
Mathematics Area - PhD course in

Mathematical Analysis, Modelling, and Applications

Nonlinear Parameter Space and Model Order
Reductions enhanced by scientific machine

learning

Candidate:
Francesco Romor

Advisor:
Prof. Gianluigi Rozza

Co-advisor:
Dr. Giovanni Stabile

Academic Year 2022-2023





Ai miei genitori





Abstract

Two of the main critical issues of model order reduction are the curse of dimensionality and the
slow Kolmogorov n-width decay. With this thesis we want to provide novel methodologies that
can ameliorate them: for the former we develop nonlinear parametric space reduction methods and
for the latter nonlinear model order reduction methods. The most successful strategies applied for
both approaches are local linear approximants and nonlinear solution manifold learning methods
from scientific machine learning. Despite many successful applications envision purely data-driven
surrogate modelling, we focus our efforts towards the advancement of more interpretable frameworks
that combine the numerical understanding of the models underneath with machine learning paradigms.

The first part is devoted to nonlinear parameters space reduction. We introduce hierarchical active
subspaces for local parameter space reduction: new metrics to perform the clustering and classify
the regions of the parameters space based on the local Grassmannian manifold’s intrinsic dimension
are validated through academic benchmarks. Shape optimization studies for automotive applications
are the target of new multi-fidelity regression methods: nonlinear autoregressive Gaussian processes
are combined with the response surfaces designed on the active subspace. Finally, the generation
with free form deformation of new computational geometries that satisfy multilinear geometrical
constraints, such as the volume, is sped up with constrained generative models. New tailored metrics
to validate the posterior distributions are defined.

The second part is focused on nonlinear model order reduction. Friedrichs’ systems are presented
as a new class of structure-preserving reduced order models (ROMs) with the possibility to obtain
optimally stable error estimates. At the same time, Friedrichs’ systems are employed as testing
ground for new repartitioning algorithms for domain decomposable ROMs based on the discontinuous
Galerkin method. Vanishing viscosity solutions are inferred with graph neural networks as the limit
of the predictions of high viscosity domain decomposable ROMs. The last two chapters are dedicated
to the embedding inside residual-based reduced numerical schemes of nonlinear approximants of the
solution manifold. Such nonlinear parametrization maps are represented by neural networks obtained
with teacher-student training or a combination of neural networks and singular value decomposition’s
modes. Finally, local nonlinear manifold approximations and adaptive hyper-reduction methods are
used to reduce the transient dynamics of numerical models affected by a slow Kolmogorov n-width
decay.

Every result is supported by numerical experiments performed on parametrized computational
fluid dynamics benchmarks.
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h) can be used online, since it is precomputed offline as a change
of basis matrix of sizes p2× p1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

7.6 Left: computational domain of the compressible flow past a NACA airfoil test case.
Center: coarse mesh with 4500 cells. Right: finer mesh with 32160 cells. . . . . . . 218

7.7 INS. Comparison between the n-th time instant iterations of the full-order model
numerical scheme sonicFoam (Left) and the nonlinear manifold least-squares Petrov
Galerkin (NM-LSPG-CNS) method (Right). . . . . . . . . . . . . . . . . . . . . . . 220

7.8 CNS-1 and CNS-2. From left to right: test full-order snapshots representing the
velocity field magnitude corresponding to the parametric values (t = 0.2s, Ma =

5.2), (t = 2.5s, Ma = 5.2), (t = 0.2s, Ma = 1.8), and (t = 2.5s, Ma = 1.8). The
whole extension of the solution manifold includes the transient dynamics from the
time instants t = 0s to t = 2.5s opportunely rescaled through equation (7.43) and
the different test Mach number values Ma ∈ [1.8,5.2]. The presence of moving
discontinuities at different Mach angles makes this test case difficult to reduce with
classical linear projection based ROMs. . . . . . . . . . . . . . . . . . . . . . . . . 221



xxiv List of figures

7.9 CNS-1. Comparison of hyper-reduction methods based on the mean L2 relative error
evaluated on each physical field of interest for the CNS test case. The acronyms
correspond to: AE-REC is the autoencoder reconstruction error from (7.8), C-UP50
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Chapter 1

Introduction

While the technological advancement brings more and more computational power to perform high-
fidelity numerical simulations, at the same time mathematically principled ways to reduce the compu-
tational costs are ubiquitous in real-world applications. This is especially the case for digital twins
that require real-time responses and the simultaneous adaptation of the embedded numerical models
and integration of the observations coming from sensors. The models we consider are represented by
parametric, often nonlinear and time-dependent, partial differential equations (PDEs).

Model order reduction, also coupled with dimension reduction of the space of the parameters,
has produced a substantial literature of linear certified projection-based approaches. However, they
have a limited range of validity since the solution manifold of a large class of PDEs is not reducible
with linear approximants. This is not a minor concern, a great number of real-world applications are
affected: from the simplest linear advection problem with discontinuous initial solutions to multiphase
flows, transient dynamics, advection-dominated problems, decomposable systems, like fluid-structure
interaction problems, and high-resolution turbulent flows.

As the reduced basis method defines a more efficient and sufficiently accurate low-dimensional
approximation space of the solution manifold of parametric PDEs with respect to the classical
discretization spaces (finite elements, finite volumes, discontinuous finite elements), many techniques
from scientific machine learning introduce nonlinear approximations spaces more suitable to tackle a
slow Kolmogorov n-width decay. The price paid for the higher expressiveness of the low-dimensional
nonlinear approximants is the loss of interpretability of the results and the less manageability of
the new nonlinear ansatz spaces when designing new numerical schemes upon them. A widespread
conduct is not to discern between reduced order modelling and machine learning with the application
of non-intrusive data-driven approaches that forget about the underlying mathematical and physical
frameworks that define the models beneath. While this is an effective and relatively straightforward
strategy to implement, more has to be done to bring out synergies between numerical modelling and
scientific machine learning.

Recognizing that nonlinear approximants of the solution manifold are necessary, we believe that
an effort towards more interpretable and tailored approaches for numerical applications is valuable.



2 Introduction

This is our aim. We develop efficient implementations of the original nonlinear manifold method
introduced by Carlberg et al. [161] with hyper-reduction. Hyper-reduction is the most crucial part,
without it the initial formulation cannot be employed in practice due to the high computational
costs. We remark that this approach differs from standard non-intrusive data-driven ROMs since the
predicted numerical solutions are not obtained from black-box evaluations of neural networks but
through the residual minimization of first principles through numerical schemes. We propose two
variants. The first one, in chapter 6, is more suited to solution manifolds with a slow Kolmogorov
n-width decay since it employs truly nonlinear approximants represented by generic neural networks
architectures such as convolutional autoencoders and graph neural networks. The second one, in
chapter 7, is more suited to solution manifolds with a moderately slow Kolmogorov n-width decay, for
which sufficiently high dimensional linear approximants can still be employed. The latter formulation
facilitates the use of adaptive hyper-reduction node selection algorithms and local nonlinear solution
manifolds approximation. These new approaches are tested reducing the transient dynamics of
incompressible and compressible flows in OpenFoam [264], extending the open-source software
library ITHACA-FV [238, 237] tailored for ROMs based on the finite volumes method (FVM).

Another novel framework that we introduce in chapter 5 involves the employment of graph
neural networks (GNNs) to infer the vanishing viscosity solutions of parametric hyperbolic PDEs
in a multi-fidelity and multi-resolution fashion. In this case, the training of heavy autoencoders
of GNNs is bypassed: classical projection-based ROMs are used to predict a succession of high
viscosity solutions whose limit are the vanishing viscosity solutions avoiding the problem of a slow
Kolmogorov n-width decay. The testing ground is represented by Friedrichs’ systems, a new class
of structure preserving ROMs that include many classes of PDEs, including symmetric hyperbolic
PDEs, like the linearized Euler equations in entropy variables. The discretization method of choice is
the Discontinuous Galerkin method (DGM) in deal.II [12]. Domain decomposable (DD-ROMs)
approaches for local solution manifold approximation are also investigated, with the introduction of
strategies to repartition the computational domain: new indicators that generate a better partition of
the domain in terms of solution manifold approximation are studied.

Often, when ROMs are designed for real-world applications, a great number of parameters
influence the numerical models to reduce. This not only exacerbates the computational costs of studies
that require multi-queries of the FOMs, like shape optimization or uncertainty quantification but also
increases the difficulties in the realization of ROMs due to the curse of dimensionality. The Active
Subspaces method introduced by Constantine [60] is effectively employed to tackle this problem. We
decline its employment in two novel approaches. For local regressions and the classification of the
parameter space and of the computational domain based on the local AS dimension in chapter 2. For
Gaussian process regression with nonlinear multi-fidelity information fusion in chapter 3. The open-
source software library ATHENA [218] was developed in collaboration with Marco Tezzele to perform
parameter space reduction with Active Subspaces and some nonlinear variants like kernel-based active
subspaces [221] and Nonlinear Level Set Learning (NLL) [283].
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Sometimes even just obtaining the computational mesh for some specific real-world applications is
costly. This is the case for patient-specific biomedical applications and many other shape optimization
tasks. In order to speed up a version of Free Form Deformation (FFD) that imposes multilinear
constraints, like volume preservation, we implement multilinear geometrically constrained generative
models (cGMs) in chapter 4. We show that these ML architectures can effectively reduce the space of
FFD displacements with a low-dimensional latent space, they exactly impose multilinear constraints
and they can be coupled with non-intrusive MOR. Crucial is the validation of the posterior distributions
with ad hoc metrics.

1.1 Thesis outline

This thesis is organized into two parts. The first part covers the presentation of novel numerical
methods that combine linear and certified classical procedures, such as the active subspaces method,
with nonlinear dimension reduction techniques from machine learning. The second part involves
nonlinear model order reduction: to solve the problem of a slow Kolmogorov n-width of the solution
manifold of some characteristic parametric partial differential equations, new strategies that employ
nonlinear solution manifold approximants, hyper-reduction and domain decomposable reduced order
models are developed. The outline of the thesis is summarized in Figure 1.1.
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Fig. 1.1 Thesis structure: the first part focuses on nonlinear parameter space reduction, the second
part on nonlinear reduced order modelling.



4 Introduction

• Part I. Nonlinear parameter space reduction

– chapter 2 Local Active Subspaces. This chapter refers to the preprint A local approach to
parameter space reduction for regression and classification tasks [220] in collaboration with
Marco Tezzele (Oden Institute, University of Texas at Austin).

– chapter 3 Multi-fidelity nonlinear regression with Active Subspaces. This chapter refers to
the preprint Multi-fidelity data fusion through parameter space reduction with applications to
automotive engineering [225] in collaboration with Marco Tezzele (Oden Institute, University
of Texas at Austin), and Markus Mrosek and Carsten Othmer from Volkswagen. This work was
partially supported by the European Commission H2020 ARIA (Accurate ROMs for Industrial
Applications) project.

– chapter 4 Constrained Generative Models. This chapter refers to the preprint Generative
Models for the Deformation of Industrial Shapes with Linear Geometric Constraints: model
order reduction and reduction in parameter space [189] in collaboration with Guglielmo Padula
(University of Trieste).

• Part II. Nonlinear model order reduction

– chapter 5 Friedrichs’ systems. This chapter refers to the preprint Friedrichs’ systems discretized
with the Discontinuous Galerkin method: domain decomposable model order reduction and
Graph Neural Networks approximating vanishing viscosity solutions [224] in collaboration
with Davide Torlo (SISSA).

– chapter 6 Hyper-reduced nonlinear manifold method: teacher-student training. This
chapter refers to the publication Non-linear manifold Reduced-Order Models with Convolutional
Autoencoders and Reduced Over-Collocation method [223].

– chapter 7 Hyper-reduced nonlinear manifold method: adaptive strategies. This chapter
refers to the preprint Explicable hyper-reduced order models on nonlinearly approximated
solution manifolds of compressible and incompressible Navier-Stokes equations [222].
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Nonlinear parameter space reduction





Chapter 2

Local Active Subspaces

Parameter space reduction has been proved to be a crucial tool to speed up the execution of many
numerical tasks such as optimization, inverse problems, sensitivity analysis, and surrogate models’
design, especially when in the presence of high-dimensional parametrized systems. We introduce a
new method called local active subspaces (LAS), which explores the synergies of active subspaces
with supervised clustering techniques in order to carry out a more efficient dimension reduction
in the parameter space. The clustering is performed without losing the input-output correlations
defining a new clustering metric induced by the global active subspace or the local Grassmannian
manifold. Two possible clustering algorithms are presented: K-medoids and a hierarchical top-down
approach, which is able to impose a variety of subdivision criteria specifically tailored for parameter
space reduction tasks. This method is particularly useful for the community working on surrogate
modelling. Frequently, the parameter space presents subdomains where the objective function of
interest varies less on average along different directions. So, it could be approximated more accurately
if restricted to those subdomains and studied separately. The new method is tested over several
numerical experiments of increasing complexity, vectorial outputs are also treated, and it is explained
how to classify the different regions with respect to the local active subspace dimension. Employing
this classification technique as a preprocessing step in the parameter space, or output space in the case
of vectorial outputs, brings remarkable results for the purpose of surrogate modelling. The benchmarks
considered are an elliptic partial differential equation with random inputs and an incompressible flow
past a NACA airfoil geometrically parametrized.

Contents
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2.2 Active subspaces for parameter space reduction . . . . . . . . . . . . . . . . 9

2.2.1 Subspace Poincaré inequality . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Generalization of the upper bound on the approximation of the active
subspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Localized parameter space reduction . . . . . . . . . . . . . . . . . . . . . . 13



8 Local Active Subspaces

2.3.1 Ridge approximation with clustering and active subspaces . . . . . . . . 13

2.3.2 K-means clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.3 K-medoids clustering with active subspaces-based metric . . . . . . . . . 18

2.3.4 Hierarchical top-down clustering . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Classification with local active subspace dimension . . . . . . . . . . . . . . . 22

2.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.1 Some illustrative two-dimensional examples . . . . . . . . . . . . . . . . 25

2.5.2 Higher-dimensional datasets . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.3 Datasets with vectorial outputs . . . . . . . . . . . . . . . . . . . . . . . 31

2.6 Conclusions and perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.1 Literature review

Parameter space reduction [60] is a rapidly growing field of interest which plays a key role in fighting
the curse of dimensionality. The need of reducing the number of design inputs is particularly important
in engineering for advanced CFD simulations to model complex phenomena, especially in the broader
context of model order reduction [54, 53, 24, 227] and industrial numerical pipelines [36, 35, 226,
247].

Active subspaces [60] is one of the most used techniques for linear reduction in input spaces. It
has been proven useful in many numerical tasks such as regression, using a multi-fidelity data fusion
approach with a surrogate model built on top of the AS as low-fidelity model [225], shape optimiza-
tion [170, 249, 30] and a coupling with the genetic algorithm to enhance its performance [73, 72],
inverse problems [280], and uncertainty quantification [63]. It has also been used to enhance classical
model order reduction techniques such as POD-Galerkin [248], and POD with interpolation [71, 252].
Other attempts toward nonlinear parameter space reduction have been proposed recently: kernel-based
active subspaces [221], nonlinear level-set learning [283], and active manifold [33] are the most
promising. In [50], instead, they project the input parameters onto a low-dimensional subspace
spanned by the eigenvectors of the Hessian corresponding to its dominating eigenvalues.

In this work, we propose a new local approach for parameter space dimensionality reduction for
both regression and classification tasks, called Local Active Subspaces (LAS). We do not simply
apply a clustering technique to preprocess the input data, we propose a supervised metric induced by
the presence of a global active subspace. The directions individuated by local active subspaces are
locally linear, and they better capture the latent manifold of the target function.

From a wider point of view, there is an analogy between local parameter space reduction and local
model order reduction. With the latter, we mean both a spatial domain decomposition approach for
model order reduction of parametric PDEs in a spatial domain Ω⊂Rd and a local reduction approach
in the parameter space. As representatives methods for the first paradigm we report the reduced
basis element method [167], which combines the reduced basis method in each subdomain with a
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mortar-type method at the interfaces, and more in general domain decomposition methods applied to
model order reduction. For the second approach, we cite the interpolation method in the Grassmannian
manifold of the reduced subspaces [7]; in particular in [69] the K-medoids clustering algorithm with
Grassmann metric is applied to the discrete Grassmann manifold of the training snapshots as a step to
perform local model order reduction. With this work, we want to fill the gap in the literature regarding
localization methods in the context of parameter space reduction.

In this regard, other methods have been developed in the last years exploiting the localization
idea. We mention localized slice inverse regression (LSIR) [272] which uses local information of the
slices for supervised regression and semi-supervised classification. LSIR improves local discriminant
information [122] and local Fischer discriminant analysis [240] with more efficient computations for
classification problems. The main difference between slice inverse regression (SIR) [162] and AS is
in the construction of the projection matrix. While SIR needs the elliptic assumption, AS exploits the
gradients of the function of interest with respect to the input parameters. Recently a new work on
the subject was disclosed [277]. Here we emphasize the differences and the original contributions
of our work: 1) we implemented hierarchical top-down clustering applying K-medoids with a new
metric that includes the gradient information through the active subspace. In the previous work, they
employed hierarchical bottom-up clustering with unweighted average linkage and a distance obtained
as a weighted sum of the Euclidean distance of the inputs and the cosine of the angle between the
corresponding gradients; 2) we included vector-valued objective functions and answered questions
about the employment of the new method to decrease the ridge approximation error with respect
to a global approach; 3) we also focused on classification algorithms, and we devised a method to
classify the inputs based on the local active subspace dimension with different techniques, including
the use of the Grassmannian metric; 4) our benchmarks include vector-valued objective functions
from computational fluid dynamics. We also show that clustering the outputs with our classification
algorithms as pre-processing step leads to more efficient surrogate models.

This work is organized as follows: in section 2.2 we briefly review the active subspaces method,
in section 2.3 we introduce the clustering algorithms used and the supervised distance metric based
on the presence of a global active subspace, focusing on the construction of response surfaces and
providing theoretical considerations. In section 2.4 we present the algorithms to exploit LAS for
classification. We provide extensive numerical results in section 2.5 from simple illustrative two-
dimensional dataset to high-dimensional scalar and vector-valued functions. Finally, in section 2.6 we
draw some conclusions and future perspectives.

2.2 Active subspaces for parameter space reduction

Active subspaces (AS) [60] are usually employed as dimension reduction method to unveil a lower
dimensional structure of a function of interest f , or provide a global sensitivity measure not necessarily
aligned with the coordinate axes [241]. Through spectral considerations about the second moment
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matrix of f , the AS identify a set of linear combinations of the input parameters along which f varies
the most on average.

We will make some general assumptions about the inputs and function of interest [60, 281, 241].
Let us introduce the inputs as an absolutely continuous random vector X with values in Rn and
probability distribution µµµ . We represent with X ⊂ Rn the support of µµµ and as such our parameter
space. We want to compute the active subspace of a real-valued function f : (X ,B(Rn),µµµ)→ R,
where B(Rn) is the Borel σ -algebra of Rn.

An extension to vector-valued functions has been presented in [281] and extended for kernel-based
AS in [221]. Even if in this section we focus only on scalar functions, the following considerations
can be carried over to the multivariate case without too much effort.

Let Σ be the second moment matrix of ∇ f defined as

Σ := Eµµµ [∇x f ∇x f T ] =

ˆ
(∇x f )(∇x f )T dµµµ, (2.1)

where Eµµµ denotes the expected value with respect to µµµ , and ∇x f = ∇ f (x) =
[

∂ f
∂x1

, . . . , ∂ f
∂xn

]T
is the

column vector of partial derivatives of f . Its real eigenvalue decomposition reads Σ=WΛWT . We can
retain the most energetic eigenpairs by looking at the spectral decay of the matrix Σ. The number r of
eigenpairs we select is the active subspace dimension, and the span of the corresponding eigenvectors
defines the active subspace. The partition is the following

ΛΛΛ =

[
ΛΛΛ1

ΛΛΛ2

]
, W = [W1 W2] , (2.2)

where ΛΛΛ1 = diag(λ1, . . . ,λr), and W1 contains the first r eigenvectors arranged by columns. With this
matrix we can project the input parameters onto the active subspace, and its orthogonal complement,
that is the inactive subspace, as follows:

Y = Pr(X) = W1WT
1 X ∈ Rn, Z = (I−Pr)(X) = W2WT

2 X ∈ Rn, (2.3)

with Pr : Rn→ Rn the linear projection operator Pr := W1WT
1 . The selection of the active subspace

dimension r can be set a priori, or by looking at the presence of a spectral gap [60], or by imposing a
cumulative energy threshold for the eigenvalues.

We will consider the problem of ridge approximation [204] in our applications. The AS are, in
fact, the minimizers of an upper bound of the ridge approximation error.

