomaly free symmetries whose gauging trivialize the theory.

This explains how to get a topological boundary condition form L. In general, given any condensable

(anomaly free) algebra A of a TQFT T , and given a codimension one submanifold Xd−1 ⊂ Xd dividing

8For d ≤ 3, a (d− 1)−dimensional TQFT, in order to be non-trivial, has topological local operators, and they would

make the boundary non simple.
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Xd into two regions, we can construct a topological interface IA between T and T /A, simply gauging

A in one of the two halves

T /AT

IA

If A = L is Lagrangian, then the theory on the right is trivial, and the interface becomes a boundary

condition BL:

”trivial”T

BL

This also explains the previous heuristic definition that, on the boundary condition BL defined by L,

we allow all the topological defects inside L to terminate. Indeed, if U ∈ L, it will be transparent on

the right hand, side, and appears to be absorbed by the boundary :

”trivial”T

BL

U

Example: discrete gauge theories. To illustrate this abstract discussion, let us discuss a concrete

example. We consider the ZN p−form gauge theory in d−dimensions, that we can present as a BF

theory (2.2.29). In this Lagrangian presentation, boundary conditions can be analyzed by requiring

a good variational principle in presence of a boundary ∂Xd = Xd−1 ̸= ∅. The variation of the action

produces the equations of motion dAp = dBd−p−1 = 0 in the bulk, provided we cancel the boundary

term

δS
∣∣
∂

= − i(−1)pN

2π

∫
∂Xd

Ap ∧ δBd−p−1 . (2.4.1)

A topological boundary condition should set this to zero imposing some condition on the fields that

does not require introducing some extra structure on the boundary other than the smooth structure9.

This is achieved by setting Dirichlet boundary conditions for Bd−p−1:

δBd−p−1

∣∣
∂

= 0 . (2.4.2)

A note on the terminology, which could be confusing otherwise. It really makes sense to call this

boundary condition ”Dirichlet” if we think about this theory as a (d − p − 1)−form gauge theory in

terms of Bd−p−1. Thinking about it as a p−form gauge theory for Ap, the same boundary condition

is typically called ”Neumann”. It is clear that there is no intrinsic meaning in TQFT, since the

terminology really depends on the presentation.

9For instance if the boundary condition requires to use a conformal structure of the boundary it is called a conformal

boundary condition.
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Coming back to the boundary condition, this can be interpreted in terms of the defects

Un(γp) = exp

(
in

∫
γp

Ap

)
, Vm(γ′d−p−1) = exp

(
im

∫
γ′d−p−1

Bd−p−1

)
. (2.4.3)

Since Bd−p−1 is a gauge field, fixing its value on the boundary requires to freeze its gauge transforma-

tions there: Bd−p−1 7→ Bd−p−1 + dξd−p−2 requires ξd−p−2

∣∣
∂

= 0. Therefore, it makes perfect sense to

consider the defect Vm supported on an open manifold, provided that its boundary ∂γ′d−p−1 is inside

∂Xd−1. Hence, the topological boundary condition can be described by allowing all the defects Vm to

topologically terminate on the boundary. This corresponds to the Lagrangian algebra

L =
{
Vm

∣∣ m ∈ ZN
}
. (2.4.4)

In fact, this set of defects is non-anomalous, and is maximal since any other defect, that is one of the

Un, is charged under the Vm.

There is another obvious boundary condition, that we can call Neumann for Bd−p−1 or Dirichlet

for Ap, namely

δAp
∣∣
∂

= 0 . (2.4.5)

To get a good variational principle out of this, we first need to add a boundary term proportional to

Ap ∧Bd−p−1, that is equivalent to present the action in the integrated by parts form:

S = − i(−1)pN

2π

∫
Xd

dAp ∧Bd−p−1 . (2.4.6)

This other boundary condition allows all the defects Un to terminate on the boundary, and corresponds

to the Lagrangian algebra

L =
{
Un
∣∣ n ∈ ZN

}
(2.4.7)

that is also anomaly free and maximal.

One of the powers of characterizing topological boundary conditions in terms of Lagrangian alge-

bras is that there are certain boundary conditions that are less evident in terms of explicit conditions

on the fields (at least in terms of continuous fields). For example, suppose N = pq. Recall that

the braiding between Un and Vm defects is B(n,m) = exp
(
2πinm
N

)
. Then the defects Upx, Vqy, with

x = 0, ..., q − 1, and y = 0, ..., p− 1 are all mutually transparent, hence

L =
{
Upx , Vqy

∣∣ x ∈ Zq , y ∈ Zp
} ∼= Zq × Zp (2.4.8)

is an anomaly free symmetry. It is also maximal, since any other defect braids non-trivially with at

least one defect inside L. Hence L is a Lagrangian algebra and can be used to define a topological

boundary condition.

One general fact is that the dimension of a Lagrangian algebra is always the square root of the

total dimension of the symmetry defects of the TQFT. This also motivates the name Lagrangian,

resonating with the same notion in symplectic geometry.

Which TQFTs have topological boundaries? Not all TQFTs admit topological boundary con-

ditions, hence Lagrangian algebras. The prototypical example is U(1)k Chern-Simons theory discussed

in Section 2.3. The reason is very simple: U(1)k has a Zk 1-form symmetry whose lines have braiding

B(a, b) = exp

(
2πiab

k

)
. (2.4.9)
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The whole 1-form symmetry is anomalous, and a Zp ⊂ Zk subgroup (here k = pq) is generated by

lines Wqx, x ∈ Zp, that have braiding

B(qx, qy) = exp

(
2πiqxy

p

)
. (2.4.10)

Hence Zp is anomaly free only if p divides q, namely q = lp and k = lp2. Moreover, if l > 1 (that is,

p ̸= q), the lines Wpx that form the subgroup Zq are transparent to those of the subgroup Zp, but the

two do not coincide; hence Zp is not maximal. It might be that l is itself divisible by a perfect square

and we can continue this way, but the process will stop unless k is not a perfect square. We conclude

that

• U(1)k admits topological boundaries if and only if k = p2 is a perfect square.

It is interesting to ask: when does a TQFT admit topological boundary conditions? Using the de-

scription in terms of Lagrangian algebras, the answer is very simple and elegant: topological boundary

conditions exist if and only if the theory can be presented as a discrete gauge theory for some discrete

(generalized) symmetry C. In fact, gauging the Lagrangian algebra corresponding to the topological

boundary produces a trivial theory L. As we have already argued, the theory is trivial because the

dual symmetry C does not act on anything, the twisted sector being empty. But precisely for this

reason, we can reconstruct the original TQFT by gauging back C, and presenting the theory as a pure

C gauge theory.

The argument presented in this form might appear to be restricted to TQFTs whose set of topo-

logical defects forms a group-like symmetry. But it is not: the same argument makes sense also for

TQFTs with non-invertible symmetries, replacing the gauging with a generalized gauging. This is the

basic principle behind the fact that all d−dimensional TQFTs that admits topological boundaries have

a so-called state-sum construction from the datum of a (d− 2) fusion category [94], which generalize

the famous Turaev-Viro model [38].

Returning to U(1)k Chern-Simons, we have seen that if k = p2 it admits topological boundary

conditions. It is natural to ask if it is indeed a gauge theory. It is easy to check that the answer is

affirmative: it is nothing but Dijkgraaf-Witten theory Zp with twist 1:

ip

2π

∫
X3

B ∧ dC +
i

4π

∫
X3

C ∧ dC . (2.4.11)

Indeed as we discussed in Section 2.2.3 the presence of the twist combines the two Zp symmetries into

Zp2 , and the braiding can be also checked to be the correct one.
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Chapter 3

Introduction to non-invertible

symmetries

In this chapter, after a qualitative explanation motivating the appearance of category theory in the

study of symmetries, we will review four interesting constructions of non-invertible higher categorical

symmetries in QFT. A main ingredient is given by condensation defects introduced in [26], that we

review in Section 3.2. These are an almost trivial type on non-invertible symmetries which do not

impose dynamical constraints, but appear universally in all other types of categorical symmetries. We

will then review duality defects [24] (that will be the heroes of Chapters 5 6), KOZ defects [25], and

the non invertible chiral symmetry in 4d [28, 29].

3.1 Symmetries and category theory

One crucial realisation of the last years is that all topological operators in QFT have many properties

that are natural generalisations of those of symmetries. They are robust, being preserved along RG

flows and continuous variation of the parameters of the theory. Inserting them into the path integral

can be viewed as a generalised notion of coupling with backgrounds, and as such they give rise to notions

of ’t Hooft anomalies that impose dynamical constraints. In addition, if these anomalies vanish, the

topological defects can be gauged. For this reason, it has become common law to call symmetries all

possible topological defects of a QFT symmetries, even if they do not fuse according to any group.

They are typically called non-invertible or categorical symmetries. The reason for the second name

is that it has been recognised [8, 20, 24–27, 91, 95] that the most general mathematical structure

governing topological defects is that of higher fusion categories [96, 97].

A higher category is an algebraic structure with objects, morphsims between objects, 2-morphisms

between morphisms, 3-morphsims between 2-morphisms, and so on. An n-category has n levels of

morphisms. All the morphisms can be composed. If there is also a concept of composing (or fusing)

the objects, the higher-category is called monoidal1. The word fusion is mathematically appropriate

only under certain finitness conditions. In general we do not want to assume them, since QFTs also

have continuous symmetries, but we will use the abuse of notation of calling fusion higher categories

any monoidal higher category.

The idea is that d-dimensional QFTs have codimension one topological defects (0-form symmetries)

that can be fused without encountering UV divergences, and they are objects of a (d − 1)-category.

1The reason is that a monoidal n-category can be thought of as a (n + 1) category with a unique (monoid) object,

and the objects of the n-category are realized as morphisms of it.
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Topological defects of codimension two (1-form symmetries) can generically be interfaces between

two codimension one defects, and are identified as (1-)morphisms. If they live in the bulk, they are

thought of as endomorhisms of the identity object. Then topological defects of codimension three (2-

form symmetries) separate two codimension two objects, and are 2-morphsims, and so on. In general,

codimension p+ 1 objects are (p+ 1) morphisms, and they can exist until p = d− 1 (topological local

operators).

This structure can be very complicated, and a complete understanding of its consequences for QFT

is still lacking. A great simplification takes place in two dimensions, where the formalism of fusion

(1-)categories is very well developed (see, e.g. [98] for a comprehensive review). Two-dimensional

QFTs are in fact the place where non-invertible symmetries were first discovered and analyzed in

great detail [20, 21, 91, 99], following the very well-known existence of topological defect lines in 2d

CFTs [18, 100–102]. We will not furnish a detailed treatment of fusion category symmetries in 2d,

that is a well established subject, and for which the reader can consult the references above. In the

following, instead, we want to emphasize the more general viewpoint that emerged in the last years,

without relying on the power tight to two dimensions.

We will not present a general mathematically abstract theory of higher categorical symmetries,

but instead we will use a physics based approach of constructing these symmetries and analyzing their

consequences in QFT. We hope that this bottom-up analysis can furnish insights on the more general

and unified structures.

Truthfully speaking, a hint towards a unification driven by the physical approach has already

emerged: it is the Symmetry Topological Field Theory (SymTFT) that we will introduce in the next

chapter. This is the idea that for any categorical symmetry C in d-dimensions, we can associate a

(d+1)-dimensional TQFT Z(C) that encodes all the properties of C. This approach essentially moved

the problem of studying complicated algebraic structures, the fusion higher categories, into a problem

of TQFTs that is often more accessible. This will be the subject of the Chapters 5 6 7 8 9. In

the remaining sections of this chapter, we will review some of the most important constructions of

categorical symmetries in higher dimensions.

3.2 Condensation defects

Condensation defects are one of the main ingredients in higher categorical symmetries. In a sense

they are the most trivial type of non-invertible symmetries in higher dimensions, but they universally

appear in all other types of non-invertible symmetries, making them an indispensable tool. Moreover,

they play a very important role in TQFTs, where 0-form symmetry defects have an explicit realisation

in terms of condensation defects. This makes them very valuable in the SymTFT (Chapter 4) and

will be extensively used in Chapter 5.

3.2.1 Generalities

A d-dimensional QFT with a p-form symmetry A, with p > 0, automatically has a class of topological

defects supported on n-dimensional manifold, for any n > d− p− 1, called condensation defects [26,

50, 103]. The idea is very simple. Given Σn ⊂ Xd, the defects Ua(γd−p−1) = U(γ̂d−p−1) generating

the p-form symmetry (γd−p−1 ⊂ Xd is the geometric cycle, γ̂d−p−1 ∈ Zd−p−1(Xd,A) takes into account

also a ∈ A) can be placed on Σn, where they are of co-dimension n − d + p + 1, and they formally

generate a q-form symmetry there, with

q = n− d+ p . (3.2.1)
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If this symmetry in non-anomalous, we can construct a n-dimensional defect C(Σn) by formally

gauging this symmetry [26]:

C(Σn) = N(Σn)
∑

γ̂d−p−1∈Hd−p−1(Σn,A)

U(γ̂d−p−1) = N(Σn)
∑

B∈Hq+1(Σn,A)

PD−1(B) . (3.2.2)

Here N(Σn) is a normalization constant, that is the same appearing in pure n-dimensional q-form A
gauge theory. PD−1(B) is the (inverse) Poincare’ dual of the gauge field B, namely the network of

topological defects corresponding to that specific background. In other words, inserting C(Σn) into a

correlator produces a sum of correlators, each with a specific network of Ua(γd−p−1) defects inserted

along Σn. This has straightforward generalizations, gauging subgroups B ⊂ A, and also adding discrete

torsion ν ∈ Hn(Bq1bB,R/Z) if allowed.

The procedure of gauging the symmetry in some sub-manifold has been called higher-gauging in

[26]. It must be emphasized that it is a completely different procedure from ordinary gauging of a

discrete symmetry. The latter produces a new theory, while higher-gauging does not change the theory

but defines a defect in that theory.

C(Σn) (or its generalizations) is automatically topological, because so is Ua(γd−p−1), hence we

regard it as a generalized symmetry. However, it should be noted that these defects are a sort of bonus

whenever we have higher-form symmetries: they are not really new symmetries, and they are not

expected to imply new consequences for theory, on top of those implied by A. From a mathematical

perspective [97, 103], we should take them into account to nicely complete the categorical symmetry

of the theory. This is called Karoubi or condensation completion. Physically, there are two natural

question we need to ask:

1. How do these defects interact with the other operators in the theory?

2. Where are these defects likely to show up in a natural way?

Since C(Σn) is made by defects of the p-form symmetry A, it is intuitively clear that the only operators

C(Σn) can interact with are those that are charged under A. Therefore, even though C(Σn) generates

a (d−n− 1)-form symmetry, defects of dimension < p are transparent for C(Σn). In particular, since

d− n− 1 < p, C(Σn) cannot act by linking. This is because the defect is porous.

Regarding the second question, there are at least two situations in which condensation defects

appear. One is in TQFTs where, for n = d− 1, they turn out to generate all possible unitary 0-form

symmetries that act on the lower-dimensional topological defects as automorphisms. The other is

more surprising: they universally appear in the fusion rules of all non-invertible symmetries in d > 2.

It turns out that the condensation defects themselves are often non-invertible, with fusion rules of

projectors: C(Σn)×C(Σn) ∼ C(Σn). More precisely, the condensation defect is non-invertible when-

ever the higher-gauging we perform in n-dimensions would also be allowed in the bulk d-dimensional

space. For instance, the ZN 1-form symmetry of a 4d SU(N) gauge theory is non-anomalous and we

can gauge it in the bulk. Therefore, if we construct a 3d condensation defect C(Σ3) by higher-gauging,

this is non-invertible. On the other hand, higher-gauging the ZN 1-form symmetry of the 3d U(1)N

Chern-Simons theory on a two-dimensional surface would produce an invertible defect.

Moreover, even higher-gauging a non-anomalous symmetry can sometimes produce an invertible

defect, if the higher-gauge utilizes a discrete torsion that is not allowed in the bulk. We will discuss

examples of this in 5d TQFTs in Chapter 5. A 5d ZN gauge theory has 2-form symmetry ZN×ZN with

an anomaly, but each of the two ZN factors is anomaly free. However, while there is no 5-dimensional

SPT phase for a ZN 2-form symmetry, higher-gauging the surfaces on a 4-manifold is equivalent to
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gauging a 1-form symmetry, for which we can add discrete torsion r ∈ H4(B2ZN ,R/Z) = Zgcd(N,2)·N .

We will see that if this is non-trivial, the condensation defect will be invertible.

We will now discuss in some more detail condensation defects in TQFTs, focusing on three-

dimensions, that is the first non-trivial cases. This mostly riviewes [26]. Many higher-dimensional

generalizations will be discussed in great detail in Chapter 5.

3.2.2 Condensation defects in TQFTs

In TQFTs condensation defects can be constructed and analyzed very explicitly. Consider the 3d ZN
gauge theory

S =
iN

2π

∫
X3

B ∧ dA . (3.2.3)

This has 1-form symmetry ZN × ZN , generated by dyons

Wa,b(γ) = exp

(
i

∫
γ

(aA+ bB)

)
, a, b ∈ ZN (3.2.4)

with braiding and topological spin given by

B
(
(a, b); (a′, b′)

)
= exp

(
2πi

N
(ab′ + a′b)

)
, θ(a,b) = exp

(
2πiab

N

)
(3.2.5)

Hence the full 1-form symmetry is anomalous, while the two ZN subgroups generated by W(a,0) and

W(0,b) are non-anomalous. However the anomaly is only caused by the braiding, hence when the

topological lines are thought as generating a 0-form symmetry on a two-dimensional surface, even the

full ZN × ZN can be higher-gauged. Hence we can construct a condensation defect

C(Σ2) =
1∣∣∣H1 (Σ2,ZN × ZN )

∣∣∣1/2
∑

γ∈H1(Σ2,Z)

∑
a,b∈ZN

W(a,b)(γ) . (3.2.6)

Although it is a codimension-one operator, hence generating a 0-form symmetry, it does not act

on local operators, as there are none. Even in presence of local operators, it would not act on them,

since it is made out of lines that cannot have a non-trivial interactions with points in 3d. C(Σ2) has

an action on lines, not by standard lining, but by surrounding them:

=

When the cylinder is shrinked around a line Wn,m(L) we remain with a generically different line, that

could also be non-simple, but a sum of lines. To determine this action we use the definition of C(Σ2)

as sum of lines on the cycles of the cylinder. We assume N odd for simplicity here. The generic
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element of the sum takes the form

(a2, b2)

(a1, b1)

(a1, b1)

(a1 − a2, b1 − b2)

(n,m)

This must be summed over a1, b1, a2, b2 ∈ ZN . This network can be resolved in four steps. First

we pass the blue line through the upper piece of the red line, costing a factor of half-braiding

exp
(
2πi
2N (a1b2 + a2b1

)
. The factor of 2 at the denominator is understood as multiplying the numerator

by 2−1, that exists because N is odd. Second, junctions among the red, green and blue lines can be

resolved without any additional cost into

Wa2,b2

Wn,m

Wa1,b1

Third, we pass the blue line through the brown one, getting a braiding phase exp
(
2πi
N (a2m+ b2n)

)
,

and the blue line can be made to disappear. Finally, we fuse the red and brown lines into Wa1+n,b1+m.

We conclude that the action of C(Σ2) on the line Wn,m(L) is given by

C(Σ2) ·Wn,m(L) =
1

N2

∑
a1,b1,a2,b2∈ZN

exp

(
2πi

N
(2−1a1b2 + 2−1a2b1 + a2m+ b2n)

)
Wa1+n,b1+m (3.2.7)

The sum over a2, b2 cancel the N2 factor and gives two Kronecker delta imposing

a1 = −2n , b1 = −2m . (3.2.8)

This is solved by the sums over a1, b1, and the result is

C(Σ2) ·Wn,m = W−n,−m . (3.2.9)

We conclude that C(Σ2) is the topological operator implementing charge conjugation symmetry in

the TQFT: (n,m) 7→ (−n,−m).
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This example has a twisted generalization, including discrete torsion r ∈ H2(BZN × ZN ,R/Z) ∼=
ZN in the higher-gauging, producing a different condensation defect Cr(Σ2). Recall that H2(BZN ×
ZN ,R/Z) is given by alternating bicharacters

χr ((a1, b1); (a2, b2)) =
2πir

N
(a1b2 − a2b1) (3.2.10)

hence this factor must be included at the exponent in the twisted higher-gauging. We assume 2r +

1, 2r − 1 to be invertible numbers in ZN . The same computation above gives

Cr(Σ2) ·Wn,m = Wqn,q−1m , q = (2r + 1)−1(2r − 1) . (3.2.11)

Therefore Cr(Σr) implements the action of the automorphism (n,m) 7→ (qn, q−1m), that is indeed a

symmetry of the TQFT, since it preserves the spin.

It turns out that all automorphism 0-form symmetries of 3d TQFTs can be realized in a similar

way with condensation defects [26]. As an other interesting example, that will be relevant in Chapter

6, we consider electro-magnetic duality of pure A gauge theories, introduced in Section 2.2.1. We

recall that the theory has lines labeled by (a, α) ∈ A × A∨ with braiding B ((a1, α1), (a2, α2)) =

exp (2πi(α2(a1) + α1(a2)), and electro-magnetic duality is a Z2 symmetry subordinated to a choice of

a symmetric isomorphism ϕ : A→ A∨ and given by

Φ : (a, α) 7→
(
ϕ−1(α), ϕ(a)

)
. (3.2.12)

To construct a topological operator that implements this 0-form symmetry, we first look at the

subset of Φ-fixed lines

F = {(a, α) | Φ · (a, α) = (a, α)} = {(a, ϕ(a)) |a ∈ A} (3.2.13)

and its orthogonal with respect to the braiding

F⊥ =
{

(a, α) | B
(
(a, α); (a′, α′)

)
= 1 ,∀(a′, α′) ∈ F

}
=
{(
a,−ϕ(a)

)
| a ∈ A

}
. (3.2.14)

We claim that the action of Φ is implemented by a condensation defect Cϕ(Σ2) resulting from higher-

gauging F⊥ without torsion. We can follow the same steps as above. First we notice that, using the

symmetry of ϕ, the half-braiding between (a1,−ϕ(a1)) and (a2,−ϕ(a2)) is given by[
B
((
a1,−ϕ (a1)

)
,
(
a2,−ϕ (a2)

))]1/2
= exp (−2πiϕ (a1) a2) . (3.2.15)

Therefore the action of Cϕ(Σ2) on Wa,α is

Cϕ(Σ2) ·Wa,α =
1

|A|
∑

a1,a2∈A
exp

(
2πi

(
−ϕ (a1) a2 − ϕ (a2) a+ α(a2)

))
Wa+a1,α−ϕ(a1) . (3.2.16)

The sum over a2 cancels the factor |A| and imposes that a1 = −a+ ϕ−1(α). Hence the result is

Cϕ(Σ2) ·Wa,α = Wϕ−1(α),ϕ(a) . (3.2.17)

Non-invertible condensation defects. We conclude this section with one example of a non-

invertible condensation defect in the 3d ZN gauge theory. We notice that the subgroup ZN {(a, 0)} ⊂
ZN × ZN of the 1-form symmetry is non-anomalous, hence we expect that its higher-gauging on

Σ2 produces a non-invertible defect. We can verify this by computing its action on lines, using the
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procedure followed so far. Since we are condensing a non-anomalous symmetry, the half-braiding

factor is trivial and we get

CZN (Σ2) ·Wn,m =
1

N

∑
a1,a2

exp

(
2πi

N
a2m

)
Wn+a1,m = δm,0

∑
a

Wa,0 . (3.2.18)

This right hand side is zero unless the line Wn,m also belong the subgroup condensed to produce

CZN (Σ2), and in this case the result is not a single line, but the sum of all lines in that subgroup.

This is clearly not an invertible operation: CZN (Σ2) is a projector.

Applying CZN (Σ2) on both sides of (3.2.18) we deduce the fusion rule of the condensation defect

with itself

CZN (Σ2)× CZN (Σ2) = NCZN (Σ2) . (3.2.19)

The fusion coefficient N appearing here can be given an interesting interpretation by computing the

fusion rule on general 2-manifolds Σ2 other then the cylinder. This is done in [26], and we present

several methods in a slightly more general higher dimensional context in Chapter 5. The general result

is

CZN (Σ2)× CZN (Σ2) = ZZN (Σ2)CZN (Σ2) (3.2.20)

where ZZN (Σ2) =
∣∣∣H1(Σ2,ZN )

∣∣∣1/2 is the partition function of the 2d ZN gauge theory on Σ2. As

we will see, this turns out to be a generic feature of non-invertible categorical symmetries in d > 2:

the fusion coefficients are not numbers, but partition functions of TQFTs, that is manifold-depended

numbers [26, 104].

3.3 Duality defects

Duality defects are a type of non-invertible (categorical) defects that exist in even-dimensional QFTs

with a self-duality. The latter is a quantum equivalence between the ”same” theory in different points

of its parameter space, that however involves a non-trivial map of operators. The word ”same” is in

quotation because in general this action can involve changing the global structure. Certain points of

the parameter space might be fixed under this action, and the self-duality becomes a symmetry of

the theory. However, this is strictly true only if the action does not involve a change of the global

structure. It turns out that even when such a change is involved, there is a topological defect, but

it is non-invertible [24]. These defects will be the main characters of Chapters 5 and 6, where many

of their properties will be studied in great detail and the dynamical consequences will be analyzed.

For this reason, in this section we will only review the basic construction and some examples, leaving

many other aspects for those chapters.

3.3.1 Two-dimensional compact boson

T-duality. To illustrate the general discussion above, consider the 2d compact boson (see [99])

SR[Φ] =
R2

4π

∫
X2

dΦ ∧ ∗dΦ (3.3.1)

that has a parameter R ∈ R+. The theory has a self-duality, T-duality, that can be expressed as an

equivalence of path integrals:∫
D[Φ]e−SR[Φ] =

∫
D[Φ̃]e−SR̃[Φ̃] , R̃ =

1

R
. (3.3.2)
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This is obtained by a change of variable in the path integral, under which we identify

R2 ∗ dΦ = −idΦ̃ . (3.3.3)

It follows from the discussion in Section 1.2 around (1.2.9), that T-duality gives the following map of

operators:

T (Uα) = Ṽα , T (Vβ) = Ũβ , T (On) = H̃n , T (Hw) = Õw . (3.3.4)

Notice, in particular, that the theory SR[Φ] has 0-form symmetries U(1)M × U(1)W while S
R̃

[Φ̃] has

Ũ(1)M × Ũ(1)W , and T-duality specifies two isomorphisms

ϕM : U(1)M → Ũ(1)W , ϕW : U(1)W → Ũ(1)M . (3.3.5)

For generic R, T-duality is an equivalence of two theories. However, at the special value

R = 1 (3.3.6)

we have R = R̃ (self-dual radius): the two theories are the same, and we have Uα = Ũα, Vβ = Ṽβ and

so on. Therefore, the compact boson at the self-dual radius has an extra Z2 0-from symmetry given

by T-duality.

Half-space gauging. Consider now the compact boson TR with a generic value of R, and place

it on a manifold X2 divided into two parts XL
2 , X

R
2 by a curve γ ⊂ X2. Choose N ∈ N, and gauge

ZN ⊂ U(1)M only in the right half XR
2

TR/ZNTR

I(γ)

This means that we introduce a ZN gauge field A ∈ H1(XR
2 ,ZN ) coupled with the theory, and we

make it dynamical. We also need to choose a boundary condition for A on γ = ∂XR
2 . We choose

Dirichlet boundary conditions

δA
∣∣
γ

= 0 . (3.3.7)

More intrinsically, this means that the lines eia
∫
A, a ∈ Z∨

N of the quantum symmetry can terminate

topologically on γ. This operation defines a topological interface I(γ) between TR and its orbifold

TR/ZN .

The orbifold, however, is merely an other compact boson at radius R′ = R/N :

TR/ZN = TR/N . (3.3.8)

This just follows from the fact that the vertex operators On(x) that are invariant under ZN are those

with n = mN , m ∈ Z, hence the field with 2π periodicity is Φ′ = NΦ. By applying T-duality on the

right side, the interface I(γ) gives rise to an equivalent interface

TR/NTR

I(γ)

T-duality
TN/RTR

IT (γ)
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Now, if the square radius R2 is integer2, we are free to choose

N = R2 (3.3.9)

and IT (γ) is not only an interface, but a topological defect in the theory TR. This is called a duality

defect and we denote it by D(γ).

Notice that D(γ) coincides with its orientation reversal D(γ). This follows from T-duality being

an order-two operation, so we can reverse left and right in the argument above. The duality defect

is non-invertible. To establish this, we compute the fusion D(γ) × D(γ) (equivalently D(γ) × D(γ)),

simply composing the gauging operations:

TR/ZNTR

D(γ) D(γ)

TR

Using T-duality, the theory in the middle is also TR. The slab has the topology of γ × [0, 1], and

since we are gauging ZN there, squeezing the slab leaves the sum of all topological lines Uα= 2πa
N

(γ)

generating ZN :

D(γ)×D(γ) =
N−1∑
a=0

U 2πa
N

(γ) . (3.3.10)

We can also consider fusing D(γ) with U 2πa
N

(γ). Since these lines can end topologically on D(γ) (because

of the Dirichlet boundary condition), they are absorbed by the duality defect:

D(γ)× U 2πa
N

(γ) = D(γ) . (3.3.11)

Equations (3.3.10) and (3.3.11) are the fusion algebra of the so-called Tambara-Yamagami fusion

category associated with the Abelian group ZN [106].

Action on operators. To determine the action of D(γ) on the local operators On(x), Hw(x), we

first analyze what happens to them in the orbifold TR′ = TR/ZN . If n is not a multiple of N , On(x)

goes into a twisted sector of the orbifold theory. If n = mN , instead, On(x) becomes the operator

O′
m(x) = eimΦ′(x) of the orbifold. More generally, denoting with O′, H ′ respectively the vertex and

the vortex operator of the orbifold theory TR′ = TR/ZN , the gauging interface I(γ) implements the

map

I(γ) :

{
On(x) 7→ O′

n/N (x)

Hw(x) 7→ H ′
Nw(x) .

(3.3.12)

O′
n/N is a (generically) non-genuine operator living at the end-point of the line V ′

2πn
N

of the winding

symmetry of TR′ .

Combining this with the action of T-duality in the orbifold theory, we get the action of the duality

defect:

D(γ) :

{
On(x) 7→ Hn/N (x)

Hw(x) 7→ ONw(x) .
(3.3.13)

2This can be easily generalized to any R2 = p/q ∈ Q, by gauging a non-anomalous subgroup Zp×Zq ⊂ U(1)M×U(1)W .

Recently [105] discussed a further generalization to any radius, including irrational values.
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In particular, the operators charged under ZN ⊂ U(1)M are mapped into twisted sector of the same

symmetry:

On(x)

D(γ) D(γ)

Hn/N (x)

U 2πn
N

This is the hallmark of non-invertible symmetries: they map untwisted to twisted sectors (and vice

versa). Focusing only on ZN ⊂ U(1)M , notice that while the charged operators are labeled by the

Pontryagin dual Z∨
N , the twisted sectors are labeled by elements of the symmetry group ZN . The two

are isomorphic, but the isomorphism is non-canonical and requires a choice. In this case, this boils

down to the isomorphism ϕM : U(1)M → Ũ(1)W of (3.3.5).

3.3.2 Kramers-Wannier duality of Ising CFT

A similar story exists for the Ising CFT, replacing T-duality with Kramer-Wannier (KW) duality [72].

In the lattice model, KW-duality relates the high-temperature regime with the low-termperature one.

At criticality, that is in the Ising CFT, it is a self-duality between Ising and Ising/Z2, that involves

the map (we follow the notations introduced in 1.4.3)

σ(x) 7→ µ′(x) , µ(x) 7→ σ′(x) , ϵ(x) 7→ ϵ(x)′ . (3.3.14)

The prime denotes the same operators, but in Ising/Z2. In particular µ′(x) is a genuine local operator,

while σ′(x) lives in the twisted sector of the dual symmetry Z∨
2
∼= Z2.

We can apply the half-gauging construction introduced in the compact boson. We first construct

a topological interface I(γ) that separates Ising from Ising/Z2, and then use KW duality to relate the

latter to Ising, making I(γ) into a topological defect D(γ). Denoting by U(γ) the generator of the Z2

symmetry, the same argument used in the compact boson implies the fusion rule

D(γ)×D(γ) = 1 + U(γ) . (3.3.15)

This is the fusion category Tambara-Yamagami for Z2, denoted by TY(Z2), and sometimes called

Ising fusion category [20, 21].

We can follow the same argument as before to determine the action on operators. If we start from

σ(x) in Ising, and we pass the topological gauging interface through it, it becomes the same operator

in Ising/Z2, namely σ′(x). The latter is attached to the line V (γ) of the dual symmetry. Applying

the KW map, this is then related with µ(x) attached to U(γ):

σ(x)

D(γ) D(γ)

µ(x)

U
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3.3.3 Duality defects in four-dimensions

A completely analogous story exists in four-dimensions, as first pointed out in [24, 25, 107]. As we

have seen, non invertible duality defects arise if a theory T has some symmetry G, and the gauged

theory T /G has a non-trivial duality map with T . The non-trivial map must involve identifying G

with the dual symmetry. In 4d the dual of a 0-form symmetry is a 2-form symmetry, hence self-duality

under gauging 0-form symmetries are not possible. It is possible, however, to have self-duality under

gauging a 1-form symmetry, since its dual is again a 1-form symmetry.

A notable example is 4d N = 4 SYM. It has a conformal manifold parametrized by

τ =
4πi

g2
+

θ

2π
∈ {z ∈ C | Im(z) > 0} . (3.3.16)

The famous Montonen-Olive duality (or S-duality) states that the SU(N) theory at τ is equivalent

to the PSU(N) at −1/τ . The precise map is complicated, involving non-trivial actions on both local

and extended operators. What will be important for us is not the action on local operators3, but the

action on lines. S-duality maps genuine (non-genuine) Wilson (’t Hooft) lines of the SU(N) theory, into

genuine (non-genuine) ’t Hooft (Wilson) lines of the PSU(N) theory. Notice that Wilson lines of SU(N)

can be labeled with Z(SU(N))∨, while ’t Hooft lines of PSU(N) are labeled by π1(PSU(N))∨∨ ∼=
π1(PSU(N)) ∼= Z(SU(N)), where these isomorphisms are canonucal. Hence the duality must involve

a map

ϕ : Z(SU(N))→ π1(PSU(N))∨ . (3.3.17)

The underlying map is provided by the celbrated Langlands duality, that relates a Lie group G with

its Langlands dual LG (see [108] and references therein).

This duality is morally similar to T-duality and Kramers-Wannier duality in 2d, with a notable

difference of being of order-four (as opposite to two). In fact, applying S twice, while mapping τ back

to itself, it maps a Wilson line in rapresentation R with that in the conjugate representation R. Hence

S duality squares to charge-conjugation

S2 = C . (3.3.18)

Finally, combining S with the shift of the theta angle T : τ 7→ τ + 1 form the duality group

SL(2,Z) =
〈
S, T

∣∣∣ S2 = C , (ST )3 = 1
〉
. (3.3.19)

We can apply the half-gauging construction again. Now the interface is three-dimensional I(Σ3),

and saparates the SU(N) theory from the PSU(N) = SU(N) theory, both at τ

PSU(N), τ ∼= SU(N),−1/τSU(N), τ

I(Σ3)

In the right side we used S-duality to get again the SU(N) theory, but at −1/τ . At the special value

τ = i (3.3.20)

the two sides are the same theory, hence the interface become a topological defect D(Σ3) of the SU(N)

theory.

3Notice that the SU(N) and PSU(N) theories have the same local operators.
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The fusion D(Σ3) × D(Σ3) can be computed with the same technique as in the compact boson.

The main difference, however, is that the topological defects of the 1-form symmetry, Ua(Σ2), are

two-dimensional, while D(Σ3) is a three-dimensional defect. Gauging the 1-form symmetry in the

slab, amounts to inserting Ua(Σ2) on all possible cycles of it, and summing over a. When we squeeze

the slab, this reduces to summing over insertion of these defects on the cycles of Σ3:

SU(N)/ZNSU(N)

D(Σ3) D(Σ3)

SU(N) = SU(N) SU(N)

C(Σ3)

The result is nothing but the higher-gauging of the 1-form symmetry on Σ3, namely a condensation

defect [24]:

D(Σ3)×D(Σ3) = C(Σ3) . (3.3.21)

Let us make some comments

• If Σ3 does not contain nontrivial 2-cycles, D(Σ3) is the inverse of D(Σ3) and the symmetry is

effectively invertible.

• For more complicated Σ3, we see the emergence of interesting structures and D has no inverse.

The algebraic structure is a categorical extension of the group Z4: it behaves as Z4 on certain

manifolds, but it is modified by condensation defects.

Moreover, because the Dirichlet boundary conditions for the ZN gauge field on the gauing interface,

the generators of the 1-form symmetry Ua(Σ2) are completely absorbed by D(Σ3) if we push Σ2 on

top of Σ3:

D(Σ3)× Ua(Σ2) = D(Σ3) . (3.3.22)

Finally, following the by now standard argument, we can determine the action of D(Σ3) on op-

erators. First of all let us notice that the gauging of the 1-form symmetry does not affect the local

operators, hence the map on them is exactly the one given by S-duality, and in particular it is invert-

ible. The non-invertiblity arises in the action on line operators: a Wilson line passing the gauging

interface becomes non-genuine and attached to surface defects for the magnetic symmetry, and then

S-duality maps it to a ’t Hooft line attached to Ua(Σ2).

3.3.4 General duality defects

Having discussed some examples, we can illustrate the general story. Consider a d-dimensional QFT

T with a non-anomalous finite p-form symmetry A. We assume d to be even, and

p =
d

2
− 1 . (3.3.23)

Since d − p − 2 = p, the gauged theory T/A has a dual p-form symmetry A∨. We denote by

Ua(Σd−p−1) and Wα(γp) respectively the topological operators and the charged object for A in T ,

and by U ′
α(Σd−p−1) and H ′

a(γp) the corresponding object for A∨ in T ′=T /A. We also denote with

Ha(γp) the non-genuine operator of T in the twisted sector of a ∈ A, and with W ′
α(γp) the twisted

sector of α ∈ A∨ in T ′. Notice that, upon gauging, Ha ↔ H ′
a and W ′

α ↔Wα.
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We further assume that there is a duality

T /A ∼= T . (3.3.24)

The precise map of this duality depends on the specific example, and can involve an action of operators

of various dimensionality, different from p, that are not affected by the discrete gauging. What is

universal is that the duality must relate the p-form symmetry A of T with the dual p-form symmetry

A∨ of T/A. This makes sense because any finite Abelian group is ismorphic to its Pontryagin dual.

However the isomorphism is non-canonical, and the duality must involve the specification of

ϕ : A ∼−−−−→ A∨ (3.3.25)

that determines how the topological operators transform under duality. The inverse map ϕ−1 : A∨ →
A, on the other hand, determines how the charged p-dimensional operators are mapped by the duality:

Ua 7−→ U ′
ϕ(a) , Wα 7−→ Hϕ−1(α) , Ha 7→W ′

ϕ(a) . (3.3.26)

The isomorphism ϕ cannot be generic, since the action of the symmetry on the charged operators

must be preserved:

ϕ(a)
(
ϕ−1(α)

)
= α(a) . (3.3.27)

This means that the bicharacter γ : A× A→ R/Z, γ(a, b) = ϕ(a) · b must be symmetric.

The observant reader may have recognized the resemblance between this discourse and the discus-

sion on electro-magnetic duality in finite-group gauge theories near (2.2.12). This is not coincidental,

as both are linked by the SymTFT framework, which we will clarify in Chapter 6.

Under the assumptions spelled out so far, we can proceed with the half-gauging construction as in

the various examples. We first construct a topological gauging interface I(Σd−1) separating T from

T ′ = T /A, imposing Dirichlet boundary conditions for the A gauge field on the right side. We then

use the duality to map the right side T ′ back to T , hence the gauging interface becomes a topological

defect D(Σd−1), with fusion rule

D(Σd−1)×D(Σd−1) = CA(Σd−1) (3.3.28)

where CA(Σd−1) is the condensation defect of the full symmetry A. Only in the special case p = 0,

d = 2, this condensation defect formally reduces to the direct sum of Ua(Σ1), a ∈ A, while for p > 1

it is a generalization of it.

The action on operators not affected by the symmetry A is non-universal and determined by the

specific duality. The action on the p-dimensional operators Wa(γp) is instead universal. In the gauged

theory Wα(γp) becomes W ′
α(γp), living at the end of the topological operator U ′

α(Σd−p−1), and the

duality maps this into Hϕ−1(α) living at the end of Uϕ−1(α)

Wα

D D

Hϕ−1(α)

Uϕ−1(α)

The mathematical structure behind duality defects in a d-dimensional QFT is that of fusion (d−1)-

category. The objects are provided by the duality defects. Since they absorb all symmetry defects

91



of the p-form symmetry, there are no non-trivial endomorphisms on the duality defect. There are,

however, non-trivial (d/2 − 1)-morphisms of the identity object (the bulk), provided by the higher-

form symmetry. If these are the only elements of the higher-category we would be in trouble, since the

fusion (3.3.28) does not close. We need to complete the category by adding all possible condensation

defects, of all possible dimensionalities [103, 109], an operation called Karoubi completion.

3.4 Non-invertible symmetries from gauging

Many types of non-invertible symmetries can be obtained from a theory with only invertible sym-

metries, and gauging some non-anomalous discrete symmetry. One example is provided by theories

with an invertible higher-form symmetry A, together with a 0-form symmetry G that acts on it as

an outer automorphism. Gauging G produces a non-invertible higher-form symmetry out of A [8, 23,

27]. In this section we discuss an other instance, where we start form a theory with a 0-form and

a 1-form symmetry, without any action of one on the other, but with a mixed anomaly of a specific

type. Gauging the 1-form symmetry makes the 0-form symmetry non-invertible [25].

3.4.1 Vacua in 4d N = 1 SYM

Consider the 4d SU(N) gauge theory with one adjoint fermion ψ, namely N = 1 SYM theory. There

is a discrete Z2N R-symmetry ψ 7→ e
2πi
2N ψ, that is spontaneously broken down to Z2 ⊂ Z2N by the

fermion condensate

⟨ψψ⟩ = e
2πip
N Λ3 , p = 0, ..., N − 1 . (3.4.1)

There are N vacua labeled by p ∈ ZN = Z2N/Z2. The vacua are permuted by the action of the broken

symmetry, hence they are equivalent, and pairs of them are separated by domain walls, supporting a

Chern-Simons theory [110]. This whole structure can be argued purely from symmetry considerations,

deriving from the Z2N R-symmetry and its anomalies [111].

As we have seen in Chapter 1 around (1.4.38), the R-symmetry has a mixed anomaly with the

1-form center symmetry ZN with inflow action

2πi

2N

∫
X5

A ∪B ∪B . (3.4.2)

Here A ∈ H1(X,Z2N ), B ∈ H2(X,Z2N ) are backgrounds for the 0-form and the 1-form symmetry

respectively. This means in the PSU(N) theory, obtained by gauging the 1-form symmetry, the R-

symmetry is broken by a discrete analog of the ABJ anomaly.

How can we determine the vacuum structure of the PSU(N) theory, without having the R-

symmetry at our disposal? We can proceed as follows. Gauging a discrete symmetry is a topological

manipulation that commutes with the RG flow, so the IR of PSU(N) is obtained from the IR of SU(N)

by gauging the 1-form symmetry. In each of the N vacua the 1-form symmetry is preserved, so that

the deep IR theory is a trivial theory with 1-form symmetry ZN , namely an SPT. The absolute value

of this SPT is meaningless (it can be changed by a counterterm of B), but the relative phase between

two vacua is physical. Because of the ’t Hooft anomaly (3.4.2), the relative SPT phase between two

vacua related by the element p ∈ ZN of the broken R-symmetry is [11]

SSPT =
2πip

2N

∫
X4

B ∪B . (3.4.3)
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After we make B dynamical each vacuum becomes a (possibly non-trivial) TQFT, namely a pure ZN
gauge theory with twist

2πi

N

∫
X4

C ∪ δB +
2πip

2N

∫
X4

B ∪B. (3.4.4)

Here C ∈ C1(X4,ZN ), B ∈ C2(X4,ZN ). This is the Kapustin-Seiberg TQFT that we reviewed in

Section 2.2.4. If N and p are coprime, this is a trivial theory, but in general it is not. This means that

the various vacua are not all equivalent. For instance for SO(3) we have 2 vacua

• One is trivial (N = 2, p = 1)

• The other supports a non-trivial TQFT

2πi

2

∫
X4

C ∪ dB (3.4.5)

which has 2 lines and 2 surface operators

eia
∫
γ C , ein

∫
ΣB (3.4.6)

a, b = 0, 1 with non-trivial mutual braiding. The lines are the low energy limit of the ’t Hooft

lines which get perimeter law, namely they condense breaking spontaneously the magnetic 1-form

symmetry, and become topological at large distance.

This story was essentially known ten years ago [42], but there were some conceptual open questions,

whose complete answer required a point missed until very recently.

1. The vacuum structure seems not to be determined by a symmetry. After all, all the N vacua

are inequivalent, so they cannot be permuted by a symmetry group. On the other hand, by

a quite involved analysis it is still the R-symmetry, but of another theory, which explains the

vacuum structure. Conceptually, it seems natural that this structure is determined by an actual

symmetry of the PSU(N) theory, but which symmetry?

2. In the SU(N) theory the only interesting physical part of the low energy theory is about the

domain walls. Their infrared can be understood as the topological symmetry operators of the R-

symmetry. What can we say about the domain walls in PSU(N)? Few years ago [111] analyzed

this problem and claimed the the question is not well-posed: since some vacuum is not trivially

gapped the physics is not purely three-dimensional and it makes no sense to talk about the

domain wall itself.

While essentially correct, the answer of [111] to the second question has been very recently made more

complete by Kaidi, Ohmori, and Zheng (KOZ) in [25], who also answered the first question. The

R-symmetry can be rescued in the PSU(N) theory, in the sense that there are still three-dimensional

topological defects implementing the R-symmetry action on local operators, but these defects are non-

invertible at the level of their action on lines. Therefore, it also makes sense to talk about the domain

walls, but they are non-invertible walls. We now review the KOZ construction a bit more in general,

and then we will come back to the vacuum structure of PSU(N) N = 1 SYM.
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3.4.2 The KOZ construction

Consider a 4d theory T on a spin manifold X4 with a 0-form symmetry ZM and a 1-form symmetry

ZN , with mixed anomaly (denote k = gcd(N,M))4

Sinflow =
2πi

k

∫
X5

A ∪ B ∪B
2

(3.4.7)

Gauging the 1-form symmetry we get a theory T ′=T /ZN where the 0-form symmetry appears to

be broken. In terms of topological defects this is understood as follows. Let Ua(Σ3), a ∈ ZM be the

defects of the 0-form symmetry in T , and denote by A ∈ H1(X,ZM ) a background field, that it the

Poincare’ dual of Ua(Σ3): given a 3-cocycle ω3 we have∫
X4

A ∪ ω3 = a

∫
Σ3

ω3 . (3.4.8)

In the inflow picture we realize Σ3 = ∂Σ̃4, with Σ̃4 ⊂ X5 extending in the bulk, where we also pick an

extension of A, whose Poincare’ dual (in X5) is a defect Ũa(Σ̃4).

Activating a background B ∈ H2(X,ZN ) for the 1-form symmetry, the system with Ua(Σa) inserted

becomes gauge invariant with the addition of the inflow action that reduces to

Sdefect-inflow

(
Ua(Σ3);B

)
=

2πia

2k

∫
Σ̃4

B ∪B . (3.4.9)

This can be understood as an anomaly inflow for the defect. Under B 7→ B + δν it changes by

δSdefect-inflow

(
Ua(Σ3);B

)
=

2πia

k

∫
Σ̃4

δν ∪B =
2πia

k

∫
Σ3

ν ∪B (3.4.10)

This means that, without the inflow action, correlators of T with Ua(Σ3) inserted are not gauge

invariant under B → B + δν but change by a phase:〈
Ua(Σ3) · · ·

〉
T
7−→ exp

(
−i2πia

k

∫
Σ3

ν ∪B
)〈

Ua(Σ3) · · ·
〉
T

(3.4.11)

One may try to modify the definition of Ua(Σ3) by a B-dependent local counterterm to get rid of

this phase, but there is no way to do that. Thus Ua(Σ3) is not well defined and we cannot sum over

background fields B with this defect inserted.

The authors of [25] introduced a sophisticated procedure to obtain a topological co-dimension one

defect in the theory T ′=T /ZN . Preliminarly, we notice that the defect is non-anomalous under the

subgroup ZN/k ⊂ ZN of the 1-form symmetry. Hence this can be gauged without subtleties, and we

can replace B with a gauge field B′ for the quotient Zk.
The anomalous phase cannot be eliminated by a local counterterm, essentially because it is an

anomaly. But then it can be cancelled by inflow with a 4d term on an open region Y4 ⊂ X4, ∂Y4 = Σ3:

exp

(
2πia

2k

∫
Σ4

B′ ∪B′
)
. (3.4.12)

This is formally the same as (3.4.9), but differently from Σ̃4, Y4 does not extend to a 5d bulk. Hence,

this defines a non-genuine defect of T . The idea is to further cancel this inflow action by stacking, on

4Here the cup product in B∪B is the standard one associated with the ring structure of ZN . On the other hand the cup

product between A and B∪B
2

is associated with the pairing ZM×ZN → Zgcd(N,M) given by (a, b) 7→ (ab)mod(gcd(N,M)).
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Σ3, some 3d TQFT T (a)
3d with a 1-form symmetry that has an anomaly canceled by the same inflow

action (3.4.12). Pictorially this can be represented as follows

exp
(

2πia
2k

∫
Y4
B′ ∪B′

)

︸ ︷︷ ︸
Y4 = Σ3 × [0, 1]

Ua(Σ3)

T (a)
3d [Σ3;B

′]
(3.4.13)

Squeezing the slab Y4 = Σ3 × [0, 1] defines a genuine 3d topological defect

Na(Σ3) = Ua(Σ3)ZT (a)
3d

[Σ3;B
′] . (3.4.14)

Under B′ 7→ B′ + δν the partition function ZT (a)
3d

[Σ3;B
′] changes by a phase equal and opposite to

that of Ua(Σ3), so that Na(Σ3) is gauge invariant.

It seems that there is some level of arbitrariness in choosing the theory T (a)
3d , provided that it

has the correct anomaly. One crucial result proved in [111], however, states that any 3d TQFT with

1-form symmetry Zn and anomaly p ∈ Zgcd(n,2)n, if gcd(n, p) = 1, is the stacking of a minimal theory,

denoted by An,p, with a decoupled theory. This minimal theory is always some Abelian Chern-Simons

theory, up to some gauiging. For p = ±1 it is simply An,p=±1 = U(1)±n. Applied to the present

situation, this result implies that the fundamental defect (a = 1) has a minimal representative given

by

N1(Σ3) = U1(Σ3)ZU(1)−k [Σ3;B
′] . (3.4.15)

Any other choice of T3d would just stack the defect with a decoupled 3d TQFT, that behaves as the

identity operator in the theory.

Representing B′ with a continuous U(1) gauge field that is flat, and has periods given by k’th

roots of unity, we can give a convenient path integral presentation of N1(Σ1)

N1(Σ3) = U1(Σ3)

∫
D[z] exp

(
ik

4π

∫
Σ3

z ∧ dz +
ik

2π

∫
Σ3

z ∧B′
)
. (3.4.16)

Regarding the other defects a ̸= 1, the theory to be stacked is Ak,−a if gcd(a, k) = 1. Otherwise

we notice that the subgroup Zgcd(a,k) ⊂ Zk is not anomalous for the defect Ua(Σ3), and we can

gauge it reducing the anomaly to 2πia′

2k′

∫
Y4
B′′ ∪ B′′, with a′ = a/gcd(a, k), k′ = k/gcd(a, k), and

B′′ ∈ H2(X,Zk′) a Zk′ gauge field. Now gcd(a′, k′) = 1, and the gauge-invariant topological defect is

Na(Σ3) = Ua(Σ3)ZAk′,a′ [Σ3;B
′′] . (3.4.17)

When we make B′′ dynamical, finally getting the gauged theory T ′=T /ZN , all the defects Na(Σ3)

survive and implement a 0-form symmetry of T ′.

Fusion rules. This symmetry, however, is non-invertible. Indeed, while the naked part Ua(Σ3)

fuses following the ZM group law, the TQFT dressings fuse in a non-invertible fashion. For the sake
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of explicitness, consider the fusion of N1(Σ3) with its orientation reversal. This involves computing

ZU(1)−k [Σ3;B
′]×ZU(1)k [Σ3;B

′] =

∫
D[z1, z2] exp

(
ik

4π

∫
Σ3

(
(z1 ∧ dz1 − z2 ∧ dz2) + 2(z1 − z2) ∧B′

))
(3.4.18)

Changing variable in the path integral, eliminating z1 in favour of z = z1 − z2, the action becomes

k

2π

∫
Σ3

z2 ∧ dz +
k

4π
z ∧ dz +

k

2π

∫
Σ3

z ∧B′ . (3.4.19)

This is nothing but the 3d Zk DW theory with twist p = k ∈ Z2k (2.2.70), coupled with B′.

The theory T ′=T /ZN has a dual 1-form symmetry Z∨
N
∼= ZN generated by the surfaces

Vα(γ2) = e
iα

∫
γ2
B
. (3.4.20)

The result of the fusion is nothing condensation defect obtained by higher-gauging the subgroup

Zk ⊂ Z∨
N of the dual 1-form symmetry, with discrete torsion k. Therefore

N1(Σ3)×N 1(Σ3) = Ck(Σ3) , (3.4.21)

and N1(Σ3) doe not have an inverse.

Fusing the 1-form symmetry with the non-invertible defect. We can also consider the effect

of pushing a 1-form symmetry defect Vα(γ2) onto the non-invertible symmetry operator. Consider

first the case of M multiple of N , so that k = N and B′ = B. Then bringing Vα(γ2) on N1(Σ3), using

the path integral presentation (3.4.16) we get

N1(Σ3)× Vα(γ2) = U1(Σ3)

∫
D[z] exp

(
ik

4π

∫
Σ3

z ∧ dz + i

∫
Σ3

(
k

2π
z + αPD(γ2)

)
∧B

)
(3.4.22)

with PD(γ2) the Poincare’ dual cycle of γ2 inside Σ3. Hence shifting z 7→ z − 2πα
k PD(γ2), and using

that PD(γ2) is closed, we get

N1(Σ3)× Vα(γ2) = N1(Σ3) , (3.4.23)

namely the 1-form symmetry defect is absorbed.

For k ̸= N we decompose B = k
NB

′ + B̃, where B′, B̃ have periods that are, respectively, k’th and

N/k’th roots of unity. The 1-form symmetry defects can be written as

Vα(γ2) = e
iα

∫
γ2
B

= e
iα′ ∫

γ2
B′+iα̃

∫
γ2
B̃
, α′ ∈ Zk ⊂ Z∨

N , α̃ ∈ ZN/k = Z∨
N/Zk . (3.4.24)

Since only B′ appears in the expression (3.4.16), only the 1-form symmetry defects of the subgroup

Zk ⊂ Z∨
N are absorbed, leaving those of the quotient.

Categorical structure. As in the case of duality defects, Na(Σ3) are effectively invertible on Σ3

without non-trivial 2-cycles. The non-invertible defects constitute a categorical extension of the group

ZM . More precisely, the algebraic structure is that of a fusion 3-category [97]. Here, however, it is

slightly more intricate than for duality defects, because not all 1-form symmetry defects are absorbed

by the non-invertible symmetry:

• Objects are given by the Na(Σ3), a ∈ ZM , but also by all possible condensation defects of the

1-form symmetry surfaces.
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• The 1-morphisms are given by the co-dimension surfaces of the 1-form symmetry Vα(γ2), and

they form a 2-category. More precisely, the category of surface defects (1-morphisms) depends

on the object we are looking at. On the identity object, we really have all the Vα(γ2). But, as

we have seen, some of them are trivialized as we push them on Na(Σ3).

• There are no 2- and 3-morphisms.

3.4.3 Back to PSU(N) SYM

Now we can go back to 4d N = 1 PSU(N) SYM. Here we have M = 2N , so k = N . The Z2N R-

symmetry is not absent, but is non-invertible. Since the non-invertibility becomes manifest only if Σ3

has non-trivial 2-cycles, the action on local operators is unchanged with respect to the SU(N) theory.

In particular, the fermion condensate ⟨ψψ⟩ ≠ 0 still breaks the symmetry spontaneously, predicting

the existence of N isolated vacua.

However, the vacua are mapped among them by a non-invertible symmetry defect. If Σ3 ⊂ X4

divides space-time into two regions and we insert N1(Σ3), the theory will have different vacua on

either side with a phase difference e
2πi
N of the fermion condensate. The IR phases on the two sides are

different. This was previously understood by gauging the IR of the SU(N) theory, but can now be

seen as a result of the non-invertible symmetry.

To derive this, we need to discuss the action of the non-invertible defect on the line operators.

This is more clearly explained by employing a different construction of N1(Σ3), using a procedure

analogous to the higher-gauging trick of Section 3.3. In any 4d gauge theory with 1-form symmetry

ZN we can consider the topological manipulations

σ : Gauging the 1-form symmetry.

τ : Stacking an SPT for the 1-form symmetry 2πi
2N

∫
X4
B ∪B.

We perform the topological manipulation σ−1τ−1σ in half-space on the PSU(N) theory

σ−1τ−1σ · PSU(N) = PSU(N)−1PSU(N)

I(Σ3)

Indeed σ maps PSU(N) to SU(N), τ−1 stacks the SPT with coefficient −1 for the electric 1-form

symmetry, and gauging the 1-form symmetry back produces the global variant PSU(N)−1.

However, because of the mixed ’t Hooft anomaly between the Z2N R-symmetry and the 1-form

symmetry, the stacking done by τ−1 (this is equivalent to θ 7→ θ−2π) can be undone by an R-symmetry

transformation. This means that PSU(N)−1 has a duality with PSU(N). The map of the duality on

operators is exactly the action of the R-symmetry generator. Using this duality I(Σ3) is converted

into a defect of PSU(N), that is N1(Σ3):

PSU(N)−1
∼= PSU(N)PSU(N)

N1(Σ3)
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Consider now a ’t Hooft line Ha(γ1) of the PSU(N) theory, and let us pass N1(Σ3) through it. We

can adapt the same argument as for the duality defects. The gauging interface will send Ha(γ) to the

same line, but in the PSU(N)−1 theory. Recall that in the PSU(N)−1 theory the genuine lines are

dyons. Hence Ha(γ1) is non-genuine, and attached to a surface. The duality, by Witten effect [75],

maps this line to a dyon of PSU(N), that is also non-genuine.

Coming back to the non equivalence of the vacua, suppose that the vacuum on the left side is that

with magnetic confinement, namely the ’t Hooft line condenses and the IR is the TQFT

iN

2π

∫
X4

A ∧ dB . (3.4.25)

The lines of Ha(γ1) = e
ia

∫
γ1
A

are the IR limit of the ’t Hooft lines, while the surfaces Vα(γ2) = e
iα

∫
γ2
B

generates the magnetic 1-form symmetry. The (non-genuine) Wilson line, instead, has area law, as

well as all dyons.

As we pass Vα(γ2) through the wall N1(Σ3) it gets absorbed and disappears. This means that on

the right vacuum the surfaces are trivialized, and as a consequence the lines Ha(γ1) should also become

trivial. We can say more: as we derived above, Ha(γ1) is non-genuine and attached to a surface. We

recognize that the TQFT on the right side is the Kapustin-Seiberg TQFT with twist p = 1.

iN

2π

∫
X4

A ∧ dB +
iN

4π

∫
X4

B ∧B . (3.4.26)

In particular, this vacuum is trivially gapped, but supports a non-trivial SPT phase (recall that the

Kapustin-Seiberg TQFT is an SPT if gcd(N, p) = 1). This is also in agreement with the fact that

in the PSU(N)−1 the genuine line is a dyon, that has area law. This phase is often called oblique

confinement.

Proceeding in this way it is not hard to show that two vacua separated by the non-invertible defect

Na(Σ3) are both Kapustin-Seiberg TQFTs, but with twists that differ by

pR − pL = a . (3.4.27)

In particular, by acting withN1(Σ3) on the magnetically confined vacuum, we get a vacuum supoorting

the TQFT
iN

2π

∫
X4

A ∧ dB +
iNa

4π

∫
X4

B ∧B , (3.4.28)

that has gcd(N, a) non-trivial lines and surfaces.

3.5 Non-invertible chiral symmetry

The KOZ construction rescued a 0-form symmetry that naively is broken by a discrete version of the

ABJ anomaly. It is then natural to ask if a similar construction can rescue an axial U(1) symmetry

broken by the ordinary ABJ anomaly [112, 113]. If the gauge field responsible for the breaking is

Abelian, it was shown in [28, 29] that the answer is affirmative. The prize to pay here is twofold: in

addition to making the rescued symmetry non-invertible (as in the discrete case), only the dense set

of defects labeled by Q/Z ⊂ U(1) survives at the quantum level5. We now review the construction

of this non-invertible chiral symmetry, which will be the subject of Sections 8.4.2 and 9.4.2 where we

will study, respectively, its SymTFT and its spontaneous breaking.

5There are some alternative proposals [114, 115] with the goal of preserving the full U(1), while [116] recently made

a proposal for modifying the original construction of [28, 29] using the non-compact TQFTs of [5, 117] to rescue axial

rotations at irrational angles.
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Consider a 4d free massless Dirac fermion Ψ. It has has two U(1) symmetries:

U(1)V : Ψ→ eiαΨ , α ∈ [0, 2π)

U(1)A : Ψ→ eiαγ5Ψ , α ∈ [0, 2π) .
(3.5.1)

Decomposing the Dirac fermion in terms of two Weyls ψL, ψR, U(1)V rotates the two with opposite

charge, while U(1)A with the same charge. The Z2 subgroup is in common and is fermion parity

(−1)F . The Dirac mass term is charged under U(1)A (with charge 2), hence preventing its generation

is any symmetry preserving deformation of the theory. The standard triangle diagram computation

shows that, if U(1)V is coupled to a background field AV, the current JA of axial symmetry has an

anomalous conservation equation

d ∗ JA =
1

4π2
FV ∧ FV . (3.5.2)

In the modern language, U(1)A × U(1)A has a mixed ’t Hooft anomaly with inflow action

Sinflow =
i

4π2

∫
X5

AA ∧ FV ∧ FV , ∂X5 = X4 . (3.5.3)

The axial symmetry also has a pure anomaly in
24π2

∫
X5
AA ∧ FA ∧ FA, with n = 2.

The vector symmetry is anomaly free and can be gauged, resulting in massless QED. Because of

(3.5.2) the theory does not have the U(1)A symmetry, that is broken by an ABJ anomaly.

In massless QED the fermion mass is no longer protected and one may suspect that the dynamics

generates it. Of course everyone knows this is not going to happen (after all this is a weakly coupled

theory), but why is it so? Is there a symmetry principle that we can invoke?

One standard argument is that there are no Abelian instantons in flat space. This is not completely

satisfactory:

• What about more general topologies?

• The exact vanishing of some quantity is supposed to be explained by symmetry principles, while

saying ”there are no Abelian instantons” has the flavor of dynamical reason.

Needless to say, there is a symmetry principle, but it is a non-invertible one. In the following

we omit the subscripts in the gauge fields, and A will denote the dynamical U(1)V gauge field. The

basic idea is a very old one: the anomalous conservation equation (3.5.2) leads to a true conservation

equation for

J̃A = JA +
1

4π2
∗
(
A ∧ dA

)
, (3.5.4)

which, however, is not gauge invariant. From a defect point of view the topological operator is

Ûα(Σ3) = exp

(
iα

∫
Σ3

∗JA
)

exp

(
−i α

4π2

∫
Σ3

A ∧ dA
)
. (3.5.5)

The second term is a CS at level α/π, and is consistent only for α = 0, π, that is fermion parity.

The inconsistency for other values of α is a sort of anomaly. The Chern-Simons term is not gauge

invariant under large gauge transformations. This can be cured by replacing it with a bulk term
−iα
4π2

∫
Y4
F ∧ F , thus making the 3d defect a non-genuine one. We are in a similar situation to that in

4d N = 1 SYM. We want to imitate the same logic, by stacking a 3d TQFT that cancels the anomaly.

However, the anomaly here is continuous, and cannot be canceled by a TQFT. Then the idea is to

consider any finite subgroup Zn ⊂ U(1), for which the anomaly becomes discrete, and cancel it with

a TQFT. Since n is arbitrary, we should be able to obtain infinitely many topological defects.
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More precisely, for α = π/n the bulk is −i 1
4πn

∫
Y4
F ∧ F , and setting

B =
F

n
(3.5.6)

this is nothing but the anomaly inflow for U(1)n Chern-Simons theory. Hence we obtain a good

gauge invariant topological operator by replacing the bad piece of with ZU(1)n [Σ3;F/n], the partition

function of U(1)n, coupled with B = F/n.

An equivalent way to derive this, is by notice that for α = π/n the bad term is a Chern-Simons

at fractional level k = 1/n. In condensed matter theory, in particular in the context of the fractional

quantum hall effect (FQHE) (see [118] for a review) there is a very well-known trick to make sense of

it. One considers U(1)n in terms of a dynamical 3d gauge field a, coupled with A through

n

4π

∫
Σ3

a ∧ da+
1

2π

∫
Σ3

a ∧ dA . (3.5.7)

If we integrate out a blindly, setting a = −1/nA , plugging it back we obtain a fractional CS of A.

This operation does not really make sense, and the full path integral over a with action (3.5.7) is the

correct way of treating this fractional CS. We arrived at the same answer as before, that we should

consider the topological operators

Nα=π/n(Σ3) = exp

(
i
π

n

∫
Σ3

∗JA
)
ZU(1)n [Σ3;F/n] (3.5.8)

The extension for general fractional angles α = πp/n ∈ πQ/Z is straightforward (here gcd(p, n) =

1). The TQFT we need to stack is the minimal theory An,p of [111], whose Zn 1-form symmetry has

anomaly p ∈ Zn:

Nα=πp/n(Σ3) = exp

(
i
πp

n

∫
Σ3

∗JA
)
ZAn,p [Σ3;F/n] . (3.5.9)

Notice that, a crucial ingredient to construct the topological operator is that F is closed, that is

the existence of a conserved current ∗ F2π for the magnetic U(1) 1-form symmetry. The same defect has

also an alternative construction using the half-space gauging the subgroup Zn ⊂ U(1) of the magnetic

1-form symmetry (see [28, 29] for details).

With the same manipulations as around (3.4.18) we find the fusion rule

Nα=πp/n(Σ3)×Nα=πp/n(Σ3) = CZn(Σ3) (3.5.10)

with CZn(Σ3) a condensation defect of the Zn subgroup of the magnetic 1-form symmetry. This is

obtained by higher-gauging the surface defects e
ia/n

∫
γ2
F

, a = 0, ..., n− 1.
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Chapter 4

The Symmetry Topological Field

Theory

In this chapter we review the idea that topological manipulations of a d-dimensional QFT can be real-

ized in terms of a (d+1)-dimensional TQFT, called its Symmetry Topological Field Theory (Symmetry

TFT or SymTFT) [11, 32–36]. More precisely, given a symmetry C in d-dimensions, the SymTFT

Z(C) is associated with the symmetry, and encodes all its data in a way that is often more explicit

then how it appear in a direct d-dimensional analysis. For instance it effectively encodes anomalies

and global structures, as well as the representation theory for the symmetry. We mostly focus on

invertible symmetries in this Chapter, as several categorical generalization will be discussed in great

detail in the coming chapters.

4.1 Topological manipulations and their invariant

Consider a finite p-form symmetry A in d-dimensions, eventually with anomaly ω ∈ Hd+1(Bp+1A,R/Z)1.

We denote with Ua(Σd−p−1) the topological defects, and with Wα(γp) the charged objects. Let B ⊂ A
be a subgroup such that the anomaly ω pulls back to a trivial cocycle of Hd+1(Bp+1B,R/Z). Then

B is anomaly free and we can gauge it, eventually with discrete torsion ν ∈ Hd(Bp+1B,R/Z). This

topological manipulation produces a different theory with the same local physics but different global

properties. It has a p-form symmetry A/B and a (d − p − 2)-form symmetry Rep(B) (this is B∨ if B
is Abelian), possibly combined in some way: a group extension if d− p− 2 = 2, or more generally an

higher-group structure. The dual symmetry has topological defects Ũβ(Σp+1) = e
iβ

∫
Σp+1

Bp+1
, with

Bp+1 ∈ Hp+1(X,B) the B gauge field, and, for ν = 0, acts on the twisted sectors W̃b(γd−p−2), that

lived at the boundary of Ub(Σd−p−1) in the original theory. For ν ̸= 0 the charged objects might be

combination of twisted and untwisted sectors of the original theory, as we discussed in 1.4. On the

other hand, the operators Wβ(γp) that were charged under B in the original theory, now live at the

boundary of Ũβ(Σp+1), hence are in twisted sectors.

One can repeat various such topological manipulations, gauging non-anomalous subgroups with all

possible discrete torsions. The resulting theories are all possible global variants of the original theory.

They all have the same local dynamics but different global properties. Essentially, they differ for the

choice of which operators are genuine and which live in twisted sectors, as well as their charges under

the symmetries. It has been pointed out in [34] that the set of global variants can be endowed with the

1Actually anomalies are classified by some appropriate cobordism group. Here we restrict to bosonic anomalies,

classified by the cohomology of the classifying space.
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structure of a groupoid, dubbed orbifold groupoid2: objects are the global variants, and topological

manipulations are morphisms among them, while the automorphisms of the symmetry of each global

variant give endomorphisms.

Notice that the operators charged under B and B∨ are mutually non-local, and the corresponding

topological operators Ub(Σd−p−1), Ũβ(Σp+1) do not exist simultaneously in any global structure. The

basic idea of the Symmetry Topological Field Theory (SymTFT), introduced in various forms in [11,

32–36], is to make these two sets of operators to exist simultaneously in a (d+1)-dimensional TQFT,

that be denote by Z(A(p)). The QFT of interest lives at the boundary of Z(A(p)), and the choice of

which of the two sets of operator exist in the QFT is determined by the boundary conditions.

To understand what TQFT is the the SymTFT, let us start from the non-anomalous case ω = 0.

Z(A(p) must have both types of topological operators Ua(Σd−p−1) and Ũα(Σp+1), and they should

interact non-trivially. Indeed we observe that their dimensionalies add up to (d − p − 1) + (p + 1) =

d = (d + 1) − 1, hence if we lift them to one dimension higher, they have the correct dimensionality

to link. There is a natural TQFT that produces these defects with non-trivial linking, namely a

(p+ 1)-form A gauge theory:

S = 2πi

∫
Xd+1

Ap+1 ∪ δCd−p−1 . (4.1.1)

Here A ∈ Hp+1(Xd+1,A) and C ∈ Hd−p−1(Xd+1,A∨), and cup product is associated with the natural

pairing A× A∨ → R/Z. The topological operators are identified as

Ua(Σd−p−1) = exp

(
ia

∫
Σd−p−1

Cd−p−1

)
, Ũα(Σp+1) = exp

(
iα

∫
Σp+1

Ap+1

)
. (4.1.2)

The two have non-trivial braiding phase e2πiα(a).

The generalization to the anomalous case is straightforward. From ω ∈ Hd+1(Bp+1A,R/Z), inter-

preting Ap+1 as a map Xd+1 → Bp+1A, we can construct the class A∗(ω) ∈ Hd+1(Xd,R/Z). Thus we

consider the TQFT

S = 2πi

∫
Xd+1

(
Ap+1 ∪ δCd−p−1 +A∗(ω)

)
. (4.1.3)

It is natural to arrive at the following general proposal: the SymTFT for invertible symmetries

is a non-trivial TQFT obtained by gauging the anomaly inflow theory. Notice that the inflow theory

defines a trivial (invertible) TQFT with the given symmetry, and the partition function coupled

with a background is the exponential of the inflow action. The SymTFT is obtained by making the

background dynamical. Notice that even for non-anomalous symmetries this results in a non-trivial

theory.

We can be even more general, and introduce the idea that, for any finite symmetry structure

C acting on d-dimensional QFTs, we can construct a (d + 1)-dimensional TQFT Z(C) by gauging

gauging the symmetry in one dimension higher. More precisely, we first extend the symmetry to a

trivially acting symmetry in (d + 1) dimensions. This amount to view the defects as boundary of

defects extending in the extra dimension, and they generate a trivially acting symmetry, since we do

not introduce charged operators in the extra dimension. We then gauge this symmetry in (d + 1)-

dimensions, obtaining a non-trivial TQFT. Notice that there is no obstruction in performing this

operation: even if the symmetry is anomalous it cannot be gauged in d-dimensions, but its anomaly,

from the (d+1)-dimensional viewpoint, is a feature rather than an obstruction. For this reason, as

2A groupoid is a categorical generalization of a group. A group can be viewed as a category with one objects, and

the endomorphisms are all invertible and identified with the elements of the group. In a groupoid there can be several

diffent objects, but all morphisms are invertible.
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we will show in the next section for invertible symmetries and in more generality in Chapter 6, the

SymTFT Z(C) also encodes the anomalies of C.

This type of construction is well known in mathematics under the name of state-sum construction,

and was pioneered by Turaev and Viro in the case of a fusion category in two-dimensions to construct

a 3-dimensional TQFT [37, 38]. In general, state-sums produce a (d+1)-dimensional TQFT from the

datum of a fusion (d-1)-category. The full set of defects of Z(C) form a fusion d-category, called the

Drinfeld center of C, and by abuse of notation we denote it also with Z(C).3

In tbe way we arrived at the construction of Z(C) is implicit that if C′ is a symmetry structure

obtained from C with a topological manipulation, then

Z(C′) ∼= Z(C) . (4.1.4)

In other words the SymTFT is an invariant on the class of global variants, called Morita equivalent

class in mathematics. For instance it also implies the equivalent of the pure (p + 1)-form A gauge

theory and the (d − p − 1)-form A∨ gauge theories in (d+1)-dimensions, as we discussed in 2.2.1.

This equivalence is just manifest in the co-chain formulation and there is nothing surprising about

it. However, the equivalence of SymTFTs for Morita equivalent symmetries sometimes implies highly

non-trivial identification of TQFTs with a priori very different presentations.

It is also sometimes a very useful fact, since it might be much easier to obtain the SymTFT for a

given symmetry C by actually writing down the one for a different global variant. The typical example

is that of non-invertible symmetries that arise from gauging of invertible symmetries, as in the KOZ

construction [25] reviewed in Section 3.4.2. Even though we do not know how to perform the state-sum

construction starting from the datum of the fusion 3-category of interest, we can just make dynamical

the inflow action (3.4.12) and obtain

Z(KOZ) =
2πi

N

∫
X5

C3 ∪ δA1 +
2πi

M

∫
X5

T2 ∪ δB2 +
2πi

k

∫
X5

A1 ∪
B2 ∪B2

2
. (4.1.5)

4.2 The slab construction

In the last section we simply describe a construction of a (d+1)-dimension TQFT from a symmetry

of a d-dimension QFT, but have not been precise in the relation between the two theories. Now we

introduce the slab construction, that allows to extract all the properties of a given symmetry C of a

given QFTd T from its SymTFT Z(C).

First, we notice that, since T has symmetry C, can live at the boundary of Z(C). In a sense,

T specifies a (generically) non-topological boundary condition for the SymTFT Z(C). The setup

consists in coupling the dynamical C gauge field of Z(C) with the C-symmetry of T , and this gauge

field stays dynamical at the boundary. Notice that if we replace T with T ′ obtained by some topological

manipulation, the result of the coupling with the bulk TQFT is the same.

3The abuse of notation is actually using Z(C) for the (d+1)-dimensional TQFT, while using it for the Drinfeld center

is well-established in the mathematical literature.
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The idea is to place the SymTFT Z(C) on a slab with two boundaries

T
Z(C)

topological

b.c. L

The left one is the physical theory T , coupled in the way described above. On the other boundary

BL, we impose topological boundary conditions, determined by a Lagrangian algebra L of Z(C) (see

Section 2.4). The topological boundary condition can be thought of as the interface between Z(C) and

the trivial theory obtained by gauging L. In particular, defects inside L can end topologically on BL.

Equivalently, V ∈ L is trivialized if it is pushed on the topological boundary condition. On the other

hand, defects U /∈ L give rise to non-trivial topological defects when pushed to the right boundary,

and are identified with the defects obtained by fusing those inside L.

The slab geometry is an interval times the boundary, and since the bulk theory topological the

interval can be compactified producing a d-dimensional theory

T Z(C) BL TL

The resulting d-dimensional theory TL is determined by the topological boundary condition L, and it

is a global variant of the original theory T. In particular there exists a canonical Lagrangian algebra

LC that gives rise to the original theory

TLC = T , (4.2.1)

that has symmetry C. This canonical boundary condition is called Dirichlet. The intuition for the

name is that, if C is an invertible symmetry, the SymTFT Z(C) is a pure C gauge theory in (d+1)-

dimensions written in terms of a dynamical C gauge field A, and LC corresponds to δA
∣∣
∂

= 0. More

generally the anomaly free symmetry generated by LC is the dual symmetry arising from the gauging

of C in (d+1)-dimensions.

By playing with the topological boundary conditions, choosing the various Lagrangian algebras L,

we obtain all possible global variants TL of T. An other way to think about this is that specifying a

topological boundary condition of Z(C) determines a d-d-dimensional TQFT of edge modes, and the

slab construction provides a coupling between T and this TQFT.