Definition 1 (Ridge approximation). Given r ∈ N, r≪ n and a tolerance ε ≥ 0, find the profile
function h : (Rn,B(Rn),µµµ)→R and the r-rank projection Pr : Rn→Rn such that the following upper
bound on the ridge approximation error is satisfied

Eµµµ [∥ f −h◦Pr∥2
2]≤ ε

2, (2.4)
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where ∥·∥2 is the L2-norm of R.

For a fixed projection Pr the optimal profile h̃ is given by the conditioned random variable Eµµµ [ f |Pr].
Under the additional assumptions on the probability distribution µµµ , reported in section 2.2.1, the AS
can indeed be defined as a minimizer of an upper bound of the ridge approximation error [60, 281,
192, 221]. The proof is a direct consequence of the Poincaré inequality and standard properties of
eigenspaces, and for this specific version of the theorem, it can be found in [192].

Theorem 1 (Definition of AS through ridge approximation). The solution Pr of the ridge approxi-
mation problem in definition 1, with optimal profile h̃ = Eµµµ [ f |Pr], is the orthogonal projector to the
eigenspace of the first r-eigenvalues of Σ ordered by magnitude

Σvi = λivi ∀i ∈ {1, . . . ,n}, P̃r =
r

∑
j=1

v j⊗ v j,

with r ∈ N chosen such that

Eµµµ

[
∥ f − h̃∥2

2
]
≤C(CP,τ) argmin

P2=P,P=PT ,
rank(P)=r

Eµµµ i
[∥(Id−P)∇ f∥2]

1
1+τ

≤C(CP,τ)

(
m

∑
i=r+1

λi

) 1
1+τ

≤ ε
2,

with C(CP,τ) a constant depending on τ > 0 related to the choice of µµµ and on the Poincaré constant
CP, and h̃ = Eµµµ [ f |σ(Pr)] is the conditional expectation of f given the σ -algebra generated by the
random variable Pr ◦X.

To ease the notation, in the following considerations we will consider only the first three classes
of probability distribution in the assumptions of the section 2.2.1, such that τ = 0.

2.2.1 Subspace Poincaré inequality

The probabilistic Poincaré inequality for conditional probability densities or subspace Poincaré
inequality [192] is valid at least for the following classes of absolutely continuous probability densities
µµµ with p.d.f. ρ .

Assumption 1. The p.d.f ρ : X ⊂ Rn→ R satisfies one of the following:

1. X is bounded connected open with Lipschitz boundary, ρ is the uniform density distribution.

2. X is convex and bounded, ∃δ ,D > 0 : 0 < δ ≤ ∥ρ(x)∥L∞ ≤ D < ∞ ,∀x ∈ X ,

3. X = Rn, ρ(x)∼ exp(−V (x)) where V : Rn→ (−∞,∞] ,V ∈ C2 is α-uniformly convex,

uT Hess(V (x))u≥ α∥u∥2
2, ∀x,u ∈ Rn, (2.5)
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where Hess(V (x)) is the Hessian of V (x).

4. X = Rn, ρ(x) ∼ exp(−V (x)) where V is a convex function. In this case, we require also f
Lipschitz continuous.

The last class of p.d.f. provides a weaker bound (Lemma 4.3, [192]) on the ridge approximation
error. For the previous classes i ∈ {1,2,3,4} of p.d.f. an upper bound of the Poincaré constant CP,i is
also provided:

CP,1 =CP,1(Ω), CP,2 =
Ddiam(X )

πδ
, CP,3 =

1
α
, (2.6)

while the upper bound for CP,4 requires the definition of other quantities and is proved in Lemma
4.4 [192].

2.2.2 Generalization of the upper bound on the approximation of the active subspace

We want to make some brief considerations about the accuracy of the active subspace as eigensubspace
of the correlation matrix approximated with Monte Carlo. If we use the notation W1 ∈ Rn×r,W2 ∈
Rn×(n−r) for the active and inactive subspaces (i.e. Pr =W1W T

1 , Id−Pr =W2W T
2 ) and Ŵ1 ∈Rn×r,Ŵ2 ∈

Rn×(n−r) for the approximated active and inactive subspaces, we can bound the approximation error
as done by Constantine in [60]: assuming f Lipschitz continuous, with high probability the following
inequality is valid,

dist(Im(W1), Im(Ŵ1))≲
4L
√

n(log(n))
1
2

N
1
2 λ1(λr−λr+1)

, (2.7)

where L is the Lipschitz constant of f , {λ1, . . .λn} are the non-negative eigenvalues of Eµµµ i
[∇ f ⊗∇ f ]

ordered decreasingly, and N is the number of Monte Carlo samples.
The bound in eq. (2.7) is obtained from Corollary 3.8 and Corollary 3.10 in [60]. It is founded

on a matrix Bernstein inequality for a sequence of random uniformly bounded matrices (Theorem
6.1, [256]) and on the Corollary 8.1.11 from [105] that holds a bound on the sensitivity of perturbation
of an invariant subspace.

From Corollary 8.1.11 of [105], a bound on the approximation error of the active subspace W1

can be obtained making explicit ∥W T
2 EW1∥F with respect to the chosen numerical method for the

discretization Ĉ of the integral C = Eµµµ i
[∇ f ⊗∇ f ]: in [60] this has been done for the Monte Carlo

method. In practice, we could use quasi Monte Carlo sampling methods with Halton or Sobol
sequences [241], since

∥W T
2 EW1∥F ≤

√
r(n− r)∥W T

2 EW1∥max

≲
√

r(n− r)D∗({xi}i) ·maxi, j∈{1,...,n}(V
HK(∇ fi∇ f j))

≲ 2
√

r(n− r)D∗({xi}i) ·max(| f |) ·maxi∈{1,...,n}(V
HK(∇ fi))

≲ 2
√

r(n− r) ·maxi∈{1,...,n}(V
HK(∇ fi))

log(N)n

N
,
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where V HK is the Hardy–Krause variation and D∗({xi}i) is the star discrepancy of the quasi random
sequence {xi}i. For the above result we have imposed X = [0,1]n, but it can be extended to different
domains [21]. Thus, we obtain the bound

dist(Im(W1), Im(Ŵ1))≲
4∥W T

2 EW1∥F

λr−λr+1

≲
8L
√

r(n− r) ·maxi∈{1,...,n}(V HK(∇ fi))

λr−λr+1
· log(N)n

N
. (2.8)

Other numerical integration rules can be chosen so that different regularity conditions on the objective
function may appear on the upper bound of the error, as the Lipschitz constant on eq. (2.7) or the
Hardy–Krause variation on eq. (2.8). If the regularity of f is Cs, we can also apply tensor product
quadrature formulae or Smolyak’s sparse quadrature rule [241]. For high-dimensional datasets and f
less regular, the estimate in eq. (2.7) is the sharpest.

2.3 Localized parameter space reduction

Sometimes we do not have a priori knowledge about the target function’s behavior in a particular
parameter space region. This could lead to a poor selection of the parameters range, hugely affecting
optimization tasks. In these cases, a preprocessing of the data using a clustering technique could be
highly beneficial. With a clustering of the input parameters we can treat each subregion separately,
and thus capture more accurately the target function’s variability. This is always true for any function
of interest, but for functions with global lower intrinsic dimensionality we can exploit such structure to
enhance the clustering. To this end, we propose a new distance metric for K-medoids and hierarchical
top-down clustering methods which exploits the global active subspace of the target function. By
applying AS on each cluster we find the optimal rotation of the corresponding subregion of the input
domain, which aligns the data along the active subspace of a given dimension.

In this section, we make some theoretical considerations regarding ridge approximation applied to
partitions of the parameter space and review three clustering methods [119]: K-means, K-medoids,
and hierarchical top-down clustering [144, 182]. We are going to use K-means as the baseline since
the input parameter space is assumed to be a hyperrectangle — as is done in every practical case.

2.3.1 Ridge approximation with clustering and active subspaces

Regardless of the choice of clustering algorithm, given a partition of the parameter space we want to
perform ridge approximation with AS in each subdomain. We will introduce some definitions and
make some remarks to clarify the setting. The function of interest f represents scalar outputs, but the
following statements can be extended to vector-valued outputs as well.

Definition 2 (Local ridge approximation with active subspaces). Given a partition of the domain
P := {Si}i∈{1,...,d} and a map r : P → {1, . . . ,nr}, nr≪ n representing the local reduced dimension,
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the local ridge approximation with active subspaces of ( f , µµµ) is the function RAS(r, f ,µµµ) :X ⊂Rn→R
that is defined locally for every Si ∈ P as

g|Si = Eµµµ i
[ f |Pr(Si),i], (2.9)

where µµµ i := (1/µµµ(Si)) · µµµ|Si ∈ Rn, and Pr,i : Si ⊂ Rn→ Rn is the orthogonal projector with rank r
that satisfies the minimization problem:

Pr,i = argmin
P2=P,P=PT ,

rank(P)=r

Eµµµ i
∥(Id−P)∇ f∥2. (2.10)

With this definition, we can state the problem of local ridge approximation with active subspaces.

Problem 1 (Minimizers (P,r) of the ridge approximation error). Find the partition P of the domain
X ⊂ Rn and the local reduced dimension map r : P → {1, . . . ,nr}, nr ≪ n, such that the L2-error
between the objective function f and its local ridge approximation with active subspaces is minimized.

Eµµµ

[
∥ f −RAS(r, f )∥2]= ∑

Si∈P
Eµµµ

[
∥ f |Si−Eµµµ i

[ f |Pr(Si),Si ]∥2] . (2.11)

Assuming that the subspace Poincaré inequality [192] is valid also for ( f ,µµµ) restricted to the
elements of the partition P , a straightforward bound is obtained by applying the Poincaré inequality
for every element of the partition

Eµµµ

[
∥ f −RAS(r, f )∥2]= ∑

Si∈P
Eµµµ

[
∥ f |Si−Eµµµ i

[ f |Pr(Si),Si ]∥2]
≲ ∑

Si∈P
Eµµµ

[
∥(Id−Pr(Si),Si)∇ f∥2] .

To obtain the previous upper bound, we made an assumption about the Poincaré subspace
inequality that in general is not satisfied by any probability measure µµµ chosen: the assumptions on the
probability distributions {µµµ i}d

i=1 in section 2.2.1 have to be satisfied at each subdomain {Si}d
i=1.

For the moment we will consider the local reduced dimension map r constant and, in general, the
codomain of r is a subset of {1, . . . ,nr}, nr≪ n.

The previous bound suggests that a good indicator for refinement could be represented by the sum
of the residual eigenvalues {λSi, j}m

j=rSi
of the local correlation matrices, for every Si ∈ P:

Eµµµ

[
∥ f −RAS(r, f )∥2]≲ ∑

Si∈P

m

∑
j=r(Si)+1

λSi, j.

We also have the following immediate result that hints to indefinitely many successive refinements
to lower the L2-error ridge approximation error.
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Remark 1 (Relationships between the upper bounds of consecutive refinements). Considering the sum
over the number of refined clusters cl ∈ {1, . . . ,d} we have that

ˆ
X
∥(Id−Pr)∇ f∥2 dµµµ =

d

∑
cl=1

ˆ
Scl⊂X

∥(Id−Pr)∇ f∥2 dµµµ

≥
d

∑
cl=1

ˆ
Scl⊂X

∥(Id−Pr,cl)∇ f∥2 dµµµ, (2.12)

since the projectors {Pr,cl}cl∈{1,...,d} are the minimizers of

Pr,cl = argmin
P2=P,P=PT ,

rank(P)=r

ˆ
Scl⊂X

∥(Id−P)∇ f∥2 dµµµ. (2.13)

The RHS of eq. (2.12) can be used as indicator for refinement. We remark that since the refinements
increase the decay of the eigenvalues in the RHS of eq. (2.12), the choice of the dimension of the
active subspace may be shifted towards lower values to achieve further dimension reduction for the
same accuracy, as we are going to show in the numerical experiments, in section 2.5.

Unfortunately, the minimizers of the ridge approximation error and of the upper bound are not
generally the same:

argmin
{Pr(Si),Si}Si∈P

Eµµµ

[
∥ f −RAS(r, f )∥2] ̸= argmin

{Pr(Si),Si}Si∈P
∑

Si∈P
Eµµµ

[
∥(Id−Pr(Si),Si)∇ f∥2] .

There is a counterexample for the non-localized case in [281]. We start from this counterexample
to show that, in general, the L2-error of the local ridge approximation does not decrease between
consequent refinements, even if the indicator from the RHS of eq. (2.12) does, as stated in the previous
remark.

Corollary 1 (Counterexample for indefinite refinement as optimal clustering criterion). Let P =

{A,B,C} be a partition of X = [−1,1]2 such that A = [−1,ε]× [−1,1], B = [−ε,ε]× [−1,1], and
C = [ε,1]× [−1,1]. Let µµµ be the uniform probability distribution on X . The objective function we
want to approximate is

f : X ⊂ R2→ R, f =


x1 + ε, x ∈ A,

x1(x1 + ε)(x1− ε)cos(ωx2), x ∈ B,

x1− ε, x ∈C,

(2.14)

with local reduced dimension map r(A) = r(B) = r(C) = 1. There exist ε > 0,ω > 0, such that

Eµµµ

[
∥ f −RAS(r, f ,µµµ)∥2]≥ Eµµµ

[
∥ f −Eµµµ [ f |P1,X ]∥2] ,
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where P1,X is the optimal projector on the whole domain X with one-dimensional active subspace.

Proof. Let us use the notation h1(x1) := x1(x1 + ε)(x1− ε), and h2(x2) := cos(ωx2), it can be shown
that

Eµ [∇ f ⊗∇ f ] =
ˆ

B

(
(h′1)

2(h2)
2 h1h′1h2h′2

h1h′1h2h′2 (h1)
2(h′2)

2

)
dµ(x)+µ(A∪C) ·

(
1 0
0 0

)

=

 2
5 ε5
(

1+ sin(2ω)
2ω

)
0

0 4
105 ω2ε7

(
1− cos(2ω)

2ω

)+µ(A∪C) ·
(

1 0
0 0

)
,

thus, since we are considering a one-dimensional active subspace, the active eigenvector belongs to
the set {(1,0),(0,1)}. Similarly, we evaluate

EµB [∇ f |B⊗∇ f |B] =

 8
5 ε4
(

1+ sin(2ω)
2ω

)
0

0 16
105 ω2ε6

(
1− cos(2ω)

2ω

) ,

EµA [∇ f |A⊗∇ f |A] = EµC [∇ f |C⊗∇ f |C] =
(

1 0
0 0

)
,

and conclude that there exist ε > 0,ω > 0 such that:

2
5

ε
5
(

1+
sin(2ω)

2ω

)
+4(1− ε)≥ 4

105
ω

2
ε

7
(

1− cos(2ω)

2ω

)
, (2.15)

8
5

ε
4
(

1+
sin(2ω)

2ω

)
≤ 16

105
ω

2
ε

6
(

1− cos(2ω)

2ω

)
, (2.16)

for example ε ∼ 10−2, ω ∼ 104 (approximately 10ε−2≤ω2≤ 10ε−7). In this way, using the notations
of definition 2, we have

P1,X = e1⊗ e1, P1,A = P1,C = e1⊗ e1, P1,B = e2⊗ e2,

and it follows that

Eµ

[
∥ f −RAS(r, f )∥2]= Eµ

[
f 2|B

]
= (1/µ(X ))∥h1∥2

L2(X ,λ )∥h2∥2
L2(X ,λ ),

Eµ

[
∥ f −Eµ [ f |Pr]∥2]= (1/µ(X ))∥h1∥2

L2(X ,λ )∥h2− (1/µ(X ))
ˆ

h2dx2∥2
L2(X ,λ )

= (1/µ(X ))∥h1∥2
L2(X ,λ )

(
∥h2∥2

L2(X ,λ )−
7
16

(ˆ
h2dx2

)2
)
,

where λ is the Lebesgue measure.
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The heuristics behind the previous proof rests on the fact that ridge approximation with active
subspaces performs poorly when the objective function has a high variation. The counterexample is
valid whenever the global projector P1,X is the minimizer of a local L2 ridge approximation error for
which the minimizer of the gradient-based indicator in eq. (2.12) does not coincide. This leaves us
with an indicator in eq. (2.12) that does not guarantee a non-increasing L2-error decay for subsequent
refinements, but is nonetheless useful in practice.

We conclude the section with some remarks about the response surface design through the ridge
approximation with active subspaces.

Remark 2 (Approximation of the optimal profile). In practice, we do not consider the optimal profile
h(y) = Eµµµ [ f |σ(Pr)] (y), but we employ the approximation h(y) = f (y) = f (Prx). The reason lies
on the fact that to approximate the optimal profile at the values {yi}i, additional samples from the
conditional distribution p(z|yi =Prx) must be obtained; even if the accuracy of the ridge approximation
could benefit from it, this is not always possible in practice because of the difficulty to sample from
the conditional distribution or because of computational budget constraints.

If the data is split in training, validation, and test set, the local R2 score on the validation set can
be used as indicator for refinement.

Remark 3 (Estimator based on local R2 scores). The R2 score of a single cluster can be written with
respect to the R2 scores {R2

l }l∈{1,...,d} relative to the clusters of the subsequent refinement. Let the
sum be over the refinement clusters l ∈ {1, . . . ,d}, we have

R2 = 1− E[∥ f −E[ f |Pr]∥2]

Var( f )
= 1−

d

∑
l=1

E[∥ f |Sl −E[ f |Pr,l]∥2]

Var( f )
(2.17)

= 1−
d

∑
l=1

Var( f |Sl )

Var( f )
· E[∥ f |Sl −E[ f |Pr,l]∥2]

Var( f |Sl )
= 1−

d

∑
l=1

Var( f |Sl )

Var( f )
· (1−R2

l ),

which, substituting with the empirical variance, becomes

R2
emp = 1−

d

∑
l=1

Varemp( f |Sl )

Varemp( f )
· (1−R2

emp;l) ·
Nl−1
N−1

, (2.18)

where R2
emp;l is the empirical local R2 score relative to cluster number l. The definition can be extended

for component-wise vector-valued objective functions f . The numerical results shown in section 2.5
consider the mean R2 score along the components when the output is vector-valued.

In practice, every expectation is approximated with simple Monte Carlo, and without the number
of training samples increasing, the confidence on the approximation is lower and lower, the more the
domain is refined. This is taken into consideration while clustering, fixing a minimum number of
samples per cluster for example.

The section 2.2.2 clarifies the link between the number of Monte Carlo samples, the numerical
method chosen for the discretization of the integral Eµµµ [∇ f ⊗∇ f ], and the approximation of the active
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subspace. For example for deterministic models, one could employ the more efficient Sobol sequence
or a Latin hypercube sampling; if f is more regular and the parameter space dimension is not too high
one could employ tensor product Gauss quadrature rule. See for example [241].

Before introducing the clustering algorithms we will employ, we specify that the partition P =

{Si}i∈{1,...,d} is defined by the decision boundaries of the clustering algorithm chosen.

2.3.2 K-means clustering

We recall the K-means clustering algorithm. Let {xi}N
i=1 be a set of N samples in RNF , where NF

denotes the number of features. The K-means algorithm divides this set into K disjoint clusters
S = {S j}K

j=1, with Sl ∩Sm = /0 for 1≤ l,m≤ K and l ̸= m. The partitioning quality is assessed by a
function that aims for high intracluster similarity and low intercluster similarity. For K-means, this is
done by minimizing the total within-cluster sum-of-squares criterion WT , which reads as

WT (S) :=
K

∑
j=1

W (S j) =
K

∑
j=1

∑
xi∈S j

∥xi− c j∥2
L2 , (2.19)

where c j is the centroid describing the cluster S j. A centroid of a cluster is defined as the mean of all
the points included in that cluster. This means that the centroids are, in general, different from the
samples xi.

K-means is sensitive to outliers since they can distort the mean value of a cluster and thus affecting
the assignment of the rest of the data.

2.3.3 K-medoids clustering with active subspaces-based metric

In order to overcome some limitations of the K-means algorithm, such as sensitivity to outliers, we
can use K-medoids clustering technique [144, 194, 229, 176]. It uses an actual sample as cluster
representative (i.e. medoid) instead of the mean of the samples within the cluster.

Following the notation introduced in the previous section, let m j be the medoid describing the
cluster S j. The partitioning method is performed by minimizing the sum of the dissimilarities between
the samples within a cluster and the corresponding medoid. To this end an absolute-error criterion E
is used, which reads as

E(S) :=
K

∑
j=1

E(S j) =
K

∑
j=1

∑
xi∈S j

∥xi−m j∥. (2.20)

By looking at the formula above it is clear that the use of a data point to represent each cluster’s
center allows the use of any distance metric for clustering. We remark that the choice of the Euclidean
distance does not produce the same results as K-means because of the different references representing
the clusters.

We propose a new supervised distance metric inspired by the global active subspace of the function
f we want to approximate. We define a scaled L2 norm using the eigenpairs of the second moment
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matrix of ∇ f , which is the matrix from which we calculate the global active subspace:

∥xi− x j∥Λ =
√

(xi− x j)T WΛ2WT (xi− x j), (2.21)

where Λ stands for the diagonal matrix with entries of the eigenvalues of eq. (2.1), and W is the
eigenvectors’ matrix from the decomposition of the covariance matrix. As we are going to show in
section 2.5 this new metric allows a better partitioning both for regression and classification tasks
by exploiting both global and local information. For insights about the heuristics behind it, we refer
to remark 5.

To actually find the medoids the partitioning around medoids (PAM) algorithm [144] is used. It
uses a greedy approach after the initial selection of the medoids, also called representative objects.
They are changed with a non-representative object, i.e. one of the remaining samples, if it would
improve the clustering quality. This iterative process of replacing the medoids with other objects con-
tinues until the quality of the resulting clustering cannot be improved by any replacement. algorithm 1
illustrates this approach with pseudocode.

Algorithm 1: K-medoids algorithm with AS metric.
input :set of samples {xi}N

i=1 ∈ RNF ,
number of clusters K,
distance metric d defined in 2.21

output :set of clusters S = {S j}K
j=1

1 select initial cluster medoids.
2 repeat
3 assign each sample to its closest medoid using the distance metric d.
4 randomly select K non-representative objects.
5 swap the medoids with the newly selected objects by minimizing 2.20.
6 until clustering quality converges.

2.3.4 Hierarchical top-down clustering

In this section, we present hierarchical top-down clustering [144, 182], and exploit the additional
information from the active subspace, as done for K-medoids. In the following sections, we refer to
this technique with the acronym HAS.

In top-down hierarchical clustering, at each iteration the considered clusters, starting from the
whole dataset, are split further and further based on some refinement criterion, until convergence. A
nice feature of hierarchical clustering algorithms, with respect to K-means and K-medoids, is that
the number of clusters can be omitted. Moreover, by stopping at the first refinement and forcing
the total number of clusters to be the maximum number of clusters specified, HAS can be seen as
a generalization of the previous methods: for this reason, we wanted to make the implementation
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consistent with K-means and K-medoids with AS induced metric as close as possible, as shown in the
numerical results in section 2.5.

Pushing further the potential of clustering algorithms applied to local dimension reduction in the
parameter space, HAS is a versatile clustering method that takes into account the variability of the
AS dimension along the parameter space. The price paid for this is the overhead represented by the
tuning of some hyperparameters introduced later in section 2.3.4.

A schematic representation of the algorithm of top-down clustering is reported in algorithm 2.
The design is straightforward and it employs a tree data structure that assigns at each node a possible
clustering of the whole dataset: consequent refinements are represented by children nodes down until
the leaves of the tree, that represent the final clusters.

Remark 4 (Normalization of the clusters at each refinement iteration). Each cluster, at every refinement
step, is normalized uniformly along dimensions onto the hyper-cube domain [−1,1]n, even if the
subdomain identified by the cluster is not a hyperrectangle. Another possible choice for normalization
is standardization, centering the samples with their mean and dividing them by their standard deviation.

Algorithm 2: Hierarchical top-down algorithm.
input :set of samples S = {xi}N

i=1 ∈ RNF ,
number of clusters per tree refinement level K,
range of number of children {nchild

min ,nchild
max },

minimum number of elements in a cluster nel,
indicator for refinement I,
distance metric d,
minimum and maximum dimension of the active subspace rmin,rmax,
score tolerance εεε .

output :refinement tree T = S(S1(Sk+1(...,(Sleaf,1), ...), ...), ...,Sk(...)), with
k ∈ {nchild

min , . . . ,nchild
max }.

1 add the initial cluster S to FIFO queue q = {S}.
2 while q ̸=∅ do
3 take S j, the first element from queue q.
4 apply the refinement function in 3 to S j in order to get the outputs {Si}i.
5 add {Si}i to the queue q.
6 if (the score tolerance ε is reached
7 or the minimum number of elements in a cluster nel is reached in the next iteration
8 or the maximum number of clusters K is reached in the next iteration) then
9 break

The procedure depends on many parameters that have to be tuned for the specific case or depend
a priori on the application considered: the maximum number of clusters, the minimum and maximum
number of children nodes, the tolerance for the score on the whole domain, the minimum and
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Algorithm 3: Refinement function.
input :cluster S = {xi}N

i=1 ∈ RNF ,
number of clusters per tree refinement level K,
range of number of children {nchild

min ,nchild
max },

minimum number of elements in a cluster nel,
indicator for refinement I,
distance metric d,
minimum and maximum dimension of the active subspace rmin,rmax.

output :{S j}nchild

j=1 , the children of cluster S, with nchild ∈ {nchild
min , . . . ,nchild

max }.
1 set best score to b = 0.
2 foreach nchild from nchild

min to nchild
max do

3 apply the chosen clustering algorithm (e.g. K-medoids) with nchild clusters and metric
d to obtain the clusters {S j}nchild

j .
4 evaluate the estimator of the error I for the refinement {S j} j, taking also into account

the minimum and maximum reduced dimensions rmin,rmax.
5 if I > b and the minimum number of elements nel is not reached
6 and the maximum number of clusters K is not reached then
7 save the best refinement {S j} j and update the best score b.

maximum dimension of the active subspace, and the minimum number of elements (el) of each cluster
(usually el > r, where r is the local AS dimension).

More importantly, the method is versatile for the choice of clustering criterion, indicator for
refinement, and regression method. In the following sections we will consider K-means and K-
medoids with the active subspaces distance as clustering criterion (see section 2.3.3), but other
clustering algorithms could in principle be applied at each refinement.

Remark 5 (Heuristics behind the choice of the active subspaces metric for K-medoids). Having in
mind that the optimal profile h(y) = Eµµµ i

[ f |Pr(Si),i](y) from definition 2 is approximated as h(y) =
f (y) = f (Prx) as reported in remark 2, we can argue that clustering with the AS metric from eq. (2.21)
is effective since, for this choice of the metric, the clusters tend to form transversally with respect
to the active subspace directions. This is because the metric weights the components with higher
eigenvalues more. So clustering with this metric reduces heuristically also the approximation error
induced by the choice of the non-optimal profile.

Other clustering criterions employed must satisfy the subspace Poincaré inequality for each cluster.
Regarding the regression method we employ Gaussian process regression with RBF-ARD kernel [271].
The procedure for response surface design with Gaussian processes and ridge approximation with
active subspaces can be found in [60, 221]. As for the indicator for refinement, the local R2 score
in remark 3 is employed to measure the accuracy of the ridge approximation against a validation
dataset and the estimator from the RHS of eq. (2.12) is used to determine the dimension of the active
subspace of each cluster.
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Regarding the complexity of the algorithm, for each refinement, considering an intermediate cluster
of K elements, the most expensive tasks are the active subspace evaluation O((K/m)np2+(K/m)n2 p+
n3) (the first two costs refer to matrix multiplications, while the third to eigendecomposition), the
clustering algorithm, for example K-medoids with AS distance O(K(K−m)2), and the Gaussian
process regression O((K/m)3 p3), where p is the dimension of the outputs and m is the minimum
number of children clusters. With M we denote the maximum number of children clusters. In the
worst case the height of the refinement tree is l = logm N/el where el is the minimum number of
elements per cluster. In table 2.1 we report the computational complexity of the hierarchical top-down
clustering algorithm. We report the costs divided by level of refinement.

Table 2.1 Computational complexity of hierarchical top-down clustering.

Step Cost Description

Root O(Nnp2 +Nn2 p+n3) AS
O(N3 p3) GPR

First refinement: O(N(N− k)2) K-medoids
k from m to M O((N/k)np2 +(N/k)n2 p+n3) AS

O((N/k)3 p3) GPR

Intermediate refinements - -

Last refinement: O((N/kl−1)((N/kl−1)− k)2) K-medoids
k from m to M O((N/kl)np2 +(N/kl)n2 p+n3) AS

for each one of the ml−1 clusters O((N/kl)3 p3) GPR

2.4 Classification with local active subspace dimension

A poor design of the parameter space could add an avoidable complexity to the surrogate modelling
algorithms. Often, in practical applications, each parameter range is chosen independently with
respect to the others. Then, it is the responsibility of the surrogate modelling procedure to disentangle
the correlations among the parameters. However, in this way, looking at the response surface from
parameters to outputs, regions that present different degrees of correlation are treated indistinctly. In
this matter, a good practice is to study as a preprocessing step some sensitivity measures, like the total
Sobol indexes [241] among groups of parameters and split the parameter space accordingly in order
to avoid the use of more expensive surrogate modelling techniques later. Sobol indices or the global
active subspace sensitivity scores give summary statistics on the whole domain. So in general, one
could study the parameter space more in detail, classifying nonlinearly regions with respect to the
complexity of the response surface, if there are enough samples to perform such studies.

We introduce an effective approach to tackle the problem of classification of the parameter space
with respect to a local active subspace information. With the latter we mean two possible alternatives.
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Definition 3 (Local active subspace dimension). Given a threshold ε > 0, the pairs of inputs and
gradients {(Xi,dYi)}i associated to an objective function of interest f : X ⊂ Rn→ R, the size of the
neighborhood of sample points to consider N ≥ n, and a subsampling parameter p ∈ N, p≤ N, the
local active subspace dimension ri associated to a sample point Xi ∈ X is the positive integer

ri = argmin
1≤r≤p

{
tr

(
(Id−Pr)

(
1
p ∑

i∈J
dYi⊗dYi

)
(Id−Pr)

)
≤ ε

∣∣∣∣ J ∈C(N, p)

}
,

where C(N, p) is the set of combinations without repetition of the N elements of the Euclidean
neighborhood of Xi with class p.

Definition 4 (Local active subspace). Given the pairs of inputs and gradients {(Xi,dYi)}i associated
with an objective function of interest f : X ⊂ Rn→ R, the size of the neighborhood of sample points
to consider N ≥ n, and a fixed dimension p ∈ N, 1≤ p≤ N, the local active subspace Wi associated
to a sample point Xi ∈ X is the matrix of the first p eigenvectors of the spectral decomposition of

(Id−Pr)

(
1
p ∑

i∈U
dYi⊗dYi

)
(Id−Pr), (2.22)

where U is the neighborhood of sample points of Xi with respect to the Euclidean distance. In practice,
we choose p close to the global active subspace dimension. The pairs {(Xi,Wi)}i can be thought as a
discrete vector bundle of rank p and {Wi}i can be thought as a subset of points of the Grassmannian
Gr(N, p).

Starting from the pairs of inputs-gradients {(Xi,dYi)}i, the procedure follows these steps:

1. Each parameter sample is enriched with the additional feature corresponding to the local active
subspace dimension from definition 3 or the local active subspace from definition 4, represented
by the variable Z.

2. Each sample Xi is labelled with an integer li that will be used as classification label in the next
step. To label the pairs {(Xi,Zi)}i we selected K-medoids with the Grassmannian metric

d((Xi,Zi),(X j,Z j)) = ∥Zi−Z j∥F , (2.23)

where ∥·∥F is the Frobenius distance, in case Zi represents the local active subspace or spectral
clustering in case Zi is the local active subspace dimension. In the last case, the labels correspond
to the connected components of the graph built on the nodes {(Xi,Zi)}i with adjacency list
corresponding to the nearest nodes with respect to the distance

d((Xi,Zi),(X j,Z j)) =

∞, Zi ̸= Z j

∥Xi−X j∥, Zi = Z j

, (2.24)
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where ∥·∥ is the Euclidean metric in Rn. The connected components are obtained from the
eigenvectors associated with the eigenvalue 0 of the discrete Laplacian of the graph [182].

3. A classification method is applied to the inputs-labels pairs {(Xi, li)}i. Generally, for our
relatively simple applications, we apply a multilayer perceptron with 1000 hidden nodes and 2
layers.

Remark 6 (Grassmann distance). In general regarding the definition 4, the dimension p could be
varying among samples Xi and one could use a more general distance with respect to the one from
eq. (2.23) that can have as arguments two vectorial subspaces of possibly different and arbitrary large
dimensions.

Remark 7 (Gradient-free active subspace). In general, both the response surface design and the
classification procedure above can be carried out from the pairs {(Xi,Yi)}i of inputs, outputs instead
of the sets {(Xi,dYi)}i of inputs, gradients. In fact, the gradients {dYi} can be approximated in
many different ways [60] from {(Xi,Yi)}i. In the numerical results in section 2.5 when the gradients
are not available they are approximated with the gradients of the local one-dimensional polynomial
regression built on top of the neighboring samples.

Algorithm 4: Classification with local features from the active subspaces information.
input : inputs-gradients pairs {(Xi,dYi)}i∈I as training dataset with index set I,

local features based on AS information {Zi}i∈I , see 3 and 4,
labelling method based on the distance d from 2.23 or from 2.24,
classification method that takes as input the inputs-labels pairs {(Xi, li)}i∈I

output :predictor for new test inputs and classes of the training dataset.

1 foreach i ∈ I do
2 evaluate the feature Zi from (Xi,dYi) and the neighbouring points of Xi.

3 initialize the |I|× |I| distance matrix M associated to the pairs {(Xi,Zi)}i∈I .
4 foreach i ∈ I do
5 foreach i≤ j ∈ I do
6 M(i, j) = d((Xi,Zi),(X j,Z j))

7 use the labelling method with input M, to assign a label li for each pair (Xi,Zi).
8 train the classification method with the inputs-labels training pairs {(Xi, li)}i∈I .

2.5 Numerical results

In this section, we apply the proposed localized AS method to some datasets of increasing complexity.
We emphasize that the complexity is not only defined by the number of parameters but also by the
intrinsic dimensionality of the problem. We compare the clustering techniques presented in section 2.3,
and we show how the active subspaces-based distance metric outperforms the Euclidean one for
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those functions which present a global lower intrinsic dimensionality. We remark that for hierarchical
top-down clustering, we can use both metrics, and we always show the best case for the specific
dataset.

We start with a two-dimensional example for which we can plot the clusters and the regressions,
and compare the different techniques. Even if it is not a case for which one should use parameter space
dimensionality reduction we think it could be very useful for the reader to understand also visually
all the proposed techniques. For the higher dimensional examples, we compare the accuracy of the
methods in terms of R2 score and classification performance. All the computations regarding AS are
done with the open-source Python package1 called ATHENA [218], for the classification algorithms we
use the scikit-learn package [41], and for the Gaussian process regression GPy [98].

We suppose the domain X to be a n-dimensional hyperrectangle. we are going to rescale the input
parameters X to [−1,1]n.

2.5.1 Some illustrative two-dimensional examples

We start by presenting two two-dimensional test cases to show every aspect of the methodology
together with illustrative plots. First we analyze a case where a global active subspace, even if present,
does not provide a regression accurate enough along the active direction, in section 2.5.1. Then we
consider a radial symmetric function for which, by construction, an AS does not exist, in section 2.5.1,
and the use of K-means is instead preferable since we cannot exploit a privileged direction in the input
domain.

Quartic function

Let us consider the following two-dimensional quartic function f (x) = x4
1− x4

2, with x = (x1,x2) ∈
[0,1]2. In fig. 2.1 we can see the contour plot of the function, the active subspace direction — translated
for illustrative reasons — and the corresponding sufficient summary plot of the global active subspace,
computed using 400 uniformly distributed samples. With sufficient summary plot we intend f (x)
plotted against the input parameters projected onto the active subspace, that is W T

1 x. It is clear how, in
this case, a univariate regression does not produce any useful prediction capability.

Let us apply the clustering techniques introduced in the previous sections fixing the number of
clusters to 4. In fig. 2.2 we can clearly see how the supervised distance metric in eq. (2.21) acts in
dividing the input parameters. On the left panel, we apply K-means which clusters the data into
4 uniform quadrants, while in the middle and right panels we have K-medoids and hierarchical
top-down, respectively, with a subdivision aligned with the global AS. We notice that for this simple
case, the new metric induces an identical clustering of the data. In fig. 2.3 we plotted the sufficient
summary plots for each of the clusters individuated by K-medoids or hierarchical top-down in fig. 2.2.

1Available at https://github.com/mathLab/ATHENA/.

https://github.com/mathLab/ATHENA/
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Fig. 2.1 On the left panel the contour plot of the quartic function and in orange the global active
subspace direction. On the right panel the sufficient summary plot resulting in projecting the data
onto the global AS.

By using a single univariate regression for each cluster the R2 score improves a lot with respect to a
global approach (see right panel of fig. 2.1).
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1
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Fig. 2.2 Comparison between the different clusters obtained by K-means (on the left), K-medoids
(middle panel), and hierarchical top-down (on the right) with AS induced distance metric defined in
eq. (2.21) for the quartic test function. In orange the global active subspace direction. Every cluster is
depicted in a different color.

We can also compare the R2 scores for all the methods, using a test dataset of 600 samples. In
fig. 2.4 we report the scores for K-means, K-medoids and for hierarchical top-down with AS-based
distance metric. The score for the global AS, which is 0.78, is not reported in fig. 2.4 for illustrative
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Fig. 2.3 Local sufficient summary plots for the 4 clusters individuated by K-medoids or hierarchical
top-down in fig. 2.2 (colors correspond).

reasons. The results are very similar due to the relatively simple test case, but we can see that even
with 2 clusters the gain in accuracy is around 23% using the metric in eq. (2.21).

The hierarchical top-down clustering method was run with the following hyperparameters: the
total number of clusters is increasing from 2 to 10, the minimum number of children equal to the
maximum number of children equal to 3, uniform normalization of the clusters, the minimum size
of each cluster is 10 elements, the clustering method is K-medoids with AS distance, the maximum
active subspace dimension is 1.
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Fig. 2.4 R2 scores comparison between local versions varying the number of clusters for the quartic
function. Global AS has a score equal to 0.78.

Then we want to increase the accuracy of the regression for a fixed number of clusters equal to
3, loosing in some regions the reduction in the parameter space. Starting from the clustering with
hierarchical top-down and 3 clusters of dimension 1, the AS dimension of each of the 3 clusters is
increased if the threshold of 0.95 on the local R2 score is not met. In general, the local R2 score is
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Fig. 2.5 On the left panel the hierarchical top-down clustering with heterogeneous AS dimension and
R2 score equal to 1. On the right panel the labels of the local AS dimension from definition 3.

evaluated on a validation set, for which predictions from the local response surfaces are obtained,
after each validation sample is classified into one of the 3 clusters.

The 3 clusters are reported in fig. 2.5 on the left. The R2 score on the test set is 1, instead of
around 0.97 from fig. 2.4. To obtain this result, the central cluster AS dimension is increased from
1 to 2. We compare the clustering with respect to the classification of the local AS dimension with
algorithm 4 using as features the local AS dimension as defined in definition 3, on the right of fig. 2.5.
Actually, algorithm 4 is stopped after the plotted labels are obtained as the connected components of
the underlying graph to which spectral clustering is applied: no classification method is employed,
yet. It can be seen that hierarchical top-down clustering with heterogeneous AS dimension is more
efficient with respect to the classes of algorithm 4, regarding the number of samples associated with a
response surface of dimension 2.

Radial symmetric cosine

This example addresses the case for which an active subspace is not present. This is due to the fact
that there are no preferred directions in the input domain since the function f has radial symmetry.
For this case, the exploitation of the supervised distance metric does not provide any significant gain
and K-means clustering works better on average since it does not use the global AS structure. The
model function we consider is f (x) = cos(∥x∥2), with x ∈ [−3,3]2.

In fig. 2.6 we compare the R2 scores for K-means, K-medoids with AS-based metric, and
hierarchical top-down with Euclidean metric. We used 500 training samples and 500 test samples.
We see K-medoids has not a clear behavior with respect to the number of clusters, while the other
methods present a monotonic trend and better results on average, especially K-means. On the other
hand, local models improve the accuracy considerably, even for a small number of clusters, with
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respect to a global model. In this case, the specifics of hierarchical top-down clustering are: the
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Fig. 2.6 R2 scores comparison between global AS and local versions varying the number of clusters
for the isotropic model function. Global AS corresponds to no clustering.

minimum number of children is equal to the maximum, the minimum number of elements per cluster
is 10, the clustering method chosen is K-means, the normalization employed it the uniform one, and
the total number of clusters is increasing from 2 to 11.

2.5.2 Higher-dimensional datasets

In this section, we consider more interesting benchmarks, for which dimension reduction in the
parameter space is useful since the starting dimension of the parameter space is higher. We test the
classification procedure in algorithm 4 with an objective function with 6 parameters and defined
piecewise as a paraboloid with different AS dimensions. We also test the procedure of response
surface design with local AS, with a classical 8-dimensional epidemic benchmark model.

Multi-dimensional hyper-paraboloid

The objective function f : [−4,4]6→ R we consider is defined piecewise as follows

f (x) =



x2
1 if x1 > 0 and x2 > 0,

x2
1 + x2

2 if x1 < 0 and x2 > 0,

x2
1 + x2

2 + x2
3 if x1 > 0 and x2 < 0,

x2
1 + x2

2 + x2
3 + x2

4 if x1 < 0 and x2 < 0.