One reason way this construction is useful is that it completely disentangle the dynamical theory

from the topological aspects. The piece of the slab made by Z(C) and the topological boundary, is

totally independent on T , and one can analyze it by its own. As emphasized by Freed, Moore and

Teleman [36], that called Z(C) together with L a quiche, this can be taken as the abstract notion of

symmetry in QFT. Attaching the left boundary T , hence closing the quiche, dictates how the abstract

symmetry acts on a concrete QFT.
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Even though it might be sometimes complicated to understand what is the concrete topological

manipulation corresponding to L, we can analyze the quiche on its own and understand how it deter-

mines the topological defects and the charged objects. Both types of operators arise from topological

defects of the bulk, but in different ways. The physical boundary condition of Z(C), that is the dy-

namical theory T , leaves all the bulk fields dynamical there, hence all defects can end. The endpoint

is generically non-topological, but might in some case be also topological, or can be even the trivial

operator. Regarding the topological boundary, any defect V (Σp+1) belonging to L can terminate on

BL, hence we can have configuration as

T
BL TL

The result of the interval compactification is a (n-1)-dimensional operator W (γp). This inherits the

dynamical of the end-point of V (Σp+1) on T: it can be non-topological, topological, or trivial if

that end-point has these properties. One can consider more refined adjectives, for instance if U(Σn)

terminate on T on a conformal defect, then W (γp) will be conformal.

Consider instead a bulk defect U(Σn) that does not belong to L. By maximality of L this means

that some defects in L are charged under U(Σn). This defect cannot end on BL. Thus if we push it

on the topological boundary it stays a non-trivial topological defect

T
BL TL

After compactification this produces a topological defect U(Σn) of TL that generates a (d−n−1)-form

symmetry. The charged objects for this symmetry are among the operators W (γp) discussed above,

since the non-trivial braiding in the bulk induces a non-trivial action on the boundary. Moreover,

non-trivial topological defects, if fused with a defect inside L, give rise to the same boundary defect,

since elements of L are trivialized on BL.

We conclude that the topological defects of the global variant TL are given by the quotient

C(L) = Z(C)/L , (4.2.2)

while the Lagrangian algebra L labels the charges (representation) under this symmetry [119]. Twisted

sector operators also arise quite naturally in this framework. While defects U(Σn) /∈ L cannot end on

BL, they can end on T , allowing to construct the configuaration

T
BL TL
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The result is an operator W̃ (γn−1) in the twisted sector of U(Σn).

Everything we said so far is valid for any possible finite symmetry structure. It can be invertible or

non-invertible, of any form degree, and can have a complicated categorical structure. Of course it might

be computationally complicated to determine all possible Lagrangian algebras of Z(C) and analyze

the property of all defects arising in a given choice of L. However, we reduced the problem of studying

a symmetry structure of a QFT T , to a purely TQFT problem: the dynamics of the boundary theory

does not play any role in the analysis. The idea of the SymTFT realizes concretely the philosophy

of using tools from TQFTs in non-topological theories. We will see in the coming chapters how to

employ several techniques to extract interesting data of the symmetry from the SymTFT, and use

these data to derive dynamical constraints for the QFT of interest.

Example: invertible symmetries without anomalies Let us demonstrate this general discus-

sion in a simple example of a p-form finite Abelian symmetry A in d dimensions. The SymTFT is

(4.1.1), with topological defects (4.1.2). The Dirichlet boundary condition fixes the value of Ap+1

on BLA , hence allowing all the Ũα(Σp+1) to terminate topologically. The corresponding Lagrangian

algebra is

LA =
{
Ũα | α ∈ A∨

}
∼= A∨ (4.2.3)

that labels the charges of a p-form A symmetry. The topological defects are Ua(Σd−p−1) pushed

at the boundary. The canonical braiding of Ua(Σd−p−1) and Ũα(Σp+1) in the bulk implies that the

operators Wα(γp) arising as boundaries of Ũα(Σp+1) are charged with respect to Ua(Σd−p−1) with

charge α ∈ A∨. There is another topological boundary condition, the Neumann boundary condition,

that fixes Cd−p−1, hence allowing Ua(Σd−p−1) to end topologically. The Lagrangian algebra is

L = {Ua | a ∈ A} ∈ A (4.2.4)

that labels the charges under a (d−p−2)-form symmetry A∨ generated by Ũα(Σp+1). This is the dual

symmetry obtained by gauging the p-form symmetry A above. On top of Dirichlet and Neumann,

there are also boundary conditions corresponding to gauging a subgroup B ⊂ A. These are obtained

by allowing the defect inside

L =
{
Ub , Ũβ | b ∈ B , β ∈ N(B)

}
(4.2.5)

to end. Here we introduced the notation N(B) = {β ∈ A∨ | β(b) = 0 , ∀b ∈ B}. It is easy to show

that there are canonical isomorphisms N(B) ∼= (A/B)∨ and A∨/N(B) ∼= B∨4. Therefore the symmetry

of this global variant is

A× A∨

L
= A/B× B∨ . (4.2.6)

In certain cases there are other topological boundary conditions, corresponding to additional topo-

logical manipulations, namely gauging with discrete torsion. For concretness let us specialize the

discussion to A = ZN and consider the two cases d = 2, p = 0 and d = 4, p = 1. In both cases the two

sets of defects Ua, Ũα have the same dimensionalities (1 and 2 respectively), hence we can consider

dyons

D(a,α)(Σp+1) = Ua(Σp+1)× Ũα(Σp+1) . (4.2.7)

4The first one is obvious, and by dualizing it we get a short exact sequence 1 → B → A → N(B)∨ → 1, whose dual

sequence is the stament that A∨/N(B) ∼= B∨.
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As we discussed around (2.2.15), the braiding is symmetric for d = 2 and antisymmetric for d = 4:

B ((a, α), (b, β)) =

{
exp
(
2πi
N (aβ + bα)

)
d = 2

exp
(
2πi
N (aβ − bα)

)
d = 4

(4.2.8)

For d = 2 this braiding cannot be trivialized by maximal sets other than those discussed above.

However, for d = 4, thanks to the minus sign we can consider, for any r = 0, ..., N − 1

Lr =
{
D(a,ra) | a ∈ ZN

}
. (4.2.9)

This is a Lagrangian algebra, and the corresponding boundary condition gives rise to a global variant

in which the genuine line operators charged under the 1-form symmetry are dyons. We recognize that

this is obtained by gauging the 1-form symmetry ZN with discrete torsion r.

4.3 SymTFT and anomalies

The SymTFT captures all information of the symmetry, in all possible global forms. A fundamental

datum of a given symmetry is its ’t Hooft anomaly that, in general, can be defined as an obstruction to

gauging the symmetry. There is a natural way in which Z(C) captures the anomaly for C: the absense

of the Neumann boundary condition, whose defining Lagrangian algebra has trivial intersaction with

the one defining the Dirichlet boundary condition [3, 43–45]. Indeed, as we have seen in the example

above, the Neumann boundary condition corresponds to gauging the full symmetry, hence an anomaly

is an obstruction to the existence of such boundary condition. In Chapter 6, following [3] we will discuss

a more refined notion, that focus on any single defect D ∈ C. This is defined to be anomalous if there

is no Lagrangian algebra of Z(C) that includes it. In a sense the defect is anomalous if it cannot

be trivialized by a topological manipulation. These two notitions are slightly different for general

categorical symmetries, and this will be the subject of Chapter 6. Here we just want to demonstrate

in a simple invertible example the principle that anomalies are detected by the absence of the Neumann

boundary condition.

Consider a ZN 0-form symmetry in 3d. Its anomaly is classified by H3(BZN ,R/Z) ∼= ZN , and the

inflow action is given by

Sinflow =
2πik

N

∫
X3

A ∪ β(A) , (4.3.1)

with A ∈ H1(X,ZN ) and β(A) = δA
N the Bockstein map. To construct the SymTFT we make A

dynamical, and for convenience we pass to the co-chain formulation

Z
(
Z(k)
N

)
=

2πi

N

∫
X3

(
A ∪ δB +

k

N
A ∪ δA

)
(4.3.2)

This is the 3d DW theory that we discussed in 2.2.3. As we have seen there, it has topological lines

Ua,b(γ) = exp

(
2πia

N

∫
γ
A+

2πib

N

∫
γ
B

)
(4.3.3)

with braiding

B ((a1, b1), (a2, b2)) = exp

(
2πi

N

(
a1b2 + a2b1 −

k

N
b1b2

))
. (4.3.4)

Since the Dirichlet boundary condition allows all the lines Ua,0 to end, the would be Neumann boundary

condition is associated with the orthogonal algebra

LN = {U0,b | b ∈ ZN} . (4.3.5)
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However, from the braiding (4.3.4) we see that for k ̸= 0 these defects are charged among themselves,

hence they do not form a consistent condensable algebra. We conclude that for k ̸= 0 the Neumann

boundary condition is inconsistent, signaling the ’t Hooft anomaly.
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Chapter 5

Non-invertible symmetries and

holography

In this chapter, we study how non-invertible self-duality defects arise in theories with a holographic

dual, focusing on the paradigmatic example of su(N) N = 4 SYM (see [8] for the extension to class-S
theories), that has non-invertible duality and triality defects at τ = i and τ = e2πi/3, respectively.

The main idea is that at these points in the gravitational moduli space, the gauged SL(2,Z) duality

symmetry of type IIB string theory (that is generically Higgsed down to Z2) is Higgsed to either

G = Z4 or G = Z6, giving rise to a discrete emergent G gauge field. After we reduce on the internal

manifold, the low-energy physics turns out to be dominated by an 5d BF theory theory, further gauged

by G, that we analyze and which gives rise to the self-duality defects in the boundary theory. Using

the five-dimensional bulk theory, we compute the fusion rules of those defects in detail.

5.1 Setup and general idea

Our interest here is in understanding how categorical symmetries appear in holography. The common

lore is that a global symmetry of the boundary theory appears as a gauge symmetry, accompanied by

a gauge field, in the bulk. This is confirmed and well understood in the case of invertible symmetries

— both ordinary 0-form, continuous and discrete, as well as higher form. What happens for a non-

invertible symmetry? What plays the role of a “non-invertible” gauge field?

We investigate this question in the specific case of self-duality defects.1 introduced in [24] that we

reviewed in Section 3.3. The idea is simple. The conformal manifold M of the boundary theory is

dual to a moduli space of bulk solutions in the gravitational description, while the choice of a global

structure on the boundary corresponds to a certain boundary condition in gravity. The duality group

Γ is a discrete gauge symmetry of string theory, which however is completely Higgsed at generic points

x at which Γ acts faithfully on M. At a special point x which is stabilized by G ⊂ Γ, the duality

symmetry Γ is only Higgsed to G, and in the low-energy description appears an emergent G gauge

field that acts on the supergravity fields. In particular, it also acts on a low-energy topological sector

of string theory whose topological (or conformal) boundary conditions encode the possible global

structures of the boundary theory. It is this structure that plays the role of a “non-invertible gauge

field”, at least in this class of examples. The derivation and explanation of how the supergravity

theory with extra gauge field gives rise to the non-invertible fusion rules is the subject of this chapter.

1The holographic description of non-invertible defects of the KOZ and orbifold type has recently been investigated in

[120–122].
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We focus on the four-dimensional N = 4 SYM theory with gauge algebra su(N), that is holo-

graphically dual to type IIB string theory on asymptotically AdS5 × S5 spaces [123]. The boundary

theory, however, is characterized by a specific gauge group with the given algebra, and thus this piece

information must be encoded in the bulk theory. As explained by Witten [86], kinematical properties

of the boundary theory, such as the global form of the gauge group, are captured by the long-distance

behavior of the gravitational theory (or equivalently, by the behavior close to the boundary), which is

encoded in the terms in the Lagrangian with the lowest number of derivatives, namely in the topologi-

cal terms. One can more conveniently work with the effective 5d theory in AdS5 obtained by reducing

on the internal manifold. The 10d type IIB supergravity action contains the topological term

SIIB ⊃
∫
X10

B2 dC2 F5 , (5.1.1)

where B2 is the NS-NS 2-form potential, C2 the R-R 2-form potential, and F5 is the field strength

of the R-R 4-form potential. In the following we will denote B2 = b, C2 = c. In compactification on

M5 × S5 with N units of 5-form flux on S5, one obtains at low energies the 5d Chern-Simons action

(5.1.4) [86, 124].

The continuous 2-form gauge fields b, c are dual to a U(1) × U(1) global 1-form symmetry of the

boundary theory, whose two factors act on ’t Hooft and Wilson line operators, respectively. This

symmetry does not have to act faithfully on the boundary theory: it only acts faithfully on the full set

of boundary theories with all possible global structures. This follows from the necessity of choosing

boundary conditions. If we choose topological boundary conditions, the action (5.1.4) restricts b, c to

be ZN × ZN gauge fields [85] and accordingly restricts the 1-form symmetry. Boundary conditions

ρ(L) further set to zero a linear combination of b, c along a Lagrangian subgroup L ⊂ ZN × ZN , only

leaving a 1-form symmetry of order N . Thus, the choice of boundary conditions specifies the global

structure of the SYM theory [86, 125] and the spectrum of extended (here line) operators [42]. For

instance, if we set b = 0 at the boundary, the boundary theory is SU(N). Fundamental strings (that

couple to b) can end on the boundary producing Wilson line operators in generic representations [126,

127], their ZN charge being measured by the topological operators ei
∫
c, while ’t Hooft lines only exist

with vanishing ZN charge. On the contrary, if we set c = 0 we obtain the PSU(N)0 theory. D1-branes

(that couple to c) can end on the boundary producing ’t Hooft line operators with generic ZN charge,

the latter being measured by ei
∫
b, while Wilson lines only exist in representations with trivial N -ality.

One can also choose conformal boundary conditions b = ∗ c: they give rise to an extra singleton sector

[124, 128] and describe the theory U(N), for which the 1-form symmetry is indeed U(1)× U(1).

Type IIB string theory also enjoys an SL(2,Z) symmetry. As in any theory of quantum gravity,

this must be a gauge symmetry. It acts on the axiodilaton field τ = C0 + ie−ϕ by standard fractional

linear transformations

τ → a τ + b

c τ + d
,

(
a b

c d

)
∈ SL(2,Z) (5.1.2)

(only PSL(2,Z) = SL(2,Z)/Z2 acts on τ) and on b, c as on a doublet B = (b, c)T in the fundamental

representation, (
b

c

)
→

(
a b

c d

)(
b

c

)
. (5.1.3)

At generic points τ in the moduli space, SL(2,Z) is spontaneously broken to its Z2 center, and thus

the corresponding gauge field does not appear in the low-energy supergravity description.2 However,

2The Z2 center of SL(2,Z), that maps (b, c) 7→ (−b,−c) but does not act on τ , is however always preserved and then

the corresponding Z2 gauge field should be included.
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special values of τ are left invariant by a larger subgroup G ⊂ SL(2,Z) which therefore remains

unbroken. The corresponding gauge field should then be included in the supergravity description,

where it appears as an emergent gauge field for the low-energy observer. Specifically, G = Z4 at τ = i

and G = Z6 at τ = e2πi/3. After compactification on S5, we obtain a discrete G gauge field a in five

dimensions, coupled to a G subgroup of the SL(2,ZN ) symmetry of

SCS =
N

2π

∫
b dc ≡ N

4π

∫
BTϵ dB . (5.1.4)

Here B =
(
b
c

)
, while ϵ =

(
0 1
−1 0

)
. This is an interesting subsector of the full theory on its own. Our aim

is to show that a is the gauge field corresponding to the non-invertible symmetries of the boundary

theory.3

5.2 The 5d Chern-Simons theory and its symmetries

Consider the five-dimensional Chern-Simons action [86] (see also [11, 89, 124, 128, 129])4

S[Q] =
1

4π

∫
Q(B, dB) , (5.2.1)

where B is a vector of 2n 2-form gauge fields, Q is an integer-valued 2n× 2n non-degenerate antisym-

metric matrix (or symplectic form), and we used the notation Q(x, y) = xTQy. We study this theory

on spin manifolds. The theory has topological surface operators

Um = eim
T
∫
B , (5.2.2)

where m is an integer-valued vector in Z2n, and the integral is over a 2-dimensional surface. These

operators generate an (anomalous) 2-form symmetry. The operators Um have nontrivial linking (see

Figure 5.1 left) given by the antisymmetric braiding matrix

Bmm′ = e2πiQ
−1(m,m′) . (5.2.3)

Any operator for which m = Qk with k ∈ Z2n is completely transparent and thus trivial. Those

operators generate a lattice ΛQ, and the 2-form symmetry defect operators are labelled by the elements

of the discriminant group

DQ = Z2n/ΛQ . (5.2.4)

This is the 2-form symmetry of the theory. Notice that |DQ| = |detQ|.
The case relevant to type IIB string theory compactified on S5 is n = 1 and Q = Nϵ with

ϵ =
(

0 1
−1 0

)
. We denote by b and c the two components of B. The action reads:5

S =
N

4π

∫
BTϵ dB =

N

4π

∫
⟨B, dB⟩ =

N

4π

∫ (
b dc− c db

)
. (5.2.5)

3The non-invertibility of duality and triality defects is only up to condensates. It is perhaps then not surprising that

the corresponding bulk gauge field is a standard discrete connection for G, though coupled to a nontrivial topological

sector SCS.
4This action, as written, is not well defined [86]. When the spacetime manifold M5 is the boundary of a six-manifold

Z, one can define S[Q] = 1
4π

∫
Z
Q(dB, dB). However, the bordism group in five dimensions is non-trivial and thus this

cannot be done in general. One could instead use the formalism of Cheeger-Simons differential characters [88].
5We work with an antisymmetric 5d Lagrangian, which is manifestly invariant under SL(2,Z) symmetry. One should

however keep in mind that, as written, the action is not well defined (see footnote 4), and thus conclusions drawn from

it should be taken with care. It turns out [86] that for N odd, the theory is SL(2,Z) invariant only on spin manifolds,

while on non-spin manifolds it is invariant under the subgroup Γ(2) generated by S and T 2.
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Um

Um′

= Bmm′

Um′

ρ(L)

∂Ul

Ul∈L
Ut

Ût

Figure 5.1: Left: Antisymmetric braiding Bmm′ between 2-dimensional defects Um in 5d Chern-Simons

theory. Right: Induced braiding between 2-dimensional defects Ût and line defects ∂Ul∈L on gapped

boundaries ρ(L).

We introduced the antisymmetric Dirac pairing ⟨x, y⟩ = xeym−xmye, where x = (xe, xm) is the expres-

sion of a vector in components. When describing the surface operators Um, it might be convenient to

package the information about m and the geometric 2-cycle wrapped by Um into γ ∈ H2(M5,ZN×ZN ),

or its Poincaré-dual cocycle PD(γ) ∈ H3(M5,ZN×ZN ). In this case U(γ) is described by the insertion

of

U(γ) = exp

(
i

∫
BT PD(γ)

)
(5.2.6)

in the path integral.

In the general case, gapped boundary conditions ρ(L) are in bijection with Lagrangian subgroups

L of DQ. A subgroup is called Lagrangian if all its elements are mutually transparent, i.e., if Bll′ = 1

for all l, l′ ∈ L, and if any element outside L braids non-trivially with at least one l ∈ L (i.e., L is

maximal). Defining a gapped boundary ρ(L) is equivalent to gauging the Lagrangian subgroup L of

the 2-form symmetry [130–132].6

Only dyons Ul with l ∈ L may terminate on the gapped boundary, defining in this way topological

line operators ∂Ul there. Besides, dyons in L are absorbed by the gapped boundary if they are moved

to lie within it, in other words the dyons Ul∈L are completely transparent (they do not contribute to

correlation functions) when placed on the gapped boundary. The boundary has non-trivial topological

surface operators corresponding to m /∈ L, obtained by moving Um/∈L to lie within the boundary,

however, because of the property just mentioned, those operators Ût are labeled by conjugacy classes

t ∈ DQ/L ≡ S. Thus the operators Ût generate a 1-form symmetry S there. The charges under that

symmetry are carried by the lines ∂Ul∈L, as follows from the 5d braiding (see Figure 5.1 right):

Ût(∂Ul) = e2πiQ
−1(t,l) ∂Ul , (5.2.7)

where, with some abuse of notation, we indicated by t any representative of its class in DQ.

Some properties become clear in the Lagragian description (5.2.1): a gapped boundary on X is

defined by Dirichelet boundary conditions

lTB
∣∣∣
X

= 0 (up to gauge transformations) for all l ∈ L . (5.2.8)

Introducing a rectangular matrix L whose columns are the generators of L in Z2n, so that LTQL = 0,

the boundary condition is LTB
∣∣
X

= 0 (up to gauge transformations). This can be imposed by a

6More precisely, gauging the discrete symmetry L is equivalent to inserting a network of symmetry defects for L in

the spacetime manifold. This is also equivalent to removing a tubular neighborhood of the network from the spacetime

manifold, and placing the topological boundary condition ρ(L) there. Thus, ρ(L) is a topological interface between the

ungauged theory and the trivial theory obtained by gauging L (such a theory is trivial because L is Lagrangian).
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boundary TQFT:

Sgapped
boundary

[L] =
1

2π

∫
Q
(
η, LT(B − dξ)

)
+ counterterms , (5.2.9)

where η is a 2-form gauge field in R2n/⟨L⟩, ξ is a 1-form gauge field in ⟨L⟩, and ⟨L⟩ is the real span of

L. The counterterms only involve B, and are fixed by overall gauge invariance. To give an example,

consider the type IIB case Q =
(

0 N
−N 0

)
and take the electric boundary ρ(L) where L is generated

by l = (1, 0), corresponding to the boundary condition b
∣∣
X

= 0 (up to gauge transformations). The

boundary action is

Selectric
boundary

=
N

2π

∫ [
η (b− dξ)− 1

2
bc

]
. (5.2.10)

If we introduce a coordinate r transverse to the boundary, place the boundary at r = 0 and the bulk

in the region r < 0, the full bulk plus boundary system has action

Sbulk plus
boundary

=
N

4π

∫
r<0

(
b dc− c db

)
+
N

2π

∫
r=0

[
η (b− dξ)− 1

2
bc

]
. (5.2.11)

The equations of motion fix the following conditions on the boundary:

b = dξ , c = η , η ∈ H2(M5,ZN ) . (5.2.12)

Thus, b is set to be pure gauge, while η is the pull-back of c to the boundary and c remains uncon-

strained (c ∈ H2(M5,ZN ) is already imposed by the bulk EOMs). The system is invariant under the

following gauge transformations:

b → b+ dαe , c → c+ dαm , η → η + dαm , ξ → ξ + αe . (5.2.13)

Interpreting instead L as a subgroup of DQ that is gauged, the dyons Ul∈L become trivial in the

bulk because they are pure gauge and can be absorbed by the network of defects. On the contrary,

the operators with m /∈ L are projected out in the bulk (using the fact that L is Lagrangian) and can

only exist on the boundary.

In the holographic setup, the 2-form symmetry L that we gauge in the bulk dictates what is

the spectrum of physical lines in the holographic boundary [86, 133]. Thus, the surfaces Ul with

l ∈ L become trivial in the bulk, but if they are attached to the holographic boundary, their endlines

∂Ul ≡ Wl are the physical line operators of the boundary theory (notice that these are no longer

topological, due to the holographic boundary conditions).7 The 1-form symmetry of the boundary

theory under which the lines Wl are charged is generated by the surface operators Ût, that can only

live on the boundary.

Coming back to type IIB string theory, where Q = Nϵ, the simplest case to discuss is when N

is prime. We label the bulk surfaces Um by m = (me,mm), where me and mm are the electric and

magnetic charges, respectively. The topological sector has N + 1 gapped boundary conditions:8

• An electric gapped boundary ρ(e), for which L is generated by l = (1, 0). As a gauging, this is

obtained by condensing the electric surfaces (me, 0) ∈ L (while in terms of a gapped boundary,

this is implemented by setting b = 0 there). It corresponds to the global variant SU(N) of the

boundary theory. The Wilson lines Wl∈L are endpoints of bulk surfaces Ul. For instance, the

7In the picture in which the bulk with gauged L is substituted by a slab of bulk between the holographic boundary

and a gapped boundary ρ(L), the operators Ul can be stretched between a copy of Wl in the holographic boundary and

a copy of Wl in the gapped boundary.
8See [134] for a recent in-depth study of gapped boundary conditions in the 5d Chern-Simons theory.
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ρ(e)

ρ(m)0

ρ(m)1

S

T

T

S

ρ(e)
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ρ(m)2 ρ(m)1

S

T
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S

T

Figure 5.2: Action of PSL(2,Z2) ∼= S3 (left) and PSL(2,Z3) ∼= A4 (right) on Lagrangian subgroups

(gapped boundaries).

Wilson line in the fundamental representation is the endpoint of a fundamental string [126, 127],

which couples as ei
∫
b to the NS-NS B-field b. The boundary 1-form symmetry is generated by

the surfaces Ût, and we can take for S ∼= ZN the representatives t = (0, tm).

• N magnetic gapped boundaries ρ(m)r with r = 0, . . . , N − 1, for which L is generated by

l = (r, 1). They are obtained by condensing the dyonic surfaces (rmm,mm) ∈ L (or by setting

rb + c = 0 on a gapped boundary). They correspond to the global variants PSU(N)r of the

boundary theory [42]. The ’t Hooft or dyonic lines are endpoint of bulk surfaces Ul∈L, for

instance for r = 0 the basic ’t Hooft line is the endpoint of a D1-brane, which couples as ei
∫
c

to the R-R field c. The boundary 1-form symmetry is generated by surfaces Ût, represented for

instance by t = (te, 0).

If N is not prime there is a larger number σ1(N) =
∑

k|N k of Lagrangian subgroups of ZN × ZN ,

corresponding to global variants of the boundary theory of the form
(
SU(N)/Zk

)
r.

5.2.1 Global 0-form symmetries

The theories (5.2.1) can have 0-form symmetries as well. On spin manifolds, a (unitary) 0-form

symmetry ω is an automorphism of the discriminant group DQ that preserves the quadratic form:

ωTQ−1ω = Q−1 mod 1 . (5.2.14)

Since ω is invertible, it maps Lagrangian subgroups to Lagrangian subgroups. We say that a gapped

boundary ρ(L) is ω-invariant if the corresponding Lagrangian subgroup is:

ωL = L . (5.2.15)

In the type IIB example, the 0-form symmetry group Γ is SL(2,ZN ), whose generators act on

electric and magnetic charges as follows:

S : (e,m) 7→ (−m, e) , T : (e,m) 7→ (e+m,m) , C : (e,m) 7→ (−e,−m) . (5.2.16)

They satisfy S2 = C, TN = 1, and (ST )3 = C. If M is the matrix acting on charges, then MT gives

the action on the gauge fields B, as it follows from (5.2.2). This means that in our conventions

S : (b, c) 7→ (c,−b) , T : (b, c) 7→ (b, c+ b) , C : (b, c) 7→ (−b,−c) . (5.2.17)
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All subgroups of DQ are invariant under C. For N prime we also have:

ρ(m)r
T−→ ρ(m)r+1 , ρ(e)

S←→ ρ(m)0 , ρ(m)r
S←→ ρ(m)rS for r ̸= 0 (5.2.18)

where rS = −r−1 in ZN , while ρ(e) is invariant under T (see Figure 5.2 for two examples). Lagrangian

subgroups form two-terms orbits under S, except for ρ(m)r with r2 = −1 mod N which are invariant.

Similarly, they form three-terms orbits under ST , except for ρ(m)r with r(r + 1) = −1 mod N

which are invariant. Gapped boundaries corresponding to ω-invariant subgroups L allow for a 0-form

symmetry action of the subgroup G ⊂ Γ which stabilizes them.9 This is clear from the Lagrangian

description of the gapped boundaries, S[L] in (5.2.9). The action of the 0-form symmetry does not

leave the coupling to η invariant, but it can be reabsorbed in a redefinition of the generators L of L.

5.2.2 Symmetry defects from higher gauging

In unitary TQFTs without local operators, all 0-form symmetries are expected to be generated by

codimension-1 condensation defects, that we reviewed in Section 3.2. This statement can be proven in

the context of three-dimensional modular tensor categories (MTCs) [26, 135], while it seems plausible

for higher dimensional TQFTs [26]. In this section we construct the SL(2,ZN ) symmetry generators

of the 5d CS theory (5.2.5), in terms of condensations of the 2-form symmetry on 4d submanifolds.

The ZN × ZN 2-form symmetry generated by the topological surface operators Um in the 5d bulk

becomes a 1-form symmetry on a 4d submanifold Σ on which we perform the condensation.

We assume that the fusion algebra of surface operators is strictly associative, and since surfaces

cannot braid in 4d, we can condense any subgroup A ⊂ ZN × ZN of the 2-form symmetry. While

condensing on a (spin) 4-manifold Σ, we have the possibility to add discrete torsion in the form of

Dijkgraaf-Witten terms [81]. When we gauge the full group ZN × ZN , the torsion is classified by Z3
N

and we label it by x, y, z ∈ ZN . In terms of the background Φ ∈ H2(Σ,ZN × ZN ) that we decompose

into φe, φm ∈ H2(Σ,ZN ), the phase of discrete torsion is given by

Θx,y,z = exp

[
2πi

2N

∫
Σ

(
yP(φe) + zP(φm) + 2xφe ∪ φm

)]
. (5.2.19)

Here P : H2(Σ,ZN ) → H4(Σ,ZN gcd(N,2)) is the Pontryagin square operation [136]. For N even,

P(φ) takes values in Z2N and on spin manifolds it is an even class, therefore y, z ∈ ZN . For N odd,

P(φ) takes values in ZN and we interpret the exponent as 2πi
N 2−1y

∫
P(φe) where 2−1 = N+1

2 mod N ,

and similarly for zP(φm), therefore y, z ∈ ZN once again. On the other hand, when we gauge a ZN
subgroup, the torsion is classified by ZN and then only a combination of x, y, z appears. For simplicity,

we will only consider the case that N is a prime number, because then ZN does not contain non-trivial

proper subgroups, and all its non-zero elements are invertible.

We want to compute the action of the 0-form condensation defects V on the 2-form defects Ul. To

that purpose, we place Ul along R2 and wrap V around them, namely we place V on R2×S2 with S2

surrounding Ul. It turns out that it is more clear to perform condensation on compact submanifolds,

therefore we substitute R2 with T 2. Eventually, we place Ul on T 2 and V on Σ ≡ T 2 × S2 around Ul

(as in Figure 5.3 center).

To condense on Σ, we decompose the 2-form symmetry background Φ ∈ H2(Σ,ZN × ZN ) into a

pair of backgrounds {ϕT 2
, ϕS

2} on the two factors of Σ, and we denote by n = (ne, nm) the holonomy of

ϕS
2

on S2 (representing defects on T 2) and by m = (me,mm) the holonomy of ϕT
2

on T 2 (representing

9This is true if G is a normal subgroup of Γ. This will always be so in the cases of interest to us.
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n−m

l

Um

Ul

Un

Figure 5.3: The condensation defect on Σ = T 2 × S2 with its network of 2d defects (left) surrounds

a topological defect Ul placed on T 2 × {0} (center), where 0 ∈ B3 is the center of the 3-ball whose

boundary is S2. Up to a phase (5.2.22), the network can be resolved into a collection of closed surfaces

with no junctions (right).

defects on S2). Given a class (x, y, z) ∈ Z3
N representing the choice of discrete torsion (5.2.19), its

contribution to the path integral is

Θx,y,z(n,m) = exp

[
2πi

N

(
x
(
nemm + nmme

)
+ y neme + z nmmm

)]
= exp

[
2πi

N
mTT n

]
(5.2.20)

where we introduced the symmetric matrix of discrete torsions

T =

(
y x

x z

)
, (5.2.21)

whose entries are in ZN . We can label the condensation defects of the 5d Chern-Simons theory as

V [A, T ], where A is the condensed subgroup of ZN × ZN and T is the matrix of discrete torsions.

When A = ZN ×ZN we omit it, while when A is one-dimensional we denote it by one of its generators

(p, q).

To compute the action of the condensation defects on the surface operators we proceed similarly

as in Section 3.2. The condensation on Σ involves a network of 2-dimensional defects, as in Figure 5.3

left. Instead of working with a network (that requires to understand the trivalent junctions), we can

resolve it into a pair of 2-dimensional defects: one Un along T 2 on an outer copy of Σ, and one Um

along S2 on an inner copy of Σ (Fig. 5.3 right). This operation involves a phase, and is equivalent to

a normal ordering prescription. More generally, for N odd we can write

U(γ1 + γ2) = exp

[
−2πi

N
2−1 ⟨γ1, γ2⟩

]
U(γ1)U(γ2) . (5.2.22)

(The case of N even is discussed below.) Here γi ∈ H2(Σ,ZN ×ZN ) represent two defects on Σ, while

⟨ , ⟩ is the product of the (symmetric) cup product on Σ and the (antisymmetric) Dirac pairing in

ZN × ZN . On the right-hand side, U(γ1) is outer while U(γ2) is inner. This is essentially a square

root of the braiding matrix

Bmn = e
2πi
N

⟨m,n⟩ (5.2.23)
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as in Figure 5.1 left. We obtain:

V [A, T ]Ul =
1∣∣H2(Σ,A)

∣∣1/2 ∑
n,m∈A

Θx,y,z(n,m) e−
2πi
N

2−1⟨n,m⟩Bml Ul+n

=
1

|A|
∑

n,m∈A
exp

[
2πi

N

(
me

(
y ne + xnm + 1

2nm + lm

)
+mm

(
xne + z nm − 1

2ne − le
))]

Ul+n .

(5.2.24)

The sum over m produces a delta function for n. When this has exactly one solution, the sum over

n selects a defect UMl where M ∈ SL(2,ZN ) is the group element corresponding to the condensation

defect V [A, T ] ≡ VM . The cases in which there are multiple or no solutions, even though they are not

relevant to our purposes, will be discussed at the end. We summarize all cases in Table 5.2 at the end.

If A ∼= ZN is generated by (p, q), we can write

me = µ p , mm = µ q , ne = ν p , nm = ν q . (5.2.25)

Notice that the phase (5.2.22) trivializes. The sum over µ produces a delta function that fixes p lm −
q le+ξ ν = 0 and selects one value for ν (as long as ξ ̸= 0), where ξ = 2pqx+yp2+zq2. This reproduces

the action of 10

M = T kH ≡ HT kH−1 (5.2.26)

for k = −ξ−1 and

H =

(
p ∗
q ∗

)
∈ SL(2,ZN ) . (5.2.27)

The three parameters x, y, z enter only in the combination ξ, as expected since the discrete torsion

is classified by ZN . Since T k leaves invariant the vector v = (1, 0), then T kH leaves invariant the

vector Hv = (p, q), and we obtain the defect implementing T kH by condensing the algebra generated by

(p, q) (with a non-vanishing torsion determined by k). For instance, T k is obtained by condensing the

electric surfaces (ne, 0), while its electromagnetic dual ST kS−1 is realized by condensing the magnetic

surfaces (0, nm). An element of SL(2,ZN ) (with N prime) can be written as HT kH−1 if and only

if its trace is 2 mod N . There are N2 such elements, including the identity.11 Indeed condensation

produces N − 1 defects (as we change the torsion ξ) for each of the N + 1 ZN subgroups of ZN ×ZN ,

besides the identity (which is formally obtained by condensing the trivial subgroup (0, 0)). We will

comment on the case with vanishing torsion below.

The elements of SL(2,ZN ) (N prime) with trace different from 2 are obtained by condensing the

full ZN × ZN . The sum over m produces a delta function that fixes12
(
T + ϵ

2

)
n + ϵl = 0 and selects

one value of n (as long as
(
T + ϵ

2

)
is invertible). This reproduces the action of

M =
(
T +

ϵ

2

)−1(
T − ϵ

2

)
. (5.2.28)

10One has T kH =

(
1− kpq kp2

−kq2 1 + kpq

)
, ν = kplm − kqle and so T kH

(
le

lm

)
=

(
le + νp

lm + νq

)
.

11All matrices M ∈ SL(2,ZN ) with TrM = 2 can be written as M =
(
1−α β
γ 1+α

)
with α2 = βγ mod N . This equation,

for N prime, has N2 − 1 solutions with at least one of α, β, γ not zero. One can also easily show that, for N prime,

any such matrix M can be written as in footnote 10. The total number of elements in SL(2,ZN ) (N prime) is instead

N3 −N .
12When working in ZN with N prime, by fractions we always mean the inverse element mod N .
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M ∈ SL(2,ZN ) M · (l1, l2) A (x, y, z)

C =
(−1 0

0 −1

)
(−l1, −l2) ZN × ZN (0, 0, 0)

CT k =
(−1 −k

0 −1

)
(−l1 − kl2, −l2) ZN × ZN (0, 0, 14k)

S =
(
0 −1
1 0

)
(−l2, l1) ZN × ZN

(
0, 12 ,

1
2

)
ST =

(
0 −1
1 1

)
(−l2, l1 + l2) ZN × ZN

(
1
2 , 1, 1

)
(ST )2 =

(−1 −1
1 0

)
(−l1 − l2, l1) ZN × ZN

(
1
6 ,

1
3 ,

1
3

)
T k =

(
1 k
0 1

)
(l1 + kl2, l2)

〈
(1, 0)

〉
ξ = −k−1

Table 5.1: Examples of SL(2,ZN ) condensation defects, obtained by condensing A ⊆ ZN × ZN with

torsion (x, y, z), for N > 3 prime (for N = 2, 3 some of those formulas are different).

Note that det
(
T ± ϵ

2

)
= (2 − TrM

)−1
, therefore all elements M ∈ SL(2,ZN ) with TrM ̸= 2 can be

obtained this way. The relation can be inverted:

T =
ϵ

2

(
1 +M

) (
1−M

)−1
. (5.2.29)

Notice that the two factors on the right-hand side commute. Moreover, in SL(2,ZN ) we have det(1±
M) = 2± TrM . The following relation is also useful:

T +
ϵ

2
= ϵ

(
1−M

)−1
. (5.2.30)

Explicitly, the discrete torsion that produces the symmetry defect for M =
(
a b
c d

)
∈ SL(2,ZN ) with

TrM ̸= 2 is x = d−a
2(2−a−d) , y = c

2−a−d , z = − b
2−a−d . Finally, assuming that

(
T + ϵ

2

)
is invertible,

det T = Tr(1 + M)
[
4 Tr(1 −M)

]−1
therefore T is invertible if and only if TrM ̸= −2 mod N . The

case T = 0 corresponds to M = −1 ≡ C which is charge conjugation. The case that T has rank 1

corresponds (for N prime) to M = CHT kH−1 where

T =
k

4

(
q2 −pq
−pq p2

)
=
k

4
(ϵv) · (ϵv)T , v =

(
p

q

)
and H =

(
p ∗
q ∗

)
. (5.2.31)

In Table 5.1 we summarize a few examples.

Small values of N . Some of the previous formulas are ill-defined for small N . For N = 2, and

more generally for N even, we cannot use the normal ordering prescription in (5.2.22) because 2−1

is ill-defined. However, notice that the phase that enters in the definition (5.2.24) of the operator

V [A, T ] is the product of the torsion and the normal ordering phases:

exp

[
2πi

N
mT

(
y x̃

x̃− 1 z

)
n

]
≡ exp

[
2πi

N
mTT̃ n

]
, (5.2.32)

where x̃ = x+ 1
2 and T̃ = T + ϵ

2 . The quantities x̃ ∈ ZN and T̃ are well defined, even for N even, and

we can use them to classify the torsion. The group SL(2,Z2) ∼= PSL(2,Z2) ∼= S3 (note that C ∼= 1)

has 6 elements, 4 of which have trace equal to 2 mod 2:

T =

(
1 1

0 1

)
, STS−1 =

(
1 0

1 1

)
, S = (TS)T (TS)−1 =

(
0 1

1 0

)
, (5.2.33)
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besides the identity. The corresponding defect operators are obtained by condensing the Z2 subgroups

generated by (1, 0), (0, 1) and (1, 1), respectively, with non-vanishing torsion ξ = pq + yp2 + zq2 = 1.

The remaining elements,

ST =

(
0 1

1 1

)
and (ST )2 =

(
1 1

1 0

)
, (5.2.34)

have trace equal to 1 and are described by gauging the full Z2 × Z2. The relation between torsion

and symmetry action M is as in (5.2.28) and (5.2.30), as long as one parametrizes the torsion using

T̃ , therefore T̃ = ϵ (1 −M)−1. One finds that ST is obtained from torsion (x̃, y, z) = (1, 1, 1), while

(ST )2 is obtained from (x̃, y, z) = (0, 1, 1). These two values of the torsion are the only possible ones

providing a matrix T̃ invertible in Z2.

For N = 3, the element (ST )2 in Table 5.1 has trace equal to 2 mod 3. Indeed we can write (ST )2 =

HT 2H−1 with H =
(
1 0
1 1

)
, and thus the corresponding defect operator is obtained by condensing the

Z3 subgroup generated by (1, 1) with torsion ξ = 1.

Fusion. The fusion rules of (invertible) condensation defects correctly satisfy the product of SL(2,ZN ).

The method we describe below is general, however for brevity we only exhibit the product of defects

obtained by condensing the full group ZN × ZN . The defect operators V [T ] on Σ defined in (5.2.24)

can be rewritten as

V [T ] =
1

N2

∑
n,m∈ZN×ZN

exp

[
2πi

N
mT

(
T +

ϵ

2

)
n

]
Un[T 2]Um[S2] (5.2.35)

where we indicated whether the two-dimensional defects U are placed on T 2 or S2, and rightmost

operators are inner. Using the braiding matrix (5.2.23), we obtain

V [T2]V [T1] = (5.2.36)

=
1

N4

∑
n,m
n′,m′

exp

[
2πi

N

(
mT

(
T2 +

ϵ

2

)
n+m′T

(
T1 +

ϵ

2

)
n′ +mTϵn′

)]
Un+n′ [T 2]Um+m′ [S2] .

Setting n = l − n′, m = k − m′ and performing the sum over m′ produces a delta function on

(T1 + T2)n′ =
(
T2 + ϵ

2

)
l. When (T1 + T2) is invertible, one eliminates n′ obtaining

V [T2]× V [T1] = V [T21] (5.2.37)

with

T21 = T2 −
(
T2 −

ϵ

2

)(
T1 + T2

)−1
(
T2 +

ϵ

2

)
. (5.2.38)

The relation (5.2.38) can be rewritten as

T21 +
ϵ

2
=

(
T1 +

ϵ

2

)(
T1 + T2

)−1
(
T2 +

ϵ

2

)
. (5.2.39)

Together with (5.2.30), with a little bit of algebra, it implies M21 = M2M1 as expected.

When T1 + T2 = 0, the sum over m′ and n′ sets l = k = 0. We conclude that

V [T ]× V [−T ] = 1 , (5.2.40)

in agreement with the fact that M(−T ) = M(T )−1. The case in which T1 + T2 has rank 1 can be

treated in a similar way. In particular, from (5.2.30) it follows that

(1−M2) ϵ
−1(T1 + T2)(1−M1) ϵ

−1 = (1−M2M1) ϵ
−1 . (5.2.41)
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Taking the determinant on both sides and using that det(1−M) = Tr(1−M) for M in SL(2,Z), we

conclude that (T1 + T2) is invertible if and only if M2M1 has trace different from 2 mod N , whilst

(T1 + T2) has rank 1 if and only if M2M1 has trace equal to 2 mod N but is not the identity, and thus

the corresponding symmetry operator is described by the condensation of a subgroup A ∼= ZN .

Degenerate torsion and non-invertible surfaces. Besides the SL(2,ZN ) symmetry defects,

higher gauging can produce projectors when the symmetry we condense on a submanifold could also

be condensed in the bulk [26]. This is the case when the condensed group is non-anomalous and the

discrete torsion would be allowed in 5d. One example is the condensation of A =
〈
(p, q)

〉 ∼= ZN with

vanishing torsion. From the analysis that follows (5.2.24) we see that the delta function introduced

by the sum over µ either has no solution, or has |A| = N solutions, and the operator V [A, 0] acts on

the surfaces Ul as

V [A, 0]Ul =

0 if l /∈ A ,∑
n∈A Un if l ∈ A .

(5.2.42)

This is consistent with the following non-invertible composition law [26]:

V [A, 0]× V [A, 0] =
∣∣H2(Σ,A)

∣∣1/2 V [A, 0] , (5.2.43)

where the coefficient on the right-hand side is the partition function of a TQFT.

Besides, we obtain a non-invertible surface when we condense the full ZN × ZN 2-form symmetry

(which is anomalous in the bulk) with a torsion matrix T such that
(
T + ϵ

2

)
is not invertible. Notice

that, since T is symmetric and ϵ antisymmetric, if
(
T + ϵ

2

)
is non-invertible then it has rank 1.13 In

that case, there exist two integer vectors v1,2 ∈ ZN × ZN such that

T +
ϵ

2
= (ϵv1) · (ϵv2)T and vT1 ϵ v2 = 1 . (5.2.44)

The second condition comes from the antisymmetric part of the matrix. The sum over m in (5.2.24)

gives a delta function on the solutions to
(
T + ϵ

2

)
n = −ϵl, that takes the form

(
vT2 ϵ n

)
v1 = l . (5.2.45)

Let A1,2
∼= ZN be the two subgroups of ZN × ZN generated by v1,2, respectively. If l /∈ A1 then

(5.2.45) has no solution for n. On the contrary, if l ∈ A1 then the solutions are n = −l+ νv2 with any

ν ∈ ZN . We obtain:

V [T ]Ul =

0 if l /∈ A1 ,∑
n∈A2

Un if l ∈ A1 .
(5.2.46)

In fact, given two different ZN subgroups A1 ̸= A2 (then, for N prime, A1 ∩ A2 = (0, 0) necessarily),

one easily checks the composition law

V [A2, 0]V [A1, 0] = V [T ] (5.2.47)

where, on the right-hand side, T is given by (5.2.44).

13This is also true for N = 2, because the matrix T̃ =
(

y x̃
x̃−1 z

)
cannot be zero.
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Condensed
subgroup
A

Torsion
Elements

of
SL(2,ZN )

Specifications Projector

ZN × ZN

(
T + ϵ

2

)
invertible TrM ̸= 2

T invertible ↔ TrM ̸= −2

T rank 1 ↔ M = CHT kH−1

T = 0 ↔ M = −1 ≡ C(
T + ϵ

2

)
not invertible

(⇒ rank 1)
✓

ZN
ξ ̸= 0

TrM = 2

M ̸= 1
M = HT kH−1

ξ = 0 ✓

{0} M = 1

Table 5.2: Summary of condensation defects, obtained by condensing A ⊆ ZN × ZN with or without

torsion. Some of them implement the 0-form symmetry SL(2,ZN ), while other ones are projectors.

We assume that N is an odd prime.

5.2.3 Continuum description of symmetry defects

In view of describing the twisted sectors of the SL(2,ZN ) symmetry, it is useful to reformulate the

previous discussion in terms of continuum Lagrangians. We take N odd. When the condensed group

is A = ZN×ZN , the defect V [T ] is described by a 4d TQFT with two dynamical 2-forms Φ = (φe, φm)

and four 1-forms Ψ = (ψe, ψm), Γ = (γe, γm) with action [30]:

S[T ] =
N

2π

∫
Σ

[
BT
(
Φ + dΓ

)
+ ΦTdΨ +

1

2
ΦTT Φ

]
. (5.2.48)

The torsion is parametrized by the symmetric matrix T with entries in ZN and such that T + ϵ
2 is

invertible.14 On the other hand, when A ∼= ZN is generated by (p, q) we only keep one 2-form φ and

two 1-forms ψ, γ with action:

S
[〈

(p, q)
〉
, ξ
]

=
N

2π

∫
Σ

[(
pb+ qc

) (
φ+ dγ

)
+ φdψ +

ξ

2
φφ

]
. (5.2.49)

The torsion is parametrized by a non-vanishing ξ ∈ ZN .

Integrating over Ψ and Γ in (5.2.48) forces Φ and the pull-back of B to be in H2(Σ,ZN × ZN ).

Then Φ can be identified with the Poincaré dual to a 2-cycle σ ∈ H2(Σ,ZN × ZN ). Since Φ couples

to B, Φ = PD(σ) represents a two-dimensional defect U [σ] wrapped on σ, and the theory (5.2.48)

reproduces higher gauging of the ZN×ZN 2-form symmetry on Σ with torsion T . A similar discussion

applies to (5.2.49). The action (5.2.48) is invariant under the following gauge transformations:

B → B + dα , Φ→ Φ + dλ , Ψ→ Ψ− T λ− α+ dµ , Γ→ Γ− λ+ dν . (5.2.50)

Considering B as a background field, the theory (5.2.48) is of a different type depending on whether

T is an invertible matrix over ZN or not.

If T is invertible in ZN , then (5.2.48) is an invertible TQFT. Indeed, adapting the discussion

in [30] to our case, all closed surfaces exp
(
imT

∮
Φ
)

are gauge invariant and implement a ZN × ZN
14After integrating over Ψ, the periods of Φ are multiples of 2π

N
. Thus on spin manifolds Σ, shifts of the entries of T

by N leave eiS invariant [111].
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1-form symmetry, however, because of the equation of motion T Φ = −dΨ, when m is in the image

of the map T : Z2
N → Z2

N , the surface acts trivially. Therefore only (ZN × ZN )/ Im T acts faithfully,

and if T is invertible in ZN then there is no faithful action at all. On the other hand, the line

integrals of Ψ might not be gauge invariant by themselves and need to be the boundary of an open

surface D: exp
(
ikT
∮
ℓΨ+ikTT

∫
DΦ
)

with ℓ = ∂D. They become pure line operators when the surface is

transparent, i.e., when T k = 0 mod N . Hence the 2-form symmetry of the theory is ker T ⊂ ZN×ZN ,

which is trivial if T is invertible in ZN . Summarizing, if T is invertible in ZN then the theory (5.2.48)

has no topological operators, and is thus an invertible TQFT. This implies that we could integrate out

the fields Φ and Ψ. Their equations of motion say that Φ ∈ H2(Σ,ZN×ZN ) and T −1(B+dΨ)+Φ = Φ̌,

where Φ̌ ∈ H2(Σ,Z1 × Z1) is a gauge field with integer periods, while T −1 is the inverse of T in ZN .

Substituting into the action, one obtains

Sinvertible[T ] =
N

2π

∫
Σ

[
BTdΓ̃− 1

2
BTT −1B

]
, (5.2.51)

up to total derivatives and multiples of 2π, where Γ̃ = Γ− T −1Ψ transforms as Γ̃→ Γ̃ + T −1α under

gauge transformations.

If, on the contrary, T is a non-invertible matrix, then the 4d theory is a non-trivial TQFT with

surface and line operators labeled by (ZN × ZN )/ Im T and ker T , respectively. Recall that this case

corresponds to SL(2,ZN ) matricesM with TrM = −2 mod N , which are of the formM = CHT kH−1.

In the special case T = 0 (that corresponds to M = C) the 4d theory (5.2.48) is a pure ZN × ZN
gauge theory, whose 1-form symmetry is coupled to the background field B.

We can verify that S[T ] in (5.2.48) implements the correct transformation of 2d defects Ul. We

introduce a coordinate r transverse to the 4d defect, such that Σ = {r = 0}, and consider the bulk-

plus-defect action

Sbulk plus
defect

=
N

4π

∫
BTϵ dB +

N

2π

∫
r=0

[
BT
(
Φ + dΓ

)
+ ΦTdΨ +

1

2
ΦTT Φ

]
. (5.2.52)

Integrating out the gauge field Φ we obtain an effective description of the interface, which induces a

discontinuity

BL = MTBR (5.2.53)

in the gauge field B (L,R stand for left/right at r < 0 and r > 0, respectively). Here M is transposed

because the SL(2,Z) action on fields is dual to the one on charges, that we previously denoted by M .

Indeed, imagine placing a 2d defect operator Ul in the region r < 0 (see Figure 5.4) which, compared

with our previous setup in Figure 5.3 center, would be the interior region. The expectation value of

the operator is exp
(
ilT
∫
BL
)

= exp
(
ilTMT

∫
BR
)
. Thus, for an external observer, the compound system

of the 4d defect on Σ wrapping the 2d operator Ul appears as a 2d operator UMl. Let us determine

M from (5.2.52). After choosing a gauge (λ, α) in which Γ and Ψ are zero, the equations of motion

for B and Φ read

0 =
(
B + T Φ

)
δ(r)dr (5.2.54)

ϵ dB = −Φ δ(r)dr . (5.2.55)

The gauge field Φ acts as a source for B. Working in a gauge in which Bri = 0, we have ∂rB(r) =

ϵΦ δ(r). This differential equation can be solved: B(r) = BL + ϵΦ θ(r), where BL is the value of B
for r < 0. Multiplying by δ(r), integrating in a neighbourhood of r = 0 and using δ(r) = ∂rθ(r), we
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r

0

B

V [T ]BL = MTBR

BRInterior

Exterior

Figure 5.4: The 4d symmetry defect V [T ] induces a discontinuity in the gauge field B across its

surface. Compared with the setup of Figure 5.3 center, the region r < 0 is the interior of the cylinder

while r > 0 is the exterior.

obtain B(0) = BL + ϵ
2 Φ = −T Φ. The second equality follows from (5.2.54). Finally, evaluating at

r > 0 we find BR = BL + ϵΦ which implies

BR =

[
1− ϵ

(
T +

ϵ

2

)−1
]
BL . (5.2.56)

This discontinuity, when written in terms of M using (5.2.30), is exactly (5.2.53). If T is invertible,

one can repeat the computation using (5.2.51) obtaining the same result.

When A ∼= ZN one should use the defect Lagrangian (5.2.49) with only one gauge field φ. For

instance, when the defect action is coupled to b (i.e., (p, q) = (1, 0)) and with torsion ξ ̸= 0, the

equation of motion from c simply sets db = 0 implying bL = bR, while the equation of motion from b,

after substituting for the solution φ = −ξ−1b(0), gives

cL = cR − ξ−1bR . (5.2.57)

This corresponds to the action of T k with k = −ξ−1.

Fusion of defects. We can derive the fusion of defects — that we already analyzed around (5.2.37)

in terms of the discrete formalism — using continuum Lagrangians. We place two defects, with action

as in (5.2.48), along two codimension-1 surfaces Σ1,2 at positions r1,2 with r1 < r2. They act as sources

for the bulk gauge fields B:

ϵ dB = −
(
Φ1 + dΓ1

)
δ(r − r1)dr −

(
Φ2 + dΓ2

)
δ(r − r2)dr . (5.2.58)

Since dΦ1,2 = 0 from the equations of motion, we can solve the equation as

B = B0 + ϵ
(
Φ1 + dΓ1

)
θ(r − r1) + ϵ

(
Φ2 + dΓ2

)
θ(r − r2) . (5.2.59)

Here B0 is a background value for B, before adding the effect of the defects. It turns out that a crucial

role in computing the fusion is played by the slab of bulk theory in between the two defects, which

produces a phase factor. There are two contributions. One comes from substituting (5.2.59) in the

bulk action:

N

4π

∫
r2

(Φ1 + dΓ1)
Tϵ (Φ2 + dΓ2) θ(r2 − r1) +

N

4π

∫
r1

(Φ2 + dΓ2)
Tϵ (Φ1 + dΓ1) θ(r1 − r2)

=
N

4π

∫
r2

(
Φ1 + dΓ1

)T
ϵ
(
Φ2 + dΓ2

)
. (5.2.60)

Another one comes from substituting (5.2.59) in the two defect actions. The defect at r = r2 produces

− N
2π

∫
r2

(Φ1 + dΓ1)
Tϵ (Φ2 + dΓ2), while the one at r = r1 does not give any contribution. In those
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substitutions we did not include the background B0, that we will couple to the final effective action.

Collecting the contributions, we obtain the following action for the product of defects:

S[T21] = S[T1] + S[T2]−
N

4π

∫ (
Φ1 + dΓ1

)T
ϵ
(
Φ2 + dΓ2

)
. (5.2.61)

We can interpret the effect of the last term in the path integral as a phase due to the braiding between

2-dimensional defects Um. To write out the effective action, we identify r1 = r2 = 0 and simply write

B0 → B for the background field. We also change variables to Φ = Φ1 + Φ2, Ψ̃ = Ψ1 − Ψ2 and

Γ = Γ1 + Γ2. We obtain:

S[T21] =
N

2π

∫
Σ

[
BT(Φ + dΓ) + ΦT

(
dΨ2 +

ϵ

2
dΓ1

)
+

1

2
ΦTT2Φ

]
+ Sint(Φ,Φ1)

Sint =
N

2π

∫
Σ

[
ΦT
1

(
dΨ̃−

(
T2 +

ϵ

2

)
Φ− ϵ

2
dΓ

)
+

1

2
ΦT
1

(
T1 + T2

)
Φ1 −

1

2
dΓT

1 ϵ dΓ

]
.

(5.2.62)

The field Φ1, which is forced to be a cochain in H2(Σ,ZN ×ZN ) by the equations of motion, does not

directly couple to the bulk. The last term is a total derivative that vanishes on closed manifolds.

When (T1 + T2) is invertible in ZN , then Φ1 appears quadratically and can be integrated out,

obtaining:

S[T21] =
N

2π

∫
Σ

[
BT(Φ + dΓ) + ΦTdΨ +

1

2
ΦTT21Φ

− 1

2
d

((
Ψ̃− ϵ

2
Γ
)T(
T1 + T2

)−1
d
(

Ψ̃− ϵ

2
Γ
))]

, (5.2.63)

where T21 is the matrix (5.2.38), we defined Ψ = Ψ2 + ϵ
2Γ1 +

(
T2 − ϵ

2

)(
T1 + T2

)−1(
Ψ̃ − ϵ

2Γ
)
, and

(T1 + T2)−1 is the inverse in ZN . The last term is a total derivative and can be ignored on closed

manifolds. We reproduce the action of a single defect with discrete torsion T21, which corresponds to

M21 = M2M1.

When T2 = −T1 ≡ T , then Φ1 is a Lagrange multiplier imposing Φ =
(
T + ϵ

2

)−1
d
(
Ψ̃ − ϵ

2Γ
)

and

the defect Lagrangian, up to total derivatives, simply becomes

S =
N

2π

∫
Σ
BTdΓ̂ , (5.2.64)

where Γ̂ = Γ+
(
T + ϵ

2

)−1(
Ψ̃− ϵ

2Γ
)
. On closed manifolds, this reproduces the result V [T ]× V [−T ] = 1.

Indeed the action (5.2.64) simply imposes that the pullback of B be in H2(Σ,ZN × ZN ) without any

discontinuity between the L and R regions.

The other cases can be dealt with in a similar way. When T1 + T2 has rank one, the component

of Φ1 living in the kernel of T1 + T2 acts as a Lagrange multiplier, setting to zero one component of

Φ, while the component in the cokernel produces the torsion term for the remaining component of Φ.

Fusions involving defects from the condensation of A ∼= ZN can be studied similarly.

5.3 Twisted sectors and non-invertible defects

Whenever a theory has a discrete 0-form symmetry Γ, one can consider its twisted sectors. In particu-

lar, there exist codimension-2 operators that live at the boundary of the codimension-1 defect operators

implementing Γ. We call them the codimension-2 operators in the twisted sector. Gauging a (non-

anomalous) subgroup G ⊂ Γ, the corresponding defects become transparent and the codimension-2
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operators at their boundary get promoted to genuine operators of the gauged theory.15 For instance,

in 2d CFTs the twisted sectors are described by local operators at the end of defect (or twist) lines,

and their inclusion in the gauged theory is required by modular invariance. In 3d TQFT the twisted

sectors are described by line operators at the end of defect surfaces, and the modular tensor category

(MTC) of lines gets promoted to a G-crossed MTC [77], also in order to assure modularity.

The situation in higher dimensions is less well understood. In this section we study the twisted

sectors of the 5d Chern-Simons theory, exploiting the Lagrangian description of codimension-1 sym-

metry defects that implement SL(2,ZN ). In particular, we describe the 3d twist defects D[T ] and

D[A, ξ] (or more compactly DM ) at the boundary of 4d symmetry defects V [T ] and V [A, ξ] (or VM ),

respectively.

5.3.1 Lagrangian description of D[T ]

We can obtain a Lagrangian description of the 3d twisted-sector operators — that we dub D[T ] —

at the boundary of 4d SL(2,ZN ) symmetry defect operators V [T ] from the Lagrangian description

(5.2.48) of the latter.16 As we will see in a moment, it is convenient to perform an integration by

parts of the couplings BTdΓ and ΦTdΨ and use the following equivalent Lagrangian for the 4d defect

operators V [T ]:

S[T ] =
N

2π

∫
Σ

[
BTΦ + ΓTdB + ΨTdΦ +

1

2
ΦTT Φ

]
. (5.3.1)

In the presence of a boundary Y = ∂Σ, this action is not invariant under the gauge transformations

(5.2.50), rather, it shifts by a boundary term (up to integer multiples of 2π):

S → S +
N

2π

∫
Y

[
BT(λ− dν) + ΦT(α+ T λ− dµ) + αTdλ+

1

2
λTT dλ

]
. (5.3.2)

This can by canceled by the following boundary action:

Stwist[T ] =
N

2π

∫
Y

[
BTΓ + ΦTΨ + ΓTdΨ− 1

2
ΓTT dΓ

]
. (5.3.3)

The reason why we wrote the 4d action as in (5.3.1) is that the 4d fields Γ and Ψ only appear as

Lagrange multipliers with no derivatives, and thus their path-integrals at different spacetime points

are independent. On the contrary, they appear dynamically (with derivatives) in the 3d action (5.3.3)

and therefore their restrictions to Y can be treated as independent 3d fields, or edge modes. From the

3d point of view, the fields B and Φ appear as background fields (that can be integrated afterwards

in 5 and 4 dimensions, respectively).17 The coupled 4d-3d system is gauge invariant. We call the 3d

defect defined by Stwist[T ] a twist defect D[T ] associated to the SL(2,ZN ) element M(T ) (5.2.28).

The actions (5.3.1) and (5.3.3) are invariant under all elements M ′ ∈ SL(2,ZN ) that commute

with M , if we supplement the transformation B →M ′TB with18

Φ → M ′−1Φ , Γ → M ′−1Γ , Ψ → M ′TΨ . (5.3.4)

Such an invariance is expected since, in general, acting with a 0-form symmetry h on a twisted sector

Dg gives an element of Dhgh−1 . This will be important when gauging a subgroup of SL(2,ZN ).

15When G is Abelian, these are the codimension-2 operators charged under the (d − 2)-form symmetry Ĝ dual to G

(Ĝ is the Pontryagin dual) and implemented by the Wilson lines of G.
16A similar discussion would apply to the defects D[A, ξ] at the boundary of V [A, ξ], derived from (5.2.49).
17Using the equivalent action (5.2.48) one obtains the boundary action S′

twist =
N
2π

∫
Y

[
ΓTdΨ− 1

2
ΓTT dΓ

]
in which the

couplings to B and Φ are not manifest.
18Invariance of the last term follows from the fact that M ′ commutes with M if and only if M ′TTM ′ = T .
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Let us analyze the content of the three-dimensional theory D[T ]. For simplicity, we only consider

the cases in which T is invertible in ZN , or T = 0. We start with the former. Setting B = Φ = 0,

(5.3.3) is the action of an Abelian Chern-Simons theory with four gauge fields, whose level matrix K

and its inverse are

K = N

(
−T 1

1 0

)
, K−1 = N−1

(
0 1

1 T

)
. (5.3.5)

There are |detK| = N4 line operators, given by ei
∫
(nTΓ+mTΨ) with n,m ∈ ZN × ZN . Not all of

them, however, are genuine 3d line operators in the coupled 4d-3d system (keeping the 5d bulk as a

background), rather some of them live at the end of a bulk surface ein
T
∫
Φ. This follows from the gauge

transformations (5.2.50). A basis of genuine line operators is given by

Wn = exp

[
inT

∫ (
T Γ−Ψ

)]
. (5.3.6)

We have chosen the parametrization such that Wn has charge n = (ne, nm) under the ZN ×ZN 1-form

symmetry that couples to B.19 These lines have spin

θ[Wn] = exp

(
−πi
N
nTT n

)
, (5.3.7)

and give a ZN × ZN generalization of the AN,p minimal TQFTs introduced in [111] (see Appendix F

there). Indeed, these lines have braiding Bab =
θa+b
θa θb

= exp
[
−2πi

N aTT b
]

and, taken in isolation, give

rise to a consistent MTC with unitary S-matrix Sab = 1
NBab. We will use the notation AN,−T (B) to

denote the theory of these lines:

AN,−T (B) ⊂ D[T ] . (5.3.8)

There is some redundancy in the nomenclature of the theories AN,−T : for all matrices Q invertible

in ZN , the theory AN,−QTT Q (where the product of matrices is in ZN ) is equivalent to AN,−T up to

a relabelling of the lines n → Qn. They are distinguished, however, by how they couple to B. We

will refer to the theory (5.3.7) in which Wn has charge n as AN,−T (B). Notice that this theory is not

coupled to the 4d field Φ.

The remaining lines are not genuine in the coupled 4d-3d system, and are generated by

Lm = exp

[
−imT

(∫
∂X

Ψ + T
∫
X

Φ

)]
(5.3.9)

in addition to Wn, where X is a two-dimensional open surface ending on D[T ]. The twisted sector,

as an isolated 3d theory, is formed by both genuine and non-genuine line operators. We chose the

generators Lm such that in 3d (i.e., switching the background Φ off) they have trivial braiding with

Wn. Indeed, the twisted sector can be decomposed as

D[T ] = AN,−T (B)×AN,T (B + T Φ) , (5.3.10)

where the two factors are the MTCs of Wn and Lm, respectively.20 However, as we will see in

Section 5.4, once a subgroup of the SL(2,ZN ) 0-form symmetry is gauged in the bulk, some of the 4d

operators become transparent and only the subcategory AN,−T (B) of genuine operators survives.

19Indeed, under the transformation B → B + dα, Ψ → Ψ− α, the operator gets a phase Wn → ein
T∫αWn.

20One could also consider the non-genuine operators ℓm = exp
[
imT

(∫
∂X

Γ+
∫
X
Φ
)]

which do not couple to B, however
they have vanishing spin and do not form a MTC by themselves.
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The ZN × ZN 1-form symmetry of AN,−T is anomalous, since the lines Wn that generate it have

non-trivial braiding. Turning on the background field B coupled to the 1-form symmetry, the anomaly

is canceled [111] by the following four-dimensional inflow action:21

IT (B) =
N

2π

∫
Σ

[
BTdΓ̃− 1

2
BTT −1B

]
, (5.3.11)

where the dynamical field Γ̃ imposes B ∈ H2(Σ,ZN × ZN ) on shell, and T −1 is the inverse of T
in ZN . This implies that AN,−T (B) is not invariant under the gauge transformation B → B + dα,

Γ̃→ Γ̃ + T −1α but rather its path integral picks up a phase:

exp

[
− iN

2π

∫
Y

(
αTdΓ̃ +

1

2
αTT −1dα

)]
. (5.3.12)

Indeed one can check that the anomaly inflow action (5.3.11) for AN,−T (B) × AN,T (B + T Φ), if

supplemented by the condition that Φ ∈ H2(Σ,ZN × ZN ), coincides with the 4d action (5.2.48) for

the defect V [T ]. Alternatively, one can start with the action (5.3.1) for V [T ] and integrate out Φ.

This is possible because, as stressed after (5.2.50), the theory is trivial as long as T is invertible in

ZN . We already did this computation in (5.2.51): one is left with the invertible TQFT (5.3.11) in the

4d bulk and AN,−T on the 3d boundary. Either way, the coupled 4d-3d system is anomaly free.

The case of T = 0, which describes the charge conjugation operator VC , needs a separate discussion.

Contrary to the previous case, there is no consistent MTC that describes the lines Wn decoupled from

Φ. Those lines have trivial spin and braiding among themselves. This phenomenon was already

observed in [111] and is a consequence of the non-invertibility of the 4d 2-form gauge theory for Φ.

The action for the twisted sector D[T = 0] ≡ DC is

Stwist[T = 0] =
N

2π

∫
Y

[
BTΓ + ΦTΨ + ΓTdΨ

]
. (5.3.13)

This is a 3d ZN ×ZN gauge theory (described by the 3d fields Γ,Ψ) coupled to the backgrounds fields

B and Φ for the two copies of the ZN ×ZN 1-form symmetry, and we denote it by (ZN ×ZN )0(B,Φ).

Degeneracies. We ask what is the degeneracy of the twisted sectors, i.e., how many boundaries

an SL(2,ZN ) symmetry defect V can have. In three-dimensional TQFTs with a 0-form symmetry Γ,

the number of simple lines in a twisted sector labeled by g ∈ Γ is equal to the number of g-invariant

simple lines in the untwisted sector [77]. In our case, the 5d CS theory has no genuine codimension-

2 operators (besides the trivial one), therefore we expect every twisted sector to be unique. One

could argue that we should also consider the operators obtained by fusing D[T ] with codimension-2

condensation defects obtained from the bulk 2-form symmetry.

We can show that for defects V [T ] obtained by condensing the full ZN ×ZN 2-form symmetry, the

boundary D[T ] is left invariant by every such fusion, up to stacking with a decoupled TQFT. Indeed,

fusing D[T ] with a 2d symmetry defect U(γ) with γ ∈ H2(Y,ZN × ZN ) is equivalent to adding the

following coupling to the action (5.3.3) of D[T ]:

δStwist[T ] =

∫
Y
BTΓγ , Γγ = PD(γ) (5.3.14)

where PD(γ) ∈ H1(Y,ZN × ZN ) is the Poincaré dual to γ on Y . Given a continuum description of

the class Γγ , for instance through a delta 1-form, the extra coupling can be reabsorbed by the field

21In the conventions of [111], the 1-form symmetry is generated by the lines W̃n ≡W−T −1n which have charge −T −1n

and spin exp
(
−πi
N
nTT −1n

)
. This theory, that [111] would call AN,−T −1

, has an anomaly that is canceled by (5.3.11).
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redefinition Γ→ Γ− 2π
N Γγ , Φ→ Φ + 2π

N dΓγ , B → B − 2π
N T dΓγ , which however produces a phase

exp

(
−2πi

N

∫
1

2
ΓT
γ T dΓγ

)
= exp

(
−2πi

N

∫
1

2
ΓT
γ NT β(Γγ)

)
≡ QNT (Γγ) . (5.3.15)

Notice that, in the continuum description on the left-hand side, dΓγ is a class with values in N times

Z × Z rather than identically zero. On the right-hand side we wrote the phase in a more precise

way in terms of Γγ ∈ H1(Y,ZN × ZN ) and the Bockstein map associated to the short exact sequence

0→ ZN
N−→ ZN2

mod N−−−−→ ZN → 0 so that β(Γγ) ∈ H2(Y,ZN × ZN ). The integrals in (5.3.15) are well

defined on generic manifolds if NT is an even matrix, and on spin manifolds if NT is a more general

integer matrix. Hence

U(γ)×D[T ] = eiQNT (Γγ)D[T ] . (5.3.16)

A similar effect has already been appreciated in dealing with N -ality defects in [25, 104].

Now, a 3d condensation defect for the ZN × ZN 2-form symmetry can be thought of as a 3d

ZN × ZN Dijkgraaf-Witten (DW) theory, possibly with torsion P, coupled to the dynamical field B.

The coupling is precisely (5.3.14) with Γγ substituted by the dynamical gauge field of the DW theory.

We denote the 3d condensation defect as CZN×ZN
P , and omit the subscript when there is no torsion.

Stacking the condensation defect on D[T ] replaces the coupling to B with the torsion term QNT (Γγ):

this produces a shift δP = −NT of the torsion of the DW theory. It turns out (see below) that if N

is odd and the theory is spin, then shifts of the torsion components by multiples of N give equivalent

theories, and so in our case the shift is immaterial. We conclude that

CZN×ZN
P ×D[T ] = (ZN × ZN )P D[T ] . (5.3.17)

The factor on the right-hand side is a decoupled Dijkgraaf-Witten TQFT. A similar argument applies

to any other 3d condensate in which only a subgroup of ZN ×ZN is condensed (possibly with torsion):

they can all be absorbed by D[T ]. We conclude that there is no degeneracy in these twisted sectors.

When, on the other hand, the defect V [A, ξ] is obtained by condensing a subgroup A of ZN ×ZN ,

then only condensates of surfaces in A can similarly be absorbed by D, while more general surfaces in

ZN × ZN cannot and give rise to a genuine degeneracy of the twisted sector. Since surfaces in A are

absorbed, the degeneracy is given by all condensates (with torsion) of the quotient group (ZN×ZN )/A
(or its subgroups).

The last case is the 4d indentity interface V1, on which we do not gauge any symmetry. Its sector,

which is the untwisted sector, consists of all possible 3d condensates in ZN × ZN .

Dijkgraaf-Witten theories

The 3d ZkN Dijkgraaf-Witten theories can be described by the following Abelian Chern-Simons action:

SDW[T ] =

∫
Y

[
N

2π
xTdy +

1

4π
yTPdy

]
(5.3.18)

where x, y are k-dimensional vectors of Abelian gauge fields and P is a k×k symmetric integer matrix.

The theory is bosonic if P is even (i.e., if its diagonal entries are even), otherwise it is spin. The level

matrix is K =
(

0 N 1

N 1 P
)
. The theory has N2k lines labelled by n ∈ Z2k

N with spin

θ[n] = exp
(
πi nTK−1n

)
where K−1 =

1

N2

(
−P N 1

N 1 0

)
. (5.3.19)

In all cases, a shift of P by N times an even integer matrix gives an equivalent theory, i.e., the diagonal

entries of P are defined modulo 2N while the off-diagonal entries modulo N . This follows from the
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field redefinition
( x
y

)
→
(
1 Q
0 1

)( x
y

)
where Q is an integer matrix, or equivalently, from the relabelling

n→
(
1 0
Q 1

)
n of the lines. If N is odd, in addition, theories in which the entries of P differ by multiples

of N are equivalent as spin theories.22 This follows from the fact that the relabelling n→
(

1 0
2−1Q 1

)
n

(where 2−1 is the inverse in ZN ) preserves the spin modulo a sign, which can be cancelled by fusing

with the transparent fermion.

The coupling of the electric 1-form symmetry to a ZkN background field B is described by

SDW[T ](B) =

∫
Y

[
N

2π

(
BTy + xTdy

)
+

1

4π
yTPdy

]
, (5.3.20)

invariant under B → B+dα, x→ x−α. The lines labelled by n = (ne, nm) have charge −ne under the

electric 1-form symmetry. This statement persists under shifts of the components of P by multiples

of N .

5.3.2 Fusion of twist defects

We now study the fusion of two twist defects D[T1] and D[T2]. As expected, the fusion is com-

patible with the group product rule M21 = M2M1 of 4d SL(2,ZN ) defect operators V [T ], i.e., of

twisted sectors, however we would like to understand which condensates and decoupled TQFTs can

be generated.

As already discussed in Section 5.2.3 for the fusion of 4d defects, the 5d bulk provides a crucial

contribution to the fusion of 3d twist defects as well. The bulk contribution was computed in (5.2.61),

thus the total action for the system of two 4d defects with boundary located on the same 3d (spin)

manifold Y is

S = S[T1] + S[T2]−
N

4π

∫
(Φ1 + dΓ1)

Tϵ (Φ2 + dΓ2) + Stwist[T1] + Stwist[T2] , (5.3.21)

where, this times, we use the 4d action (5.3.1) for the symmetry defects.

The computation in the 4d bulk is similar to the one we did in Section 5.2.3. One introduces

Φ = Φ1 + Φ2, Γ = Γ1 + Γ2, Ψ̃ = Ψ1 − Ψ2, and eliminates Φ2, Γ2, Ψ1. If (T1 + T2) is an invertible

matrix in ZN , the field Φ1 can be integrated out leaving the bulk theory

Sbulk =
N

2π

∫
Σ

[
BTΦ + ΓTdB + ΨTdΦ +

1

2
ΦTT21Φ

]
, (5.3.22)

where T21 is given in (5.2.38) and Ψ = Ψ2 + ϵ
2Γ1 +

(
T2 − ϵ

2

)
(T1 + T2)−1

(
Ψ̃− ϵ

2Γ
)
. This is the theory

S[T21]. There are leftover boundary terms, that together with Stwist[T1] + Stwist[T2] give

Sboundary =
N

2π

∫
Y

[
BTΓ + ΦTΨ + ΓTdΨ2 −

1

2
ΓTT2dΓ + ΓT

1 d
(

Ψ̃ +
(
T2 − ϵ

2

)
Γ
)

− 1

2
ΓT
1 (T1 + T2)dΓ1 −

1

2

(
Ψ̃− ϵ

2Γ
)T

(T1 + T2)−1d
(
Ψ̃− ϵ

2Γ
)]
.

(5.3.23)

The gauge transformations of the new fields are

B → B + dα , Φ→ Φ + dλ , Ψ→ Ψ− T21λ− α+ dµ , Γ→ Γ− λ+ dν (5.3.24)

where λ = λ1 + λ2. The theory (5.3.23) is not trivial and we cannot integrate other fields out. We

perform a more rigorous analysis of it below, but for now, in order to understand the physics, let us

perform an approximate computation. We introduce a new 1-form field

H = Ψ1 − T1Γ1 −Ψ2 + T2Γ2 = Ψ̃ + T2Γ− (T1 + T2) Γ1 . (5.3.25)

22This is not true, in general, if N is even. A counterexample for k = 1 is the family of four Z2 theories.
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This combination is special because it is invariant under the gauge transformations (5.2.50) parametrized

by λ1, λ2, α. We eliminate Γ1 in favor of H: this is not a legit operation since (T1 + T2) is not a

unimodular integer matrix, but let us proceed anyway and treat (T1 + T2)−1 as the inverse in Q. Up

to total derivatives, we obtain

Sboundary ∼
N

2π

∫
Y

[
BTΓ + ΦTΨ + ΓTdΨ− 1

2
ΓTT21dΓ

]
− N

4π

∫
Y
HT(T1 + T2)−1dH . (5.3.26)

The first term is the expected action Stwist[T21] of the twisted sector D[T21]. The second term is a

decoupled TQFT, described by a Chern-Simons action with fractional level-matrix. Perturbatively, it

behaves as the theory AN,−T1−T2 (while it is not well defined at the non-perturbative level).

If (T1+T2) is not invertible in ZN then the procedure has to be slightly changed. Let us discuss the

case T2 = −T1 ≡ T , corresponding to the fusion of a defect with its “inverse”. This case is interesting

because the fusion of two defects in inverse twisted sectors must produce an operator in the untwisted

sector, which however contains all three-dimensional condensation defects. Starting with (5.3.21) and

performing the field redefinitions to Φ, Γ, Ψ̃, in the 4d bulk one finds Φ1 to be a Lagrange multiplier

imposing Φ = d
(
T + ϵ

2

)−1(
Ψ̃− ϵ

2Γ
)
. It is convenient to define

Γ̂ = Γ +
(
T + ϵ

2

)−1(
Ψ̃− ϵ

2Γ
)
,

Ψ̂ = Ψ2 + T Γ1 + T
(
T + ϵ

2

)−1(
Ψ̃− ϵ

2Γ
)
.