(2.25)

In the 4 domains in which f is defined differently, we expect an AS dimension ranging from 1
to 4, respectively. We employed algorithm 4 using the local AS dimensions as additional features,
from definition 3: the values of the hyperparameters are the following: ε = 0.999, N = 6, p = 4.
In fig. 2.7 we plot the accuracy of the classification of the labels, associated with the connected
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components of the graph built as described in algorithm 4, and also the accuracy of the classification
of the local active subspace dimension, that takes the values from 1 to 4. The test dataset for both the
classification errors has size 1000. The score chosen to assess the quality of the classification is the
mean accuracy, that is the number of correctly predicted labels over the total number of labels. For
both the classification tasks 100 train samples are enough to achieve a mean accuracy above 80%.
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Fig. 2.7 Mean accuracy study for a training dataset increasing in size from 50 to 500 samples. The test
set is made of 1000 independent samples. The classification accuracy for the procedures of connected
component classification (in blue) and local AS dimension classification (in orange) are both shown.

We remark that every step is applied to a dataset of samples in a parameter space of dimension
6, even if, to get a qualitative idea of the performances of the method, in fig. 2.8 we show only the
first two components of the decision boundaries of the 4 classes for both the previously described
classification problems.

Ebola epidemic model

In this section, we examine the performance of the proposed methods over the dataset created with
the SEIR model for the spread of Ebola2. The output of interest in this case is the basic reproduction
number R0 of the SEIR model, described in [78], which is computed using 8 parameters as follows

R0 =
β1 +

β2ρ1γ1
ω

+ β3
γ2

ψ

γ1 +ψ
. (2.26)

As shown in previous works, this function has a lower intrinsic dimensionality, and thus a meaningful
active subspace, in particular of dimension 1. To evaluate the performance of the local AS we compute
the R2 score, as in eq. (2.17), varying the number of clusters from 2 to 10 for all the methods presented.
The test and training datasets are composed by 500 and 300, respectively, uniformly distributed and

2The dataset was taken from https://github.com/paulcon/as-data-sets.

https://github.com/paulcon/as-data-sets
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Classification of the labels
Mean accuracy on the test set: 0.90

Classification of the local AS dimension
Mean accuracy on the test set: 0.95

Fig. 2.8 On the left panel the decision boundaries of the 4 classes associated with the connected
components of the graph built as described in algorithm 4. On the right panel the decision boundaries
of the 4 classes associated to the local AS dimension from 1 to 4. The dataset has dimension 6, only
the first two components of the decision boundaries and of the test samples are plotted.

independent samples. The results are reported in fig. 2.9, where as baseline we reported the R2 for the
GPR over the global AS. We can see how the use of the AS-based distance metric contributes the
most with respect to the actual clustering method (compare K-medoids and hierarchical top-down
in the plot). K-means, instead, does not guarantee an improved accuracy (for 4 and 9 clusters), and
in general the gain is limited with respect to the other methods, especially for a small number of
clusters which is the most common case in practice, since usually we work in a data scarcity regime.
The results for K-medoids and top-down are remarkable even for a small number of clusters with
an R2 above 0.9 and an improvement over 10% with respect to the global AS, which means that no
clustering has been used.

The hyperparameters for the hierarchical top-down algorithm are the following: the maximum
local active subspace dimension is 1, the maximum number of children is equal to the number of
total clusters, the minimum number of children is 2 at each refinement level, the minimum number
of elements per cluster is 10, and the clustering method for each refinement is K-medoids with AS
distance.

2.5.3 Datasets with vectorial outputs

In this section, we want to show how hierarchical top-down clustering and the classification procedure
of algorithm 4 can be combined to improve the overall reduction in the parameter space, for a fixed
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Fig. 2.9 R2 scores comparison between global AS and local versions varying the number of clusters
for the Ebola spread model. Global AS corresponds to no clustering.

lower threshold in the R2 score. For the response surface design with active subspaces for vectorial
outputs we refer to [281, 221].

Poisson equation with random diffusivity

Let us consider the stochastic Poisson problem on the square x = (x,y) ∈Ω := [0,1]2, defined as:

−∇ · (κ ∇u) = 1, x ∈Ω,

u = 0, x ∈ ∂Ωtop∪∂Ωbottom,

u = 10y(1− y), x ∈ ∂Ωleft,

n ·∇u = 0, x ∈ ∂Ωright,

(2.27)

with homogeneous Neumann boundary condition on ∂Ωright, and Dirichlet boundary conditions on the
remaining part of ∂Ω. The diffusion coefficient κ : (Ω,A,P)×Ω→ R, with A denoting a σ -algebra,
is such that log(κ) is a Gaussian random field, with covariance function G(x,y) defined by

G(x,y) = exp
(
−∥x−y∥2

β 2

)
, ∀x,y ∈Ω, (2.28)

where the correlation length is β = 0.03. We approximate this random field with the truncated
Karhunen–Loève decomposition as

κ(s,x)≈ exp

(
m

∑
i=0

Xi(s)γiψψψ i(x)

)
, ∀(s,x) ∈Ω×Ω, (2.29)

where (Xi)i∈1,...,m are independent standard normal distributed random variables, and the eigenpairs of
the Karhunen–Loève decomposition of the zero-mean random field κ are denoted with (γi,ψψψ i)i∈1,...,d .
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The parameters (Xi)i∈1,...,m=10 sampled from a standard normal distribution are the coefficients of the
Karhunen-Loève expansion truncated at the first 10 modes, so the parameter space has dimension
m = 10. This test case is implemented in tutorial 5 of the ATHENA [218] package.

The domain Ω is discretized with a triangular unstructured mesh T with 3194 triangles. The
simulations are carried out with the finite element method with polynomial order 1. The solution u
is evaluated at 1668 degrees of freedom, thus the output is vectorial with dimension d = 1688. As
done in [281, 221], the output is enriched with the metric induced by the Sobolev space H1(Ω) on to
the finite element space of polynomial order 1: the metric is thus represented by a d×d matrix M
obtained as the sum of the mass and stiffness matrices of the numerical scheme, and it is involved
in the AS procedure when computing the correlation matrix E

[
D f M D f T

]
, where D f is the m×d

Jacobian matrix of the objective function f : R10→ Rd .
Since the output is high-dimensional we classified algorithm 4 the output space in 6 clusters, using

the Grassmann distance from eq. (2.23), as shown in fig. 2.10.
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Fig. 2.10 Subdivision of the spatial domain Ω in 6 clusters based on the Grassmann distance from
definition 4, i.e. the clusters correspond to the connected components of the graph built on top of the
degrees of freedom with adjacency list determined using as distance definition 4.

Afterwards, we applied hierarchical top-down clustering to every one of the 6 triplets of inputs-
outputs-gradients, obtained restricting the outputs and the gradients to each one of the 6 clusters.
The specifics of hierarchical top-down clustering we employed are the following: the minimum and
maximum number of children for each refinement is equal to the total number of clusters, which is
4, the minimum number of elements in each cluster is 10, and the clustering algorithm chosen is
K-medoids with the AS distance. The size of the training and test datasets is respectively 500 and 150.
The gradients are evaluated with the adjoint method. Since the output is vectorial we employed the
mean R2 score, where the average is made among the components of the vectorial output considered.
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Then for every lower threshold on the R2 score, we increase one by one the dimension of the
6×4 local clusters, until all the R2 scores of each of the 6 triplets are above the fixed threshold. The
same procedure is applied to the whole dataset of inputs-outputs-gradients but executing hierarchical
top-down clustering just once, for all the output’s components altogether.
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Fig. 2.11 In orange the local AS dimensions weighted on the number of elements of each of the 4
clusters in the parameter space, obtained with hierarchical top-down clustering. In blue the local AS
dimensions weighted on the number of elements of each of the 4 clusters in the parameter space,
obtained with hierarchical top-down clustering, times 6 clustered outputs (see fig. 2.10) for a total of
24 terms in the weighted average.

The results are reported in fig. 2.11. In the case of the clustered outputs, the local dimension of
each one of the 6 clustered outputs times 4 local clusters in the parameter space, for a total of 24 local
clusters, are weighted with the number of elements of each cluster. In the same way the 4 clusters of
the case with unclustered outputs are weighted with the number of the elements of each one of the
4 clusters. It can be seen that for every fixed threshold, there is an evident gain, with respect to the
dimension reduction in the parameter space, in clustering the outputs and then performing hierarchical
top-down clustering in the parameter space.

Shape design of an airfoil

For this vectorial test case, we consider the temporal evolution of the lift coefficient of a parametrized
NACA airfoil. Here we briefly present the problem we solve to create the dataset, we refer to [250]
for a deeper description.

Let us consider the unsteady incompressible Navier-Stokes equations described in an Eulerian
framework on a parametrized space-time domain S(µµµ) = Ω(µµµ)× [0,T ] ⊂ R2×R+. The vectorial
velocity field u : S(µµµ)→R2, and the scalar pressure field p : S(µµµ)→R solve the following parametric
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PDE: 

ut +∇ · (u⊗u)−∇ ·2ν∇su =−∇p in S(µµµ),

∇ ·u = 0 in S(µµµ),

u(t,x) = f(x) on Γin× [0,T ],

u(t,x) = 0 on Γ0(µµµ)× [0,T ],

(ν∇u− pI)n = 0 on Γout× [0,T ],

u(0,x) = k(x) in S(µµµ)0

. (2.30)

Here, Γ = Γin ∪Γout ∪Γ0 denotes the boundary of Ω(µµµ) composed of inlet boundary, outlet
boundary, and physical walls, respectively. With f(x) we indicate the stationary non-homogeneous
boundary condition, and with k(x) the initial condition for the velocity at t = 0. The geometrical
deformation is applied to the boundary Γ0(µµµ). The undeformed configuration corresponds to the
NACA 4412 wing profile [3, 139]. To alter such geometry, we adopt the shape parametrization and
morphing technique proposed in [128], where 5 shape functions are added to the airfoil profiles. They
are commonly called Hicks-Henne bump functions. Let yu and yl be the upper and lower ordinates of
the profile, respectively. The deformation of such coordinates is described as follows

yu = yu +
5

∑
i=1

ciri, yl = yl−
5

∑
i=1

diri, (2.31)

where the bar denotes the reference undeformed state. The parameters µµµ ∈ D⊂ R10 are the weights
coefficients, ci and di, associated with the shape functions ri. In particular, we set D := [0,0.03]10.
The explicit formulation of the shape functions can be found in [128]. For these datasets, the Reynolds
number is Re= 50000. The time step is dt = 10−3 s. For other specifics regarding the solver employed
and the numerical method adopted we refer to [250].

As outputs, we considered the values of the lift coefficient, every 15 time steps, from 100 ms to
30000 ms, for a total of 1994 components. Even in this case, the output is classified with algorithm 4
with distance defined in definition 3. The values of the lift coefficient physically interesting are
collected at last, after an initialization phase. Nonetheless, for the purpose of having a vectorial output
we considered its value from the time instant 100 ms. The procedure finds two classes and splits the
ordered output components in two parts: from the component 0 to 996, the local AS dimension is 1,
for the remaining time steps it is higher. So we can expect an improvement in the efficiency of the
reduction in the parameter space when considering separately these two sets of outputs components
as fig. 2.12 shows. The weighted local AS dimension is in fact lower when using clustering, for every
minimum R2 threshold.
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Fig. 2.12 In orange the local AS dimensions weighted on the number of elements of each of the 2
clusters in the parameter space, obtained with hierarchical top-down clustering. In blue the local AS
dimensions weighted on the number of elements of each of the 2 clusters in the parameter space,
obtained with hierarchical top-down clustering, times 2 clustered outputs for a total of 4 terms in the
weighted average.

2.6 Conclusions and perspectives

In this work, we present a new local approach for parameter space reduction which exploits supervised
clustering techniques, such as K-means, K-medoids, and hierarchical top-down, with a distance metric
based on active subspaces. We called this method local active subspaces (LAS). The proposed metric
tend to form the clusters transversally with respect to the active subspace directions thus reducing the
approximation error induced by the choice of the non-optimal profile.

The theoretical formulation provides error estimates for the construction of response surfaces
over the local active subspaces. We also present a classification approach to capture the optimal AS
dimension for each cluster and can be used as a preprocessing step, both for the inputs and the vectorial
outputs, for the construction of more accurate regressions and surrogate modelling. The proposed
approach is very versatile, especially the hierarchical top-down clustering which can incorporate quite
different criteria. The methodology has been validated over a vast range of datasets, both scalar and
vector-valued, showing all the strengths and possible weaknesses, in the case of radial symmetric
functions. In all the test cases LAS achieved superior performance with respect to the classical global
approach.

Possible future lines of research can focus on the study of the extension of these methods to
nonlinear parameter space reduction techniques, or on the use of more advanced clustering criteria.



Chapter 3

Multi-fidelity nonlinear regression with
Active Subspaces

Multi-fidelity models are of great importance due to their capability of fusing information coming
from different numerical simulations, surrogates, and sensors. The focus, in this case, is on the
approximation of high-dimensional scalar functions with low intrinsic dimensionality. By introducing
a low dimensional bias we can fight the curse of dimensionality affecting these quantities of interest,
especially for many-query applications. A gradient-based reduction of the parameter space through
linear active subspaces or nonlinear transformations of the input space is sought. Low-fidelity response
surfaces based on such reduction are built, thus enabling nonlinear autoregressive multi-fidelity
Gaussian process regression without the need of running new simulations with simplified physical
models. This has great potential in the data scarcity regime affecting many engineering applications.
In this work, it is presented a new multi-fidelity approach that involves active subspaces and the
nonlinear level-set learning method. The proposed framework is tested on two high-dimensional
benchmark functions and on a more complex car aerodynamics problem involving the Reynolds
Averaged Navier-Stokes equations. It is shown how a low intrinsic dimensionality bias can increase
the accuracy of Gaussian process response surfaces.
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3.1 Literature review

The curse of dimensionality affects the realization of reliable models for high-dimensional function
approximation. This problem is particularly evident in the data scarcity regime which characterizes
many industrial and engineering applications. We address this issue by exploiting parameter space
reduction techniques in a multi-fidelity setting.

Gaussian processes (GP) [271] have spread in many fields as a reliable regression (GPR) method,
especially for optimization and inverse problems. Many extensions stemmed from the original
formulation, such as for kernel methods [142], and for big data and memory limitations [159, 164]. On
the other hand the exploitation of multi-fidelity models had a huge impact in the scientific computing
community thanks to the possibility to integrate simulations and data coming from different models
and sources. For an overview of different applications we suggest [145, 91, 211, 31, 32, 151]. A
particularly promising nonlinear autoregressive multi-fidelity Gaussian process regression (NARGP),
was proposed in [200]. Recent advancements in the context of physics-informed neural networks [212]
in a multi-fidelity setting for function approximation and inverse PDE problems, can be found in [178].

These models achieve increased expressiveness with some kind of nonlinear approach extending
GP models to non-GP processes at the cost of an additional computational load. In this direction, some
works aim to obtain computationally efficient heteroscedastic GP models using a variational inference
approach [158], or a nonlinear transformation [234]. This approach is extended to multi-fidelity
models starting from the linear formulation presented by Kennedy and O’Hagan [145] towards deep
GP [68] and NARGP.

Classical low-fidelity models obtained by coarse grids or simplified physical models still suffer
the curse of dimensionality when used for high-dimensional GP construction. Linear parameter
space reduction with Active Subspaces (AS) [60] can fight such curse using input-output couples
obtained by high-fidelity simulations. Successful applications of parameter space reduction with
active subspaces can be found in many engineering fields: naval and nautical problems [249],
shape optimization [170, 101, 73, 72], car aerodynamics studies [188], inverse problems [62, 183],
cardiovascular studies coupled with intrusive model order reduction [248], for the study of high-
dimensional parametric PDEs [186], and in CFD problems in a data-driven setting [71, 250], among
others. New extensions of AS have also been developed in recent years such as AS for multivariate
vector-valued functions [281], a kernel approach for AS for scalar and vectorial functions [221], a
localization extension for both regression and classification tasks [220], and sequential learning of
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active subspaces [273]. The multi-fidelity setting has been used to find an active subspace given
different fidelity models [154].

Other nonlinear techniques for parameter space reduction include manifold learning [131, 205],
active manifolds [33] and nonlinear level-set learning (NLL) [283]. NLL adopts a Reversible Neural
Networks (RevNet) architecture to learn an effective parameter space deformation to capture the
geometry of the objective function level-sets and parametrize them.

With this contribution, we show how to integrate linear and nonlinear parameter space dimension-
ality reduction within a multi-fidelity regression scheme based on Gaussian processes to increase the
accuracy of high-dimensional response surfaces. The low-fidelity models are built with AS or NLL
and incorporated in the NARGP framework, following the preliminary results obtained in [219]. An
extensive automotive test case is presented with different configurations.

This work is organized as follows: in Section 3.2 we introduce multi-fidelity Gaussian process
regression starting from the building block of a single fidelity up to the NARGP method; in Section 3.3
we focus on the parameter space reduction with active subspaces and nonlinear level-set learning
which are going to be used to construct the low-fidelity models; Section 3.4 shows how to add
the low-intrinsic dimensionality bias into the NARGP framework, accompanied by pseudocode; in
Section 3.5 we present the numerical results of the proposed approach applied to two benchmark
models, and to an automotive application; finally Section 3.6 draw the conclusions and some future
research lines.

3.2 Multi-fidelity Gaussian process regression

In this section, we are going to briefly recall the Gaussian process regression (GPR) technique in
order to better characterize the nonlinear autoregressive multi-fidelity Gaussian process regression
(NARGP) introduced in [200]. NARGP represents the main framework for our proposed multi-fidelity
method. We are going to consider the general setting with multiple levels of fidelity.

3.2.1 Gaussian process regression

Gaussian process regression is a supervised technique to approximate unknown functions given a
finite set of input/output pairs S = {xi,yi}N

i=1. Let f : X ⊂ Rm→ R be the scalar function of interest.
The set S is generated through f with the following relation: yi = f (xi), which are the noise-free
observations. We assigned a prior to f with mean m(x) and covariance function k(x,x′;θ), that is
f (x) ∼ GP(m(x),k(x,x′;θ)). The prior expresses our beliefs about the function before looking at
the observed values. From now on we consider zero mean GP , that is m(x) = 0, and we define
the covariance matrix as Ki, j = k(xi,x j;θ), with K ∈ RN×N . In order to make predictions using
the Gaussian process we still need to find the optimal values for the hyperparameters vector θ by
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maximizing the log likelihood:

log p(y|x,θ) =−1
2

yT K−1y− 1
2

log |K|− N
2

log2π. (3.1)

Let x∗ be the test samples, and KN∗ = k(x,x∗;θ) be the matrix of the covariances evaluated at all
pairs of training and test samples, and in a similar fashion K∗N = k(x∗,x;θ), and K∗∗ = k(x∗,x∗;θ).
By conditioning the joint Gaussian distribution on the observed values we obtain the predictions f∗ by
sampling the posterior as

f∗|x∗,x,y∼N (K∗NK−1y,K∗∗−K∗NK−1KN∗). (3.2)

3.2.2 Nonlinear multi-fidelity Gaussian process regression

In this section, we briefly present the nonlinear autoregressive multi-fidelity Gaussian process regres-
sion (NARGP) scheme [200]. It extends the concepts present in [145, 160] to nonlinear correlations
between the different available fidelities.

The procedure is purely data-driven. We start from the input/output pairs corresponding to p
levels of increasing fidelity, that is

Sq = {xq
i ,y

q
i }

Nq
i=1 ⊂X ×R⊂ Rm×R, for q ∈ {1, . . . , p}, (3.3)

where yq
i = fq(x

q
i ). With p we indicate the highest fidelity. We also assume that the design sets have a

hierarchical structure:
π(Sp)⊂ π(Sp−1)⊂ ·· · ⊂ π(S1), (3.4)

where π : Rm×R→ Rm is the projection onto the first m coordinates. Due to this hierarchy, when
the fidelities of the available datasets cannot be neatly assessed, it is reasonable to consider the cost
needed to produce them as ordering criterion, see Remark 10.

The NARGP formulation assigns a Gaussian process to each fidelity model fq, so they are
completely defined by the mean field mq, with the constant zero field as prior, and by their kernel kq,
as follows:

yq(x̄)− ε ∼ GP( fq(x̄))|mq(x̄),kq(θq)) ∀q ∈ {1, . . . , p} , (3.5)

where ε ∼N (0,σ2) is a noise term and

x̄ :=

(x, fq−1(x)) ∈ Rm×R, q > 1

x ∈ Rm, q = 1
. (3.6)

The definition of the kernel kq(θq) implements the auto-regressive characteristic of the method
since it depends on the previous fidelity model fq−1:

kq((x, fq−1(x)),(x′, fq−1(x′));θq) = kρ
q (x,x

′;θ
ρ
q ) · k f

q ( fq−1(x), fq−1(x′);θ
f

q )+ kδ
q (x,x

′;θ
δ
q ) . (3.7)
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The hyperparameters to be tuned are represented by θq ≡ (θ
ρ
q ,θ

f
q ,θ δ

q ) and are associated respectively
to the multiplicative kernel kρ

q , the auto-regressive kernel k f , and the kernel kδ
q , which corresponds to

the non auto-regressive part in the sum of Equation 3.7. For our applications, we employ the radial
basis function kernel with automatic relevance determination (RBF-ARD) [271], but there are other
possible choices.

The presence of the multiplicative kernel kρ
q allows nonlinear interdependencies between subse-

quent fidelities to be modeled, surpassing a linear auto-regressive multi-fidelity scheme. The latent
manifold that relates the inputs, the lower fidelity posterior and the high-fidelity posterior is in this
case nonlinear [200].

We use the notation(x,yq−1(x)) for the training set and x∗ for the new input. So in order to
evaluate the predictive mean and variance for a new input x∗ we have to integrate the posterior
p( fq(x∗)| fq−1,x∗,xq,yq) defined as

fq(x∗| fq−1,x∗,xq,yq)∼N (Kq
∗N(K

q)−1yq,Kq
∗∗−Kq

∗N(K
q)−1Kq

N∗), (3.8)

Kq
∗N = kq((x∗, fq−1(x∗),(xq−1,yq−1);θq), (3.9)

Kq
N∗ = kq((xq−1,yq−1),(x∗, fq−1(x∗);θq), (3.10)

Kq = kq((xq−1,yq−1),(xq−1,yq−1);θq), (3.11)

over the Gaussian distribution of the prediction at the previous level fq−1(x∗)∼N (mq−1(x∗),kq−1(x∗)).
Apart from the first level of fidelity q = 1 the posterior probability distribution given the previous
fidelity models is no longer Gaussian. So, in practice, the following integral is approximated with
recursive Monte Carlo at each fidelity level, for all q ∈ {2, . . . , p},

p( f post
q (x∗)) := p( fq(x∗)| fq−1,x∗,xq,yq) =

=

ˆ
X

p( fq(x∗)|s,x∗,xq,yq)dL f post
q−1(x∗)

(s) (3.12)

p( f post
1 (x∗)) := p( f1(x∗)|x∗,x1,y1)∼N (m1(x∗),k1(x∗)), (3.13)

where L f post
q−1(x∗)

is the probability law of f post
q−1(x∗)∼N (mq−1(x∗),kq−1(x∗)). In the applications, we

always use 200 to 10000 Monte Carlo samples, since the results do not vary much increasing them
for our test cases.

The hyperparameters θq are optimized (non-recursively) with maximum log-likelihood estimation
for each GP model GP( fq|0,kq(θq)), for all q ∈ {1, . . . , p},

argmin
θq

− log p( fq(xq)|xq,yq,yq−1,θq) ∝
1
2

log |Kq(θq)|+
1
2

yT
q (K

q(θq))
−1yq , (3.14)

this is why a hierarchical dataset is needed. The hyperparameters tuning is achieved maximizing
the log-likelihood with the gradient descent optimizer L-BFGD in GPy [98]. For some test cases,
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the training procedure is subject to relevant perturbations relative to the number of restarts, this is
especially true in higher dimensions of the parameter space.

3.3 Parameter space reduction

Our aim is to test multi-fidelity Gaussian process regression models to approximate objective functions
which depend on inputs/parameters sampled from a high-dimensional space. Low-fidelity models
relying on a physics-based or numerical model reduction — for example a coarse discretization or a
more specific numerical model order reduction — still suffer from the high dimensionality of the input
space. In our approach, we try to tackle these problems by searching for a surrogate (low-fidelity)
model accounting for the complex correlations among the input parameters that concur to the output of
interest. With this purpose in mind, in this section we are going to briefly present the active subspaces
(AS) [60], and the nonlinear level-set learning (NLL) method [283] for parameter space reduction in
order to design response surfaces with Gaussian process regression.

3.3.1 Active subspaces

Let X be an absolutely continuous random variable with probability density ρ , such that supp(ρ) =
X ⊂ Rm. The variable X represents the inputs, and m denotes the dimension of the input parameter
space. With simple Monte Carlo we can approximate the uncentered covariance matrix of the gradients
of the function of interest as

Eρ [∇x f (∇x f )T ]≈ 1
N

N

∑
i=1

∇x f (Xi)(∇x f (Xi))
T , (3.15)

where N denotes the number of samples. We are looking for the highest spectral gap λr−λr+1 in
the sequence of ordered eigenvalues of the approximated correlation matrix. The active subspace is
the eigenspace corresponding to the first r eigenvalues λ1, . . . ,λr and it is denoted with the matrix
Ŵr ∈M(m× r) whose columns are the corresponding r active eigenvectors. The inactive subspace is
defined as the span of the remaining eigenvectors. On it f is almost flat on average, so we can safely
discard such component without compromising too much the accuracy. We can thus build a response
surfaceR using a Gaussian process regression trained with Ntrain pairs {Ŵ T

r xi,yi}Ntrain
i=1 of active inputs

and outputs.
The mean square regression error is bounded a priori [60] by

Eρ

[
( f (X)−R(Ŵ T

r X))2]≤C1(1+N−1/2)2
(

ε(λ1 + · · ·+λr)
1/2 +(λr+1 + · · ·+λm)

1/2
)2

+C2δ ,

(3.16)
where C1 and C2 are constants, ε quantifies the error in the approximation of the true active subspace
Wr with Ŵr obtained from the Monte Carlo approximation, and C2δ is a bound on the mean squared
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error of the Gaussian process regression over the active subspace:

EρŴrX|Ŵm−rX

[(
Eρ

[
f (X)|σ(Ŵ T

r X)
]
−R(Ŵ T

r X)
)2
]
≤C2δ , (3.17)

where ρŴrX|Ŵm−rX is the probability of the active variables conditioned on the inactive ones, and

Eρ

[
f (X)|σ(Ŵ T

r X)
]

is the random variable f (X) conditioned on the σ -algebra generated by Ŵ T
r X

and approximated with the Monte Carlo method.

3.3.2 Nonlinear level-set learning method

This method seeks a bijective nonlinear transformation gNLL : X → X̃ ⊂ Rm to capture the geometry
of level sets and parametrize them in a low-dimensional space. To this end in [283] they employ
reversible networks (RevNets) [47] to learn the transformation gNLL. The designed loss function uses
samples of the gradients of the target function to encourage the transformed function to be sensitive to
only a few active coordinates.

To construct the RevNet, the following architecture [113], which is reversible by definition, is
employed: {

un+1 = un +hKT
n,1σ(Kn,1vn +bn,1) ,

vn+1 = vn−hKT
n,2σ(Kn,2un +bn,2) ,

for n = 0,1, . . . ,N−1, (3.18)

where u and v are partitions of the states, h is a scalar time step, the matrices K contain the weights, b
represent the biases, and σ is the activation function. We remark that the original coordinates and the
transformed ones are split in two in u and v.

3.4 Multi-fidelity data fusion with active subspaces

Our study regards the design of a nonlinear autoregressive multi-fidelity Gaussian process regression
(NARGP) [200] with two fidelities: the high-fidelity corresponds to a relatively accurate and costly
model, for example, a numerical model which requires computationally intensive simulations to obtain
a scalar output for each parameter sample; and the low-fidelity level which comes from a response
surface built through a parameter space reduction technique — here we focus on active subspaces but
little modifications are required in order to use NLL as we are going to show. We consider models
with high-dimensional input space but with a low intrinsic dimensionality. This setting characterizes
many industrial applications [188, 249, 170].

In fact, the inductive biases we impose come mainly from two sources: the kernel of the Gaus-
sian process (lengthscale, noise, regularity of the stochastic process) and the low-fidelity intrinsic
dimensionality assumption (presence of a dominant linear or nonlinear active subspace). The key
feature of the method is the imposition of the latter on the multi-fidelity model design: we expect
that a hint towards the presence of an active subspace will be transferred from the low-fidelity to the
high-fidelity level through the discovery of nonlinear correlations between the low-fidelity predictions,
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and the high-fidelity inputs/outputs dataset. In this way, the accuracy should increase in the data-
scarcity regime, i.e. when the number of high-fidelity samples is not enough to obtain an accurate
single-fidelity regression. The overhead with respect to the original procedure [200] is the evaluation
of the active subspace from the high-fidelity inputs and the training of the whole multi-fidelity model;
this costs are usually negligible as shown in section 3.5.2.

In Figure 3.1 we present an illustrative scheme of the proposed NARGP-AS method; the under-
lying objective function is an hyperbolic paraboloid f : [0,1]2 ⊂ R2→ R, f (x1,x2) = x2

1− x2
2 and is

shown only for the purpose of representing the procedure more clearly. The high-fidelity flow field
belongs to the automotive application of section 3.5.2.
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Multi-fidelity prediction

High-fidelity data

Fig. 3.1 Illustrative scheme of the NARGP-AS method. Starting from 10 high-fidelity data (depicted
with blue dots and white crosses) we construct as low-fidelity model a response surface that is constant
along the inactive subspace.

For clarity, we will use the letters H and L as labels for the high-fidelity and low-fidelity models
respectively, instead of the fidelity levels q = 1 and q = 2. Changing, as just described, the notations
of subsection 3.2.2, we consider

SL = {xL
i ,y

L
i }NL

i=1 ⊂ Rm×R,

SH = {xH
i ,y

H
i }NH

i=1 ⊂ Rm×R,

and additionally {dyH
i }N2

i=1 ⊂ Rm the gradients corresponding to the high-fidelity dataset SH =

{xH
i ,y

H
i }NH

i=1: in principle, the gradients can be directly obtained from the model of interest (with
adjoint methods in case of PDE models for example) or approximated from the input-output pairs SH .
For the influence of the gradients’ approximation on the regression error, see [60]. For our test cases,
we employ the exact gradients when available (for the benchmarks in sections 3.5.1 and 3.5.1) or we
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approximate them from the high-fidelity GPR (in the test cases in sections 3.5.2, 3.5.2 and 3.5.2).
This does not results in additional costs, since the HF GPR is needed in the NARGP-AS procedure.

The high-fidelity dataset SH (and the corresponding gradients) represents by itself all the necessary
ingredients: SL is built from SH through a response surface on the linear or nonlinear active subspace.
For this purpose the dataset SH is employed, with the corresponding gradients, to find an active
subspace Ŵr or train a RevNet, as described in subsections 3.3.1 and 3.3.2.

Then, since SH ⊂ SL, we write

SL \SH = {xL
i ,y

L
i }NL

i=1 \{xH
i ,y

H
i }NH

i=1 = {x̃L
i , ỹ

L
i }NL−NH

i=1 . (3.19)

The additional low-fidelity inputs {x̃1
i }NL−NH

i=1 are sampled independently from the inputs’ probability
distribution, while the additional low-fidelity outputs {ỹL

i }NL−NH
i=1 are the predictions associated to the

active components of the additional low-fidelity inputs {Ŵ T
r x̃L

i }NL−NH
i=1 , obtained from the response

surface trained on
{Ŵ T

r xH
i ,y

H
i }NH

i=1 ⊂ Rr×R.

The response surface is trained as a Gaussian process regression as described in subsection 3.3.1.
The procedure is synthetically reviewed through Algorithm 5. The number of low-fidelity samples
is chosen until a good approximation of the low-fidelity response surface is obtained. As it is
experimentally shown in Figure 3.8, additional low-fidelity samples do not improve the accuracy of
the multi-fidelity model afterward.

Remark 8 (Nonlinear level-set learning as LF model). If NLL is employed to build the low-fidelity
level, only the first step of Algorithm 5 is changed. For our applications, the GPR designed with NLL
has dimension one.

Algorithm 5: NARGP-AS response surface design algorithm.
input : :

training high-fidelity inputs, outputs, gradients triplets:
{(xH

i ,y
H
i ,dyH

i )}NH
i=1 ⊂ Rm×R×Rm

low-fidelity inputs {xL
i }NL

i=1 ⊂ Rm

output : :
multi-fidelity model:(

( fH |xH
i ,y

H
i ), ( fL|xL

i )
)
∼ (GP( fH |mH ,kH),GP( fL|mL,kL))

1 Compute the active subspace Ŵr with the high-fidelity gradients {dyH
i }NH

i=1
2 Build the response surfaceR(Ŵ T

r X) with a GP regression from {(Ŵ T
r xH

i ,y
H
i )}NH

i=1
3 Predict the low-fidelity outputs {yL

i }NL
i=1 at {xL

i }NL
i=1 and the training high-fidelity inputs

{yH
i }NH

i=1 at {xH
i }NH

i=1 with the response surface
4 Train the multi-fidelity model at the low-fidelity level fL with the training dataset
{(xL

i ,y
L
i )}NL

i=1∪{(xH
i ,y

H
i )}NH

i=1
5 Train the multi-fidelity model at the high-fidelity level fH with the training dataset {((xH

i ,y
H
i ),y

H
i )}NH

i=1
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Remark 9 (Markov property). Theoretically the observations {yq
i } should be noiseless for each level of

fidelity q in order to preserve the Markov property [200]. However, in practice, it could be beneficial
in some applications to add noise at each fidelity level, or constraint the noise levels from below in
order to avoid overfitting.

3.5 Numerical results

In this section, we are going to present the results obtained with the NARGP-AS and the NARGP-NLL
method over two benchmark test problems (Piston 3.5.1 and Ebola 3.5.1 models), and over a more
complex car aerodynamics problem (Jetta-6 3.5.2, Jetta-12-RANS 3.5.2, Jetta-12-DDES 3.5.2). The
library employed to implement the NARGP model is Emukit [190] while for the active subspace and
NLL response surface design we used the open source Python package1 called ATHENA [218], and
GPy [98].

The computational times of the prediction and training of the NARGP-AS method are reported
in Table 3.1. In particular, it is shown how the number HF test samples and of Monte Carlo (MC)
samples affect the MF prediction times. The training costs are mainly affected by the number of
restarts of the optimization with L-BFGD, instead.

Table 3.1 Computational times of the training of the multi-fidelity models and evaluation of the
predictions. The label "pred" stands for prediction and "HF tr samples" stands for the number of
high-fidelity training samples.

Test case HF tr samples training restarts MC samples HF test samples pred MF pred HF

Piston model 3.5.1 150 24 [s] 10 100 10000 10 [s] 0.123 [s]
Ebola model 3.5.1 150 21 [s] 10 100 10000 10 [s] 0.450 [s]
Jetta-6 3.5.2 76 229 [s] 150 100 25 0.056 [s] 0.0006 [s]
Jetta-12-RANS 3.5.2 185 50 [s] 10 10000 51 14.2 [s] 0.0006 [s]
Jetta-12-DDES 3.5.2 65 20 [s] 10 1000 50 0.02 [s] 0.0003 [s]

3.5.1 Benchmark test problems

The first benchmark test problem presents a 7-dimensional input parameter space and the quantity of
interest is the time a cylindrical piston takes to complete a cycle2. The second one is a 8-dimensional
model for the spread of Ebola in Western Africa [78]. These tests have been chosen because of the
presence of an active subspace and they indeed present a low intrinsic dimensionality. The sufficient
summary plot is plotted for both cases together with a one-dimensional Gaussian process regression
built over the AS. We also show the correlation between the low-fidelity level and the high-fidelity
level of the multi-fidelity model. We compare the performance of the different fidelities by looking

1Available at https://github.com/mathLab/ATHENA.
2The piston dataset was taken from https://github.com/paulcon/active_subspaces.

https://github.com/mathLab/ATHENA
https://github.com/paulcon/active_subspaces
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at the corresponding R2 scores. This score is chosen to show how the obtained regressions compare
with respect to a constant predictor equal to the function average (R2 = 0). With LF we denote the
low-fidelity model represented by a GP regression on the low-fidelity input/output couples, with
HF the high-fidelity model represented by a GP regression built on the full space, and with MF the
proposed multi-fidelity model. The number of low-fidelity samples is kept fixed at 200 for both
test cases, while we study the accuracy varying the number of high-fidelity training samples used.
For both the benchmark problems the models were tested over a dataset comprising 10000 samples,
selected with Latin hypercube sampling (LHS). The nonlinear autoregressive fidelity fusion approach
achieves better performance with a consistent increase in the R2 score.

The piston model

For this model, the scalar target function of interest represents the time it takes the piston to complete
a cycle, depending on a 7-dimensional parameters vector. For its evaluation, a nonlinear function has
to be computed. The input parameters are uniformly distributed. For a detailed description of the
parameters’ ranges, the reader can refer to [61]. The algebraic cylindrical piston model appeared as a
test for statistical screening in [23], while in [61] they describe an active subspaces analysis.
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Fig. 3.2 Left: sufficient summary plot of the surrogate model built with active subspaces. 100 samples
were used to build the AS surrogate model shown. Right: correlations among the low-fidelity level
and the high-fidelity level of the multi-fidelity model, evaluated at the 10000 test samples.

From the sufficient summary plot reported in the left panel of Figure 3.2 we can conclude that
a one-dimensional active subspace is able to describe the input-output dependency with sufficient
accuracy. This is also supported by the GPR built over the AS. Moreover, the ordered eigenvalues of
the covariance matrix of the gradients exhibit a spectral gap between the first and the second eigenvalue.
In the right panel of Figure 3.2 we present the correlation between the high- and low-fidelity of the
NARGP model.

Figure 3.3 shows on the left the mean R2 scores of the MF model built as described in Section 3.4
varying the number of high-fidelity data. This is done over 10 training restarts of the MF, LF and HF
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Fig. 3.3 R2 score of the posterior of the multi-fidelity (MF), high-fidelity (HF) and low-fidelity (LF)
models against the number of high-fidelity samples used to find the active subspace and build the
Gaussian process regressions of the MF, HF, LF models. The 10000 test samples are distributed with
Latin hypercube sampling (LHS). In the left panel the results for the piston model, while on the right
the Ebola spread model.

models: moreover each GPR training is restarted 10 times for the HF and LF models and 20 times
for the MF model at each fidelity level, inside the GPy package. We show also the minimum and
maximum R2 scores over the outer 10 training restarts to show the stability of the procedure. When
we have a scarce amount of data the models are not so robust as we can see in the left part of the plot
for 50 and 60 high-fidelity samples. After that point, we have very stable results which account for a
relative gain in the 3–5% range with respect to the high-fidelity regression.

Modified SEIR model for Ebola

Now we consider the modified SEIR model for the spread of Ebola in Liberia, presented in [78],
which depends on 8 parameters. As scalar output of interest we take the basic reproduction number
R0. It can be computed with the following formula:

R0 =
β1 +

β2ρ1γ1
ω

+ β3
γ2

ψ

γ1 +ψ
, (3.20)

with parameters range taken from [78], where they conducted a global sensitivity analysis with AS.
For a kernel-based active subspaces comparison the reader can refer to [221].

In this case, a one-dimensional Gaussian process response surface is not able to achieve the
same good accuracy of the previous case, as can be seen in the left panel of Figure 3.4. This is also
confirmed by the correlation between the low- and high-fidelity levels of the NARGP, depicted in the
right panel of Figure 3.4. The corresponding R2 scores in the right panel of Figure 3.3 reflect this
behavior of worse performance with respect to the piston test case, where better correlations among
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Fig. 3.4 Left: sufficient summary plot of the Ebola model, 100 samples were used to build the AS
surrogate model shown. Right: correlations among the low-fidelity level and the high-fidelity level of
the multi-fidelity model, evaluated at the 10000 test samples.

the fidelities were identified. The relative gain is in the 3–4% range with respect to the high-fidelity
regression.

3.5.2 Automotive application

Two different test cases from the world of automotive aerodynamics are investigated in order to
demonstrate the applicability of the presented method to real-life problems. The first one (named
hereafter Jetta-6) is taken from [180], where it is described in detail. It consists of a 6-dimensional
geometric parameterization of the Volkswagen Jetta VI. The parameters (see Table 3.2) were generated
by free-form deformation and focus on the rear part of the car. A Latin Hypercube with 101 samples
was created, and the aerodynamic flow fields were computed with OpenFoam [264] via Delayed
Detached Eddy Simulations (DDES). An illustrative example can be seen in Figure 3.5. The physical
simulation time was four seconds, and the fields were averaged over the last two seconds before
integrating them over the vehicle surface to obtain the drag coefficient cD. With mesh sizes being of
the order of 100M cells, each variant required about 23,000 CPU-core-hours.

Fig. 3.5 Visualization of the averaged flow field around the Jetta.
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Table 3.2 Parameters’ description of the Jetta-6 test case [180].

Parameter Description Lower bound Upper bound
µµµ1 Rear roof lowering 0 mm 50 mm
µµµ2 Trunk height -30 mm 30 mm
µµµ3 Trunk length -50 mm 100 mm
µµµ4 Rear lateral tapering -60 mm 50 mm
µµµ5 Rear end edge position -70 mm 30 mm
µµµ6 Rear end depression -15 mm 0 mm

The second automotive test case (named hereafter Jetta-12) is based on the same car model and
was created within the EC project UPSCALE [2]. The parameterization consists of 12 geometric
modifications all around the vehicle (see Figure 3.6 and Table 3.3). Besides the baseline geometry, a
Sobol sequence of 300 additional samples was created and computed with OpenFoam. To reduce the
required computational budget to an affordable amount, Reynolds-Averaged-Navier-Stokes (RANS)
computations were carried out instead of DDES runs. This allowed to use coarser meshes of 52M
cells and resulted in 1700 CPU-core-hours for a single run for the 4000 iterations, of which the last
1000 were averaged to obtain the drag coefficient cD.