(5.3.27)

Then the bulk action simply reduces to the completely trivial theory

Sbulk =
N

2π

∫
Σ

Γ̂TdB (5.3.28)

that describes the identity operator V1. The boundary terms instead give

Sboundary =
N

2π

∫
Y

[
BTΓ̂ + Γ̂TdΨ̂− 1

2
Γ̂TT dΓ̂

]
. (5.3.29)

The fields Γ̂, Ψ̂ are invariant under the gauge transformations λ1, λ2, indeed this 3d theory does not

need to be attached to any 4d theory. On the other hand, Ψ̂→ Ψ̂−α under gauge transformations of B
(while Γ̂ is invariant). The action (5.3.29) describes a 3d ZN×ZN Dijkgraaf-Witten theory with torsion

equal to −NT , in which a ZN ×ZN 1-form symmetry is coupled to B — as in (5.3.20). Alternatively,

this can be though of as a 3d condensation defect for the ZN × ZN global 2-form symmetry of the

5d bulk theory: Ψ̂ forces Γ̂ ∈ H1(Y,ZN × ZN ), then ei
N
2π

∫
BTΓ̂ is a two-dimensional operator of the

5d theory placed on the Poincaré dual to Γ̂ within Y , and the last term in (5.3.29) produces a phase

weighing the sum over surfaces. We dubbed such a 3d condensation defect CZN×ZN
−NT ≡ CZN×ZN , since

we are considering N odd. Therefore, the fusion of a twist defect with its “inverse” is given by

D[T ]×D[−T ] = D[T ]×D[T ] = CZN×ZN . (5.3.30)

A more rigorous analysis of twisted sectors. The analysis of the fusion of twist defects we

performed in (5.3.26) using the Lagrangian formulation, while suggesting the correct result, was im-

precise. We can obtain a more rigorous and precise derivation by studying the algebra of topological

operators.

As discussed in Section 5.3.1, if T is invertible in ZN then the twist operator D[T ] hosts a MTC of

local line operators (which are not coupled to the 4d defect) forming the minimal TQFT AN,−T (B).

When we fuse two twist operators D[T1] and D[T2], the set of local line operators is not simply the

stacking of the two TQFTs because of the bulk contribution. Taken separately, the two minimal
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W (1)

W (2)

V21

V1 V2

;

W (1) W (2)

V21

=

W (2) W (1)

V21

Figure 5.5: Braiding between lines W (1) and W (2) from bulk ordering. We represented the lines W (i)

by black points, the 3d twist sectors D[Ti] by red lines, the surfaces U(γ) by blue lines, and the 4d

condensation defects Vi by green surfaces. Left: bulk definition of fusion. Right: two different ordering

procedures, related by the half-braiding phase of the bulk 5d theory. In canonical quantization, time

runs horizontally.

V1

U(γ)

V2

W (1) W (2)

V21

W̃;

Figure 5.6: The lines W̃ of V21 that are decoupled from B can be seen as products of endlines that are

attached to a surface U(γ) stretched between the two defects V1 and V2. Once the defects are fused,

the lines W̃ become local in V21.

TQFTs have lines W
(1)
n1 and W

(2)
n2 , respectively. The 5d dynamical bulk field B, however, generates a

non-trivial braiding between the two sets of lines:

BW (1),W (2) = exp

(
2πi

N
nT1

ϵ

2
n2

)
(5.3.31)

where we are taking N odd. This follows from the boundary term − N
2π

∫
Y dΓT

1
ϵ
2dΓ2 in (5.3.21) and the

expression (5.3.6) for the local lines. It can also be understood as follows. In canonical quantization,

the braiding matrix appears as a non-trivial commutator

W (1)W (2) = BW (1),W (2) W (2)W (1) , (5.3.32)

where the operators are time ordered. If W (i) were local lines in the full theory, this would be trivial

because the lines would live on separate defects. However, in the full theory B is dynamical and thus

both W (1) and W (2), which are coupled to B, must be the endlines of suitable bulk surfaces U(γ) =

ei
∫
γ B. Likewise, also the product W (1)W (2) must be attached to a bulk surface with the correct charge

(see Figure 5.5). Commuting the order in which the endlines are fused has the effect of half-braiding

the attached bulk surfaces, which is captured by the normal ordering phase exp
(
2πi
N 2−1⟨n1, n2⟩

)
we

already introduced in (5.2.22). This is precisely the braiding (5.3.31).

We indicate the product of the two sectors AN,−Ti deformed by the extra braiding (5.3.31) as

AN,−T2 ×B AN,−T1 , in order to distinguish it from the standard decoupled tensor product. We label
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the lines of this theory by N = (n1, n2). The spin of the lines of W (1) and W (2) is undeformed, while

the spin of product of lines can be computed using θa+b = θaθbBab. We obtain

θ[WN ] = exp
(
πi NTK21N

)
K21 =

1

N

(
−T1 ϵ

2

− ϵ
2 −T2

)
. (5.3.33)

The line WN has charge n1 +n2 under the ZN ×ZN 1-form symmetry coupled to B. We can identify a

subset of lines that are decoupled from B and, under certain conditions, form a consistent, independent,

and local 3d MTC. These are the lines with N = (l,−l): they exist without an attached bulk surface,

and can be thought of as sitting at opposite ends of a B surface before fusion, see Figure 5.6. The

spin of these lines is exp
(
−πi
N lT(T1 + T2)l

)
and thus, as long as (T1 + T2) is invertible in ZN , they

form the consistent MTC AN,−T1−T2 . The remaining lines are coupled to B. We can identify a

subset that has trivial braiding with the lines of AN,−T1−T2 . They are given by Nη = (ξ,−ξ + η) with

ξ = (T1+T2)−1
(
T2+ ϵ

2

)
η and their spin is exp

(
−πi
N ηTT21η

)
where the matrix T21 is the one in (5.2.38).

Since the line Nη has charge η under the ZN ×ZN 1-form symmetry, they form the MTC AN,−T21(B).

Hence we arrive to the result

AN,−T2(B)×B AN,−T1(B) = AN,−T1−T2 ×AN,−T21(B) . (5.3.34)

The product on the right-hand side is the standard tensor product. The result is in accord with the

factorization theorem of [111]. We have thus shown that:

D[T2]×D[T1] = AN,−T1−T2 D[T21] , (5.3.35)

as long as as both (T1 + T2) and T21 are invertible in ZN , as suggested by (5.3.26).

The result could be confronted with the known composition of minimal TQFTs AN,p [104], namely

AN,p ×AN,q = AN, p+q ×AN, (p−1+q−1)−1
valid when gcd(p+ q,N) = 1. While we found an equivalent

expression for the decoupled lines on the right-hand side, the lines coupled to B fuse differently because

of the bulk dynamics.

Let us mention two cases in which the decomposition (5.3.34) fails. One case is when T1 + T2 = 0,

namely when we consider the fusion D[T ]×D[−T ] in the untwisted sector. Set T2 = −T1 = T . The

lines decoupled from B have vanishing spin and form a Lagrangian subgroup of ZN × ZN , signaling

that AN,−T2×BAN,−T1 must be a Dijkgraaf-Witten theory. Indeed, exploiting (5.3.33), we can exhibit

the set of lines En =
(

1

−1
)(
T − ϵ

2

)−1
n decoupled from B and with vanishing spin, a set of lines

Mm = (m, 0) with charge m under B and with spin exp
(
πi
Nm

TTm
)
, and show that the two sets

have canonical braiding exp
(
2πi
N nTm

)
. This is precisely the content of the theory (5.3.29). We thus

reproduce the result (5.3.30).

Another special case is when T21 = 0, namely when we consider two defects V [T2], V [T1] that

fuse into the charge-conjugation defect VC ≡ V [T = 0]. The two torsion matrices must be related by

T1 = − ϵ
2T

−1
2

ϵ
2 . When this happens, the product AN,−T2 ×B AN,−T1 is not a MTC because it contains

a subcategory of transparent lines — the lines in the C twisted sector which couple only to B and not

to Φ. In this case, we can study the fusion of the full twisted sectors, including the lines coupled to

Φ. The final result is:

D[T1]×D[T2] =
(
ZN × ZN

)
0
(Φ,Φ1) D[0] . (5.3.36)

We can compare this result with our standard computation by using the factorization:23(
ZN × ZN

)
0
(Φ,Φ1) = AN,−T1−T2 ×AN,T1+T2(Φ,Φ1) . (5.3.37)

23Note that T1 + T2 = T1 − ϵ
2
T −1
1

ϵ
2
=
(
T1 +

ϵ
2

)
T −1
1

(
T1 − ϵ

2

)
which is invertible under our assumptions.
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Thus the result coincides with the remaining cases if we discard the term coupling to Φ1 (which is

integrated out in the 4d bulk computation).

Summarizing, we have obtained the following bulk fusion rules:

U(γ)×D[T ] = eiQNT (Γγ) D[T ] ,

D[T2]×D[T1] = AN,−T1−T2 D[T21] ,

D[T ]×D[T ] = CZN×ZN .

(5.3.38)

We now extend our analysis to the physically relevant case of fusion on a gapped boundary.

5.3.3 Fusion on gapped boundaries

In Section 5.2 we discussed gapped boundaries ρ(L) of the bulk 5d theory. These are defined by

choosing a Lagrangian subgroup L ⊂ DQ ≡ ZN × ZN . The boundary condition sets to 1 the surface

operators Un with n ∈ L, which are then screened on the boundary:

Un
∣∣
X

= 1 if n ∈ L . (5.3.39)

In terms of fields, one imposes Dirichelet boundary conditions lTB
∣∣
X

= 0 (up to gauge transformations)

for all l ∈ L. For N odd prime, the N + 1 Lagrangian subgroups of DQ are all isomorphic to ZN and

are generated by a single vector l. Thus the gapped boundaries are implemented by

lTB
∣∣
X
≡ bl = 0 (up to gauge transformations) . (5.3.40)

In Section 5.2 we introduced the 1-form symmetry group S = DQ/L of the gapped boundary. Here we

also introduce the lattice L⊥ dual to L with respect to the Dirac pairing, and the vector l⊥ = ϵ l that

generates L⊥. It satisfies lT⊥l = 0 mod N .24 Using this vector we can solve the boundary conditions

by setting:

B
∣∣
X

= b̃⊥ l⊥ . (5.3.41)

Notice that this is a condition on the field and not on the charges.

In this section we want to understand the fate of various types of defects once they are placed on

the gapped boundary, or when they terminate on it. We already discussed the case of the 2d surfaces

Up with p ∈ L: they can terminate on the gapped boundary, and become trivial if they are placed on

top of it. On the other hand, if we fuse a 4d defect VM (implementing the action of M ∈ SL(2,ZN )

on the gauge field B) with a gapped boundary ρ(L) we obtain a new gapped boundary ρ(ML).

Let us now discuss the properties of the twist defects D[T ] on a gapped boundary. Focusing

on the case that V [T ] comes from the condensation of ZN × ZN and that T is invertible in ZN , in

Section 5.3.1 we discussed the 3d sector AN,−T (B) of lines Wn on D[T ] that are decoupled from V [T ]

but that cancel its anomaly (5.3.11). Those lines are charged under B, and thus are the endlines

of surfaces Un in the fully dynamical theory. The subsector of lines Wn=sl (s ∈ ZN ) with charge

proportional to l are attached to 2d surfaces of bl, and form a consistent MTC AN,−tl for a 1-form

symmetry L ∼= ZN , where tl ∈ ZN is

tl = lTT l , (5.3.42)

24The lattice L could be self-dual, in which case l⊥ = s l for some s ∈ Z. In particular, for N prime, the self-dual

lattices are in one-to-one correspondence with the roots s2 = −1 and are generated by l = (1, s).

133



provided that tl ̸= 0, namely, that the boundary ρ(L) is not invariant under V [T ].25 (The case that

L is invariant under V [T ] will be dealt with in Section 5.3.3.) On the gapped boundary we set bl = 0

(up to gauge transformations), therefore this sector becomes a decoupled TQFT. This allows us to

define a minimal boundary twist defect DL[T ], obtained by discarding the decoupled TQFT AN,−tl .26

The lines that braid trivially with AN,−tl can be generated by n = T −1l⊥ and form a MTC AN,−t⊥

with t⊥ ∈ ZN defined as

t⊥ = lT⊥T −1l⊥ . (5.3.43)

These lines are coupled to the gauge field b⊥ ≡ lT⊥T −1B.27 (We omit the dependence of t⊥ and b⊥ on

T in order not to clutter.) We have then proved the factorization:

AN,−T (B) = AN,−tl(bl)×AN,−t⊥(b⊥) . (5.3.44)

When we move the twist defect D[T ] on top of a gap boundary, the first factor on the r.h.s. decouples

yielding D[T ]
∣∣
boundary

= AN,−tl ×DL[T ]. We obtain:

DL[T ] = AN,−t⊥(b⊥) for ML ̸= L . (5.3.45)

Notice that ML = L if and only if T L = L⊥ (see footnote 25). As we will see, this definition of DL[T ]

is consistent under fusion. Notice also that the twist defect DL[T ], as opposed to D[T ], is stuck on

the gapped boundary.

As a check of (5.3.44), one can take the anomaly inflow action (5.3.11) and impose the boundary

condition bl = 0. This can be done by parametrizing a gauge field in the quotient group as B = t−1
⊥ b⊥l⊥,

which yields:

I(b⊥) =
N

2π

∫
4d

[
b⊥dγ̃ −

1

2
b⊥t

−1
⊥ b⊥

]
(5.3.46)

as expected (here γ̃ = t−1
⊥ lT⊥Γ̃). Thus, the theory DL[T ] is the minimal one required to cancel the

anomaly on the gapped boundary.

In order to compute the fusion DL[T2]×DL[T1] on a gapped boundary, we need to understand how

to impose the boundary condition on the product theory AN,−T2 ×B AN,−T1 . Following our previous

reasoning, the lines W
(1)
s1l

and W
(2)
s2l

with charges in L are the endlines of surfaces of bl but decouple

from B on the boundary. Since they are all in the same Lagrangian subgroup of ZN × ZN , the two

groups maintain trivial mutual braiding even after the deformation by B. We have thus identified a

subset of lines that couple to bl and form the MTC AN,−t2,l(bl)×AN,−t1,l(bl), where tj,l = lTTjl. The

lines WN that braid trivially with that subset, as we will see, form a MTC AN,−R21 coupled to B for

some matrix R21:

AN,−T2(B)×B AN,−T1(B) = AN,−t2,l(bl)×AN,−t1,l(bl)×AN,−R21(B) . (5.3.47)

On the gapped boundary, the first two factors on the right-hand side decouple and moreover are

precisely the two factors that are discarded in the definition of DL[T1] and DL[T2]. After imposing

bl
∣∣
X

= 0, the third factor only couples to a projection of B. As we will see, such a projection is the very

25If L is invariant under M , then Ml = sl for some s ∈ ZN . Note that s ̸= 0, and since we are considering here defects

VM such that TrM ̸= 2 mod N , then s ̸= 1. From (5.2.29) one finds lTT l = 1+s
1−s l

T ϵ
2
l = 0. On the contrary, if lTT l = 0

then T l = r ϵ
2
l for some r ∈ ZN and here r ̸= −1. From (5.2.28) one finds Ml = r−1

r+1
l. This shows that L is invariant

under M if and only if tl = 0. Besides, when T is invertible and thus TrM ̸= −2 mod N , then a similar argument also

shows an if and only if t⊥ = 0.
26The operation of discarding AN,−tl can be implemented as DL =

[
D
∣∣
boundary

×AN,tl
]
/ZN [111].

27The splitting of B into bl and b⊥ is well defined as long as the boundary is not invariant under V [T ]. Otherwise,

T l ∝ l⊥ and so b⊥ ∝ bl which vanishes on the gapped boundary.
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one predicted by fusion, namely to b⊥ = lT⊥T
−1
21 B. Besides, we expect the MTC AN,−R21(b⊥) to be the

product of a MTC N21 that does not couple to b⊥, and the MTC AN,−t⊥21(b⊥) (where t⊥21 = lT⊥T
−1
21 l⊥)

that lives on the twisted sector DL[T21]. We will verify this expectation, and show that

AN,−R21(b⊥) = N21 ×AN,−t
⊥
21(b⊥) . (5.3.48)

These relations imply the fusion rules

DL[T2]×DL[T1] = N21 DL[T21] , (5.3.49)

where the decoupled TQFT N21 plays the role of a fusion coefficient.

Let us compute N21. The N2 lines WN of AN,−R21 , that braid trivially with the first two factors

on the r.h.s. of (5.3.47), have charges N = (ξ1, ξ2) determined by solving the equations

T1 ξ1 −
ϵ

2
ξ2 = a1 l⊥

T2 ξ2 +
ϵ

2
ξ1 = a2 l⊥

(5.3.50)

for some coefficients a1,2 ∈ ZN that depend on the line. In fact, one can use a1, a2 to parametrize the

solutions. We first consider the simple case T1 = T2, then the generic case, and finally the exceptional

case T1 = −T2.

Case T1 = T2 ≡ T . This case computes the square of a defect DL[T ]. Noticing from (5.2.38) that

T21 = 1
2

(
T + ϵ

2T
−1 ϵ

2

)
, we find:

ξ1 =
1

2
T −1
21

(
a1 + a2

ϵ

2
T −1

)
l⊥ , ξ2 =

1

2
T −1
21

(
a2 − a1

ϵ

2
T −1

)
l⊥ . (5.3.51)

The charge of a line under B is ξ1 + ξ2. One can check that the lines with a1 = a2 have charge

proportional to T −1
21 l⊥, and so they couple to b⊥. With some algebra28 and (5.3.33), one can check

that those lines braid trivially with the lines with a1 = −a2. This suggests to label the lines in terms

of a, c ∈ ZN and set a1 = a− c, a2 = a+ c. The spin of a line labelled by (a, c) is found to be

θ
[
W(a,c)

]
= exp

(
−πi
N
t⊥21
(
a2 + c2

))
, (5.3.52)

where t⊥21 = lT⊥T
−1
21 l⊥. As long as t⊥21 ̸= 0, such lines form the theory AN,−R21 with

R21 =

(
t⊥21 0

0 t⊥21

)
. (5.3.53)

The subset of lines (a, 0) form the MTC AN,−t⊥21(b⊥), as expected. The lines (0, c) have charges under

B proportional to T −1
21 ϵT −1l⊥, which has vanishing contraction with lT⊥ and thus is proportional to l.

On the gapped boundary bl = 0 and hence these lines form a decoupled MTC

N21 = AN,−t⊥21 . (5.3.54)

We have obtained the fusion rule

DL[T ]×DL[T ] = AN,−t⊥21 DL[T21] . (5.3.55)

Notice that this fusion rule is the same (with the same N21) on all gapped boundaries ρ(L) belonging

to the same orbit under V [T ]. This follows from footnote 18.

28One should use that T21ϵT = T ϵT21. It also implies that such a matrix is antisymmetric.
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Generic case. In order to treat the general case it is convenient to parametrize the lines (ξ1, ξ2) =

(v, η − v) in terms of two vectors v, η, so that the charge of a line under B is η, and redefine the

numbers a1 = p+ q, a2 = q. The equations (5.3.50) become(
T1 + T2

)
v −

(
T2 + ϵ

2

)
η = p l⊥

T2 η −
(
T2 − ϵ

2

)
v = q l⊥ .

(5.3.56)

Defining Γ =
(
T2 − ϵ

2

)(
T1 + T2

)−1
, the solutions are

v = q ΓTT −1
21 l⊥ + p

[(
T1 + T2

)−1
+ ΓTT −1

21 Γ
]
l⊥ , η = q T −1

21 l⊥ + p T −1
21 Γl⊥ (5.3.57)

and can be labelled by q, p ∈ ZN . Substituting in (5.3.33), the spins of the lines are

θ
[
W(q,p)

]
= exp

(
−πi
N

(q, p)R21

(
q
p

))
with R21 =

(
t⊥21 co

co cd

)
, (5.3.58)

where

co = lT⊥ T −1
21 Γ l⊥ , cd = lT⊥

[(
T1 + T2

)−1
+ ΓTT −1

21 Γ
]
l⊥ = lT⊥

(
T1 + ϵ

2T
−1
2

ϵ
2

)−1
l⊥ . (5.3.59)

The subset of lines (q, 0) have charges η proportional to T −1
21 l⊥ and thus couple to b⊥. Their spins

show that they form the MTC AN,−t⊥21(b⊥). On the other hand, the subset of lines (q, p) with q =

−(t⊥21)
−1co p braid trivially with the former subset and constitute the theory N21. Their charges η are

such that lT⊥η = 0, therefore they are decoupled from B on the gapped boundary. Their spins show

that

N21 = AN,−n21 with n21 = cd − (t⊥21)
−1c2o = (t⊥21)

−1 detR21 . (5.3.60)

One should recall that, in the absence of a coupling to B, the theories AN,−p and AN,−pr2 are equivalent

for any invertible r ∈ ZN , and thus for N odd prime the only physical information in n21 ̸= 0 is whether

it is a quadratic residue or not. This is detected by the Legendre symbol n
(N−1)/2
21 mod N ∈ {1,−1}.29

Case T2 = −T1 ≡ T . This is the case leading to condensation. The equations for lines in AN,−R21

are just T ξ1 + ϵ
2ξ2 = −a1l⊥ and T ξ2 + ϵ

2ξ1 = a2l⊥. The general solution is

ξ1 =

[
a
(
T +

ϵ

2

)−1
− c

(
T − ϵ

2

)−1
]
l⊥ , ξ2 =

[
a
(
T +

ϵ

2

)−1
+ c

(
T − ϵ

2

)−1
]
l⊥ (5.3.61)

where we redefined a1 = c− a and a2 = c+ a. For these lines:

θ
[
W(a,c)

]
= exp

(
−2πi

N
ac 2lT⊥

(
T +

ϵ

2

)−1
l⊥

)
. (5.3.62)

Lines with either a or c = 0 have vanishing spin, which indicates that we are dealing with a DW type

theory. The lines with a = 0 (electric) do not couple to B since they have ξ1 + ξ2 = 0. Redefining

a→
[
2lT⊥
(
T + ϵ

2

)−1
l⊥
]−1

gives the canonical braiding Bac = e
2πi
N
ac. Thus

AN,−R21(b⊥) = (ZN )0(b⊥) = CZN . (5.3.63)

We conclude that:

DL[T ]×DL[T ] = CZN . (5.3.64)

The condensate CZN is for the 1-form symmetry S = (ZN × ZN )/L ∼= ZN that exists on the gapped

boundary.

29In the higher-rank case the situation is similar. For N odd prime, one can always bring a symmetric matrix T with

values in ZN to a diagonal form UTT U = diag(t1, . . . , tr) using an invertible matrix U (see, e.g., [137]). The TQFT is

then characterized by the number of +1 and −1 Legendre symbols of the ti’s.
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Examples. We can now apply our formalism to the known cases of duality and triality defects. We

consider a generic boundary ρ(L), but assume that it is not invariant under any symmetry defect

appearing below (apart from C, which leaves every boundary invariant). For the application to self-

duality defects, we must compute the fusion DL[S] × DL[S]. This is a special case, since the r.h.s.

involves charge conjugation. The complete fusion gives a coefficient which is a product of DW theories,

these all admit a universal boundary condition which allows us to set them to one. This corresponds

to the Dirichlet boundary of the DW theory. After this we find:

DL[S]×DL[S] = (ZN )(b̃⊥, ϕ⊥) Dtriv
L [0]

DL[S]×DL[S] = CZN .
(5.3.65)

For triality defects we compute:30

DL[ST ]×DL[ST ] = AN,−pST DL

[
(ST )2

]
DL[CST ]×DL[CST ] = AN,−pST DL

[
(ST )2

]
DL

[
(ST )2

]
×DL

[
(ST )2

]
= AN, pST DL[CST ]

(5.3.66)

where

pST =

1 if L = L(e) ,

r2 + r + 1 if L = L(m)r .
(5.3.67)

These fusions agree with those computed in [104] on the electric boundary.31 Notice that pST ̸=
0 mod N as long as the boundary Lagrangian subgroup L is not invariant under ST .

Other defects. Another interesting case is when the 4d defects VM = V [A, ξ] are obtained by

condensing a ZN subgroup of ZN × ZN , corresponding to the elements M ∈ SL(2,ZN ) that are

conjugate to T k for some k. For simplicity let us consider the case M = T k with k = 1, . . . , N − 1.

The twisted sectors DTk,L are described by the minimal theories AN,k−1
(b) for ZN coupled to the bulk

field b. For the lines in these theories there is no extra contribution to the braiding when we stack the

theories, and thus they fuse in the standard way:

DTk,L ×DTk′,L = AN, k−1+k′−1
DTk+k′,L (5.3.68)

as long as k+k′ ̸= 0 mod N . This formula is in agreement with the fusion law of N -ality defects found

in [25, 104]. Notice that these twist sectors are not unique since they can be fused to 3d condensates

for the magnetic symmetry. However, on the magnetic boundaries L(m) (on which the twisted sector

DTk hosts a minimal theory) we can take the condensates to be generated by the magnetic symmetry

l(m) ∈ L(m).32. On the magnetic boundary these condensates however become all decoupled DW

theories since l(m)TB
∣∣
X

= 0.

Twist defects and boundary-changing operators

Consider starting with a twist defect DM (attached to a 4d symmetry defect VM ) in the bulk and

moving it on top of a gapped boundary ρ(L). We are here interested in the case that ρ(L) is not

30To get to the result we use the property AN,pr2 = AN,p for gcd(r,N) = 1.
31One uses that AN,1 = U(1)N [111]. Notice that the conventions of [104] defined in their eqns. (6.7)–(6.9) differ from

ours, and their defects are the orientation reversal of ours, leading to a sign change in the level.
32We can always arrive at this choice since any two magnetic lattices differ by electric ones, which can be absorbed by

DTk
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Figure 5.7: The way in which the SymTFT implements the construction of [24, 52]. Above: definition

of various morphisms. Below: construction of the duality interface DM,L.

invariant under M . As discussed before (5.3.45), the defect DM on the boundary decomposes into

DM,L and a decoupled TQFT. We conclude that DM,L is an interface between two copies of ρ(L), or

using categorical terms, it defines a morphism DM,L : M×ρ(L)→ ρ(L). This is depicted in Figure 5.7

left. On the other hand, if we bring the symmetry defect VM on top of the boundary we obtain an

action VM × ρ(L) = ρ(ML). Thus, we can construct an interface between ρ(L) and ρ(ML) by fusing

the boundary with VM only on a half-space and then letting VM escape in the bulk, as in Figure 5.7

center. This defines a morphism UM : M × ρ(L) → ρ(ML). Since both interfaces sit at the end of

a symmetry defect VM , it is possible to define a local boundary-changing operator as the morphism

φM = UM ◦D†
M,L : ρ(L)→ ρ(ML), as in Figure 5.7 right.

Recall that, in the ungauged theory, one can expect to define only duality interfaces. The interface

is a composite object given by a discrete gauging operation composed with an invertible duality

transformation. On the TQFT side this is described by acting with U†
M to map the boundary to

ρ(ML) and then using φM to go back to ρ(L). After compactifying the slab of SymTFT this gives

an interface : Aρ[τ ] → AρM [τ ] → Aρ[Mτ ] between absolute theories. Shrinking the middle part of

the drawing gives the duality interface. On the other hand the fusion φM × U†
M = DM,L holds, since

DM,L is unique as a twist defect on the gapped boundary. We can thus identify the defect DM,L on

the bottom-left of Figure 5.7 with the duality interface in the absolute theory Aρ[τ ].

Boundaries with a stabilizer

Let us also discuss the properties of a twist defect DL[T ] on a gapped boundary ρ(L) that is invariant

under the corresponding symmetry defect V [T ]. This means that M is in the stabilizer H of L in

SL(2,ZN ). We can gather information on the degrees of freedom living on DL[T ] by computing

the anomaly inflow. The invertible TQFT living on V [T ] is (5.3.11). On the gapped boundary we

parametrize33 B = b̃⊥l⊥ and obtain

IT
∣∣
ρ(L)

=
N

2π

∫ [
γ̃⊥ db̃⊥ −

1

2
t⊥ b̃⊥b̃⊥

]
(5.3.69)

33Here the normalization is different than before (5.3.46), because t⊥ = 0 when L is invariant under M .
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(where γ̃⊥ = lT⊥Γ̃). Since now t⊥ = 0 (see footnote 25), the anomaly is trivialized.

What happens to the lines in the twisted sector can be understood using the minimal theory

description. We start with the twist defect D[T ] in the bulk and push it onto an invariant boundary

L. Normally we would now separate the degrees of freedom which decouple on the boundary, which

form a AN,−tl(bl) factor. This is generated by lines Ls ≡ Wn=s l. If the boundary is invariant then

tl = 0 and this procedure is ill defined as the Ls all have vanishing spin. They thus form a Lagrangian

subalgebra. This means that AN,−T should rather be thought of as a DW theory coupled to b̃⊥. Since

the lines with trivial spin are also uncharged under b̃⊥ this can be thought of as a condensate:

AN,T (B)
∣∣
X

= CZN . (5.3.70)

To be more precise we can choose a generator u of S. Since by definition uTl⊥ ̸= 0 lines L̃r ≡Wn=ru

are charged under b̃⊥. These lines have spin:

θ
[
L̃r

]
= exp

(
−πi
N

r2 uTT u
)

(5.3.71)

and braid with the electric lines Ls:

Br,s = exp

(
−2πi

N
rs uTT l

)
̸= 1 , (5.3.72)

since on the invariant boundary T L = L⊥. Properly redefining Ls we can make this braiding into

canonical one. As we have already commented there is no canonical choice for u, since we are free to

shift it by vectors in L. The shift u→ u+ l does not affect the braiding with Lr but it does affect the

spin of L̃s:

θ
[
L̃r

]
→ θ

[
L̃r

]
exp

(
−2πi

N
r2 uTT l

)
(5.3.73)

For N odd and on spin manifolds we can use this to set θ[Lr] to one.

Since the defect V [T ] has trivial anomaly on ρ(L), it can end there without adding new degrees

of freedom. Therefore the twist defect DL[T ] is trivial (invertible) on an invariant boundary:

D[T ]
∣∣
X

= CZN Dtriv
L [T ] , (5.3.74)

where the superscript is useful to remember this fact.

The same phenomenon appears if we consider a fusion DL[T1] × DL[T2] in which V [T21] leaves

the boundary ρ(L) invariant, but neither V [T1] nor V [T2] do. We proceed as in the usual case by

separating out the lines coupling to bl from both terms in the fusion. This is a well defined procedure

since tl1, t
l
2 ̸= 0 (due to L not being invariant under neither T1 nor T2). Based on the previous remarks

we expect AN,−R2,1 to also be a condensate. It is clear that the theory contains a Lagrangian algebra

generated by W(q,0) in (5.3.58). In the generic discussion these lines were coupled to b⊥, however if

the boundary is invariant they are not.34 These form the set of “electric” lines. The magnetic lines

W(0,p) instead couple to b̃⊥, but have nontrivial spin:

θ
[
W(0,p)

]
= exp

(
−πi
N
cd p

2

)
, (5.3.75)

As before, we can redefine the magnetic lines by summing a multiple of the electric ones to set this to

zero. Notice that the discussion here is also consistent with the example of T2 = −T1 discussed before,

when the final result is a condensate and the identity defect leaves all boundaries invariant.

34The charge under the gauge symmetry for b̃⊥ is qlT⊥T −1
2,1 l⊥, which vanishes when the boundary is invariant.
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We are now in a position to write down the full result of the boundary fusion for DL[T ]:

DL[T2]×DL[T1] = N21DL[T21] , if V [T2,1]|ρ(L)⟩ ≠ |ρ(L)⟩ ,

DL[T2]×DL[T1] = CZN Dtriv
L [T ] , if V [T2,1]|ρ(L)⟩ = |ρ(L)⟩ ,

DL[T ]×DL[T ] = CZN .

(5.3.76)

This will have a more natural interpretation in the gauged theory. In that case we will see that anomaly

cancellation forces the Gukov Witten operator GW[T ] to exist only as a bound state with the twist

defect D[T ] for V [T ]. When the boundary L is T -invariant there is no anomaly to cancel and GW[T ]

can exist as a genuine defect on the gapped boundary. The fusion rule above tell us that, when two

bound operator fuse onto an invariant one, such fusion is always accompanied by the appearence of a

condensation defect. This is consistent with the fact that defects DL[T ] absorb surface defects ei
∫
b⊥ ,

which survive on the gapped boundary. In the absence of the condensation defect the r.h.s. cannot

absorb such lines and fusion would be inconsistent.

5.4 The gauged theory

Finally, we discuss the effect of gauging a discrete subgroup G ⊂ SL(2,ZN ) in the bulk TQFT. In the

application to N = 4 SYM, the only relevant groups (including the action of charge conjugation) are

Z4 and Z6 generated by S and ST , respectively. Notice that they are both Abelian. The construction

we present below applies to a generic Abelian G, while the non-Abelian case requires modifications

that might be important in discussing theories of class S (we comment on that in the conclusions).

We will first describe abstractly the spectrum of operators in the gauged theory. We follow the

rules for discrete gauging described for 3d MTCs in [77] and recently extended to higher dimensions

in [27]. Particular care will be needed in describing the Gukov-Witten operators of G gauge theory, as

they get dressed by the corresponding twist defects D[T ]. We will present the construction of these

operators, that we dub D[T ]. Finally, we will study gapped boundaries |ρ∗⟩ in the gauged theory in

terms of orbits of boundaries |ρ⟩ in the ungauged theory. This allows for a simple derivation of the

fusion rules. We will also comment on the differences arising when the boundary has a nontrivial

stabilizer.

In the following we will restrict to the study of twisted sectors D[T ] for which M(T ) is an element

of G. Together with the assumption that G is Abelian, this ensures that different twisted sectors do

not mix among each other and that the genuine codimension-2 operators D[T ] of the gauged theory

are still labelled by group elements.35

5.4.1 Spectrum of bulk operators

The spectrum of topological operators in the gauged theory can be obtained, at least at a formal level,

by applying standard rules for gauging a discrete 0-form symmetry to the ungauged theory. These

are nicely summarized in [27]. Let us start with the surface defects Un that implement the 2-form

symmetry. These operators are in general not gauge invariant, as G acts on them nontrivially. We

can build gauge-invariant combinations by considering orbits under G:

U∗
[n] =

1∣∣Stab(n)
∣∣ ∑
g∈G

U(g n) , (5.4.1)

35In the general case they are labelled by conjugacy classes under the adjoint action of G.
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Figure 5.8: In the gauged theory, a twist defect D[T ] (with M(T ) ≡ g ∈ G) is dressed by codimension-

1 surfaces of G labelled by h.

where Stab(n) is the stabilizer group for n as an element of ZN × ZN . When n admits a nontrivial

stabilizer, the surface U∗
[n] supports nontrivial line defects labelled by representations of Stab(n). In

the cases considered here, that is N prime and G = Z4 or Z6, the only surface with a nontrivial

stabilizer is the identity, while all others ones do not host any line.

As an example, in the case of the Z4 subgroup of SL(2,ZN ) generated by S, a dyon (e,m) is

mapped to an orbit

[e,m] = (e,m) + (m,−e) + (−e,−m) + (−m, e) . (5.4.2)

These objects are non-invertible and their fusion is

[e,m]× [e′,m′] = [e+ e′,m+m′] + [e+m′,m− e′] + [e− e′,m−m′] + [e−m′,m+ e′] . (5.4.3)

More interesting is the situation for codimension-2 operators. We have already discussed that in the

ungauged theory, genuine 3d operators are necessarily condensation defects. After the discrete gauging

the situation is different. The twist defects D[T ] for surfaces V [T ] generating G become “liberated”

— in the sense that they become genuine 3d operators — since the surfaces V [T ] are transparent in

the gauged theory. One could think of the liberated defects as arising from the“lassoed” configuration

shown in Figure 5.8 after summing over G. Since G is Abelian, each twist sector is left fixed by the

action of the lassos and it gives rise to a single genuine operator D[T ].36 The action of a lasso VM ′

reduces to a 0-form symmetry action on D[T ], which maps Wn 7→ WM ′n. This is indeed a symmetry

of the theory, since

M ′T T M ′ = T (5.4.4)

and thus it preserves the braiding. Summing over such action means that the 0-form symmetry on

the defect is gauged, so we would like to conclude that D[T ] is D[T ]/G.

This description is slightly imprecise, because D[T ] lives at the boundary of V [T ]. Indeed, the

gauging process can be thought of as coupling the original system to a discrete G gauge theory. Its

gauge field a ∈ H1(M5, G) couples minimally to the 0-form symmetry defects VM∈G of the original

theory (more details in Section 5.4.2). In this setup, inserting a twist defect D[T ] is only consistent at

locations where a is not closed: it must instead satisfy δa = g schematically. Another way of saying

this is that a exhibits a nontrivial holonomy g around the 3-cycle Y on which D[T ] lies. This is the

description of Gukov-Witten defect operators in G gauge theory, that we indicate as GWg. We infer

that a more precise definition of the new operators is:

D[T ] = GWM(T ) ×D[T ]/G . (5.4.5)

36When instead G is non-Abelian, twist defects also combine into orbits and the situation is more subtle.
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The appearance of this “bound state” has a simple explanation: In the original theory, the defect D[T ]

was not gauge invariant due to anomaly inflow from V [T ]. The GW operator is not gauge invariant

either, as it carries the anomaly of V [T ]. Their combination is a well defined operator in the gauged

theory. This is a close cousin of the mechanism described in [25]. We also learn that D[T ] is charged

under the dual Ĝ 3-form symmetry.

The exception is the twist defect D[T = 0] ≡ DC for charge conjugation. In this case there is

no anomaly inflow and therefore the GW operator for C defines a genuine, group-like object in the

gauged theory. This suggests that we should interpret the contributions from DC arising upon fusion

as decoupled condensates after gauging.

The following table summarizes the properties of some objects in the gauged theory:

Original object Gauged object Emergent lines Grouplike?

(0, 0) [0, 0] Rep(G) YES

(e,m) [e,m] = ⊕g∈G g(e,m) none NO

D[T ] D[T ] = GWM(T ) ×D[T ]/G Rep(G) NO

DC GWC none YES

5.4.2 Hybrid formulation of the gauged theory

In order to give a Lagrangian description of the gauging of the subgroup G ⊂ SL(2,ZN ) in the 5d

Chern-Simons theory, we employ a sort of hybrid formulation in which the Chern-Simons theory is

described by continuum gauge fields, while the gauge field for G is described using singular cochains

(see, e.g., [93, 138] or the appendix in [15]).

First of all, on the spacetime manifold M5 one chooses a simplicial triangulation. This is made

of vertices or 0-simplices pi with an arbitrary ordering for the index i, edges or 1-simplices pij (with

i < j) connecting the vertices pi and pj , 2-simplices pijk (with i < j < k) bounded by pij , pjk and

pik, and so on. All simplices are contractible, and M5 is the union of all 5-simplices. A gauge field

a for the discrete gauge group G is a 1-cochain a ∈ C1(M5, G) that assigns an element aij ∈ G to

each 1-simplex pij (with i < j), with the constraint that da = 1. We use multiplicative notation and

define the differential as (da)ijk = ajka
−1
ik aij (with i < j < k). We will only consider the case that G

is Abelian. Gauge transformations then map aij 7→ (dλ)ijaij where dλij = λjλ
−1
i and λ ∈ C0(M5, G)

in a 0-cochain. The gauging of G is described by a sum over a ∈ H1(M5, G) in cohomology.

Then we construct a covering of M5 by closed patches that is dual to the triangulation, as follows.

Each patch Ui is a 5d contractible manifold with boundary that contains the 0-simplex pi. Then each

non-empty intersection Ui1...ik = Ui1 ∩ · · · ∩ Uik (with i1 < . . . < ik and k = 2, . . . , 6) is a (6 − k)-

dimensional contractible manifold with boundary that intersects the (k − 1)-simplex pi1...ik at one

point. We give a graphical representation of this covering in Figure 5.9.

On every patch Ui we define gauge fields Bi with values in an Abelian group A (either continuous or

discrete), and along the intersections Uij we glue them using a group homomorphism θ : G→ Aut(A)

and the gauge field a:37

Bi = θ(aij)Bj across Uij . (5.4.6)

The gauge field B is thus a piecewise-smooth field with B
∣∣
Ui

= Bi. Closeness of a guarantees that

each Bi can be smooth and have a well-defined limit at triple intersections Uijk. In particular, we can

always find a gauge in which aij = ajk = aik = 1 around a given triple intersection Uijk, and in that

gauge B can be smooth at the intersection.

37Besides, one could also have gauge transformations of Bi, but we keep them implicit here.
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Figure 5.9: Left: representation of the simplicial triangulation and the covering by closed sets Ui, Uj ,

Uk near a triple intersection. Right: assignment of fields Bi and aij .

The construction is quite general. In our case Bi are continuous 2-form gauge fields valued in

A = U(1)2, while SL(2,Z) has the natural action on A and G ⊂ SL(2,Z) is an Abelian subgroup. We

should now understand how to construct the action. Integrating S = N
4π

∫
⟨B, dB⟩ with the discontin-

uous gluing conditions (5.4.6) leads to singularities, in particular the derivative dB has delta-function

singularities along the surfaces Uij . To remedy, we introduce a covariant derivative da that removes

those singularities:

daB = dB −
∑
Uij

δ(1)(Uij)
(
Bj − Bi

)
= dB −

∑
Uij

δ(1)(Uij)σ(aij)Bj ≡
(
d− δ(1)a σ(a)

)
B , (5.4.7)

where δ(1)(Uij) is a delta-1-form, σ(a) ≡ 1− θ(a), and in the last expression we used a more compact

notation. In this way, dB is a piecewise-smooth field such that dB
∣∣
Ůi

= dBi with discontinuities across

Uij but no delta-function singularities. We can then construct the action

S =
N

4π

∫
⟨B, daB⟩ =

∑
Ui

N

4π

∫
Ui

⟨Bi, dBi⟩ . (5.4.8)

The covariant derivative da can be integrated by parts, and the action is invariant under gauge

transformations of a.

In order to discuss 1-form gauge transformations, we need to compute the square d2a of the co-

variant derivative. It turns out that, to do that, we ought to be more careful and write daB =

dB−
∑

Uij
δ(1)(Uij)

(
B(ij)j −B(ij)i

)
where the label (ij) reminds us that we are taking the limit of Bi or

Bj towards Uij . Then dadB = −
∑

Uij
δ(1)(Uij)

(
dB(ij)j − dB(ij)i

)
, and finally

d2a B = −
∑
Uijk

δ(2)(Uijk)
[(
B(ij)j − B(ij)i

)
+
(
B(jk)k − B(jk)j

)
−
(
B(ik)k − B(ik)i

)]
≡ −

∑
Uijk

δ(2)(Uijk)σ(daijk)B .
(5.4.9)

In the first equality we used that d
(
δ(1)(Uij)

)
= δ(2)(∂Uij) and that the boundary of a double inter-

section is a collection of triple intersections (with suitable signs due to orientations). In the second

line we introduced a compact notation. Indeed, if a is closed (da = 1) then each Bi can be smooth

and taking the limit towards Uijk in each patch, the first line of (5.4.9) equals zero. If, instead, a is
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Figure 5.10: Left: A triple intersection Uijk hosts a GW operator for g ∈ G. We parametrized the

gauge field a in terms of gijgjk = gik and daijk = g. Center: A refinement of the triangulation

such that the GW operator is pulled away from the junctions. Right: A zoom on the gauge field

configuration around the isolated GW operator.

not closed, then the G bundle can have non-trivial holonomies around the triple intersections and the

Bi’s cannot be smooth there. Given (da)ijk = g, consider a gauge in which aij = ajk = 1, aik = g−1

(see Figure 5.10 right). Then the contribution to (5.4.9) from Uijk becomes −δ(2)(Uijk)σ(daijk)B
(ik)
i .

We thus write the compact formula

d2a = −δ(2)a σ(da) . (5.4.10)

In the presence of a background for a, 1-form gauge transformations of B become

B → B + daα , (5.4.11)

and the action (5.4.8) remains gauge invariant as long as a is flat.

The theory in which G is gauged involves a sum over choices of a on double intersections Uij that

satisfy the closeness condition da = 1. A single symmetry defect U(γ) in the ungauged theory is

mapped to a sum over its G-orbit in the gauged theory. These are precisely the [e,m] defect operators

we introduced before.

On the other hand, we can introduce Gukow-Witten operators in the gauged theory [62]. These

are codimension-2 disorder operators defined by a nontrivial holonomy g ∈ G for a around a 3d

submanifold γ′. In the hybrid formulation, such a GW operator displaced along a collection of triple

intersections Uijk is defined by a sum in the path integral over cochains a such that

daijk = g whenever Uijk ⊂ γ′ , (5.4.12)

as in Figure 5.10. More generally, a collection of GW operators is described by an exact cochain

h ∈ C2(M5, G), and it prescribes to sum over cochains a with da = h in the gauged theory. As

mentioned above, requiring the Bi’s to be smooth in their own patches in a neighborhood of a triple

intersection, forces them to be invariant under g there.38 This is a boundary condition naturally

implemented on the GW operators, consistent with the fact that g-twisted sectors absorb the surfaces

of B not stabilized by g.

Indeed, we can identify a double intersection Uij with gauge field aij as an alternative description

for the 4d symmetry defect VM with M = θ(aij)
T. This is already apparent if we compare the relation

38If Bi is smooth at Uijk, then it has a well-define limit there. The limits in the three patches Ui, Uj , Uk are related by

Bi = θ(aij)Bj = θ(aik)Bk and Bj = θ(ajk)Bk. Recalling that G is Abelian, this implies θ(daijk)Bi = Bi and similarly

for Bj and Bk.
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Bi = θ(aij)Bj between the fields on the two sides of the intersection and (5.2.53), but it also follows

from the action. Let us rewrite (5.4.8) as

S =
N

4π

∫
⟨B, dB⟩ − N

4π

∑
Uij

∫
Uij

⟨B,Bj − Bi⟩ . (5.4.13)

The first term imposes that B is a ZN × ZN gauge field. When T (M) is invertible, we can identify

the second term with the reduced defect action (5.2.51). Recall from the discussion in Section 5.2.3

that the relation between M and the torsion matrix T follows from determining the field on the defect

B(0) = 1
2(BL +BR) = −T Φ, where ϵΦ = BR −BL, in terms of the left/right fields BL/R. Substituting

BR − BL = −ϵ T −1B(0) into (5.4.13), the second term becomes

−N
4π

∑
Uij

∫
Uij

BTT −1B (5.4.14)

that reproduces (5.2.51).

To compute how a GW operator transforms under gauge transformations (5.4.11) we simply eval-

uate the variation of the action (5.4.8) on a non-closed gauge configuration as in (5.4.12):

δαS = −
∑
Uijk

N

4π

∫
Uijk

〈
2B + daα, σ(daijk)α

〉
. (5.4.15)

In the gauge of Figure 5.10 right, as above, σ(daijk)α = α
(ik)
i − α(ik)

k = ϵ T −1α(0) in terms of the

gauge transformation parameter on the defect. Substituting in (5.4.15) and using that the boundary

conditions fix B = 0 on the GW operator, we obtain

δαS =
∑
Uijk

N

4π

∫
Uijk

αTT −1dα . (5.4.16)

As in the description of Section 5.3 in terms of symmetry defects VM , also in the hybrid formulation we

find that pure GW operators are not gauge invariant in this theory. We can construct gauge-invariant

operators by dressing the GW operators with the twisted sectors D[T ], whose variation (5.3.12) is

opposite to (5.4.16).

In the case of the symmetry defect VC , the field on the defect is simply B(0) = 0 and thus its

gauge transformation parameter α(0) vanishes as well. This means that the gauge variation (5.4.15)

vanishes and the GW operator for C is a well-defined gauge-invariant (invertible) topological operator

in the gauged theory.

5.4.3 Gapped boundaries and non-invertible fusion rules

We consider now gapped boundaries in the gauged theory. We can use to our advantage the study and

classification we already did in the ungauged theory. In order to construct a gauged boundary |ρ∗⟩,
we proceed in two steps. First we take a boundary |ρ⟩ in the ungauged theory and make it invariant

under the G action:

|ρ⟩ → 1∣∣Stab(ρ)
∣∣ ∑
g∈G
|ρg⟩ . (5.4.17)

As long as G is Abelian, we can associate a stabilizer H ⊂ G in a consistent way also to the gauged

boundary |ρ∗⟩, since Stab(ρg) = Stab(ρ). This does not specify a boundary condition completely,

since it does not prescribe boundary conditions for neither the Rep(G) dual symmetry lines, nor the

codimension-2 defects D[T ]. They form a canonically-conjugated pair of variables, since they braid
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nontrivially. Therefore, the second step is to choose boundary conditions for them. We choose to

impose Dirichlet boundary conditions on a:39

|Dir⟩ : a = 0 . (5.4.18)

Then the operators D[T ] still exist on the gapped boundary as confined excitations.

These are not the only meaningful boundary conditions one could consider. Indeed it would be

interesting to understand the effect of Dirichlet boundary conditions on the D[T ]’s, or of mixed ones.

That they might be useful to describe theories in which either charge conjugation C (this has been

studied, e.g., in [27, 139, 140]) or the full categorical symmetry, are gauged. We hope to come back

to these questions in the future.40

With Dirichlet boundary conditions on a, we define:

|ρ∗⟩ =
1∣∣Stab(ρ)

∣∣
( ∑

g∈G
|ρg⟩

)
× |Dir⟩ . (5.4.20)

The Dirichlet boundary condition on a greatly simplifies the discussion. The operators D[T ], which

away from the boundary host a Rep(G) worth of lines constructed with the gauge field a, on the

gapped boundary reduce to a direct product GWM(T )×D[T ]. The Gukov-Witten operators still exist

on |ρ∗⟩ and have group-like fusion. We will now show that the fusion of the twist operators DL[T ]

is the same on each gapped boundary |ρg⟩ in the |ρ∗⟩ orbit. This allows to use the results already

derived for the boundary fusion.

We need to show that the various minimal theories we constructed in Section 5.3.3 in order to study

the fusion of twist defects, are isomorphic for boundaries in the sameG-orbit. LetMg ∈ G ⊂ SL(2,ZN )

be a generator of G, and M(T ) be the element of G associated to the twist defect D[T ] we want to

study. Let
∣∣ρ(L)

〉
be a gapped boundary defined by the Lagrangian subgroup L with generator l. The

Lagrangian subgroup of |ρg⟩ is MgL, and since LTL⊥ = 0, we have

L
g
⊥ = M−1T

g L⊥ . (5.4.21)

The generators l and l⊥ transform in a similar way. Since G is Abelian and ϵMg = M−1T
g ϵ, then

T = MT
g TMg and so both tl and t⊥ are invariant along the orbit. Besides, ΓMg = MgΓ and thus the

theory R21 is invariant as well. Since all relevant building blocks are isomorphic on boundaries that

sit inside the same G-orbit, we conclude that fusion only depends on the orbit |ρ∗⟩.
A new ingredient appears when fusion produces a defect D[T21] such that M(T21) stabilizes |ρ⟩.

As we discussed, in these cases the minimal theory is replaced by a condensate. After gauging G, we

are left with the GW operator GWM(T21).

Using all of the above, we finally obtain the categorical fusion rules in the boundary theory specified

39This is the same choice made in the holographic setup of [133].
40In the same spirit, we could consider boundaries twisted by the dual Ǧ symmetry. This amounts to choosing a

representation α of G and define, for a boundary with a trivial stabilizer,

|ρ∗α⟩ =
∑

g∈G
χα(g) |ρg⟩ × |Dir⟩ . (5.4.19)

These boundaries have vanishing overlap with the relative theory if we assume absolute theories in the same orbit to have

the same partition function. When a stabilizer is present we can only twist by characters of G/Stab(ρ), while boundaries

split into copies labelled by representations of Stab(ρ). We do not know how to interpret these splitted boundaries from

the point of view of the 4d QFT, thus we only consider the ones labelled by the trivial representation.
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by the gapped boundary |ρ∗⟩:

Dρ∗ [T2]×Dρ∗ [T1] = N21 Dρ∗ [T21] M21 /∈ Stab(ρ∗) ,

Dρ∗ [T2]×Dρ∗ [T1] = CZN GWM(T21) M21 ∈ Stab(ρ∗) ,

GWM(T2) ×GWM(T1) = GWM(T21) M1,M2 ∈ Stab(ρ∗) .

(5.4.22)

In the second line, the condensate is for the 1-form symmetry S on the gapped boundary, and the

DW description couples to b̃⊥. For defects in which only one ZN factor is gauged, on the other hand,

the fusions are as follows:41

DTk, ρ∗ ×DTk
′
, ρ∗ = AN, k−1+k′−1

DTk+k′, ρ∗ T /∈ Stab(ρ∗) ,

GWTk ×GWTk = GWTk+k′ T ∈ Stab(ρ∗) .
(5.4.23)

The same can be said for conjugacy classes g = H−1TH.

41These can be thought of as the case of T k modulo conjugation.
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Chapter 6

Anomalies of non-invertible self-duality

symmetries

In this chapter we study anomalies of non-invertible duality symmetries in both 2d and 4d, employing

the tool of the Symmetry Topological Field Theory (SymTFT). In the 2d case, the results are already

known from [21] using the technology of fusion categories, but we find it useful to rephrase them in a

way easily generalizable to higher dimensions. In both 2d and 4d we find two obstructions to gauging

duality defects. The first obstruction requires the existence of a duality-invariant Lagrangian algebra

in a Dijkgraaf-Witten theory in one dimension more, that is the SymTFT for the invertible part of the

symmetry. In particular, intrinsically non-invertible duality symmetries [46] are necessarily anomalous.

The second obstruction requires the vanishing of a pure anomaly for the invertible duality symmetry.

However, this depends on further data. In 2d this can be analyzed explicitly using techniques from

modular tensor categories, but it is harder to determine in 4d. To solve this problem, we propose

and verify that it is equivalent to a choice of symmetry fractionalization for the invertible duality

symmetry. We also comment on various possible applications of our results to self-dual theories.

6.1 Anomalies of duality defects from the SymTFT

A natural question, whenever a new type of global symmetry is discovered, is to define and character-

ize its ’t Hooft anomalies. This, for instance, imposes universal dynamical constraints on symmetry-

preserving RG flows. While for invertible (higher) symmetries a complete classification of ’t Hooft

anomalies is given by the appropriate cobordism group [60, 61, 141, 142], for non-invertible symme-

tries the correct general framework remains unclear. A standard approach is to define anomalies as

obstructions to the gauging of a symmetry C. Gauging (or condensation) in higher fusion categories

is however a subtle procedure, as it requires the specification of a certain type of consistent alge-

bra objects A ∈ C. While the mathematical theory governing such objects has been developed for

1-categories [50, 143] and recently for 2-categories [144], a complete characterization of the required

consistency conditions is to this day still missing.

Building on the observation in Section 4.3 we aim to characterize the ’t Hooft anomaly in terms

of an obstruction to the existence of certain (Neumann) boundary conditions of the SymTFT. This

allows us to translate a very hard problem of higher-category theory into a more concrete TQFT

problem. One may think that is still complicated because we need to determine the SymTFT Z(C),
and for categorical symmetries C this can be a intricate object to work with.

There is a very interesting class of categorical symmetries for which we can concretely attach
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these problems with success. These are the self-duality symmetries that we reviewed in Section 3.3.

We consider d = 2n dimensional QFTs T that are mapped back to itself after gauging a discrete

(n− 1)-form symmetry A
T /A ∼= T , (6.1.1)

As we showed in Section 3.3, this implies that the invertible symmetry A fits inside a (d− 1)-category

that includes duality defects Ng, labeled by g ∈ G, the duality group. The corresponding symmetry

category C is described as a category graded by the group G:

C =
⊕
g∈G
Cg , C0 = nVecA , Cg = {Ng} . (6.1.2)

Here nVecA is the category describing an anomaly-free (n − 1)-form symmetry A, and in the last

equality we meant that the connected component1 π0(Cg) has a single simple object Ng for g ̸= 0.

The fusion rules of the Ng’s respect the G-grading up to condensates CA of the symmetry A [26]. In

particular

Ng ×N g = CA . (6.1.3)

We will consider the cases of G = Z2 in d = 2 and G = Z4, Z3 in d = 4.

We will define an ’t Hooft anomaly for a non-invertible duality defect as the obstruction to con-

structing a condensable algebra A containing all the Ng’s. It is believed (although only proven in

2d) that compatibility with a trivially-gapped phase is equivalent to the existence of such an algebra

which furthermore contains all objects of the category C with sufficiently large multiplicities. 2 In two

dimensions for Tambara-Yamagami (TY) categories [106], this viewpoint has been examined in [21] by

exploiting the concept of fiber functor. In this case, condensable algebras are of the form A = B⊕nν N
with B ⊂ A a subgroup and nν an integer. The symmetry admits a trivially-gapped realization only

if B = A, and in this case nν =
√
|A|. If instead B ⊊ A, the symmetry only admits a duality-invariant

TQFT. We will regard N to be anomaly-free in both cases.

The reason why the analysis of anomalies is accessible for duality defects, is that the SymTFT

is particularly simple [2, 46], being closely related to the one of nVec(A) (the category describing

an anomaly-free (n − 1)-form symmetry A). The SymTFT for nVec(A) is a generalized untwisted

Dijkgraaf-Witten theory,

Z
(
nVec(A)

)
= DW(A) , (6.1.5)

and nVec(A) is associated to the canonical (or electric) Dirichlet boundary condition in DW(A).

Concretely, for d = 2n dimensional boundaries, DW(A) is a (d + 1)-dimensional pure n-form gauge

theory for A with action

S = 2πi

∫
Xd+1

A ∪ δB , A ∈ Cn(Xd+1,A) , B ∈ Cn(Xd+1,A∨) . (6.1.6)

1Given a (higher) category C, π0(C) denotes the set of simple objects of C modded out by the equivalence relation

x ∼ y if Hom(x, y) is nontrivial [145]. Physically, the modding procedure corresponds to the condensation of symmetries

localized on the defects.
2In 2d the compatibility with a trivially gapped phase is equivalent to the existence of a condensable algebra of the

form

A =
⊕
x

dxLx (6.1.4)

with Lx all the simple objects of the fusion category, and dx their quantum dimensions. In higher dimensions is not clear

what should replace the condition that the multiplicities equate the quantum dimensions. An interesting proposal could

be that the coefficient of N is a TQFT whose partition function on any given manifold is equal to the expectation value

of N on the same manifold.
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This theory has an n-form symmetry A× A∨ generated by the Wilson surface operators of B and A,

respectively. The canonical Dirichlet boundary condition simply sets to zero the pull-back of A to the

boundary. The duality symmetry G is a subgroup of the full 0-form symmetry of the Dijkgraaf-Witten

theory,3 and it acts by exchanging electric and magnetic operators according to an isomorphism

ϕ : A→ A∨ . (6.1.7)

We will focus on the cases that G is isomorphic to Z2 for n = 1, and to either Z3 or Z4 for n = 2,

corresponding to duality or triality symmetries. Therefore in the following we assume that G is Abelian

(although a similar discussion could be made for non-Abelian G). Generically G also acts on boundary

conditions through its action on the associated Lagrangian algebras L.

Gauging the symmetry G , possibly with discrete torsion ϵ, gives the sought-after SymTFT Z(C):

DW(A) Z(C)

Gϵ

Rep(G)

(6.1.8)

In these diagrams dashed lines represent gaugings in the bulk. The upper arrow indicates gauging with

discrete torsion, while the lower one the “inverse” operation of gauging4 the dual symmetry Rep(G)

(for G Abelian, Rep(G) ∼= G∨). We will argue that the choice of ϵ acts as a kind of pure G anomaly

for the duality defects. As we discussed at length in Chapter 5, from the bulk perspective, the duality

defects Ng are related to the liberated twist defects Σg of the 0-form symmetry G in DW(A) which

are the objects carrying charge under the quantum symmetry Rep(G).

Roughly speaking, the possibility of going back and forth between the SymTFT for duality and the

simple DW(A) as in (6.1.8) allows us to study topological boundary conditions (Lagrangian algebra

L) of Z(C) in terms of those of DW(A). Hence most of our analysis in this chapter will be about the

DW theory, with the specification of the duality symmetry.

Let us now be more precise in how to translate information from DW(A) into Z(C). The gapped

boundary conditions LDW for DW(A) are classified by the maximal (Lagrangian) sublattices LDW of

mutually local charges. Condensing such objects leads in the bulk to a trivial theory (i.e., an invertible

TQFT, or SPT phase) whose unique state is the gapped boundary condition [130, 132]. From (6.1.8),

we can always induce a gapped boundary condition L for Z(C) from a gapped boundary LDW of

DW(A) by first condensing Rep(G) and then LDW:

DW(A) Z(C)

“trivial”

LDW

Rep(G)

L
(6.1.9)

Here “trivial” is the trivial (d+1)-dimensional theory (SPT) obtained after condensing LDW in DW(A).

When LDW is the canonical Dirichelet boundary condition for DW(A), this two-step gauging defines

a canonical Dirichlet boundary condition LC for the SymTFT Z(C). Since the liberated twist defects

Σg in Z(C) are charged under the Rep(G) symmetry, they are confined to the boundary LC , which

thus describes a system with a non-invertible self-duality symmetry.

3Depending on A, in general there are other 0-form symmetries in the theory that map A×A∨ → A×A∨ (e.g., charge

conjugation that acts separately on A and A∨). Any subgroup G of the full symmetry could be considered. Here, for

simplicity, we focus on symmetries G that descend to “dualities” (and are thus controlled by the map (6.1.7)) and are

generically present for any A. However, the discussion that follows is quite general.
4Precisely, the gauging of Rep(G) should be accompanied by stacking with the inverse SPT ϵ−1, that we leave implicit.
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Gauging the non-invertible symmetry Ng on the boundary, on the contrary, must correspond to a

gapped boundary on which the twist defects Σg are trivialized. Thus, in order to detect the absence

of a self-duality anomaly, we must construct a different set of boundary conditions NC for Z(C) whose

symmetry is trivially charged under Rep(G). We will refer to these as Neumann boundary conditions,

since the G gauge field remains dynamical on the boundary.

The crucial insight comes from considering — when it exists — a G-invariant Lagrangian algebra

LD in DW(A). This ensures that gauging LD leads, in the bulk, to an SPT phase for G, rather than

to a completely trivial theory as in (6.1.9). The SPT phase is completely specified by an element

Y living in the appropriate cobordism group.5 It turns out that the datum Y cannot be fixed by

the choice of LD alone, but it requires a further piece of data, which we dub η̃, describing how the

symmetry G acts on the algebra morphisms of LD. This is called an equivariantization of LD [98,

146]. We denote the equivariantized algebra by a pair (LD, η̃). The SPT phase Y also contains a

nonempty G-twisted sector with a unique simple object Mg for each g ∈ G. In the 3d setting, these

can be formally described as local modules twisted by a G-action, see Appendix A. Since LD is G-

invariant, the operation of gauging G commutes with the condensation of (LD, η̃), and composing the

two operations we end up with a bulk Dijkgraaf-Witten theory for G with twist Yϵ:

DW(A) Z(C)

SPT(G)Y DW(G)Yϵ

(LD, η̃)
Gϵ

Rep(G)

Gϵ

(6.1.10)

We stress that while DW(A) is an n-form gauge theory, DW(G)Yϵ is always a standard (1-form) gauge

theory. Its magnetic operators are the former twist defects Mg. In 3d their spin is determined by the

total twist Yϵ.6

The theory DW(G)Y ϵ always admits a canonical (electric) Dirichlet boundary condition, corre-

sponding to gauging Rep(G), that gives rise to an invertible symmetry G on the boundary (such

occurrences have been dubbed non-intrinsic in [46]). This also coincides with one of the algebras L

we have previously introduced in (6.1.9), in the special case that LDW = LD is G-invariant.

However, if Y ϵ = 1, then also the magnetic defects Mg are condensable. This allows us to define

another boundary condition, the Neumann boundary condition NC we were looking for:

DW(A) Z(C)

SPT(G)Y DW(G)Yϵ=1

nVec

(LD, η̃)

Rep(G)

NC
Gϵ

NDW

(6.1.11)

Thus, the existence of a duality-invariant Lagrangian algebra (LD, η̃) in DW(A) and the triviality of

Y ϵ are sufficient conditions for the self-duality symmetry C to be anomaly-free.

Let us argue that they are also necessary.7 Suppose that there exists an algebra NC of Z(C)
containing the liberated twist defects Σg, i.e., such that Hom(NC ,Σg) ̸= ∅. It follows that NC has a

5For d = 2 this is just a bosonic SPT ∈ H3
(
G,U(1)

)
. For d = 4 instead we will work on spin manifolds and the correct

group to consider is either Tor
(
Ω

spinG
5 (pt)

)
or Tor

(
Ωspin

5 (BG)
)
depending on whether (−1)F sits inside the duality group

or not, respectively. The same observations apply to the discrete torsion ϵ.
6In the 5d case, instead, the twist determines a triple linking between magnetic defects [43].
7See [147] for another argument, in the case A = Zn, in favour of the necessity of a duality-invariant algebra.
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natural grading in terms of the charge of its elements under Rep(G):

NC =
⊕

g ∈G
Ng . (6.1.12)

Algebra objects come equipped with a product (or morphism) ×NC (see Appendix A, where it is called

m) mapping Ng ×NC Nh → Ngh and respecting the grading. The consistency conditions for NC to be

a (gaugeable) algebra object are also graded over G, and in particular imply that N0 must itself be

an algebra, although not a maximal (i.e., Lagrangian) one. They also imply that Ng ̸=0 are (local)

modules over N0, i.e., they survive the condensation of N0. Physically this corresponds to the fact

that one can gauge NC sequentially. One first condenses just N0. This preserves the Rep(G) symmetry,

since N0 has trivial grading, and besides the Ng’s become invertible G defects. Since the Ng’s were

part of the algebra NC , the symmetry Rep(G) after the first condensation must be anomaly free.

Assuming that Ng with g ∈ G and Rep(G) are the only defects surviving the condensation of N0,

it follows that the resulting theory is the Dijkgraaf-Witten theory for G with trivial twist, DW(G). In

other words, we can identify the vertical red arrow in (6.1.10) on the right with the condensation of N0,

as in (6.1.13). The assumption can be rigorously proven in 3d,8 whilst we do not know how to do that

in 5d, which is why our argument remains heuristic. Now, further gauging the Rep(G) symmetry (and

stacking with a discrete torsion ϵ−1) leads us to an SPT phase Y = ϵ−1 for G. Chasing the diagram

below shows that we can define a gauging of DW(A) by sequentially gauging Gϵ -N0 - Rep(G):

DW(A) Z(C)

SPT(G)ϵ−1 DW(G)

(LD, η̃)

Gϵ

N0

Rep(G)

(6.1.13)

Since it produces an invertible TQFT with an action of G, the so-defined gauging must correspond to

(i.e., it must induce) a duality-invariant Lagrangian algebra (LD, η̃) in DW(A). Intuitively, one can

think of N0 as the image of LD under the gauging of G. We have thus argued that there is necessarily

a duality-invariant Lagrangian algebra in DW(A).

As we stressed, our reasoning is mathematically rigorous only in the case of 3d TFTs, where the

concepts above can be explicitly implemented. We, however, expect the same ideas to apply also to

higher categorical settings, once a complete definition of the higher SymTFT is given. We arrive at

the following proposal for the (lack of) anomalies of duality defects:

First obstruction. There must exist, in DW(A), a G-invariant boundary condition (LD, η̃). This

allows to make the symmetry G invertible. In the language of [46], the self-duality symmetry is

non-intrinsic.

Second obstruction. The invertible self-duality symmetry is anomaly-free. This is equivalent to

the vanishing of the total Dijkgraaf-Witten twist, which depends on the equivariantization data η̃. In

practice, the invertible self-duality symmetry suffers from a mixed anomaly with the symmetry S on

the non-intrinsic boundary which can be computed explicitly. We conjecture (and show in examples)

that the equivariantization data encode how the 0-form symmetry fractionalizes with the (n−1)-form

8The assumption and its consequence can be proven for 3d MTCs. The fact that Ng are invertible as bimodules and

the fact that NC is Lagrangian imply that dim(Ng) = dim(N0) = |A|. After condensing N0, the resulting MTC has

dimension D = |G|, which is saturated by the |G| invertible lines Ng times the |G| elements of Rep(G). The fact that

the Ng’s is charged under Rep(G) gives the canonical braiding of the DW theory.
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symmetry S. Following [53], this can be used to shift the value of the anomaly ϵ, i.e., to change the

SPT phase Y in the bulk.

In the rest of this chapter we will unpack these two abstract obstructions, developing a concrete

obstruction theory for gauging duality defects in two and four dimensions.

6.2 Anomalies of duality symmetries in 1+1 dimensions

This section is devoted to the discussion of anomalies in two-dimensional QFTs whose symmetries

are described by Tambara-Yamagami (TY) categories [106], that we denote by TY(A)γ,ϵ. The results

are already known both in the physics and mathematics literature [21, 148] but here we present their

derivation from the point of view of the SymTFT which can be generalized to higher dimensions.

The question of which TY categories are anomalous is not a purely academic one, as it can imply

strong constraints on duality-preserving RG flows [20]. For instance, the tricritical Ising model has

an anomalous non-invertible symmetry as well as a duality-preserving relevant deformation. As a

direct consequence of the anomaly, the resulting RG flows cannot end in a trivially gapped theory.

Depending on the sign of the deformation, the theory either flows to the gapless Ising model or to a

gapped theory with three degenerate vacua.

Our SymTFT analysis gives a simple characterization of the known obstruction theory in two

steps, as already pointed out in Section 6.1. The first obstruction is equivalent to the absence of a

duality-invariant Lagrangian algebra LD, which otherwise gives rise to a global variant with invertible

symmetry S⋊ρZ2. The second obstruction is instead the standard ’t Hooft anomaly for Z2 subgroups

of S ⋊ρ Z2 in that global variant. When there exists such an anomaly-free Z2 subgroup, it can be

gauged. The combined sequential gauging of LD and of Z2 corresponds, in the original theory, to a

gauging that involves the non-invertible symmetry defect.

6.2.1 Algebras in TY categories and anomalies

We recall that, given an Abelian group A, the Tambara-Yamagami symmetry is a Z2-graded fusion

category

C = C0 ⊕ C1 , (6.2.1)

where C0 = VecA (the category of A-graded vector spaces) describes an Abelian 0-form symmetry

A with trivial anomaly, while C1 has a single simple object N , the duality defect. The fusion rules

consistent with the grading are uniquely fixed and read:

a× b = (a+ b) , a×N = N × a = N , N ×N =
⊕

a∈A
a . (6.2.2)

Here a, b ∈ A are the simple objects in C0, and + in the first equation is the binary group operation

in A. The category is uniquely determined by a triplet (A, γ, ϵ) where γ : A × A → U(1) is a non-

degenerate symmetric bicharacter, whilst [ϵ] ∈ H3
(
Z2, U(1)

) ∼= Z2 is the Frobenius-Schur indicator of

the self-dual defect N . This data enters in the associator, or F -symbol, of the TY category:[
F a,N , b
N

]
N ,N

=
[
FN , a,N
b

]
N ,N

= γ(a, b) ,
[
FN ,N ,N
N

]
a, b

=
ϵ√
|A|

γ(a, b)−1 , (6.2.3)

where ϵ = ±1, while all other non-vanishing associators are equal to 1. In Section 3.3, constructing

the duality defect via half-gauging, we interpreted the bicharacter γ as specifying the isomorphism

between the symmetries A and A∨ on the two sides of the defect.
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We now review the classification of bosonic gaugeable symmetries A in TY(A)γ,ϵ, which are de-

scribed by symmetric Frobenius algebras in C [50]. These are defined by an object A ∈ C together

with a choice of three-valent junction m : A×A → A which is strictly associative:

A

A

A A

m

m

=

A

A

AA

m

m

(6.2.4)

This diagram encodes the cancellation of ’t Hooft anomalies for the symmetry A. We give a brief

review of the relevant concepts in Appendix A. The classification problem has been solved in the

mathematics literature in [148] and given a physical interpretation from the viewpoint of TQFTs in

[21].

Such algebras for the TY category can be divided into two types depending on whether A also

contains the element N or not. If not, the gaugeable algebras correspond to gauging a subgroup B of

A with discrete torsion [ν] ∈ H2
(
B, U(1)

)
. From the latter one constructs its commutator9

χν(b1, b2) =
ν(b1, b2)

ν(b2, b1)
. (6.2.5)

This defines a map [ν] → χν from H2
(
B, U(1)

)
to the group of alternating bicharacters which turns

out to be an isomorphism [69]. The Frobenius algebra corresponding to the pair
(
B, [ν]

)
is:

A ≡ AB, ν =
⊕

b∈B
b , mb+b′

b, b′ = ν(b, b′) . (6.2.6)

On the other hand, when including also N the most general algebra reads:10

A ≡ A0 ⊕A1 = AB, ν ⊕ nν N , nν ≥ 1 . (6.2.7)

The choices of B, ν and nν for which such an object can be consistently defined on orientable 2-

manifolds are severely restricted by the following two obstructions [21, 69, 148].

First obstruction. We introduce the subgroup N(B) ⊂ A∨ of characters annihilating B:

N(B) =
{
β ∈ A∨

∣∣∣ β(b) = 1 , ∀b ∈ B
}
. (6.2.8)

This group is canonically isomorphic to (A/B)∨, while the quotient A∨/N(B) is canonically isomorphic

to B∨. We also define the radical Rad(ν) ⊂ B of the class [ν]:

Rad(ν) =
{
b ∈ B

∣∣∣ χν(b, b′) = 1 , ∀b′ ∈ B
}
. (6.2.9)

The alternating bicharacter χν is non-degenerate on B/Rad(ν).

For the first obstruction to vanish these subgroups must be related as

ϕ
(
Rad(ν)

)
= N(B) . (6.2.10)

9Notice that χν is well defined (it is independent from the choice of representative ν), alternating (meaning that

χν(a, a) = 1) and antisymmetric (meaning that χν(a, b) = χν(b, a)
−1). One can prove that χν : B×B → U(1) is bilinear

(in the multiplicative sense), see for instance [149]. Then alternating implies antisymmetric, while the opposite is false

and in fact dropping the alternating property one can describe fermionic Lagrangian algebras, see also after (6.2.40).
10Notice that, if we restrict to spin manifolds, there are more candidate algebras because it is possible to gauge discrete

symmetries with a nontrivial Arf twist (i.e., a discrete torsion constructed out of the spin connection, see e.g. [34, 150]).

This difference will become apparent in the SymTFT.
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Besides, there must exist an involutive automorphism

σ : B/Rad(ν) → B/Rad(ν) with σ2 = 1 (6.2.11)

such that the symmetric and alternating bicharacters, when restricted to B and then projected to

B/Rad(ν), satisfy

γ
(
σ(a), b

)
= χν(a, b) for a, b ∈ B/Rad(ν) . (6.2.12)

Note that the projections from B to B/Rad(ν) are well defined. One can prove, using the equation

above, that ν(a, b) and ν
(
σ(b), σ(a)

)
, when projected to B/Rad(ν), define equivalent cohomology

classes in H2
(
B/Rad(ν), U(1)

)
.11 Thus there exists a 1-cochain η̃ ∈ H1

(
B/Rad(ν), U(1)

)
such that12

ν(a, b)

ν
(
σ(b), σ(a)

) = dη̃(a, b) , η̃(a) η̃
(
σ(a)

)
= 1 . (6.2.14)

From (6.2.8)–(6.2.10) it easily follows that

|A|n2ν = |B|2 , (6.2.15)

where13 n2ν =
∣∣B/Rad(ν)

∣∣. The positive integer nν appearing here turns out to be the same as the

one in (6.2.7). Notice in particular that a necessary condition to satisfy the first obstruction is that

|A| is a perfect square. Since, as it follows from (6.2.2), the quantum dimension of N is |A|
1
2 , this

reproduces the known fact that gauging is not possible in presence of non-integer quantum dimensions

[20].

The rough idea that leads to these formulas is the following. Decomposing the defining equation of

a Frobenius algebra into its graded components, one finds that A1 must be an invertible A0-bimodule:

A1 ×A0 A1 = 1A0 , where ×A0 is the tensor product in the category of A0-bimodules [50, 98, 152].

Physically this means that we can gauge A0, and then A1 will become an invertible Z2 global symmetry

of the gauged theory. Eqns. (6.2.10)–(6.2.12) are necessary in order to endow A1 with a bimodule

structure, and in particular (6.2.14) ensures that the bimodule is invertible. This furthermore implies

that dim(A1) = dim(A0) which reproduces (6.2.15) in terms of the integer nν in (6.2.7).

Second obstruction. Having discussed the structure of A1, we can simply gauge A sequentially by

first gauging A0 and then A1. After the first step, A0 becomes the identity defect while A1 becomes

an invertible Z2 symmetry: A2
1 = 1. In order to be able to gauge the full algebra, it must happen

11To prove it, one checks that the 2-cochains ν(a, b) and ν
(
σ(b), σ(a)

)
produce the same bicharacter χν in (6.2.5) and

so, by isomorphism, must be different representatives of the same cohomology class.
12It is always possible to choose η̃ such that it satisfies both relations. Consider the case B = A and define the two

subgroups Aσ = {a ∈ A | a = σ(a)} as well as Aσ = {a+ σ(a) | a ∈ A}, clearly Aσ ⊂ Aσ ⊂ A. One checks (see [69]) that γ

can be consistently reduced to a bicharacter γ̄ on the quotient Aσ/Aσ: γ
(
a+ b+ σ(b), a′ + b′ + σ(b′)

)
= γ(a, a′) for any

a, a′ ∈ Aσ. Let µ−1 be a quadratic refinement of γ̄ (see Sec. 6.2.1). Now, take the first equation and restrict it to Aσ:

a, b ∈ Aσ : dη̃(a, b) =
ν(a, b)

ν(b, a)
= χν(a, b) = γ(a, b) = γ̄

(
π(a), π(b)

)
= dµ

(
π(a), π(b)

)
(6.2.13)

using (6.2.12), and π is the projection Aσ π−→ Aσ/Aσ. It follows that η̃
∣∣
Aσ = ξ · π∗µ for some ξ ∈ H1

(
Aσ, U(1)

) ∼= (Aσ)∨.
Since the map A∨ → (Aσ)∨ given by restriction is surjective, it is always possible to find another solution η̃′ = ζ · η̃ where

ζ ∈ A∨ is a character such that ζ
∣∣
Aσ = ξ−1 and thus η̃′

∣∣
Aσ = π∗µ. This implies η̃′

∣∣
Aσ

= η̃′
(
a + σ(a)

)
= 1 for all a ∈ A.