Table 3.3 Parameters’ description of the Jetta-12 test case.

Parameter Description Lower bound Upper bound
µµµ1 Spoiler Y Angle -5.0° 0.0°
µµµ2 Spoiler Slide Translation 0.0 mm 30.0 mm
µµµ3 Tail Light Y Span -15.0 mm 5.0 mm
µµµ4 Tail Light X Translation -10.0 mm 10.0 mm
µµµ5 Rear Window X Translation -100.0 mm 100.0 mm
µµµ6 Rear Window Z Translation -30.0 mm 0.0 mm
µµµ7 Rear End Taper Ratio -1.0° 3.0°
µµµ8 Front Window X Translation -100.0 mm 100.0 mm
µµµ9 Front Window Z Translation -30.0 mm 0.0 mm
µµµ10 Rear End Z Translation -30.0 mm 30.0 mm
µµµ11 Grill Slide Translation -50.0 mm 50.0 mm
µµµ12 Bumper Y Translation -20.0 mm 20.0 mm

In Figure 3.7 we depicted the eigenvalues decay for the automotive test cases. The largest spectral
gap is always between the first and the second eigenvalue. This justifies the choice of a low-fidelity
model built from a one-dimensional regression.
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Fig. 3.6 Affected areas by the geometrical parameters for the Jetta-12 test case. The ranges of each
parameter can be gleaned from Table 3.3.
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Fig. 3.7 Eigenvalues decay of the covariance matrix of the gradients for the Jetta-6 and Jetta-12 test
cases.

Multi-fidelity response surface design Jetta-6

In this test case, the low-fidelity model chosen is the response surface trained on the active latent
variables obtained with the NLL method: instead of prolonging along the orthogonal directions the
one-dimensional regression built on the active subspace, a GPR is trained on the deformed high-fidelity
inputs {gNLL(xH

i )}NH
i=1 ⊂ X̃ . We remark that the map gNLL does not preserve in general convexity

of the domain X or orthogonality of the boundaries. Nonetheless, this is not problematic for this
application since we are not interested in backmapping the active latent variables from X̃ to X , but
only in forwarding the inputs from X to X̃ and than evaluating the predictions with the GPR.

The employed RevNet has 10 layers. It was trained for 20000 epochs on a dataset of 76 training
samples and 25 test samples, with ADAM stochastic optimization method [147], with an initial
learning rate of 0.03. The high-fidelity samples were obtained with LHS method. The architecture is
implemented in PyTorch [196] inside the ATHENA [218] Python package. We perform a study on the
number of additional LF samples, distributed uniformly on the domain, from 100 to 400 with a step
of 50. The results are shown in Figure 3.8.

The maximization of the log-likelihood is performed with 10 restarts for the HF and LF models,
and 100 restarts for the MF model, all inside GPy optimization algorithm. All training procedures are
moreover restarted 10 times, testing the stability of the optimization process for each fidelity model.
This is done in order to show, in Figure 3.8 with blue lines, that the MF training presents some small
instabilities with respect to the HF and LF training, as expected. The LF and HF models are designed
over the same HF inputs-outputs datasets, so they are not influenced by the additional LF samples.

Remark 10 (Reversing the fidelities order). A natural question that may arise regards the correct
ordering of the HF and LF models in the MF when the accuracy is higher for the LF as in Figure 3.8.
We perform a study with respect to the number of additional samples from the HF GPR (not from
the numerical simulations), now the lowest fidelity in the MF model. Moreover, in order to reach
a desirable accuracy, we add to each of the 2 levels of fidelity of the MF model 200 uniformly
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Fig. 3.8 R2 score evaluated on the 25 test samples obtained from LHS on the domain X , varying the
number of LF samples. The mean R2 score over 10 restarts of the training of the GPR is shown. For
the MF also the minimum and maximum values are reported. The orange line identifies the results
obtained by reversing the fidelities order, so the number of LF samples corresponds to the HF GPR.
The LF and HF R2 scores are not influenced by the number of additional LF samples.

sampled input-output pairs: the highest fidelity is the NLL GPR built with 76+200 training data; the
lowest fidelity is the HF GPR built with training data equal to 76 from numerical simulations +200
fictitiously from the HR GPR (not from numerical simulations) + additional samples from 100 to 400
with a step of 50 from HF GPR (not numerical simulations). The results are reported in Figure 3.8
with orange lines (NLL = HF). The R2 score is lower than the previous case. Generally, the ordering
of the fidelities depends on the availability of data and the cost of obtaining them.

We also perform cross-validation (CV) with leave-one-out strategy for the Jetta-6 test case to
assess the robustness of the result with respect to the test dataset, in Figure 3.9. We reported the
mean and confidence intervals at 95% among the 25 batches of the leave-one-out strategy for a test
set of 25 samples: each batch has 24 test samples. For each abscissa, the batches corresponding to
the lowest R2 score for the MF and highest R2 score for the LF are found, so that with respect to
these two selected batches the R2 scores of the LF and MF models, respectively, can be computed and
compared: we want to remark that batch-wise the MF R2 score is always higher to the LF R2 score.

Multi-fidelity response surface design Jetta-12

For this test case with additional 6 parameters with respect to the previous one, for a total of 12, a
one-dimensional NLL response surface does not perform better than a one-dimensional AS response
surface, so we preferred the latter as LF model. In this case, we also added Gaussian noise at
each fidelity level in order to achieve a better accuracy, losing the Markov property, see Remark 9.
Moreover, to avoid overfitting we restricted the variance of the Gaussian noise to the interval [0.01,0.1]
at each fidelity of the multi-fidelity model.
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Fig. 3.9 Cross-validation with leave-one-out strategy and confidence bounds at 95%. The labels
lowest MF R2 at LF stands for the R2 score of the batch associated with the lowest R2 score for the
MF model in the CV procedure, but evaluated at the predictions of the LF model. The other labels are
analog.

We perform a study on the number of high-fidelity samples from 45 to 225, obtained from a
Sobol’ sequence. The test set has 51 samples obtained with LHS instead. The number of additional
LF samples is 100. The results are reported in Figure 3.10. As for the Jetta-6 test case, we perform 10
outer training restarts for the LF, HF, and MF models: the 100 additional LF samples are resampled
every time. Moreover, the optimization procedures of the GPRs are restarted 10 times for the LF, HF,
and MF model. We employed also a validation dataset of additional independent 25 samples from the
continuation of the Sobol’ sequence: the markers in Figure 3.10 correspond to the best HF and MF
models with respect to the validation set. We also report maximum and minimum R2 scores for the
outer loop training restarts of the MF model to show that the validation process is fairly effective, at
least when employing 45 to 155 high-fidelity samples. We emphasized in the plot the three distinct
areas corresponding to the scarce data, low data, and abundance of data regimes.

It can be seen a gain of around 4% on average on the R2 score of the MF model, with respect to
the other two, in the abscissae range from 45 to 155. This time the procedure is much less stable with
respect to the optimization process, probably due to the higher dimension of the input space. The
decreasing behaviour of the R2 score of the MF models from the abscissa 135 to 225 can be ascribed
to the prevalence of the HF model: in this case the LF model influences less the predictions of the MF
model, which are more stable and close to the HF ones. The low HF R2 score at abscissa 55 is almost
constant for each outer training step and is not related to overfitting, but it can be associated with a
high sensitivity of the regression when employing a small dataset relative to the problem at hand.

We want also to remark that in this test case the training of the LF, HF, and MF models takes
less than 10 minutes for each number of high-fidelity samples, with increasing costs from 45 to
225 samples, considering altogether the outer loop training restarts. Compared with the costs for a
high-fidelity simulation, the MF training cost is negligible.
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Fig. 3.10 Jetta-12: R2 score evaluated on the 51 test samples obtained from LHS on the domain X ,
varying the number of HF samples. The mean R2 score over 10 restarts of the training of the GPR is
shown. For the MF model the minimum and maximum values are shown, differently from the HF
and LF models, since the perturbations are not sensible. The markers associated with the MF and
HF models represent the R2 scores on the test set of the best HF and MF models with respect to an
independent validation set of 25 samples.

High-fidelity model choice for Jetta-12

In principle, any model of the same phenomenon originating from a different physical approximation,
numerical method, or discretization, can be employed to produce a multi-fidelity model. In the case
of the Jetta-12 automotive test case, computations can be carried out with the more accurate DDES
runs, as in the Jetta-6 test case. Then, we have 3 models at our disposal: the response surfaces built on
the DDES outputs, RANS outputs, or AS predictions.

We train the DDES-AS and DDES-RANS two-fidelity models as described in Section 3.2, and
consider also the DES and AS single fidelity models. We compute 75 DDES training input-output
pairs, and 50 DDES test input-output pairs, both sampled with LHS. Since the DDES simulations
represent the highest fidelity, the DDES test samples will be used to evaluate the R2 scores of all
the other single and multi-fidelity models considered. All the 300 RANS training data available
from the previous test case will be employed for the DDES-RANS model, and 100 additional LHS
sampled input-output pairs obtained from the AS response surface will be used to train the DDES-AS
two-fidelity model.

The R2 errors on the test set are reported in Figure 3.11. Also in this case we use cross-validation
with leave-one-out and leave-two-out strategy to assess the robustness of the results with respect to
the test set: we show the mean, minimum, maximum, and standard deviation (std) with respect to
the sets of 50 =

(50
1

)
and 1225 =

(50
2

)
cross-validation batches. When the two models are integrated

into the DDES-AS MF model, the accuracy sensibly rises as observed previously. Only for the MF
model, we extracted 10 validation samples from the 75 training dataset, so we trained it with exactly
65 samples and selected the best model looking at the R2 score of the validation set. The effectiveness
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of the validation procedure is shown in Figure 3.12. Also in this case, we constrained the Gaussian
noise levels of the MF model to belong to the interval [0.01,0.1].
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mean
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DDES-AS DDES-RANS DDES AS

Leave 2 out

Fig. 3.11 Cross-validation (CV) with leave-one-out (Left) and leave-two-out strategy (Right) on the
test set. The labels Lowest R2 and Highest R2 stand for the R2 score of the batch associated with the
lowest and highest R2 score, respectively. The mean and standard deviation shown (std) are computed
with respect to the sets of 50 =

(50
1

)
and 1225 =

(50
2

)
cross-validation batches, respectively.
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Fig. 3.12 Validation process of the DDES-AS multi-fidelity model over 20 outer training restarts
changing every time the additional 100 additional low-fidelity samples. The selected multi-fidelity
model corresponds to abscissa 7.

The accuracy is comparable to the DDES-RANS MF model, implying that the AS response
surface can indeed be used as a low-fidelity purely data-driven model in the process of design of
a multi-fidelity model, along with more standard models based on different physical or numerical
approximations of the phenomenon under study. It must be said that the RANS outputs are poorly
correlated with respect to the DDES as can be seen from Figure 3.14: in fact the converged GPR built
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Fig. 3.13 Comparison of the correlations between the predictions of the DDES model with the test
DDES outputs and the correlations between the DDES-AS MF model with the test DDES outputs.
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Fig. 3.14 Comparison of the correlations between the predictions of the DDES model with the test
DDES outputs, the correlations between the RANS model with the test DDES outputs, and the
correlations between the DDES-RANS model with the test DDES outputs.

upon the RANS training dataset have a mean R2 score below 0 on the DDES test set. Nonetheless, the
multi-fidelity model DDES-RANS achieves an accuracy higher than the single-fidelity DDES model.

3.6 Conclusions and future perspectives

The approximation of high-dimensional scalar quantities of interest is a challenging problem in the
context of data scarcity, which is typical in engineering applications. We addressed this problem by
proposing a nonlinear multi-fidelity method that does not necessitate the simulation of simplified
models, but instead constructs a low-fidelity surrogate introducing a low-intrinsic dimensionality
bias through active subspaces or nonlinear level-set learning methods. Our approach is data-efficient
since it extracts new information from the high-fidelity simulations. We construct different Gaussian
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processes using the autoregressive scheme called NARGP. The proposed multi-fidelity approach
results in better approximation accuracy over the entire parameter space as demonstrated with two
benchmark problems and an automotive application.

NARGP-AS was able to achieve better performance with respect to the single-fidelity GP over the
high-fidelity data, resulting in a relative gain on the R2 score around 3–5% for the piston model, and
around 3–4% for the Ebola model, depending on the number samples used. NARGP-NLL was used
for the Jetta-6 test case, reaching an accuracy gain around 2% with respect to the low-fidelity model,
and around 4% with respect to the high-fidelity model. We also presented a comparison switching the
two fidelities. Finally, for the Jetta-12 test case we obtained a relative gain on the R2 score around 3%.

Future research lines should investigate the use of different active subspaces-based methods,
such as kernel AS [221], or local AS [220], which exploit kernel-based and localization techniques,
respectively. This multi-fidelity framework has also the potential to be integrated with other reduced
order modelling techniques [227, 54, 228] to further increase the accuracy in the resolution of
parametric problems, especially for high-dimensional surrogate-based optimization [252].

Mandatory for real applications is a model management strategy providing theoretical guarantees
and establishing accuracy and/or convergence of outer-loop applications. Some attempts towards
multi-source Bayesian optimization/Experimental design are being studied. Moreover increasing the
number of fidelities in the multi-fidelity model is a possible direction of investigation, especially when
the phenomenon of interest allows many cheap low-fidelity approximations.



Chapter 4

Constrained Generative Models

Real-world applications of computational fluid dynamics often involve the evaluation of quantities
of interest for several distinct geometries that define the computational domain or are embedded
inside it. For example, design optimization studies require the realization of response surfaces from
the parameters that determine the geometrical deformations to relevant outputs to be optimized. In
this context, a crucial aspect to be addressed is the limited resources at disposal to computationally
generate different geometries or to physically obtain them from direct measurements. This is the
case for patient-specific biomedical applications for example. When additional linear geometrical
constraints need to be imposed, the computational costs increase substantially. Such constraints
include total volume conservation, barycenter location and fixed moments of inertia. It is developed
a new paradigm that employs generative models from machine learning to efficiently sample new
geometries with linear and multilinear constraints. A consequence of our approach is the reduction of
the parameter space from the original geometrical parametrization to a low-dimensional latent space
of the generative models. Crucial is the assessment of the quality of the distribution of constrained
geometries obtained with respect to physical and geometrical quantities of interest. Non-intrusive
model order reduction is enhanced since smaller parametric spaces are considered. The methodology
is tested on two academic test cases: a mixed Poisson problem on the 3d Stanford bunny with
fixed barycenter deformations and the turbulent Reynolds Averaged Navier-Stokes equations on the
Duisburg test case with fixed volume deformations of the naval hull.
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4.1 Literature review

In the last years, there has been an increasing interest in using Deep Neural Networks to approximate
distributions of 3D objects [246, 263, 52, 243, 266] via generative models. In different contexts,
new methods that define deformation maps of 3d objects with the preservation of some geometrical
properties, like the volume [129, 262, 4, 114, 83], are studied. The possibility to enforce geometrical
constraints on the domains of computational fluid dynamics simulations is of great interest, especially
for industrial and real-world applications. For example, in naval engineering, the fast generation of
geometries of naval ship’s hulls such that the volume of the submerged part is preserved is fundamental
for ydrodynamic stability. On the other hand, biomedical applications that involve patient-specific
numerical models often struggle to obtain new valid geometries that also preserve some geometrical
properties of interest since the experimental data are scarce.

We try to close this gap by implementing constrained generative models (cGMs) that are able to
reproduce distributions of constrained free from deformations (cFFD) [230]. The main advantage
of our novel methodology is that the computational costs are substantially reduced in the predictive
phase with respect to classical numerical methods that define volume-preserving maps for example.
Another great advantage is the dimension reduction of the space of parameters from the original space
of deformations to the latent space of generative models.

Constrain preserving deformations One of the first works that introduce volume-preserving
deformations in computer graphics is Hirota et al. [129] who developed a variation of Free Form
Deformation that conserves the volume of the original domain exploiting an augmented Lagrangian
formulation. This argument has been developed further by Hahmann et al.[114], that take a restriction
on the possible deformations and obtain an explicit solution using a sequence of three quadratic
programming problems. Von funck [262] et al. (2006) propose a method for creating deformations
using path line integration of the mesh vertices over divergence-free vector fields, thus preserving the
volume. Eisemberg et al. [83] extend this method for shape interpolation, using the eigenvectors of
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the Von Neumann-Laplace equation; the interpolation is done using the Karhunen-Loéve expansion.
Cerverò et al. [4] obtain a volume-preserving method using a cage-based deformation scheme with
generalized barycenter coordinates. They also propose a measure of the local stress of the deformed
volume.

Generative models for 3D meshes In the last years, there has been an increasing number of new
generative models’ architectures for 3D mesh deformation. Qtan et al.[243] develop a Variational
Autoencoder in which the input data is encoded into a rotation invariant mesh difference represen-
tation, which is based on the concept of deformation gradient and it is rotation invariant. They also
propose an extended model in which the prior distribution can be altered. Ranjan et al.[213] develop a
Convolutional Mesh Autoencoder (CoMA) which is based on Chebyscev Spectral Convolution and
on a new sampling method which is based on the hierarchical mesh representation. Rana Hanocka et
al. [120] introduce some new original convolutional and pooling layers for mesh data points based on
their intrinsic geodesic connections. Yuan et al. [279] extend the previous works, by implementing a
variational autoencoder that works for meshes with the same connectivity but supported on different
geometries. Hahner et al. [115] develop an autoencoder model for semiregular meshes with different
sizes, which have a locally regular connectivity and hierarchical meshing. They are also able to apply
the same autoencoder to different datasets. Cheng et al.[52] develop a new mesh convolutional GAN
model based on [27].

The work is organized as follows. In section 4.2, we describe the classical free form deformation
method along with its variant to impose linear and multilinear constraints in subsection 4.2.2. In
section 4.3, the generative models we are going to use are presented. In subsection 4.3.2, our novel
approach to enforce linear and multilinear constraints on generative models is introduced. Since we
also show how model order reduction can be performed efficiently in this context, a brief overview of
the non-intrusive proper orthogonal decomposition with interpolation method (PODI) is described in
section 4.4 along with radial basis functions interpolation to deform the computational meshes. We
test the new methodology on two academic benchmarks in section 4.5: a mixed Poisson problem
for the 3d Stanford bunny [257] SB with fixed barycenter deformations in section 4.5.1 and the
incompressible Reynolds’ Averaged Navier-Stokes equations with volume-preserving deformations
of the Duisburg’s test case [268] HB naval bulb in section 4.5.2.

4.2 Constrained Free Form Deformation

Free Form Deformation (FFD) was introduced in [230]. It is successfully employed in optimal
shape design [249] as a technique to geometrically parametrize the domain through a basis of
Bernstein polynomials and a set of bounding control points. When applied to deform computational
meshes, some challenges related to FFD, include the preservation of the regularity of the mesh for
relatively large deformations, the possibly high dimensional parameter space employed and the loss
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of conservation of geometrical or physical quantities of interest such as the volume. In this work, we
address the last two points.

4.2.1 Free Form Deformation

We consider the FFD of 3d shapes in R3. Let D = [0,1]× [0,1]× [0,1] ⊂ R3 be the bounding box
inside which the deformation is performed and P = {Pi jk}m,n,o

i, j,k=1 = {
[

i
m ,

j
n ,

k
o

]
}m,n,o

i, j,k=1 the lattice of
control points with m,n,o > 0.

The bases employed for the interpolation are the trivariate Bernstein polynomials {Bλ µν

i jk }
λ µν

i, j,k=0 ⊂
Pααα(D) of polynomial degree ααα =(λ ,µ,ν)∈N3 and support D⊂R3 defined from the one-dimensional
basis {bκ

s }κ
s=0 ⊂ Pκ([0,1]):

bκ
s (x) =

(
κ

s

)
xs(1− x)κ−s, {bκ

s }κ
s=0 ⊂ Pκ([0,1]), (4.1)

Bλ µν

i jk (u,v,w) = bλ
i (u)b

µ

j (v)b
ν
k (w), {Bλ µν

i jk }n
ν=0 ⊂ Pααα(D). (4.2)

Other bases such as B-splines can be employed [114].
Given the set of displacements of the control points δP = {δPi jk}m,n,o

i, j,k=1, the deformation map
TP : D⊂ R3→ R3 is defined as follows:

TQ(u,v,w) = (u,v,w)+
m,n,o

∑
i, j,k=0

bm
i (u)b

n
j(v)b

o
k(w)δPi jk, ∀(u,v,w) ∈ D⊂ R3 (4.3)

mapping the domain D= [0,1]× [0,1]× [0,1]⊂R3 onto the bounding box of control points TP(D)=K.
The displacement field defined through the displacements of the control points δP is interpolated
inside D⊂ R3 by the second term of Equation (4.3).

To apply the FFD deformation, represented by the map TP, to arbitrary 3d meshes, point clouds
(CAD or STL files) or general subdomains Ω ⊂ R3, an affine map ϕ : R3 → R3 is evaluated to
map the subdomain D ⊂ R3 into a parallelepiped K̃ ⊂ R3 that intersects such 3d meshes, point
clouds or general subdomains, K̃∩Ω ̸=∅. In this way, we define the FFD map as the composition
T̃P = ϕ ◦TP ◦ϕ−1 : K̃∩D⊂ R3→ R3:

K̃∩Ω⊂ R3 ϕ(K)⊂ R3

D⊂ R3 T (D) = K ⊂ R3

ϕ−1

TP

ϕ

notice that, generally, the deformation can affect the boundaries ∂
(
K̃∩Ω

)
of the intersection K̃∩Ω⊂

R3 and not only its interior. We will thus employ it to deform 3d objects that will be embedded
afterward into a computational mesh, see section 4.4. The control points P ⊂ D ⊂ R3 are mapped
by ϕ into P̃ = {ϕ(Pi jk)}m,n,o

i, j,k=1 ⊂ K̃ ∩Ω ⊂ R3 and deformed from P̃ ⊂ Ω to P̃+ δ P̃, that is ∀i ∈
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{0, . . . ,m}, j ∈ {0, . . . ,n},k ∈ {0, . . . ,o}:

T̃P(P̃i jk) = P̃i jk +δ P̃i jk, δ P̃i jk =
m,n,o

∑
i, j,k=0

bm
i (u)b

n
j(v)b

o
k(w)Aϕ(δPi jk), (4.4)

where Aϕ ∈ R3× 3 is the matrix of the affine transformation ϕ(x) = Aϕx+ bϕ for all x ∈ R3. In
practice, we only need to fix the control points P̃ and their deformations δ P̃. For this basic form of
FFD we use the open-source Python package [251].

Fixed the control points P̃ and the displacements δ P̃, the map T̃P : K̃∩D⊂ R3→ R3 can also be
defined similarly to what has been done previously. We make explicit the dependency on the set of
displacements δP with the notation

T̃P(Q,{δPi jk}m,n,o
i jk=0)=Q+

m,n,o

∑
i, j,k=0

bm
i (Qx)bn

j(Qy)bo
k(Qz)Aϕ(δPi jk), T̃P(Q,δP) :R3×R(m·n·o)×3→R3

(4.5)
with Q = (Qx,Qy,Qz) ∈ R3.

4.2.2 Free Form Deformation with multilinear constraints

One of the main objectives of this work is to approximate distributions of point clouds along with
some of their geometrical properties such as the volume or the barycenter if they are kept constant. If
we want to employ generative models for this purpose, in section 4.3, we must first collect a dataset
of geometries that satisfy the constraint we want to impose.

Regarding volume-preserving deformations, many strategies involve the definition of divergence-
free vector fields [262, 83]. Other volume-preserving methods are directly applied to FFD, like
[129] with an augmented Lagrangian nonlinear multi-level formulation and [114] with a least-squares
formulation. We will follow the last work for the simple closed-form enforcement of linear and
multilinear constraints. Multiple linear constraints can be enforced at the same time as well with this
method. In general, for the whole methodology presented in section 4.3 to work, only the constraint
itself needs to be linear, how the training dataset representing the distribution to be approximated with
GM is obtained is not relevant. In section 4.3 are reported other linear and multilinear constraints that
could be imposed apart from the volume and the barycenter that are effectively conserved with our
procedure as shown in the results section 4.5.

Let us suppose we are given a constraint that is linear with respect to the displacements δP =

{δPi jk}m,n,o
i, j,k=1. Chosen a subset of N points Q ∈ RN×3 of the undeformed subdomain Q = {Qi}N

i=0 ⊂
Ω⊂ R3 Ω⊂ R3 with Qi ∈ R3, ∀i ∈ {0, . . . ,N}, we can write the linear constraint as

c = Acvec(T̃P(Q,δP)) (4.6a)

where the displacements δP of the control points P have been made explicit through the notation of
equation (4.5) and vec(T̃P) ∈ R3N is the rowwise vectorization of the matrix T̃P ∈ RN×3. We have
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introduced the vector c ∈ Rn and the matrix Ac ∈ Rn×3N representing the linear constraint. We can
expand the previous equation in

c = Acvec(T̃P(Q,δP)) = Acvec(Q)+Acvec(δQ), δQl =
m,n,o

∑
i, j,k=0

bm
i (Q

l
x)b

n
j(Q

l
y)b

o
k(Q

l
z)Aϕ(δPi jk)

(4.6b)
where {δQl}N

l=1 = δQ =∈ RN×3 with δQl ∈ R3 and Ql = (Ql
x,Q

l
y,Q

l
z) ∈ R3, for all l ∈ {1, . . . .N}.

The linearity with respect to δP = {δPi jk}m,n,o
i, j,k=0 is thus made explicit.

A perturbation of the displacement of the control points δdcFFD = {δdi jk}m,n,o
i, j,k=1 ⊂ R3 is found

solving the least-squares problem

δdcFFD = argmin
δd={δdi jk}m,n,o

i, j,k=1⊂R3
∥δd∥2 such that c = Acvec(T̃P(Q,δP+δd)), (4.7)

that can be effectively solved in closed form.
If the constraints are linear in each component (x, y, z) they can be imposed component-wise

finding first the x-components δdcFFD,x of the perturbations δdcFFD = {δdi jk}m,n,o
i, j,k=1 ⊂ R3 and subse-

quently the y- and z-components, δdcFFD,y and δdcFFD,z, respectively.
This strategy is successfully applied for constraints on the volumes of triangulations that define

3d objects in [114]. Other linear constraints that can be imposed are the position of the barycenter
(linear) and the surface area (bi-linear).

Sometimes additional constraints on the position of the control points must be enforced: for
example for the Duisburg test case HB of section 4.5.2 we deform only the region of the bulb of a whole
ship’s hull. This region is extracted from the hull’s STL file and two straight cuts are thus introduced.
To keep the displacements null close to these cuts additional constraints must be enforced on the cFFD
deformations. We do so with the employment of a weight matrix M = {ωi jk}m,n,o

i, j,k=1 ⊂ R∩{x ≥ 0}
that multiplies δd:

δdcFFD = argmin
δd={δdi jk}m,n,o

i, j,k=1⊂R3
∥Mδd∥2 such that c = Acvec(T̃P(Q,δP+δd)), (4.8)

with Mδd = {ωi jkδdi jk}m,n,o
i, j,k=1.

4.3 Constrained Generative Models

In the following sections, we introduce the architectures we employ for generative modelling (GM)
and the novel constrained generative models (cGMs).

4.3.1 Generative modelling

Generative models (GMs) [106] have been successfully applied for computer graphics’ tasks such
as 3d objects generation. Their employment in surrogate modelling is especially beneficial when



4.3 Constrained Generative Models 65

the computational costs needed to create a new geometry from real observations are reduced. One
disadvantage is that depending on the complexity of the distribution to be approximated, their training
requires a large amount of data. In this work, we focus on studying the possible employment of GMs
for the reduction of the space of the parameters that specify geometrical deformations. In our case,
the parameters are the displacements of cFFD. Another objective is to reduce the computational costs
needed to generate new linear constrained geometries with cFFD.

We denote with pX(x) the probability density of the distribution of 3d objects and with X :
(A,A,P)→ RM the random variable representing it, with M the number of points or degrees of
freedom of the 3d mesh. The triple (A,A,P) corresponds to the space of events, sigma algebra and
probability measure of our setting. The variable x may represent 3d point clouds, 3d meshes or general
subdomains of R3. We are going to focus on generative models that approximate pX(x) with pθ (x)
where θ are parameters to be found and that can be factorized through latent variables z such that

pθ (x) =
ˆ

Z
pθ (x|z)pθ (z)dz (4.9)

where z is typically low dimensional with respect to x, with dimension R≪M. These models are
called latent variable models[253]. Given a set of training samples of the distribution associated
to X obtained with cFFD (section 4.2.2), the objective is to sample new 3d objects with quality
comparable to the one generated using cFFD. It is crucial that the new samples satisfy exactly the
linear or multilinear constraints imposed with cFFD.

As the subject of generative models is well-known in the literature we summarize briefly the
architectures we are going to employ.

Simple Autoencoder As a toy model for pure benchmarking we first implement a very simple
Autoencoder [1], composed of two parts: an Encoder Encψ : RM → RR which encodes the mesh in
the latent space, and a Decoder Decθ : RR→RM that takes a point of the latent space and returns it to
the data space. Autoencoders were originally created for learning the latent representations of the
data and have many applications [1], like denoising. Some recent research has empirically shown
[102, 67] that they can indeed be used as generative models. They are trained on the L2 loss

Lθ ,ψ(x) = ||x−Decθ (Encψ(x))||2, (4.10)

the associated generative model is
pθ (x|z) = Decθ (z) (4.11)

where z is sampled from a multivariate normal distribution.

Beta Variational Autoencoder A Variational Autoencoder [148] is a probabilistic version of the
autoencoder. It is based on the concept of Evidence Variational Lower Bound (ELBO) that can be
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employed in place of the log-likelihood pθ (x) when it is not directly computable. Given a variational
distribution qψ(z|x) the ELBO is

ELBOψ,θ (x) = Eqφ (z|x)

[
log
(

pθ (x,z)
qφ (z | x)

)]
= Eqφ (z|x) [log(pθ (x | z))]−KL

(
qφ (z | x)∥pθ (z)

)
(4.12)

it follows that
ELBOψ,θ (x)≤ log pθ (x). (4.13)

Variational autoencoders model qψ(z|x) and pθ (x|z) as two normal distributions:

qψ(z|x) =N (aψ(x),bψ(x)) (4.14)

where aψ ,bψ : RM → RR are encoders and

pθ (x|z) =N (Decθ (z),σ), (4.15)

Notice that, the KL term in the ELBO is a regularizing term on the variational distribution. Depending
on the strength of pθ (x|z) the Variational autoencoders can suffer from two problems: if it is dominant
then there is no regularizing effect and so the samples from pθ (z) will have poor quality. Other-
wise, the KL will go to 0, so aψ ,bψ will degenerate to constants and the model will start behaving
autoregressively. To solve these two problems, an α term is added to the ELBO:

Lθ ,φ = Eqφ (z|x) [log(pθ (x | z))]−αKL
(
qφ (z | x)∥pθ (z)

)
, (4.16)

this technique is also used in [243].

Adversarial Autoencoder Another class of Generative Models are Generative Adversarial Networks
which have the same structure of an autoencoder

pθ (x|z) = Decθ (z) (4.17)

but they are trained with the help of a discriminator Dλ in the following min-max game:

min
θ

max
λ

V (θ ,λ ) = EpX (x) [log(Dλ (x))]+Epθ (z) [log(1−Dλ (Decθ (z)))] . (4.18)

In this context, the decoder is also called generator. The discriminator is used to distinguish between
the data and the generator samples while the generator wants to fool it. A problem of generative
adversarial networks is that the min-max game can bring instability, for the details of this we refer to
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[11]. A solution is to combine them with variational autoencoders to get the following loss:

max
θ ,φ

min
λ

Lθ ,φ ,λ = Eqφ (z,x) [log(pθ (x | z))]−Epθ (z) [log(1−Dλ (z))]+Eqφ (z) [log(Dλ (z))] , (4.19)

which is the ELBO with the GAN loss instead of the KL term. This model is called Adversarial
Autoencoder [175]. The associated generative model is

pθ (x|z) =N (Decθ (z),σ), with z∼N (0, IR) (4.20)

Boundary Equilibrium GAN Another solution to the GAN problems is the Boundary Equilibrium
GAN [27]. In this particular model, the discriminator is an autoencoder

Dλ (x) = Decλ (Encλ (x)) (4.21)

and the objective is to learn the autoencoder loss function

fλ = ||x−Dλ (x)||2 (4.22)

while maintaining a balance between the data loss and the generator loss to prevent instabilities caused
by the min-max training. Let Gθ the generator, this is achieved in three steps using control theory:

• Solve minλ EpX (x)[ fλ (x)]− ktEpX (x)[ fλ (Gθ (Encλ (x)))] over λ .

• Solve maxθ EpZ(z)[ fλ (Gθ (z)].

• Update kt = kt−1 +a(γEpX (x)[ fλ (x)]−EpZ(z)[ fλ (Gθ (z)]).

The associated generative model is

pθ (x|z) = Gθ (z), with z∼N (0, IR). (4.23)

4.3.2 Generative modelling with multilinear constraints

In this section, we introduce our new framework to impose linear or multilinear constraints on
GMs. The idea is to rely on the generalization properties of NNs. The cGMs layers’ objective is to
approximate the training distributions while correcting the unwanted deformations that do not satisfy
exactly the geometrical constraints. Multi-linear constraints are enforced subsequently in the same
way as linear ones. We will show that the volume and the barycenter position of 3d objects can be
preserved in our numerical experiments section 4.5.

The best architectures that adapt to datasets structured on meshes are graph neural networks [34].
Unfortunately, compared to convolutional neural networks for data structured on Cartesian grids, they
are quite heavy to train for large problems supported on computational meshes. Thus, we leave to
further studies the implementation of our methodology with GNNs and we focus on generative models
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that employ principal component analysis (PCA) to perform dimension reduction as a preprocessing
step. After having collected a training and test dataset of 3d point clouds,

Xtrain =

 | | | |
x1 x2 . . . xnM×train

| | | |


T

∈ Rntrain×M, Xtest =

 | | | |
x1 x2 . . . xnM×test

| | | |


T

∈ Rntest×M,

(4.24)
PCA is applied to obtain a set of r modes of variation UPCA ∈ RM×r with M≫ r > 0, such that fixed
a tolerance 1≫ ε > 0 for the reconstruction error in Frobenious norm ∥·∥F , we have:

∥(IM−UPCAUT
PCA)Xtrain∥F ≤ ε. (4.25)

The notation M for the dimension of a single point cloud includes the 3 (x,y,z) components of
each point stacked on each other on the same vector. Without considering the enforcement of
the geometrical constraints, the GMs could now be trained to approximate the lower dimensional
distributions UT

PCAXtrain ∈ Rr×ntrain with a great saving in terms of computational cost since M≫ r.
However, this reasoning may not work with more complex distributions that cannot be accurately
approximated as combinations of PCA modes. A direct consequence would be that the generalization
error on the test dataset would perform significantly worse than the training error. Fortunately, this is
not the case of our numerical studies: r = 140 and r = 30 PCA modes are sufficient for the Stanford’s
bunny and DTCHull test cases, respectively.

We denote with Y =UPCAX the random variable associated with the dataset at hand projected on
the PCA’s modes. With y ∈ Rr we represent its realizations. To reconstruct the point clouds on the
full space, a matrix multiplication UPCAy = x̃ ∈ RM is needed. We denote with X̃ : (A,A,P)→ RM

the random variable associated with the GMs, that is used to approximate X without the enforcement
of geometrical constraints.

Our methodology to impose linear or multilinear constraints on GMs, affect both the training and
predictive stages. It consists in the addition of a final constraint enforcing layer lenforcing : RM → RM

that acts on the reconstructed outputs x̃ ∈ RM . The final layer lenforcing perturbs the outputs x̃+δ x̃ =

˜̃x ∈ RM such that the geometrical constraints with fixed values represented by the vector c ∈ Rnc are
exactly satisfied through the solution of the least-squares problem

δ x̃ = argmin
δx∈RM

∥δx∥2, s.t. Ac(x̃+δx) = c, (4.26)

where Ac ∈ Rnc×M is the matrix representing the linear geometrical constraints and δ x̃ ∈ RM are
the point clouds perturbations. Multi-linear constraints, like the volume, are imposed subsequently
component after component. The final outputs ˜̃x ∈ RM that satisfy exactly the geometrical constraints
are then forwarded to the loss function during the training or used directly in the predictive phase.
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It is crucial to remark that the linear constraints are imposed exactly on the outputs of the
GMs, after solving a least-squares problem similar to equation 4.7. The main difference is that
the perturbations affect directly the cloud of points coordinates and not the displacements of the
control points as in the constrained FFD presented in section 4.2.2. Figure 4.1 shows a sketch of the
methodology, including the application of PCA and of the constraints enforcing layer, for the simple
autoencoder GM. The procedure is easily adapted for the other GMs of the previous section 4.3.1.

Fig. 4.1 Training of the constrained autoencoder generative model composed by a parametrized
encoder Encψ , a decoder Decφ , a reconstruction layer that employs PCA modes UPCA ∈ RM×r and a
final multilinear constraint enforcing layer lenforcing. The generalization to other generative models of
is straight-forward.

Despite this quite arbitrary correction x̃+δ x̃ = ˜̃x ∈ RM during the training of the GMs, the NNs’
layers manage to correct the outputs y ∈ Rr to balance the PCA reconstruction and the perturbation
δ x̃ ∈ RM. The simplicity of this strategy together with the generalization capabilities of GMs make
our methodology effective and relatively easy to implement. We remark that the methodology is not
strictly linked with FFD and cFFD: arbitrary techniques, like [262, 83], can be employed to generate
the training and test datasets as long as the geometrical constraints are linear or multilinear.

Our method cannot be applied to nonlinear constraints. A possible way to implement them is
to use substitute the linear constraints enforcing layer with nonlinear optimization layers [5]. The
disadvantage is the higher computational cost and the fact that the nonlinear constraints would not be
satisfied exactly.
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4.4 Surrogate modelling

In our numerical experiments in section 4.5, we validate the distributions of the trained cGMs with
some geometrical and physical metrics of interest. To evaluate these metrics we need to compute some
physical fields with numerical simulations on computational domains affected by the newly sampled
3d objects from the cGMs. A Poisson problem is considered in section 4.5.1 and the Navier-Stokes
equations in section 4.5.2.

The first test case in section 4.5.1 considers as domain the deformed Stanford bunny [257] with
fixed barycenter location. The second test case in section 4.5.2 considers as domain a parallelepiped
with two separated phases (water and air) in which is embedded a ship hull whose bulb is deformed
with cGMs while keeping its volume fixed.

We show how reduced order modelling [126, 228] can benefit from the employment of cGMs.
The main advantage is dimension reduction of the parameter space. In fact, the space of parameters
that define the geometrical deformations changes from a possibly high-dimensional space associated
with the cFFD method to the usually smaller latent space of the cGMs. The consequence of this
dimension reduction is the increased efficiency of non-intrusive ROMs based on interpolation methods
from the space of parameters to the coefficients of proper orthogonal decomposition (POD) modes.

The outputs of cGMs are 3d point clouds organized into STL files. To obtain a mesh from each
STL we use interpolation with radial basis functions (RBF) [70] of a reference computational mesh:
the 3d point clouds generated by the cGM are used to define an interpolation map that will deform
the reference computational mesh. We proceed in this way because it is simpler to design ROMs on
computational meshes with the same number of degrees of freedom. In fact, with RBF interpolation,
each mesh generated from a STL file has the same number of cells of the reference mesh. A possible
solution is to evaluate projection and extrapolation maps from a fine mesh common to all the others
associated with different sampled 3d objects with possibly different numbers of dofs. Since MOR
is not our main focus, we employ RBF interpolation, knowing that in this way, the geometrical
constraints are not imposed exactly anymore but subject to the level of discretization of the mesh and
to the accuracy of the RBF interpolation.

In this section, we briefly summarize the employment of RBF interpolation and present the non-
intrusive ROMs we use in the results’ section 4.5: proper orthogonal decomposition with interpolation
(PODI) performed by Gaussian process regression (GPR) [214], radial basis functions (RBF) or
feed-forward neural networks (NNs) [106]. The active subspaces method (AS) [60] is also introduced
as reference dimension reduction method for the space of parameters and coupled with PODI model
order reduction [248].
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sampling
from cGMs

mesh generation:
RBF interpolation

MOR: snapshots
collection

PODI: design of
response surfaces

Fig. 4.2 Pipeline for non-intrusive reduced order modelling: from 3d object generation with con-
strained generative models (cGMs) to mesh deformation with radial basis functions (RBF) to surrogate
modelling with proper orthogonal decomposition with interpolation (PODI).