Using dη̃
(
a, σ(a)

)
= 1 from the first equation in (6.2.14), the second equation follows. The general case for B ⊂ A is a

straightforward generalization.
13Since χν is a non-degenerate alternating bicharacter on B/Rad(ν) with values in U(1), there exists an isotropic

subgroup G such that B/Rad(ν) = G × G∨ and in particular
∣∣B/Rad(ν)

∣∣ = |G|2 = n2
ν is a perfect square, where

nν = |G|. See, e.g., Lemma 5.2 in [151].
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that A1 has a trivial self-anomaly ϵtot. This comes in two parts: a “bare” contribution from the

original Frobenius-Schur indicator ϵ of the duality defect, and a further contribution Y coming from

the bimodule morphism A1 × A1 → 1. The latter turns out to be given by the Arf invariant of η̃

restricted to the elements of B/Rad(ν) invariant under the involution σ:

Y = sign

( ∑
b∈B/Rad(ν)
σ(b)= b

η̃(b)

)
= Arf(η̃) . (6.2.16)

We stress that here we are using multiplicative notation for η̃, so that Y is the sign of a sum of

phases (alternatively, in (6.2.95) we indicate the correct normalization). The second obstruction then

vanishes if and only if

ϵtot = ϵ Y = 1 . (6.2.17)

Later on, around eqn. (6.2.122), we will find an alternative formula for the spectrum of values that

Y can take as we explore the possible consistent choices of η̃ — the so-called fractionalization classes.

A note on quadratic refinements

At various points in this chapter we use the existence and properties of quadratic refinements. A

function q : A → U(1) (with A a finite Abelian group) is called a quadratic function if q(a) = q(−a)

and (using multiplicative notation)

ζ(a, b) ≡ q(a+ b)

q(a) q(b)
(6.2.18)

is a symmetric bicharacter. One easily derives that q(0) = 1, q(ta) = q(a)t
2

for any t ∈ Z, and

ζ(a, a) = q(a)2 . (6.2.19)

Any quadratic function q, by definition, comes equipped with an associated symmetric bicharacter

ζ as in (6.2.18). However also the converse is true: any symmetric bicharacter ζ arises from a (not

necessarily unique) quadratic function q, which is called a quadratic refinement of ζ. The set of

quadratic refinements forms a torsor over Hom(A,Z2), indeed one easily proves that the ratio of two

quadratic refinements is a Z2-valued character on A.14

A closely related statement is that any symmetric 2-cocycle ν ∈ Z2
(
A, U(1)

)
is exact. This follows

from the isomorphism between altenating bicharacters χν (6.2.5) and classes [ν] ∈ H2
(
A, U(1)

)
. In

the special case that the symmetric 2-cocycle ν(a, b) is bilinear, exactness is equivalent to the existence

of a quadratic refinement.

6.2.2 SymTFT description

It is possible to reformulate the properties of Tambara-Yamagami categories TY(A)γ,ϵ in terms of

their 3d SymTFT, i.e., using the language of modular tensor categories (MTCs).15 Let us review this

fact, that will be useful in order to discuss anomalies in the following sections. In particular let us

describe how the data (A, γ, ϵ) appears from the bulk viewpoint.

14The set of quadratic functions q : A → U(1) is an extension of the group of symmetric bicharacters ζ : A×A → U(1)

by Hom(A,Z2). For each bicharacter, a quadratic function is easily constructed. For A = Zn the bicharacters are

ζr(a, b) = exp
(
2πir
n
ab
)
with r ∈ Zn. Given one of them, a quadratic refinement is qr(a) = exp

(πir(n+1)
n

a2
)
. If n is odd

then r ∈ Zn and the quadratic function is unique. If n is even then r ∈ Z2n and the quadratic functions for r and r + n

produce the same bicharacter Zr. The case that A is a product of cyclic factors is similar.
15Given a fusion category C as the symmetry of some 2d theory, the corresponding 3d SymTFT is given via the

Turaev-Viro construction [37] by the TQFT whose MTC is the Drinfeld center of C denoted Z(C).
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One starts from a pure 3d gauge theory for A (i.e., a Dijkgraaf-Witten theory for A with no

torsion), which is the SymTFT describing the invertible symmetry VecA.16 The spectrum of lines of

the A gauge theory is A × A∨, the lines being labelled by pairs (a, α) ∈ A × A∨. The braiding is

canonically determined by the pairing between A and A∨:

B(a1,α1),(a2,α2) = α1(a2)α2(a1) . (6.2.20)

It follows that the topological spins are

θ(a,α) = α(a) . (6.2.21)

Crucially, as shown in 2.2.1, the theory enjoys electric-magnetic (EM) duality specified by an isomor-

phism ϕ : A→ A∨ as

Φ : A× A∨ → A× A∨

(a, α) 7→
(
ϕ−1(α), ϕ(a)

)
.

(6.2.22)

However not all choices of isomorphism are consistent EM dualities since Φ needs to preserve the

braiding. This condition is equivalent to the bicharacter γ(a, b) = ϕ(a) b associated with ϕ being

symmetric. Note that Φ squares to 1, so that the duality group is G ∼= Z2.

If the boundary theory is self-dual under gauging, we can construct the full SymTFT that includes

the duality defect by gauging the duality symmetry G [46]. The gauging operation comes with a

choice of discrete torsion ϵ ∈ H3
(
G,U(1)

) ∼= Z2 which translates to the Frobenius-Schur indicator of

the duality defect N on the boundary. To summarize, the data (A, γ, ϵ) of the boundary Tambara-

Yamagami category appears from the bulk viewpoint as the choice of a duality symmetry G ∼= Z2 of

the A Dijkgraaf-Witten theory and of a discrete torsion for the gauging.

To properly discuss the gauged theory, we first describe the data of the 3d Dijkgraaf-Witten theory

enriched by the 0-form symmetry (a G-crossed category in the language of [77]). This includes data

describing the topological twist defects for the G ∼= Z2 symmetry. The full tensor category is graded:

Z(VecA)Z2 = Z(VecA)⊕Z(VecA)Φ , (6.2.23)

where Z(VecA)Φ describes the twisted sector for the Z2 symmetry. The number of simple components

of Z(VecA)Φ is the same as the number of Φ-invariant anyons [77]. The latter are all of the form(
a, ϕ(a)

)
with a ∈ A. Thus there are |A| simple objects in Z(VecA)Φ which we denote as σa, a ∈ A

(not to be confused with the involution σ). The fusion and braiding data for the Z2 extension has

been computed in [153], although we use here a slightly different notation similar to the one employed

in [46]. We find

(a, α)× (b, β) = (a+ b, α+ β) , (a, α)× σb = σb+a+ϕ−1(α)

σa × σb =
⊕
c∈A

(
a+ b+ c, ϕ(−c)

)
.

(6.2.24)

These fusion rules are derived by realizing the G symmetry defects as 2d condensates [26] of the anti-

diagonal lines
(
a, ϕ(−a)

)
(see e.g. [46] for the case A = Zn).17 Since the quantum dimension of (a, α)

is 1, we also have

dim(σa) =
√
|A| . (6.2.25)

16Mathematically this corresponds to the fact that the Drinfeld center of VecA is A× A∨.
17Indeed, the anti-diagonal lines are absorbed by the σb’s, and σb × σ−b is a 1d condensate of anti-diagonal lines.
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Object Definition Dim # of Objects Spin θ

L(a, x) ηx ×
(
a, ϕ(a)

)
1 2 |A| γ(a, a)

X(a, b)

(
a, ϕ(b)

)
⊕
(
b, ϕ(a)

)
2 |A|

(
|A| − 1

)
/2 γ(a, b)

Σ(a, x) ηx × σa
√
|A| 2|A| (−1)x

√
ϵ

|A|1/2
∑
b∈A

fa(b)−1

Table 6.1: Objects (lines) of the 3d SymTFT Z
(
TY(A)γ,ϵ

)
.

The non-vanishing R-matrices, in a gauge, are given by [153]:

R
(a1+a2, α1+α2)
(a1, α1), (a2, α2)

= α2(a1) , R
σa1+a2+ϕ−1(α1)

(a1, α1), σa2
= fa2(a1) ,

R
σa1+a2+ϕ−1(α2)

σa1 , (a2, α2)
= 1 , R(a3,α3)

σa1 , σa2
= fa1(−a3)−1 .

(6.2.26)

In the last entry, (a3, α3) must be a fusion channel of σa1 × σa2 . Besides, fa : A→ U(1) is a collection

(for a ∈ A) of functions given by fa = ϕ(a) · f0, or more explicitly fa(b) = γ(a, b) f0(b), required to

satisfy

fa(b) fa(b
′) = γ(b, b′) fa(b+ b′) . (6.2.27)

Notice that the equations for different values of a are all equivalent. In these equations, distinct choices

for f0 differ by an A-character and only reshuffle the fa’s, therefore the set of fa’s forms a torsor over

A∨. However f0 should be chosen such that f0(b) = f0(−b), in other words f0 is a quadratic refinement

of γ−1, which alwasys exists (see Section 6.2.1). Possible different choices are related by Hom(A,Z2)

and correspond to different gauge choices. The (gauge dependent) spins of the twisted sector lines are

[153]:

θ(σa) =

√
1

|A|1/2
∑
b∈A

fa(b)−1 , (6.2.28)

where the choice of sign for the square root is gauge.

We can now discuss the gauging of the symmetry G ∼= Z2 with a twist ϵ ∈ H3
(
G,U(1)

) ∼= Z2.

The gauged theory Z(VecA)Z2/Z2 is isomorphic to Z
(
TY(A)γ,ϵ

)
and is graded by the quantum Z2

1-form symmetry whose charged objects are the liberated twisted sectors σa. There are three types

of objects, whose properties are summarized in Table 7.7. In the first line, L(a, x) arise from the Φ-

invariant elements
(
a, ϕ(a)

)
in the ungauged theory. The label x ∈ {0, 1} specifies the dressing by the

Z2 line η ≡ L(0,1) generating the dual 1-form symmetry Rep(Z2). The lines X(a, b) with a ̸= b arise

from long orbits of generic invertible objects and absorb the Z2 line η. Finally, Σ(a, x) are the liberated

twisted sectors, which are the charged objects under the dual Rep(Z2) symmetry and thus span the

non-trivially graded component. The total dimension of the category is

dim
(
Z
(
TY(A)γ,ϵ

))
=

( ∑
ℓ simple

dim(ℓ)2

)
1/2

= 2 |A| . (6.2.29)

The topological manipulations of the theory with TY symmetry correspond to Lagrangian al-

gebras of this SymTFT. By definition of Drinfeld center, there should exist a Lagrangian algebra

corresponding to the global variant with full TY symmetry. As an object, this is given by

LTY = 1⊕ η ⊕
⊕
b ̸=0

X(0, b) , (6.2.30)
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and indeed:

dim
(
LTY

)
= 2 |A| = dim

(
Z
(
TY(A)γ,ϵ

))
. (6.2.31)

This is the algebra induced by the electric Lagrangian subgroup Le =
⊕

α∈A∨(0, α) in the pure A
gauge theory, following our discussion in Section 6.1. While Le is clearly not duality invariant, it can

be uplifted to an algebra in Z
(
TY(A)γ,ϵ

)
by adding to it its images under Φ.18 The resulting object

is well defined in Z
(
TY(A)γ,ϵ

)
, it has vanishing spin (see Table 7.7) and has dimension 2 |A| so it

is Lagrangian. This provides an explicit realization of the sequential gauging procedure outlined in

(6.1.9). The symmetry on the corresponding boundary can be computed using the sequential gauging

prescription. In the trivially-graded sector C0 the simple objects are the elements of the quotient

(A×A∨)/A∨ ≃ A. They generate the 0-form symmetry and we label them simply by a. On the other

hand, in the CΦ sector all of the twist defects fall into a single orbit, without fixed points under fusion

with Le as can be checked from (6.2.24). Let us denote this object by N . The bulk fusion rules imply

(6.2.2), giving back the TY(A)γ,ϵ symmetry.

6.2.3 First obstruction and Lagrangian algebras

Our first goal is to describe how the first obstruction appears from the SymTFT perspective. We have

already mentioned in Section 6.1 that the first obstruction precludes the existence of a discrete gauging

(B, ν) which renders the duality symmetryN invertible. Since, from the SymTFT perspective, discrete

gauging operations correspond to different choices of gapped boundary condition L, it is natural to

rephrase the first obstruction in the language of Lagrangian algebras of the DW theory. A similar

logic has been followed recently in [44], where the obstructions to gauge the entire symmetry category

(i.e. the case B = A in our notation) when |A| is odd have been found counting the number of bulk

lines with trivial spin. However such method is hard to generalize to higher dimensions (which is the

main aim in this chapter) since it relies on the notion of topological spin which has no known analog in

higher categories. In this and the next two sections, instead, we provide a complete bulk classification

of the obstruction theory for TY(A)γ,ϵ and besides we develop methods that allow us to extend the

results to higher-dimensional cases.

The crucial point which makes this problem accessible is that the SymTFT for the TY category is

a G ∼= Z2 gauging of the Dijkgraaf-Witten theory DW(A) [46]. By gauging G back and forth, we can

rephrase the problem in terms of gauging Lagrangian algebras of a bulk theory that only consists of

invertible symmetries. As already argued in Section 6.1, a sufficient condition for N to be anomalous

is the absence of G-invariant Lagrangian algebras in DW(A), namely, of Lagrangian algebras LD

satisfying

Φ(LD) = LD . (6.2.32)

A duality-invariant Lagrangian algebra of DW(A) also gives rise to a duality-invariant boundary

condition, where the duality symmetry becomes invertible. Hence we realize that, in the terminology

of [46], intrinsic non-invertible symmetries are anomalous.

Notice that the obstruction we are discussing here is a priori distinct from the first obstruction we

discussed in Section 6.2.1. However the main result of this section is to show that the two obstructions

are equivalent. In order to do so, we make the first obstruction more explicit by classifying all

Lagrangian algebras of DW(A) and providing explicit equivalent conditions for their duality invariance

in terms of the data (A, γ).

18If a line
(
a, ϕ(a)

)
(like the identity in this case) is duality invariant, we must add L(a,0) ⊕ L(a,1) to the algebra.
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The 3d theory DW(A) can be thought of as the SymTFT of any theory with a non-anomalous

0-form symmetry A, and as such the correspondence between topological manipulations and bulk La-

grangian algebras is particularly explicit, but yet non-trivial. The (bosonic) topological manipulations

of the boundary are determined by two pieces of data [34]:

• The choice of a subgroup B ⊂ A to be gauged.

• The choice of a class [ν] ∈ H2
(
B, U(1)

)
which plays the role of the discrete torsion.

The resulting symmetry after gauging is an extension of A/B by the quantum symmetry B∨ [154] (see

Appendix B.1 for details).

On the other hand, global variants of the boundary theory correspond to different interfaces be-

tween DW(A) and the trivial 3d theory (i.e., to gapped boundaries), and thus are specified by gauging

a subgroup L ⊂ A × A∨, Lagrangian with respect to the braiding. Correspondingly, the lines of L

can end on the boundary, and the topological lines of the boundary theory generating the 0-form

symmetry are labelled by the quotient group

S =
(
A× A∨)/L . (6.2.33)

Thus we expect a correspondence between pairs
(
B, [ν]

)
and Lagrangian algebras L such that (6.2.33)

coincides with the symmetry after gauging B with discrete torsion [ν]. Notice that the braiding induces

a canonical isomorphism19

L ∼= S∨ . (6.2.34)

The simplest case is when H2
(
A, U(1)

)
= 0 (e.g., if A = Zn) so that the topological manipulations

are simply labelled by the gauged subgroup B ⊂ A.20 Then we consider

LB ≡ B×N(B) ⊂ A× A∨ (6.2.35)

which has cardinality |A| and is made of lines of vanishing spin (in particular it trivializes the braiding,

see (6.2.8)), hence it is Lagrangian. Moreover

SB =
(
A× A∨)/LB = (A/B)× B∨ (6.2.36)

is precisely the symmetry after gauging B.

In the general case we define the linear map ψν : B→ B∨ associated to χν :

ψν(b1) b2 = χν(b1, b2) . (6.2.37)

Given the pair
(
B, [ν]

)
we construct the subgroup LB,[ν] ⊂ A × A∨ as follows. Since B∨ = A∨/N(B),

any element of A∨ can be presented as a pair (β, η) ∈ N(B) × B∨ (even though the sum is different

from the one in A∨) and we denote this element simply as βη ∈ A∨. The association is not canonical,

however different choices agree on η (which is the projection from A∨ to B∨) while may differ on β.

We denote by c̃ ∈ H2
(
B∨, N(B)

)
the cocycle which makes A∨ an extension of B∨ by N(B). Then we

construct

LB,[ν] =
{(
b, βψν(b)

)
∈ A× A∨

∣∣∣ b ∈ B, β ∈ N(B)
}
. (6.2.38)

19This can be seen as follows. The braiding is a bilinear non-degenerate pairing on A × A∨ and thus induces an

isomorphism A × A∨ → (A × A∨)∨. Saying that L is Lagrangian is equivalent to saying that its image under this

isomorphism is the subgroup of linear functions on A×A∨ which vanish over L. The latter is canonically isomorphic to

the Pontryagin dual of (A× A∨)/L = S.
20Indeed if H2

(
A, U(1)

)
= 0 then H2

(
B, U(1)

)
= 0 for every subgroup B of A.
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This contains N(B) as a subgroup (for b = 0), while its quotient by N(B) is isomorphic to B, hence

LB,[ν] is a group extension

1 → N(B) → LB,[ν] → B → 1 (6.2.39)

whose corresponding cocycle is ψ∗
ν(c̃) ∈ H2

(
B, N(B)

)
(see Appendix B.1 for details). Moreover LB,[ν]

has cardinality |A|, and since χν is alternating the spin of the lines is trivial:

θ(b, β) = χν(b, b) = 1 . (6.2.40)

Here (b, β) is a shorthand for
(
b, βψν(b)

)
, and β does not contribute because it belongs to N(B).

One could weaken the alternating condition and just ask χν to be antisymmetric. In that case the

spins would be ±1 and one would allow for fermionic Lagrangian algebras, which correspond to

fermionizations of the boundary symmetry. We will not discuss such cases here, but note that they

are a natural candidate to explain why certain duality symmetries — such as TY(Z2)γ,1 — can be

gauged on spin manifolds.

We have thus shown that LB,[ν] is a Lagrangian algebra with respect to the braiding. In Ap-

pendix B.1 we prove that any Lagrangian algebra of A × A∨ arises in this way. This classification

of boundary conditions of the Dijkgraaf-Witten theory coincides with previously known results from

category theory [155]. The boundary condition corresponding to LB,[ν] is obtained from the original

one by gauging B with discrete torsion [ν]. Indeed the symmetry on that boundary is

S =
(
A× A∨)/LB,[ν] ∼=

(
LB,[ν]

)∨
, (6.2.41)

which is the group extension dual to (6.2.39), namely

1 → B∨ → S → A/B → 1 . (6.2.42)

The cocycle is ψν ◦ c ∈ H2(A/B,B∨), where c ∈ H2(A/B,B) determines A as an extension of A/B
by B. One can show that this is indeed the symmetry after gauging B with discrete torsion [ν] (see

Appendix B.1 for the proof).

We should now determine whether DW(A) admits duality-invariant Lagrangian algebras LB,[ν]. In

the simplest case that [ν] = 0 and hence LB = B × N(B), duality invariance is simply equivalent to

ϕ(B) = N(B). Since
∣∣N(B)

∣∣ = |A|/|B| this requires |B|2 = |A| and in particular the cardinality of A
must be a perfect square (nν = 1 in (6.2.7) in this case). However this is in general not sufficient:

ϕ(b) ∈ A∨ must vanish on B, so that B must be a Lagrangian subgroup of A with respect to the

symmetric bicharacter γ associated with ϕ.

In the cases with discrete torsion, we observe that

Φ
(
LB,[ν]

)
=
{(
ϕ−1

(
βψν(b)

)
, ϕ(b)

)
∈ A× A∨

∣∣∣ b ∈ B, β ∈ N(B)
}

(6.2.43)

is equal to LB,[ν] if and only if for all b ∈ B and β ∈ N(B) there exist b′ ∈ B and β′ ∈ N(B) such that

b′ = ϕ−1
(
βψν(b)

)
, b = ϕ−1

(
β′ψν(b′)

)
. (6.2.44)

Before stating the general condition under which these equations can be solved, consider the simpler

case B = A for which N(B) = 0. Define the group homomorphism σ = ϕ−1 ◦ ψν : A→ A in terms of

which the two conditions become b′ = σ(b), b = σ(b′). They have a solution if and only if σ2 = 1. In

particular both σ and ψν must be automorphisms.

When B ⊊ A is a proper subgroup, there are further conditions for duality invariance. The proof

is technical and we report it in Appendix B.2.1. Let us remind that the radical of the class [ν] is

Rad(ν) = Ker(ψν) ⊂ B . (6.2.45)
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Besides, the projection of χν to B/Rad(ν) being non-degenerate gives an isomorphism

ψν : B/Rad(ν)→
(
B/Rad(ν)

)∨ . (6.2.46)

Then duality invariance of LB,[ν] is equivalent to the following conditions:

1. ϕ
(
Rad(ν)

)
= N(B). In particular N(B) ⊂ ϕ(B), and |B| = nν |A|1/2 ≥ |A|1/2. In other words,

B cannot be smaller than Lagrangian and |A| must be a perfect square, hence reproducing the

known obstruction induced by non-integer quantum dimensions [20].

2. Assuming condition 1., also ϕ projects to an isomorphism ϕ : B/Rad(ν)→
(
B/Rad(ν)

)∨. Then

we can define an automorphism

σ ≡ ϕ−1 ◦ ψν : B/Rad(ν)→ B/Rad(ν) (6.2.47)

which, by construction, satisfies γ
(
σ(a), b

)
= χν(a, b). The second condition is that

σ2 = 1 . (6.2.48)

Notice that the conditions we obtained for LB,[ν] to be duality invariant are equivalent to the first

obstruction we reviewed in Section 6.2.1. We thus arrive to the punchline of this section: the first

obstruction is equivalent to the absence of duality-invariant Lagrangian algebras in DW(A), or in other

words, to the non-invertible duality symmetry being intrinsic.

A straightforward consequence of the conditions above concerns the action of the duality sym-

metry G on the symmetry S =
(
A × A∨)/LB,[ν] of the invariant boundary. To this purpose, it is

convenient to present S as a group extension (6.2.42) and further view B∨ as an extension of Rad(ν)∨

by
(
B/Rad(ν)

)∨
, hence presenting the elements of S as triplets (β, η, ã) with β ∈

(
B/Rad(ν)

)∨
,

η ∈ Rad(ν)∨ and ã ∈ A/B. Using that S = L∨
B,[ν] we find that the duality exchanges Rad(ν)∨ with

A/B, while it acts on
(
B/Rad(ν)

)∨
as the automorphism σ∨:

Φ : (β, η, ã) →
(
σ∨(β), ϕ(ã), ϕ−1(η)

)
. (6.2.49)

When the data
(
B, [ν]

)
defines a duality-invariant Lagrangian subgroup, using the definition of σ

in (6.2.47) and σ2 = 1 we can relate the symmetric and the antisymmetric bicharacters as

χν(b1, b2) = γ
(
σ(b1), b2

)
, γ(b1, b2) = χν

(
σ(b1), b2

)
. (6.2.50)

This in turn implies a condition for the class [ν]:

ν(b1, b2) ν
(
σ(b1), σ(b2)

)
= dζ̃(b1, b2) or equivalently

ν(b1, b2)

ν
(
σ(b2), σ(b1)

) = dη̃(b1, b2) . (6.2.51)

This is because the l.h.s. of both equations is a symmetric 2-cocycle (see Section 6.2.1 or footnote 11).

Those relations coincide with the known relation (6.2.14) (also appearing in the equivariantization of

the algebras in TY categories, see Section 6.2.4).

We can neatly express the condition (6.2.51) by noticing that the action ρ : G → Aut(A) of any

group G on a generic Abelian group A induces an action on H2
(
A, U(1)

)
given by

(ρg ξ)(a1, a2) = ξ
(
ρ−1
g (a1), ρ

−1
g (a2)

)
(6.2.52)

for each g ∈ G and ξ ∈ H2
(
A, U(1)

)
. Then (6.2.51) can be expressed as

σ [ν] = ρ1 [ν] = [ν−1] , (6.2.53)

where 1 is the generator of G ∼= Z2. This reformulation will be convenient later on.
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Examples

To make concrete the discussion above, we show a few examples. For convenience, here we use additive

notation for the phases by thinking of them as elements of R/Z instead of U(1).

1. The simplest example is A = Zn for which there is no discrete torsion, and the subgroups are in

correspondence with the divisors of n. Let n = pq, and B = {qx | x = 0, . . . , p − 1} ∼= Zp so that

N(B) = {py | y = 0, . . . , q − 1} ∼= Zq.
When we gauge B on the boundary, the global symmetry is the direct product of the dual symmetry

Zp and the quotient Zq. From the bulk perspective, the prescription is that this boundary condition

is obtained by allowing the lines of the form (qx, py) to terminate on the boundary hence becoming

transparent there. On the other hand, the 0-form symmetry is generated by the remaining lines

stacked at the boundary, which indeed form the group Zp × Zq.
For what concerns duality invariance, we need B ∼= N(B) and hence p = q: this implies that n = p2

must be a perfect square. Any symmetric bicharacter takes the form γ(a, b) = rab/n (mod 1) for some

r ∈ Zn (r must be coprime with n for the bicharacter to be non-degenerate), and we notice indeed

that Zp ⊂ Zp2 is Lagrangian in all cases:

γ(px, py) = 0 . (6.2.54)

The integer coefficient introduced in (6.2.7) here is nν = |B|/|A|1/2 = 1.

2. A less trivial example is A = Zn × Zn with n a prime number. There are n + 3 subgroups: the

trivial one, the n+ 1 subgroups isomorphic to Zn generated by (1, 0) and (s, 1) with s = 0, . . . , n− 1,

and the full A. Only the last one admits non-trivial discrete torsion [ν] ∈ H2
(
Zn × Zn, U(1)

) ∼= Zn
which could be represented as

ν
(
(x1, x2), (y1, y2)

)
=
r

n
x1y2 or equivalently as ν

(
(x1, x2), (y1, y2)

)
= − r

n
x2y1 . (6.2.55)

The corresponding alternating bicharacter is given by the matrix

χν =
1

n

(
0 r

−r 0

)
, with r ∈ Zn . (6.2.56)

In total there are 2n + 2 boundary theories. One can explicitly see that these are in one-to-one

correspondence with the Lagrangian algebras LB,[ν] in A× A∨.

Let us show that the induced global symmetry at the boundary is the one obtained by gauging B
with discrete torsion ν. The cases B = {0} or B ∼= Zn are similar to the one discussed above and the

corresponding Lagrangian algebras are, respectively:

LB,[0] =
{(

(0, 0); (a1, a2)
) ∣∣∣ a1, a2 ∈ Zn

}
for B = {0} ,

LB,[0] =
{(

(a1, 0); (0, a2)
) ∣∣∣ a1, a2 ∈ Zn

}
for B ∼= Zn generated by (1, 0) ,

LB,[0] =
{(

(sa1, a1); (a2,−sa2)
) ∣∣∣ a1, a2 ∈ Zn

}
for B ∼= Zn generated by (s, 1) .

(6.2.57)

When B = Zn × Zn the resulting boundary theory has symmetry B∨ ∼= Zn × Zn even for non-trivial

discrete torsion. According to our prescription, and using that N(B) is trivial and the map ψν has

the same matrix form of χν defined in (6.2.56), the corresponding Lagrangian subgroup of A× A∨ is

LB,[ν] =
{(

(a1, a2); (−ra2, ra1)
) ∣∣∣ a1, a2 ∈ Zn

}
, (6.2.58)

164



and indeed (A × A∨)/L = Zn × Zn. To see the effect of the discrete torsion we use a Lagrangian

description of the DW theory:

S =
2πi

n

∫
X3

(
A1 ∪ dB1 +A2 ∪ dB2

)
. (6.2.59)

The generic line with charges
(
(a1, a2); (b1, b2)

)
is

exp

[
2πi

n

∫
γ

(
a1A1 + a2A2 + b1B1 + b2B2

)]
. (6.2.60)

Hence, as a boundary condition, L in (6.2.58) corresponds to A1 + rB2 = A2 − rB1 = 0. Changing

variables according to A1 → A1 + rB2, A2 → A2 − rB1 we obtain the same bulk Lagrangian as in

(6.2.59) but with an extra boundary term

δSbdry =
2πir

n

∫
∂X3

B1 ∪B2 , (6.2.61)

which is precisely the discrete torsion for the gauging on the boundary.

Let us discuss which of those algebras are duality invariant, and in particular which symmet-

ric bicharacters admit duality-invariant algebras. There are two natural classes of non-degenerate

symmetric bicharacters, diagonal and off-diagonal:

γ
(D)
t1, t2

=
1

n

(
t1 0

0 t2

)
and γ

(O)
t =

1

n

(
0 t

t 0

)
. (6.2.62)

Here non-degeneracy requires t1, t2, t to be invertible elements of Zn.21 Note that B = {0} cannot

lead to duality-invariant algebras because it is smaller than Lagrangian.

Consider the case of γ
(O)
t . First we look at Lagrangian algebras associated with subgroups B ∼= Zn

which, according to our general analysis, need to be Lagrangian with respect to γ
(O)
t because [ν] = 0.

The two subgroups B =
〈
(1, 0)

〉
,
〈
(0, 1)

〉
are always Lagrangian, while B =

〈
(s, 1)

〉
is Lagrangian only

if

2st = 0 mod n (6.2.63)

which can never be satisfied if n is odd. Then we look at the cases with B = A. In order to satisfy

ϕ
(
Rad(ν)

)
= N(B) = {0} in (6.2.10) we need a discrete torsion (6.2.56) with r ̸= 0. From (6.2.47) we

find

σ =

(
t−1r 0

0 −t−1r

)
. (6.2.64)

The duality-invariant condition σ2 = 1 reads (t−1r)2 = 1 mod n, which can always be satisfied by the

values r = ±t.
Consider now the case of γ

(D)
t1,t2

. The subgroups B ∼= Zn are Lagrangian with respect to γ
(D)
t1,t2

only

when B =
〈
(s, 1)

〉
with t1 s

2 + t2 = 0 mod n. For B = A, instead, we need a non-vanishing discrete

torsion (6.2.56), and since

σ =

(
0 −t−1

1 r

t−1
2 r 0

)
, (6.2.65)

the duality-invariance condition reads r2 = −t1t2 mod n. This equation and the previous one for s

do not always have solutions. For instance, if t1 = t2 = 1, then r (or s) must be a square root of −1

which exists for n = 2, 5, 13, . . . but not for n = 3, 7, 11, . . .

21For n prime, they are just non-vanishing. However these two bicharacters will be used also for n non prime, hence

t1, t2, t must be coprime with n.
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In summary, while TY(Zn × Zn)γ,ϵ with off-diagonal bicharacter γ always trivializes the first

obstruction, when the bicharacter is diagonal the category is necessarily anomalous for certain values

of n for which the first obstruction forbids the gauging. We also notice that in all of these examples,

when there is a duality-invariant Lagrangian algebra associated with B ∼= Zn we have nν = 1, while

for B ∼= A we have nν = n.

3. We conclude with a more complicated example which is representative of the general case B ⊊ A
but [ν] ̸= 0, hence B is non-Lagrangian. Take A = Z4 × Z4 which, besides the subgroups we already

considered, also has the subgroup

B =
{

(x, 2y)
∣∣ x ∈ Z4 , y ∈ Z2

} ∼= Z4 × Z2 (6.2.66)

(as well as the similar one with the two factors swapped) hence realizing

N(B) =
{

(0, 2ỹ)
∣∣ ỹ ∈ Z2

} ∼= Z2 ⊂ A∨ . (6.2.67)

The most general alternating bicharacter on B is

χν =
1

4

(
0 a

b 0

)
with 2(a+ b) = 0 mod 4 , (6.2.68)

hence a, b ∈ Z4 must be either both even or both odd. If a, b are both even then Rad(ν) = B and

duality invariance cannot be satisfied. If a, b are odd, instead,

Rad(ν) =
{

(2z, 0)
∣∣ z ∈ Z2

} ∼= Z2 ⊂ Z4 × Z2 . (6.2.69)

The condition ϕ
(
Rad(ν)

)
= N(B) cannot be satisfied with the diagonal bicharacter γ

(D)
t1, t2

, while with

the off-diagonal one γ
(O)
t the condition is met (for both the invertible elements t = 1, 3). The second

condition for duality invariance involves

σ = ϕ−1 ◦ ψν =

(
tb 0

0 ta

)
. (6.2.70)

The condition σ2 = 1 is equivalent to (tb)2 = (ta)2 = 1 which is automatically satisfied. In this case

we get nν = 2.

6.2.4 Second obstruction and equivariantization

In the previous section we rephrased the first obstruction to the gauging of a 2d duality symmetry in

terms of the existence of a duality-invariant Lagrangian algebra LD in the 3d TQFT DW(A). Gauging

LD leads to a bulk SPT phase Y ∈ H3
(
G,U(1)

)
for the duality symmetry G ∼= Z2, which determines

the DW twist of the corresponding G gauge theory as explained in (6.1.10). The total twist ϵtot = ϵ Y

in turn determines whether a Neumann boundary condition is allowed (and N is anomaly-free).

In order to understand the origin of Y we must describe in detail how to make the gauging of LD

consistent with the presence of a 0-form symmetry. Naively this should amount to the requirement that

LD be G-invariant as an object: Φ(LD) = LD as stressed in (6.2.32). This is however not sufficient,

as the algebra LD comes with a specific choice of morphism m : LD × LD → LD that is associative

and commutative (see Appendix A for the definitions) and a set of projections πx ∈ Hom(LD, x).

An equivariantization of LD is the definition of a consistent action of the 0-form symmetry on the

projections that leaves m invariant (for more details we refer the reader to Appendix A and [146] for
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a thorough treatment). To define this structure the proper context is that of G-crossed MTCs [77].

In this framework a symmetry defect Ug acts on the junction spaces V z
x, y, where x, y, z ∈ A×A∨ label

simple objects22 , by a unitary automorphism [Ug]zx, y : V z
x, y → V

g(z)
g(x), g(y) as

Ug
(
vzx, y

)
= [Ug]zx, y · v

g(z)
g(x), g(y) (6.2.71)

where v is a chosen basis vector of V z
x, y (see Figure 6.1). The phases [Ug]zx, y have to satisfy several

compatibility conditions with the data of the underlying category, in particular consistency with the

braiding requires

[Ug]zx, y Rzx, y = R
g(z)
g(x), g(y) [Ug]zy, x . (6.2.72)

Using the R-matrices (6.2.26) and the G ∼= Z2 action on elements of DW(A) one easily sees that this

equation admits a simple solution

[Ug](a+b,α+β)(a,α), (b,β) = α(b) , (6.2.73)

for g = 1 the generator of Z2.

Now let us come to the equivariantization. For the algebras discussed in Section 6.2.3, a consistent23

choice of m is

mx+x′

x, x′ = ν(b′, b) where x =
(
b, βψν(b)

)
∈ LD . (6.2.74)

In the following we will use x, y, z, . . . to denote elements of LD in order to lighten the notation.

Working in components we expand

m =
⊕
x, y

mz
x, y and mz

x, y ∈ V z
x, y (6.2.75)

where z = x+ y. The defects Ug act on the projectors πx : LD → x by an automorphism η̃g(x) : πx →
πg(x) as follows (see Figure 6.1)

Ug(πx) = η̃g(x) · πg(x) (6.2.76)

Using these transformations, m is invariant if 24

m
g(z)
g(x), g(y) = mz

x, y [Ug]zx, y
η̃g(z)

η̃g(x) η̃g(y)
. (6.2.77)

The equivariantization datum η̃ can be neatly interpreted in cohomology. First acting with gauge

transformations πx → µ(x)πx on the vector spaces associated to πx and πg(x) we can identify

η̃g(x) ∼ η̃g(x)
µ
(
g(x)

)
µ(x)

. (6.2.78)

Second, consistency with the group composition law demands that

η̃g(x) η̃h
(
g(x)

)
= η̃gh(x) . (6.2.79)

Interpreting η̃g as a cochain in C1
(
LD, U(1)

)
, so that η̃ ∈ C1

(
G, C1

(
LD, U(1)

))
, we can rewrite

(6.2.79) and (6.2.78) in terms of a differential. Using now additive notation, for the sake of clarity and

for later convenience, they look, respectively, as

dρη̃ = 0 , η̃ ∼ η̃ + dρµ , (6.2.80)

22Throughout this section we leave implicit that all simple objects are invertible and hence all junction spaces are

one-dimensional.
23Commutativity of the algebra requires mz

x, x′ = mz
x′, xR

z
x, x′ , which, in our case, becomes mz

x, x′/m
z
x′, x = χν(b

′, b).
24Here we use that all objects in the algebra LD are invertible and appear with multiplicity one in the DW(A) theory.
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g(z)

Ug

x

y

vzx,y
= [Ug]zx, y

g(z)

Ug

x

y

v
g(z)
g(x), g(y)

LD

Ug

x
πx

= η̃g(x)

LD

Ug

x
πg(x)

g(x)

Figure 6.1: Graphical representation of the action of a symmetry defect Ug on the junction spaces

V z
x, y (above) and on the projectors πx (below).

for any µ ∈ C0
(
G, C1

(
LD, U(1)

)) ∼= C1
(
LD, U(1)

)
. Here dρ is a twisted differential, while ρ is the

G-action on anyons. We obtain that η̃ is naturally an object in twisted group cohomology (see e.g.

[15] and Appendix C for a review):

η̃ ∈ H1
ρ

(
G, C1

(
LD, U(1)

))
. (6.2.81)

Restricting the solution ((6.2.73)) to elements of LD we find

[Ug]x+x
′

x, x′ = χν
(
b, b′
)

= χν
(
σ(b), σ(b′)

)−1
(6.2.82)

where in the second step we used the relations between the symmetric and antisymmetric bicharacters

(6.2.50). Since m
g(x+x′)
g(x), g(x′) = ν

(
σ(b′), σ(b)

)
from (6.2.74), then (6.2.77) becomes

ν(b, b′)

ν
(
σ(b′), σ(b)

) = dη̃g (6.2.83)

which we recognize as the first equation in (6.2.14) with a caveat. The set of solutions for η̃g, with

g = 1, form a torsor over L∨
D while the solutions of (6.2.14) are related by elements of

(
B/Rad(ν)

)∨
,

therefore, strictly speaking, the solutions sets of the two equations differ. However we will see below

that the two sets of equations give rise to the same second obstruction.25

For later convenience we also notice that the set of solutions to (6.2.83) for η̃ forms a torsor over

H1
ρ

(
G, L∨

D) = H1
ρ (G,S) , (6.2.84)

whose elements we denote by η. This will be useful for the upcoming reinterpretation of the second

obstruction in terms of symmetry fractionalization in Section 6.2.5. All in all we found that an

equivariantization of a duality-invariant Lagrangian algebra LD is specified by the choice of an element

η̃ ∈ H1
ρ

(
G, C1

(
LD, U(1)

))
satisfying (6.2.83), and that any two choices differ by an element η of

H1
ρ

(
G, L∨

D).

25Physically the extra solutions correpond to symmetry fractionalization patterns between Z2 and S for which there

is no mixed ’t Hooft anomaly.
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Given an equivariantization η̃ of LD, we ask what is the SPT phase Y ∈ H3
(
G,U(1)

)
for G that

we obtain after gauging (LD, η̃). Indeed, the theory after gauging has a single genuine line 1 (and

thus is an invertible TQFT) but also a single non-genuine topological twist line Mg for each g ∈ G.

The spins θMg of such objects are gauge dependent by a G-character [77]. In the presence of a discrete

torsion Y , the θMg ’s do not form a G-character: their deviation from being a character is physical

and is induced by the SPT phase Y . In the present case that G ∼= Z2,
26 θM does not square to 1 but

instead

θM =
√
Y (1, 1, 1) , (6.2.85)

the sign of the square root being pure gauge. We can thus detect the Z2 SPT phase through the

gauge-invariant quantity θ2M = Y . We now show how to reproduce (6.2.16). A key fact is that, given a

choice of equivariantization η̃ for LD, there is a unique non-genuine twist line M after gauging (LD, η̃).

It is then possible to show, using the defining equation (A.3.10) for a twisted local module M that

fa(b)
−1 = η̃(b) for b ∈ B/Rad(ν) and σ(b) = b , (6.2.86)

where fa is the function introduced in (6.2.27). The equation holds for all the values of a for which

Hom(σa, M) ̸= 0.27 We will use the notation M (a) to account for the different choices one has for the

equivariantization η̃: upon gauging, each choice leads to a theory with a unique non-genuine operator,

however different choices lead to different SPT phases Y and the label a (whose possible values depend

on LD in a complicated way) keeps track of the equivariantization chosen.

Since θ2M must be well defined, the spins squared of the components of M must coincide. Since,

as an object, M (a) can be described as the orbit of the twist defect σa under fusion with the lines of

LD, using the fusions in (6.2.24) we get:28

M (a) =
⊕
u

σa+u where u = b+ ϕ−1
(
βψν(b)

)
for all

(
b, βψν(b)

)
∈ LD . (6.2.87)

Consistency with the existence of a unique local module requires that θ2σa = θ2σa+u , i.e.

θ2
M(a) =

1√
|A|

∑
c∈A

fa(c)
−1 !

=
1√
|A|

∑
c∈A

fa+u(c)−1 =
1√
|A|

∑
c∈A

fa(c)
−1 γ(u, c)−1 , (6.2.88)

from which we can extract some consequences. For our purposes it will be enough to consider u =

b+ ϕ−1(ψν(b)) with b ∈ B, we then impose

θ2
M(a) =

1

|B|
∑
b∈B

θ2
M(a) =

1

|B|
√
|A|

∑
b∈B
c∈A

fa(c)
−1 γ(b+ ϕ−1(ψν(b)), c)−1

=
1

|B|
√
|A|

∑
b∈B
c∈A

fa(c)
−1 γ(b, c)−1 γ(ϕ−1(ψν(b)), c)−1 .

(6.2.89)

Any b ∈ B can be split as

b = ι(ϕ−1(β)) + s(x) (6.2.90)

26In order not to clutter we will suppress the label g in what follows, as there is only one nontrivial G defect anyway.
27To show that the result holds, consider (A.3.10) and set g(xi) = xi. The matrix rL can then be eliminated on the

two sides. Decomposing the module Mg in its components and using the formulas (6.2.26) for the R matrix gives the

desired result.
28Besides identifying twist defects related by fusion with the lines of LD, one also has to impose locality conditions,

that depend on η̃ (see Appendix A). Together these constraints single out a unique twist defect for each choice of

equivariantization.
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with β ∈ N(B) and x ∈ B/Rad(ν). Here ι is the inclusion of Rad(ν) in B and s : B/Rad(ν)→ B is a

section. Using linearity of γ and that ψν(ϕ−1(β)) = 0 we see that the only β-dependent factor in the

summand is β(c), so that the sum over β constraints c ∈ B. We then have

θ2
M(a) =

|Rad(ν)|
|B|
√
|A|

∑
b′∈B

x∈B/Rad(ν)

fa(b
′)−1 γ(s(x), b′)−1 γ(σ(s(x)), b′)−1 .

(6.2.91)

We now split also b′ as (6.2.90) obtaining

θ2
M(a) =

|Rad(ν)|
|B|
√
|A|

∑
β′∈N(B)

x,x′∈B/Rad(ν)

fa(ϕ
−1(β′))−1fa(s(x

′))−1 γ(s(x), s(x′))−1 γ(σ(s(x)), s(x′))−1 (6.2.92)

where we noticed that fa(ϕ
−1(β) + b) = fa(ϕ

−1(β))fa(b) for any β ∈ N(B) and b ∈ B. Because of this

fa restricted on Rad(ν) is a character, hence the sum over β′ yields θ2
M(a) = 0 unless fa(ϕ

−1(β′)) = 1

for any β′ ∈ N(B), i.e. fa must restrict to the trivial character on Rad(ν) to avoid an inconsistent

answer. Plugging this in we get

θ2
M(a) =

|Rad(ν)|2

|B|
√
|A|

∑
β′∈N(B)

x,x′∈B/Rad(ν)

fa(s(x
′))−1 γ(s(x) + σ(s(x)), s(x′))−1 (6.2.93)

notice that, due to the property of fa mentioned above, this expression is independent of the sections

chosen hence we shall drop them in the following. Using (6.2.50) we rewrite

γ(σ(x), x′) = γ(x, σ(x′))−1 (6.2.94)

so that summing over x constraints x′ to be fixed by σ. All in all the spin of the twist defect is

θ2
M(a) =

|Rad(ν)|√
|A|

∑
b∈B/Rad(ν)
σ(b)=b

fa(b)
−1 (6.2.95)

hence, due to (6.2.86), confirming that

θ2
M(a) = Arf(η̃) = Y . (6.2.96)

Notice that this computation automatically provides with the proper normalization to ensure that

Arf(η̃) = ±1.

Example. Consider A = Zn × Zn with off-diagonal bicharacter γ
(O)
1 . The invariant algebra is

LD =
{(

(a1, a2); (−a2, a1)
) ∣∣ a1, a2 ∈ Zn

}
. (6.2.97)

Our choice for the functions fa in (6.2.27) is

f(a1, a2)(b1, b2) = exp

(
−2πi

n
b1b2

)
γ(a, b) . (6.2.98)

From this it is simple to show that

θ2σa = exp

(
−2πi

n
a1a2

)
. (6.2.99)
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A module M (a) is given, as an object, by

M (a) =


⊕

b∈Zn σb, a2 for n odd ,⊕
b∈Zn σa1+2b, a2 for n even .

(6.2.100)

Imposing the spin θ2σa to be constant on the orbit M (a) strongly constrains the possible local module

candidates. One finds that for n odd there is only one consistent choice of module M , namely M (0,0)

while for n even there are four, corresponding to (a1, a2) =
(
s1,

n
2 s2) and s1,2 ∈ {0, 1}. Their spins

squared are:

M (a) M (0, 0) M (1, 0) M (0, n/2) M (1, n/2)

θ2M 1 1 1 −1
(6.2.101)

It is possible to check that all four satisfy the locality condition (A.3.10) for the four inequivalent

choices of η̃, parametrized by H1
ρ (Z2, Zn × Zn) = Z2 × Z2. We will see in the next section how the

same result can be obtained in terms of symmetry fractionalization.

6.2.5 Second obstruction and symmetry fractionalization

The discussion in the previous section gave us a description of the second obstruction from a purely

bulk perspective. However, it requires precise knowledge of the full categorical data of the 3d MTC,

hence it is hard to generalize it to higher-dimensional cases. Moreover, it leaves one conceptual problem

to address: what is the physical interpretation of the different choices of equivariantization from the

point of view of the boundary? We make here a proposal that solves both issues: different choices

of equivariantization in the bulk lead to different ways to couple the symmetry to backgrounds fields.

This is the symmetry fractionalization phenomenon that we introduced in Section 1.5 following [15,

53, 54].

Even though we do not know how to turn on background fields for the non-invertible symmetry

directly, we can use the vanishing of the first obstruction to reduce the problem to the discussion of

inequivalent couplings to standard Z2 background fields on the invertible boundary. There we also

have the 0-form symmetry S = Z(A)/LD, which crucially has a mixed anomaly with G. It is known

[15, 53, 54] that in such cases the cubic G anomaly might not have an intrinsic value: it can be changed

by choosing different symmetry fractionalization classes. Analyzing this phenomenon will lead to the

required condition for the vanishing of the second obstruction.

Let us start by determining the mixed anomaly between G and S. The duality action Φ, which

leaves LD invariant, descends to an action on the quotient S = (A × A∨)/LD, which we already

described in detail in Section 6.2.3. For simplicity we consider here the case B = A, so that S = A∨.

The general case is qualitatively analogous and we report it in Appendix B.2.2. We use the duality

isomorphism ϕ to write the background for A∨ as ϕ(B) with B ∈ H1(X,A). The partition function

of the invertible boundary theory coupled to a background B can be easily expressed in terms of the

reference electric boundary:

Zinv

[
ϕ(B)

]
=

∑
b∈H1(X,A)

exp

[
2πi

∫
X
b∗ν + 2πi

∫
X
b ∪ ϕ(B)

]
Ze[b] . (6.2.102)

Here b∗ν ∈ H2
(
X,U(1)

)
is the pull-back of ν ∈ H2

(
A, U(1)

)
, understood in additive notation. The

duality maps Ze to the partition function of the magnetic theory Zm, which in turn can be expressed

as a discrete gauging of the electric theory:

Φ · Ze[b] = Zm

[
ϕ(b)

]
=

∑
a∈H1(X,A)

exp

[
2πi

∫
X
ϕ(a) ∪ b

]
Ze[a] . (6.2.103)
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The action of Φ on the invertible boundary can be derived combining (6.2.102) with (6.2.103), using

that Φ only acts on the partition functions Z, and it reads

Φ · Zinv

[
ϕ(B)

]
= exp

[
2πi

∫
X
B∗ν

]
Zinv

[
ϕ(σB)

]
. (6.2.104)

The overall phase stems from a mixed ’t Hooft anomaly between G and S. Crucially, from (6.2.104)

we find that G ∼= Z2 acts non trivially on S through an automorphism ρ : G→ Aut(S) such that

ρ1(B) = σB , (6.2.105)

so that the total symmetry of the invertible boundary is a semidirect product S ⋊ρ G. Thanks to

exp

[
2πi

∫
X
B∗(ν ◦ σ)] = exp

[
−2πi

∫
X
B∗ν

]
, (6.2.106)

which is the integrated additive version of (6.2.51), the aforementioned anomaly is consistent with the

Z2 symmetry. Let us write the inflow action for the anomalous phase, introducing a background filed

A ∈ H1(X,Z2) for G. The general construction is detailed in Appendix C.1. The bottom line of that

discussion is that such anomalies are classified by µ ∈ H1
ρ

(
Z2, H

2
(
A, U(1)

))
in terms of which the 3d

inflow action is

Sµ = 2πi

∫
X3

µ(A) ∪B ∪B . (6.2.107)

In components this is defined as(
µ(A) ∪B ∪B

)
ijkl

= µ(Aij)
(
ρAijBjk , ρAikBkl

)
. (6.2.108)

A gauge variation A→ A+ dλ produces a boundary term

Sµ → Sµ + 2πi

∫
∂X3

µ(λ) ∪B ∪B . (6.2.109)

The class µ can be thought of as a function µ : Z2 → H2
(
A, U(1)

)
satisfying the twisted cocycle

condition (using addivite notation)

ρg µ(h) + µ(g) = µ(g + h) , (6.2.110)

and subject to the the identification

µ(g) ∼= µ(g) + ρg ξ − ξ for any ξ ∈ H2
(
A, U(1)

)
. (6.2.111)

Because of the relation (6.2.51), which in additive notation reads σ · ν = −ν, we can consistently

choose

µ(0) = 0 , µ(1) = ν . (6.2.112)

Notice that this makes sense because Φ2 leaves Zinv invariant. With this choice, taking a background

such that the pull-back of A to the boundary ∂X3 is 0 and performing a gauge transformation A →
A+dλ with λ

∣∣
∂X3

= 1, one reproduces the anomalous phase (6.2.104). This construction also provides

a convenient way to determine whether the anomalous phase (6.2.104) corresponds to a true anomaly

or can be cancelled by a local counterterm. Indeed the latter situation occurs if and only if µ is

cohomologically trivial, namely

ν = σ · ξ − ξ (6.2.113)
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for some ξ ∈ H2
(
A, U(1)

)
. In this case the anomalous phase is eliminated by modifying the action

coupled to B ∈ H1(X2,A) by the addition of the local counterterm

Sc.t. = 2πi

∫
X2

B∗ξ . (6.2.114)

If there exists no ξ satisfying (6.2.113) then the anomalous phase cannot be cancelled and there is an

anomaly. To show the power of this method, let us discuss the example of A = Zn×Zn with diagonal

symmetric bicharacter γ
(D)
1,1 and

ν
(
(x1, x2), (y1, y2)

)
=
r

n
x1y2 with r2 = −1 mod n . (6.2.115)

Then σ acts on A as σ(x1, x2) = (rx2,−rx1), and since the most general ξ ∈ H2
(
A, U(1)

)
is represented

as ξ
(
(x1, x2), (y1, y2)

)
= s

nx1y2 or equivalently as ξ
(
(x1, x2), (y1, y2)

)
= − s

nx2y1 then

(
σ · ξ − ξ

)(
(x1, x2), (y1, y2)

)
= −2s

n
x1y2 . (6.2.116)

For n odd, we can always choose s = −2−1r hence the anomalous phase can be cancelled by a local

counterterm and it is not an anomaly. On the other hand, for n even, r is necessarily odd and thus

no choice of s can cancel the anomalous phase: in this case this is a genuine anomaly.

As already argued, the question of what is the value of the pure G ∼= Z2 anomaly on the invertible

boundary is not well-posed until we specify how G couples to a background field A ∈ H1(X2, G). In

the boundary global variant where the full symmetry category is invertible, the presence of another

0-form symmetry S allows one to make discrete choices for that coupling labelled by a class

η ∈ H1
ρ (G,S) , (6.2.117)

which satisfies the twisted cocycle condition ρg η(h)+η(g) = η(g+h) and is subject to the identification

η(g) ∼= η(g) + ρg c − c for any c ∈ S, similarly to (6.2.110)–(6.2.111). So η specifies a (twisted)

homomorphism from G to S which allows one to modify the minimal coupling prescription for A,

declaring that the latter effectively couples to the diagonal subgroup of G and the image η(G) ⊂ S. The

anomaly cannot be unambiguously determined until we specify η because different choices correspond

to different Z2 subgroups of the full 0-form symmetry group and, due to the mixed anomaly (6.2.107),

they can have different anomalies.

This is nothing but symmetry fractionalization [15, 53, 54] (Section 1.5)29 (which will be relevant

for the 4d/5d case), but we will use the same terminology to emphasize a unified description. The

crucial point is that in general there is no canonical choice and we can only talk about differences of

anomalies induced by a certain class η. This is easy to implement at the level of background fields.

When A ∈ H1(X2,Z2) is activated, the symmetry fractionalization class changes the background

B ∈ H1(X2,S) to

B′ = B +A∗η = B + η(A) . (6.2.118)

By plugging this expression into the mixed anomaly (6.2.107) we change the pure Z2 anomaly, classified

by H3
(
Z2, U(1)

)
, by an extra piece

Spure = 2πi

∫
X3

µ(A) ∪ η(A) ∪ η(A) ≡ 2πi

∫
X3

A∗y (6.2.119)

29See, e.g., [77, 156–159] and references therein for discussions of symmetry fractionalization in the condensed matter

literature.
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that can be written in terms of a class y ∈ H3
(
Z2, U(1)

)
. An explicit expression for y(g1, g2, g3) can

be derived by recasting µ(A) ∪ η(A) ∪ η(A) as(
µ(A) ∪ η(A) ∪ η(A)

)
ijkl

= −µ(−Aij)
(
η(Ajk) , ρAjkη(Akl)

)
. (6.2.120)

This is useful because A appears with only three different pairs of indices, and we conclude that

y(g1, g2, g3) = −µ(−g1)
(
η(g2) , ρg2η(g3)

)
. (6.2.121)

The possible non-triviality of this 3-cocycle is determined by its value at g1 = g2 = g3 = 1, and we

will denote simply by µ and η their values at g = 1. Since µ = ν and ρ η = −η we obtain

y ≡ y(1, 1, 1) = ν(η, η) . (6.2.122)

Going back to multiplicative notation, we obtain that

Y = ν(η, η) , (6.2.123)

we will see in examples that coincides with the SPT phase obtained by the equivariantization procedure

in Section 6.2.4.

Examples

Let us apply the general discussion to the previously discussed examples.

1. The first example is A = Zn where a duality-invariant lattice is present only for n = p2. The

choice of discrete torsion ν is trivial, so there is no way to shift the “bare” Frobenius-Schur indicator

ϵ and the second obstruction vanishes if and only if ϵ = 1.

2. Next we consider TY(Zn × Zn). Choosing the diagonal bicharacter γ
(D)
1,1 in (6.2.62), the duality-

invariant boundaries are obtained by gauging the full A with discrete torsion ν such that (see (6.2.56))

χν =
1

n

(
0 r

−r 0

)
with r2 = −1 mod n . (6.2.124)

Thus the action ρ : Z2 → Aut(A∨) is ρ1(a1, a2) = (ra2,−ra1). We look for all possible symmetry

fractionalization classes η ∈ H1
ρ (Z2,Zn×Zn), which are determined by η ≡ η(1) = (x1, x2) constrained

by x2 = rx1. Taking into account the identification

(x1, rx1) ∼ (x1, rx1) + (rc2 − c1,−rc1 − c2) (6.2.125)

and setting c2 = 0, c1 = −1 we realize that x1 ∼ x1 + 1 and hence all cocycles are exact:

H1
ρ (Z2,Zn × Zn) = 0 . (6.2.126)

Thus the phenomenon of symmetry fractionalization is absent in this case and there is only a single

equivariantization for LD. The second obstruction again vanishes if and only if ϵ = 1.

Choosing instead the off-diagonal bicharacter γ
(O)
1 is more interesting. As already discussed, the

duality-invariant boundaries are associated with the alternating bicharacters

χν =
1

n

(
0 r

−r 0

)
with r2 = 1 mod n . (6.2.127)
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Then ρ1(a1, a2) = (−ra1, ra2) and the most general cocycle η ∈ H1
ρ (Z2,Zn×Zn) has η = (x1, x2) with

(r − 1)x1 = 0 mod n , (r + 1)x2 = 0 mod n , (6.2.128)

and is subject to the identifications x1 ∼ x1 − (r + 1)c1, x2 ∼ x2 − (r − 1)c2. Without loss of

generality we can take r = 1, so that 2x2 = 0 and x1 ∼ x1 + 2. Hence for n odd there is no symmetry

fractionalization while for n even:

H1
ρ (Z2,Zn × Zn) = Z2 × Z2 (n even) (6.2.129)

generated by ηs1, s2 =
(
s1,

n
2 s2
)

with s1,2 ∈ {0, 1}. A representative for ν is

ν(a, b) = exp

(
2πi

n
a1b2

)
(6.2.130)

and therefore

Y = ν(η, η) = exp
(
πi s1s2

)
= Arf(η̃) . (6.2.131)

Thus the second obstruction vanishes if and only if

ϵ = 1 and s1s2 = 0 , or ϵ = −1 and s1s2 = 1 , (6.2.132)

in agreement with the discussion in [21] for the case A = Z2 × Z2 and with our computations using

the equivariantization of LD around (6.2.101).

6.3 Anomalies of duality symmetries in 3+1 dimensions

We now extend the classification of anomalies for non-invertible duality defects to the four-dimensional

case. As in 2d, we find that there are two obstructions to gauging a non-invertible duality symmetry.

The first obstruction again hinges upon the absence of a duality-invariant bulk Lagrangian algebra LD.

This maps to the fact that the 4d theory T coupled to the SymTFT must admit a duality-invariant

global variant. The second obstruction is the presence of a cubic anomaly:

ϵtot ∈ Ωspin
5 (BG) , (6.3.1)

which can be contaminated by a mixed anomaly involving the 0-form symmetry G and a 1-form

symmetry S through a symmetry fractionalization mechanism similar to the 2d case, now encoded in

a class η ∈ H2
ρ (G,S).

Well-known examples of 4d theories with self-duality symmetries are the free Maxwell theory,

super-Yang-Mills theories with N = 4 supersymmetry and whose gauge algebra is invariant under

Langlands duality (i.e., ADEFG as well as B2
∼= C2) [2, 24, 52, 104] and various theories of class S

[9, 160]. Understanding the anomalies in these symmetries has immediate interesting consequences.

For example, it has been recently observed [161] that the N = 1∗ massive deformation of N = 4 SYM

preserves a self-duality symmetry. The well-known results about vacuum degeneracy in N = 1∗ can

then be reinterpreted as anomaly matching conditions. A second natural application is to constrain

which N = 3 theories can be described through a discrete gauging of N = 4, which we comment upon

in the conclusions.
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N

a

ϕ(b)

= γ(a, b)

N

a
ϕ(b)

Figure 6.2: Braiding of lines WL
a and WR

ϕ(b) on the duality defect N . Unlinking the line configuration

gives rise to the symmetric bicharacter γ(a, b).

6.3.1 Duality defects

Much of our analysis in Section 6.2 can be generalized to self-duality defects in four-dimensional

theories that are self-dual under the gauging of a 1-form symmetry A, possibly with discrete torsion

[24, 52, 104]. Again, the self-duality must be supplied with a choice of isomorphism ϕ : A → A∨.

While a complete description of the underlying fusion 3-category C is still out of reach, some of the

relevant data can be spelled out explicitly.30 As stated in the introduction, this is a graded category

with the grading being implemented by the duality group G, that for now we take to be cyclic. The

fusion rules take the form

a×Ng = Ng × a = Ng , Ng(Σ)×Ng(Σ) =
∑

a∈H2(Σ,A)

a = CA(Σ) , (6.3.2)

where Ng ̸=0 are the duality interfaces, Σ the 3-manifold where they live, a a 1-form symmetry surface,

and CA(Σ) the condensate of A on Σ. We studied the fusion of Ng ×Nh in Chapter 5 (see also [9]),

and is group-like at the level of connected components, i.e., forgetting the appearance of condensates

(see footnote 1). Assuming that G is cyclic, let N be a generator of it.

A first piece of categorical data can be obtained by noticing that the 1-form symmetry surfaces

can end topologically on N thus defining topological line operators WL
a and WR

β , where L/R encode

the side (Left or Right) on which the 1-form symmetry surfaces a, β end.31 These line defects must

compose according to the A group law, modulo undetectable decoupled objects:32

WL
a ×WL

b = WL
a+b (6.3.3)

and similarly for WR
β . Following the same logic as in the Tambara-Yamagami case, we consider the

braiding between endlines of 1-form symmetry surfaces a and β = ϕ(b) ending on the two sides of the

duality defect N . The endline of WR
β is an ’t Hooft line TLβ from the point of view of the left side,

and hence it braids canonically with WL
a . We conclude that the braiding between WL

a and WR
ϕ(b) is

given by a symmetric bicharacter γ:

BWL
a ,W

R
ϕ(b)

= ϕ(b) a = γ(a, b) , (6.3.4)

where the symmetry of γ follows from the fact that we should get the same result if we worked in the

magnetic frame instead. The configuration is depicted in Figure 6.2.

30The SymTFT analysis offers a complementary viewpoint on the data constituting the duality category on the

boundary, which might be easier to handle. We explain how the data we describe here is matched between bulk and

boundary in Section 6.3.2.
31One could think of those as 2-morphisms WR

a : a × 1N → 1N and WL
β : 1N × β → 1N , where 1N is the identity

endomorphism of N .
32The importance of modding out such decoupled TQFTs has been recently emphasized in [162] in a related context.
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The lines WL
a and WR

β form a 3d TQFT A, but such a description is clearly non-minimal: lines

of the form Ka = WL
a × WR

ϕ(−a) are decoupled from the bulk 1-form symmetry and constitute an

undetectable sector A0. Quotienting this out gives the minimal description Amin of the category of

lines living on the defect.33 This produces, in general, a set of lines La forming a minimal TQFT AA,q

with 1-form symmetry A [111], where q a quadratic refinement of the symmetric bilinear form γ. This

resonates with previous results obtained from the SymTFT perspective in Chapter 5.

Finally, as in the 2d case, we can associate to N a pure G anomaly ϵ. This is a higher analogue of

the Frobenius-Schur indicator. Indeed, ϵ can be understood as a standard G ’t Hooft anomaly on four-

manifolds with trivial H2(X,A). On these manifolds, {Ng} behave as a standard invertible symmetry

according to the fusion rules (6.3.2). At the level of the SymTFT, the presence of a nontrivial ϵ gives a

DW twist for the theory Z(C). All in all, we find that the known data defining a self-duality category

in 4d, or at least a subset of it, is given by a pure anomaly ϵ for the self-duality group and a symmetric

bicharacter γ : A× A→ U(1).

In the ensuing analysis we will make two simplifying assumptions. First, we will consider duality

defects on spin manifolds, w2(TX) = 0. The classification of discrete gauging operations (global

variants of a gauge theory) is different on non-spin manifolds, as the set of discrete theta angles is

larger.34 Physically this amounts to the possibility of assigning a well-defined spin to lines as this

cannot be screened by heavy neutral fermions [163]. This restriction has physical consequences on the

obstruction theory outlined above: some duality defects can be anomaly free on spin manifolds, but

anomalous in the presence of a nontrivial w2.
35. As a prototypical example, consider the su(2) N = 4

SYM theory. This admits an S-invariant global variant SO(3)− on spin manifolds. On non-spin (but

orientable) manifolds this variant splits into SO(3)b− and SO(3)f−, where b/f (bosonic/fermionic) refer

to the spin of the generator of the lattice of genuine lines. According to [163] (Appendix C) the two

objects are interchanged by S. Thus, although the duality symmetry in SU(2) N = 4 SYM might be

non-anomalous on spin manifolds, it is anomalous on generic orientable manifolds.

Our second assumption is to consider duality defects for which G does not contain fermion parity.

This for example excludes the vanilla S-duality of the N = 4 SYM theory, for which S4 = (−1)F ,

but includes the situation where S is twisted by a discrete R-symmetry [161]. At the practical level,

this implies that the relevant cobordism classification for cubic G anomalies is given by Ωspin
5 (BG) as

opposed to Ω
spinG
5 (pt). Both groups have been computed, e.g., in [164, 165].

6.3.2 SymTFT and Lagrangian algebras

The SymTFT for 4d duality defects, as discussed in Chapter 5, can be described in close analogy with

the 2d case. We start from a 5d Dijkgraaf-Witten theory for a 1-form symmetry A with trivial twist.

This has topological surface operators labelled by pairs (a, α) ∈ A×A∨ with antisymmetric canonical

braiding

B(a1,α1),(a2,α2) = α1(a2) α2(a1)
−1 ∈ U(1) . (6.3.5)

As in three dimensions, the 5d pure 2-form gauge theory for A enjoys electric-magnetic duality, corre-

sponding to a choice of isomorphism ϕ. As explained in 2.2.1, since in 5d the braiding is antisymmetric,

33Formally one stacks A with the orientation reversal of A0 and gauges the diagonal symmetry A : Amin = (A×A0)/A.
34As an illuminating example, consider A = Zn with n even. On generic manifolds, discrete torsion terms are classified

by H4
(
B2Zn, U(1)

)
= Z2n, while on spin manifolds the order-two element of this group vanishes due to the Wu formula

B ∪ B = B ∪
(
w2 + w2

1

)
mod 2, where wj(TX) are the Stiefel-Whitney classes of X. This discussion generalizes to

arbitrary A in a straightforward manner.
35Loosely speaking, this is some kind of mixed anomaly with gravity, due to the dependence on w2(TX).
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the duality symmetry is

S : A× A∨ → A× A∨

(a, α) 7→
(
−ϕ−1(α), ϕ(a)

) (6.3.6)

that is an order-four automorphism S2(a, α) = (−a,−α), namely S2 = C. The 5d DW(A) theory

enjoys a larger set of 0-form symmetries, for any group A. Indeed we can define another generator

T : (a, α) 7→
(
a+ ϕ−1(α), α

)
, (6.3.7)

and in this way construct an order-three automorphism of A× A∨:

CST : (a, α) 7→
(
ϕ−1(α), −α− ϕ(a)

)
such that (CST )3 = 1 . (6.3.8)

The SymTFT for the duality or triality defects is then defined by gauging the group G generated by

S or CST , respectively. This gauging admits a choice of discrete torsion, which on spin manifolds is

classified by

ϵ ∈ Ωspin
5 (BG) , (6.3.9)

and can be thought of as the higher analogue of the Frobenius-Schur indicator we introduced before.

Notice that if we gauge the group G = Z4 generated by S, the generator maps (b, 0)
S7→
(
0, ϕ(b)

)
and thus the isomorphism ϕ appearing in (6.3.6) is precisely the one extracted from the boundary

theory using (6.3.4). The same is true if we gauge G = Z6 generated by ST since (b, 0)
ST7→
(
0, ϕ(b)

)
.

On the other hand, if we gauge G = Z3 generated by CST , the isomorphisms in (6.3.6) and (6.3.4)

differ by C.

The same argument for the first obstruction corresponding to the absence ofG-invariant Lagrangian

algebras in the DW(A) theory carries over to the 5d case. We are thus led to study the properties of

gapped boundaries of the pure 2-form gauge theory for A. These are labelled by two discrete choices,

as in 2d:

• a subgroup B ⊂ A to be gauged;

• a class [ν] ∈ H4
(
B2B, U(1)

)
specifying the discrete torsion.

Recall that in 2d the discrete-torsion classes are classified by alternating bicharacters. The analog

here is the identification of H4
(
B2B, U(1)

)
with the dual of the universal quadratic group Γ(B) (see

[15, 93] for details):

H4
(
B2B, U(1)

) ∼= Γ(B)∨ . (6.3.10)

This means that any discrete torsion class [ν] is represented by a quadratic function qν : B → U(1).

The group Γ(B) is equipped with a quadratic function Q : B → Γ(B) and is such that for any

Abelian group V , any quadratic function q : B → V factorizes as q = q̃ ◦ Q with q̃ : Γ(B) → V

a group homomorphism. Therefore, a quadratic function qν : B → U(1) is represented by a group

homomorphism q̃ν : Γ(B)→ U(1). The topological term implementing the discrete torsion is

Storsion =

∫
X4

B∗ν =

∫
X4

q̃ν
(
P(B)

)
. (6.3.11)

Here P ∈ H4
(
B2B,Γ(B)

)
is the special element whose representative homomorphism36 is the identity

map, q̃P : Γ(B) id→ Γ(B), called the universal Pontryagin square class. Then one constructs its pull

back P(B) ≡ B∗P ∈ H4
(
X4,Γ(B)

)
which is called the Pontryagin square of B, whilst q̃ν ∈ Γ(B)∨ is

the homomorphism associated with the quadratic function qν .

36Indeed (6.3.10) generalizes to H4
(
B2B,C

) ∼= Hom
(
Γ(B),C

)
for any Abelian group C.
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As already explained in Section 6.2.1, each quadratic function qν has an associated symmetric

bicharacter χν : B×B→ U(1). Crucially, if X4 is a four-dimensional spin manifold, then two discrete

torsions ν, ν ′ leading to two quadratic functions qν , qν′ which are different quadratic refinements of

the same bicharacter, lead to the same topological term [111, 163]:
∫
X4
B∗ν =

∫
X4
B∗ν ′. Thus, by

working on spin manifolds, we can safely label topological manipulations of the boundary theory in

terms of a choice of subgroup B ⊂ A and of a symmetric bicharacter χν . Then most of the results will

be closely analogous to the 2d/3d case, just replacing antisymmetric with symmetric bicharacters.

As explained, on spin manifolds we can label the Lagrangian algebras LB,[ν] in terms of the data

(B, χν). The corresponding gapped boundary has a 1-form symmetry

S =
(
A× A∨)/LB,[ν] . (6.3.12)

One can easily adapt the 3d discussion in order to explicitly write the form of the general Lagrangian

algebra. The symmetric bicharacter χν : B× B→ U(1) induces a group homomorphism ψν : B→ B∨

as in the 3d case. Given a pair (B, χν) we construct the Lagrangian algebra LB,[ν] ⊂ A× A∨ as

LB,[ν] =
{(
b, βψν(b)

)
∈ A× A∨

∣∣∣ b ∈ B , β ∈ N(B)
}
. (6.3.13)

This has cardinality |A| and is Lagrangian since B(b1,β1),(b2,β2) = χν(b2, b1)χν(b1, b2)
−1 = 1, where (b, β)

is a shorthand for
(
b, βψν(b)

)
and we used the symmetry of χν . As in the 3d case (see Appendix B.1)

one can show that all Lagrangian algebras of the 5d DW(A) theory are of this form.

6.3.3 First obstruction

After fixing a choice of electric-magnetic duality, we ask what are the conditions for a duality-invariant

Lagrangian algebra LD = Φ(LD) to exist. We will study two cases: Φ = S (duality) and Φ = CST

(triality). Other cyclic 0-form symmetry groups, when they exist, can be treated similarly. As we

previously showed, all Lagrangian algebras are of the form (6.3.13). To verify whether a lattice is

Φ-invariant, as in 3d, we impose that the pairing between L and Φ(L) be trivial. The analysis is

analogous to the 3d case. For both choices of Φ, we find the necessary condition

ϕ
(
Rad(ν)

)
= N(B) , (6.3.14)

where Rad(ν) is the kernel of ψν . As in the 3d case, this implies that |B|2 = k|A| for some positive

integer k =
∣∣B/Rad(ν)

∣∣ ∈ N, and again B cannot be smaller than Lagrangian. Notice however that

since χν is now symmetric rather than antisymmetric, we cannot conclude that |A| (and in particular

k) is a perfect square. Indeed we will see explicit counterexamples, hence showing that in higher

categories the obstruction from non-integer quantum dimensions of [20] does not hold.

The remaining conditions depend on Φ and are listed below.

Duality. The automorphism σ = ϕ−1ψν of B/Rad(ν) must satisfy

σ2 = −1 . (6.3.15)

In particular σ allows us to relate the two symmetric bicharacters as

γ
(
σ(a), b

)
= χν(a, b) . (6.3.16)

From the two equations above it follows that σ is an order-two automorphism of the group of symmetric

bilinear forms on B/Rad(ν):

χν
(
σ(a), σ(b)

)
χν(a, b) = 1 . (6.3.17)
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Triality. The automorphism τ = ϕ−1ψν must satisfy

1 + τ + τ2 = 0 . (6.3.18)

It is simple to show that the above implies that τ is an order-three operation: τ3 = 1. Also in this

case, the restriction to B/Rad(ν) of

γ
(
τ(a), b

)
= χν(a, b) (6.3.19)

holds. Using the two above equations it follows that τ is an order-three automorphism of the group

of symmetric bilinear forms on B/Rad(ν):

χν
(
τ2(a), τ2(b)

)
χν
(
τ(a), τ(b)

)
χν(a, b) = 1 . (6.3.20)

Examples

1. Let us study the case of A = Zn with the standard symmetric bicharacter γ(a1, a2) = exp
(
2πi
n a1a2

)
.

Consider a factorization n = pq and a subgroup

B =
{
b q
∣∣ b = 0, . . . , p− 1

} ∼= Zp (6.3.21)

so that N(B) ∼= Zq. Since duality invariance requires B to contain ϕ−1
(
N(B)

)
as a subgroup, q must

divide p and we set p = ℓq. A choice of ψν is associated with another symmetric bicharacter χν defined

on B:

χν(b1, b2) = exp

(
2πir

p
b1b2

)
, (6.3.22)

where r ∈ {0, . . . , p − 1}. Notice that Rad(ν) ∼= Zgcd(r,p) hence imposing ϕ
(
Rad(ν)

)
= N(B) forces

gcd(r, p) = q, namely r = sq with gcd(s, ℓ) = 1. Furthermore, since the restriction of γ to B is

γ(qb1, qb2) = exp
(
2πi
ℓ b1b2

)
, over B/Rad(ν) ∼= Zp/Zq ∼= Zℓ we have

σ(b) = ϕ−1ψν(b) = s b mod ℓ . (6.3.23)

Thus we find that:

1. On spin manifolds, there is a duality-invariant LD for A = Zn if and only if there exists an ℓ

such that n = ℓq2 and −1 is a quadratic residue mod ℓ, i.e., there exists also an s such that

s2 = −1 mod ℓ . (6.3.24)

This equation has solutions for ℓ = 1, 2, 5, 10, 13, 17, 25, 26, . . .

2. On spin manifolds, there is a triality-invariant LD for A = Zn if and only if there exist ℓ, s such

that n = ℓq2 and

s2 + s+ 1 = 0 mod ℓ . (6.3.25)

This equation has solutions for ℓ = 1, 3, 7, 13, 19, 21, 31, 37, . . .

These results coincide with the recent classification [166] of 4d topological Zn gauge theories that are

duality or triality invariant on spin manifolds.37

37Let us also notice a few facts. In the case of duality invariance, the possible values of ℓ are those that can be written

as ℓ = x2 + y2 for coprime x, y. The condition can never be satisfied by ℓ multiple of 4; indeed, if ℓ is even then s must

be odd, but then s2 = 1 mod 4. In the case of triality invariance, the possible values of ℓ are those that can be written

as ℓ = x2 + xy + y2 for coprime x, y. The condition can never be satisfied by ℓ multiple of 9.
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2. Another interesting case to consider is A = Z2 × Z2 which is the 1-form symmetry group of a

Spin(4k) gauge theory. On Z2 × Z2 there are four symmetric non-degenerate quadratic forms:

γ(D) =
1

2

(
1 0

0 1

)
, γ(O) =

1

2

(
0 1

1 0

)
, γ+ =

1

2

(
1 1

1 0

)
, γ− =

1

2

(
0 1

1 1

)
. (6.3.26)

In this case −1 acts as the identity on A and duality is an involution. Thus given any choice of γ, the

first obstruction is cancelled by choosing B = A, σ = 1 and χν = γ. The case of triality is slightly

more involved. Let us consider B = A. It is simple to show that the only two Z2 × Z2 isomorphisms

τ satisfying τ2 + τ + 1 = 0 are τ± =
(
1 1
1 0

)
and

(
0 1
1 1

)
, which are inverses to each other. If γ = γ(D)

we can solve the triality obstruction by taking χν = γ± and τ = τ±, similarly if γ = γ± we can take

χν = γ(D) and τ = τ∓. On the other hand, if γ = γ(O) then γ
(
τ±(a), b

)
is not symmetric and the

obstruction is present for B = A. Let us then consider γ = γ(O) and B = Z2. Since N(B) is also Z2,

we must have that B = ϕ
(
N(B)

)
. It is simple to verify that taking B to be the diagonal Z2 this is

indeed satisfied. We conclude that the first obstruction for A = Z2×Z2 vanishes for both duality and

triality.

This example, combined with the previous one, allows us to discuss the first obstruction for N = 4

Spin(2m) SYM (and its global variants). Recall that the 1-form symmetry group is

A =

Z4 if m = 2k + 1 ,

Z2 × Z2 if m = 2k .
(6.3.27)

We thus find that the first obstruction vanishes in all cases.

6.3.4 Second obstruction and symmetry fractionalization

While in absence of duality- (or triality-) invariant Lagrangian algebras the non-invertible self-duality

symmetry is anomalous, when such an invariant algebra does exist the anomalies are determined by

those on the invariant boundary, where the symmetry is invertible. The philosophy is the same as

in the 2d/3d case: due to a mixed anomaly between the 1-form symmetry S = A × A∨/LD and

the invertible duality symmetry G we can shift the value of the pure G anomaly by changing the

symmetry fractionalization class η ∈ H2
ρ (G, S). We now determine the mixed anomaly in the simpler

case B = A, the generalization to proper subgroups being straightforward but technically tedious.

Duality. In the case of Φ = S and so G = Z4 the invariant partition function is given by:38

Zinv

[
ϕ(B)

]
=

∑
b∈H2(X,A)

exp

(
2πi

∫
X4

b∗ν + 2πi

∫
X4

ϕ(B) ∪ b
)
Ze[b] , (6.3.28)

where Ze is the partition function corresponding to the reference electric boundary condition, while ν

is defined through a bicharacter χν such that

γ
(
σ(a), b

)
= χν(a, b) and σ2 = −1 . (6.3.29)

The action of S-duality on Zinv is easily determined using the action of S-duality on the electric theory:

S · Ze[B] =
∑

a∈H2(X,A)

exp

(
2πi

∫
X4

ϕ(B) ∪ a
)
Ze[a] . (6.3.30)

38For simplicity we omit the normalization factors due to gauging.
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We find

S · Zinv

[
ϕ(B)

]
= Gν exp

(
2πi

∫
X4

B∗ν

)
Zinv

[
ϕ(σB)

]
, (6.3.31)

where Gν ≡
∑

b∈H2(X,B) exp
(
2πi

∫
X b

∗ν
)
. Here, assuming that X4 is spin, we used the simplifying

relation

exp

(
2πi

∫
X4

B∗(ν ◦ σ)) = exp

(
−2πi

∫
X4

B∗ν

)
. (6.3.32)

Assuming that X4 is simply connected (and thus H2(X4,Z) has no torsion classes) and spin, one can

show that the Gauss sum Gν is equal to 1 [166]. In a similar way we can verify that

S2 · Zinv

[
ϕ(B)

]
= Zinv

[
−ϕ(B)

]
= C · Zinv

[
ϕ(B)

]
. (6.3.33)

Eqn. (6.3.31) implies that the Z4 symmetry generated by S acts on the 1-form symmetry of the theory

through σ, i.e., the symmetry is a split 2-group with nontrivial action ρ : G → Aut(A) [15, 17,

93] given by ρ1(a) = σ a. Furthermore, the overall phase exp
(
2πi

∫
X B

∗ν
)

should be thought of as

encoding a mixed anomaly

µ ∈ H1
ρ

(
Z4, H

4
(
B2A, U(1)

))
where µ(1) = ν (6.3.34)

and 1 is the generator of G = Z4, much as in the 2d case.

Triality. For Φ = CST and so G = Z3 we have the same expression (6.3.28) for Zinv

[
ϕ(B)

]
, but

with the class ν now satisfying (6.3.20) in terms of a τ such that τ2 + τ + 1 = 0. T-duality acts on

the electric boundary as

T · Ze[B] ≡ exp

(
−2πi

∫
X4

B∗γ

)
Ze[B] . (6.3.35)

Then

(CST ) · Ze[B] = exp

(
2πi

∫
X4

B∗γ

) ∑
a∈H2(X,A)

exp

(
2πi

∫
X4

ϕ(B) ∪ a
)
Ze[a] (6.3.36)

with B∗γ any class stemming from a quadratic refinement of γ, i.e. the Pontryagin square induced

by γ, and we find

(CST ) · Zinv

[
ϕ(B)

]
= Gγ+ν exp

(
2πi

∫
X4

B∗ν

)
Zinv

[
ϕ(τB)

]
(6.3.37)

Here we used that, on spin manifolds, exp
[
2πi

∫
B∗(ν + ν ◦ τ + ν ◦ τ2

)]
= 1. It also holds that

(CST )3 · Zinv

[
ϕ(B)

]
= Zinv

[
ϕ(B)

]
. (6.3.38)

As before, the result is interpreted by saying that the split 2-group is twisted by the Z3 symmetry and

the overall phase comes from a mixed anomaly

µ ∈ H1
ρ

(
Z3, H

4
(
B2A, U(1)

))
where µ(1) = ν . (6.3.39)

We thus conclude that, similarly to the 3d case, the 5d mixed anomaly is determined by a class

µ ∈ H1
ρ

(
G, H4

(
B2A, U(1)

)) ∼= H1
ρ (G,Γ(A)∨) (6.3.40)

namely a function from G to the group of quadratic functions over A satisfying

ρg µ(h) + µ(g) = µ(g + h) (6.3.41)
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and subject to the the identification

µ(g) ∼= µ(g) + ρg ξ − ξ for any ξ ∈ H4
(
B2A, U(1)

)
. (6.3.42)

The full detailed derivation of the anomaly inflow is given in Appendix C.2 and we find

Sµ = 2πi

∫
X5

µ(A) ∪Pρ(B) . (6.3.43)

To reproduce the anomalous phase arising in the boundary theory we have to compare this phase with

the boundary term arising in Sµ from A+ dλ when we set the pull-back of A to the boundary to zero,

as well as the boundary value of λ equal to the element of the group G for which we compute the

variation. This determines all the values of µ(g) for g ∈ G. We can check that the consistency (6.3.41)

of these values is satisfied. In the case of duality G = Z4, since ν satisfies ν
(
σ(a), σ(b)

)
= −ν(a, b),

we deduce that

µ(1) = µ(3) = ν , µ(0) = µ(2) = 0 . (6.3.44)

It is obvious that (6.3.41) is satisfied.

For triality G = Z3 the crucial relation is

γ(a, b) + γ
(
τ(a), τ(b)

)
+ γ

(
τ2(a), τ2(b)

)
= 0 . (6.3.45)

By looking at the anomalous phases that we got this implies that

µ(0) = 0 , µ(1)(a, b) = γ
(
τ(a), τ(b)

)
, µ(2)(a, b) = γ

(
τ(a), τ(b)

)
+ γ(a, b) . (6.3.46)

Among the consistency relations (6.3.41), the only non-trivial (and independent) ones to check are:

τµ(1) + µ(1) = µ(2), τµ(2) + µ(1) = 0 and τ2µ(2) + µ(2) = µ(1), which are indeed satisfied thanks to

(6.3.45).

Given such a mixed anomaly, we are now able to discuss the pure G anomaly. The philosophy is

the same as in the 2d/3d case: combining the choice of symmetry fractionalization with the mixed

anomaly we can induce an extra contribution to the pure anomaly for the invertible duality symmetry.

The details are however slightly different.

In 4d symmetry fractionalization is classified by η ∈ H2
ρ (G,A), which, as opposed to the 2d case

where it corresponds to the choice of a G subgroup of the full symmetry, here it corresponds to the

choice of a 1-form symmetry defect η(g, h) ∈ A inserted along the junction of the intersection of g, h

and gh defects. This amounts to redefine the coupling of the 0-form symmetry to a background,

prescribing that B is shifted to

B′ = B +A∗η ∈ H2
ρ (X,A) . (6.3.47)

By plugging this expression into the mixed anomaly (6.3.43) we shift the pure G anomaly by an extra

piece

Spure = 2πi

∫
X5

µ(A) ∪Pρ(A
∗η) ≡ 2πi

∫
X5

A∗y (6.3.48)

that can be written in terms of a class y ∈ H5
(
G,U(1)

)
. In order to work out an explicit expression

for this class we rely on a working assumption. We note that the Pontryagin square operation, when

the homology group H2(X5,Z) is torsion-free, can be written as a cup product39 [93]:

Pρ(A
∗η) = A∗η ∪A∗η . (6.3.49)

39The expression (6.3.49) should be interpreted as follows. One writes A = ⊕iZni and lift A∗η to ⊕iZ, which is always

possible for finite Abelian groups. In ⊕iZ we can take the product among the various components of the lift, then

(6.3.49) is obtained restricting the result to Γ (⊕iZni) =
⊕

i Γ (Zni) ⊕
⊕

i<j Zni ⊗ Znj . If X5 has torsion 1-cycles the

Pontryagin square is not a cup product and in order to write it in components we need Steenrod’s cup products (see e.g.

[15]).

183



On the other hand the pure G anomaly is non-trivial when the homology group H1(X5,Z) contains

torsion [165]. Therefore, in order to do the computation, we pick a bulk spin manifold X∗
5 with torsion

1-cycles but with torsion-free 2-cycles so as to write (6.3.48) as

Spure = 2πi

∫
X∗

5

µ(A) ∪A∗η ∪A∗η . (6.3.50)

Then it is easy to conclude that

y
(
g1, g2, g3, g4, g5

)
= ⟨−µ(−g1) , η(g2, g3) ρg2+g3 η(g4, g5)⟩ . (6.3.51)

where the product in the second entry should be interpreted as in footnote 39. When the second entry

is the image of a quadratic function γ : A→ Γ(A) the above expression can be rewritten in a simpler

form using the universal property defining Γ(A) (see the discussion around (6.3.10)). In particular if

we can find a representative for η that is invariant under the ρ action, setting g2 = g4 and g3 = g5, we

have

y
(
g1, g2, g3, g2, g3

)
= ⟨−µ(−g1) , η(g2, g3) η(g2, g3)⟩ = −µ(−g1)(η(g2, g3)) . (6.3.52)

Examples

We now discuss how this general story applies to examples where A = Zn and G is either Z4 or Z3,

namely duality and triality respectively. This has some consequence for the anomaly structure of

N = 4 SYM theories with gauge group SU(n) at τ = i, e
2πi
3 respectively.

Several technical details on the computations of the twisted cohomology groups are based on the

following known result (see e.g.[138]). If G ∼= Zk, denoting f = ρ1 ∈ Aut(A) (note that fk = 1), then

Hn
ρ (G,A) ∼=


Ker(1− f)

Im(1 + f + f2 + ...+ fk−1)
if n is even

Ker(1 + f + f2 + ...+ fk−1)

Im(1− f)
if n is odd

(6.3.53)

The symmetry fractionalization classes are classified by H2
ρ (G,A), and we notice that in both the

duality and triality examples we have

1 + f + f2 + ...+ fk−1 = 0 (6.3.54)

by virtue of the relations σ2 = −1, τ2 + τ + τ = 1. Hence for us

H2
ρ (G,A) = Ker(1− f) =

{
a ∈ A | ρ1(a) = a

}
= Fixρ1(A) . (6.3.55)

This also gives a hint for the form of the explicit representatives of the non-trivial twisted cocycles as

ηx(1, 1) = x , x ∈ Fixρ1(A) (6.3.56)

Duality. For the case of duality G ∼= Z4 we have

ρ1(a) = ta , t2 = −1 mod(n) . (6.3.57)

Using (6.3.55) we get

H2
ρ (Z4,Zn) ∼=

{
Z2 if n is even

0 if n is odd
(6.3.58)
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and in the even case the cocycles can be represented

ηs(1, 1) = ηs(3, 3) = ηs(1, 3) = ηs(3, 1) =
n

2
s , s = 0, 1 (6.3.59)

with all the other values vanishing. By setting n = 2m, the pure anomaly is determined by the value

of the 5-cocycle Y ∈ H5(Z4, U(1)) in g1 = ... = g5 = 1 and we get

Y = qν(ηs(1, 1)) = e2πits
2m

4 . (6.3.60)

We conclude that for n odd the pure duality anomaly on the invertible boundary is the bare one,

given by ϵ ∈ H5(Z4, U(1)) ∼= Z4, while for n even the cancellation depends on the possible values of

Y . Recall that the first obstruction never vanishes when m is even. Therefore the possible values of

Y are

Y = exp

(
πi

2
t(2k + 1)

)
for n = 2(2k + 1) . (6.3.61)

In the N = 4 theory with gauge group SU(n) at τ = i the non-invertible duality symmetry is

anomalous whenever it is intrinsically non-invertible, on spin manifolds we have given the relevant

condition for A = Zn around equation (6.3.24). If the defect is non-intrinsically non-invertible the

anomaly automatically vanishes provided we combine the duality with an appropriate R-symmetry

rotation in order to have a Z4 operation (see e.g. [167, 168]). Indeed following [169] and using that

Ωspin
5 (BZ4) ∼= Z4 one gets [161]

ϵ = 60(n− 1)− 24(n2 − 1) mod(4) = 0 , (6.3.62)

therefore one should choose the trivial fractionalization class to cancel the second obstruction. One

could also consider other definitions of S-duality which do not involve the R-symmetry, in such cases

the relevant bordism group Ωspin−Z8(pt) = Z32 ⊕ Z2 is larger and our techniques would need to be

refined in order to appropriately account for the cubic anomaly.

A similar conclusion applies to Maxwell theory, for which S4 = 1 and the anomaly 56 mod(4) = 0

also identically vanishes.

Triality. In the triality case G ∼= Z3,

ρ1(a) = ta , t2 + t+ 1 = 0 (6.3.63)

for which we get

H2
ρ (Z3,Zn) ∼=

{
Z3 if n = 0 mod(3)

0 otherwise
(6.3.64)

and the (non)trivial cocycles are

ηs(1, 1) = ηs(2, 2) = ηs(1, 2) = ηs(2, 1) =
n

3
s , s = 0, 1, 2 (6.3.65)

with all the other values vanishing. Setting n = 3m, the class Y ∈ H5(Z3, U(1)) ∼= Z3 is determined

by40

Y =
[
µ(2)

(
ηs(1, 1), ρ2 ηs(1, 1)

)]−1
= qγ (ηs(1, 1)) =


exp

(
2πi

k

3

)
if m = 2k

exp

(
2πi

4k + 2

3

)
if m = 2k + 1

. (6.3.66)

40One can easily check that, when n = 3m is also even, so m = 0 mod (2), the choice of quadratic refinement for qγ is

immaterial.
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Again we can apply these results to the case of triality symmetry appearing in N = 4 SYM at

τ = e2iπ/3. The triality defect is non-intrinsic when there exist t ∈ Zn such that 1+ t+ t2 = 0 mod(n).

When this is the case we can ask about the second obstruction. To apply our methods we are not

forced to combine the naive CST operation with an R-symmetry rotation to eliminate fermion parity,

since (CST )3 = 1. Then, by the same token as the duality case and knowning that Ωspin
5 (BZ3) ∼= Z9,

we have

ϵ = 60(n− 1) mod(9) = −3(n− 1) mod(9) . (6.3.67)

Notice that Y is valued in the Z3 subgroup of the Z9 anomaly group, then to compare Y to the ϵ above

we need to multiply by 3. When n = 1 mod(3) then ϵ = 0 and there is no choice of fractionalization,

therefore the second obstruction vanishes. For n = 2 mod(3) we find ϵ = 6 and the triality defect is

always anomalous. Finally when n = 0 mod 3 we have ϵ = 3 and a simple computation shows that

the second obstruction can be cancelled only when n = 3m with m = 1 mod (3).

In Maxwell theory instead the anomaly is 56 mod(9) = 2 and cannot be cancelled by any choice

of symmetry fractionalization. We conclude that the triality symmetry in Maxwell theory is always

anomalous due to the second obstruction.

6.4 A check from dimensional reduction

As a check of our results, we show that the obstruction theory of Section 6.3 is consistent with the

one for Tambara-Yamagami categories upon dimensional reduction on an orientable 2-manifold W .

We treat explicitly the case that W is a torus T 2, but the generalization to any Riemann surface Σg

is straightforward. Physically this should be expected, indeed the simplest example of a 4d theory

enjoying self-duality is Maxwell theory, which upon compactification on T 2 reduces to the theory of two

compact bosons.41 In this example the complexified gauge coupling τ is mapped to the position of the

2d CFT on the Narain moduli space. Such a theory is well known to enjoy Tambara-Yamagami-type

symmetries if the point on the conformal manifold is chosen appropriately [99].

Compactifying the 5d Dijkgraaf-Witten theory for A on the torus is a simple exercise. The resulting

3d TQFT has a 1-form symmetry Ã× Ã∨ where

Ã = A× A , (6.4.1)

together with a 0-form and a 2-form symmetry, both being A×A∨, which we neglect in the following

discussion. Given a choice ϕ for the isomorphism that enters into the 5d duality symmetry, the defect

Φ also implements a Z4 symmetry in 3d:

Φ(a1, a2; α1, α2) =
(
−ϕ−1(α2), ϕ

−1(α1); −ϕ(a2), ϕ(a1)
)
, (6.4.2)

where (a1, a2) ∈ Ã and (α1, α2) ∈ Ã∨. To get a Z2 symmetry we compose this transformation with the

internal S-duality of the torus, which also squares to charge conjugation and sends (a1, a2; α1, α2)→
(a2, −a1; α2, −α1). The resulting Z2 symmetry, which we dub Φ̃ acts as:

Φ̃(a1, a2; α1, α2) = (ϕ−1(α1), ϕ
−1(α2); ϕ(a1), ϕ(a2)) , (6.4.3)

or, using the Ã
Φ̃ : Ã× Ã∨ −→ Ã× Ã∨

(ã, α̃) −→ (ϕ̃−1(α̃), ϕ̃(ã))
(6.4.4)

with ϕ̃ : A× A→ A∨ × A∨ given by ϕ̃(a1, a2) = (ϕ(a1), ϕ(a2)).

41Plus a decoupled 2d Maxwell sector that we ignore. Such a sector has a 1-form and a (−1)-form symmetry (associated

to a 2π shift of the theta angle), associated to the 0-form and 2-form symmetries of the SymTFT.
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First and second obstruction upon dimensional reduction

We now discuss how the first obstruction in 5d is mapped to the first obstruction in 3d language after

compactification. Clearly not all Lagrangian algebras L in the 3d description can descend from a

5d description, so we must first characterize them. Recall that, in 5d, algebras where described by

a choice of subgroup B of A together with a discrete torsion [ν] ∈ H4
(
B2B, U(1)

)
. Upon reduction

on T 2 this should map to a specific class [ν̃] ∈ H2
(
BB̃, U(1)

)
, where B̃ = B × B. Expanding the

5d background B = B1θ1 + B2θ2 with θi a basis of H1(T 2,Z) (we neglect the 0-form and 2-form

symmetries), we find: ∫
T 2

B∗ν = B1 ∪ν B2 −B2 ∪ν B1 , (6.4.5)

where ∪ν is the cup product induced by the symmetric bilinear form χν . The bicharacter corresponding

to ν̃ is then, in matrix and additive notation,

χν̃ =

(
0 χν

−χν 0

)
. (6.4.6)

A 3d Lagrangian algebra L̃ induced from 5d then is of the form

L̃ =
{(
b̃, β̃ψν̃(b̃)

) ∣∣∣ b̃ ∈ B̃ , β̃ ∈ N(B̃)
}
, (6.4.7)

where ψν̃ : B̃→ B̃∨ is the homomorphism associated with the antisymmetric bicharacter (6.4.6). Since

Rad(ν̃) = Rad(ν)×Rad(ν) the 5d condition ϕ(N(B)) = Rad(ν) implies ϕ(N(B̃)) = Rad(ν̃) in 3d. On

the other hand, the map σ̃ = ϕ̃−1ψν̃ is given by:

σ̃ =

(
0 σ

−σ 0

)
, (6.4.8)

which is an involution σ̃2 = 1. We have thus shown that solutions to the first obstruction in 5d always

descend to solutions to the first obstruction in 3d.

Let us now discuss the second obstruction. We notice that the 5d discrete torsion ϵ, when reduced

on T 2, trivializes. This is because the torus (as well as any Riemann surface) does not have torsion

1-cycles. Thus it is not possible to detect the 5d second obstruction in 3d after compactification on a

Riemann surface. Indeed, from the point of view of symmetry fractionalization, we have G ∼= Zn and

for any Abelian group A we get

H1
ρ (Zn, A) = Ker(1 + f)/Im(1− f) , (6.4.9)

with f = ρ1. Applying this to the case A = B̃/N(B̃) and f = σ̃ it is simple to prove that the twisted

cohomology group is trivial for any choice of B.42 Thus there are no fractionalization classes and

therefore the second obstruction always trivializes.

6.5 Comments on applications

Let us conclude by mentioning some immediate applications of our results, as well as some interesting

open problems.

42Using that σ2 = −1 we find that Ker(1 + σ̃) is spanned by elements (b1, b2) ∈ B̃/N(B̃) such that b2 = σ(b1). An

element of Im(1 − σ̃) instead is of the form (b1, b2) =
(
x − σ(y), σ(x) + y

)
. A simple manipulation shows that this is

equivalent to b2 = σ(b1).
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4d N = 3 theories. It has been appreciated in the past that a class of 4d N = 3 theories may be

obtained from a discrete gauging of the N = 4 duality symmetry for special values of τ [167, 168].

More precisely, given a Zk subgroup of SL(2, Z) and a fixed coupling τk, where k = 2, 3, 4, 6,43 we

can combine this transformation with a Zk R-symmetry rotation in the Cartan of SU(4) so that the

combined action preserves N = 3 supersymmetry. As the gauge coupling τ = τk must be fixed to

its self-dual value, these theories have no exactly marginal deformation and are inherently strongly

coupled. The case of k = 2 is special, as the symmetry is charge conjugation, hence it preserves the full

N = 4 supersymmetry, and is invertible. We will thus concentrate on the cases k = 4 (corresponding

to the S transformation) and k = 3 (corresponding to the CST transformation) and gauge group

SU(n). As the duality symmetry is non-invertible, it must be gauged together with (a subgroup of)

the Zn 1-form symmetry and our results imply that this is only consistent if the first obstruction

vanishes. Thus there is a severe constraint on the possible N = 3 theories which can be obtained in

this way. For example our results show that there is no such theory for n = 3 and k = 4. We must

also check the vanshing of the second obstruction. The joint duality/R-symmetry anomaly is given

by [161]:

60(n− 1)− 24(n2 − 1)

 mod 4 , if k = 4

mod 9 , if k = 3
. (6.5.1)

For the duality case the cubic anomaly is identically trivial, thus the vanishing of the first obstruction is

a sufficient condition for the gauging to be consistent. For triality instead it is given by 6 mod 9 when

n = 3m+ 2 and is zero otherwise. It has been checked in [161] that this anomaly identically trivializes

when the first obstruction vanishes. Therefore also in the triality case the gauging is consistent if

the first obstruction vanishes. This also implies that, when n = 3m, we must choose the trivial

fractionalization class η ∈ H2
ρ (Z3, Z3m).

In some special cases the S-fold construction of [170] gives rise to discrete gaugings of N = 4

SYM [171]. These are engineered by 2 D3-branes probing a k = 3, 4, 6 S-fold and lead to a discrete

gauging of SU(3), SO(5) and G2 N = 4 SYM respectively. Our analysis can be applied to the first

two cases which, following the discussed examples, indeed are free of anomalies for triality and duality

respectively. It would certainly be interesting to understand whether our methods can give some

insight also on N = 3 theories which cannot be obtained by a discrete gauging procedure from N = 4

and, in particular, if they enlarge the list of generalized symmetries of S-folds described recently in

[172, 173].

A mixed anomaly. We have mentioned in Section 6.2.3 that the space of duality-invariant La-

grangian algebras is larger on spin manifolds. Similarly one can argue, for example following [166],

that the first obstruction in the 4d case has less solutions if the spacetime X is not spin. This should

be rephrased as the presence of a mixed ’t Hooft anomaly between the non-invertible symmetry N
and gravity, sourced by a nontrivial second Stiefel-Whitney class w2(X). A well known example is

the symmetry TY(Z2)1,1 of the Ising CFT. As a bosonic symmetry this is anomalous as the first

obstruction cannot be cancelled. However, if we consider it on spin manifolds X only, the obstruction

is absent since the bulk algebra LD = {(0, 0), (1, 1)} is manifestly duality invariant. Such an algebra

can only be condensed on spin manifolds as θ(1,1) = −1. On the field theory side it is well known [20,

99, 174] that fermionizing the Ising CFT into a Majorana fermion the duality symmetry N becomes

43To be precise, since the duality group is Mp(2, Z) the discrete groups are actually Z3, Z4, Z8, Z12 as charge conju-

gation squares to fermion number C2 = (−)F . The combined duality - R symmetry transformation however lies is Zk
with k as in the main text.
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the invertible (−1)FL which is anomaly free. A similar example in 4d, as already stated before, if the

N = 4 SU(2) SYM theory, whose duality symmetry is anomaly-free on spin manifolds (after combining

it with an R-symmetry rotation) it is anomalous by the first obstruction when X is non-spin. It would

be nice to make this idea more precise.

Duality-invariant RG flows. In both 2d and 4d, duality-symmetric theories allow for a plethora

of interesting RG flows which preserve the non-invertible symmetry. In the former case they have

been studied in [99], while in the latter an initial study has appeared recently [161]. As in the 2d

case, the anomalies for the duality symmetry can lead to strong constraints on the possible low energy

phases. A simple example is the N = 1∗ [175–179] deformation of N = 4 SYM at τ = i, which, in the

presence of the first obstruction, necessarily leads in the IR either to spontaneous symmetry breaking

of the non-invertible symmetry, or to a self-dual Coulomb phase [161]. A related problem deserving

further study in the light of our results is the deformation of the SU(2), SU(3), SU(4) N = 4 theory

by the Konishi operator. This must lead in the IR either to an N = 0 CFT or to chiral symmetry

breaking in order to match the cubic SU(4) anomaly. Consistency of these scenarios with the intricate

pattern of non-invertible symmetries and their anomalies might allow to put stringent constraints on

the possible IR phases. This problem is currently under investigation.

Intrinsic versus anomalous. In this chapter we have seen that, in the context of duality symme-

tries, the concept of “instrinsic” [46] implies that the duality symmetry is anomalous. Such concept is

not unique to duality symmetries, and can be rephrased as the statement that the symmetry category

C is not Morita equivalent to any category of the form nVecG for some (higher) group G. It would

be interesting to understand how far the relationship between ’t Hooft anomalies and intrinsic defects

extends.
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Chapter 7

Intrinsically gapless topological phases

in various dimensions

In this chapter we use the SymTFT approach approach to study gapless phases in (1+1)d and (3+1)d

(we also make comments on (2+1)d). We classify the gapless symmetry-protected (gSPT) phases in

these setups, with particular focus on intrinsically gSPTs (igSPTs). These are symmetry protected

critical points which cannot be deformed to a trivially gapped phase without spontaneously breaking

the symmetry. Although these are by now well-known in (1+1)d, we demonstrate their existence in

(3+1)d gauge theories, in the presence of both 1-form symmetries. Here, they have a clear physical

interpretation in terms of an obstruction to confinement, even though the full 1-form symmetry does

not suffer from ’t Hooft anomalies. These igSPT phases provide a new way to realize 1-form sym-

metries in CFTs, that has no analog for gapped phases. The SymTFT approach allows for a direct

generalization from invertible symmetries to non-invertible duality symmetries, for which we study

gSPT and igSPT phases as well.

7.1 Generalities on (intrinsically) gapless topological phases

Once symmetry considerations are taken into account, phases of matter in any spacetime dimensions

have a rich and intricate structure. The inclusion of generalized and categorical symmetries refines the

classification of these phases, and allows to predict new phase transitions. According to the Landau

paradigm (and its categorical generalization [180]), a phase is characterized by the symmetries and

their realization on the ground state.

If we focus on finite (categorical) symmetries C and gapped phases, the most general phase consists

in spontaneously breaking C to some subsymmetry Cp ⊂ C, which can be possibly realized in a non-

trivial way, namely Cp can have a symmetry protected topological (SPT) phase. Suppose, for instance,

that C is a p-form group symmetry G. Then the gapped phases are classified by the preserved subgroup

H ⊂ G and the SPT phase ω ∈ Hd(Bp+1H,U(1)). Notice that these data are also those determining

a topological manipulation with the symmetry G.

The correspondence between gapped phases and topological manipulation can be explained by

using the SymTFT. A gapped phase is realized, in the SymTFT, by taking the physical boundary to
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be topological [119, 180–182]

Z(C)

Bsym
C Bphys = Li

=

Ti

(7.1.1)

The symmetry boundary Bsym
C is specified by the canonical Lagrangian algebra LC that determines

the symmetry C on the boundary. The physical boundary, being also topological, is determined by

choosing any Lagrangian algebra Li, and the result is a gapped phase Ti. In particular, SPT phases

are characterized by requiring the intersection to be trivial. Thus Lagrangian algebras determines

both topological manipulations and gapped phases, explaining the correspondence between the two.

The SymTFT characterization of the phase is that defects that can terminate on both gapped

boundaries, namely l ∈ LC ∩ Li, give rise to topological operators charged under the spontaneously

broken symmetry. The preserved subsymmetry, instead, is determined by the defects of the bulk that

are not trivialized by the symmetry boundary (hence they are not part of LC), but are trivialized by

the gapped physical boundary (hence they are part of Li). Different Li with the same intersection

with LC determine different SPT phases for the preserved part of the symmetry.

Following this idea, we can also study gapless phases. More precisely, gapless phases can have

topological features, and these can be classified with the lens of the SymTFT. The idea [183–186] is to

use a non-topological (gapless) physical boundary, but not for the SymTFT Z(C) of the full symmetry.

Instead, the gapless physical boundary is a boundary for a reduced theory Z(C′), obtained by gauging

a condensable algebra A of Z(C)

Zd+1(C) Zd+1(C′)

Bsym
C IA Bphys

C′

=

T C

(7.1.2)

Indeed, condensable algebras, if non-Lagrangian, define a topological interface IA (as opposite to a

boundary). Only C′ (that, roughly speaking, is a quotient of C by the preserved symmetry Cp) acts

faithfully on the gapless sector. The intersection LC ∩ A gives rise to topological order parameter,

hence again a part of the symmetry that is spontaneously broken1. The rest of the symmetry, however,

acts on a non-trivial CFT arising from the physical boundary, and hence its order parameters can be

non-topological. In other words, we are describing a phase sitting at low energy of some microscopic

theory with symmetry C, such that along the RG flow some order parameters become massive, are

integrated out, and the low energy theory has a smaller symmetry. Remarkably, this reduction from

C to C′ can happen in topologically non-trivial ways: the trivialized subsymmetry can have an SPT.

These kind of phases have been dubbed gapless topological phases [187]. If there are no topological

order parameter, namely if LC∩A = 1, there is no part of the symmetry that is spontaneously broken,

and the phase is called a gapless Symmetry Protected Topological (gSPT) phase.

Even more remarkably, there are certain gapless phases whose topological features have no analogue

in gapped phases, hence are called intrinsically gapless topological phases [188]. To deform these phases

1This gives rise to multiple local vacua if the symmetry is 0-form, or a topological order if the symmetry is of

higher-form.
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into gapped ones, it is necessary to break spontaneously some additional part of the symmetry. If

no part of the symmetry was orginally spontaneously broken the phase is called intrinsically gapless

Symmetry Protected Topological (igSPT) phase. These phases have been intensely studied in (1+1)d

[183, 184, 186, 188–190]. The main subject of this subject of this chapter is to extend these studies

to higher-dimensional theories, and in the presence of 1-form symmetries.

One important remark is in order. While 0-form symmetries can be preserved (non-spontaneously

broken) in gapless theory even though there are non-trivial local order parameters (with vanishing

VEV), the same is not true for 1-form symmetries. If a CFT has a 1-form symmetry, either it acts

trivially or it is spontaneously broken: there are conformal line defects charged under the symmetry

that takes VEV.2 However it is very important to notice that there are two conceptually distinct ways

to break spontaneously a 1-form symmetry:

• Topological order: there are charged line operators with perimeter law, and become topological

line operators in the IR. As a consequence there is a (possibly emergent) (d− 2)-form symmetry

in the low energy theory.

• Conformal 1-form symmetry breaking: the IR is a gapless theory with conformal line defects

whose VEV is a constant. These lines are not topological, and there is no (d−2)-form symmetry.

When we talk about gSPT phases for a 1-form symmetry, strictly speaking the quotient of the sym-

metry that acts non-trivially on the gapless sector is spontaneously broken, but in the conformal way.

The igSPT phases for 1-form symmetries are obstruction for a CFT with conformal 1-form symmetry

breaking to be deformed into a gapped symmetry preserving phase.

Before moving on with the various examples and classification of gapless phases, let us make an

other important general remark. If the symmetry we start with has a ’t Hooft anomaly, there is no

sensible concept of igSPT. Indeed it is already implied by the anomaly that the symmetry cannot be

realized in a gapped phase without spontaneously breaking the symmetry. On the other hand, starting

with a non-anomalous symmetry C of the microscopic theory, an igSPT phase with a quotient C′ acting

non-trivially on the gapless degree of freedom boils down in having an emergent anomaly for C′. For

group symmetry this connects with the Wang-Wen-Witten result [191], that for certain dimensions

and for certain degrees of the form, a group symmetry G with an anomaly ω ∈ Hd+1(Bp+1G,U(1))

can be centrally extended 1 → H → G̃ → G → 1 in such a way that the anomaly pulls back to a

trivial anomaly ω̃ = 0 for G̃. This means that starting with a microscopic theory with non-anomalous

symmetry G̃, along the RG flow the subgroup H ⊂ G̃ can be trivialized in a way that leaves a

non-trivial anomaly for the quotient G = G̃/H. An igSPT phase realizes this instance.

7.2 gSPT phases for Abelian 0-Form Symmetries in (1+1)d

For general finite groups G the possible gSPT and igSPT phases were classified in [184] using the

results of [192] on condensable algebras in the SymTFT. Nevertheless, in view of later generalizations

to TY categories and to higher dimensions, we find it useful to provide a direct classification in the

Abelian group case. Consider in this section an Abelian 0-form symmetry A(0) in (1+1)d.

7.2.1 SymTFT Characterization of Gapped Phases

The SymTFT is the (2+1)d Dijkgraaf-Witten theory for A(0). In general, a Lagrangian algebra of

Z(C) of a fusion category C has to satisfy various consistency conditions (see, e.g. the Appendices of

2A non-trivial line of a CFT cannot have area law.
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[186, 193]). In the present simplified setting, we need a maximal algebra of lines that are mutually

local. In particular, these have spin 1.

The Drinfeld center for the 0-form symmetry A, Z(VecA), is isomorphic to A × A∨. Anyons are

lines labeled by (a, α) that are charged under the electric and magnetic symmetries in the bulk. The

braiding B and topological spins θ of these anyons are

B [(a, α) , (b, β)] = β(a)α(b) , θ(a,α) = α(a) . (7.2.1)

The canonical Lagrangian algebra corresponding to the symmetry boundary where the VecA symmetry

is realized is

Lsym =

{
(0, α)

∣∣ α ∈ A∨
}
. (7.2.2)

The quotient

C = A× A∨/Lsym
∼= A (7.2.3)

represents the symmetry group, while Lsym
∼= A∨ describes all possible irreducible representations

(characters) of A. Different choices of Lagrangian algebras for Lsym lead to categorical symmetry

which are gauge-related (Morita equivalent) to VecA.

Given a subgroup B ⊂ A, denote by N(B) ⊂ A∨ the subgroup of characters annihilating B

N(B) =

{
β ∈ A∨ ∣∣ β(b) = 1 ,∀b ∈ B

}
∼= (A/B)∨ . (7.2.4)

As we shown in Chapter 6 (see Appendix B.1 for the details) that the Lagrangian algebras of Z(VecA)

are classified by a choice of subgroup B ⊂ A and a cocycle ω ∈ H2(B, U(1)):

LB,ω =

{
(b, βψ(b))

∣∣ b ∈ B , β ∈ N(B)

}
. (7.2.5)

Here ψ : B → B∨ is a group homomorphism determined by ω ∈ H2(B, U(1)) as follows. Using

the well-known isomorphism [69] between the group of alternating bicharacters and H2(B, U(1)), we

construct the alternating bicharacter χ : B× B→ U(1):

χ(b, b′) =
ω(b, b′)

ω(b′, b)
. (7.2.6)

Then ψ is given by

ψ(b)b′ = χ(b, b′) . (7.2.7)

Characterization of SPT phases. A (gapped) SPT phase is realized in the SymTFT setup, by

choosing the physical boundary to be gapped, i.e. given by a Lagrangian algebra LB,ω such that

there is no genuine charged operator after the interval compactification. This means that no anyon is

allowed to end on both boundaries

Lsym ∩ LB,ω = 1 . (7.2.8)

From the realization (7.2.5) we see that Lsym ∩ LB,ω = N(B). Therefore, SPT phases are obtained

by choosing B = A and we recover the usual group-cohomology classification of SPTs in terms of

ω ∈ H2(A, U(1)) [59].

Similar considerations apply even if Lsym is not of the form (7.2.2). For any symmetry associated

with Lsym = LB,ω we can repeat the above analysis finding that an SPT for that symmetry is again a

Lagrangian LB′,ω′ satisfying

LB,ω ∩ LB′,ω′ = 1 . (7.2.9)
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7.2.2 Classification of gSPT and igSPT Phases

While Lagrangian algebras determine gapped phases, non-maximal condensable algebras define an

interface with a reduced topological order [184, 185, 194, 195]. Picking a (generically non-gapped)

physical boundary of the reduced topological order, one constructs a generic, not necessarily gapped

phase, and hence we refer to these as gapless phases. Some of them are incompatible with a gapped

realization and hence are called intrinsically gapless phases. Therefore, gapless phases are classified

by condensable algebras A. Intuitively, the anyons in common between A and Lsym give rise to

topological local operators, describing discrete vacua, while the reduced topological order describes a

part of the symmetry which only acts non-trivially on the gapless sector.

Condensable Algebras of Z(VecA)

Condensable algebras A of Z(VecA) can be parametrized by subgroups made of bosonic lines, but they

are not necessarily maximal. We can characterize them similarly to the Lagrangian ones. Consider

the projection πA : A×A∨ → A on the first factor, and define B := πA(A) ⊂ A so that there is a short

exact sequence

1→ ker(πA|A)→ A→ B→ 1 . (7.2.10)

For a generic condensable algebra, ker(πA|A) is a subgroup of N(B)

D = ker(πA|A) ⊂ N(B) . (7.2.11)

It is convenient to represent A∨ as a group extension

1→ D→ A∨ → A∨/D→ 1 , (7.2.12)

so that any character is written as a pair α = δξ, δ ∈ D, ξ ∈ A∨/D. Notice that A∨/D is a group

extension of B∨ by N(B)/D. The algebra A can then be represented by

A =

{(
b, δψ(b)

) ∣∣ b ∈ B , δ ∈ D
}
, (7.2.13)

where ψ : B→ A∨/D is a group homomorphism. The trivial spin condition translates into

ψ(b)b = 1 , ∀b ∈ B . (7.2.14)

We conclude that condensable algebras are labelled by triples (B,D, ψ) where B ⊂ A, D ⊂ N(B) and

ψ : B→ A∨/D is a group-homorphism such that ψ(b)b = 13. We denote condensable algebras by

AB,D,ψ : B ⊂ A , D ⊂ N(B) ⊂ A∨ , ψ : B→ A∨/D . (7.2.16)

gSPT Phases

Gapless phases are obtained by condensable but non-maximal algebras, which define interfaces to a

reduced topological order – see (7.1.2). The set of charges realized on the ground states is given by

anyons of A which can also end on the symmetry boundary. A gapless SPT (gSPT) phase is a gapless

3Notice that it makes sense to evaluate an element (here ψ(b)) of A∨/D on elements of B because of the short exact

sequence

1 → N(B)/D → A∨/D → B → 1 . (7.2.15)
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phase in which the only charge realized on the vacuum is the trivial one. Hence, the condensable

algebra for a gSPT has to satisfy

AgSPT ∩ Lsym = 1 . (7.2.17)

By the classification above of condensable algebras, it follows thatAB,D,ψ∩Lsym = D, and the condition

(7.2.17) is nothing but D = 1. Thus whenever B ⊊ A is a proper subgroup AB,1,ψ describes a gSPT.

In summary gSPT phases are classified by algebras AB,ψ ≡ AB,1,ψ, and parametrized by the following

data:

1. A choice of a proper subgroup B ⊊ A.

2. A choice of a group homomorphism ψ : B→ A∨ such that ψ(b)b = 1.

igSPT Phases

A gSPT phase is called intrinsic (or igSPT for short) if it cannot be deformed to an ordinary (gapped)

SPT phase. This means that the condensable algebra AB,ψ is not a subalgebra of a Lagrangian algebra

corresponding to an SPT. This would be a Lagrangian algebra containing LB,1,ψ of the form{
(a, ψ̂(a)) | a ∈ A ,

}
, (7.2.18)

where ψ̂ : A → A∨ is a homomorphism such that ψ̂(a)a = 1 , ∀a ∈ A, and corresponds to a class in

H2(A, U(1)). We conclude that a gSPT classified by (B, ψ) is an igSPT if and only if ψ : B → A∨

cannot be extended to a homomorphism ψ̂ : A→ A∨ while preserving the property ψ̂(a)a = 1.

7.2.3 Examples

We now provide several explicit examples of igSPTs in (1 + 1)d. Since we will be dealing with cyclic

groups, we will use additive notation for ease of reading.

Minimal (i)gSPT Example: A = Z4

The case of Z4 is very well known [99, 196]. Let us nevertheless consider it in the context of our

general classification. Z4 has one non-trivial proper subgroup B = Z2 = {0, 2} ⊂ Z4. There are two

possible homomorphisms ψ : Z2 → Z4, classified by the choice of possible order-two elements of Z4 to

assign ψ(2): the trivial homomorphism and ψ(2) = 2. The first case gives a (nonintrinsic) gSPT. The

other possibility also defines a gSPT since ψ(2)2 = 4 mod(4) = 0. The last case is also an igSPT. In

fact, the extension of ψ : Z2 → Z∨
4 to ψ̂ : Z4 → Z4 must satisfy ψ̂(2) = 2ψ̂(1), so ψ̂(1) is 1 or 3, and

in both cases ψ̂(1)1 ̸= 0 mod(4). The igSPT algebra is

AZ2,1,ψ = {(2x, 2x) | x = 0, 1 } . (7.2.19)

Cyclic Groups A = Zn

Subgroups B ⊂ Zn are labelled by divisors p of n. Let n = pq, then the subgroup is

Bp = {qx | x = 0, ..., p− 1} ∼= Zp . (7.2.20)

Homomorphsims ψ : Bp → Z∨
n are determined by picking an order p element y ∈ Z∨

n
∼= Zn4 and

declaring that ψ(q) = y. Clearly the elements of order p of Z∨
n forms the subgroup

N(Bq) = {qm | m = 0, ..., p− 1} ∼= (Zn/Bq)∨ ∼= Zp , (7.2.21)

4We pick the (non-canonical) isomorphism Zn → Z∨
n that assign to a ∈ Zn the character χa(b) = exp

(
2πiab
n

)
.
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hence we have p possible homomorphisms ψm : Bp → Z∨
n labelled by m ∈ Zp, and defined by

ψm(q) = qm . (7.2.22)

We see that

ψm(qx) qx = q2x2m mod(n) (7.2.23)

so that this is alternating if and only if p divides qm. This implies that m must be proportional to

p/gcd(p, q), namely it takes value in the subgroup Zgcd(p,q) ⊂ Zp. This subgroup classifies the gSPT

phases for Zn.

Let us consider the igSPT phases: there is only a trivial SPT phase for these symmetries, and

these algebras for the igSPT are not contained within this. Let us show this in a way which is helpful

in other cases5. We should ask when ψm with m = pr/gcd(p, q) can be extended to ψ̂m : Zn → Z∨
n in

such a way that ψ̂m(a)a = 0 mod(n) for all a ∈ Zn. Notice that qψ̂m(1) = qm mod(n), so that

ψ̂m(1) = m+ kp , k = 0, ..., q − 1 . (7.2.24)

Thus the condition ψ̂m(1)1 = 0 mod(n) becomes

m+ kp = 0 mod(n) . (7.2.25)

Clearly this can never be satisfied by a non-trivial m. Thus we conclude that any nontrivial Zn gSPT

phase is also an igSPT. The igSPT algebras are

AZp,1,ψm = {(qx,mqx)| l = 0, ..., p− 1} , m = pk/gcd(p, q) , k ∈ Zgcd(p,q) . (7.2.26)

To summarize, the gSPT phases for Zn are classified by divisors p of n and an element in Zgcd(p,q).

Hence we have

G(n) =
∑
p|n

gcd (p, q) (7.2.27)

many gSPT phases.

igSPTs for A = Zn × Zn

We do not attempt to classify all gapless phases for A = Zn ×Zn, rather we focus on igSPTs existing

for n = pq, gcd(p, q) ̸= 1, which are representative of the general scenario. This is instructive since

Zn × Zn also admits gapped SPTs, so not all non-trivial gSPTs are automatically intrinsic.

We look at the subgroup B = {(qx, qy)} ∼= Zp × Zp. The most general homomorphism Zp × Zp →
Zn × Zn is determined by four numbers mod(p)

ψs1,s2,r1,r2(qx, qy) = (s1qx+ r1qy, s2qx+ r2qy) (7.2.28)

and this is alternating if and only if s1, r2, r1 + s2 are proportional to p/gcd(p, q). However, it admits

an alternating extension ψ̂ : Zn × Zn → Zn × Zn only if s1 = r2 = r1 + s2 = 0 mod(p), the value of

r ≡ r1 = −s2 = 0, ..., n − 1 (this is a lift of r1 = −s2 to Zn) being the value of the ordinary gapped

SPT classified by H2(Zn × Zn, U(1)) = Zn.

Hence for gcd(p, q) ̸= 1 we can choose s1, r2, r1 + s2 to be non-trivial, producing igSPT phases.

We have p
(
gcd(p, q)3 − 1

)
such phases. Those with s1, r2 non-trivial but r1 + s2 = 0 are the igSPTs

5Either for A = Zn × Zn or, as will be mostly important for us, in (3+1)d.
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for the two Zn factors that we already discussed, while r1 + s2 = kp/gcd(p, q), k ̸= 0 are new. For

example, for n = 9, an igSPT is given by p = q = 3, s1 = r2 = 0, r1 = s2 = 1. The algebra is6

AZ3×Z3,1,ψ0,1,1,0 = {(3x, 3y; 3y, 3x) |a, b = 0, 1, 2 } . (7.2.29)

More generally, letting ℓ = p/ gcd(p, q), we denote these algebras as AZp×Zp,1,ψ with

ψ(qx, qy) =

(
k1ℓqx+ (r + k2ℓ) qy , −rqx+ k3ℓqy

)
(7.2.30)

determined by k1, k2, k3 ∈ Zgcd(p,q) and r ∈ Zp. These define a class of igSPTs for Zn × Zn.

7.2.4 Physical Construction of igSPTs

In this section we describe how to use a KT transformation to generate examples of igSPTs, following

[190, 197]. We then describe the effect of embedding their construction into a UV complete QFT.

KT Transformation to igSPT Phases

We will now illustrate these (i)gSPTs with concrete (1+1)d Field theories. This is a slight generaliza-

tion of the results in [197], which treated the case A = Z4. The procedure works in four steps:

1. Consider a theory T0 with zero-form symmetry Z(0)
n (here n = pq), gauge Zp ⊂ Z(0)

n to construct

T0/Zp.

2. Stack a trivial theory with Z′
q symmetry.

3. Gauge Z∨
p ×Z′

q, with a discrete torsion class m ∈ H2(Zp ×Zq, U(1)) = Zgcd(p,q). This produces

a theory with Zn × Zq symmetry.

4. Identify the gauge field for Zq with that for the Zq quotient in Zn.

This will prove instrumental in discussing examples with 1-form symmetry in Section 7.3. Let us now

give some further details.

As we have seen, an igSPT for Zn is given by a subgroup Zp ⊂ Zn such that

gcd(p, q) ̸= 1 , n = pq , (7.2.31)

together with the choice of m ∈ Zgcd(p,q) (the igSPT is non-trivial if m ̸= 1). This second choice can

be understood as an element

m ∈ H2(Zp × Zq, U(1)) = Zgcd(p,q) , (7.2.32)

namely an SPT phase for Zp×Zq. The authors of [196] gave a construction of a continuum QFT that

realizes the igSPT for Z4. We can generalize this construction to produce a continuum QFT realizing

of all the igSPT phases that we have classified.

We start from any 2d CFT T0 with Zin
n symmetry. We gauge the subgroup Zp ⊂ Zin

n , producing a

theory T0/Zp. Since gcd(p, q) ̸= 1 the sequence

1→ Zp → Zin
n → Zq → 1 (7.2.33)

6Our notation is (e1, e2;m1,m2), where e1,2,m1,2 label the electric and magnetic lines of the two Zn groups, respec-

tively.
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Group Zp Z∨
p Z∨∨

p Zq Z′
q Z′∨

q

Background Field Ap Âp Ãp Bq B′
q B̂′

q

Table 7.1: Groups and background fields.

does not split, hence the resulting theory has symmetry Z∨
p × Zq with mixed anomaly [154]

2πi

p

∫
X3

Âp ∪ β(Bq) , (7.2.34)

where Âp is the background field for Z∨
p
∼= Zp, Bq a background for Zq = Zin

n /Zp, and β : H1(X,Zq)→
H2(X,Zp) is the Bockstein associated with the sequence (7.2.33).7

Clearly, if we now make Âp dynamical, we recover the theory T0. Instead, we perform a slightly

different operation. First we declare that the system has a further trivially acting Zq symmetry that

we denote by Z′
q to distinguish it from the quotient Zq = Zin

n /Zp. This can be thought of as stacking

a decoupled trivially gapped system with a Z′
q symmetry. Denote the background field for this by B′

q.

The notation for various groups and background fields is summarized in table 7.1.

We then gauge Z∨
p × Z′

q, but crucially adding a discrete torsion

exp

(
2πim

gcd(p, q)

∫
X2

Âp ∪B′
q

)
, m ∈ H2(Zp × Z′

q, U(1)) = Zgcd(p,q) . (7.2.35)

Denoting by Ãp and B̂′
q the backgrounds for the two dual symmetries (Z∨

p )∨ ∼= Zp, (Z′
q)

∨ that arise

from this gauging, the resulting partition function is

ZT[Ãp, B̂
′
q, Bq] =

∑
Âp,B′

q

exp

(
2πim

gcd(p, q)

∫
X2

Âp ∪B′
q +

2πi

p

∫
X2

Ãp ∪ Âp+

+
2πi

q

∫
X2

B̂′
q ∪B′

q

)
ZT0/Zp [Âp, Bq] .

(7.2.36)

To obtain the correct cocycle conditions of the new backgrounds, we need to impose gauge invariance

under both Âp → Âp + δλ and B′
q → B′

q + δη. This imposes

δB̂′
q = 0 , δÃp = β(Bq) . (7.2.37)

The dual symmetry Z∨∨
p = Zp now extends Zq producing again a new Zn symmetry. This is to be

distinguished from the original Zin
n , as it is not faithfully acting: as we will see shortly the Zp subgroup

does not act at all. To show this fact let us manipulate the partition function. Rewriting ZT0/Zp in

terms of ZT0 , we can perform the sum over Âp, that imposes a delta function, that can be solved by

the sum over Ap, and we remain with

ZT[Ãp, B̂′
q, Bq] =

∑
B′
q

exp

(
2πi

q

∫
X2

B̂′
q ∪B′

q

)
ZT0

[
q

(
Ãp +m

p

gcd(p, q)
B′
q

)
+Bq

]
. (7.2.38)

To gain some intuition about the result, consider the particular case q = p, m = 1 (for p = 2

this is the case discussed in [198]). We omit the subscripts. In the sum over B′ we can shift B′ 7→
7In our case it is given explicitly by β(Bq) =

δBq

p
where Bq in the right hand side is an arbitrary lift to Zn of the Zq

gauge field.
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Group Zn Ẑp Zp Z′
p

Embedding Zmn Ẑwp Zmn /Zmp Zwp ′

Twist field W = eiX̃/p
2

V̂ = eiX W = eiX̃/p
2

V ′ = eiX
′/p

Ẑp Zp Z′
p

V̂ 1 e−2πi/p2 e−2πi/p

V ′ e2πi/p 1 1

W e2πi/p
2

1 1

Table 7.2: Embedding of symmetries, relevant twist fields and their charge after stacking the SPT for

the free boson example.

B′ − Ã to eliminate it from ZT0 . Hence, this shifted sum over B′ reproduces the partition function of

ZT0/Zp [B̂
′, A], but there is an addition phase factor:

ZT[Ã, B̂′, B] = exp

(
−2πi

p

∫
X2

B̂′ ∪ Ã
)
ZT0/Zp [B̂

′, B] . (7.2.39)

Naively, this seems like stacking a CFT T0/Zp and an invertible phase, but it’s more nuanced. The

theory has a symmetry Zp2 × Zp with backgrounds pÃ + B and B̂, respectively. Focusing on the

gapless sector T0/Zp, the Zp ⊂ Zp2 does not act, leaving a faithful Zp × Zp symmetry (with the first

factor being Zp2/Zp) and a mixed anomaly: a gauge transformation B̂′ → B̂′ + δλ multiplies ZT0/Zp
by a phase. Including the symmetry Zp with background Ã acting trivially, the anomaly is cancelled

by the Green-Schwarz mechanism:

exp

(
−2πi

p

∫
X2

B̂′ ∪ Ã
)
→ exp

(
−2πi

p

∫
X2

δλ ∪ Ã
)

= exp

(
2πi

p

∫
X2

λ ∪ β(B)

)
.

Physically, for the CFT T0/Zp, the anomaly implies that the system cannot be gapped while

preserving Zp × Zp. However, since the anomaly is canceled by a symmetry acting on an invertible

phase, by realizing the latter as the IR of a trivially gapped theory, the anomaly is absent in the full

theory. From an IR viewpoint, this can be seen as an example of the general story of [199]. Thus, in

the full theory, there is no obstruction to gapping it. At low energy, without considering the additional

symmetry, we cannot gap the system unless the additional degrees of freedom become massless, closing

the symmetry gap, thus encountering a phase transition and allowing further deformations to gap the

theory.

Embedding into a UV theory

This construction neatly describes the IR phase. To embed it into a full-fledged UV theory, we simply

consider the product of theory T0 — or an arbitrary QFT flowing to it— with a theory T′ flowing

to a trivially gapped phase and carrying the Z′
q symmetry action. Let us focus on the case n = p2

and give a concrete example. Consider T0 to be a free compact scalar X of radius R and T′ to be a
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compact scalar X ′ of large radius R′ deformed by λ cos(X ′).8 We take the radius R′ large enough so

that this term is relevant and the embedding of symmetries is as in table 7.2.

Stacking the Z∨
p ×Z′

p SPT exp
(
2πi
p

∫
Âp ∪A′

p

)
gives charge to twist fields according to table 7.2.9

The charges can be used to describe the local field content of the theory after performing the gauging

procedure. Surprisingly, we learn that neither X nor X ′ are well defined field anymore, but rather we

should consider:

Y = X +X ′/p , Z = X ′ − X̃ . (7.2.40)

Written in terms of these fields the cosine potential becomes:

λ cos
(
Z + Ỹ

)
, (7.2.41)

which pins the momentum modes of one field to the winding modes of the other. The faithfully acting

(unbroken) symmetry on the IR scalar is just the Zp diagonal between momentum and winding, which

is anomalous.

7.3 (i)gSPTs for 1-form Symmetries in (3+1)d

The formalism we developed in (1+1)d can be adapted to discuss phases – gapped and gapless – with

1-form symmetries in (3+1)d. We carry out a SymTFT analysis, showing the existence – and providing

a classification – of igSPT phases for 1-form symmetries. This refines the standard classification of

phases of gauge theories. The SymTFT approach also aids in the construction of concrete physical

examples, and we provide an interpretation of these phases as topological obstructions to confinement.

7.3.1 SymTFT and Gapped Phases for 1-form Symmetries

The SymTFT for a 1-form symmetry A(1) in (3+1)d is a five-dimensional TQFT whose topological

defects are surfaces that form a group Z(A(1)) = A × A∨ governing their fusion. The braiding is

anti-symmetric

B ((a, α), (b, β)) = α(b)β(a)−1 . (7.3.1)

The canonical Lagrangian algebra that leads to the 1-form symmetry A is

Lsym =

{
(0, α)

∣∣ α ∈ A∨
}
. (7.3.2)

Everything is very similar to the (1+1)d case, with the only (but crucial) difference that the braiding

is anti-symmetric.

For simplicity, we assume all manifolds are spin. This technical assumption serves to identify

different global variants with the same 1-form symmetry and the same choice of charges, but where

the line operators have different statistics [163]. The group of discrete torsions

H4(B2A, U(1)) ∼= {q : A→ U(1) , quadratic form} (7.3.3)

is a central extension of the group of symmetric bilinear forms Symm(A). The projection map is the

polarization

χq(a, b) = q(a+ b)− q(a)− q(b) . (7.3.4)

8We normalize the fields so that the periodicity is always 2π to simplify the notation.
9A simple derivation of this fact, following e.g. [9], is to realize a twist defect through an open background δA = u, with

u the charge of the twisted sector. Performing a gauge transformation and using the SPT action with this background

gives non-trivial charges of twist defects.
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The fiber is isomorphic to Hom(A,Z2), and its elements are called characteristic elements. From a

quadratic form q and a gauge field B ∈ H2(X4,A) one produces the discrete torsion∫
X4

q(B) . (7.3.5)

The key fact is that different quadratic forms with same polarization give the same integral on any spin

4-manifold. Hence we can mod-out Hom(A,Z2) and work with symmetric bicharacters χ ∈ Symm(A).

As in (1+1)d, Lagrangian algebras of Z(A(1)) are classified by a subgroup B ⊂ A and a symmetric

homomorphism ψ : B→ B∨ as

LB,ψ = {(b, βψ(b)) | b ∈ B , β ∈ N(B)} . (7.3.6)

The symmetric condition means that χ : B× B → U(1), χ(b, b′) = ψ(b)b′ is a symmetric bicharacter,

and this ensures that the elements of LB,ψ do not braid among themselves. It also identifies ψ with a

discrete torsion element in H4(B2A, U(1))/Hom(A,Z2) ∼= Symm(A).

In this section, we discuss gapped phases with 1-form symmetry; hence let us make some general

comment on them. In the UV there are line operators labeled by their charges valued in A∨. Since

the phase is gapped, at low energy for each line there are two possibilities: either it has area low and

flows to the trivial line (confined lines), or it has perimeter law and flows to a non-trivial topological

line (deconfined lines). According to ’t Hooft a phase is described by a Lagrangian lattice of dyons

[42]. More explicitly, given the algebra LB,ψ, perimeter law is assigned to the lines:

W β , T bWψ(b) . (7.3.7)

where T , W are Wilson and ’t Hooft lines for the universal cover of the gauge group and we only

indicate their 1-form symmetry charge through our notation. The set of charges of deconfined lines

forms a subgroup D ⊂ A∨, while A∨/D is the quotient that labels the confined lines. Its Pontryagin

dual B = (A∨/D)∨ is the preserved subgroup of the 1-form symmetry, while the quotient A/B is

spontaneously broken.

We can make this discussion more systematic using the SymTFT approach. Gapped phases with

1-form symmetry A(1) are classified by Lagrangian algebras LB,ψ. The physical interpretation is the

following. Fixing the symmetry to be A(1) means that the symmetry boundary is determined by

Lsym = {(0, α) | α ∈ A∨}, hence the symmetry operators are the surfaces (a, 0) ∈ Z(A(1)) pushed

at the boundary. Looking for gapped phases means that the physical boundary is also topological

and determined by a Lagrangian algebra. The surfaces that can end on both boundaries give rise to

non-trivial topological line operators, namely the deconfined lines. They form the group

Lsym ∩ LB,ψ ∼= D = N(B) . (7.3.8)

Hence deconfined lines are completely transparent under the subgroup B ⊂ A of the 1-form symmetry,

while are detected by the quotient A/B. The group of non-trivial lines N(B) is the Pontryagin dual

of A/B, representing its set of charges. Moreover A∨/N(B) ∼= B∨ is the set of confined lines and is the

dual of the trivialized subgroup of the 1-form symmetry.

The presence of B may also be detected by looking at the twisted sectors. These arise because

some surfaces (b, ψ(b)) ∈ LB,ψ cannot end on Lsym and produce non-genuine lines in the twisted sector

of b ∈ B. Importantly, these non-genuine lines are also in general charged under the subgroup B of

the 1-form symmetry A(1): passing a surface labelled by b′ ∈ B through a non-genuine line (b, ψ(b))

we pick a phase

ψ(b)b′ = χ(b, b′) . (7.3.9)
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We conclude that the (3+1)d gapped phase is the spontaneous breaking of A down to B whose SPT

phase is ψ. In particular, the phases with B = A are SPT phases for the whole 1-form symmetry, and

are determined by ψ. Thus, we recover the usual classification by H4(B2A, U(1)) [14] (more precisely

by Symm(A) on spin manifolds).

As an example, consider A = Zn. Subgroups are given by divisors p|n:

Bp = {qx | x = 0, ..., p− 1 } ∼= Zp , n = pq . (7.3.10)

Identifying Z∨
n
∼= Zn we have

N(Bp) = {py | y = 0, ..., q − 1} ∼= Zq , (7.3.11)

while

B∨
p
∼= A/N(Bp) = {x ∼ x+ p | x = 0, ..., p− 1} . (7.3.12)

A homomorphism ψ : Bq → B∨
q is the multiplication by a number r = 0, ..., p− 1, and is automatically

symmetric. Therefore

Lp,r = {(qx, rx+ py) | x = 0, ..., p− 1 , y = 0, ..., q − 1 } . (7.3.13)

SPT phases are obtained by setting p = n and are classified by r ∈ Zn, i.e.

SPT : Lr = {(x, rx) | x = 0, ..., n− 1} , r = 0, · · · , n− 1 . (7.3.14)

7.3.2 (i)gSPT Phases protected by 1-form Symmetries

Now we look at gapless phases with 1-form symmetry A(1). Each line operator, labeled by α ∈ A∨

can either flow to a trivial line, or to a non-trivial line, and the latter form a subgroup N(B) ⊂ A∨

(hence B ⊂ A is trivial in the IR). However, differently from gapped phases, among the non-trivial

lines, some can be topological, while others are not. The first set forms a subgroup D ⊂ N(B), and the

presence of a gapless sector is characterized by the non-triviality of the quotient N(B)/D that labels

the charges of non-topological lines of the gapless sector.

All of this can be formalized considering non-maximal condensable algebras of the SymTFT. The

classification is as follows: the condensable algebras10 are

• A subgroup B ⊂ A.

• A subgroup D ⊂ N(B)

• A group homomorphism ψ : B→ A∨/D with the property that

ψ(b)b′ = ψ(b′)b , ∀b, b′ ∈ B . (7.3.15)

The corresponding algebra is

AB,D,ψ =

{
(b, δ ψ(b))

∣∣ b ∈ B , δ ∈ D
}
. (7.3.16)

10We note that this reference to algebra is not quite accurate as these defects form a sub-higher-category, but we

refrain from this in this context unnecessary embellishment in terminology.
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In general, non-maximal condensable algebras describe gapless phases. The interpretation of (7.3.16)

is clear from the “Club-Sandwich” picture:

Zd+1(C) Zd+1(C′)

Bsym
C IAB,D,ψ Bphys

C′

δ

a

(7.3.17)

Condensing AB,D,ψ in half space we construct an interface between Z(C) and a reduced topological

order Z(C′), with C = A(1). After interval compactification, we can distinguish three types of object,

represented in the figure above from bottom to top:

1. Dynamical degrees of freedom charged under C′, described by surface operators extending

throughout the bulk.

2. Topological lines (0, δ) ending both on the IAB,D,ψ interface and the symmetry boundary Bsym.

These describe a (deconfined) SSB phase dressing the gapless degrees of freedom.

3. Topological surfaces labelled by a ∈ A confined on Bsym and describing the full symmetry.

Up to this point everything is the same as in the gapped case. The difference is that now the quotient

A/B does not act faithfully on topological lines:

Lsym ∩ AB,D,ψ ∼= D , (7.3.18)

which is in general smaller than (A/B)∨ = N(B). Hence the subgroup (N(B)/D)∨ ⊂ A/B acts

trivially on the topological lines, and can only act on gapless degrees of freedom coming from the

physical boundary.

gSPTs and igSPTs. Gapless SPT phases are those in which there is no non-trivial topological line,

and hence

D = 1 . (7.3.19)

B is trivial at low energy, while A/B only acts on a gapless sector. Therefore, gSPT phases for a 1-form

symmetry in (3+1)d are classified by pairs (B, ψ), with B ⊂ A and ψ : B → A∨ a homomorphism

satisfying the property (7.3.15).

This phase is intrinsically gapless (igSPT) if and only if there is no Lagrangian algebra of the from

LA,ψ̂ (this ensures that LA,ψ̂ ∩Lsym = 1) such that AB,1,ψ ⊂ LA,ψ̂. This means that ψ must not admit

an extension to ψ̂ : A→ A∨ preserving the property (7.3.15).

7.3.3 Examples

Cyclic groups A = Zn

Any homomorphism between two cyclic groups satisfies ψ(b)b′ = ψ(b′)b. Hence, gSPT phases are

classified by a divisor p|n that determines

Bp = {qx | x = 0, ..., p− 1} , n = pq (7.3.20)
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and an order p element of Z∨
n
∼= Zn. The latter is of the form qm, m = 0, ..., p− 1 and determines

ψ(qx) = qmx . (7.3.21)

Any homomorphism ψ : Zq → Z∨
n has a symmetric extension to Zn, so there are no igSPT phases.

Minimal igSPT A = Z4 × Z2

The smallest 1-form symmetry group that admits intrinsically gapless SPT phases is Z4 × Z2. The

subgroup B ⊂ A that is part of the classification data (B, ψ), here is B = Z2 = ⟨(2, 0)⟩ ⊂ A (for all

other subgroups there are no igSPTs). The most general homomorphism Z2 → Z4 × Z2 is

ψs1,s2(2x, 0) = (2s1x, s2x) (7.3.22)

with si = 0, 1. Since ψs1,s2(2x, 0) · (2x′, 0) = 1, this is automatically symmetric. Moreover, if s2 = 1

it does not admit any extension (neither non-symmetric) ψ̂ : A → A∨, hence it represents an igSPT

phase. We have two of them with s1 = 0, 1. We will come back to this example shortly, providing a

concrete model that realizes these phases in the vanilla case of s1 = 0 (turning on s1 corresponds to

stacking a standard gapped SPT), whose condensable algebra is

AZ2,1,ψ = {(2x, 0; 0, x) | x = 0, 1 } . (7.3.23)

The fact that this defines an igSPT can be understood from the reduced topological order, too. Using

standard methods one discovers that the reduced theory is the (4+1)d Dijkgraaf-Witten theory for

Z4, whose by electric and magnetic surfaces are generated by:

E = (1, 0; 0, 0) , M = (0, 1; 1, 0) . (7.3.24)

In order to determine the symmetry C′ we ask which of these surfaces can terminate topologically on

Bsym. The allowed surfaces are:

E2 = (0, 0; 0, 1), M2 = (0, 0; 2, 0) . (7.3.25)

This boundary condition defines a polarization whose symmetry is C′ = Z(1)
2 × Z(1)

2 with a mixed

anomaly [154]:

I = πi

∫
B1 β(B2) , β(B2) =

1

2
dB2 . (7.3.26)

This proves that the IR symmetry is anomalous, i.e. we are describing an igSPT.

Examples: A = Zn × Zn

A wider class of examples of gSPT and igSPT phases arises for A = Zn × Zn, provided that n = pq

can be written as the product of two non coprime integers. Let us present all the details in the n = 4

case, and then sketch the generalization to other values of n.

The group Z4 × Z4 has nine non-trivial proper subgroups:

(Z4)L , (Z4)R , (Z4)D , (Z2)L , (Z2)R , (Z2)D ,Z4 × Z2,Z2 × Z4,Z2 × Z2 . (7.3.27)

For all subgroups isomorphic to a cyclic group, it can be checked that any symmetric homomorphism

ψ : B → Z4 × Z4 has a symmetric extension, therefore there are no igSPTs associated with these

subgroups.
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Let us look at B = Z2 × Z2. There are 16 homomorphisms Z2 × Z2 → Z4 × Z4 that we label with

four parameters s1, s2, r1, r2 = 0, 1:

ψs1,s2,r1,r2(2x, 2y) = (2s1a+ 2r1y, 2s2x+ 2r2y) . (7.3.28)

Notice that ψs1,s2,r1,r2(2x, 2y)(2x′, 2y′) = 1, so these are all symmetric and define gSPTs. Each

homomorphism ψs1,s2,r1,r2 has 16 extensions, parametrized by other four labels σ1, σ2, ρ1, ρ2 = 0, 1:

ψ̂σ1,σ2,ρ1,ρ2s1,s2,r1,r2 (x, y) =

(
(s1 + 2σ1)x+ (r1 + 2ρ1)y, (s2 + 2σ2)x+ (r2 + 2ρ2)y

)
, (7.3.29)

that is symmetric if and only if r1 + 2ρ1 = s2 + 2σ2. We conclude that if r1 ̸= s2 there is no symmetric

extension of ψ̂s1,s2,r1,r2 , hence this represents an igSPT phase. We have eight igSPTs of this kind.

The last subgroup to consider is B = Z4 × Z2, for which there are no igSPTs. Indeed the most

general homomorphism is

ψ̂s1,s2,r1,r2(x, 2y) = (s1x+ 2r1y, s2x+ 2r2y) , (7.3.30)

where s1, s2 = 0, 1, 2, 3 while r1, r2 = 0, 1, and is symmetric if and only if s2 mod(2) = r1. There are

four extensions

ψ̂ρ1,ρ2s1,s2,r1,r2(x, y) =

(
s1x+ (r1 + 2ρ1)y, s2x+ (r2 + 2ρ2)y

)
, (7.3.31)

for which the symmetric condition is s2 = r1 + 2ρ1, that has solution precisely if s2 mod(2) = r1.

The igSPTs of A = Z4 × Z4 have a natural generalization for A = Zn × Zn. Consider n = pq, and

we look at the subgroup B = Zp × Zp. Symmetric homomorphisms Zp × Zp → Zn × Zn are

ψs1,s2,r1,r2(qx, qy) =

(
qs1x+ qr1y, qs2x+ qr2y

)
(7.3.32)

with s1, s2, r1, r2 ∈ Zp and

r1 = s2 mod

(
p

gcd(p, q)

)
. (7.3.33)

The difference r1− s2 can then take gcd(p, q) values. Therefore there are p3gcd(p, q) gSPTs. To check

which of them are igSPTs we look for the extensions ψ̂ : A→ A∨, that are parametrized by σi, ρi ∈ Zq

ψ̂σ1,σ2,ρ1,ρ2s1,s2,r1,r2 (x, y) =

(
(s1 + pσ1)x+ (r1 + pρ1)y, (s2 + pσ2)x+ (r2 + pρ2)y

)
, (7.3.34)

and for this to be symmetric, i.e. for an extension to exist, the condition is

r1 + pρ1 = s2 + pσ2 mod(n) . (7.3.35)

Thus if r1 = s2 mod p there is a symmetric extension. Otherwise, there is no one, and in the latter

case we get an igSPT. We conclude that, among the p3gcd(p, q) gSPTs, p3 are non-intrinsic, while the

remaining p3(gcd(p, q)− 1) are igSPTs.

7.3.4 Physical Realization of igSPT Phases

We can take as input any of the igSPT phases we found and produce a physical IR theory that realizes

it similarly to the (1+1)d construction of [196]. To illustrate the idea, we consider the realization of

the minimal example of A = Z4 × Z2, which is associated with B = Z2 and ψ(2a, 0) = (0, a). We

take a CFT T0 with 1-form symmetry Zin
4 and construct T0/Z2 by gauging the Z2 ⊂ Zin

4 subgroup of
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Group Ze2 Zm2 Ze′2 Zm2 ∨ Ze′2
∨ Z4

Background Field Be Bm B′
e B̂m B̂′

e 2B̂m +Be

Table 7.3: 1-Form symmetry groups and background fields.

the 1-form symmetry. Since Zin
4 is a non-trivial extension, in the resulting theory the dual Zm2 = Z∨

2

1-forms symmetry and the quotient Ze2 = Zin
4 /Z2 have a mixed ’t Hooft anomaly

2πi

2

∫
X5

Be ∪ β(Bm) , (7.3.36)

with Bm the background for the dual symmetry Zm2 , and Be the background for the quotient Ze2. We

then stack a completely trivial theory with 1-form symmetry Ze′2 , and use ψ to construct an SPT

involving Bm and the background B′
e for the decoupled Ze′2 :

2πi

2

∫
X4

Bm ∪B′
e . (7.3.37)

Finally, we gauge Zm2 ×Ze′2 with this SPT. Following similar steps as in Section 7.2.4 we find that the

resulting theory has symmetry Z4 × Z2. The Z4 part arises as a non-trivial extension:

1→ Zm2
∨ → Z4 → Ze2 .→ 1 (7.3.38)

Denoting by B̂m the background field for Zm2 ∨, there is a modified cocycle condition

δB̂m = β(Be) . (7.3.39)

The partition function of the resulting theory, that we denote by T, is

ZT

[
B̂m, Be, B̂′

e

]
= exp

(
−2πi

2

∫
X4

B̂m ∪ B̂′
e

)
ZT0/Z2

[
B̂′

e, Be

]
. (7.3.40)

Here B̂′
e is the background for the dual symmetry Ze′2

∨
(see table 7.3 for a summary of the symmetries

and background fields involved). As we will see shortly in a concrete model, this piece of the symmetry

acts trivially on the dynamical CFT, that is T0/Z2. The same is clearly true also for the Z2 ⊂ Z4

subgroup, as its background B̂m only appears in the multiplying phase. This is the same result as in

(1+1)d: the the anomaly of the dynamical part T0/Z2 is cancelled by the Green-Schwarz mechanism

due to the modified cocycle condition of B̂m and the presence of the multiplying phase. Hence the

CFT has an emergent anomaly that forbids from trivially gapping it by IR deformations. However,

remembering the presence of the symmetry Zm2 ∨ only acting on gapped degrees of freedom, the anomaly

is cancelled and it is possible to drive the system to a trivially gapped phase by a UV deformation.

This would, however, require to make gapless some of the degrees of freedom on which Zm2 ∨ is acting,

hence closing the symmetry gap and encountering a phase transition.

7.3.5 An SU(4) × SU(2) Gauge Theory Realization of igSPTs

This somewhat formal discussion can be made concrete in a model model where all the above ingre-

dients are embedded into an asymptotically free gauge theory. For instance, the CFT T0 with 1-form

symmetry Zin
4 can be realized as the fixed point of a SU(4) gauge theory with enough massless adjoint
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Ze2 Zm2 Ze′2 Twisted
Sector

T 1 i 1 Ze2

W i 1 −1 Zm2

T ′ 1 −1 1 Ze′2

Table 7.4: Charges of twisted lines under the various symmetries.

fermions ψ to land in the conformal window. For the trivial theory with Z2 symmetry we could simply

take pure SU(2) YM theory, but without affecting the IR we can replace it with SU(2) gauge theories

with massive adjoint fermions χ.11 This fact will be relevant at the end of the analysis.

Let us analyze the various line operators, and re-derive the above result in a more physical way,

interpreting it in terms of confinement/deconfinement. We denote by W a and T b, a, b = 0, ..., 3 the

Wilson and (non-genuine) ’t Hooft lines of the SU(4) sector, while by W ′, T ′ the analogous lines in

the SU(2) sector. Since the first sector is designed to flow in the conformal window, all the W a lines

have perimeter law, while T b have area law and disappear from the CFT. Vice versa, W ′ and T ′ have,

respectively, area and perimeter law. In the original SU(4) × SU(2) global variants, all the Wilson

lines are genuine, while the ’t Hooft lines are non-genuine, i.e. live in twisted sectors. In the IR this

flows to a CFT with Z4 1-form symmetry times a trivially gapped (confined) phase with Z2 zero-form

symmetry. The phase is not protected by symmetry, as turning on a mass for the adjoints ψ leads to

a trivially gapped (confined) theory.

We then pass to the SU(4)/Z2 global variant. Now the 1-form symmetry is

Ze2 × Zm2 × Ze
′
2 , (7.3.41)

and the genuine lines are W 2, T 2 and W ′, which are charged respectively under the three Z2 factors.

We then gauge Zm2 × Ze′2 adding the discrete torsion term (7.3.37), whose effect is to change the lines

that become genuine. In fact, before promoting Bm, B
′
e to dynamical fields, the lines W (W 3), T, T ′

are in twisted sectors, and the presence of the counterterm (7.3.37) changes their charges as in table

7.4. The factors of −1 stem from the stacking with the SPT phase, while the fractionalized charge i

describes the mixed ’t Hooft anomaly

πi

∫
Be ∪ β(Bm) . (7.3.42)

After gauging Zm2 ×Ze′2 , on top of keeping only the invariant lines (only W 2 in this case), we have

to add the twisted sector lines that are not charged under Zm2 × Ze′2 . Hence, the lattice of genuine

lines is generated by

WW ′ and T ′T 2 , (7.3.43)

as opposed to W and T ′, and the symmetry is Z4×Ze′2
∨

. The lines W and W ′ both go into the twisted

sector of Ze′2
∨

(whilst their product WW ′ is genuine), T goes into the twisted sector of Z4, while T ′

into the twisted sector of the subgroup Zm2 ∨ (indeed T ′T 2 is genuine).

11The reason for this choice is that, with the correct number of SU(2) adjoints, in the UV we may play with their

mass, eventually reaching the massless point so that the SU(2) sector also reaches a conformal point.
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Line WW ′ W 2 T ′T 2 W W ′ T ′ T

Area/Perimeter A P A P A P A

Genuine/Twisted genuine genuine genuine Ze′2
∨ Ze′2

∨ Zm2 ∨ Z4

Table 7.5: Confinement pattern of both genuine and non-genuine lines in the final theory T.

Following our dynamical assumptions, before the discrete manipulation, W and T ′ are deconfined,

while W ′ and T are confined. Thus in the low-energy theory the only genuine line present is W 2, as

both WW ′ and T ′T 2 have area law. This indicates that only a Z2 quotient of the 1-form symmetry

acts in the IR theory, which does not contain topological lines. Hence, this Z2 quotient acts on the

gapless sector. In the twisted sectors, instead, T and W ′ have area law, while T ′ and W have perimeter

law. Thus, both Ze4 and Zm′
2 can be detected at low energy by looking at the twisted sectors. The

reader can consult table 7.5 for a clear synthesis.

Deformation by Fermion Masses

We can now characterize the peculiar feature of this topological phase in this physical setup. Suppose

that we try to deform the IR in order to reach a fully confined phase. Since SSB for 1-form symmetry is

detected by reducing on an S1 we can think of a finite-temperature setup where a monopole potential,

as well as fermion masses, can be turned on if allowed in the IR. Let us first focus on fermion masses.

To completely confine the theory, we should confine the W 2 line. This can be done, for example,

by turning on an equal mass for all SU(4) adjoints12. This would imply that T has perimeter law.

Notice, however, that T is no longer present in the low energy description. Furthermore, if we give T

a perimeter law, then T ′T 2 is also deconfined, and we would break Ze′2
∨

spontaneously.

At first glance, this may seem akin to a (3+1)d CFT with an anomalous 1-form symmetry, which

prevents the theory from being trivially gapped. However, the unique aspect of this phase is the

absence of an anomaly for the full UV symmetry C. This indicates that the theory might become fully

confined if we can render some gapped degrees of freedom massless initially. For example, by tuning

to zero the UV mass for the SU(2) adjoints we can drive this sector to conformality in the IR.

Consequently, the WW ′ line has perimeter law, and the full Z4 acts non-trivially on the gapless

degrees of freedom. This represents a gapless SPT phase, but it is the non-intrinsic one. In fact, it

can be deformed into the trivial phase by uniformly increasing the masses for the low-energy adjoints

of both SU(4) and SU(2).

However, this deformation is not possible in the igSPT phase since, there, the SU(2) adjoints have

already been integrated out, and their mass operator is not part of the CFT. Furthermore, to make

this deformation possible, certain degrees of freedom need to become massless, leading to a phase

transition, supporting the assertion that the igSPT we are discussing is a distinct phase.

Deformation by Monopole Potentials

Finally, let us comment on robustness of this phase against another type of deformation, which is

important to distinguish this phase from more familiar ones. The fact that giving a mass to the SU(4)

adjoint fermions drives the CFT into a Z2 SSB phase should not be surprising, and we would have

12We assume that the fermion mass operator is still relevant in the IR CFT.
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found a similar result starting from PSU(4) gauge theory instead. However, in the latter, the SSB

phase is not protected by any mechanism.

In fact, the situation is different once we study the deformations obtained by reducing on S1 and

turning on monopole potentials. Here we use the abuse of terminology by which any local operator

obtained wrapping a line operator on S1 is called a monopole, independently of whether it is charged

under an electric or a magnetic symmetry.

In the PSU(4) theory on S1 × R3 we can turn on a monopole potential

V (WW†) , (7.3.44)

whereW is the Polyakov loop. By carefully choosing the potential, this condensesW and leads to the

PSU(4) confined phase. Notice that we can turn on this potential in the IR since W has a perimeter

law.

In the igSPT case, instead, we would like to turn on a potential for MM†:

V (MM†) , (7.3.45)

where M is the reduction of the ’t Hooft line on S1. However, table 7.5 shows that T has area law,

thus M is absent in the IR and this deformation is not available in the low-energy theory. We can

only turn on a potential for W2(W2)†, which would lead us too to a SSB phase for Ze4. Thus, the

igSPT phase cannot be trivially gapped by IR deformations.

7.4 Gapless Phases with Duality Symmetries

We now turn to exploring (intrinsically) gapless SPT phases for selected non-invertible symmetries. In

this section we will focus on duality-type symmetries in both (1 + 1)d and (3 + 1)d, giving a SymTFT

construction and discussing the constraints on the IR physics from the perspective of the gapless

sector.13

7.4.1 Phases with Duality Symmetries: (1+1)d

We want to generalize the analysis of the gapless phases in (1+1)d to a larger class of fusion categories

C whose Drinfeld center Z(C) is obtained from some Abelian topological order Z(VecA) by gauging a

finite invertible 0-form symmetry G 14. Examples are VecD2n , whose Drinfeld center is obtained by

gauging charge conjugation in Z(VecZn), and Tambara-Yamagami categories TY(A, γ, ϵ) [21, 91, 99,

202], whose center is obtained from Z(VecA) gauging electro-magnetic duality [3, 46, 186, 203]. Later

we will extend our approach to (3 + 1)d. Although the center of TY-categories is well-known [203],

our approach gives a construction of the center discussed in Chapter 6, which extends more easily to

higher dimensions (see also [46]). Our goal will be to determine the condensable algebras, including

SPT, gSPT, and most interestingly igSPTs, through the gauging.

Structure of the Center

We consider a faithful 0-form symmetry group G acting on A × A∨ by exchanging anyons, while

preserving fusion and braiding. Practically, there exists a group homomorphism Φ : G→ Aut(A×A∨)

13The methods and classification developed here generalize in a straightforward manner to G-ality defects. See [99,

200, 201] for recent studies.
14Without loss of generality we can assume G to act faithfully on Z(VecA).

210



such that

θΦg(a,α) = θ(a,α) , ∀a ∈ A , α ∈ A∨ . (7.4.1)

Faithfulness means that Φ defines an embedding G ⊂ Aut0(A×A∨) in the subgroup Aut0(A×A∨) ⊂
Aut(A× A∨) that preserves the pairing (a, α) 7→ α(a) ∈ U(1).

Structure of Aut0(A × A∨). Aut0(A × A∨) is generated by two subgroups: one is isomorphic to

Aut(A), the other to Z2. The embedding Aut(A) ⊂ Aut0(A×A∨) is canonical. Given an automorphism

ρ : A→ A, we have ρ−1∨ : A∨ → A∨ given by ρ−1∨(α)(a) = α(ρ−1(a)). Hence Pρ ∈ Aut0(A×A∨) is

given by

Pρ(a, α) =

(
ρ(a), ρ−1∨(α)

)
. (7.4.2)

The Z2 subgroup, instead, is generated by electro-magnetic duality S and its identification is non-

canonical. Given a choice of isomorphism ϕ : A→ A∨ such that ϕ∨ = ϕ – namely ϕ(a)b = γ(a, b) is a

symmetric bicharacter – then S is defined as15

S(a, α) =
(
ϕ−1(α), ϕ(a)

)
, (7.4.3)

and preserves the spins because of ϕ(a)b = ϕ(b)a. Z2 = ⟨S⟩ and Aut(A) do not commute, but

SPρS = Pρϕ , where ρϕ = ϕ−1ρ−1∨ϕ ∈ Aut(A) . (7.4.4)

With this Z2-action on Aut(A) we have Aut0(A× A∨) ∼= Aut(A) ⋊ Z2.

Anyons of the gauged center We consider the fusion categories C such that Z(C) = Z(VecA)/G.

To fix our notation and language, let us briefly review the anyon content of Z(C), in a way that can

be generalized to higher dimensions [2, 3, 45, 46]. As this is a well-known procedure, we refer the

reader to [77] for details. In the following, we only consider the case of G Abelian and, in particular,

G = Z2. Anyons in Z(C) fall into three classes:

• G-invariant combinations (orbits) of anyons of Z(VecA). For G = Z2 they can be long orbits

Xa,b or invariant lines La,±.

• Lines ηr, r ∈ Rep(G) ∼= G∨ of the dual symmetry.

• Twist defects Σ(α, x), coming from the G-twisted sectors σa prior to the gauging. For G = Z2,

we have x = ±. These are the charged objects under the Rep(G) symmetry.

The suffix ± indicates that the Rep(G) symmetry line can fuse with the defect giving rise to a new

topological object. We summarize their structure, in the case of Tambara-Yamagami categories, in

table 7.7.

Let us exemplify this discussion in the example of VecD8 . D8 can be realized as a semidirect

product Z4 ⋊ Z2, where G = Z2 acts as a 7→ −a on Z4. Hence Z(VecD8) can be obtained following

the procedure described in Section 7.4.1, starting from Z(VecZ4) and gauging the G = Z2 symmetry

acting as charge conjugation

C : (a, b) 7→ (−a,−b) , (a, b) ∈ Z(VecZ4) = Z4 × Z4 . (7.4.5)

The invariant lines, that coincide with their own orthogonal (with respect to the braiding), are

15It is easy to check that two different choices ϕ1, ϕ2 lead to S2, S1 such that S2 = PρS1, with ρ = ϕ−1
2 ϕ1 ∈ Aut(A).
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Outer Auto ([g], ρ) Anyon label Dim T

L+
0,0 (1, 1) 1 1 1

L−
0,0 (1, 1a) eRG 1 1

L−
0,2 (1, 1x) eR 1 1

L+
0,2 (1, 1ax) eG 1 1

L0,1 (1, E) mB 2 1

L−
2,0 (a2, 1) eRGB 1 1

L+
2,0 (a2, 1a) eB 1 1

L+
2,2 (a2, 1x) eGB 1 1

L−
2,2 (a2, 1ax) eRB 1 1

L2,1 (a2, E) fB 2 −1

L1,0 (a, 1) mRG 2 1

L1,1 (a, i) sRGB 2 i

L1,2 (a,−1) fRG 2 −1

L1,3 (a,−i) s̄RGB 2 −i
Σ+
1,1 (x,+,+) mGB 2 1

Σ+
1.0 (x,+,−) mG 2 1

Σ−
1,0 (x,−,−) fG 2 −1

Σ−
1,1 (x,−,+) fGB 2 −1

Σ+
0,1 (ax,+,+) mRB 2 1

Σ+
0,0 (ax,+,−) mR 2 1

Σ−
0,0 (ax,−,−) fR 2 −1

Σ−
0,1 (ax,−,+) fRB 2 −1

Table 7.6: The table lists all anyons of Z(VecD8) using three distinct notations, see [186]. The first

column uses our notation, which is natural in the context of gauging. The second column employs the

standard notation for Z(VecG) for any finite group G, expressed through conjugacy classes [g] and

stabilizer representations ρ. The third column shows the corresponding labels in terms of three copies

of the toric code, as referenced in [204]. The final two columns display the quantum dimension and

spin.

F = F⊥ = {(2x, 2y) | x, y = 0, 1} ∼= Z2 × Z2 . (7.4.6)

The twist defects in the G-crossed extension of Z(VecZ4) can be labelled as

σ(a,b) , (a, b) ∈ {(0, 0), (1, 0), (0, 1), (1, 1)} =
Z4 × Z4

F⊥ . (7.4.7)

Notice that all twist defects are charge conjugation invariant.

Now we gauge G = Z2. We will denote by ± the trivial and non-trivial representations of Z2.

From the invariant bulk lines we obtain Abelian anyons:

L±
0,0 , L±

2,0 , L±
0,2 , L±

2,2 . (7.4.8)

From the non-invariant bulk anyons we get the dimension-two anyons:

L1,0 , L0,1 , L1,1 , L2,1 , L1,2 , L1,3 . (7.4.9)

Finally since the twist defects are all charge conjugation invariant we get

Σ±
0,0 , Σ±

1,0 , Σ±
0,1 , Σ±

1,1 . (7.4.10)
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Object Definition Dim # of Objects Spin θ

L(a, x) ηx ×
(
a, ϕ(a)

)
1 2 |A| γ(a, a)

X(a, b)

(
a, ϕ(b)

)
⊕
(
b, ϕ(a)

)
2 |A|

(
|A| − 1

)
/2 γ(a, b)

Σ(a, x) ηx × σa
√
|A| 2|A| (−1)x

√
ϵ

|A|1/2
∑
b∈A

fa(b)−1

Table 7.7: Objects (lines) of the 3d SymTFT for the Tambara-Yamagami symmetry.

In table 7.6 we present the translation between these labels and other labels for Z(VecD8) used in the

literature [186].

Condensable Algebras in Z(C)

In the present context, useful information about Z(C) can be inferred from the fact that Z(VecA) and

Z(C) are connected to each other by gauging G or Rep(G)(1) = G∨. To start with, we consider the

open club sandwiches, defined by condensable algebras. These define a topological interface16

Z(VecA)/G

= Z(C)
Z(VecA)

IRep(G)

G-gauging interface
(7.4.11)

The topological interface is a G-gauging interface, defined by gauging G in the right-half of the space

with Dirichlet boundary conditions for the G gauge field. Alternatively, it is associated with the

condensation of the algebra

AG =
⊕

r∈Rep(G)

ηr (7.4.12)

of Z(C). From the point of view of Z(C), Z(VecA) can be understood as a reduced topological order.

We can construct a lift from any condensable algebra A0 of Z(VecA) to a condensable algebra AG0 of

Z(C). Any condensable algebra A0 defines an interface IA0 (and viceversa), and AG0 is the algebra

corresponding to the stacking of the two interfaces

Z(C)

IA0

Z(VecA)

IRep(G)

shrink Z(VecA)
Z(C)

IAG0

(7.4.13)

We call these algebras induced algebras from A0. These do not exhaust all the possible condensable

algebras in Z(C) as they will all condense the Rep(G) lines. As appreciated in Chapter 6, the missing

16The study of such interfaces has a long history, dating back to [50, 130, 131], see also [185, 205] for recent studies in

(1 + 1)d.
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algebras are lifts of G-invariant algebras AI in Z(VecA):17

Φ(AI) = AI . (7.4.14)

Having found an invariant algebra, we must also specify a way in which the symmetry G acts on the

algebra structure of AI . This defines an equivariantization of AηI of AI , and can be characterized

precisely (see Section 6.2.4). We will often omit this datum unless relevant for the phase described.

An intuitive justification of this construction follows from considering the reduced topological order

Z(VecA)/AI and gauging the G symmetry:

Z(VecA)Z(VecA)AI

IAI

gauge G
Z(VecA)Z(VecA)AI/G

ÎAI

(7.4.15)

This setup is transparent to the Rep(G) lines and thus defines a new type of interface, denoted by ÎAI
.

This describes the most general reduced topological order in which the G symmetry is still present.

It is possible to find physical examples in which the G symmetry does not act faithfully on gapless

degrees of freedom without being broken. We will not discuss these examples, but let us briefly give

a flavor of how they are achieved.

Consider a lift of an invariant algebra AI . Since it is duality-invariant, we can often enlarge it

by including twisted sector operators Σa,x. This eliminates the G symmetry in the IR description by

gauging it. Alternatively, if invariant anyons La are present in AI , and we call Binv the subgroup that

they form, we can decorate ÂI with dual symmetry lines ηr using a group homomorphism ξ : Binv → G.

This eliminates the G symmetry from the IR description as it is nonlocal with respect to a nontrivial

decoration.

gSPT and igSPT phases for C

The structure we have just introduced allows for an efficient description of (i)gSPT phases for C. First

of all, notice that the canonical Lagrangian algebra Lsymm that fixes the symmetry to be C is nothing

but LG0 , induced by

L0 =
{

(0, α)| α ∈ A∨} , (7.4.16)

which in turn is the canonical Lagrangian algebra of Z(VecA) that gives the symmetry VecA. As

Lsymm contains all the Rep(G) lines, a necessary condition for a condensable algebra A to correspond

to a gSPT phase is:

A ∩ Rep(G) = {1} . (7.4.17)

Thus A must be a lift of an invariant algebra AI . Clearly AI is not just any invariant algebra in

Z(VecA), but must be a gSPT algebra in order to avoid an SSB phase of A.

However, what we are really interested in is determining which of these gapless SPT phases are

intrinsic. We then have to ask if a gSPT algebra ÂI is a subalgebra of a Lagrangian algebra L

corresponding to a (gapped) SPT. We will specialize to the case in which the duality symmetry acts

faithfully on gapless degrees of freedom. The general case is also treatable through our formalism,

but the complete classification becomes cumbersome. To continue the discussion, we use the result

17Strictly speaking, preserving a subgroup of G is sufficient, but our examples will all be for G = Z2.
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of Chapter 6 that (gapped) SPTs of Z(C) can only arise from G-invariant Lagrangian algebras LI of

Z(VecA). The corresponding SPT algebra L̃I of Z(C) is obtained as follows. First, we construct L̂I

that is condensable but non-maximal in Z(C). The reduced topological order is a Dijkgraaf-Witten

theory Z(VecωG). If the cocycle ω ∈ H3(G,U(1)) is trivial18 one can further condense the magnetic

lines of Z(VecG). This sequence of condensations defines a gapped boundary of Z(C), and L̃I is the

corresponding Lagrangian algebra.

Using these facts it is easy to see that if AI is a G-invariant igSPT algebra of Z(VecA), then ÂI is

also intrinsic.19Interestingly, the vice-versa is not necessarily true. We may have a G-invariant gSPT

algebra AI of Z(VecA) that is non-intrinsic –namely AI ⊂ L0 for some SPT Lagrangian algebra L0–

but the latter is not G-invariant and hence it does not give rise to a gapped SPT of Z(C). Finally,

we can have a Lagrangian algebra L
η
I with non-trivial equivariantization datum η, whose reduced

topological order describes a phase with VectωZ2
symmetry with nontrivial anomaly ω.

To summarize, we can distinguish three types of igSPT phases for theories with C symmetry:

• Type I: igSPT phases of VecA whose condensable algebra is G-invariant.

• Type II: gSPT phases of VecA which are not intrisic and whose condensable algebra is G-

invariant, but such that none of the SPT Lagrangian algebras containing it is G-invariant.

• Type III: SPT phases for the A symmetry which are described by a duality invariant Lagrangian

algebra LI , but with nontrivial choice of equivariantization L
η
I , which makes them igSPT phases

when taking into account duality.

The physical interpretation of Type I and Type II igSPT phases is quite different. Consider, for

instance, the case of duality defects, in which C extends VecA by adding a non-invertible defect N . A

Type I igSPT is an intrinsically gapless phase if we forget the duality, that simply remains so when

we remember it, but the presence of N does not play any fundamental role: the prize to pay for

gapping the theory is spontaneously breaking A. On the other hand, a Type II igSPT is such that it

is non-intrinsic if we forget duality, hence it can be deformed to a gapped phase if we discard the non-

invertible symmetry, but it is intrinsic precisely because of its presence. Hence it is a topological phase

protected by the non-invertible symmetry, and if we want to gap the theory, we need to spontaneously

break it. Type III phases are similar to Type II phases, in which the full A symmetry has been

realized in a trivially gapped fashion. From the perspective of the gapless degrees of freedom, the

duality symmetry is realized in very different manners:20

• In Type I igSPTs the duality defect is realized as an invertible and anomaly-free symmetry.

• In Type II igSPTs, it is instead realized as a non-invertible, but anomalous symmetry.

• In Type III igSPTs the duality symmetry in the IR is invertible, but anomalous.

At this point, it is useful to discuss some concrete example. It turns out that the natural igSPT phases

in (1+1)d are of Type I or III, while we will see examples of Type II igSPTs in (3+1)d.

18ω depends not only on the symmetry and the algebra LI, but also on its equivariantization L
η
I .

19If it was not, then ÂI ⊂ L̃I for some SPT algebra of Z(C), but then AI ⊂ LI.
20For readers familiar with the obstruction theory describing anomalies of Tambara-Yamagami categories [3, 21, 148],

Type I igSPTs realize anomalous 1-form symmetries in the IR, Type II igSPTs realize anomalous Tamabara-Yamagami

type categories with a nontrivial first obstruction, and Type III igSPTs realize anomalous Tambara-Yamagami categories

with trivial first obstruction and nontrivial second obstuction.
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Type I igSPT phases for VecD8. The Drinfeld center of VecD8 is obtained from Z(VecZ4) by

gauging charge conjugation C : (a, b) 7→ (−a,−b).
The group-symmetry VecD8 admits two igSPT phases of Type I. Indeed the well known VecZ4

igSPT with algebra

AZ2,1,ψ = {(2x, 2x) |x = 0, 1} (7.4.18)

is C-invariant. Moreover since the line (2, 2) is by itself C-invariant, this algebra gives rise to two

decorated igSPT algebras in Z(VecD8) in

Â±
Z2,1,ψ

= L0,0 + L±
2,2 . (7.4.19)

Finally, since the only SPT Lagrangian algebra of Z(VecZ4), namely LSPT = {(a, 0)}, is C-

invariant, it gives rise to an SPT for VecD8 and there cannot be Type II igSPT phases.

This result matches the finding of [186] by direct analysis of the modular data of the Drinfeld

center and the structure of its Hasse diagram. We can also use the present formalism to generalize

this example to find igSPT phases for all VecD2n .

Type I igSPT phases in TY categories. Tambara-Yamagami categories TY(A, γ, ϵ) are classified

by a finite Abelian group A, a symmetric bicharacter γ : A×A→ U(1) and a Froboenius-Schur indi-

cator ϵ = ±1 [202]. As we have seen in Chapter 6, these data appear naturally in the Drinfeld center,

which can be obtained from Z(VecA) by gauging the electro-magnetic duality (7.4.3) determined by

a symmetric isomorphism ϕ : A → A∨ (γ(a, b) = ϕ(a)b is the associated bicharacter) with discrete

torsion ϵ ∈ H3(Z2, U(1)) = Z2.

Consider the case A = Zn × Zn with off-diagonal bicharacter ϕO(x, y) = (y, x) and trivial FS

indicator, which always admits gapped SPT phases (see Chapter 6). As we have seen, if n = pq,

gcd(p, q) ̸= 1 there is a class of igSPT for VecA, AZp×Zp,1,ψ with ψ given by (7.2.30). These algebras

produce igSPT phases for TY (Zn×Zn, γO,+) if they are duality invariant, and a necessary condition

for this to happen is that the image of ψ must be Zp × Zp. Setting r = 0 (r ̸= 0 corresponds to

stacking a gapped SPT) this requires p = q: otherwise t = p/ gcd(p, q) is never invertible over Zp, and

the image will be tZp × tZp ⊂ Zp × Zp, which is a proper subset.

The simplest example is n = 9, p = q = 3, and we choose k1 = k3 = r = 0, k2 = 1. This gives the

algebra

AZ3×Z3,1,ψ = {(3x, 3y; 3y, 3x) | x, y = 0, 1, 2 } (7.4.20)

that is duality invariant for the off-diagonal bicharacter and produces an igSPT phase of of Type I

with algebra

ÂZ3×Z3,1,ψ =

2⊕
x,y=0

(3x, 3y; 3y, 3x) . (7.4.21)

Notice that, even though all 9 anyons appearing are individually duality invariant, no decoration of

this algebra is possible. Indeed, all non-trivial anyons are of order three, hence dressing one of them

with the non-trivial generator of the quantum symmetry Rep(Z2) would imply the presence of the

dressed identity line, that is not consistent with an SPT.21

21An example where decoration is possible is n = 16, p = q = 4, and again k1 = k3 = r = 0, k2 = 1:

AZ4×Z4,1,ψ = {(4x, 4y; 4y, 4x) | x, y = 0, ..., 3} . (7.4.22)

This is essentially the same as before, but since as a group AZ4×Z4,1,ψ
∼= Z4 × Z4, we can freely assign a representation

to each of the two generators of Z4 × Z4, and this algebra produces 22 = 4 igSPT phases of Type I.
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We also comment on the symmetry realization on the gapless sector. After condensing AZ3×Z3,1,ψ,

the resulting theory describes Z(VecZ9), with electric and magnetic lines generated by E = (1, 0; 0,−1)

and M = (0, 1; 2, 0), respectively. A simple computation shows that our UV choice for duality symme-

try descends to charge conjugation C. Furthermore, the gapped boundary condition Bsym is mapped

to the Lagrangian algebra LZ3,1, which describes a theory with Z3 × Z3 symmetry - with a mixed

anomaly - stacked to an invertible Z2 duality symmetry (see Chapter 6).

Type III igSPTs in TY categories. An example of Type III igSPT can also be found in the TY

category. Consider Rep(D8) = TY(Z2×Z2, γO,+). This was the first non-invertible igSPT discovered

[186]. We will show that the present formalism reproduces it correctly. This symmetry allows for a

duality-invariant SPT by using the Lagrangian algebra:

L = {(x, y;x, y) , x, y = 0, 1} . (7.4.23)

The duality symmetry can act on this algebra in multiple manners, namely the different equivarianti-

zations discussed in 6. In practice they are in one-to-one correspondence with one cochains η which

form a torsor over:

H1
σ(Z2, L

∨) , (7.4.24)

satisfying

dση(b, b′) =
χ[ψ](b, b′)

χ[ψ](σ(b′), σ(b))
. (7.4.25)

Importantly, they induce a ’t Hooft anomaly ω ∈ H3(Z2, U(1)) for the (invertible) duality symmetry

after gauging, given by:

ω = Arf(η) . (7.4.26)

In our example σ = 1 and the r.h.s. of (7.4.25) vanishes. Since H1(Z2,Z2×Z2) = Hom(Z2,Z2×Z2) =

Z2 × Z2 there are four inequivalent choices. We have shown in Chapter 6 (see also [21]) that the η

map sending the generator of Z2 to (1, 1) ∈ Z2 × Z2 has negative Arf invariant. This describes an

igSPT between Rep(D8) and Zω2 , as already shown in[186].

7.4.2 Phases with Duality Symmetries: (3+1)d

The formalism developed in the last subsection can be extended to discuss duality defects in (3+1)d,

that arise when a theory is self-dual under gauging a 1-form symmetry A(1) [24, 25]. In Chapter 6

we showed how to obtain the Drinfeld center by gauging electro-magnetic duality of Z(A(1)), and

how to use it to characterized (gapped) SPT phases. We then use the ideas of the last subsection to

characterize intrinsically gapless SPT phases, and discuss examples.22

SPTs for Duality Defects

Self-duality Symmetry. As for 0-form symmetries in (1+1)d, also the SymTFT Z(A(1)) for 1-

form symmetries in (3+1)d has a universal electro-magnetic symmetry determined by a symmetry

isomorphism ϕ : A→ A∨. The only difference is that, since the braiding in five dimensions (8.2.18) is

antisymmetric, the duality symmetry is

G = ⟨S⟩ : (a, α) 7→
(
−ϕ−1(α), ϕ(a)

)
, (7.4.27)

22It should be noted that, in higher dimensions, a Lagrangian algebra does not uniquely specify a gapped phase, as

decoration by boundary topological order is possible, see e.g. [206–209]. Our results remain valid, however including

these further data will lead to a larger set of igSPTs.
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n 2 5 10 13 17 25 26 ...

r 1 2, 3 3, 7 5, 8 4, 13 7, 18 5, 21 ...

Table 7.8: First few values of n for which the equation r2 = −1 mod(n) has solutions.

and has order 4. By gauging it, eventually with discrete torsion ϵ ∈ H5(Z4, U(1)) ∼= Z4, we get the

SymTFT for theories self-dual under gauging A(1), which include a non-invertible symmetry defect N
[2, 3, 45, 46].

Let us set ϵ = 0 for simplicity. As shown in Chapter 6 (see also [45]) the SPT phases for the

self-duality symmetries are given by G-invariant SPT phases for the 1-form symmetry A(1). These

are Lagrangian algebras LA,ψ such that S (LA,ψ) = LA,ψ. This last condition can be translated into

the requirements that [3] ψ : A → A∨ is an isomorphism, and σ := ϕ−1 ◦ ψ is a square root of the

inversion:

σ2 = −1 . (7.4.28)

For A = Zn this is equivalent to the existence a quadratic residue of −1. In table 7.8 we report the

first few values of n for which this exists.

Since it will be important for us, let us also consider A = Zn × Zn. There are two natural choices

of isomorphism ϕ in the Zn × Zn case

• The diagonal ϕD(x, y) = (x, y).

• The off-diagonal ϕO(x, y) = (y, x).

In the first case a duality invariant SPT is given by a symmetric matrix

ψ =

(
α β

β δ

)
(7.4.29)

such that ψ2 = −1. This means that

α2 + β2 = δ2 + β2 = −1 , (α+ δ)β = 0 . (7.4.30)

Taking β = 0, this again reduces to the existence of a quadratic residue of −1. We can also take

α = −δ, and the condition becomes23

α2 + β2 = −1 mod(n) . (7.4.31)

This choice of algebra prescribes perimeter law for the dyonic lines

W−α
1 T1 , W−δ

2 T2 , β = 0

W−α
1 W−β

2 T1 , Wα
2 W

−β
1 T2 , β2 = −1 mod(n) .

(7.4.32)

On the other hand for ϕO the existence of duality invariant SPTs is that

(ϕ−1
O ψ)2 =

(
β δ

α β

)2

=

(
β2 + αδ 2δβ

2αβ β2 + αδ

)
= −1 . (7.4.33)

23This is a weaker condition because even if −1 is not a square, it might be a sum of two squares. For example, this is

what happens for n = 3. However, for n = 4 even this weaker condition cannot be satisfied. In general, if n = 0mod(4)

there is no solution, whereas for all other values of n there is at least one.
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This can always be solved by taking δ to be coprime with n and

α = −δ−1 , β = 0 . (7.4.34)

Moreover, if there is a quadratic residue of −1, it is also solved by α = δ = 0 and :

β2 = −1 mod(n) . (7.4.35)

Thus, with the off-diagonal isomorphism, the duality defect for a Zn × Zn 1-form symmetry has an

SPT for any n.

The above SPTs are realized by assigning perimeter law to the dyonic lattice generated by:

W−α
1 T1 , Wα−1

2 T2 , β = 0

W−β
1 T2 , W−β

2 T1 , β2 = −1 mod(n) .
(7.4.36)

gSPT and igSPT for Duality Defects

We now look at gapless SPT phases protected by duality symmetry. The general story of Sections

7.4.1 and 7.4.1 applies also here. The only difference concerns the decoration: the topological defects

of Z(A(1)) related with the 1-form symmetry are surfaces, hence they have a different dimensionality

of the lines generating the quantum symmetry Rep(G). Invariant lines, strictly speaking, do not come

in copies labeled by representations but can be stacked with condensates of the quantum symmetry

[8, 210, 211], and condensable algebras can sometimes be decorated with these condensates. We will

not analyze this here, and we leave the analysis of the physical relevance of these decoration for the

igSPT phases for future studies.

Starting from the condensable algebras for the 1-form symmetry A(1) studied in Section 7.3, we

again have a classification into Type I, II and III igSPT phases. Interestingly, there are natural

examples of all these types in (3+1)d. In particular, Type II igSPTs are gapless phases which would

not be intrinsic in absence of the non-invertible symmetry, but the presence of the latter forbids to

gap the theory, while Type III igSPTs are characterized by the presence of an anomalous, invertible

duality symmetry in the infrared.

Type I igSPTs for Zn × Zn and ϕD. We look at theories with 1-form symmetry Zn×Zn and duality

defects associated with the diagonal bicharacter ϕD(x, y) = (x, y). Clearly, interesting examples of

igSPT phases are those that do not have a UV anomaly, so the theory would be compatible with a

gapped SPT. Thus we look at integers n ̸= 0 mod(4) . As we have seen in Section 7.3, the 1-form

symmetry Zn × Zn admits igSPT phases only if n can be written as the product of two non-coprime

integers. The smallest such integer, which is ̸= 0 mod(4) is n = 9, for which p = q = 3. The most

general igSPT for the 1-form symmetry is determined by the condensable algebra

AZ3×Z3,1,ψ =

{(
(3x, 3y); (ψ(3x, 3y))

)
| x, y = 0, 1, 2

}
(7.4.37)

with ψ represented by the matrix

ψ =

(
s1 r1

s2 r2

)
(7.4.38)

with r1 ̸= s2 mod(3) for the phase to be intrinsic. The condition of duality invariance is ψ2 = −1,

that is

s21 + r1s2 = r22 + r1s2 = −1 , r1(s1 + r2) = s2(s1 + r2) = 0 . (7.4.39)

219



Setting s1 = r2 = 0 (since they represent stacking with an ordinary SPT), this can be solved by

s2 = −1 , r1 = 1 (or vice versa) . (7.4.40)

Since r1 ̸= s2, this leads to an algebra ÂZ3×Z3,1,ψ representing an igSPT phase for the full categorical

structure including the duality defect.

A Type II igSPT for Z4 × Z4 and ϕO Consider A = Z4 × Z4, and duality associated with the

off-diagonal bicharacter ϕO(x, y) = (y, x). This symmetry is non-anomalous and compatible with

gapped SPT phases24. It is easy to check that there are no Type I igSPTs in this case. There are,

however, igSPT phases of Type II. Consider the subgroup (Z2)L ⊂ Z4 × Z4 with the homomorphism:

ψ(2a, 0) = (0, 2a) . (7.4.42)

The algebra A0 defined by this homomorphism

A0 = {(0, 0; 0, 0), (2, 0; 0, 2)} (7.4.43)

is duality invariant for the off-diagonal isomorphism. We have seen that for the 1-form symmetry this

is a gSPT, but not igSPT. Indeed there are symmetric extensions, and the most general one is

ψ̂σ1,σ2,k(x, y) = (2σ1x+ (1 + 2σ2)y, (1 + 2σ2)x+ ky) , (7.4.44)

where σ1, σ2 = 0, 1, while k = 0, 1, 2, 3. Since A0 is a duality invariant gSPT for the 1-form symmetry,

it produces a gSPT Â for the full categorical duality symmetry. To determine whether Â is an igSPT

(of Type II) or not we need to check if some of the extensions ψ̂σ1,σ2,k define duality invariant SPTs

– if they do not, these are igSPTs. We have

(
ϕ−1
O ψ̂σ1,σ2,k

)2
=

(
1 + 2kσ1 2k

0 1 + 2kσ1

)
. (7.4.45)

For this to be −1, we would need k to be even. But then 1+2kσ1 = 1 mod(4). We conclude that there

is no duality-invariant symmetric extension of ψ. Hence Â is an igSPT protected by the categorical

duality symmetry.

A complementary perspective: line order parameters. Let us study the Z4 × Z4 example

from the perspective of line operators. The algebra A0 = {(0, 0; 0, 0), (2, 0; 0, 2)} describes a gapless

phase where the dyon

W 2
2 T

2
1 , (7.4.46)

has perimeter law. The gapped dressing is duality-invariant with ϕO as the condensed line is. Now we

ask whether we can condense the required dyons to reach a duality-invariant trivially gapped phase.

Following our previous classification, for n = 4 these are described by α = 1, 3 ;β = 0 and correspond

to the condensation of

W1T1 , W
3
2 T2 , or W 3

1 T1 , W2T2 , (7.4.47)

24There are duality invariant Lagrangian algebras for the 1-form symmetry, for instance:

L = {(x,−y;x,−y), x, y = 0, ..., 3} . (7.4.41)
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respectively. We notice, however, that all four of these lines are non-local w.r.t. W 2
2 T

2
1 and thus have

area law. We conclude that the necessary monopole potential is inaccessible in the deep IR and the

phase is protected by the duality symmetry.

Furthermore, we can also show that, breaking duality, it is possible to gap out the theory by an

IR deformation. Consider the dyons T2W1 and T−1
1 W2, which are mutually local with respect to the

condensed one and have perimeter law in the IR. We can turn on a monopole potential for them and

let them condense. This corresponds to the completion

A = {(a, b; b,−a)} , (7.4.48)

for the algebra A0.

We can also be more specific about the realization C′ of the symmetry in the gapless degrees of

freedom and describe the anomaly. Condensing A0 gives rise to a Z4 × Z2 DW theory, with lines

generated by:

E = (0, 1; 1, 0) , M = (0, 0; 0, 1) , (7.4.49)

E′ = (1, 0; 0, 1) , M ′ = (0, 0; 2, 0) . (7.4.50)

The UV duality symmetry acts by:

S(E) = −E +M ′ , S(M) = M − E′ ,

S(E′) = −E′ + 2M , S(M ′) = M ′ + 2E .
(7.4.51)

We can ask whether this duality symmetry is anomalous. The most general SPT for the 1-form

symmetry is parametrized by algebras Ll,s,s′ with generators:

E + lM + sM ′ , E′ + 2sM + s′M ′ . (7.4.52)

We then ask whether any of these is duality-invariant. It is straightforward, although tedious, to

show that none of these Lagrangian algebras are duality invariant. We thus conclude that the duality

symmetry that acts on the gapless degrees of freedom is anomalous.

A Type III igSPT for Z2. Type III igSPTs are also quite easy to derive. Consider the simplest

case A = Z2, where an SPT for the duality symmetry is described by the dyonic algebra LD generated

by (1, 1). On the gapped boundary corresponding to LD the symmetry is Z(0)
2 × Z(1)

2 with a mixed

anomaly [25]:

I = πi

∫
A ∪ 1

2
P(B) . (7.4.53)

An equivariantization of LD contains a choice of symmetry fractionalization class, η ∈ H2
σ(Z2,Z2) =

Z2. The non-trivial choice η(A) = β(A) = 1
2dA shifts the mixed anomaly and gives a term

I ′ = πi

∫
A ∪ β(A)2 , (7.4.54)

describing an anomalous (invertible) duality symmetry. Thus, this algebra realizes a Type III igSPT

from the non-invertible duality symmetry to Zω2 .
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7.5 igSPTs for 2-Groups in (2+1)d

We conclude by briefly discussing an example of a igSPTs in (2+1)d for 2-group symmetries. The

idea is that in a 2-group the 1-form symmetry part is a subgroup, while the 0-form is a quotient. If

along an RG flow the charged lines confine, the 1-form symmetry is trivialized and we may end up in

a CFT with an anomalous 0-form symmetry (even though the full 2-group is not anomalous).

Consider a discrete 2-group Γ, with 0-form symmetry A and a 1-form symmetry B:

1 −→ B −→ Γ −→ A −→ 1 . (7.5.1)

We consider a trivial A action on B but a non-trivial Postinikov class β ∈ H3(A,B) [15]. The SymTFT

for this system admits a Lagrangian description25

S = 2πi

∫
4d
C ∪ dB + 2πi

∫
4d
T ∪ dA+ 2πi

∫
4d
C ∪ β(A) , (7.5.2)

with C ∈ C1(X,B∨) and T ∈ C2(X,A∨), while B ∈ C2(X,B) and A ∈ C1(X,A). Integrating out

C imposes the 2-group constraint:

dB = −β(A) . (7.5.3)

The 2-group is realized by imposing Dirichlet boundary conditions for B and A, which become the

background fields B and A for the 2-group. Now suppose that, as groups, B is a subgroup of A∨, and

let ι : B ↪→ A∨ be the corresponding embedding. This induces a (surjective) map ι∨ : A→ B∨ defined

by ι∨(a)(b) = ι(b) · a.

This allows us to define a new interface Iι, by: C− ι∨(A) = 0 , or, in terms of lines, by condensing

the algebra generated by

exp

(
2πi

∫
γ
(C − ι∨(A))

)
. (7.5.4)

Since these lines braid non-trivially with the surfaces ei
∫
ΣB, the reduced topological order is

SIι = 2πi

∫
4d
T ∪ dA+ 2πi

∫
4d
ι∨(A) ∪ β(A) . (7.5.5)

This is a Dijkgraaf-Witten theory for A, with twist ω ∈ H4(A, U(1)) such that

A∗(ω) = ι∨(A) ∪ β(A) . (7.5.6)

Physically we are describing a situation where the lines charged under the 1-form symmetry part of the

2-group are completely confined, and there is a gapless theory capturing the low energy dynamics below

the scale of confinement. The 1-form symmetry is trivialized in the IR, while the 0-form symmetry

A acts on the gapless sector. If ω ∈ H4(A, U(1) is non-trivial, the 0-form symmetry has an emergent

anomaly and the gapless phase is an igSPT.

An simplest example is B = Zn and A = Zn × Zn, with ι : Zn → Zn × Zn the embedding in the

right factor.26 Decomposing A = (A1, A2) as a pair of two Zn gauge fields, we have ι∨(A) = A2. If

the Postnikov class is such that

β(A) = A1 ∪ Bock(A1) , (7.5.8)

then the emergent anomaly for the IR symmetry Zn × Zn is non-trivial

I = 2πi

∫
A2 ∪A1 ∪ Bock(A1) . (7.5.9)

25Here β(a) ∈ C3(X,B) denotes the pull-back a∗(β), with a realized as a map X → BA.
26Anomalies for Zn × Zn in 3d are classified by H4(Zn × Zn, U(1)) ∼= Zn × Zn. The two generators are

2πi

∫
4d

A1 ∪A2 ∪ Bock(A2) , 2πi

∫
4d

A2 ∪A1 ∪ Bock(A1) . (7.5.7)
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Chapter 8

Anomaly and gauging of U(1)

symmetries

In this chapter we extend the SymTFT framework to include continuous symmetries. We mostly

focus on theories with a U(1) symmetry in arbitrary dimension, and make some comments on the

non-Abelian cases. We provide a Lagrangian description of the SymTFT, written in terms of gauge

fields for group R — as opposed to U(1). These theories are TQFTs with a continuum of operators,

hence they constitute new mathematical objects with few properties that deviate from the standard

well-known cases (see Appendix E for a first attempt to a mathematical definition of these TQFTs).

The SymTFT describes the structure of the symmetry, its anomalies, and the possible topological

manipulations, i.e., to gaugings of discrete symmetry subgroups, or alternatively of the whole U(1)

but in a flat way 1. We also propose an operation that produces the SymTFT for the theory obtained

by dynamically gauging the U(1) symmetry. We provide a few selected examples of our construction.

For instance, we give the SymTFT description of the chiral anomaly in two and four dimensions,

as well as the SymTFT for a 4d Abelian gauge theory with 2-group symmetry. We also provide a

3d example, illustrating interesting phenomena even in the absence of anomalies (that do not exist

in odd dimensions). A particularly interesting outcome of our construction is the SymTFT for the

non-invertible Q/Z symmetry that arises from a U(1) chiral symmetry with ABJ (Adler-Bell-Jackiw)

anomaly in 4d Abelian gauge theories [28, 29].

8.1 SymTFT for U(1) symmetries

The SymTFT contains all the categorical data of the global symmetry of the boundary QFTd. For

the simple Abelian TQFTs considered in this chapter, both the topological symmetry defects of the

boundary QFT that (in the language of [11]) generate the symmetry, and the charges that the operators

can carry, are described by the bulk operators 2. A choice of boundary condition corresponds to a

maximal set of mutually-transparent bulk operators (which we call a Lagrangian algebra L) that can

terminate on the boundary. In other words, the boundary condition sets those operators to be trivial

on the boundary. The endpoints (or more generally end-surfaces) of those operators correspond to

the charged operators in the boundary theory, therefore L is also the set of charges that the operators

of the boundary theory can have. On the contrary, we can produce topological operators of QFTd by

1The flat gauging of a U(1) p-form symmetry consists in summing over all flat bundles. It is a topological manipulation

that does not introduce new degrees of freedoms, and yields a dual (d−p−2)-form symmetry Z.
2More generally, the SymTFT contains complete information also on generalized charges, namely representations of

p-form symmetries on q-dimensional objects, where q ≥ p [119].
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laying the bulk operators on the topological boundary. Therefore the symmetry defects that generate

the symmetry of the boundary theory are the operators of the SymTFT modulo L.

We propose that the SymTFT for continuous U(1) symmetries, either 0-form or higher p-form, is

a BF theory of gauge fields for gauge group R, as opposed to U(1). To explain this point, it is useful

to first review the ordinary BF theory description of ZN gauge theory.

U(1) gauge fields. The ZN gauge theory in d+ 1 dimensions can be formulated as a BF theory of

standard U(1) gauge fields using the action [30, 84, 85]

Z =
iN

2π

∫
Xd+1

Bd−p ∧ dAp . (8.1.1)

The gauge fields are not globally-defined forms: they are patched using U(1) gauge transformations

δAp = dλp−1 and δBd−p = dλd−p−1. This leads to the Dirac quantization condition

1

2π

∫
γp+1

dAp ∈ Z ,
1

2π

∫
γd−p+1

dBd−p ∈ Z , (8.1.2)

where γj are closed j-cycles. We can define extended operators

Uα(γd−p) = e
iα

∫
γd−p

Bd−p
, Wβ(γp) = e

iβ
∫
γp
Ap , (8.1.3)

and invariance under large gauge transformations requires α, β ∈ Z.

In order to obtain the EOMs, it is convenient to decompose each gauge field into a representative of

nontrivial U(1) bundles, over which one has to sum, and a globally-defined form describing fluctuations

within a given bundle. Variations with respect to the fluctuations give dAp = 0 and dBd−p = 0, which

guarantee that the operators (8.1.3) are topological. The sum over bundles produces delta functions

imposing
N

2π

∫
γp

Ap ∈ Z ,
N

2π

∫
γd−p

Bd−p ∈ Z . (8.1.4)

This implies that the operators (8.1.3) with α → α + N or β → β + N are equivalent. Hence the

theory has the following nonequivalent topological operators 3:

Un(γd−p) , Wm(γp) , with n,m ∈ ZN . (8.1.5)

The braiding between these operators can be computed by inserting one operator in (8.1.1) as a source,

and then evaluating the VEV of the other one with the EOMs. The result for the braiding is

B(α, β) = exp
(
2πi
N αβ

)
. (8.1.6)

This is the phase picked up by correlation functions when an operator Uα is moved across an operator

Wβ. The data (8.1.5) and (8.1.6) characterizes the ZN gauge theory.

There are various topological boundary conditions.

• A natural boundary condition is that the operators Wm (with m ∈ ZN ) can terminate on the

boundary. The defects Un with n ∈ ZN can lie on the boundary and play the role of symmetry

defects for a

ZN (p−1)-form symmetry . (a)

We can express the condition as a Dirichlet boundary condition for Ap which then plays the role of

the background field for the (p− 1)-form symmetry. Anomalies are obtained by adding topological

terms to Z written in terms of Ap. These terms affect the EOMs and in general change the list of

topological operators, the braiding, the possible boundary conditions, etc. . . .

3The theory might contain other topological operators, for instance condensates [26] or theta-defects [31, 211].
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• Another boundary condition is to let the defects Un (with n ∈ ZN ) terminate on the boundary.

This gives

ZN (d−p−1)-form symmetry (b)

on the boundary. Indeed, the two symmetries are related by the flat gauging of ZN in the boundary

theory.

Other boundary conditions might exist, for instance when N has divisors, or when p = d− p.

R gauge fields. In [133] it was found that the theory of a 2d free compact scalar — that has U(1)2

global symmetry — admits a dual holographic description in terms of a certain 3d Chern-Simons

theory of two gauge fields for group R, as opposed to U(1). This suggests to study the Abelian BF

theory with action

Z =
1

2π

∫
Xd+1

bd−p ∧ dap , (8.1.7)

where ap and bd−p are gauge fields for the group R. This means that they are globally-defined forms,

subject to small but not large gauge transformations. R-bundles are necessarily trivial, namely the

Dirac quantization conditions collapse to∫
γp+1

dap =

∫
γd−p+1

dbd−p = 0 , (8.1.8)

which is Stokes’ theorem. We can always rescale ap or bd−p by a real constant, so that the overall

coefficient in Z is unphysical and we have fixed it to 1.

The EOMs simply set dap = 0 and dbd−p = 0, so that the operators Uα and Wβ are topological.

Since there are no large gauge transformations, those operators are gauge invariant with no restrictions

on α and β. Since there are no nontrivial bundles to sum over, there are no restrictions on the

holonomies. We conclude that the theory has the following topological operators:

Uα(γd−p) , Wβ(γp) , with α, β ∈ R . (8.1.9)

The braiding is as in (8.1.6) but with N = 1. Various topological boundary conditions are possible.

• Let all defects Wβ(γp) terminate on the boundary. They represent charged operators along ∂γp

with generic charges β ∈ R. All defects Uα(γd−p) can lie on the boundary and play the role of the

symmetry defects for an

R (p−1)-form symmetry . (c)

Such a symmetry indeed allows for generic charges. An example of a theory with this symmetry is

a free R (p− 1)-form gauge field (for p = 1 this is a free noncompact scalar).

• Similarly, let all defects Uα(γd−p) terminate on the boundary. This describes an

R (d−p−1)-form symmetry (d)

on the boundary. It is obtained from (c) by gauging the whole R on the boundary (the Pontryagin

dual to R is R). This gauging, in order to be topological, must be a flat gauging. This means

that the field strength of the boundary gauge field is identically zero and we only sum over flat

connections.

• Let the defects Un and Wm with n,m ∈ Z terminate on the boundary. From (8.1.6), this choice

constitutes a maximal set of mutually-transparent operators and is thus a Lagrangian algebra. The

coset classes of operators that can lie on the boundary are given by Uα and Wβ with α, β ∈ R/Z =
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U(1). Thus there are two factors, such that charged operators have integer charges while defects

are valued in U(1). This describes a

U(1)(p−1) × U(1)(d−p−1) symmetry . (e)

The two factors have a mixed anomaly. This is obtained from (c) by gauging a Z subgroup of R
(U(1) is the Pontryagin dual to Z) and the mixed anomaly follows from the fact that the exact

sequence 0→ Z→ R→ U(1)→ 0 does not split [154]. An example of a theory with this symmetry

is a free U(1) (p − 1)-form gauge field (for p = 1 this is a free compact scalar, for p = 2 a free

photon), dual to a free U(1) (d− p− 1)-form gauge field. We refer to these theories as generalized

Maxwell theories.

In the last case, one could more generally consider the defects UnR and WmR−1 for any real constant R.

This would amount to rescale the radii of the two U(1) factors. The SymTFT does not determine the

actual value of the radius, but can compare the radii arising in two different topological boundaries.

For instance, for p = 1 we get a compact boson whose radius is R times larger than the one in case

(e). Similarly, for p = 2 the choice of R corresponds to a rescaling of the electric charge in Maxwell’s

theory. The special case of a rescaling by R = N ∈ Z also corresponds to gauging a ZN subgroup of

U(1)(d−p−1). The cases (c) and (d) with symmetry R correspond to the decompactification limits of

the original field or of its dual, respectively.

U(1)/R gauge fields. Lastly, consider the case

Z =
i

2π

∫
Xd+1

bd−p ∧ dAp (8.1.10)

where Ap and bd−p are U(1) and R gauge fields, respectively. As before, the overall coefficient of Z
can always be set to 1. This time Dirac’s quantization conditions read 1

2π

∫
dAp ∈ Z and

∫
dbd−p = 0.

By the same arguments as before, one concludes that the theory has the following nonequivalent

topological operators:

Uα(γd−p) with α ∈ R/Z = U(1) , Wm(γp) with m ∈ Z . (8.1.11)

Some interesting boundary conditions are the following.

• Let the defects Wm (with m ∈ Z) terminate on the boundary. Then the defects Uα with α ∈ U(1)

can lie on the boundary and represent a

U(1) (p−1)-form symmetry . (f)

• Let all defects Uα with α ∈ U(1) terminate on the boundary. Then the defects Wm with m ∈ Z can

lie on the boundary and represent a

Z (d−p−1)-form symmetry . (g)

This is obtained from (f) by flat gauging the whole U(1). For p = d− 1, an example of a theory

with 0-form symmetry Z is a scalar field ϕ with periodic potential, as in band theory.

• Let the defects Wbm with m ∈ Z and b > 1 an integer constant, as well as Un/b with n ∈ Zb,
terminate on the boundary. Then the nonequivalent defects that can lie on the boundary are Uα

with α ∈ R/
(
1
bZ
) ∼= U(1) and Wk with k ∈ Zb. They represent a

U(1)(p−1) × Z(d−p−1)
b symmetry . (h)

This is obtained from (f) by gauging a Zb subgroup of U(1). Indeed the charged operators have

integer charges that are multiples of b. There is a mixed anomaly between U(1) and Zb that follows

from the short exact sequence 0→ Zb → U(1) → U(1)→ 0.
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As a check, consider the case (e) that we derived from the SymTFT (8.1.7) using only R gauge

fields. It should also arise from the SymTFT of two U(1) symmetries with a mixed anomaly:

Z =
i

2π

∫ [
bd−p ∧ dBp + ap ∧ dAd−p −Bp ∧ dAd−p

]
. (8.1.12)

Indeed the field Ad−p can be integrated out producing a delta function that enforces Bp = ap (restrict-

ing Bp to be an R gauge field), and integrating out Bp one reproduces the action (8.1.7). Alternatively,

and more precisely, one can list the topological operators and compute their correlations functions.

One realizes that ein
∫
Bp has identical correlation functions to those of eiα

∫
ap for α = n, hence the two

operators are identified. Similarly for eim
∫
Ad−p and eiβ

∫
bd−p for β = m. The alternative presentation

(8.1.12) of the SymTFT for a generalized Maxwell field will be important in Section 8.3.

Note: in the following we will keep denoting U(1) and R gauge fields with upper and lower case

letters respectively, while the subscript denote the diemsion of the form.

8.2 Examples

Let us present a few interesting examples. Other examples, which require us to understand how

to dynamically gauge a U(1) symmetry from the point of view of the SymTFT, are described in

Section 8.4.

8.2.1 Chiral anomaly in 2d

The SymTFT for a two-dimensional theory with U(1) 0-form symmetry and an ’t Hooft anomaly is

obtained from the action (8.1.10) with d = 2 and p = 1 by adding a term that describes the chiral

anomaly:

Z =

∫
X3

[
i

2π
b1 ∧ dA1 +

ik

4π
A1 ∧ dA1

]
, (8.2.1)

where k is constrained to be integer (when k is odd the theory requires a spin structure [81]).

The theory has topological line operators given by

U(n,α)(γ1) = exp

(
i

∫
γ1

(nA1 + α b1)

)
(8.2.2)

with n ∈ Z and α ∈ R. The braiding between them is

B
[
(n1, α1), (n2, α2)

]
= exp

[
2πi
(
n1α2 + n2α1 − kα1α2

)]
(8.2.3)

and the exponentiated spin is given by a quadratic refinement thereof:

θ(n,α) = exp
[
2πi α

(
n− k

2 α
)]
. (8.2.4)

The line (0, 1) has spin θ = (−1)k and is a transparent fermion for k odd. Both spin and braiding are

invariant under the following identifications:(n, α) ∼ (n+ k, α+ 1) for k even,

(n, α) ∼ (n+ 2k, α+ 2) for k odd.
(8.2.5)

Let us discuss boundary conditions. First, we can let all lines (n, 0) terminate on the boundary.

For k even, this is a maximal set L of mutually-transparent lines and they are all bosonic. For k

odd, we should also let the lines (n, 1) terminate on the boundary in order to have a maximal set L,
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and the extra lines have spin −1. Thus, the Lagrangian algebra L is bosonic for k even, and spin

for k odd. The nonequivalent topological line operators that can lie on the boundary are labeled by

α ∈ R/Z ∼= U(1), so this describes a U(1) 0-form symmetry.

Let us use the lines (0, α) as representatives of the symmetry defect operators of the boundary

theory. For k even, the bosonic lines (n, 0) that end on the 2d boundary represent boundary local

operators, and their charge measured by the braiding (8.2.3) is n. For k odd, the lines (n, 0) and

(n+k, 1) that end on the boundary represent local operators with charge n and spin ±1, respectively.

Thus the local operators can have arbitrary and independent integer charges and statistics.

It is possible to specialize to theories with a spin-charge relation, in which even-charge operators

are bosonic and odd-charge operators are fermionic (e.g., a free complex Weyl fermion). In this case

the SymTFT (8.2.1) is written in terms of a spinc connection A1 [212, 213] whose Dirac quantiza-

tion condition on 2-cycles is modified according to the second Stiefel-Whitney class of the manifold:
1
2πdA1 = 1

2w2 mod 1 (one also needs to add a gravitational term to the action). Since A1 is not an

ordinary connection but 2A1 is, gauge invariance restricts the operators U(m,α) to have even m. This

in turn implies the spin-charge relation for the boundary local operators: the endpoints of (n, 0) are

bosonic for n even, and the endpoints of (n+ k, 1) are fermionic for n odd.

When k ̸= 0, the operators U(0,α) are no longer mutually transparent and therefore there is no

boundary condition corresponding to (g). This is a manifestation of the chiral anomaly: the U(1)(0)

symmetry of the boundary theory cannot be gauged. Indeed the anomaly of a continuous group is

uniquely determined by the anomaly of all its discrete subgroups [214].

However, it might still be possible to gauge a discrete subgroup of U(1). Consider the bosonic case

of k even. Given an integer d that divides k/2, consider the set L of line operators
(
k
2dm + d ℓ, md

)
with ℓ,m ∈ Z (modulo identifications). Such operators have spin θ = 1 and are thus bosons. From

(8.2.3), a line that has trivial braiding with all elements of L must be in L, thus L is maximal and is a

Lagrangian algebra. This shows that when k/2 is divisible by d, the Zd subgroup of U(1) is anomaly

free and can be gauged in the boundary theory. The nonequivalent topological lines that can lie on

the boundary are U(n,α) with n ∈ Zd and α ∈ R/
(
1
dZ
)
. They represent a symmetry U(1)(0) × Zd(0)

with an ’t Hooft anomaly for U(1) and a mixed anomaly between U(1) and Zd.
As a check, we can simply restrict to Zd the anomaly-inflow action Zinflow = k

4π

∫
A ∧ dA, where

A is seen as an extension from 2d to 3d of the background gauge field for the U(1) symmetry [215].

This is achieved by replacing

A 7→ 2π

d
A , dA

2π
7→ β(A) , (8.2.6)

where A ∈ H1(X;Zd) is (an extension of) the background field for Zd, while β : H1(X;Zd) →
H2(X;Z) is the Bockstein homomorphism associated to the exact sequence 0 → Z → Z → Zd → 0.

The inflow action reduces to 2π k
2d

∫
A ∪ β(A), where the integral is an integer modulo d, which is

indeed an integer multiple of 2π whenever d divides k/2 and thus Zd is anomaly free. The converse,

to determine which Zd subgroups are actually anomalous, is a delicate issue [216, 217]: one should

determine whether the reduced anomaly-inflow action is trivial when evaluated on the generator(s) of

the relevant bordism group ΩSO
3 (BZd).

In the fermionic case of k odd one can perform a similar analysis. Given d that divides k (in

particular d is odd), the set L of line operators
(
k
d
d+1
2 m+d ℓ, md

)
labelled by ℓ,m ∈ Z (here d+1

2 = 2−1

mod d) is a maximal set of mutually-transparent lines with spins θ = (−1)m = ±1, suggesting that

the Zd subgroup can be gauged. This should be compared with the evaluation of the reduced inflow

action on the generator(s) of the bordism group Ωspin
3 (BZd).

We ask whether there can be other more exotic topological boundary conditions. To be concrete,
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take k = 1 and consider the following set:

C =
{(
n, n+ ℓ

√
2
) ∣∣ n, ℓ ∈ Z

}
. (8.2.7)

The set is closed under sum. Moreover, mapping the second component to the interval [0, 2) (by

shifting also the first component), we obtain a dense irrational subset. The operators in C have

θ = (−1)n and are all mutually transparent, however the set is not maximal (hence it does not

describe a topological boundary condition) and in fact it cannot be made into a maximal set. A

line mutually transparent with C is of the form
(
m,m+ h√

2

)
for some m,h ∈ Z. For h odd, these

lines are not contained in C, however they cannot be included in C because they have nontrivial spin

θ = i (−1)m+1. We have thus found an example of an Abelian algebra that cannot be completed into

a Lagrangian algebra. Interestingly, this is a peculiarity of TQFTs with a continuum of lines, as can

be intuitively understood from the necessity of taking the square root. Indeed a finite semi-simple

modular tensor category admitting Lagrangian algebras is a Drinfeld center, and the condensation of

an algebra of a Drinfeld center yields another Drinfeld center [218]. As we showed, this result is no

longer true in the presence of a continuum of lines.

8.2.2 U(1) symmetry in 3d

In odd dimensions there are no anomalies for U(1) symmetries. Nevertheless there are useful pieces

of information encoded in the SymTFT. Here we consider the 3d case, hence the basic 4d SymTFT

describing a U(1) symmetry is (8.1.10) with d = 3, p = 1. There are two more terms that can be

added: a theta-term θ
8π2

∫
X4
dA1 ∧ dA1 and a phi-term ϕ

8π2

∫
X4
b2 ∧ b2. In the absence of the latter, the

theta-term is unphysical since it can be reabsorbed by a shift of b2. Here we study the effect of the

phi-term, while we leave the analysis of the most general action with both terms for the future.

The 4d TQFT we consider is

Z =
i

2π

∫
X4

b2 ∧ dA1 +
iϕ

8π2

∫
X4

b2 ∧ b2 . (8.2.8)

This can be thought of as the non-compact version of the theory studied in [30]. The gauge transfor-

mations are

δb2 = dλ1 , δA1 = dρ0 − ϕ
2π λ1 . (8.2.9)

The gauge-invariant operators are the surfaces

Uα(γ2) = e
iα

∫
γ2
b2 (8.2.10)

and the (generically) non-genuine lines

Wn(γ1, D2) = exp

(
in

∫
γ1

A1 + i
nϕ

2π

∫
D2

b2

)
, (8.2.11)

both topological. Here n ∈ Z whilst D2 is a disk with ∂D2 = γ1. A non-trivial correlator on the

sphere is the braiding of Uα(γ2) and Wn(γ1, D2) in a configuration in which γ1 and γ2 link, hence γ2

intersects D2 at a point: 〈
Uα(γ2)Wn(γ1, D2)

〉
= e2πiαn . (8.2.12)

We read off that α ∼ α + 1. This implies that if nϕ
2π is an integer in (8.2.11), there is no dependence

of Wn on the disk D2: choosing a different disk would give an operator which differs by Uα(γ2) for
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some integer α and where γ2 is the union (with opposite orientations) of the two disks, hence that

difference is trivial. In particular we read off that ϕ is a periodic parameter:

ϕ ∼ ϕ+ 2π . (8.2.13)

An interesting observation is that, while for irrational values of ϕ
2π the theory has no genuine lines,

hence it is essentially trivial in the bulk, when ϕ = 2πp/q with p, q ∈ Z and gcd(p, q) = 1, the lines

Wmq are genuine.

Let us study topological boundary conditions. First, we can let all surfaces Uα terminate on the

boundary. This corresponds to a Dirichlet boundary condition for b2. Since the gauge transforma-

tions of b2 are forced to vanish at the boundary, there we can construct the genuine line operators

Wn = ein
∫
A1 (equivalently, since b2 is a background field at the boundary, the dependence of Wn on

it can be removed by a counterterm). This boundary condition thus describes a Z 1-form symmetry,

whose topological operators are the lines Wn and whose charged operators are the endlines of Uα on

the boundary. The phi-term represents an anomaly for this 1-form symmetry, and if ϕ
2π is irrational

there are no non-anomalous subgroups of Z. Indeed in this case the bulk does not have other gen-

uine topological operators besides Uα, hence there are no other topological boundary conditions. In

particular, there is no boundary with a U(1) symmetry.

On the contrary, consider the case ϕ
2π = p/q ∈ Q. The lines Wqm with m ∈ Z are genuine, as we

noticed, and we can let them terminate on the boundary. In order to have a maximal set of mutually-

transparent objects, we should let the surfaces Uα with α = l/q and l ∈ Z terminate on the boundary

as well. This boundary condition describes the symmetry Zq(1) × U(1)(0) with a mixed anomaly and

a pure anomaly for Zq(1), and is obtained from the previous one by gauging the subgroup qZ ⊂ Z of

the 1-form symmetry, which is non-anomalous in this case. The symmetry U(1)(0) is generated by

Uα with identification α ∼ α + 1/q (the reduced range is due to the boundary condition). The local

operators Mm charged under U(1)(0) are the endpoints of the genuine lines Wqm.

To get some intuition on the nature of the QFTs described by this boundary condition, let us

present a Lagrangian example. On a manifold with boundary, the variation of the action (8.2.8) under

a gauge transformation (8.2.9) generates a boundary term:

δZ =
i

2π

∫
∂X4

[
λ1 ∧ dA1 −

ϕ

4π
λ1 ∧ dλ1

]
(8.2.14)

where the boundary value of A1 is fixed. This can be cancelled by edge modes. Since the local

operators Mm charged under U(1)(0) are the endpoints of Wqm, the corresponding background field

is qA1 at the boundary. Since the line operators charged under Zq(1) are the endlines of Ul/q, the

background field is b2/q. At the boundary we can place the Chern-Simons theory U(1)pq:

S∂ = −i
∫
∂X4

[
pq

4π
B ∧ dB +

1

2π
(qA1) ∧ dB

]
. (8.2.15)

This theory has 1-form symmetry Zpq = Zp × Zq, but we only consider the Zq subgroup which has

anomaly p [111]. The generator of Zq acts as δB = 1
qλ1 so that the variation of S∂ cancels (8.2.14). The

Chern-Simons theory also has a magnetic U(1) 0-form symmetry with current ∗dB, which is coupled

to the background field (qA1). The local operators Mm are monopoles. In this example the current

is trivial at separated points, but it still has an interesting contact term [219] (to make the current

nontrivial at separated points, one could consider Maxwell-Chern-Simons theory instead). Because of

the 4d EOM, we can identify dA1 = −p
(
1
q b2
)

with the background for the 1-form symmetry, hence the

theory is coupled to the latter as well, in a subtle way. Another possibility is to use the topological
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theory Aq,p
[
1
qdA1

]
[111] as boundary theory. Because of the identifications among those theories, this

in particular shows that p ∼ p+ q in accord with (8.2.13).

8.2.3 Chiral anomaly in 4d

For a four-dimensional theory with a U(1) 0-form symmetry and an ’t Hooft anomaly, the SymTFT

is

Z =

∫
X5

[
i

2π
b3 ∧ dA1 +

ik

24π2
A1 ∧ dA1 ∧ dA1

]
(8.2.16)

where A1 is a U(1) gauge field while b3 is an R gauge field. The parameter k is an integer in fermionic

theories, while in general bosonic theories it should be a multiple of 6.

The theory has topological line and surface operators

Wn(γ1) = e
in

∫
γ1
A1 , U(β,m)(γ3) = exp

[
i

∫
γ3

(
β b3 +

m

4π
A1 ∧ dA1

)]
(8.2.17)

with n,m ∈ Z. The quantization of m corresponds to spin-Chern-Simons theories. The perturbative

EOMs dA1 = db3 = 0 guarantee that these operators are topological. The observables of the theory

include the linking of Wn with U(β,m), and the triple-linking between three operators U(βi,mi) on

surfaces γ3
(i). The latter probes the linking between the intersection γ̃1 = γ3

(1) ∩ γ3(2) and γ3
(3) (one

can show that this is symmetric in the three surfaces). The braiding can be defined as the following

expectation value on the sphere:〈
Wn(γ1)U(β,m)(γ3)

〉
= exp

(
2πi nβ Lk(γ1, γ3)

)
(8.2.18)

where Lk is the geometric linking number. Alternatively, it is the phase picked up by generic correlation

functions when Wn is moved across U(β,m). The triple-linking number on the sphere is the following

expectation value:〈
U(β1,m1)

(
γ
(1)
3

)
U(β2,m2)

(
γ
(2)
3

)
U(β3,m3)

(
γ
(3)
3

)〉
= exp

[
2πi
(
m1β2β3 +m2β1β3 +m3β1β2 − kβ1β2β3

)
 L
]

(8.2.19)

where  L = Lk
(
γ̃1, γ3

(3)
)
. Note that, differently from the 2d case, there is no operator U(β,m) with

trivial triple-linking with all other pairs of operators. Hence there are no identifications of labels in

this case.

Using (8.2.18) and (8.2.19) we can look for topological boundary conditions corresponding to the

condensation of a “Lagrangian algebra”. By this we mean a set of line and surface operators which

are: (i) closed under fusion, (ii) mutually transparent with respect to both braiding and triple linking,

and (iii) maximal in the sense that any operator transparent with the set belongs itself to the set.

These conditions guarantee that the Lagrangian algebra can be condensed, and the result is the trivial

TQFT. We find the following possibilities.

First, the lines Wn and the surfaces U(β=j,m) with n, j,m ∈ Z are mutually transparent and

maximal. Condensing all of them we obtain the boundary condition for a theory with U(1) 0-form

symmetry. Its nonequivalent topological symmetry operators are U(β,0)(γ3) where β ∈ R/Z with

β ∼ β + 1 because of the condensation.

Second, if k = 0, another Lagrangian algebra is given by all the operators U(β,0). This correspond

to a 2-form symmetry Z whose topological symmetry operators are the lines Wn with n ∈ Z, as in the

general case (g) 4. Such a boundary condition is obtained from the previous one by flat gauging the

4The boundary theory also inherits the topological surfaces U(0,m)(γ3) which are theta-defects [31, 211] constructed

out of the lines Wn(γ1).

231



U(1) symmetry on the boundary. If k ̸= 0, however, this algebra does not exist, consistently with the

statement that the SymTFT describes an anomalous symmetry.

Lastly, given an integer d such that 3d divides k, one can construct a Lagrangian algebra made of

Wdρ , U(β,m) with (β,m) =

(
ν

d
,
k

3d
ν + d2µ

)
(8.2.20)

and labelled by ρ, ν, µ ∈ Z. The endpoints of the lines are the charged objects. Since the charges

are multiples of d, we conclude that this boundary corresponds to gauging the non-anomalous Zd
subgroup of U(1)(0). The symmetry on this boundary is U(1)(0)×Z(2)

d where the first factor is the Zd
quotient of the original symmetry, while the second factor is the dual 2-form symmetry generated by

the lines Wp with p ∈ Zd.

8.3 Non-topological manipulations

The SymTFT for U(1) symmetries that we discussed is the straightforward generalization of the

discrete case. Its topological boundaries correspond to topological manipulations that use the U(1)

symmetry. These include gauging discrete subgroups, possibly with discrete torsion, as well as per-

forming the flat gauging the whole U(1). However, differently from the discrete ones, continuous U(1)

symmetries also allow for non-topological, dynamical manipulations — such as coupling to a dynam-

ical photon — that introduce new degrees of freedom. For instance, a 4d free complex scalar field

has a U(1)(0) symmetry and its SymTFT is (8.1.10) with p = 1, d = 4. By gauging dynamically the

U(1) we obtain scalar QED which has a U(1)(1) symmetry, hence its SymTFT is again (8.1.10) but

with p = 2, d = 4. We see that dynamical manipulations are not described by different topological

boundary conditions of the same SymTFT, but rather by a map between two different SymTFTs. As

we will argue, this is a controlled operation.

8.3.1 Gauging dynamically a U(1)

For concreteness we are going to focus on 0-form symmetries, but the generalization to higher forms is

straightforward. The initial SymTFT is (8.1.10) with p = 1. The idea is to add to it the SymTFT of a

d-dimensional photon, and to couple the two TFTs in the bulk in a way that reproduces the coupling

of the current to the gauge field on the boundary. It is convenient to use the alternative formulation

(8.1.12) for the SymTFT of the photon, which we report here for convenience:

Z =
i

2π

∫ [
gd−2 ∧ dG2 + f2 ∧ dFd−2 −G2 ∧ dFd−2

]
. (8.3.1)

The coupling to the fields appearing in the “matter” part 1
2π

∫
bd−1 ∧ dA1 must be such that, on the

boundary, the Wilson lines of the Maxwell field are endable on the local operators charged under

U(1)(0). The Wilson lines are the endlines of the surfaces of G2, while the above-mentioned local

operators are the endpoints of the lines of A1. Hence, the coupling must allow the surfaces of G2 to

end on the lines of A1. We are led to the total action:

Z =
i

2π

∫
Xd+1

[
bd−1 ∧ dA1 + bd−1 ∧G2 + gd−2 ∧ dG2 + f2 ∧ dFd−2 −G2 ∧ dFd−2

]
. (8.3.2)

Because of the added coupling bd−1 ∧G2, the standard gauge transformation of G2 must also act on

A1:

δG2 = dλ1 , δA1 = −λ1 . (8.3.3)
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Hence the lines of A1 are no longer gauge invariant, but we can construct the non-genuine line operators

Ln(γ1, D2) = exp

(
in

∫
γ1

A1 + in

∫
D2

G2

)
(8.3.4)

where ∂D2 = γ1. This implies that all the surfaces of G2 can end, and on the boundary all Wilson

lines can be cut open, achieving the coupling of the photon with matter.

Similarly, the gauge transformations of bd−1 must act on gd−2:

δbd−1 = dηd−2 , δgd−2 = (−1)d ηd−2 . (8.3.5)

As a consequence the surfaces of gd−2 are not gauge invariant, and must be attached to a disk where

bd−1 is integrated:

Uα(γd−2, Dd−1) = exp

(
iα

∫
γd−2

gd−2 − (−1)diα

∫
Dd−1

bd−1

)
. (8.3.6)

This also has a clear physical interpretation. The operators exp
(
iα
∫
bd−1

)
that used to generate on

the boundary the global U(1) 0-form symmetry we are gauging, can now be opened and trivialized.

Gauging a symmetry trivializes the topological operators that generate it.

By inspection we notice that the only genuine operators that cannot be opened are the surfaces

of f2 and Fd−2. All the other ones become trivial because of the coupling bd−1 ∧ G2. Therefore the

theory is equivalent to

Z =
i

2π

∫
Xd+1

f2 ∧ dFd−2 . (8.3.7)

This is nothing but the action (8.1.10) with p = 2, and it describes the dual magnetic symmetry

appearing after the dynamical gauging.

We also notice that going from i
2π

∫
bd−1 ∧ dA1 to (8.3.7) can be understood as the replacement:

dA1 7→ f2 , bd−1 7→ dFd−2 . (8.3.8)

The first substitution means that A1, which was previously flat, can now describe a curved background

with field strength f2, which is free — hence dynamical — at the boundary. The second substitution

means that the previous (Hodge dual) current bd−1 of the U(1)(0) symmetry is trivialized in terms of

a form of lower degree.

The prescription (8.3.8) is the basic ingredient to construct maps between different SymTFTs,

implementing the dynamical manipulations. In Section 8.4 we will apply it to more complicated

examples in order to construct the SymTFTs of various symmetry structures.

8.3.2 The Anomaly Polynomial TFT

It is important to emphasize that, while for discrete symmetries the SymTFT is unique and its

topological boundaries describe all possible manipulations, here we need a step further. Indeed we

find distinct SymTFTs, related by the map (8.3.8), that describe the dynamical manipulations, while

each SymTFT admits various topological boundaries that describe the topological manipulations.

We observe, however, that one can construct a (unique) (d + 2)-dimensional TQFT whose (d + 1)-

dimensional topological boundaries correspond to the distinct SymTFTs. We dub this the Anomaly

Polynomial TFT. It is written entirely in terms of R gauge fields, which can be identified with the

field strengths of the gauged symmetries in the various theories related by dynamical manipulations.
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We illustrate the idea in the simplest example of a 2d theory with a single U(1)(0) symmetry.

Denoting by k ∈ Z the anomaly, the Anomaly Polynomial TFT is a 4d TQFT with action:

P =
i

2π

∫
X4

[
g1 ∧ df2 +

k

2
f2 ∧ f2

]
(8.3.9)

and gauge transformations δg1 = dρ0 − kλ1, δf2 = dλ1. On a manifold with boundary the gauge

variation produces a boundary term. It is not uniquely determined because we have the freedom to

add a boundary term proportional to g1 ∧ f2, but independently of this choice the boundary gauge

variation cannot be cancelled unless we couple the 4d theory to a 3d theory of edge modes.

Consider first the case k = 0. The gauge variation of (8.3.9) produces the boundary term

δP = − i

2π

∫
∂X4

dρ0 ∧ f2 . (8.3.10)

In order to cancel it, we place on the boundary the following 3d TQFT of edge modes with a 1-form

symmetry coupled to f2, whose boundary value we regard as a background field:

Z =
i

2π

∫
∂X4

[
b1 ∧ dA1 − b1 ∧ f2

]
. (8.3.11)

The 1-form symmetry acts on the lines ein
∫
A1 and shifts δA1 = λ1. The gauge variation (8.3.10) is

canceled by imposing the gluing condition g1|∂ = −b1, which is the boundary EOM from the variation

of the total action with respect to f2, and is compatible with the gauge transformation δb1 = −dρ0.
Turning off the background f2, we recognize (8.3.11) as the SymTFT for a 2d theory with U(1) 0-form

symmetry.

There is another boundary theory we can use. It is more cleanly presented if we first add to

(8.3.9) the boundary term g1 ∧ f2, which is equivalent to recasting the Anomaly Polynomial TFT as

P ′ = i
2π

∫
X4
dg1 ∧ f2. The gauge variation produces the boundary term

δP ′ =
i

2π

∫
∂X4

g1 ∧ dλ1 . (8.3.12)

Now we regard the boundary value of g1 as a background field for the 0-form symmetry of a boundary

3d TQFT:

Z ′ =
i

2π

∫
∂X4

[
h2 ∧ dΘ0 − h2 ∧ g1

]
. (8.3.13)

The 0-form symmetry shifts δΘ0 = ρ0, and the variation (8.3.12) is canceled by imposing the gluing

condition f2|∂ = h2, which follows for the variation of the total action with respect to g1 and is

compatible with the gauge transformation δh2 = dλ1. We recognize (8.3.13) as the SymTFT for a

U(1)(−1) symmetry [220], related in 2d by dynamical gauging to the U(1)(0) symmetry. It corresponds

to a shift of the theta angle θ
2π

∫
X2
F for the dynamical U(1) gauge field. We observe indeed that turning

off background fields, (8.3.13) is obtained from (8.3.11) by using the map (8.3.8) that implements

dynamical gauging in the SymTFT.

In the case with anomaly k ̸= 0, a gauge variation produces the boundary term

δP =
i

2π

∫
∂X4

[
−
(
dρ0 − kλ1

)
∧ f2 +

k

2
λ1 ∧ dλ1

]
. (8.3.14)

It is canceled by the following modification of (8.3.11):

Z =
i

2π

∫
∂

[
b1 ∧ dA1 +

k

2
A1 ∧ dA1 −

(
b1 + kA1

)
∧ f2

]
. (8.3.15)
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The current in parenthesis that multiplies the background field f2 is ∂Z/∂(dA1). One uses the

transformations δA1 = λ1, δb1 = −dρ0 as well as the gluing condition g1|∂ = −b1 − kA1 that follows

from varying the total action with respect to f2. With the background field f2 off, we recognize

(8.3.15) as the SymTFT (8.2.1) for a U(1)(0) symmetry with chiral anomaly k in 2d. It turns out

that the other boundary theory (8.3.13) for k = 0 cannot be modified in any way to cancel the gauge

variation once k ̸= 0, hence becoming an inconsistent boundary condition. This is a signal of the

’t Hooft anomaly, from the Anomaly Polynomial TFT viewpoint.

There is an analogous story for U(1) symmetries in 4d, for which the Anomaly Polynomial TFT

takes the form:

P =
i

2π

∫
X6

[
g3 ∧ df2 −

k

12π
f2 ∧ f2 ∧ f2

]
, (8.3.16)

with transformations δg3 = dρ2 + k
2πλ1 ∧ f2 + k

4πλ1 ∧ dλ1 and δf2 = dλ1. For k = 0 there are

two possible boundary theories, which are the SymTFTs for a 0-form and 1-form U(1) symmetries,

respectively, related by dynamical gauging. For k ̸= 0, instead, only the first one is consistent and it

takes the form:

Z =
i

2π

∫
∂X6

[
b3 ∧ dA1 +

k

12π
A1 ∧ dA1 ∧ dA1 −

(
b3 +

k

4π
A1 ∧ dA1 −

k

4π
A1 ∧ f2

)
∧ f2

]
(8.3.17)

where the terms in parenthesis describe the coupling of the 1-form symmetry to the background f2 and

correspond to ∂Z/∂(dA1). One finds the gluing condition g3|∂ = −b3 − k
4πA1 ∧ dA1 + k

2πA1 ∧ f2 from

the variation of the total action with respect to f2, compatible with the transformations δA1 = λ1,

δb3 = −d
(
ρ2 − k

4πλ1 ∧A1

)
.

8.4 More examples

We present here two other examples that can be derived by dynamically gauging a U(1) 0-form

symmetry.

8.4.1 Abelian 2-group symmetry in 4d

A 0-form and a 1-form symmetry can combine into one algebraic structure known as a 2-group [11,

14–16]. Four-dimensional theories with a continuous Abelian 2-group symmetry were discussed in [16].

Consider a 4d Abelian gauge theory coupled to chiral fermions. The photon has a magnetic 1-form

symmetry U(1)(1) whose current is J2 = ∗ (F/2π) written in terms of the dynamical field strength F .

This current is topologically conserved: d ∗ J2 = dF/2π = 0. The chiral fermions transform under a

0-form symmetry U(1)(0) with current J1. Suppose that there is a gauge-flavor-flavor triangle anomaly,

so that d ∗ J1 = k
4π2 (dA1) ∧ F where A1 is the background gauge field coupled to J1. It is easy to

arrange the charges such that there are no other anomalies, for instance:

Weyl fermions : ψ1 ψ2 ψ3 ψ4

gauge charges qi : 1 −1 1 −1

flavor charges fi : 2 1 −2 −1

(8.4.1)

One checks that
∑
q3i =

∑
q2i fi =

∑
f3i = 0, while

∑
qif

2
i ≡ 2k = 6 in this example 5. The theory

has therefore a modified conservation equation:

d ∗J1 −
k

2π
(dA1) ∧ ∗J2 = 0 , d ∗J2 = 0 . (8.4.2)

5The minimal mixed U(1) Chern-Simons terms that are well defined are 1
4π2AdB dB or 1

8π2 (AdB dB +B dAdA).
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This type of symmetry is called a 2-group symmetry. If we couple this symmetry to U(1) background

gauge fields A1 and C2 through the Lagrangian terms

L4 ⊃ (∗J1) ∧A1 + (∗J2) ∧ C2 , (8.4.3)

the modified conservation equations imply modified gauge transformations for the backgroud fields:

δA1 = dλ0 , δh2 = dξ1 , δb3 = dγ2 −
k

2π
dξ1 ∧A1 , δC2 = dη1 +

k

2π
dλ0 ∧A1 . (8.4.4)

Here we also included the conjugated R gauge fields b3 and h2 necessary to write a 5d Lagrangian. A

gauge-invariant 5d SymTFT action we can write is:

Z =
i

2π

∫ [
b3 ∧ dA1 + h2 ∧ dC2 +

k

2π
h2 ∧A1 ∧ dA1

]
. (8.4.5)

This is the SymTFT for a 2-group symmetry.

Indeed we can derive this theory from the SymTFT of the free-fermion theory by the procedure

of gauging the U(1). The SymTFT of the free-fermion theory is

Z =
i

2π

∫ [
b3 ∧ dA1 + f3 ∧ dG1 +

k

2π
G1 ∧ dA1 ∧ dA1

]
(8.4.6)

where A1 andG1 are the U(1) background fields for the flavor symmetry and the to-be gauge symmetry,

respectively. Gauging the symmetry is implemented by the replacement dG1 7→ h2 and f3 7→ dC2, as

in (8.3.8), which indeed produces the action in (8.4.5).

8.4.2 Q/Z non-invertible symmetry in 4d

Using the building blocks introduced so far, we can derive the SymTFT describing the non-invertible

chiral symmetry of QED-like theories [28, 29], that we reviewd in 3.5. We start from the 5d SymTFT

for two 0-form symmetries U(1)A × U(1)V with a mixed AVV anomaly and a pure AAA anomaly:

Z =
i

2π

∫
X5

[
b3 ∧ dA1 + c3 ∧ dV1 +

l

4π
A1 ∧ dV1 ∧ dV1 +

k

12π
A1 ∧ dA1 ∧ dA1

]
. (8.4.7)

We assumed that the VAA triangle anomaly vanishes, therefore l must be even. For l = k = 2 this

can be thought of as, for instance, the SymTFT for a Dirac fermion in four dimensions.

The symmetry U(1)V has no pure anomaly, hence it can be gauged dynamically by coupling it to

a photon. This is implemented in the SymTFT as explained in Section 8.3, and the net result is to

replace dV1 7→ f2 and c3 7→ dG2. We obtain:

Z =
1

2π

∫
X5

[
b3 ∧ dA1 + f2 ∧ dG2 +

l

4π
A1 ∧ f2 ∧ f2 +

k

12π
A1 ∧ dA1 ∧ dA1

]
. (8.4.8)

We propose that this is the SymTFT for the non-invertible Q/Z chiral symmetry in 4d.

Let us study this theory more carefully. For simplicity we set l = 2 (the generalization to other

even values of l being straightforward). While the gauge transformations of b3 and G2 are standard,

the presence of the non-derivative term A1 ∧ f2 ∧ f2 forces the gauge transformations of f2 and A1 to

also act on b3 and G2:

δA1 = dρ0 , δf2 = dλ1 , , δb3 = − 2
4π λ1∧dλ1−

2
2π λ1∧ f2 , δG2 = − 2

2π ρ0 (f2 +dλ1)− 2
2π λ1∧A1 .

(8.4.9)
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Keeping this into account, we analyse the operator content of the theory. First we have

Vα(γ2) = e
iα

∫
γ2
f2 , Wn(γ1) = e

in
∫
γ1
A1 (8.4.10)

which are both topological and gauge invariant because of the EOMs dA1 = 0 and df2 = 0. On the

other hand, the integrals of b3 and G2 do not lead to gauge-invariant operators because of (8.4.9).

We can try to construct non-genuine operators:

Ũα(γ3, D4) = exp

(
iα

∫
γ3

b3 + i
2α

4π

∫
D4

f2 ∧ f2
)
, T̃n(γ2, D3) = exp

(
in

∫
γ2

G2 + i
2n

2π

∫
D3

A1 ∧ f2
)
.

(8.4.11)

They depend on the open regions D4 and D3, whose boundaries are γ3 and γ2, respectively. They are

gauge invariant and topological because of the EOMs. On a boundary condition which is Dirichlet for

A1 and G2, that correspond to the QED-like theory, the boundary values of A1 and G2 play the role of

backgrounds fields for the would-be axial U(1)A and the magnetic U(1)(1) symmetry, respectively. The

endlines of T̃n would seem to be ’t Hooft lines, charged under the operators Vα, while the Ũα lying on

the boundary would seem to generate the axial symmetry, whose charged operators are the endpoints

of Wn. However this conclusion is not correct. In the definition (8.4.11), γ3 and γ2 are boundaries and

hence homologically trivial. Since the operators are topological, they are essentially trivial and cannot

be used to define boundary conditions. Moreover, differently from other cases considered above, the

non-genuine operators Ũα do not become genuine even on the boundary, since f2 is not set to zero

there. One can however do better.

Consider T̃n first. The bulk term 2n
2πA1 ∧ f2 can be thought of as the inflow action for a 2d pure

Z2n gauge theory, where A1 and f2 are viewed as the background fields for the Z2n 0-form and 1-

form symmetry, respectively. This implies that if we take D3 to be a tube γ2 × [0, 1], we can place

exp
(
in
∫
γ2
G2

)
on one end of the tube, and the 2d Z2n gauge theory coupled to A1 and f2 on the other

end. Then we shrink the tube, so as to define a genuine 2d operator:

Tn(γ2) = T̃n(γ2) Z2n[γ2;A1, f2] . (8.4.12)

We can perform a similar operation with Ũα. Since α is a continuous parameter, we should

be careful. Indeed a 3d TQFT on which 2α
4π

∫
D4
f2 ∧ f2 can topologically terminate only exists if

2α = p/q ∈ Q (we take gcd(p, q) = 1) 6. This is the minimal TQFT with 1-form symmetry Zq and

anomaly p introduced in [111] and denoted by Aq,p. By coupling its 1-form symmetry to f2 we are

able to define a genuine 3-dimensional topological operator

Up/2q(γ3) = Ũα=p/2q(γ3) Aq,p[γ3; f2] . (8.4.13)

The operators at irrational α, on the other hand, remain non-genuine.

The procedure we illustrated is the bulk analogue of [28, 29], with the novelty that not only the

generator of the chiral symmetry, but also the 2-dimensional operators Tn whose endlines are the ’t

Hooft lines, require dressing with a TQFT in order to be well defined. This fact is harder to deduce

directly from the boundary because the ’t Hooft lines are not topological. One of the advantages of

the SymTFT description is that even the topological aspects of non-topological charged objects can

be derived from properties of the topological operators in the bulk. Our result is an example of this

phenomenon.

6For α = 1/2 we can simply use the U(1)1 trivial spin-Chern-Simons theory. Indeed this is the only value that

corresponds to an invertible symmetry, namely (−1)F .

237



The necessity of dressing even the ’t Hooft lines is not surprising, since the non-invertibility of the

Q/Z symmetry is precisely encoded in the action on ’t Hooft lines. When a line crosses the symmetry

defect it emerges with a 2-dimensional topological operator attached [28, 221]. It would be interesting

to derive this action from the bulk, studying in detail the braiding and crossing of the various operators

we introduced.

Finally let us mention that Up/2q(γ3) can be further dressed with an other genuine 3-dimensional

operator corresponding to a Chern-Simons term for A1, as we did in Section 8.2.3:

U(p/2q,m)(γ3) = Up/2q(γ3)× exp

(
i
m

4π

∫
γ3

A1 ∧ dA1

)
. (8.4.14)

Studying the triple linking of these operators allows one to characterize the anomaly of the non-

invertible chiral symmetry, for which the term A1 ∧ dA1 ∧ dA1 in (8.4.8) is responsible.

8.5 Non-Abelian symmetries

Let us make some comments on the extension to non-Abelian symmetries (this has been further

discussed in [222]). A natural candidate for the SymTFT is the non-Abelian BF theory of [83]:

Z =
i

2π

∫
Xd+1

Trg
(
bd−1 ∧ F2

)
. (8.5.1)

Here the fundamental fields are a standard gauge field A for the Lie group G, and a collection bd−1

of as many R (d − 1)-form gauge fields as dim(g) (where g is the Lie algebra of G) that transform

in the adjoint representation of G. In other words, bd−1 is a section of the adjoint bundle. Then

F2 = dA− iA∧A is the non-Abelian field strength of A, and Trg is the Killing form on g 7. Thus the

theory has two sets of gauge transformations:

A 7→ ΛAΛ−1 + i dΛ Λ−1 , bd−1 7→ Λ bd−1 Λ−1 (8.5.2)

as well as

bd−1 7→ bd−1 +DAλd−2 . (8.5.3)

Here λd−2 is a globally-defined section of the adjoint bundle defined by A, while DA = d+ i[A, · ]± is

the covariant derivative that acts on p-forms valued in the Lie algebra as

DAηp = dηp + i
(
A ∧ ηp − (−1)p ηp ∧A

)
. (8.5.4)

The EOMs are F2 = 0 and Dbd−1 = 0, therefore the theory has topological Wilson line operators

WR(γ1) = TrR Pexp
(
i
∫
γ1
A
)

(8.5.5)

where R are representations of G. We expect that there exists a boundary condition in which these

lines can end on the boundary, and describe local operators transforming in representations R of the

symmetry G. But what about the symmetry generators of G? On the boundary they must be of

co-dimension one and labeled by G, thus they cannot simply be (d− 1)-dimensional operators of the

bulk pushed at the boundary: they would be co-dimension two operators, hence they cannot have

a non-Abelian fusion rule.8 In the bulk, there exist co-dimension two operators, the Gukov-Witten

7In fact, as spelled out in [83], one can use a bd−1 that takes values in the dual to g, so that a trace is not used and g

does not need to be semisimple.
8This issue arises whenever the topological defects of a symmetry are, in some sense, charged among themselves. A

similar story happens for Chern-Simons theory, see [208].
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U[g](Σd−1) operators. These are defined by specifying the holonomy of A on a circle that links with

Σd−1. However, since only the conjugacy class of the holonomy is gauge invariant, these operators

are labeled not by G, but by its set of conjugacy classes. One possibility, explored in [222], is that

the Gukov-Witten operators pushed at the boundary are not simple defects: they become sums over

all possible operators labelled by group element in the given conjugacy class. Hence the boundary

theory has more (d−1)-dimensional operators then the bulk. A related, but slightly different approach

consists in regarding the symmetry generators of the boundary as arising from non-genuine operators

of the bulk, labeled by g ∈ G. In other words, one can define Gukov-Witten operators labeled by

group elements, and make them gauge invariant by attaching a d-dimensional topological surface to

it.
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Chapter 9

Holographic duals of symmetry broken

phases

In this chapter we explore a novel interpretation of SymTFTs as theories of gravity, proposing a

holographic duality where the bulk SymTFT (with the gauging of a suitable Lagrangian algebra)

is dual to the universal effective field theory (EFT) that describes spontaneous symmetry breaking

on the boundary. We test this conjecture in various dimensions and with many examples involving

different continuous symmetry structures, including non-Abelian and non-invertible symmetries, as

well as higher groups. For instance, we find that many Abelian SymTFTs are dual to free theories

of Goldstone bosons or generalized Maxwell fields, while non-Abelian SymTFTs relate to non-linear

sigma models with target spaces defined by the symmetry groups. We also extend our analysis to

include the non-invertible Q/Z axial symmetry, finding it to be dual to axion-Maxwell theory, and a

non-Abelian 2-group structure in four dimensions, deriving a new parity-violating interaction that has

implications for the low-energy dynamics of U(N) QCD.

9.1 Topological field theories as holographic duals

A profound insight by E. Witten is that Topological Quantum Field Theories (TQFTs), due to their

general covariance, can be seen as theories of quantum gravity [223]. Unlike in more conventional

examples, general covariance is not achieved by integrating over metrics but rather by not introducing

them at all. Consequently, these theories lack any semiclassical description involving weakly interacting

gravitons. In traditional gravitational theories, one selects a background metric and expands around

it, thereby breaking general covariance spontaneously. Therefore, TQFTs can be viewed as theories of

quantum gravity with unbroken general covariance — where gravitons are, in a certain sense, confined.

This old story requires some important refinements. A full quantum-gravity theory should not

depend on the background topology. TQFTs, on the other hand, are sensitive to spacetime topol-

ogy through their global symmetries. One way to achieve such an independence is to sum over all

topologies, which can be done in low dimensions [224–228]. Alternatively, one can use TQFTs that

do not even depend on topology [133], hence that are free of global symmetries and then trivial (or

invertible) [58, 141]. These can be obtained by gauging a maximal non-anomalous set of topological

defects, namely a Lagrangian algebra, in a nontrivial TQFT.

TQFTs with Lagrangian algebras also admit topological boundary conditions and can be regarded

SymTFTs Z(C) for some symmetry structure C. In this chapter we focus of continuous symmetries, for
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which the SymTFTs have been discussed in chapter 81. After the inclusion of continuoys symmetries

in the game, the picture is that for any internal symmetry structure C in d-dimensions one can

canonically associate a (d+ 1)-dimensional TQFT, its SymTFT Z(C).
Our aim here is to give a different interpretation to these TQFTs Z(C), not as SymTFTs but as

theories of gravity. More precisely, we want to establish holographic dualities in which the bulk theory

is a SymTFT. The main proposal of this chapter is the following:

• Thought of as a theory of gravity, the SymTFT Z(C) for a symmetry C is the holographic dual to

the universal effective field theory (EFT) that describes the spontaneous breaking of C.

It is a general principle of quantum field theory that any theory with a certain continuous global

symmetry that is spontaneously broken, in the far infrared (IR) flows to the same universal theory of

Goldstone bosons [230, 231]. This is roughly speaking always a sigma model, although the target space

can be infinite dimensional (e.g., it is the classifying space BpG in the case of higher-form symmetries).2

As for the SymTFT, this EFT is also canonically determined by the symmetry C without any further

information. For this reason, it is natural to expect that, even though they appear to be completely

different objects — a (d+1)-dimensional TQFT and a d-dimensional EFT — the two can be somehow

related as they both have the same input datum. We will prove by means of many examples that this

correspondence is holography.

A crucial part of the story is the proper choice of boundary conditions. These will be non-

topological and of the Dirichlet type for some combination of the bulk fields. Since bulk fields are

gauge fields A, these boundary conditions break some gauge invariance, making it a global symmetry

of the boundary theory. This agrees with the general principle in holography that boundary global

symmetries correspond to bulk gauge fields. The non-triviality of the system really comes from the

boundary conditions that, being non-topological, generate dynamics on the boundary. The boundary

theory can be thought of as a theory of edge modes. Our setup has several similarities with, and

may be understood as a generalization of, the Chern–Simons/WZW correspondence [47, 48] and its

reinterpretation as a full-flagged holographic duality by means of bulk anyon condensation [133].

To explain the basic setup, consider the simple example of the SymTFT for a U(1) p-form symmetry

in d-dimensions studied in chapter 8

S =
i

2π

∫
Xd+1

bd−p−1 ∧ dAp+1 (9.1.1)

In SymTFT, (9.1.1) is placed on a slab with two boundaries, one of which is topological and

determines the symmetry after the slab is squeezed. This topological boundary is characterized by a

maximal set of mutually transparent objects, which we generically refer to as a Lagrangian algebra L.

In this example a natural Lagrangian algebra consists of all Vn(γp+1), while the Uβ(γd−p−1) become

the generators of the U(1) p-form symmetry of the boundary theory.

In this chapter, instead, we consider a different setting in which (9.1.1) is placed on a manifold

Xd+1 with a unique connected boundaryMd = ∂Xd+1, which we endow with a Riemannian structure.

On Md we fix non-topological boundary conditions 3

Ap+1 + iC ⋆ bd−p−1 = Ap+1 . (9.1.2)

1See also [117, 222] and [229] for a different proposal involving non-topological theories.
2It is not clear to us how to make this precise for non-invertible symmetries, for instance for the Q/Z chiral symmetry

discovered in [28, 29].
3Such boundary conditions in BF theory, and the edge modes they lead to, have recently been studied in [232].
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SymTFT
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Holography

Z(C)
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b.c.

Figure 9.1: Left: the SymTFT setup. The TQFT is placed on a slab, whose right boundary is

topological and determined by a Lagrangian algebra L. Right: the holographic setup considered here.

There is only one boundary with non-topological boundary conditions, while the Lagrangian algebra

L is gauged to make the bulk invertible.

Here ⋆ is the Hodge star operator of the boundary, Ap+1 is a fixed (p + 1)-form on the boundary,

and C is a generically dimensionful constant with mass dimension [C] = 2p + 2 − d.4 Moreover, the

Lagrangian algebra L that was used to define the topological boundary in the SymTFT setup must

now be gauged in the bulk Xd+1, and the final bulk theory Z(C)/L is an invertible TQFT. See Fig. 9.1

for a comparison of the two setups.

In this second setup we want to establish a precise holographic duality with a certain local QFTd

living on the boundary, which we need to determine. More precisely, the equality we need to show is

the standard one [123, 233, 234]:

ZTQFTd+1

[
φ
∣∣
∂

= A
]

= ZQFTd [Md,A] . (9.1.3)

Here TQFTd+1 is the result of gauging L in Z(C), φ denotes generically some bulk fields (for instance

φ = Ap+1 + iC ⋆ bd−p−1 in the example (9.1.1)), while A is introduced as a boundary value from the

bulk viewpoint and plays the role of a background field for the boundary QFT. Although SymTFT

superficially resembles holography, the two are fundamentally different. SymTFT only captures sym-

metries and disregards dynamics, allowing any QFT with the specified symmetry. In contrast, in

holography the dual QFTd is uniquely determined by the bulk theory and its boundary conditions,

encoding both symmetries and dynamics as in (9.1.3).5

We will determine the dual QFTd explicitly in the many examples considered below, providing

strong evidence for the conjecture that the dual theory to Z(C)/L is always the symmetry-breaking

EFT for C. Some of these checks are quite subtle and highly nontrivial. For instance, the Goldstone

theory for a U(1) symmetry with a cubic ’t Hooft anomaly in 4d is still a compact boson with no

additional terms as in the non-anomalous case,6 but the background field for the symmetry is coupled

non-minimally to the theory. We discuss this in Section 9.3.3 (in particular (9.3.20) is the additional

coupling) to which we refer for more details. The SymTFT for a 4d anomalous U(1) is

S =
i

2π

∫
X5

b3 ∧ dA1 +
ik

24π2

∫
X5

A1 ∧ dA1 ∧ dA1 . (9.1.4)

4The introduction of such a scale is necessary since the components of Ap+1 have dimension p + 1 while those of

bd−p−1 have dimension d − p − 1. In this way the forms Ap+1 and bd−p−1 are dimensionless, the action in (9.1.1) is

dimensionless, but ⋆ bd−p−1 has dimension d− 2p− 2.
5See [235] for a general description of symmetry operators in holography.
6This is different from the non-Abelian case, in which an anomaly implies a WZW term in the sigma model.
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Forgetting about the boundary value A1 appearing in the boundary condition (9.1.2), the additional

cubic term does not affect the dual boundary QFT4. However we will show in Section 9.3.2 that

keeping track of A1 we reproduce exactly the non-minimal coupling expected for an anomalous U(1).

Before moving to the various examples, let us clarify a conceptual point. The assertion that certain

dynamical QFTs have a TQFT as holographic dual might be perplexing at first. The origin of the

confusion is that, even though TQFTs are good theories of gravity, the non-appearance of a metric

tensor gµν is puzzling for holography: the metric should be dual to the stress-energy tensor Tµν of

the boundary QFT. While this observation is in general correct, in a few special cases it might have

a loophole: the stress tensor might not be an independent operator. For instance, this is the case

in the CS/WZW correspondence [47, 48]. In 2d WZW models the stress tensor of the CFT, using

the Sugawara construction, is made out of the currents which are dual to the gauge fields of the 3d

Chern–Simons bulk theory. Something very similar happens in our examples. Indeed, the EFTs for

symmetry breaking are very special QFTs in which everything, including the stress-energy tensor, is

determined by the currents and their correlation functions. This is at the core of the universality of

those EFTs. For instance, in the theory of a U(1) Goldstone boson with action

S =
R2

4π

∫
Md

dΦ ∧ ⋆ dΦ , (9.1.5)

the U(1) current is Jµ = iR2

2π ∂µΦ and the stress tensor is a composite operator of Jµ:

Tµν =
R2

4π

(
∂µΦ ∂νΦ− 1

2
δµν (∂Φ)2

)
=

π

R2

(
1

2
δµν J

2 − JµJν
)
. (9.1.6)

Through the boundary conditions, the bulk SymTFT provides background fields for the global sym-

metries of the boundary theory, which are sources for the boundary currents. Hence the TQFT can

compute correlation functions of the currents, and by universality correlation functions of all oper-

ators, including those of the stress tensor, even without an explicit source gµν . This is a general

statement: in the EFTs for spontaneous breaking the currents completely determine all operators and

the holographic duals do not need a graviton field.

It is expected, however, that embedding our models into RG flows and taking into account non-

universal features would require to reintroduce dynamical gravity into the game. Indeed, a related

observation is that the boundary theories we obtain are either free or non-renormalizable. The reason

why a TQFT, which is expected to be UV complete and finite, can be dual to a non-renormalizable

theory is the choice of non-topological boundary conditions, which introduce an energy scale in the

theory. This scale sets a limit below which both the bulk and boundary theories are well defined.

Above this threshold, the boundary theory requires the inclusion of more and more operators to tame

UV divergencies. This issue has to carry over to the bulk TQFT as well — albeit in a way unclear to

us — making the TQFT description incomplete. The expectation is that, to make sense of the bulk

theory above the scale of the boundary condition, one has to allow for dynamical gravity in the bulk

in a way that is similar to the embedding of an EFT for spontaneous breaking into a UV complete

theory. It would be interesting to understand this point better.

9.2 U(1) Goldstone bosons

The simplest cases to test our conjecture are those of U(1) symmetries of generic degree. We warm

up with the textbook example of a spontaneously broken U(1) 0-form symmetry in generic dimension

and then move on to the case of higher-form symmetries, whose Goldstone bosons are (free) U(1)

higher-form gauge fields [11].
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9.2.1 0-form symmetries

Consider the following TQFT in d+ 1 dimensions

S =
i

2π

∫
Xd+1

bd−1 ∧ dA1 , (9.2.1)

where A1 is a U(1) gauge field while bd−1 is an R (d − 1)-form gauge field. We endow the boundary

Md = ∂Xd+1 with a Riemmanian metric and impose the boundary condition

⋆A1 = − i

R2
bd−1 + ⋆A1 . (9.2.2)

Here R is a parameter of mass dimension (d − 2)/2, while A1 is a fixed background 1-form on Md.

Notice that only in d = 2 this boundary condition is conformally invariant. In order to get a consistent

variational principle with this boundary condition we must add a boundary term S∂ to (9.2.1). Indeed,

the variation of the action produces a boundary piece

δS
∣∣
Md

= (−1)d−1 i

2π

∫
Md

bd−1 ∧ δA1 =
1

2πR2

∫
Md

bd−1 ∧ ⋆ δbd−1 , (9.2.3)

which requires a boundary term

S∂ = − 1

4πR2

∫
Md

bd−1 ∧ ⋆ bd−1 . (9.2.4)

Since the boundary condition (9.2.2) breaks gauge invariance on the boundary, we have to be careful

in specifying the group of transformations we quotient by in the bulk: we choose to allow only gauge

transformations that are trivial on the boundary. This implies that the bulk gauge symmetries become

global on the boundary. For any global symmetry we should be able to turn on a background. In our

setup this operation has a very natural realization: instead of freezing gauge transformations on the

boundary, we allow them but transform the boundary data so as to render the boundary condition

invariant. For instance, we can make (9.2.2) gauge invariant under gauge transformations of A1 by

demanding that A1 7→ A1 + dλ0 is accompanied by a transformation of the fixed background A1:

A1 7→ A1 + dλ0 . (9.2.5)

With this choice, A1 is interpreted as a background gauge field for the global U(1) symmetry on the

boundary. Notice that with our choice of boundary term the whole system is gauge invariant.

We can also restore the gauge transformations bd−1 7→ bd−1 + dνd−2 by transforming

A1 7→ A1 − (−1)d
i

R2
⋆ dνd−2 , (9.2.6)

which however are not proper background gauge transformations. A clearer and equivalent possibility

is to parametrize the boundary condition as

⋆A1 = − i

R2

(
bd−1 − Bd−1

)
, (9.2.7)

where Bd−1 is another fixed background on the boundary that transforms as Bd−1 7→ Bd−1 + dνd−2. It

can be understood as a background field for the global (d− 2)-form symmetry on the boundary. Yet

another possibility is to restore both gauge transformations, for instance through the parametrization

⋆
(
A1 −A1

)
= − i

R2

(
bd−1 − Bd−1

)
. (9.2.8)
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We can use it to discover information about the boundary theory. Indeed, with the choice of boundary

term in (9.2.4), the system is not gauge invariant, rather under a gauge transformation we find

δ(S + S∂) = (−1)d−1 i

2π

∫
Md

dνd−2 ∧ A1 −
1

4πR2

∫
Md

(
2 dνd−2 ∧ ⋆Bd−1 + dνd−2 ∧ ⋆ dνd−2

)
. (9.2.9)

The second piece can be cancelled by modifying the boundary term with the addition of

1

4πR2

∫
Md

Bd−1 ∧ ⋆Bd−1 , (9.2.10)

that can be understood as a local counterterm. However the first piece in (9.2.9) cannot be removed

while preserving background gauge invariance for the U(1) 0-form symmetry. This is a sign that the

two symmetries have a mixed ’t Hooft anomaly. Indeed, as we are going to see, the theory we are

describing is the holographic dual to a d-dimensional compact boson. In what follows we will turn on

only the background for the U(1) 0-form symmetry, i.e., we will use the boundary condition (9.2.2).

In order to rewrite the path integral of this TQFT as that of the compact boson we proceed in

analogy with [48, 49, 236] (see also [84]). We assume that Xd+1 contains an S1 factor parametrized

by t ∼ t+ β, interpreted as Euclidean time, hence Xd+1 = Xd × S1 and ∂Xd+1 ≡Md =Md−1 × S1.

For simplicity, we also choose the metric of ∂Xd+1 to be diagonal in Md−1 and S1 so that

⋆ dt = (−1)d−1 VolMd−1
∈ Ωd−1(Md−1) (9.2.11)

with VolMd−1
the volume form of Md−1. We decompose the bulk fields as

A1 = At0 dt+ Ã1 , bd−1 = btd−2 ∧ dt+ b̃d−1 , (9.2.12)

where forms with a tilde live on the spatial manifold Xd. The time components At0 and btd−2 appear

linearly and can be treated as Lagrange multipliers. Integrating them out enforces

d̃Ã1 = 0 , d̃ b̃d−1 = 0 . (9.2.13)

We now make a choice for Xd and take it to be a d-dimensional ball so that Md = Sd−1 × S1. Then

(9.2.13) are solved by introducing a compact scalar Φ0 and a (d− 2)-form R gauge field ωd−2 as

Ã1 = d̃Φ0 , b̃d−1 = d̃ωd−2 . (9.2.14)

Rewriting both the bulk action and the boundary term using Φ0 and ωd−2, the system reduces to the

boundary action

S =
i

2π

∫
Md

[
(−1)d d̃ωd−2 ∧

(
∂tΦ0 −At0

)
dt

− i

2

(
R2
(
d̃Φ0 − Ã1

)
∧ ⋆
(
d̃Φ0 − Ã1

)
+

1

R2
d̃ωd−2 ∧ ⋆ d̃ωd−2

)]
.

(9.2.15)

This action is not covariant, and time derivatives appear linearly. For d = 2, the action contains

two scalars and is a manifestly self-dual formulation of the compact boson known in the condensed

matter literature as the Luttinger liquid Lagrangian (see, e.g., [237] for a recent discussion). It has the

advantage of making both U(1) symmetries explicit, at the expense of hiding Lorentz invariance. The

action (9.2.15) is a d-dimensional generalization of it and it makes both the 0-form and the (d−2)-form

U(1) symmetries manifest.

Path integrals with an action linear in time derivatives are interpreted as phase-space path integrals.

One can typically obtain a configuration-space path integral by integrating out the momenta that
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appear quadratically. Indeed, here d̃ωd−2 is the conjugate momentum to Φ0 and we can recast the

theory in a Lorentz-invariant form by integrating out ωd−2. An important observation is that the

action has zero modes that need to be eliminated. One way to see this is via the equations of motion

for ωd−2. These are

d̃

[(
∂tΦ0 −At0

)
dt + (−1)d

i

R2
⋆ d̃ωd−2

]
= 0 (9.2.16)

with solution

d̃ωd−2 = iR2
(
∂tΦ0 −At0

)
⋆ dt− iR2 ⋆ d̃γ0 . (9.2.17)

Notice that, since
(
∂tΦ0−At0

)
⋆dt is a (d−1)-form supported only on space, we have d̃ ⋆ d̃γ0 = 0. The

scalar γ0 is integrated over but its path integral is naively divergent because γ0 has vanishing action,

i.e., it is a zero-mode. Therefore in order to get a consistent theory we have to gauge fix γ0 = 0.

Plugging d̃ωd−2 in (9.2.15) we get the final action

S =
R2

4π

∫
Md

(
dΦ0 −A1

)
∧ ⋆
(
dΦ0 −A1

)
, (9.2.18)

corresponding to a d-dimensional compact boson with radius R. Had we integrated out Φ0 from

(9.2.15), we would have found the dual formulation in terms of the (d−2)-form ωd−2. The background

field A1 corresponds to the U(1) shift symmetry of the boson and the anomalous shift we discussed

above corresponds to the mixed ’t Hooft anomaly with the winding symmetry.

One might be puzzled by the fact that we have one bulk gauge symmetry U(1), but we still obtain

two global symmetries on the boundary, which might seem to clash with the usual holographic expec-

tations. However, for the compact boson this is not really a contradiction: all correlation functions of

one current can be obtained from those of the other. Indeed, the backgrounds of the two symmetries

are obtained one from the other using the ⋆ operator (modulo counterterms, which correspond to

contact terms in correlators); thus, functional derivatives of the partition function with respect to a

single background already contain the information of all correlators of both currents (see [129] for a

related discussion).

Before going on, let us mention an alternative, quicker way to arrive at the final result that does

not pass through the Luttinger-liquid-like formulation (9.2.15). It requires Xd+1 to be a ball, and

hence Md = Sd. After determining the boundary conditions (9.2.2) and the boundary term (9.2.4),

we just integrate the entire bd−1 out, imposing dA1 = 0. Since the bulk is now topologically trivial,

this is solved by A1 = dΦ0. Using the boundary condition to express the boundary term (9.2.4) in

terms of A1, and plugging back A1 = dΦ0, we immediately get (9.2.18).

9.2.2 Higher-form symmetries

The higher-form case is very similar and we only flash the 1-form symmetry example, just to highlight

one small subtlety. The TQFT we start with has action

S =
i

2π

∫
Xd+1

fd−2 ∧ dG2 , (9.2.19)

with fd−2 and G2 being an R and U(1) gauge field, respectively. On Xd+1 with boundary Md, that

we endow with a Riemannian metric (if d = 4 a conformal structure is enough) we set the boundary

condition (see also [232]):

⋆G2 = (−1)d+1 ie
2

π
fd−2 + ⋆G2 , (9.2.20)
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where [e2] = 4− d. We must also add a boundary term

S∂ = − e2

4π2

∫
∂Xd+1

fd−2 ∧ ⋆fd−2 . (9.2.21)

When solving the constraints imposed by the integral over time components as

f̃d−2 = d̃ωd−3 , G̃2 = d̃A1 , (9.2.22)

we introduce (time-dependent) forms ωd−3 and A1 only on the spatial manifold Xd, namely without

time components. The boundary action one obtains is

S =
i

2π

∫
Md

[
(−1)d d̃ωd−3 ∧

(
∂tA1 + Gt1

)
∧ dt

− i

2

(
e2

π
d̃ωd−3 ∧ ⋆ d̃ωd−3 +

π

e2
(
d̃A1 − G̃2

)
∧ ⋆
(
d̃A1 − G̃2

))]
.

(9.2.23)

This is a higher-form generalization of (9.2.15) and integrating out ωd−3 we obtain

S =
1

4e2

∫
Md

(
dA1 − B2

)
∧ ⋆
(
dA1 − B2

)
, (9.2.24)

where B2 = −Gt1 ∧ dt + G̃2 is a 2-form background field. This is a Maxwell action in d dimensions

coupled to a background field B2 for its electric 1-form symmetry.

The subtlety we want to point out is that A1 does not have the time component, hence this

is a gauge-fixed Maxwell action.7 There is a gauge choice that arises naturally in this reduction

procedure, that is, the temporal gauge. The same story goes through for any higher-form gauge

field: the boundary action is always a generalized Maxwell theory in the temporal gauge (see [84]

for a discussion on this point). It is important to keep this small subtlety in mind when looking at

more complicated TQFTs that produce further interactions involving the photon. For instance, in

Section 9.4 we will obtain Chern–Simons terms on the boundary, and we will have to keep in mind

that they always arise in the temporal gauge.

9.2.3 Lagrangian algebras and topological sectors

There is one very important caveat in the discussion of the previous two sections. Let us focus on the

0-form symmetry case for definiteness. We have shown that with the boundary condition we chose,

the path integral of the TQFT can be rewritten as a path integral with the action of a compact boson

(9.2.18). However, the domain is not the one of the physical theory. The reason is that when we

solve (9.2.13) introducing Φ0 and ωd−2 as in (9.2.14), these fields cannot wind around the time circle

S1. Hence what we established in Section 9.2.1 is that the TQFT partition function is equal to the

zero-winding sector of a compact boson.8

However, it turns out that we can produce the path integral in any fixed winding sector, simply by

inserting a Wilson line ein
∫
S1A1 along the time circle in the bulk. The line pierces the spatial manifold

Xd at a point P , creating a nontrivial (d−1)-cycle Σd−1 ⊂ Xd and introducing a monodromy for b̃d−1

around it: ∫
Σd−1

b̃d−1 = 2πn . (9.2.25)

7This subtlety does not arise in the quicker procedure described at the end of the last section.
8For d = 2 the boundary spatial manifold is S1, and since Φ0 is compact the path integral includes a sum over all

windings around that spatial circle, but not around the time circle.
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To get the TQFT partition function with this insertion, consider a generator
ηd−1

2π of Hd−1(Xd∖P ;Z),

namely
∫
Σd−1

ηd−1 = 2π. The second equation in (9.2.13) is now solved by

b̃d−1 = n ηd−1 + d̃ωd−2 . (9.2.26)

With the same steps as before we obtain a path integral on boundary fields Φ0 and ωd−2, again over

configurations of Φ0 with zero winding around the time circle, but with a modified action with respect

to (9.2.15):

Sn =
i

2π

∫
Md

[
(−1)d d̃ωd−2 ∧

(
∂tΦ0 −At0

)
dt

− i

2

(
R2
(
d̃Φ0 − Ã1

)
∧ ⋆
(
d̃Φ0 − Ã1

)
+

1

R2
d̃ωd−2 ∧ ⋆ d̃ωd−2

)]
− (−1)d

in

2π

∫
Md

At0 η̂d−1 ∧ dt+
n2

4πR2

∫
Md

η̂d−1 ∧ ⋆ η̂d−1 .

(9.2.27)

Here η̂d−1 is the pull-back of ηd−1 on Md. It is a top form on ∂Xd ≡ Md−1 and one can make a

choice for the representative ηd−1 in (9.2.26) such that η̂d−1 = 2π
v VolMd−1

with v =
∫
Md−1

VolMd−1

the volume of the boundary spatial slice. In particular ⋆ η̂d−1 = 2π
v dt. Plugging this back into (9.2.27)

we obtain

Sn = S0 − inθ +
πβn2

vR2
where θ = (−1)d

∫
S1

At0 dt . (9.2.28)

Here S0 is the action (9.2.15) written in terms of the periodic scalar in the Luttinger liquid form,

which could be rewritten in the Lorentz covariant form (9.2.18) that makes manifest its nature as a

boson of radius R. Notice that θ ∼ θ + 2π has the interpretation of a chemical potential for the U(1)

0-form symmetry. The partition function with the line inserted is then

Zn = Zpert exp

(
inθ − πβ

vR2
n2
)

(9.2.29)

where Zpert is the perturbative contribution due to a periodic boson.

We want to show our claim that, after we condense a Lagrangian algebra in the bulk, the partition

function includes the sum over all topological sectors of the compact scalar, hence reproducing the

physical partition function. The simplest Lagrangian algebra contains all the lines Wn = ein
∫
A1

and no surfaces Vα = eiα
∫
bd−1 . Due to our choice of geometry, gauging this algebra is the same as

summing over all lines inserted along the time circle, hence summing over all n in (9.2.29). The bulk

interpretation of this sum is that we are computing the partition function of the SPT phase obtained

by gauging the algebra, which we are taking as our theory of gravity. Hence using Poisson’s summation

formula we find9

Zgravity =
∑
n∈Z

Zn = Zpert

∑
w∈Z

exp

[
−πvR

2

β

(
w +

θ

2π

)2]
. (9.2.30)

The right hand side is precisely the partition function of a compact boson of radius R (with chemical

potential θ).

More generally, the bulk TQFT has other Lagrangian algebras consisting of the lines Wkm and the

surfaces Vm′/k for an integer number k ∈ Z. Condensing one of them produces a different SPT phase

in the bulk, hence a different theory of gravity. In the SymTFT story this corresponds to gauging the

Zk subgroups of the U(1) symmetry at the boundary. Because of the chosen geometry, there are no

9Here we are neglecting an extra factor
√
β/vR2, since normalizations of the path integrals do not play a role here.

A similar factor is neglected in (9.2.31).
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(d − 1)-cycles in the bulk and hence condensing this algebra simply means summing over all Wilson

lines of charge multiple of k. The result is

Z ′
gravity =

∑
m∈Z

Zkm = Zpert

∑
w∈Z

exp

[
−πv
β

(R
k

)2(
w +

kθ

2π

)2]
(9.2.31)

and the right-hand side can be interpreted as the partition function of a compact boson of radius

R′ = R/k. This is an orbifold of the previous boundary theory, which could be thought of as a

different global form of the same theory.

We want to comment on a slightly different way to obtain a holographic dual to compact bosons,

which also fits our proposal. We could have started with the TQFT of two R gauge fields described

by the action

S =
i

2π

∫
Xd+1

bd−1 ∧ da1 . (9.2.32)

In this TQFT the charges of the Wilson lines Wα = eiα
∫
a1 are not quantized, and since there is no

sum over fluxes,10 there is no identification among the charges of Vβ = eiβ
∫
bd−1 . The spectrum of

bulk operators is then larger, labelled by R × R, and the corresponding braiding is the phase e2πiαβ.

Lagrangian algebras are classified by the choice of a real number Q ∈ R+ and are given by [133]

LQ =
{
WQn, VQ−1m

∣∣ n,m ∈ Z
}
. (9.2.33)

We showed in chapter 8 that this TQFT is the SymTFT for two U(1) symmetries, namely a 0-form and

a (d− 2)-form, with a mixed anomaly. While this is a different symmetry structure from just a single

U(1), the second higher-form symmetry arises universally in the IR whenever the 0-form symmetry

is spontaneously broken. Hence the two symmetry structures share the same EFT that describes the

broken phase and, according to our proposal, they should both be the holographic dual to a compact

boson. Indeed there is no much difference between the two theories: the non-topological boundary

conditions can be chosen to be the same, and the computations of Section 9.2.1 give the same result.

The considerations explained in this section can be repeated for any higher-form symmetry. How-

ever, in order to detect the various global structures of a boundary p-form Maxwell theory, one needs

to properly choose the geometry. Indeed the fluxes are supported on (p+ 1)-dimensional cycles, and

thus a natural choice is to take Xd+1 = Bd−p × T p+1 with Bd−p a ball. One of the S1 factors of the

torus plays the role of a time circle, and Xd = Bd−p × T p. The bulk TQFT has action

S =
i

2π

∫
Xd+1

bd−p−1 ∧ dAp+1 (9.2.34)

where bd−p−1 is an R gauge field whilst Ap+1 is a U(1) gauge field. One can obtain an SPT phase by

gauging the Lagrangian algebra given by Wn = ein
∫
Ap+1 , and this is realized by inserting these defects

along the T p+1 factor in the bulk. This sum indeed reproduces the sum over fluxes of the p-form

Maxwell theory on the boundary. The choice of other Lagrangian algebras modifies the value of the

electric charge and corresponds to discrete gaugings of the 1-form symmetry.

9.3 Abelian anomalies and higher groups

We can enrich the analysis of U(1) symmetries by including anomalies (Sections 9.3.1 and 9.3.2) or

a 2-group structure (Section 9.3.4). We show here that, when doing it, the dual boundary theory

10An R gauge field admits a gauge in which the connection is globally defined, therefore the field strength is an exact

form and its integrals on compact submanifolds vanish.
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gets coupled to background fields in a non-minimal way. In Sections 9.3.3 and 9.3.5 we provide a

field-theoretic interpretation of our results in terms of symmetry fractionalization.

9.3.1 Chiral anomaly in 2d

The SymTFT for an anomalous U(1) symmetry in 2d has action:

S =
i

2π

∫
X3

b1 ∧ dA1 +
ik

4π

∫
X3

A1 ∧ dA1 . (9.3.1)

The additional bulk Chern–Simons term significantly affects the consistent boundary conditions. To

establish a proper variational principle with a non-topological boundary condition, it is essential to

include the boundary term

S∂ = − 1

4πR2

∫
∂X3

(
b1 +

k

2
A1

)
∧ ⋆
(
b1 +

k

2
A1

)
(9.3.2)

together with the following Dirichlet boundary condition:11

⋆ δA1 = − i

R2
δ

(
b1 +

k

2
A1

)
. (9.3.3)

In order to properly turn on a background for the boundary U(1) symmetry we have to render the

boundary condition invariant under gauge transformations of A1. This is most naturally done by

introducing a 1-form A1 as

⋆ (A1 −A1) = − i

R2

(
b1 +

k

2
(A1 −A1)

)
. (9.3.4)

This boundary condition is invariant under δA1 = δA1 = dλ0, allowing us to interpret A1 as a

background field for the U(1) symmetry on the boundary. Notice that our choice does not modify

(9.3.3) and is thus just a particularly convenient parametrization.

Before deriving the dual boundary theory, we can already establish that it has an ’t Hooft anomaly.

Indeed, under a gauge transformation δA1 = δA1 = dλ0 the total action S + S∂ transforms as

δ(S + S∂) = − ik
4π

∫
M2

dλ0 ∧ A1 −
k2

16πR2

∫
M2

(
2 dλ0 ∧ ⋆A1 + dλ0 ∧ ⋆ dλ0

)
(9.3.5)

where M2 = ∂X3. The second term can be cancelled by adding the following counterterm to the

boundary action:

Sc.t. =
k2

16πR2

∫
M2

A1 ∧ ⋆A1 . (9.3.6)

However the remaining total gauge variation

δ
(
S + S∂ + Sc.t.

)
= − ik

4π

∫
M2

dλ0 ∧ A1 (9.3.7)

cannot be cancelled by any local boundary counterterm: it is precisely the anomalous variation cor-

responding to a perturbative U(1) anomaly.

To derive the boundary theory we follow the steps outlined in Section 9.2. The constraints imposed

by the path integral over time components again allow us to write Ã1 = d̃Φ0 and b̃1 = d̃ω0. The

11One can check, by writing all possible boundary terms and imposing consistency of the variational principle, that

these boundary data are the only possible choice.
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boundary action expressed in terms of these variables, after introducing F = A1 − ik
2R2 ⋆ A1 for

convenience, reads:

S =
i

2π

∫
M2

[(
d̃ω0 + k

2 d̃Φ0

)(
∂tΦ0 −F t0

)
∧ dt (9.3.8)

− i

2

(
R2
(
d̃Φ0 − F̃1

)
∧ ⋆
(
d̃Φ0 − F̃1

)
+

1

R2

(
d̃ω0 + k

2 d̃Φ0

)
∧ ⋆
(
d̃ω0 + k

2 d̃Φ0

))]
+ Sc.t .

This is the same action as in (9.2.15) for d = 2 but with ω0 7→ ω0 + k
2 Φ0. Integrating ω0 out we find

S =
R2

4π

∫
M2

(
dΦ0 −A1

)
∧ ⋆
(
dΦ0 −A1

)
+
ik

4π

∫
M2

Φ0 dA1 . (9.3.9)

This action describes a compact boson of radius R, but with an unusual coupling to a background

for the momentum symmetry. Such a coupling reproduces the anomalous shift (9.3.7) that is indeed

cancelled by the inflow action

Sinflow = − ik
4π

∫
3d
A1 ∧ dA1 . (9.3.10)

Notice that the extra coupling Φ0 dA1 in (9.3.9) has a form similar to the coupling with the winding

symmetry. In a sense, we are prescribing that a background A1 for the momentum symmetry also

activates a background B1 = kA1 for the winding symmetry. In other words, A1 is not coupled with

the momentum symmetry but rather with a diagonal combination of momentum and winding.12 Since

the two symmetries have a mixed anomaly, this diagonal U(1) inherits a pure anomaly.

9.3.2 Chiral anomaly in 4d

The treatment of anomalies in higher dimensions presents a further conceptual difference. As a

representative case, we consider d = 4 and the TQFT with action

S =
i

2π

∫
X5

b3 ∧ dA1 +
ik

24π2

∫
X5

A1 ∧ dA1 ∧ dA1 . (9.3.11)

To get a good variational principle we need to impose

⋆ δA1 = − i

R2
δ

(
b3 +

k

6π
A1 ∧ dA1

)
(9.3.12)

and add a boundary term

S∂ = − 1

4πR2

∫
∂X5

(
b3 +

k

6π
A1 ∧ dA1

)
∧ ⋆
(
b3 +

k

6π
A1 ∧ dA1

)
. (9.3.13)

These choices however do not allow us to turn on a background by simply changing the parametrization

of the boundary condition, as we did in 2d. Indeed, if we try to restore the gauge transformations of

A1, the boundary condition shifts by terms that depend on the field A1 itself and cannot be cancelled

by adding counterterms in the background only. Turning on a background in d > 2 requires us to

change the boundary data in a nontrivial way. In Appendix D we explain an iterative procedure

that, starting from the data above, produces a consistent variational principle together with a gauge-

invariant boundary condition. The result for d = 4 is

⋆
(
A1 −A1

)
= − i

R2

(
b3 +

k

6π

(
A1 −A1

)
∧ dA1 +

k

12π

(
A1 −A1

)
∧ dA1

)
(9.3.14)

12More precisely, it is the diagonal combination between momentum and a Zk extension of the winding symmetry.
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with boundary term

S∂ = − 1

4πR2

∫
∂X5

(
b3 +

k

6π

(
A1 −A1

)
∧ dA1 +

k

12π
A1 ∧ dA1

)2
+

ik

24π2

∫
∂X5

A1 ∧A1 ∧ dA1 . (9.3.15)

When setting A1 = 0 we recover the previous boundary data, but in general there are new terms

that mix background and dynamical fields. As in 2d, one can show that the system has an anomaly

performing a gauge transformation δA1 = δA1 = dλ0: up to a counterterm the gauge variation is

δ
(
S + S∂ + Sc.t.

)
=

ik

24π2

∫
∂X5

λ0 dA1 ∧ dA1 . (9.3.16)

The procedure to determine the dual boundary theory is completely analogous to the examples we

have already presented. Integrating the time components out, we introduce Ã1 = d̃Φ0 and b̃3 = d̃ω2.

To simplify our expressions, we denote F1 = A1 − ik
12πR2 ⋆ (A1 ∧ dA1). Then the boundary action, in

its non-covariant presentation, is

S =
i

2π

∫
M4

[(
d̃ω2 + k

12π d̃Φ0 ∧ d̃Ã1

)(
∂tΦ0 −F t0

)
dt− i

2

(
R2
(
d̃Φ0 − F̃1

)
∧ ⋆
(
d̃Φ0 − F̃1

)
+

1

R2

(
d̃ω2 + k

12π d̃Φ0 ∧ d̃Ã1

)
∧ ⋆
(
d̃ω2 + k

12π d̃Φ0 ∧ d̃Ã1

))]
+ Sc.t. (9.3.17)

where M4 = ∂X5. As before we can integrate out ω2 and the final action reads

S =
R2

4π

∫
M4

(
dΦ0 −A1

)
∧ ⋆
(
dΦ0 −A1

)
+

ik

24π2

∫
M4

Φ0 dA1 ∧ dA1 . (9.3.18)

This represents a compact scalar with a non-standard coupling to a background associated with the

shift symmetry, akin to the situation in 2d. The additional interaction accounts for the anomalous

variation described by (9.3.16). Nevertheless, unlike in the 2d scenario, we cannot view this altered

interaction as a combination of the shift and winding symmetries since the two have different degree.

9.3.3 Anomaly matching in the broken phase

Let us provide a purely field-theoretic interpretation of the result in the previous section. For any

Lie-group symmetry G, the Goldstone theory describing the symmetry breaking phase is a non-linear

sigma model with target space G. In even spacetime dimensions d, the symmetry G can suffer from

perturbative anomalies and the question is how these are matched in the sigma model.

For non-Abelian G it is well known that the anomaly is reproduced by a WZW term [238]. This

is an additional interaction with important dynamical consequences. Perturbative anomalies are clas-

sified by Hd+2(BG;Z), which determines a (d+ 1)-dimensional Chern–Simons action that cancels the

anomaly by inflow. On the other hand, WZW terms in d dimensions are classified by Hd+1(G;Z).

Anomaly matching is mathematically represented by a map

τ : Hd+2(BG;Z)→ Hd+1(G;Z) (9.3.19)

called transgression [239]. For d = 2 this map also underlines the map of levels in the CS/WZW

correspondence [81]. For the simple Lie group G = SU(n), the transgression map τ is injective [81],

meaning that any perturbative anomaly is matched by a WZW term.13 However this is not the general

case, and if τ has a nontrivial kernel, the corresponding anomalies require some new ingredient to be

matched in the sigma model.

13The transgression map is expected to be injective for all simple Lie groups.
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Here we focus on the extreme case G = U(1) for which Hd+1
(
U(1);Z

)
= 0, namely there is no

WZW term at all, and any anomaly must be matched in a different way. From our holographic analysis

we know the answer to this question: the dynamics of the sigma model is unchanged with respect to

the non-anomalous case, but the symmetry is coupled non-minimally to the background A1 through

the extra topological term
ik

(2π)d/2
(
d
2 + 1

)
!

∫
Md

Φ0

(
dA1

)d/2
. (9.3.20)

This term reproduces the anomaly, but at this level it seems a bit ad hoc. We want to clarify why

it arises from a UV viewpoint and how we understand it in the IR. This is important to understand

why there is a difference in how anomaly matching works in the Abelian and non-Abelian cases.

We can show in a simple model that when the background field is turned on in the UV, the

additional coupling (9.3.20) is generated along the RG flow by integrating out massive fields. Consider

a 4d theory with a massless Dirac fermion ψ and a complex scalar ϕ, coupled via a Yukawa interaction:

L ⊃ ϕψψ . (9.3.21)

The theory has an axial symmetry U(1)A under which both Weyl components of ψ have charge 1, while

ϕ has charge −2. U(1)A has a cubic anomaly with k = 2. Choosing a potential V (ϕ) that induces

condensation of ϕ, the axial symmetry gets spontaneously broken to Z2 = (−1)F . By decomposing

ϕ = ρ eiΘ into its radial and angular parts, the VEV ⟨ρ⟩ = v gives mass to both ρ and ψ. The angular

part Θ remains massless and is the only degree of freedom at low energy: it is the Goldstone boson.

The faithful symmetry in the IR is U(1) = U(1)A/Z2 that shifts Θ. In order to reproduce the anomaly,

the coupling to a background A must include the term

i

24π2
Θ (dA)2 . (9.3.22)

Indeed this term arises when integrating out the fermion. To see this notice that, for fixed ϕ and

A, if ϕ is real and positive then the fermion path integral can be regularized in a way such that the

measure is positive [240–242]. Clearly this is not true on a generic configuration, but we can make it

true by performing an axial rotation of parameter eiα, with α = −1
2Θ. A textbook computation [243,

244] shows that the path integral measure of the fermion changes by a phase

D[ψ] 7→ D[ψ] exp

(
ik

24π2

∫
α (dA)2

)
. (9.3.23)

Setting α = −1
2Θ this precisely reproduces the coupling (9.3.22). Now the Yukawa coupling becomes

ρψψ, that for fixed ρ is essentially a positive mass term for the fermion, hence integrating out the

fermion becomes a safe operation that does not introduce extra phases.

Returning to the general case, we want to interpret the extra coupling (9.3.20) as specifying a

(higher) symmetry fractionalization class for the U(1) symmetry (see Section 1.5). This reinterpreta-

tion will be crucial to understand the analogous story for higher groups in the following sections. A

0-form symmetry G can fractionalize in the presence of a discrete 1-form symmetry Γ. This means that

when two topological defects g, h ∈ G fuse to produce gh ∈ G, their codimension-two junction gets

covered by a topological defect ω(g, h) ∈ Γ of the 1-form symmetry [15, 53, 54], where ω ∈ H2(BG; Γ).

Equivalently, a background A1 for G turns on a background B2 = A∗
1 ω for the 1-form symmetry. In

this formula, we think of A1 as a map Md → BG and of B2 as an element of H2(Md,Γ) so that

we can use A1 to pull back ω. With this interpretation it becomes clear that, if G and Γ have a

mixed anomaly, a non-trivial fractionalization class modifies the pure anomaly for G, possibly making
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it nontrivial even when it vanished originally [53, 54]. This has a natural generalization to the case

that Γ is a discrete p-form symmetry: when p+ 1 topological defects g1, . . . , gp+1 ∈ G fuse in generic

position, they create a codimension-(p+ 1) junction that can be dressed by a defect ω(g1, . . . , gp+1) of

the p-form symmetry Γ, where ω is a class in Hp+1(BG; Γ). Equivalently, a background A1 turns on

a background Bp+1 = A∗
1 ω for Γ.

The compact boson theory that describes the breaking of a U(1) 0-form symmetry also possesses

a U(1) (d − 2)-form winding symmetry, and the two have a mixed anomaly. For this reason, a

pure anomaly for the 0-form symmetry can be induced by fractionalizing it with the (d − 2)-form

symmetry. One minor modification with respect to what we described above is necessary because the

p-form symmetry (here p = d − 2) is continuous. Its most natural description is not in terms of a

background potential Bp+1, which is not a cohomology class in general, but in terms of its field strength
1
2π dBp+1 ∈ Hp+2(Md;Z). As a consequence the fractionalization class, instead of being an element

of Hp+1
(
BU(1);U(1)

)
, is more naturally an element of Hp+2(BU(1);Z) ∼= Z. This is the datum that

determines a (p + 1)-dimensional Chern–Simons level, or equivalently the corresponding Chern class

in (p+2) dimensions. Hence, in analogy with the discrete case, we prescribe that a background A1 for

the 0-form symmetry activates a background Bd−1 for the (d− 2)-form symmetry whose field strength

is

1

2π
dBd−1 =

k

(2π)d/2
(
d
2 + 1

)
!

(
dA1

)d/2
. (9.3.24)

Recalling that the (d− 2)-form symmetry is coupled to its background field through the action term
i
2π

∫
Md

Φ0 dBd−1, this reproduces the coupling (9.3.20) in agreement with our holographic result.

9.3.4 Abelian 2-groups

We consider a 2-group symmetry in four dimensions formed by a U(1) 0-form symmetry and a U(1)

1-form symmetry. This can be obtained by starting from a theory with two U(1) 0-form symmetries

with a cubic mixed anomaly and gauging the U(1) that appears linearly in the anomaly polynomial

[16, 154]. The 1-form symmetry participating in the 2-group structure is the magnetic symmetry of

the photon. As derived in chapter 8, the SymTFT for such a 2-group symmetry has action:

S =
i

2π

∫
X5

(
b3 ∧ dA1 + h2 ∧ dC2 +

k

2π
h2 ∧A1 ∧ dA1

)
. (9.3.25)

This is invariant under the gauge transformation (8.4.4)14.

We place this TQFT on a manifold with boundary, X5 = B4×S1 for simplicity, and we interpret it

as a theory of gravity, holographically dual to some 4d quantum field theory on the boundary. The last

term in (9.3.25) contains a derivative, therefore it affects the boundary contribution to the variational

principle, similarly to the case of chiral anomalies. To fix the boundary terms S∂ and the boundary

conditions on the fields, we use the same logic as in that case. We find the boundary conditions

⋆
(
A1 −A1

)
= − i

R2

[
b3 +

k

2π
h2 ∧

(
A1 −A1

)]
, ⋆ h2 =

ie2

π

(
C2 − C2 −

k

2π
A1 ∧A1

)
(9.3.26)

14There is some freedom in the choice of transformations that leave (9.3.25) invariant. In particular, the transformation

δA1 = dλ0 could be accompanied by an action on both b3 and C2 as δb3 = −ϵ k
2π
dλ0 ∧ h2 and δC2 = (1− ϵ) k

2π
dλ0 ∧ A1

for any choice of ϵ. Here we chose ϵ = 0 which matches the transformations in the boundary theory.
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and a corresponding boundary term

S∂ = − i

2π

∫
∂X5

h2 ∧
(
C2 − k

2π A1 ∧A1

)
− e2

4π2

∫
∂X5

(
C2 − k

2π A1 ∧A1

)
∧ ⋆
(
C2 − k

2π A1 ∧A1

)
− 1

4πR2

∫
∂X5

[
b3 +

k

2π
h2 ∧

(
A1 −A1

)]
∧ ⋆
[
b3 +

k

2π
h2 ∧

(
A1 −A1

)]
. (9.3.27)

Here A1, C2 are fixed gauge fields on the boundary that transform as a proper 2-group background:

δA1 = dλ0 , δC2 = dη1 +
k

2π
dλ0 ∧ A1 . (9.3.28)

This makes the boundary conditions gauge invariant, provided we add a counterterm e2

4π2

∫
∂X5
C2∧⋆ C2.

With the usual procedure, we obtain that the dual boundary theory has action:

S =
R2

4π

∫
∂X5

(
dΦ0 −A1

)
∧ ⋆
(
dΦ0 −A1

)
+

1

4e2

∫
∂X5

da1 ∧ ⋆ da1

+
i

2π

∫
∂X5

C2 ∧ da1 +
ik

4π2

∫
∂X5

Φ0 da1 ∧ dA1 .

(9.3.29)

Naively one may think that a1 is an R gauge field, because it comes from the trivialization of h2.

However, we have to take into account the condensation of the appropriate Lagrangian algebra in the

bulk, necessary to trivialize the TQFT and making it independent of the topology. Specifically, here

the relevant Lagrangian algebra is

L =
{
ein

∫
A1 , eim

∫
C2

∣∣∣ n,m ∈ Z
}
. (9.3.30)

Following the same logic as in Section 9.2.3, this introduces a sum over the fluxes of da1 that effectively

makes a1 into a U(1) gauge field.

Turning off the background A1 we obtain a free compact scalar and a free photon (coupled to a

background field C2 for its magnetic symmetry), enjoying a U(1) 0-form symmetry with conserved

current J1 = iR2

2π dΦ0, and a U(1) 1-form symmetry with conserved current J2 = 1
2π ⋆da1, respectively.

However, as soon as we turn on a background A1 for the 0-form symmetry, the 2-group structure

manifests itself through the nonstandard coupling between the photon and the scalar, which modifies

the currents and the background gauge transformations [16]. This is very similar to what happened

in the case of the chiral anomaly, and we will provide a similar interpretation in terms of symmetry

fractionalization in the next section.

Let us show that the theory in (9.3.29) reproduces the 2-group symmetry [16]. First, notice that

the gauge transformation

δΦ0 = λ0 , δA1 = dλ0 , δC2 = dη1 +
k

2π
dλ0 ∧ A1 (9.3.31)

leaves the action invariant. This is indeed the background gauge transformation for a 2-group. Second,

in the presence of a background the currents get modified to:15

J1 =
iR2

2π

(
dΦ0 −A1

)
+

k

4π
⋆
(
dΦ0 ∧ da1

)
, J2 =

1

2π
⋆ da1 , (9.3.32)

and these satisfy modified conservation equations

d ⋆ J1 +
k

2π
dA1 ∧ ⋆ J2 = 0 , d ⋆ J2 = 0 , (9.3.33)

that are the correct conservation equations for a 2-group symmetry.

15For a U(1) p-form symmetry we use the convention that the current Jp+1 is defined by ⋆ Jp+1 = −i δS
δAp+1

where

Ap+1 is the background field.
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9.3.5 Abelian 2-groups in the broken phase

The unusual coupling to the background A1 in (9.3.29), responsible for the 2-group structure of the

symmetry, is quite similar to the coupling (9.3.20) responsible for a chiral anomaly, that we interpreted

in terms of symmetry fractionalization. Indeed we can give a similar interpretation here too. While

it is intuitively clear why symmetry fractionalization can induce a pure anomaly, and this fact has

been studied extensively [53, 54], the necessity of symmetry fractionalization to match higher-group

structures has not been much appreciated. There is indeed one important difference, namely the

nature of the symmetry used to fractionalize the U(1) 0-form symmetry in question: it is a composite

symmetry [245].

In general, if we have two U(1) symmetries of degrees p and q with currents Jp+1 and Jq+1

respectively, if p+ q ≥ d− 1 we can construct a third U(1) symmetry simply because the current

Jp+q−d+2 = ⋆
(
(⋆ Jp+1) ∧ (⋆ Jq+1)

)
(9.3.34)

is automatically conserved. This symmetry is of degree p+q−d+1. In general, it is not a particularly

interesting symmetry because its consequences are already implied by the constituent symmetries.

However, it plays a role in our discussion. The IR theory of a 4d compact boson has an emergent

2-form symmetry: the winding symmetry of the scalar with current J3 = − 1
2π ⋆ dΦ0. This is the

symmetry we used to fractionalize the 0-form symmetry in the case of the chiral anomaly. In this

case, since we also have the magnetic 1-form symmetry of the photon with current J2 = 1
2π ⋆ da1, we

can construct

Ĵ1 = ⋆
(
(⋆ J3) ∧ (⋆ J2)

)
=

1

4π2
⋆
(
dΦ0 ∧ da1

)
(9.3.35)

that generates a 0-form symmetry. Using this symmetry to fractionalize the shift symmetry of the

compact boson, as described in Section 9.3.3, we obtain precisely the non-canonical coupling in (9.3.29).

9.4 Boundary Chern–Simons-like terms

In this section we study bulk models obtained by adding terms without derivatives. These do not affect

the boundary terms in the variational principle and hence do not modify the boundary conditions.

Thus the dual theory couples minimally to the background fields, but it contains extra interactions,

typically Chern–Simons-like terms. Our main motivation here is to verify our conjecture in a case with

a non-invertible symmetry, the Q/Z chiral symmetry in four dimensions [28, 29] reviewed in Section

3.5,16 and to provide a framework to study aspects of its spontaneous breaking. We also consider in

Section 9.4.1 a bulk 4d TQFT introduced in Section 8.2.2, which was argued to be related to 3d gauge

theories with Chern–Simons interactions. We use our formalism to establish a precise holographic

duality confirming this expectation.

9.4.1 Holographic dual to Maxwell–Chern–Simons theory

We consider the 4d TQFT studied in Section 8.2.2, that has action

S =
i

2π

∫
X4

(
A1 ∧ db2 +

ϕ

4π
b2 ∧ b2

)
. (9.4.1)

Recall that the gauge-invariant operators include surfaces Uα(γ2) = e
iα

∫
γ2
b2 and the generically non-

genuine lines Wn(γ1, D2) = e
in

∫
γ1
A1+

inϕ
2π

∫
D2

b2 that need an attached two-disk D2 bounded by γ1. The

label α ∼ α+ 1 is circle valued, while n ∈ Z.

16See [116] for a recent proposal to recover the full U(1) chiral symmetry.
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We will be mostly interested in the case

ϕ =
2π

k
with k ∈ Z . (9.4.2)

In this case the lines Wmk become genuine, and an interesting Lagrangian algebra17 is obtained by

taking all the genuine lines together with the surfaces Ul/k with l ∈ Zk. Used in SymTFT, this

Lagrangian algebra describes the symmetry U(1)
[0] × Z[1]

k : the first factor is a 0-form symmetry, the

second factor is an anomalous 1-form symmetry (with coefficient 1), and there is a mixed anomaly

between the two.

We place the theory on a manifold with boundary, where we impose the boundary condition

⋆
(
A1 −A1

)
= − iπ

k2e2
b2 . (9.4.3)

In order to have a good variational principle we must add the boundary term

S∂ = −k
2e2

4π2

∫
∂X4

A1 ∧ ⋆A1 =
1

4k2e2

∫
∂X4

(
b2 +

ik2e2

π
⋆A1

)
∧ ⋆
(
b2 +

ik2e2

π
⋆A1

)
. (9.4.4)

The gauge transformation δA1 = dρ0 is restored by δA1 = dρ0 that makes (9.4.3) invariant. The full

system is gauge invariant, provided that we also add a counterterm Sc.t. = k2e2

4π2

∫
∂X4
A1 ∧ ⋆A1.

We take the bulk to be the product of a three-dimensional ball B3 and the time circle S1, so that

∂X4 ≡M3 = S2 × S1. Integrating out the time components At0, b
t
1 we get delta functions imposing

d̃ b̃2 = 0 , d̃Ã1 + 1
k b̃2 = 0 , (9.4.5)

that are solved introducing Φ0 and â1 through

b̃2 = d̃ â1 , Ã1 = d̃Φ0 − 1
k â1 . (9.4.6)

With this, the bulk path integral reduces to a boundary path integral with action

S + S∂ + Sc.t. =
i

2π

∫
M3

[
∂tâ1 ∧

(
d̃Φ0 − 1

k â1

)
∧ dt+

1

2k
â1 ∧ dâ1 + d̃ â1 ∧ At0 dt (9.4.7)

− i

2

(
π

k2e2
d̃ â1 ∧ d̃ â1 +

k2e2

π

(
d̃Φ0 − Ã1 − 1

k â1

)
∧ ⋆
(
d̃Φ0 − Ã1 − 1

k â1

))]
.

Attempting to integrate out â1 to derive a covariant action for the scalar field, as we did in Section 9.2.1,

results in a non-local action.18 However, there is no problem in integrating out Φ0 from (9.4.7) and

we obtain a local and covariant boundary theory with action

S =
1

4k2e2

∫
M3

dâ1 ∧ ⋆ dâ1 +
i

4πk

∫
M3

â1 ∧ dâ1 +
i

2π

∫
M3

dâ1 ∧ A1 . (9.4.8)

This might seem like a U(1) gauge theory with an improperly quantized Chern–Simons level.

However we must be careful in identifying the correct U(1) gauge field, by considering the condensation

of the Lagrangian algebra that trivializes the bulk. This includes all genuine lines as well as k surfaces:

L =
{
Wkm = eikm

∫
A1 , Ul/k = e

il
k

∫
b2
∣∣∣ m ∈ Z , l ∈ Zk

}
. (9.4.9)

17A more natural Lagrangian algebra consists of all surfaces Uα. Used in SymTFT it describes an exotic Z 1-form

symmetry with anomaly parametrized by ϕ, while holographically we expect it to describe its breaking.
18A similar (even though less transparent) problem would have arisen if we tried to obtain the boundary theory using

the second method described at the end of Section 9.2.1, i.e., by integrating out directly the whole b2: the latter does

not appear linearly in the bulk action.
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On the geometry that we are considering, condensing L amounts to inserting the lines Wkm along the

time circle and summing over m, while the surfaces have no effect. The insertion of Wkm modifies the

path integral so as to impose that
∫
S2 b2 = 2πkm for any two-sphere in B3 that surrounds the Wilson

line. This in particular includes the boundary spatial manifold. From the boundary theory viewpoint,

this is a topological sector of the path integral with flux∫
S2

dâ1
2π

= km . (9.4.10)

Hence the canonically normalized U(1) gauge field is a1 = â1/k, in terms of which the boundary

theory has action

S =
1

4e2

∫
M3

da1 ∧ ⋆ da1 +
ik

4π

∫
M3

a1 ∧ da1 +
ik

2π

∫
M3

da1 ∧ A1 . (9.4.11)

This is Maxwell–Chern–Simons theory at level k, coupled to a background field for the topological

U(1) symmetry acting on monopoles. More precisely, the background field for this symmetry is

A′
1 = kA1, while A1 is the background for a larger non-faithful U(1) symmetry obtained by extending

the topological symmetry with a trivially-acting Zk.19

It should be noted that this example has a slightly different flavor than all other ones discussed

in this chapter. The UV symmetry is U(1)
[0] × Z[1]

k , however only Zk is spontaneously broken, indeed

there are no Goldstone bosons in the IR since the photon is massive due to the Chern–Simons term.

We consider this example has a warm up for the next one.

9.4.2 Spontaneously broken non-invertible Q/Z chiral symmetry

Consider now the non-invertible chiral symmetry in 4d reviewed in Section 8.2.1, for which we estab-

lished the SymTFT in chapter 8:

S =
i

2π

∫
X5

(
b3 ∧ dA1 + f2 ∧ dG2 +

k

4π
A1 ∧ f2 ∧ f2

)
. (9.4.12)

The gauge transformations are

δA1 = dρ0 , δb3 = dξ2 −
k

4π
λ1 ∧ dλ1 −

k

2π
λ1 ∧ f2 ,

δf2 = dλ1 , δG2 = dη1 −
k

2π
ρ0
(
f2 + dλ1

)
− k

2π
λ1 ∧A1 .

(9.4.13)

As shown in chapter 8, the gauge-invariant genuine topological defects are:

Wn(γ1) = e
in

∫
γ1
A1 , U p

kq
(γ3) = e

i p
kq

∫
γ3
b3 Aq,p(γ3; f2) ,

Vα(γ2) = e
iα

∫
γ2
f2 , Tm(γ2) = e

im
∫
γ2
G2 Zkm(γ2;A1, f2) .

(9.4.14)

Here n,m ∈ Z and α ∈ R/Z, while p/q ∈ Q with gcd(p, q) = 1 and p ∼ p + kq so that the label

p/kq ∈ Q/Z. Then Zkm(γ2;A1, f2) denotes a pure 2d Zkm gauge theory on γ2, whose 0-form and

1-form symmetries are coupled, respectively, to A1 and f2. Similarly, Aq,p(γ3; f2) is the minimal

Abelian TQFT with Zq 1-form symmetry and anomaly labeled by p introduced in [111], whose 1-form

symmetry is coupled to f2. Stacking these TQFTs is necessary in order to make the operators gauge

invariant and topological. The theories Aq,p are nontrivial for any q ̸= 1, so that only a Zk subgroup

19The reason why we got this coupling is that the TQFT we started with describes this larger symmetry, implemented

by the operators eiα
∫
b2 , but the subgroup Zk was condensed in the bulk, and acts trivially in the boundary theory. As

discussed in Section 9.2.1, we did not explicitly introduce a background for the Zk 1-form symmetry.
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of the operators U p
kq

(those with q = 1) are invertible, while all other ones obey non-invertible fusion

rules. Similarly, Tm are non-invertible. In the SymTFT approach it is natural to choose topological

boundary conditions associated with the Lagrangian algebra

L =
{
Wn , Tm

∣∣∣ n,m ∈ Z
}
. (9.4.15)

The remaining operators U p
kq

(γ3) and Vα(γ2) implement the non-invertible symmetry and the magnetic

1-form symmetry, respectively.

Continuing with the approach we have followed so far, we want to consider a theory of gravity

based on (9.4.12) with the condensation of L in the bulk. We place this theory on a manifold X5 with

a boundary and impose the non-topological boundary conditions

⋆A1 = − i

R2
b3 + ⋆A1 , ⋆G2 = − iπ

e2
f2 + ⋆G2 . (9.4.16)

We need to add a boundary term:

S∂ = − 1

4πR2

∫
∂X5

b3 ∧ ⋆ b3 −
1

4e2

∫
∂X5

f2 ∧ ⋆ f2 . (9.4.17)

As before we would like to assign gauge transformation rules to the boundary fields A1, G2 in order

to restore some of the gauge transformations on the boundary, corresponding to the symmetries that

become global there. However, while we can restore δG2 = dη1 by transforming δG2 = dη1, the

gauge transformation δA1 = dρ0 cannot be restored. Indeed, while the first eqn. in (9.4.16) could

be made gauge invariant by prescribing that δA1 = dρ0, the second one would not be invariant

because G2 transforms as δG2 = − k
2πρ0f2. This term cannot be reabsorbed by modifying the gauge

transformations of G2, since f2 is a dynamical field. Thus the only way to make the boundary conditions

gauge invariant is to freeze the boundary value of ρ0, as those of λ1 and ξ2.

To get the boundary theory, as before, we integrate out the time components imposing

d̃Ã1 = 0 , d̃f̃2 = 0 , d̃ b̃3 +
k

4π
f̃2 ∧ f̃2 = 0 , d̃ G̃2 +

k

2π
Ã1 ∧ f̃2 = 0 , (9.4.18)

which are solved by

Ã1 = d̃Φ0 , f̃2 = d̃a1 , b̃3 = d̃ω2 −
k

4π
a1 ∧ d̃a1 , G̃2 = d̃C1 −

k

2π
Φ0 d̃a1 . (9.4.19)

The total action reduces to a boundary theory with action:

S =
i

2π

∫
M4

[(
d̃ω2 − k

4π a1 ∧ d̃a1
)
∧
(
∂tΦ0 −At0

)
dt−

(
d̃C1 − k

2π Φ0 d̃a1

)
∧ ∂ta1 ∧ dt

− i

2

(
R2
(
d̃Φ0 − Ã1

)
∧ ⋆
(
d̃Φ0 − Ã1

)
+

1

R2

(
d̃ω2 − k

4π a1 ∧ d̃a1
)
∧ ⋆
(
d̃ω2 − k

4π a1 ∧ d̃a1
))

− i

2

(
π

e2
d̃a1 ∧ ⋆ d̃a1 +

e2

π

(
d̃C1 − k

2π Φ0 d̃a1 − G̃2
)
∧ ⋆
(
d̃C1 − k

2π Φ0 d̃a1 − G̃2
))

+ d̃a1 ∧ Gt1 ∧ dt+
ik

4π
Φ0 da1 ∧ da1

]
(9.4.20)

where M4 = ∂X5. We can then integrate out both ω2 and C2 obtaining

S =

∫
M4

[
R2

4π

(
dΦ0−A1

)
∧⋆
(
dΦ0−A1

)
+

1

4e2
da1∧⋆ da1+

ik

8π2
Φ0 da1∧da1+

i

2π
da1∧G2

]
. (9.4.21)

As in the cases of the Abelian 2-group and of Maxwell–Chern–Simons theory, gauging the Lagrangian

algebra introduces fluxes for a1 turning it into a standard U(1) gauge field. The theory in (9.4.21)
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describes a compact boson Φ0 and a photon a1 interacting via an axion coupling. This is called axion-

Maxwell theory, and the full structure of its symmetries (including some emergent ones) has been

studied in great detail in [221]. From the discovery of the non-invertible chiral symmetry, it has been

suspected that axion-Maxwell theory universally describes its symmetry breaking [29, 221, 246].20

Our result confirms that. Notably, this is the first interacting boundary theory we found among the

examples considered so far.

Some comments on the coupling to the background fields are in order. As we already noticed

after (9.4.17), there is no sensible gauge transformation rules that we could assign to A1 and G2
to make the boundary condition invariant under δA1 = dρ0, hence we needed to freeze it. In the

action (9.4.21), A1 should not be thought of as the background field for the 0-form non-invertible

symmetry, but rather just as an external source that couples with the operator J
(A)
1 . This is enough

for holography, but it might seem a bit unsatisfactory from a symmetry viewpoint. However, this is

really the hallmark of the non-invertible nature of the symmetry: ordinary background gauge fields

seem not to exist, and they are effectively replaced by boundary values of dynamical fields in one

dimension higher [2]. The underlying reason is that non-invertible symmetries map untwisted sectors

to twisted sectors, hence the gauge transformations of a background gauge field necessarily involve an

interplay among backgrounds that do not exist simultaneously in the theory, but only in the SymTFT

(or in holography) where all global variants are on the same footing. This is the reason why SymTFT

is the main tool for discussing anomalies [3, 43–45].

9.5 Non-Abelian Goldstone bosons

A very interesting class of examples are those of spontaneously broken non-Abelian symmetries. In

these cases the boundary EFTs that we derive are interacting and generically non-renormalizable.

In the 2d/3d case we will be able to recover and somewhat generalize the CS/WZW correspondence

outside of the conformal point, while in higher dimensions we will obtain the pion Lagrangian on the

boundary. We start with the non-Abelian generalization of the theories considered in Section 9.2 and

then add an anomaly term, which corresponds to WZW terms in various dimensions. Finally we show

how our setup is able to produce an EFT for spontaneously broken non-Abelian 2-group symmetries.

9.5.1 Holographic dual to the pion Lagrangian

Let G be a connected and compact Lie group (with Lie algebra g). As discussed in Section 8.5, the

SymTFT for a non-Abelian 0-form symmetry G in d dimensions is the TQFT with action:21

S =
i

2π

∫
Xd+1

Tr
(
bd−1 ∧ F2

)
, (9.5.1)

where F2 = dA1 + iA1 ∧ A1 is the field strength of a G connection A1 while bd−1 is a g-valued

(d− 1)-form.

We use the following non-topological boundary condition and boundary term on Md = ∂Xd+1:

⋆
(
A1 −A1

)
= − i

f2π
bd−1 , S∂ = − 1

4πf2π

∫
Md

Tr
(
bd−1 ∧ ⋆ bd−1

)
. (9.5.2)

20For instance, the 4d CP1 non-linear sigma model enjoys a Q/Z non-invertible symmetry [247] and it was argued in

[246] that its breaking leads to axion-Maxwell theory.
21For d = 3 this theory was first considered by Horowitz [83]. Curiously, the motivation was to view it as an exactly

solvable theory of gravity.
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We can recover the gauge transformations on the boundary by assigning the transformation rule

A1 7→ ΛA1Λ
−1 + idΛΛ−1 so that A1 is interpreted as a background field for a global symmetry G.22

We can proceed with the usual steps to derive the dual boundary theory. Taking the spacetime to be

Xd+1 = Bd × S1, the path integral over time components imposes

F̃2 = 0 , D
Ã1
b̃d−1 = 0 . (9.5.3)

The first equation can be solved in terms of a G-valued scalar field U as

Ã1 = i d̃U U−1 . (9.5.4)

To solve the second one, since the covariant derivative with respect to a flat connection squares to

zero (i.e., it becomes a differential), we set

b̃d−1 = D̃ωd−2 (9.5.5)

where ωd−2 is a g-valued (d−2)-form, and D̃ denotes the covariant derivative with respect to i d̃U U−1.

By plugging these back, the theory reduces to a boundary action:

S = (−1)d
i

2π

∫
Md

Tr

[
D̃ωd−2 ∧

(
i ∂tU U

−1 −At0
)
dt

]
(9.5.6)

+
1

4π

∫
Md

Tr

[
1

f2π
D̃ωd−2 ∧ ⋆ D̃ωd−2 + f2π

(
i d̃U U−1 − Ã1

)
∧ ⋆
(
i d̃U U−1 − Ã1

)]
.

One important difference with respect to the Abelian case is that U and ωd−2 do not appear symmet-

rically. While U appears in a complicated way, the action is still quadratic in ωd−2 that can thus be

integrated out using its equation of motion

D̃
(
∂tU U

−1 + iAt0
)
∧ dt+

(−1)d−1

f2π
D̃ ⋆ D̃ωd−2 = 0 . (9.5.7)

Eliminating a zero-mode as in the Abelian case, we can use this equation to determine D̃ωd−2, and

we find the manifestly covariant form of the boundary theory:

S =
f2π
4π

∫
Md

Tr

[(
i dU U−1 −A1

)
∧ ⋆
(
i dU U−1 −A1

)]
. (9.5.8)

This describes a sigma model with target G, coupled to a background field A1 for the symmetry G

that acts as U 7→ gU with g ∈ G. The sigma model is a non-renormalizable theory that provides

the leading universal term in an expansion in number of derivatives (in 4d this is chiral perturbation

theory), describing the EFT of any theory with spontaneously broken symmetry G [230, 231].

9.5.2 Non-Abelian chiral anomaly

For any even d we can add a Chern–Simons term to the bulk theory (9.5.1):23

SCS =
iκd
2π

∫
Xd+1

Tr
(
CSd+1(A1)

)
, κd =

k

(2π)
d
2
−1
(
d
2 + 1

)
!
, k ∈ Z , (9.5.9)

22Differently from the Abelian case, here we cannot turn on another background to rescue the other gauge symmetry

as well. The reason is that the gauge transformation (8.5.3) of bd−1 cannot be reabsorbed in the boundary condition

by replacing bd−1 with bd−1 − Bd−1 and assigning a transformation rule to Bd−1. Indeed, this transformation would

necessarily involve the dynamical field A1, instead of the background A1.
23Here we assume G to be simple and simply connected.
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that describes the presence of a perturbative anomaly for G. In this case, differently from the Abelian

one, anomaly matching requires a WZW term in the spontaneously broken phase [238]. We want to

show that this fact is implied by our conjecture. We also consider the case of d = 2 where, strictly

speaking, our conjecture does not apply because there is no spontaneous breaking of a continuous

symmetry in two dimensions.

Two dimensions

In the case of d = 2, we use the boundary condition

⋆
(
A1 −A1

)
= − i

f2π

(
b1 +

k

2

(
A1 −A1

))
(9.5.10)

that is gauge invariant under A1 7→ ΛA1Λ
−1 + idΛ Λ−1, A1 7→ ΛA1Λ

−1 + idΛ Λ−1, and add the

boundary term

S∂ = − 1

4πf2π

∫
∂X3

Tr

[(
b1 + k

2 A1

)
∧ ⋆
(
b1 + k

2 A1

)]
(9.5.11)

to make the variational principle well defined.

As a preliminary consistency check, we compute the gauge variation. The total gauge-transformed

action differs by

∆
(
S + S∂ + Sc.t.

)
=
ik

4π

∫
∂X3

Tr
(
A1 ∧ iΛ−1dΛ

)
+

k

24π

∫
X3

Tr
(
(iΛ−1dΛ)3

)
(9.5.12)

from the original one.24 Upon expanding Λ = 1 + λ0 and retaining only the linear order in λ0, this

reduces to the usual form of the consistent anomaly:

δ
(
S + S∂ + Sc.t.

)
=
ik

4π

∫
∂X3

Tr
(
A1 ∧ idλ0

)
. (9.5.13)

One can proceed in determining the dual boundary theory similarly to the non-anomalous case.

Since the boundary condition is essentially the same (simply written in a different parametrization),

the only difference is the bulk Chern–Simons term which gives rise to a WZW term in the boundary

theory:

S =
f2π
4π

∫
M2

Tr
[(
i dU U−1 −A1

)
∧ ⋆
(
i dU U−1 −A1

)]
+

k

12π

∫
X3

Tr
[(
iU−1dU

)3]
− ik

4π

∫
M2

Tr
[
A1 ∧ i dU U−1

]
. (9.5.14)

We notice that there is also a non-standard coupling to the background field, that in our approach arises

because of the boundary conditions, similarly to the Abelian case. Differently from that case, however,

in a purely field theoretic analysis this is not interpreted as a coupling to a diagonal symmetry (since

a winding symmetry is absent here), but rather it arises from the standard trial-and-error procedure

to couple the G symmetry to a background in the presence of the WZW term, similarly to the 4d

analysis in [238].

For generic values of f2π the theory is not conformally invariant at the quantum level. However

choosing f2π = k
2 the theory has a conserved holomorphic current which generates a Kac–Moody

symmetry algebra, and it displays conformal invariance [248]. In this case we recover a form of the

CS/WZW correspondence, which is more general on one side, being valid even outside of the conformal

point, but less general on the other side, since in the conformal case it automatically produces the full

physical WZW model instead of its chiral halves.

24Here Sc.t. =
k2

8πf2
π

∫
∂X3

Tr
(
A1 ∧ ⋆A1

)
is a counterterm we add to simplify the final result.
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Four dimensions

In the case of d = 4, the 5d Chern–Simons term is

Tr
(
CS5(A1)

)
= Tr

(
A1 ∧ (dA1)

2 +
3i

2
A3

1 ∧ dA1 −
3

5
A5

1

)
. (9.5.15)

As one might suspect already from the Abelian case, in order to obtain a gauge-invariant boundary

condition with a consistent variational principle we need to introduce extra terms in the boundary

condition that mix background and dynamical fields. We use the same iterative procedure discussed

in Appendix D for the Abelian anomaly, even though the computations are clearly more tedious here.

We find the following solution. The boundary condition is

⋆
(
A1 −A1

)
− iκ4
f2π

(
1

2

(
A1F2 + F2A1

)
− i

2
A3

1

)
= − i

f2π
Ω3 (9.5.16)

where F2 is the field strength of A1 while

Ω3 = b3 + κ4

(
F2

(
A1 −A1

)
+
(
A1 −A1

)
F2 −

i

2

((
A1 −A1

)3
+A1

)3
+

1

2

(
A1F2 + F2A1

))
(9.5.17)

and the boundary term is

S∂ = − 1

4πf2π

∫
∂X5

Tr
(
Ω3 ∧ ⋆Ω3

)
+ Stop + Sc.t. ,

Stop =
iκ4
2π

∫
∂X5

Tr

[
1

2
F2A1A1 +

1

2
A1 F2A1 −

i

4
A1A1A1A1 +

i

2
A3

1A1

]
.

(9.5.18)

The counterterm Sc.t. is used to simplify the final expression, and it is convenient to choose it as

Sc.t. =
κ24

4πf2π

∫
∂X5

Tr
[
ϕ(A1) ∧ ⋆ ϕ(A1)

]
, ϕ(A1) =

1

2

(
A1 ∧ dA1 + dA1 ∧ A1 + iA3

1

)
. (9.5.19)

The boundary condition is gauge invariant under the transformation A1 7→ ΛA1Λ
−1 + idΛ Λ−1,

A1 7→ ΛA1Λ
−1 + idΛ Λ−1 and one can compute the total gauge variation

∆
(
S + S∂

)
= − iκ4

2π

∫
∂X5

Tr

[(
iΛ−1dΛ

)
∧ ϕ(A1) +

i

4

(
A1 ∧ iΛ−1dΛ

)2 − i

2

(
iΛ−1dΛ

)3 ∧ A1

]
− iκ4

20π

∫
X5

Tr
[(
iΛ−1dΛ

)5]
. (9.5.20)

Expanding U = 1 + λ0 to linear order, we recover the usual form of the consistent anomaly in four

dimensions:

δ
(
S + S∂

)
= − ik

48π2

∫
∂X5

Tr
[
idλ0 ∧

(
A1 ∧ dA1 + dA1 ∧ A1 + iA3

1

)]
. (9.5.21)

We can then proceed, as before, with the reduction of the action on the boundary. We find

S =
f2π
4π

∫
M4

Tr

[(
idU U−1 −A1

)
∧ ⋆
(
idU U−1 −A1

)]
− ik

240π2

∫
X5

Tr

[(
iU−1dU

)5]
+

ik

48π2

∫
M4

Tr

[
idU U−1 ∧

(
A1 ∧ F2 + F2 ∧ A1 −A3

1

)]
(9.5.22)

+
k

48π2

∫
M4

Tr

[
1

2
idU U−1 ∧ A1 ∧ idU U−1 ∧ A1 −

(
idU U−1

)3 ∧ A1

]
.

Turning off the background gauge field A1 we recognize a non-linear sigma model with target space

G with a properly normalized WZW term, that describes the dynamics of Goldstone bosons. The

coupling to the background A1 is completely fixed by the requirement of a gauge-invariant boundary

condition, and correctly captures the anomaly of the non-linearly realized G symmetry.
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9.5.3 Non-Abelian 2-group symmetries

In 4d one can have 2-group symmetries whose 0-form part is a non-Abelian group G, while the 1-form

part is U(1). These symmetry structures arise, e.g., if one starts from a theory with a 0-form symmetry

group U(1)×G with an ’t Hooft anomaly that is linear in U(1) and quadratic in G:

Sinflow =
ik

8π2

∫
X5

dV1 ∧ Tr

(
A1 ∧ dA1 +

2i

3
A3

1

)
, (9.5.23)

and then gauges the U(1) symmetry [16]. The 1-form symmetry involved in the 2-group is the magnetic

symmetry of the gauged U(1).

The SymTFT for this non-Abelian 2-group symmetry can be derived using the dynamical gauging

procedure described in Section 8.3. Indeed one starts from the SymTFT for the U(1) × G 0-form

symmetry:

S′ =
i

2π

∫
X5

[
g3 ∧ dV1 + Tr

(
b3 ∧ F2

)
+

k

4π
dV1 ∧ Tr

(
A1 ∧ dA1 +

2i

3
A3

1

)]
(9.5.24)

where g3 and V1 are an R and a U(1) gauge field, respectively, b3 is g-valued and A1 is a G connection

(F2 is its field strength). Then one applies the map introduced in Section 8.3 that implements the

dynamical gauging of U(1) on the boundary from the viewpoint of the SymTFT. Recall that the net

effect is the replacement dV1 7→ h2, g3 7→ dC2, thus the resulting SymTFT has action

S =
i

2π

∫
X5

[
h2 ∧ dC2 + Tr

(
b3 ∧ F2

)
+

k

4π
h2 ∧ Tr

(
A1 ∧ dA1 +

2i

3
A3

1

)]
. (9.5.25)

The gauge transformations are:25

h2 7→ h2 + dξ1 , A1 7→ ΛA1Λ
−1 + idΛ Λ−1 ,

b3 7→ b3 −
k

4π
ξ1 ∧ F2 , C2 7→ C2 + dη1 −

k

4π
Tr
(
A1 ∧ iΛ−1dΛ

)
+
ik

6π
Tr Θ2 ,

(9.5.27)

where Θ2 is a locally defined real 2-form with the property that Tr
(
(iΛ−1dΛ)3

)
= dTr Θ2.

Again, we can use an iterative procedure to determine a set of gauge-invariant boundary conditions

together with a boundary term that provide a good variation principle. The boundary conditions are

⋆
(
A1 −A1

)
= − i

R2

(
b3 +

k

4π

(
A1 −A1

))
, ⋆ h2 =

ie2

π

(
C2 − C2 −

k

4π
Tr
(
A1 ∧A1

))
(9.5.28)

while the boundary term is

S∂ = − i

2π

∫
∂X5

h2 ∧
(
C2 −

k

4π
Tr
(
A1 ∧A1

))
− e2

4π2

∫
∂X5

(
C2 −

k

4π
Tr
(
A1 ∧A1

))
∧ ⋆
(
C2 −

k

4π
Tr
(
A1 ∧A1

))
− 1

4πR2

∫
∂X5

Tr

[(
b3 +

k

4π

(
A1 −A1

))
∧ ⋆
(
b3 +

k

4π

(
A1 −A1

))]
.

(9.5.29)

The boundary condition becomes gauge invariant by assigning the following transformations to the

backgrounds A1 and C2:

A1 7→ ΛA1Λ
−1 + idΛ Λ−1 , C2 7→ C2 + dη1 −

ik

4π
Tr
(
A1 ∧ Λ−1dΛ

)
+

ik

12π
Tr Θ2 . (9.5.30)

25Recall that the variation of the three-dimensional Chern–Simons term is:

Tr
(
CS3(A1)

)
7→ Tr

(
CS3(A1)

)
+ dTr

(
A1 ∧ iΛ−1dΛ

)
− i

3
Tr
((
iΛ−1dΛ

)3)
. (9.5.26)
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These reproduce the background gauge transformation of [16] for a non-Abelian 2-group symmetry

upon expanding U = 1 + λ0 at first order:

δA1 = iDA1λ0 , δC2 = dη1 −
ik

4π
Tr
(
A1 ∧ dλ0

)
. (9.5.31)

It is also easy to see that the whole bulk-boundary system is gauge invariant under transformations

of A1 and C2 provided we add a counterterm Sc.t. = e2

4π2

∫
∂X5
C2 ∧ ⋆ C2.

We can apply our usual machinery to get the dual boundary theory. We obtain a G-valued scalar

field U from A1, and a Maxwell field a1 from h2, with the following boundary action:

S =
f2π
4π

∫
M4

Tr

[(
idU U−1 −A1

)
∧ ⋆
(
idU U−1 −A1

)]
+

1

4e2

∫
M4

da1 ∧ ⋆ da1

+
k

24π2

∫
M4

a1 ∧ Tr
[(
iU−1dU

)3]
+

i

2π

∫
M4

da1 ∧ Tr
[
A1 ∧ iU−1dU

]
+

i

2π

∫
M4

C2 ∧ da1 .

(9.5.32)

In the first line we recognize a non-linear sigma model with target space G and a Maxwell theory. The

last line describes the coupling to the background field C2 for the magnetic U(1) 1-form symmetry, as

well as a nonstandard coupling to the background A1 for the symmetry G, similar to the one arising

in the Abelian case in Section 9.3.4. The most interesting new thing here is the term in the second line

that describes a coupling between the photon and the pions. This is a linear coupling of the photon to

the current of a topological symmetry that exists in any sigma model with target G. According to our

conjecture, this model is the universal EFT that describes the IR of any theory with a spontaneously

broken non-Abelian 2-group symmetry. To the best of our knowledge, this universal EFT was not

derived elsewhere.

Some comments on the extra Wess–Zumino-like coupling are in order. First, in any RG flow that

breaks the 2-group spontaneously, this coupling must be generated as a consequence of the 2-group

matching. In a sense, it is similar to the presence of the WZW term in the EFT of a spontaneously

broken anomalous non-Abelian symmetry. Quite like that term, it breaks a symmetry of the EFT that

would be there if k = 0. Indeed, for k = 0 the theory is separately invariant under four Z2 symmetries:

parity P0 : xi 7→ −xi for i = 1, 2, 3; photon charge conjugation C1 : a1 7→ −a1; non-Abelian charge

conjugation26 C2 : U 7→ UT; pion number mod-2 (−1)Nπ : U 7→ U−1. All these four symmetries are

violated by the photon-pion coupling, but the product of any two of them is preserved. Therefore the

discrete symmetry for k ̸= 0 is (Z2)
3 generated by

P = P0 (−1)Nπ , C = C1C2 , C̃ = C1 (−1)Nπ . (9.5.33)

The photon-pion coupling allows, for instance, a process involving three pions and one photon, which

would have been forbidden otherwise. We summarize the various symmetry actions and charges in

Table 9.1.

Second, the 2-group symmetry we started with could suffer from a perturbative cubic chiral

anomaly for G as well. This would be described by the addition of a 5d Chern–Simons term (9.5.15) to

the bulk action in (9.5.25), and would result in an extra WZW term SWZW = − ik
240π2

∫
X5

Tr
[
(iU−1dU)5

]
in the 4d boundary action (9.5.32).27 This term would further break the discrete symmetry of the

EFT to (Z2)
2 generated by P and C, as it is clear from Table 9.1.

26The reason for this name will be clear in the upcoming discussion of U(N) QCD.
27We did not work out the detailed form of the coupling to the background fields.
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Definition xi a1 Tr
[(
iU−1dU

)3]
Tr
[(
iU−1dU

)5]
P0 xi 7→ −xi −1 −1 −1

C1 a1 7→ −a1 1 −1 1

C2 U 7→ UT 1 −1 1

(−1)Nπ U 7→ U−1 1 −1 −1

Table 9.1: The four Z2 symmetries, and the corresponding phases acquired by the coordinates,

the photon-pion coupling term, and the standard WZW term, respectively. Notice that while

Tr
[
(iU−1dU)5

]
is invariant under U 7→ UT, the term Tr

[
(iU−1dU)3

]
changes sign.

An application: U(N) QCD. Let us present a concrete application of the effective action (9.5.32).

Consider a 4d gauge theory with U(N) gauge group and Nf flavors of massless Dirac fermions, so that

there is a chiral symmetry SU(Nf )L × SU(Nf )R. It can be obtained by gauging the baryon number

symmetry U(1)B in ordinary SU(N) QCD, hence it contains an Abelian gauge field Aµ on top of

the non-Abelian gauge fields. Being weakly coupled at low energy, Aµ is not expected to drastically

modify the strong coupling dynamics of the non-Abelian sector. Hence for Nf small enough, the quark

bilinear takes VEV and spontaneously breaks the chiral symmetry:28

SU(Nf )L × SU(Nf )R → SU(Nf )V (9.5.34)

producing at low energy massless pions that interact as a non-linear sigma model with target space

SU(Nf ). The pions are neutral under the non-Abelian gauge symmetry SU(N), whose gluons are

confined. However the Abelian gauge field Aµ remains even in the deep IR and there is no reason why

it should be decoupled from the non-linear sigma model. Indeed, while the pion fields themselves are

neutral under U(1), being bound states of quarks it is a priori unclear whether there is a low-energy

remnant of the quark-photon interaction.

We can answer this question using our result, and showing that the photon is not decoupled.

Indeed there is a U(1) magnetic 1-form symmetry from the Abelian gauge field (that is its Goldstone

boson), which forms a non-trivial 2-group with SU(Nf )L (and also with SU(Nf )R, but we can just

focus on one of the two). To see this, we notice that there is a triangle anomaly U(1) - SU(Nf )2L whose

anomaly polynomial is

PU(1) - SU(Nf )
2
L

=
N

8π2
dA ∧ Tr

(
F ∧ F

)
, (9.5.35)

where F = dG + iG ∧ G is the field strength of the background field G for SU(Nf )L. The coefficient

N comes because all left-moving fermions have charge 1 under U(1) and are in the fundamental

representation of the non-Abelian gauge symmetry SU(N). By comparison with (9.5.23) we read off

that the U(1) 1-form symmetry and SU(Nf )L form a 2-group with k = N . Because of chiral symmetry

breaking and spontaneous breaking of the 1-form symmetry, the 2-groups is fully broken and, from

our result above, the low-energy EFT describing pions and photon is (9.5.32), plus the standard WZW

28Notice that the usual argument [12] based on ’t Hooft anomaly matching in SU(N) QCD is also valid here, hence

we do not really need to make the assumption that the photon does not affect chiral symmetry breaking.
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term (also with coefficient N) for the pions due to the cubic SU(Nf )L anomaly:29

SIR =
f2π
4π

∫
M4

Tr
[(
idU U−1

)
∧ ⋆
(
idU U−1

)]
+

1

4e2

∫
M4

dA ∧ ⋆ dA

+
N

24π2

∫
M4

A ∧ Tr
[(
iU−1dU

)3]− iN

240π2

∫
X5

Tr
[(
iU−1dU

)5]
.

(9.5.36)

Thus, while the pions themselves are uncharged under the U(1) gauge group, the photon A is coupled

with an effective current

JB = − N

24π2
⋆ Tr

[(
iU−1dU

)3]
. (9.5.37)

This current is conserved, and in the absence of the pion-photon interaction it generate a global

U(1) symmetry of the sigma model: the topological symmetry due to the non-trivial homotopy group

π3
(
SU(Nf )

)
= Z. The integral of ⋆ JB gives indeed the winding number:

w(M3) = − i

24π2

∫
M3

Tr
[(
iU−1dU

)3] ∈ Z . (9.5.38)

In the U(N) theory, configurations with nontrivial winding have a U(1) gauge charge. These config-

urations are Skyrmions: solitonic objects which, in the SU(N) theory, are identified with the baryons

[238, 250]. This is confirmed by our finding: the U(N) theory is obtained from ordinary SU(N) QCD

by gauging the baryon number symmetry, hence the baryons are no longer gauge invariant, but rather

are coupled with A.

We can make this more precise as follows. In the absence of the photon-pion coupling, the operators

charged under the topological U(1) symmetry are local operators Bq(x) defined as disorder operators

which impose that

w(S3) = q ∈ Z (9.5.39)

on a 3-sphere S3 that links with x. Similarly to the monopole operator in Chern–Simons theory, Bq(x)

gets a gauge charge Nq due to the coupling with the photon.

Also, in the absence of the 2-group structure, the low-energy effective theory would have an

emergent electric U(1) 1-form symmetry shifting A → A + λ (with the periods of λ in the interval

[0, 2π]) and acting on the Wilson lines Wn(γ) = ein
∫
γ A. Because of the photon-pion coupling, however,

only a ZN ⊂ U(1) subgroup of this 1-form symmetry emerges. Indeed using the quantization (9.5.38),

shifting A→ A+ λ leaves the exponentiated action invariant only if the periods of λ are multiples of
2π
N . An equivalent way to see this is that the Wilson line Wn=N can terminate on the Baryon operator

B1(x). Notice that the microscopic theory does not have this ZN 1-form symmetry, because the quarks

have unit charge under the gauged U(1)B. The emergence of ZN has a clear interpretation: the quarks

are confined and the only dynamical particles charged under U(1)B at low energy are baryons, with

charges multiple of N .

As a final comment, notice that among the three Z2 symmetries P , C, C̃ defined in (9.5.33) that

are preserved by the photon-pion coupling, only P and C are preserved also by the standard WZW

term, while C̃ is explicitly broken (see Table 9.1). This has to do with the fact that in U(N) QCD,

C2 : U 7→ UT is the low-energy remnant of the non-Abelian charge conjugation that, in the UV, also

acts on the SU(N) gauge bosons, confined in the IR. In the U(N) theory this charge conjugation is

292-group structures in sigma models arising in the IR of QCD-like theories have been recently considered also in

[249]. The IR there, however, is purely scalar, and the 2-group is not fully spontaneously broken (the 1-form symmetry

is preserved). The interaction responsible for the 2-group is not a photon-pion coupling, but rather a coupling between

pions parametrizing two different target spaces. Indeed the UV model studied in [249] can be obtained from U(N) QCD

by adding scalars charged under U(1)B that Higgs the Abelian gauge field.
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not independent from the Abelian charge conjugation C1 acting on the photon, since the fermions are

in the fundamental representation of both. Hence, only the product C = C1C2 is a symmetry of the

theory.
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Appendix A

Gauging in fusion categories

In this appendix we briefly review well known material about gauging in fusion categories and modular

tensor categories (possibly extended by a 0-form symmetry). A complete review of the underlying

formalism can be found for instance in [50] and [77], respectively.

A.1 Gauging and algebras

Gauging a generalized symmetry in two dimensions corresponds to the definition of a special symmetric

Frobenius algebra A ⊂ C. This is described by a triplet:

A ≡ (A, m , η) , m ∈ Hom(A×A,A) , η ∈ Hom(1,A) , (A.1.1)

where A =
⊕

xi
Zi(A)xi is an object in C, and we define Zi(A) = dim

(
Hom(A, xi)

)
. We use xi to

denote the simple objects in C. The maps πi are projectors πi : A → xi onto the simple components of

A and can be used to recast the commuting diagrams below as tensor-valued expressions. The algebra

morphism m trivializes the associator: m ◦ (m× idA) = m ◦ (idA×m). Furthermore m ◦ η = idA. We

will henceforth suppress η for simplicity. The algebra also has a dual structure

(∆, η̄) , ∆ ∈ Hom(A,A×A) , η̄ ∈ Hom(A,1) (A.1.2)

satisfying m ◦ ∆ = η̄ ◦ ∆ = idA. Furthermore ∆ and m satisfy the so-called Frobenius condition,

namely that the following diagram commutes, ensuring that crossing moves from any direction can be

performed safely:

A×A A×A×A

A

A×A×A A×A

m

idA×∆

∆×idA

idA×m
∆

m×idA

(A.1.3)

In three dimensions an algebra must satisfy an additional condition which ensures that it is compatible

with the braided structure:

A×A A×A

A

b

m m (A.1.4)

Such an algebra is called commutative. The gauging of a symmetry A is implemented by inserting a

network of A defects with morphisms m and ∆ at three-valent junctions, along a graph that is dual

to a triangulation of the spacetime manifold.

To understand the symmetry of the theory after gauging we must introduce the concept of modules.

First, let us introduce the category of (left) A-modules ModA. Its elements are doublets (M, rL) with
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M an object an rL ∈ Hom(A ×M,M) a morphism allowing the algebra object to end on M . The

morphism rL must satisfy a natural compatibility condition:

A×A×M A×M

A×M M

rL

m rL
rL

(A.1.5)

This equation allows us to interpret rL as a sort of representation of the algebra A on M . Physically

the category ModA describes an A-invariant boundary condition. In two dimensions the category

describing the symmetry after gauging A is the bimodule category BimodA−A of A-bimodules. A

bimodule (B, rL, rR) is both a left and a right module for A, such that the left and right actions

commute:
A×B ×A B ×A

A×B B

rL

rR rR
rL

(A.1.6)

In three dimensions, instead, the category describing the symmetry after gauging A is that of local

modules Modloc
A of the commutative algebra A. These are modules which are compatible with braiding

with A. In particular, given a left-module morphism rL, we define the right morphism rR as

rR = rL ◦ b (A.1.7)

with the consistency condition:

A×M A×M

M

b ◦ b

rL rL (A.1.8)

This implements the intuition that the objects remaining after gauging A must braid trivially with

A. It is known that the dimension of the category of local modules is

dim
(
Modloc

A
)

=
dim(C)
dim(A)

, dim(A) ≡
∑

xi simple

Zi(A) dim(xi) . (A.1.9)

Since the dimension of a fusion category must be ≥ 1, there is a notion of maximality in gauging

commutative algebras, which implies that

dim(A) ≤ dim(C) . (A.1.10)

When the inequality is saturated the algebra A is called Lagrangian and is denoted by the letter L.

There exist standard techniques to construct the category of modules, which employ the fact that

the formal tensor product IndA(xi) = A × xi gives a (reducible) left A-module. Such modules are

called “induced” and the construction of ModA boils down to the decomposition of induced modules.

The interested reader can consult [50, 152] for a review of these techniques.

A.2 Theories with a 0-form symmetry

Let us also recall some facts about 3d theories enriched with a 0-form symmetry G. These are the

so-called G-crossed extensions and we refer to [77] for a complete review. A G-crossed extension is

described by a graded tensor category

C =
⊕
g ∈G
Cg (A.2.1)
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with Cg the g-twisted sector of the 0-form symmetry. This can be thought of as a 2-category ΣC
with a single connected component,

∣∣π0(ΣC)∣∣ = 1, in which the twist defects provide a basis for the

homomorphisms σg ∈ Hom(Ug,1). We use xi to denote simple objects in the untwisted sector, σg,i

to denote simple twist defects, and Xg to denote generic twist defects. The fusion product on twist

defects is graded:

Cg × Ch ⊂ Cgh . (A.2.2)

The 0-form symmetry naturally acts on the defects in C via an automorphism U of the fusion algebra:

we write Ug[Xh] = g(X)ghg−1 ∈ Cghg−1 . In the following we will restrict to Abelian 0-form symmetries

G. The symmetry then acts on the junction spaces V
(gh,k)
(g,i),(h,j) by (unitary) isomorphisms

Ug : V
(g1g2,k)
(g1,i),(g2,j)

→ V
(g1g2,g(k))
(g1,g(i)),(g2,g(j))

, (A.2.3)

while the G composition law is encoded in a morphism

λxi(g, h) : g
(
h(xi)

)
→ gh(xi) . (A.2.4)

The category comes with graded associator α and braiding isomorphism b : Xg × Yh → g(Y )h ×Xg,

satisfying G-crossed versions of the pentagon and hexagon equations. The number of simple objects

σg,i in the g-twisted sector is equal to the number of g-invariant local lines xi ∈ C0, such that g(xi) = xi.

This follows from modularity of the Hilbert space on T 2 with G backgrounds. The dimension of each

graded category Cg is the same, thus:

dim(Cg) = dim(C0) , dim(C) = |G|dim(C0) . (A.2.5)

A.3 Gauging and equivariantization

There are two natural operations that can be introduced in this setting. The first one is gauging the

0-form symmetry G (or a subgroup thereof). This leads to a larger modular tensor category C/G
which has dimension:

dim(C/G) = |G|dim(C) . (A.3.1)

The category C/G has an anomaly-free 1-form symmetry Rep(G) = G∨ that assigns charges ∈ G to

the liberated g-twisted sectors. The category after gauging is thus still graded by this charge:

C/G =
⊕

g ∈G
Dg . (A.3.2)

The way in which simple objects of C/G are constructed is familiar from the theory of orbifolds. A

simple object σg,i before gauging is equivariantized into an orbit Σg,i after gauging:

Σg,i =
⊕

h∈G/Stab(σg,i)

h(σg,i) , (A.3.3)

where Stab(X) = {g ∈ G : g(X) = X} is the stabilizer group of X. The object Σg,i can furthermore

be dressed by symmetry lines carrying a representation π of Stab(σg,i). We thus get the lines Σπ
g,i,

whose number is
∣∣Stab(σg,i)

∣∣.
The second operation is gauging an algebra A ⊂ C0. Let H ⊂ G be the stabilizer of A, namely

H = {g ∈ G : g(A) = A}. We say that A preserves a subgroup H of the 0-form symmetry. In

order to fully specify an H-invariant algebra, we must also associate a consistent H-action to the data

(m, η). This constitutes an equivariantization of A and it is generally not unique nor it is guaranteed
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Mg

g

A

g(A)

Mg

g

xi

= η̃g(xi)

Mg

g

xi

g(xi)

Figure A.1: Action of G on A, both abstractly (left) and in components (right).

to exist. The required conditions are simple to summarize. First, we require the stabilizer H to leave

the algebra morphism fixed:

m
g(z)
g(x), g(y) = mz

x,y [Ug]zx,y
η̃g(z)

η̃g(x) η̃g(y)
for all g ∈ H. (A.3.4)

In order to write this equation in components, one needs to define the projectors πx : A → x and the

maps η̃g(x) that represent the action of H on the projectors:

πxi → η̃g(xi)πg(xi) . (A.3.5)

Furthermore, the maps η̃g(x) must compose nicely under the H action:

η̃g(xi) η̃h
(
g(xi)

)
= η̃gh(xi) λxi(g, h) , (A.3.6)

where the morphisms λx(g, h) are the ones we defined in (A.2.4).

A solution to the equations (A.3.4)–(A.3.6) is not guaranteed to exist, and its existence is tied to

the splitting of a certain short exact sequence [146]. Even if a solution exists, it must be modded out

by the appropriate gauge transformations. Suppose that Hom(A, xi) is at most one-dimensional, then

η̃g is a 1-cochain and we can redefine

πxi → µ(xi)πxi , η̃g(xi)→ η̃g(xi)
µ
(
g(xi)

)
µ(xi)

. (A.3.7)

Once this is settled, gauging A preserves the subgroup H of the 0-form symmetry. The resulting

category is: C/A =
⊕

h∈H Ch/A, and each entry has dimension dim(Ch/A) = dim(C0)/dim(A).

Lastly, let us describe the objects of the twisted category C/A. Since A has trivial grading, it is

possible to define twisted module categories ModgA in terms of doublets (Mg, rL) where Mg ∈ Cg and

rL is a left map rL : A ×Mg → Mg. The interesting part of the construction involves making these

modules local. In particular, the braiding map b : Mg ×A → A×Mg induces a nontrivial action of g

on the module morphism rL that in components maps

rL(xi) → η̃g(xi) rL
(
g(xi)

)
, (A.3.8)

as in the pictures of Figure A.1. The local bimodule condition is encoded in the following commutative

diagram:

A×Mg Mg ×A g(A)×Mg

Mg

b

rL

b

g(rL) (A.3.9)

or, in components,

rL(xi) = η̃g(xi) Rxi,Mg ·RMg , xi · rL
(
g(xi)

)
. (A.3.10)

Thus the specification of η̃ influences the structure of the H-twisted sectors after gauging A.
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Appendix B

Some technical results about

Lagrangian algebra in DW theories

B.1 Lagrangian algebras for DW theories

Here we prove that any Lagrangian algebra of DW(A) is of the form

LB,[ν] =
{(
b, βψν(b)

) ∣∣∣ b ∈ B , β ∈ N(B)
}

(B.1.1)

for some subgroup B ⊂ A and a class [ν] ∈ H2
(
B, U(1)

)
, and that the associated boundary condition

corresponds to a theory obtained from the electric boundary by gauging B with discrete torsion [ν].

We denote by πA : A × A∨ → A and πA∨ : A × A∨ → A∨ the projections on the two factors. Let

L ⊂ A× A∨ be Lagrangian. We define a subgroup of A

B = πA(L) ⊂ A . (B.1.2)

Notice that (B, 0) is not necessarily a subgroup of L. On the other hand, any element of the form

(0, β) with β ∈ N(B) has trivial braiding with any element of L, and since L is maximal, it follows

that
(
0, N(B)

)
is a subgroup of L and thus N(B) ⊂ πA∨(L). Using the short exact sequence

1 −→ N(B) −→ A∨ −→ B∨ −→ 1 (B.1.3)

we realize any element of A∨, and in particular of πA∨(L), as a pair βω with β ∈ N(B) and ω ∈ B∨.

All elements of L are then of the form (b, βω) with b ∈ B, β ∈ N(B) and ω ∈ B∨, but since |L| =

|A| = |B|
∣∣N(B)

∣∣ there must exist a homomorphism ψ : B→ B∨ such that

ω = ψ(b) . (B.1.4)

The fact that L is Lagrangian and so all its elements have vanishing spin implies a constraint on ψ.

Defining a bicharacter χ : B × B → U(1) as χ(b1, b2) = ψ(b1) b2, and then imposing that
(
b, βψ(b)

)
has trivial spin, we obtain

1 = θ(b, βψ(b)) = χ(b, b) . (B.1.5)

Thus χ is alternating and it defines a class [ν] ∈ H2
(
B, U(1)

)
, hence L = LB,[ν].

Now we aim to prove that the boundary defined by LB,[ν], where the symmetry is

S =
(
A× A∨)/LB,[ν] ∼= L∨

B,[ν] , (B.1.6)

is obtained from the electric boundary by gauging B with discrete torsion [ν]. First we notice that

LB,[ν] is an extension of B by N(B) determined as follows. Let c̃ ∈ H2
(
B∨, N(B)

)
be the class
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associated with the short exact sequence (B.1.3). This class is determined by Pontryagin duality from

1→ B→ A→ A/B→ 1, which is associated with a class c ∈ H2(A/B,B).1 The class c̃ enters in the

composition rule of elements of A∨ when they are represented as pairs βη, β ∈ N(B), η ∈ B∨:

β1η1 + β2η2 =
(
β1 + β2 − c̃(η1, η2)

)
(η1 + η2) . (B.1.8)

The inverse is −βη =
(
−β + c̃(η,−η)

)
(−η). The elements of LB,[ν] can be realized as pairs of b ∈ B

and β ∈ N(B) with [b, β] ≡
(
b, βψν(b)

)
, and their composition law is

[b1, β1] + [b2, β2] =
[
b1 + b2 , β1 + β2 − c̃

(
ψν(b1), ψν(b2)

)]
. (B.1.9)

We conclude that LB,[ν] is an extension

1 −→ N(B) −→ LB,[ν] −→ B −→ 1 (B.1.10)

determined by the class ψ∗
ν(c̃) ∈ H2

(
B, N(B)

)
. Taking the Pontryagin dual of (B.1.10) we get

1 −→ B∨ ι−→ S π−→ A/B −→ 1 , (B.1.11)

whose associated class is ĉ ≡ ψν ◦ c ∈ H2(A/B,B∨).

To show that this is the correct symmetry structure of the boundary theory obtained by gauging

B with discrete torsion [ν], we consider its partition function coupled to a background

B = ι(B1) + s(B2) ∈ H1(X2,S) , (B.1.12)

where s : A/B → S is a section of π and B1, B2 are gauge fields valued in B∨ and A/B, respectively.

Closure dB = 0 implies that dB2 = 0, whilst the differential of B1 is equal to the pull-back through

B2 of the extension class ĉ ∈ H2(A/B,B∨), namely (dB1)ijk = ĉ (B2ij , B2jk) ≡ (B∗
2 ĉ )ijk. On the

other hand, the dynamical gauge field B′ valued in B must satisfy dB′ = B∗
2 c in the presence of a

background B2, and the partition function is thus

ZB,[ν] =
∑

B′ s.t. dB′=B∗
2c

exp

[∫
X2

(
B′∗ν +B1 ∪B′

)]
Ze[B

′, B2] . (B.1.13)

The exponent is not gauge invariant under B′ → B′ + dρ unless B1 satisfies

ψν(dB′)− dB1 = 0 . (B.1.14)

This determines the modified cocycle condition for B1 as

dB1 = B∗
2(ψν ◦ c) , (B.1.15)

hence proving that S is the correct symmetry after gauging B with discrete torsion [ν].

1Given an Abelian extension 1 → A i→ B π→ C → 1 with section s : C → B, the class [ϵ] ∈ H2(C,A) has representative
i
(
ϵ(c1, c2)

)
= s(c1 + c2)− s(c1)− s(c2) which is symmetric. For each α ∈ A∨, αϵ : C×C → U(1) is a symmetric 2-cocycle

and is thus exact (see Sec. 6.2.1), therefore there exists β : C× A∨ → U(1) such that (in additive notation):

αϵ(c1, c2) = β(c1 + c2, α)− β(c1, α)− β(c2, α) ∀ c1, c2 ∈ C, α ∈ A∨ . (B.1.7)

Construct Ω(c, α1, α2) = β(c, α1 +α2)− β(c, α1)− β(c, α2) ∈ U(1). One checks that this is linear in the first entry in C,
and thus it defines a map ϵ∨ : A∨ × A∨ → C∨. This is the class of the Abelian extension 1 → C∨ → B∨ → A∨ → 1, that

reproduces the sum in (B.1.8) if we use the pairing (γ, α)(a, c) = γ(c) + α(a) + β(c, α).
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B.2 General duality-invariant Lagrangian algebras

Now we report technical details regarding Lagrangian algebras LB,[ν] for general B. In particular, we

give the conditions for their duality invariance and compute the mixed ’t Hooft anomaly with the

invertible duality symmetry in those cases, extending the discussion for B = A given in the main text.

For concreteness we look at the 2d/3d case, but the 4d/5d one is analogous.

B.2.1 Proof of duality invariance

In Section 6.2.3 after (6.2.46) we claimed that a Lagrangian algebra LB,[ν] as in (6.2.38) is duality

invariant, namely the isomorphism Φ in (6.2.22) acts as Φ
(
LB,[ν]

)
= LB,[ν], if and only if

1. ϕ
(
Rad(ν)

)
= N(B);

2. the isomorphism σ = ϕ−1 ◦ ψν acting on B/Rad(ν) satisfies σ2 = 1.

Let us prove the claim. To prove it, we first notice that since LB,[ν] and Φ
(
LB,[ν]

)
are both Lagrangian,

they are equal if and only if all their lines are mutually transparent. In other words, if and only if

ϕ(b′) b · β
[
ϕ−1

(
β′ψν(b′)

)]
· ψν(b)

[
ϕ−1

(
β′ψν(b′)

)]
= 1 (B.2.1)

for all b, b′ ∈ B and β, β′ ∈ N(B).

First we prove that the two conditions above are necessary. Recall that Rad(ν) = Ker(ψν), and

notice that ϕ(b) b′ = ϕ(b′) b while ψν(b) b′ =
[
ψν(b′) b

]−1
. Specializing (B.2.1) to β = 1 (in multiplica-

tive notation) and b ∈ ker(ψν) we get ϕ(b) ∈ N(B) and thus ϕ
(
Ker(ψν)

)
⊂ N(B). Specializing (B.2.1)

to β = 1 and b′ = 1 we get

1 = ψν(b)
(
ϕ−1(β′)

)
=
[
ψν
(
ϕ−1(β′)

)
b
]−1

, (B.2.2)

thus ϕ−1
(
N(B)

)
⊂ Ker(ψν). We conclude that ϕ

(
Ker(ψν)

)
= N(B) which is condition 1. Specializing

(B.2.1) to β = β′ = 1 we get γ(b′, b) = χν
(
ϕ−1 ◦ψν(b′), b

)
for all b, b′ ∈ B. Assuming condition 1., both

sides project consistently to B/Rad(ν), and thus ϕ(b′) = ψν
(
σ(b′)

)
∈ B/Rad(ν) for all b′ ∈ B/Rad(ν).

We conclude that σ2 = 1, which is condition 2.

Conversely, we prove that the two conditions are also sufficient. From condition 1. it follows that

ϕ−1(β′) ∈ Ker(ψν) ⊂ B, therefore β
(
ϕ−1(β′)

)
= ψν

(
ϕ−1(β′)

)
= 1. Similarly β

(
ϕ−1 ◦ ψν(b′)

)
= 1.

Eqn. (B.2.1) then reduces to

ϕ(b′) b · ψν(b)
(
ϕ−1 ◦ ψν(b′)

)
= 1 , (B.2.3)

that can be rewritten as γ(b′, b) = χν
(
σ(b′), b

)
= γ

(
σ2(b′), b

)
using the definition of σ. Both sides

project consistently to B/Rad(ν), and the equation is satisfied using condition 2. This completes the

proof.

It will be useful to discuss a few consequence of the theorem. Each of the commuting diagrams

below expresses the fact that ϕ is a group isomorphism between the respective Abelian groups.

• Since ϕ
(
Rad(ν)

)
= N(B), then the short exact sequence 1 → Rad(ν) → A → A/Rad(ν) → 1 is

the image under ϕ−1 of 1 → N(B) → A∨ → B∨ → 1. In other words there is a commutative

diagram:

S1 : 1 N(B) A∨ B∨ 1

S2 : 1 Rad(ν) A A/Rad(ν) 1

ϕ ϕ ϕ (B.2.4)
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• Taking the Pontryagin dual of the diagram (B.2.4) and using the symmetry of ϕ, namely that

ϕ∨ = ϕ, we obtain an other commutative diagram:

S3 = S∨
1 : 1 B A A/B 1

S4 = S∨
2 : 1 N

(
Rad(ν)

)
A∨ Rad(ν)∨ 1

ϕ ϕ ϕ (B.2.5)

• It is simple to prove that there is a canonical isomorphism N
(
Rad(ν)

)
/N(B) ∼=

(
B/Rad(ν)

)∨.

Then using that ϕ(B) = N
(
Rad(ν)

)
and ϕ

(
Rad(ν)

)
= N(B), we find a commutative diagram:

S5 : 1 Rad(ν) B B/Rad(ν) 1

S6 : 1 N(B) N
(
Rad(ν)

) (
B/Rad(ν)

)∨ 1

ϕ ϕ ϕ (B.2.6)

as well as its Pontryagin dual:

S7 = S∨
5 : 1

(
B/Rad(ν)

)∨ B∨ Rad(ν)∨ 1

S8 = S∨
6 : 1 B/Rad(ν) A/Rad(ν) A/B 1

ϕ ϕ ϕ (B.2.7)

B.2.2 Mixed anomaly in the general case

The discussion in this appendix is technical and it involves some notation. We will use several short

exact sequences which we denote uniformly as

Sm : 1 −→ Bm
ιm−→ Am

πm−→ Am/Bm −→ 1 , (B.2.8)

where ιm, πm, sm denote respectively the inclusion, the projection, and a section of πm. Each sequence

Sm induces an extension class cm ∈ H2(Am/Bm,Bm). The sequences that will be used are the

S1, . . . , S8 introduced in Appendix B.2.1 above.

Moreover, we will systematically decompose gauge fields valued in Am in terms of gauge fields

values in the subgroup and the quotient according to

am = ιm(bm) + sm(b′m) . (B.2.9)

As discussed after (B.1.12), closure dam = 0 of the gauge field implies that

db′m = 0 , dbm = b′ ∗m(cm) . (B.2.10)

All fields have a subscript labelling the corresponding short exact sequence, and both the field valued

in the subgroup Bm and in the quotient are denoted by the same letter, but the one in the quotient is

always primed. An important remark is in order. The relations (B.2.10) mean that in the presence of a

non-trivial extension, the background bm for the subgroup is the sum of an ordinary cohomology class

and a particular co-chain solving the constraint (B.2.10), which depends on the background for the

quotient. Hence all path integrals are intended to be done in order: one first integrates the cohomology

part of the background bm for the subgroup, and then the background b′m for the quotient.

Let LD be a duality-invariant algebra associated with (B, [ν]). We want to compute the mixed

anomaly between S = Z(A)/LD and the duality G ∼= Z2 on the invertible boundary. This is obtained

from the electric boundary by gauging B with discrete torsion [ν]. A gauge field A ∈ H1(X,A) can be

decomposed according to the sequence S3 in (B.2.5) as

A = ι3(b3) + s3(b
′
3) . (B.2.11)
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After gauging B with torsion, the dual symmetry S is an extension of A/B by B∨ with extension class

ĉ = ψν ◦ c ∈ H2(A/B,B∨) (see Appendix B.1), and a background field for S is described by a pair

B, b′3 valued in B∨ and A/B, respectively, with dB = b′ ∗3 ( ĉ ). The partition function on the invertible

boundary is

Zinv[B, b′3] =
∑
b3

exp

[
2πi

∫ (
b∗3(ν) +B ∪ b3

)]
Ze[b3, b

′
3] . (B.2.12)

By acting with the duality on the electric boundary we get the magnetic one, corresponding to the

gauging of A with trivial torsion:

Φ · Ze[b3, b
′
3] =

∑
a∈H1(X,A)

exp

[
2πi

∫
ϕ(a) ∪

(
ι3(b3) + s3(b

′
3)
)]
Ze[a] . (B.2.13)

We decompose the A-valued field a according to the sequence S3: a = ι3(a3) + s3(a
′
3). Because of the

commutative diagram (B.2.5), ϕ(a) ∈ H1(X,A∨) has a decomposition using S4:

ϕ(a) = ι4(x4) + s4(x
′
4) with x4 = ϕ(a3) , x′4 = ϕ(a′3) . (B.2.14)

Furthermore, it is useful to decompose b3 using S5: b3 = ι5(y5) + s5(y
′
5). Hence, using that ν vanishes

on Rad(ν), we have

Φ · Zinv[B, b′3] =
∑

y5, y′5, x4, x
′
4

exp

[
2πi

∫ (
y′ ∗5 ν +B ∪

(
ι5(y5) + s5(y

′
5)
)

+

+ ϕ(a) ∪
(
ι3ι5(y5) + ι3s5(y

′
5) + s3(b

′
3)
))]

Ze[a3, a
′
3] . (B.2.15)

We can perform the sum over y5 and y′5, in this order. Since y5 appears linearly, the sum over it

gives a delta function imposing

π7

(
B + π1

(
ϕ(a)

))
= 0 ⇔ B + π1

(
ϕ(a)

)
∈ ι7

((
B/Rad(ν)

)∨)
. (B.2.16)

We notice that π7π1 = π4, and since ϕ(a) = ι4(x4) + s4(x
′
4), it follows that (B.2.16) can be rewritten

as π7(B) + x′4 = 0. This delta function will be resolved by the sum over x′4, which however must be

performed only after the sum over x4. We can then integrate out y′5. Since it appears quadratically,

the sum over it can be performed by solving its equation of motion

ι7
(
ψν(y′5)

)
+B + π1

(
ϕ(a)

)
= 0 . (B.2.17)

This equation makes sense in virtue of (B.2.16). This equation can be inverted in virtue of (B.2.16)

and using that ψν : B/Rad(ν)→
(
B/Rad(ν)

)∨
is invertible. Plugging the result back we get

Φ ·Zinv[B, b′3] =
∑
a3, a′3

exp

[
2πi

∫ (
ϕ(a)∪s3(b′3)−

(
ψ−1
ν

(
B+π1 ϕ(a)

))∗
ν

)]
δ
(
π7B+x′4

)
Ze[a] . (B.2.18)

We decompose B using S7 as

B = ι7(B7) + s7(B
′
7) , (B.2.19)

and the duality maps

Φ(B7, B
′
7, b

′
3) =

(
σ∨(B7), ϕ(b′3), ϕ

−1(B′
7)
)
. (B.2.20)

The sum over a′3 resolves the delta function, while the one over a3 reconstructs Zinv up to a multi-

plicative factor which gives the anomaly:

Φ · Zinv[B7, B
′
7, b

′
3] = exp

[
−
∫ (
ϕ−1(σ∨B7)

)∗
ν

]
Zinv

[
σ∨(B7), ϕ(b′3), ϕ

−1(B′
7)
]
. (B.2.21)
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Appendix C

Twisted cohomology and anomalies

Here we provide details on the topological actions that we use in 3d and 5d to cancel the mixed

anomaly between the self-duality symmetry and the 0-form (in 2d) or the 1-form (in 4d) symmetry,

when we go to the invariant boundary. In the 2d case this is an anomaly for a semi-direct product,

while in 4d it is an anomaly for a split 2-group. In both cases we do not discuss the full anomaly, but

only the piece linear in the gauge field A ∈ Hd(X,G) for the self-duality symmetry.

C.1 Anomaly for a semi-direct product in 2d

We consider a semi-direct product A ⋊ρ G (A and G being both Abelian) with homomorphism ρ :

G→ Aut(A). This is associated with a short exact sequence

1 −→ A ι−→ A⋊ρ G
π−→ G −→ 1 (C.1.1)

which splits, namely it admits a section s : G→ A⋊ρG which is a group homomorphism. Any element

can be written uniquely as ι(a) s(g), a ∈ A, g ∈ G, with product rule

ι(a1) s(g1) · ι(a2) s(g2) = ι
(
a1 + ρg1(a2)

)
s(g1 + g2) . (C.1.2)

In particular

s(g) ι(a) s(g−1) = ι
(
ρg(a)

)
. (C.1.3)

Semi-direct products are generically non-Abelian, and accordingly we only consider standard 1-

form gauge fields. These are classes A ∈ H1(X,A⋊ρ G), namely

(dA)ijk = AjkA−1
ik Aij = 1 , Aij ∼ Λ−1

i AijΛj , (C.1.4)

where the order of multiplication matters. Since Aij ∈ A⋊ρ G, we can write

Aij = ι(Bij) s(Aij) (C.1.5)

where B ∈ C1(X,A) and A ∈ C1(X,G). Using the commutation relation (C.1.3), the cocycle condition

(dA)ijk = 1 is equivalent to(
dρ(A)B

)
ijk

= ρAijBjk −Bik +Bij = 0 , (dA)ijk = Ajk −Aik +Aij = 0 . (C.1.6)

The identification Aij ∼ Λ−1
i AijΛj , upon decomposing Λi = ι(θi) s(λi), becomes

Bij ∼ ρ−1
λi

(
Bij + ρAijθj − θi

)
= ρ−1

λi

(
B + dρ(A)θ

)
ij
, Aij ∼ Aij + λj − λi = (A+ dλ)ij . (C.1.7)
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Hence A defines a class in the cohomology group H1(X,G), while B a class in the twisted cohomology

group H1
ρ (X,A) — also called cohomology with local coefficients.

We are interested in the anomaly for A⋊ρG whose 3d inflow action is quadratic in B and “linear”

in A. The word linear is in quotes since B is a twisted class, and thus A will appear not only linearly,

but also in the twisting. This anomaly is identified by a characteristic class of A⋊ρ G bundles, which

lives in H1
ρ

(
G, H2(A, U(1))

)
[14]. Such a class can be thought of as a function µ on G with values in

the group of alternating bicharacters over A, satisfying (in additive notation):

ρg µ(h) + µ(g) = µ(g + h) . (C.1.8)

The G-action on bicharacters is given in (6.2.52). Besides, the function µ is subject to the identification

µ( · ) ∼ µ( · ) + ρ(·)ξ − ξ for any ξ ∈ H2
(
A, U(1)

)
. (C.1.9)

Notice that µ(0) = 0, so that µ(−g) = −ρ−1
g µ(g).

Given A ∈ H1(X,G), we construct µ(A) ∈ C1
(
X, H2(A, U(1))

)
(both notations µ(A) and A∗µ

could be used). This is a cochain µ(Aij) : A× A→ U(1) satisfying the twisted cocycle condition:

(
dρ(A)µ(A)

)
ijk
≡ ρAijµ(Ajk)− µ(Aik) + µ(Aij) = 0 . (C.1.10)

Moreover, under a gauge transformation A→ A+ dλ, it changes by

µ(Aij) → µ
(
Aij + λj − λi

)
= ρ−1

λi
µ
(
Aij + λj

)
+ µ(−λi)

= ρ−1
λi

(
ρAij µ(λj) + µ(Aij)− µ(λi)

)
= ρ−1

λi

(
µ(Aij) +

(
dρ(A) µ(λ)

)
ij

)
, (C.1.11)

hence µ(A) ∈ H1
ρ

(
X, H2(A, U(1))

)
.

Given B ∈ H1
ρ (X,A), we can form the cup product µ(A) ∪B ∪B ∈ H3

(
X,U(1)

)
as:

(
µ(A) ∪B ∪B

)
ijkl

= µ(Aij)
(
ρAijBjk , ρAikBkl

)
, (C.1.12)

see App. A of [15]. Under a gauge variation A→ A+ dλ, B → ρ(λ)−1B as in (C.1.7) we find:

(
µ(A) ∪B ∪B

)
ijkl
→ ρ−1

λi

(
µ(Aij) +

(
dρ(A) µ(λ)

)
ij

)(
ρ−1
λi
ρAijBjk , ρ

−1
λi
ρAikBkl

)
=
(
µ(A) ∪B ∪B

)
ijkl

+
(
dρ(A) µ(λ)

)
ij

(
ρAijBjk , ρAikBkl

)
. (C.1.13)

This means that we get a linear variation

δ
(
µ(A) ∪B ∪B

)
=
(
dρ(A) µ(λ)

)
∪B ∪B = d

(
µ(λ) ∪B ∪B

)
. (C.1.14)

We write the inflow action as

Sµ = 2πi

∫
X3

µ(A) ∪B ∪B . (C.1.15)

When X3 is closed this is gauge invariant, however if ∂X3 = X2 we get a boundary term:

Sµ → Sµ + 2πi

∫
X2

µ(λ) ∪B ∪B . (C.1.16)
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C.2 Anomaly for a split 2-group in 4d

In 4d we have an analog story, where A is now a 1-form symmetry. The full symmetry structure is

a split 2-group, which is a higher categorical version of a semi-direct product. The definitions can

be found in [17] and a more physical discussion is in [15, 93]. Here we simply use two facts which

from our viewpoint can be motivated as being the straightforward generalization of the discussion on

semi-direct products.

First, a background field for a split 2-group is made of an ordinary cohomology class A ∈ H1(X,G)

and a twisted cohomology class B ∈ H2
ρ (X,A). The latter means that(

dρ(A)B
)
ijkl

= ρAijBjkl −Bikl +Bijl −Bijk = 0 , (C.2.1)

and there is an identification (or gauge transformation)

Bijk ∼ ρ−1
λi

(
Bijk + ρAijθjk − θik + θij

)
, Aij ∼ Aij + λj − λi , (C.2.2)

which are the obvious generalizations of (C.1.7).

Second, the piece of the anomaly for a split 2-group which is “linear” in A and quadratic in B is

labelled by a characteristic class of 2-group gauge bundles:

µ ∈ H1
ρ

(
G, H4

(
B2A, U(1)

))
. (C.2.3)

One can show [93] that H4
(
B2A, U(1)

)
is isomorphic to Γ(A)∨, the Pontryagin dual of the universal

quadratic group of A, which can be identified with the group of quadratic functions q : A→ U(1) (see

[15, 93] for precise definitions and details, as well as the discussion around (6.3.11)). The G-action on

them is naturally given by

(ρgq)(a) = q
(
ρ−1
g a
)
. (C.2.4)

The construction of the 5d anomaly inflow is very similar to the semi-direct product case, thus we

skip many details. Given A ∈ H1(X,G), we construct µ(A) which satisfies (C.1.10) and (C.1.11), thus

defining a class in H1
ρ

(
X,Γ(A)∨

)
. Recall that H4

(
B2A,Γ(A)

) ∼= Hom
(
Γ(A),Γ(A)

)
has a distinguished

element P (the identity map) called the universal Pontryagin class, such that

B ∈ H2
ρ (X,A) ; Pρ(B) ≡ B∗P ∈ H4

ρ

(
X,Γ(A)

)
. (C.2.5)

The action of G on Γ(A) is induced by the one on Γ(A)∨ in such a way to make the natural pairing

⟨ , ⟩ : Γ(A)× Γ(A)∨ → U(1) invariant. Under A→ A+ dλ the latter transforms as

Pρ(B)i0,...,i4 → ρ−1
λi0

Pρ(B)i0,...,i4 . (C.2.6)

Using the pairing between Γ(A) and Γ(A)∨ we construct µ(A) ∪Pρ(B) ∈ H5
(
X,U(1)

)
as:(

µ(A) ∪Pρ(B)
)
i0,...,i5

=
〈
µ(A)i0i1 , ρAi0i1Pρ(B)i1,...,i4

〉
. (C.2.7)

Under A→ A+ dλ we have

µ(A) ∪Pρ(B) → µ(A) ∪Pρ(B) + d
(
µ(λ) ∪Pρ(B)

)
. (C.2.8)

We conclude that the 5d inflow action is

Sµ = 2πi

∫
X5

µ(A) ∪Pρ(B) , (C.2.9)

and its gauge variation on a manifold X5 with boundary X4 = ∂X5 is

Sµ → Sµ + 2πi

∫
X4

µ(λ) ∪Pρ(B) . (C.2.10)
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Appendix D

Anomalous boundary conditions

In this appendix we present an iterative procedure to consistently turn on a background for boundary

theories with a U(1) anomalous symmetry in generic even dimension. For the sake of concreteness we

present this procedure in the simplest case of a U(1) symmetry with anomaly, but the same idea can

be used for higher groups and in the non-Abelian cases discussed in the main text. In general, the

method presented here is necessary to determine consistent boundary conditions whenever the simple

BF theory is modified by some non-Gaussian term containing derivatives.

Consider the TQFT with action

S =
i

2π

∫
Xd+1

(
bd−1 ∧ dA1 + κdA1 ∧ (dA1)

d
2

)
, κd =

k

(2π)
d
2
−1
(
d
2 + 1

)
!
, (D.0.1)

and k ∈ Z. In the presence of a boundary, the variation of the action produces a term

− i

2π

∫
∂Xd+1

(
bd−1 +

d

2
κdA1 ∧ (dA1)

d
2
−1

)
δA1 . (D.0.2)

This can be cancelled by imposing the boundary condition

⋆A1 = − i

R2

(
bd−1 +

d

2
κdA1 ∧ (dA1)

d
2
−1

)
︸ ︷︷ ︸

T0

+ ⋆A1 (D.0.3)

and adding the boundary term

S
(0)
∂ = − 1

4πR2

∫
∂Xd+1

(
bd−1 +

d

2
κdA1 ∧ (dA1)

d
2
−1

)
∧ ⋆
(
bd−1 +

d

2
κdA1 ∧ (dA1)

d
2
−1

)
. (D.0.4)

However, there is no gauge transformation of A1 that makes the boundary condition gauge invariant.

The only way to have a gauge-invariant boundary condition is to add terms that mix A1 with the

dynamical fields. The simplest such modification is to replace T0 in (D.0.3) with

T ′
0 = T0 −

d

2
κdA1 ∧ (dA1)

d
2
−1 . (D.0.5)

Consequently we must modify the boundary term into

− 1

4πR2

∫
∂Xd+1

T ′
0 ∧ ⋆ T ′

0 . (D.0.6)

However, since the boundary condition now imposes δT ′
0 = iR2 ⋆ δA1, we get an extra unwanted term

in the variational principle:

− i

2π

∫
∂Xd+1

d

2
κdA1 ∧ (dA1)

d
2
−1 ∧ δA1 . (D.0.7)
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This can be cancelled by adding a topological term proportional to A1∧A1∧(dA1)
d
2
−1 to the boundary

term. Indeed∫
∂Xd+1

δ
(
A1A1 (dA1)

d
2
−1
)

=

∫
∂Xd+1

(
d
2 A1 (dA1)

d
2
−1 δA1 −

(
d
2 − 1

)
dA1A1 (dA1)

d
2
−2 δA1

)
. (D.0.8)

However, this also produces an extra term that must be cancelled. This is easily achieved by modifying

both the boundary condition and the boundary term by the addition of this extra term to T ′
0 . This

produces

T1 = T ′
0 + κd

(
d
2 − 1

)
dA1A1 (dA1)

d
2
−2 . (D.0.9)

At the same time we modify the boundary term that, including the new topological term, becomes

S
(1)
∂ = − 1

4πR2

∫
∂Xd+1

T1 ∧ ⋆ T1 +
i

2π

∫
∂Xd+1

κdA1 ∧A1 ∧ (dA1)
d
2
−1 . (D.0.10)

These new boundary condition and boundary term give a consistent variational principle. However,

the boundary condition is again non gauge invariant because of the last term we added to T1, and we

have to repeat the procedure above.

At each step, the non-gauge-invariant piece in the boundary condition becomes of one lower degree

in A1 (and one higher in A1). Hence, the procedure stops when we reach a term linear in A1: we can

make the boundary condition gauge invariant by adding a term purely in A1, which does not modify

the variational principle. The procedure stops after (d/2− 1) steps, yielding the boundary condition

⋆
(
A1 −A1

)
= − i

R2

(
Ωd−1 − κdA1 (A1)

d
2
−1
)

(D.0.11)

where

Ωd−1 = bd−1 + κd

d
2
−2∑
r=0

(
d
2 − r

)
(dA1)

r
(
A1 −A1

)
(dA1)

d
2
−1−r + κd (dA1)

d
2
−1A1 . (D.0.12)

The corresponding boundary term is

S∂ = − 1

4πR2

∫
∂Xd+1

Ωd−1 ∧ ⋆Ωd−1 +
iκd
2π

d
2
−2∑
r=0

∫
∂Xd+1

A1 (dA1)
r A1 (dA1)

d
2
−r−1 . (D.0.13)

As a sanity check, we can verify that the boundary theory is anomalous under U(1) gauge trans-

formations. Under δA1 = δA1 = dλ0 the topological terms on the boundary produce

iκd
2π

d
2
−2∑
r=0

∫
∂Xd+1

(
dλ0 (dA1)

r A1 (dA1)
d
2
−r−1 +A1 (dA1)

r dλ0 (dA1)
d
2
−r−1

)

=
iκd
2π

d
2
−2∑
r=0

∫
∂Xd+1

λ0

(
(dA1)

r+1(dA1)
d
2
−r−1 − (dA1)

r(dA1)
d
2
−r
)

=
iκd
2π

∫
∂Xd+1

(
λ0 (dA1)

d
2
−1 (dA1)− λ0 (dA1)

d
2

)
.

(D.0.14)

Then, using the boundary condition,

δS∂ =
iκd
2π

∫
∂Xd+1

dλ0 (dA1)
d
2
−1
(
A1 −A1

)
−

κ2d
2πR2

∫
∂Xd+1

dλ0 (dA1)
d
2
−1 ∧ ⋆

(
(dA1)

d
2
−1A1

)
(D.0.15)

−
κ2d

4πR2

∫
∂Xd+1

dλ0 (dA1)
d
2
−1 ∧ ⋆

(
dλ0 (dA1)

d
2
−1
)

+
iκd
2π

∫
∂Xd+1

(
λ0 (dA1)

d
2
−1(dA1)− λ0 (dA1)

d
2
)
.
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The bulk contributes with a term

δS = − iκd
2π

∫
∂Xd+1

dλ0A1 (dA1)
d
2
−1 (D.0.16)

which, together with the last term in (D.0.14), combines to a total derivative (on the boundary) and

can be neglected. We remain with

δStot = − iκd
2π

∫
∂Xd+1

dλ0 (dA1)
d
2
−1A1− δ

[
κ2d

4πR2

∫
∂Xd+1

(
A1 (dA1)

d
2
−1
)
∧⋆
(
A1 (dA1)

d
2
−1
)]
. (D.0.17)

We can isolate the anomalous variation adding a final counterterm

Sc.t. =
κ2d

4πR2

∫
∂Xd+1

(
A1 (dA1)

d
2
−1
)
∧ ⋆
(
A1 (dA1)

d
2
−1
)
. (D.0.18)
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Appendix E

Non-compact TQFTs

In this appendix we provide a mathematical definition and details on the TQFTs with infinitely many

operators introduced in chapter 8 and used in 9 as holographic duals. The main issue is defining the

theory with cutting and gluing while avoiding infinities from inserting a complete basis of states. We

argue that this is possible if all manifolds have at least one non-empty boundary component. On the

other hand, the partition functions on closed manifolds will be generically infinite.

E.1 Two-dimensional non-compact Dijkgraaf-Witten theory

We refer to section 2.1 for a review of the basics of axiomatic TQFTs in the standard case. Already

the fact

Z
(
Xd−1 × S1

)
=
∑

a
δa,a = dim

(
HXd−1

)
. (E.1.1)

suggests that in the non-compact case closed bordisms should not be included in the definition. We

want to argue that, avoiding closed manifolds, there are classes of manifolds in which we can give a

precise definition of the U(1)/R BF-like theories

S =
i

2π

∫
Md

bd−p−1 ∧ dAp . (E.1.2)

The Hilbert space: canonical quantization. As an illustration, we consider the case of d = 2

with p = 1. Hence b0 = ϕ is a non-compact scalar, and A is a U(1) gauge field. The Hilbert space

HS1 can be constructed by canonical quantization. We set M2 = S1 × R, with R parametrized by t,

and split A = Ã+At0 dt. Then

S = − i

2π

∫
S1×R

(
At0 d̃ϕ ∧ dt+ ϕ∂tÃ ∧ dt

)
. (E.1.3)

We choose the temporal gauge At0 = 0, and we need to impose the Gauss law d̃ϕ = 0, namely ϕ = ϕ(t)

is independent of the spatial coordinate. Introducing

q(t) =

∫
S1

Ã , p(t) =
1

2π
ϕ(t) , (E.1.4)

we see that q(t) ∼ q(t) + 2π is a periodic variable, and the action becomes

S = −i
∫
R
p ∂tq dt . (E.1.5)

This is a free infinitely-massive particle on a circle of radius 2π. The quantization is straightforward.

We have the commutation relations

[q̂, p̂] = i ⇒ eiαp̂ · einq̂ = eiαn einq̂ · eiαp̂ . (E.1.6)
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Here n ∈ Z because of the periodicity of q̂, while α is a generic real number. However the operator

e2πip̂ commutes with the whole operator algebra, hence it is a number that we can set to 1. Therefore

the operators acting on the Hilbert space are

Ôα = eiαp̂ with α ∈ [0, 2π) , Ŵn = einq̂ with n ∈ Z , (E.1.7)

with algebra

Ôα Ôβ = Ôα+β (mod 2π) , Ŵn Ŵm = Ŵn+m , Ôα Ŵn = eiαn Ŵn Ôα . (E.1.8)

Starting from a simultaneous eigenstate of the Ŵn’s such that

Ŵn |θ⟩ = einθ |θ⟩ , (E.1.9)

using the algebra we find

Ôα |θ⟩ = |θ − α⟩ . (E.1.10)

Hence we get a basis labelled by a compact continuous variable θ ∈ U(1). We can also use a non-

compact but countable basis, starting with an eigenstate of Ôα:

Ôα |k⟩ = eiαk |k⟩ . (E.1.11)

It must be k ∈ Z to respect the periodicity α ∼ α+ 2π. Then using the algebra we infer

Ŵn |k⟩ = |k + n⟩ . (E.1.12)

The relation between the two basis is

|k⟩ =
1√
2π

∫ 2π

0
dθ eikθ |θ⟩ , |θ⟩ =

1√
2π

∑
k∈Z

e−ikθ |k⟩ . (E.1.13)

TQFT data. Since the Hilbert space is infinite dimensional, the partition function on T 2 is infinite.

Let us show that, on the other hand, we can consistently define a functor on the category of open

oriented bordisms. In 2d the huge computational simplifications are that the only Hilbert space is

HS1 , and that every 2d manifold has a pair of pants decomposition. Eventually, one also needs to fill

holes by attaching a disk. Hence, on top of the horseshoe ηab, the only other data one needs to assign

are the disk and the pair of pants:

ha =

a

µcab =

a b

c

The numbers ha define a distinguished state |HH⟩ =
∑

a ha|a⟩, called the Hartle–Hawking state.

These two data must satisfy the obvious condition that if we fill one of the two incoming holes of the

pair of pants with the Hartle–Hawking state we get the cylinder:∑
b
µcab hb = δa,c . (E.1.14)
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The only other consistency condition is the independence from the chosen pair of pants decomposition,

that reduces to the Froboenius condition [251]:∑
c
µca,b µ

e
c,d =

∑
c
µea,c µ

c
b,d . (E.1.15)

Let us use the continuous basis |θ⟩. The cylinder (identity) becomes a delta function δ(θ1 − θ2).
Moreover, we define

hθ = δ(θ) , ηθ1,θ2 = δ(θ1 + θ2) , µθ3θ1,θ2 = δ(θ1 + θ2 − θ3) . (E.1.16)

Also, all sums are replaced by integrals on [0, 2π) in this basis. The condition (E.1.14) is obviously

satisfied, while the Froboenius condition (E.1.15) reads∫ 2π

0
dθ δ(θ1 + θ2 − θ) δ(θ + θ3 − θ4) =

∫ 2π

0
dθ δ(θ1 + θ − θ4) δ(θ2 + θ3 − θ) (E.1.17)

which is satisfied since both sides are equal to δ(θ1+θ2+θ3−θ4). The choice of these data is motivated

by the fact that the continuous basis |θ⟩ is related, by the state/operator correspondence, with the

local operators Oα(x) = ei
α
2π
ϕ(x), and the pair of pants must reproduce their OPE OαOβ = Oα+β.

Then the Hartle–Hawking state is fixed by (E.1.14).

Cutting an gluing: path integrals on open surfaces. With these pieces of data, we can compute

the value of the functor for arbitrary bordisms with a non-empty boundary. The simplest nontrivial

such manifold is the torus with a puncture. This can be obtained from the pair of pants by gluing

one of the two incoming boundaries with the outgoing one. Denoting by θ the label of the puncture,

namely the non-glued circle, the result is1

Z
(
Σ1 ∖ Pθ

)
=

∫ 2π

0
dθ′ δ(θ) = 2π δ(θ) . (E.1.18)

This is a projector on the Hartle–Hawking state. Another simple example is the torus with two

punctures that can be obtained from the previous result by gluing the remaining boundary to the

outgoing boundary of another pair of pants. Hence, the result is

Z
(

Σ1 ∖
{
Pθ1 , Pθ2

})
=

∫ 2π

0
dθ′ δ(θ1 + θ2 − θ′) 2πδ(θ′) = 2π δ(θ1 + θ2) . (E.1.19)

We can now put these two examples together, gluing the boundary of a torus with one puncture to

one of the two boundaries of the torus with two punctures, resulting in a genus-two surface with a

puncture:

Z
(
Σ2 ∖ Pθ

)
=

∫ 2π

0
dθ′ 2πδ(θ + θ′) 2πδ(θ′) = (2π)2 δ(θ) . (E.1.20)

Proceeding in this way it is not hard to prove the general result. The value of the functor an a genus

g surface with n incoming boundaries labelled by θ1, . . . , θn and m outgoing boundaries labelled by

θ′1, . . . , θ
′
m is given by

Z
(

Σg ∖
{
Pθ1 , . . . , Pθn , Pθ′1 , . . . , Pθ′m

})
= (2π)g δ

(
θ1 + . . .+ θn − θ′1 − . . .− θ′m

)
. (E.1.21)

The important observation is that the partition function on compact Riemann surfaces is infinite.

Indeed, a compact Riemann surface of genus g is obtained by closing the hole of a one-punctured

Riemann surface Σg ∖ Pθ by means of gluing the Hartle–Hawking state. The result is clearly infinite:

Z(Σg) =

∫ 2π

0
dθ (2π)g δ(θ) δ(θ) = (2π)g δ(0) . (E.1.22)

1We denote a genus g Riemann surface as Σg.
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We conclude that the TQFT is well defined on the category of open oriented bordisms.

Let us remark that, given the Hilbert space we constructed, there is another set of data that can

be formulated, which is essentially the same as the one we discussed but in the discrete basis |k⟩:

h′k = δk,0 , η′k1,k2 = δk1,−k2 , (µ′)k3k1,k2 = δk1+k2,k3 . (E.1.23)

With these data one gets infinite answers even on open manifolds, as soon as they have a non-trivial

topology. It must be noticed that, indeed, these are not merely the data (E.1.16) written in a different

basis: translating (E.1.16) in the discrete basis using (E.1.13) we get

hk =
1√
2π

, ηk1,k2 = δk1,k2 , µk3k1,k2 =
√

2π δk1,k2 δk1,k3 . (E.1.24)

We conclude that (E.1.16) and (E.1.23) really define two different TQFTs.

How did we choose one instead of the other? As we already pointed out, in 2d TQFT the choice

is really dictated by the fact that the pair of pants is related with the OPE of local operators. The

data (E.1.23) would then be relevant for the TQFT with Lagrangian formulation

S′ =
i

2π

∫
M2

Φ da1 , (E.1.25)

where Φ ∼ Φ + 2π is a compact scalar, while a1 an R gauge field. Canonical quantization produces

the same Hilbert space as the theory with non-compact scalar and U(1) gauge field; however, here

the local operators On(x) = einΦ(x) are labeled by an integer, and hence are related with the discrete

basis by the state/operator correspondence. For this reason, in contrast to the previous case, the

quantization of this theory produces the data (E.1.23) in which the pair of pants gives the Abelian

fusion algebra in the discrete basis.
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