4.4.1 Mesh interpolation with radial basis functions

After having obtained a new 3d object as STL file from the trained cGMs represented by the 3d points
cloud x1 = {x1

i }M̃
i=1 ∈ R3, we define a RBF interpolation map s : R3→ R3,

s(x) = q(x)+
Nb

∑
i=1

βiξ (∥x−xbi∥), ∀x ∈ R3, (4.27)

where {xbi}Nb
i=1 ⊂R3 are the RBF control points, Nb is the number of RBF control points, ξ : R3→R3

is a radial basis function and q ∈ [P1(R3)]3 a vector-valued polynomial of degree 1 with coefficients
δ = {δ 1

0 ,δ
1
1 ,δ

2
0 ,δ

2
1 ,δ

3
0 ,δ

3
1 } to be defined. The coefficients of the RBF interpolation map s are

β = {βi}Nb
i=1 ⊂ R3. The parameters of the RBF interpolation map to be defined are β and δ . Given

a reference mesh, the STL file from which it was obtained is employed as reference STL, with
associated 3d point cloud x2 = {x2

i }M̃
i=1 ∈ R3. Since the newly sampled STL files and the reference

one have the same number of points M̃, the following interpolation problem gives β and δ :

s(x2
j) = q(x1

j)+
Nb

∑
i=1

βiξ (∥x1
j −xbi∥), ∀ j ∈ {1, . . . ,M̃} (4.28a)

0 =
Nb

∑
i=1

βiq(xbi). (4.28b)

In practice, to each point cloud x1 and x2 is usually added a set of points to keep fixed such that
the reference mesh is only deformed in a limited region of the computational domain. This is the
reason why we employed the notation M̃ > M to differentiate between the dimension M of the 3d
point clouds that are the output of the cGMs and the dimension M̃ of the RBF control points that
are enriched with additional points to be kept fixed. An example of reference (in red) and deformed
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M = 5000 (in blue) control points from the constrained autoencoder generative model is shown in
Figure 4.3.

We remark that due to the RBF interpolation, the multilinear constraints are not imposed exactly
anymore, but only approximately. To avoid this problem, the same discretization of the 3d object
embedded on the computational mesh must be used converted as point cloud also for the training of
the cGMs. This is effectively done for the Stanford’s bunny test case, but not for the DTCHull’s one.
In fact, we decided to reduce the resolution of the hull for the numerical simulations in order to lower
the computational costs for these preliminary studies.

Fig. 4.3 Pipeline for the deformation of the reference computational mesh for the Duisburg test case
HB. The numerical results are reported in section 4.5.2. In red the 3d point cloud of the reference
STL, in blue the 3d point cloud of a deformed bulb generated by a constrained autoencoder used as
cGM on the left. From these two points cloud x2 and x1 a RBF interpolation map is defined from
equation (4.28) and used to deform the reference mesh on the right. The bulb location with respect to
the whole computational domain is shown.

4.4.2 Proper orthogonal decomposition with interpolation

After having obtained a deformed mesh with RBF interpolation, as for the DTCHull test case, or
directly without RBF interpolation, as for the Stanford’s bunny test case, numerical simulations can
be performed. For each one of the newly sampled geometries from the cGMs, some physical fields
of interest are collected and organized in a snapshots matrix S ∈ Rm×nROM,train , where m is the number
of degrees of freedom while the rest nROM,test = ntest −nROM,train is used for testing the accuracy of
the reduced order models (ROMs). We remind that ntest is the number of newly sampled geometries
from the cGMs, divided in nROM,train training and nROM,test test datasets to validate our model order
reduction procedure.

We employ the finite volumes method (FVM) [260] implemented in the open-source software
library OpenFoam [264], for both test cases in section 4.5. For the Stanford’s bunny we set a simple
Poisson problem, while for the DTCHull we start from the DTCHull multiphase tutorial [268] for the
Reynolds Averaged Navier-Stokes equations (RANS) with associated solver interFoam.

Proper orthogonal decomposition (POD), already introduced as PCA previously, is employed
to compute a set of reduced basis UROM ∈ Rm×rROM . For our studies, we will employ only non-
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intrusive ROMs: new values of the physical fields are obtained with interpolations or regressions
of the expansion with respect to the POD modes UROM, this technique is generally called POD
with interpolation (PODI). The input-output dataset of the interpolation or regression are the latent
coordinates of the cGMs {zi}nROM,train

i=1 ∈ RR or the displacements δP of cFFD for the inputs and the
coefficients UT

ROMS ∈ RrROM×nROM,train for the outputs:

{(zl,Sl)}nROM,train
p=1 ⊂ RR×Rm, (inputs-outputs of PODI for the cGMs) (4.29a)

{(δPl,Sl)}nROM,train
p=1 ⊂ Rp×Rm, (inputs-outputs of PODI for the cFFD) (4.29b)

where p is the number of cFFD displacements {δPl}p
l=1 = {{δPl

i, j,k}
m̃,ñ,õ
i, j,k=0}

p
l=1 different from 0,

m̃, ñ, õ count the non-zero displacements, possibly less than the m,n,o control points of the lattice of
FFD. The notation S j ∈ Rm refers to the rows of the snapshots matrix S ∈ Rm×nROM,train .

Once the interpolation or regression maps are defined from the training input-output datasets, the
new nROM,test physical fields associated with the geometries of the test dataset, are efficiently evaluated
through these interpolations or regressions, without the need for full-order numerical simulations.

The method we employ to perform the interpolation is RBF interpolation, while Gaussian process
regression (GPR) and feed-forward neural networks (NNs) are employed to design a regression of the
POD coefficients. These techniques are compared in section 4.5. Also, the Active subspaces method
(AS) will be used to build response surfaces from the latent coordinates for the cGMs or the cFFD
displacements while performing also a further reduction in the space of parameters.

4.4.3 Active subspaces method

We briefly sketch the Active Subspaces method (AS). It will be used as reference dimension reduction
method in the space of parameters and as regression method to perform model order reduction through
the design of response surfaces. We will define response surfaces for the ROMs built on top of both
cFFD and cGMs deformed meshes: we will see that not only the initial parameter space dimension p
associated with the cFFD’s non-zero displacements (see equation (4.29)) can be substantially reduced
for our test cases, but also the latent spaces’ dimensions of the cGMs.

Given a function f : χ ⊂ RR → R from the space of parameters to a scalar output of interest
f : µµµ 7→ f (µµµ), the active subspaces are the leading eigenspaces of the uncentered covariance matrix
of the gradients:

Σ = E[∇µµµ( f ∇µµµ f )T ] =

ˆ
χ

(∇µµµ f )(∇µµµ f )T
ρ dµµµ, (4.30)

where ρ : χ ⊂RR→R is the probability density function of the distribution of the inputs µµµ considered
as a vector-valued random variable in the probability space (χ,A,P). The gradients of f are usually
approximated with regression methods if they cannot be evaluated directly. The uncentered covariance
matrix Σ ∈ RR×R is computed approximately with the simple Monte Carlo method and then the
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eigenvalue decomposition

Σ =WΛW T , W = [W1,W2], Λ = diag(λ1, . . . ,λR), W1 ∈ RR×rAS , W2 ∈ RR×(R−rAS),

(4.31)
highlights the active W1 ∈ RR×rAS and the inactive W2 ∈ RR×(R−rAS) subspaces, corresponding to the
first rAS eigenvalues {λ1, . . . ,λrAS} and last R− rAS eigenvalues {λrAS , . . . ,λR}.

A response surface can be obtained with the approximation

f (µµµ)≈ g(W T
1 µµµ) = g(µµµ111), (4.32)

where g : W T
1 (χ)⊂ RrAS → R is a surrogate model for f from the reduced space of active variables

µµµ1 = W T
1 µµµ , instead of the full parameter space. We will employ Gaussian process regression to

evaluate g.

4.5 Numerical results

We present two numerical studies to validate our novel methodology for constrained generative mod-
elling previously introduced in section 4.3. The test cases we consider are the Stanford Bunny [257]
(SB) and the bulb of the hull of the Duisburg test case [268] (HB). After generating new samples
from the constrained generative models (cGMs), the crucial task of validating the results must be
carried out. In fact, a natural metric that evaluates the quality of the generated distribution of the
cGMs is not available: for each problem at hand we have to decide which criteria, summary statistics,
geometrical and physical properties are most useful to validate the generated distribution. For this
reason, we decide that the SB test case’s generated 3d objects will be employed to solve a Poisson
problem with fixed barycenter position and the HB test cases’ generated bulbs will be embedded on a
larger computational domain to solve the multiphase Navier-Stokes equations with fixed volume of
the hull.

The computational meshes employed and the STL files used for the 3d object generation are
shown in Figure 4.4. The STL files are considered as point clouds and will be the inputs and outputs
of the cGMs: the number of points is constant for each training and generated geometry. The STL
files of test cases SB and HB, have 145821 and 5000 points, respectively. We remark that only the
deformations of the bulb are generated by our cGMs, that is only the 5000 points of the bulb over the
33866 points representing the whole hull are deformed. The computational meshes have sizes 114354
and 1335256 for the SB and HB test cases, respectively.

We check the Jensen-Shannon Distance (JSD) [182] between the two quantity of interests X and
Y

JSD(X ,Y ) =

√
1
2

KL(pX ||0.5 · pX +0.5 · pY )+0.5 ·KL(pY ||0.5 · pX +0.5 · pY ) (4.33)
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Fig. 4.4 Top left: STL of SB with 145821 points. Top right: STL of HB with 5000 points. Bottom
left: computational mesh of SB with M=114354 cells and dofs. Bottom right: computational mesh
of HB with M=1335256 cells: only the boundary of the computational domain that intersects the hull
is shown.

where pX and pY are the p.d.f. of X and Y respective (and are estimated from the samples using kernel
density estimation) and

KL(p||q) =
ˆ
Rn

p(x)log
(

p(x)
q(x)

)
dx (4.34)

We choose JSD because: it is a distance on the probability space, it is bounded between 0 and 1
and it is invariant under affine transformation. These properties permit us to compare the model
performances on different quantities.

For every architecture of each test case, we will also evaluate the sum of the variance (Var) of each
point of the generated 3d point clouds. It will be a useful metric to determine which cGM produces
the richest distribution in terms of variability of the sampled 3d point clouds.

In section 4.5.3 are reported the architectures’ details and training specifics.

4.5.1 Stanford Bunny (SB)

The 3d object we employ is the Stanford bunny [257]. Our objective is to preserve the barycenter
xB ∈Ωbunny ⊂ R3, so we have the following set of constraints:

cx =
1
n

M

∑
i=1

xi, cy =
1
n

M

∑
i=1

yi, cz =
1
n

M

∑
i=1

zi. (4.35)
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The numerical model we are going to use to validate the results of cGMs is a mixed Poisson
problem:

∆u(x) = f (x), x ∈Ωbunny, (4.36a)

u(x) = 0, x ∈ ∂Ωbunny∩{y = 0}= ΓD, (4.36b)

n ·∇u(x) = 0, x ∈ ∂Ωbunny∩{y = 0}c = ΓN , (4.36c)

where the source term f : R3→ R is :

f (x) =

 f (x) = e
1

100−∥x−xB∥22 , ∥x−xB∥2 < 10

0, otherwise
. (4.36d)

The geometrical properties we are going to compare are the moments of inertia with uniform density
equal to 1 (Ixx, Ixy, Ixz, Iyy, Iyz, Izz) and the integral of the heat on the boundary with homogeneous
Neumann conditions for the SB test case:

Ixx =

ˆ
Ωbunny

r2
X(x)dx, Iyy =

ˆ
Ωbunny

r2
Y (x)dx, Izz =

ˆ
Ωbunny

r2
Z(x)dx, (principal moments of inertia)

(4.37a)

Ixy =

ˆ
Ωbunny

rX(x)rY (x)dx, Ixz =

ˆ
Ωbunny

rX(x)rZ(x)dx, Iyz =

ˆ
Ωbunny

rY (x)rZ(x)dx, (moments of inertia)

(4.37b)

Iu =

ˆ
∂ΓN

u(x) dx (integral over the boundary ∂ΓN)

(4.37c)

where rX ,rY ,rZ : Ωbunny → R+ are the distances from the x-, y- and z-axes, respectively. These
quantities are evaluated on the discrete STL point cloud for the moments of inertia Ixx, Iyy, Izz, Ixy, Ixz, Iyz

and on the computational mesh for the integral of the solution on the Neumann boundary Iu.
The number of training and test samples are ntrain = 400 and ntest = 200, respectively. For

model order reduction, the number of training and test components are instead nROM,train = 80 and
nROM,test = 20, respectively. We use rPCA = 30 PCA modes for preprocessing inside the cGMs and
rPOD = 3 modes to perform model order reduction. The parameters’ space dimension of cFFD is
p = 54, while the latent space dimensions of the cGMs is R = 15. Some deformations of the cGMs
introduced are shown in Figure 4.5: the field shown is the solution to the mixed Poisson problem on
different deformed geometries.

The results with respect to the geometrical and physical metrics defined previously are shown
in Table 4.1. Qualitatively the histograms of each architecture are reported in Figure 4.6 for the Izz

moment of inertia and in Figure 4.7 for the Iu integral of the solution of the mixed Poisson problem
on the Neumann boundary ΓN .
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Non-intrusive model order reduction for the solutions of the mixed Poisson problem with GPR-
PODI, RBF-PODI, NN-PODI and AS response surface design with rAS = 1 for the cFFD data is
shown in Figure 4.8. Accurate surrogates models are built even if the dimension of the space of
parameters changes from p = 54 for the cFFD geometries to R = 15 for the cGMs newly generated
geometries. We also apply an additional level of reduction in the space of parameters with response
surface design with AS in Figure 4.9. The inputs in this case are the one-dimensional active variables
rAS = 1 also for the cGMs: the parameters space’s dimension changes from R = 15 to rAS = 1.
For simplicity, we show the AS response surface with dimension rAS = 1, even if from the plot in
Figure 4.22 of the first 20 eigenvalues of the uncentered covariance matrix from equation (4.30), the
spectral gap [60] suggests rAS = 9.

The speedup for the generation of the geometries employing the cGMs instead of cFFD is
around 60. The speedup of PODI non-intrusive model order reduction with respect to the full-order
simulations is around 126000.

Table 4.1 SB. In this table we show the evaluation metrics of the Stanford bunny defined in equa-
tions (4.37): Ixx, Ixy, Ixz, Iyy, Iyz, Izz are the components of the inertia tensor, Iu is the integral of the
solution of the mixed Poisson problem on the Neumann boundary ΓN . The distribution of the compo-
nents of the inertia tensor is obtained from ntest = 200 test samples, while the physical metric Iu is
based on nROM,test = 20 test samples. The BEGAN is overall the best model we managed to train for
this test case. The model with the highest output variance is the BEGAN, even though it does not
reach the total variance of the training dataset from cFFD that is 98.

AE AAE VAE BEGAN
JSD(Ixx) 8.6e-03 7.5e-03 2.1e-02 6.3e-03
JSD(Ixy) 1.6e-02 1.2e-02 2.4e-02 1.2e-02
JSD(Ixz) 2.1e-02 2.1e-02 2.6e-02 2.1e-02
JSD(Iyy) 2.0e-02 1.2e-02 2.7e-02 8e-03
JSD(Iyz) 1.9e-02 1.5e-02 2.3e-02 1.6e-02
JSD(Izz) 3.1e-02 2.2e-02 2.9e-02 1.8e-02
JSD(Iu) 4.0e-01 3.5e-01 2.5e-01 2.6e-01
Var 62 74 58 76

4.5.2 DTCHull bulb (HB)

The Duisburg test case [268] models a two-phase water-air turbulent incompressible flow over a naval
hull. We start from OpenFoam’s [264] tutorial DTCHull related to the interFoam multiphase solver
for the Reynolds Averaged Navier-Stokes equations (RANS) using the volume of fluid modelling.
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Fig. 4.5 SB. Some geometrical deformations of the Stanford bunny are shown: the first row refers
to constrained cFFD of section 4.2.2, the second to the adversarial autoencoder of paragraph 4.3.1,
the third to the simple autoencoder of paragraph 4.3.1, the fourth to the beta variational autoencoder
of paragraph 4.3.1 and the last to the boundary equilibrium generative adversarial networks of
paragraph 4.3.1. All the generative models implement the linear constraints enforcing layer of
section 4.3 to preserve the position of the barycenter.
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Fig. 4.6 SB. In this figure the histograms of the ZZ component of the inertia tensor of the cFFD
and the cGMs are shown. The histogram area intersection is qualitatively more than 50%. For a
quantitative measure see Table 4.1. The histograms are obtained from the ntest = 200 test samples.
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Fig. 4.7 SB. In this figure the histograms of the integral of the solution on the Neumann boundary
ΓN of the cFFD and the cGMs are shown. The histogram area intersection is more than 50%. For a
quantitative measure see Table 4.1. The histograms are obtained from the nROM,test = 20 test samples.
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Fig. 4.8 SB. Here we show the ROM performance over the training and test datasets, using differ-
ent interpolation and regression techniques combined with proper orthogonal decomposition with
interpolation (PODI): Gaussian process regression (GPR), radial basis functions interpolation (RBF)
and feed-forward neural networks (NN). For every method, there is at least a cGM that performs
slightly better than the cFFD in terms of accuracy, while reducing the parameters’ space dimension
from p = 54 to R = 15. The active subspace (AS) dimension chosen is rAS = 1. The training and test
errors are evaluated on nROM,test = 80 and nROM,test = 20 training and test samples.
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Fig. 4.9 SB. In this figure we show the ROM-PODI performance on the training and test datasets
coupled with AS dimension reduction in the space of parameters. It can be seen that the latent
dimension can be reduced further with AS rAS = 1 without compromising too much the accuracy.
The AS response surface is built over the GPR, RBF, NN interpolations/regressions with an additional
GPR from the active one-dimensional variables to the same outputs. The training and test errors are
evaluated on nROM,test = 80 and nROM,test = 20 training and test samples.

Water and air are considered as isothermal immiscible fluids. The system of partial equations to be
solved is the following

∂t(ρu)+∇ · (ρu⊗u)+∇p−ρg−∇ ·ν∇u−∇ ·R = 0, (x, t) ∈Ω× [0,T ] (4.38a)

∇ ·u = 0, (x, t) ∈Ω× [0,T ] (4.38b)

∂tα +∇ · (uα) = 0, (x, t) ∈Ω× [0,T ] (4.38c)

αρW +(1−α)ρA = ρ, (x, t) ∈Ω× [0,T ] (4.38d)

ανW +(1−α)νA = ν , (x, t) ∈Ω× [0,T ] (4.38e)

where u is the velocity field, p is the pressure field, ρW ,ρA are the densities of water and air, νW ,νA

are the dynamic viscosities of water and air, R is the Reynolds’ stress tensor, g is the acceleration of
gravity and α represents the interphase between the fluids with values from 0 (inside the air phase) to
1 (inside the water phase). The turbulence is modelled with the κ−ω Shear Stress Transport (SST)
model [179]. The initial conditions are:

u(x) = (U0,0,0), x ∈Ω (4.38f)

p(x) = 0, x ∈Ω (4.38g)

α(x) = α0(x), x ∈Ω (4.38h)

where U0 ∈ R is the initial velocity, α0 is the initial water level and the boundary conditions are
specified in the OpenFoam DTCHull tutorial of the interFoam solver. We search for steady-state
solutions with a final pseudo time instant T = 4000. The average physical quantities we will evaluate
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such as the drag and the angular momentum along the z-axis are obtained as the mean over the last
500 pseudo-time instants.

Some physical fields of interest at the final pseudo-time instant are shown in Figure 4.10 for the
effective pressure and the velocity magnitude, in Figure 4.11 for the effective pressure on the hull
surface and the interphase field α and in Figure 4.12 for the interphase field α on the whole domain.
Only half of the hull is employed for the numerical simulations.

For the DTCHull test case HB we consider the moments of inertia of the hull, the angular
momentum along the z-axis of the hull, the surface area of the hull’s bulb, and the drag on the hull:

Ixx =

ˆ
Ωhull

r2
X(x)dx, Iyy =

ˆ
Ωhull

r2
Y (x)dx, Izz =

ˆ
Ωhull

r2
Z(x)dx, (principal moments of inertia)

(4.39a)

Ixy =

ˆ
Ωhull

rX(x)rY (x)dx, Ixz =

ˆ
Ωhull

rX(x)rZ(x)dx, Iyz =

ˆ
Ωhull

rY (x)rZ(x)dx, (moments of inertia)

(4.39b)

Mz =

ˆ
Ωhull

r2
z (x)×u dx, (angular momentum along z-axis)

(4.39c)

Abulb =

ˆ
∂Ωbulb

dσ , (surface area of the bulb)

(4.39d)

cd =
1

Ahull(u · ex)2

(fi
δΩhull

pn− [να(∇u+∇uT )]nds
)
· ex, (drag on the hull)

(4.39e)

where the moments of inertia Ixx, Iyy, Izz, Ixy, Ixz, Iyz and surface area Abulb are evaluated from the discrete
STL file, and the angular momentum along the z-axis Mz and the drag coefficient cd are evaluated
from the computational mesh.

The number of training and test samples are ntrain = 400 and ntrain = 200, respectively. For
model order reduction, the number of training and test components are instead nROM,train = 80 and
nROM,test = 20, respectively. We use rPCA = 140 PCA modes for preprocessing inside the cGMs and
rPOD = 3 modes to perform model order reduction. The parameters’ space dimension of cFFD is
p = 84, while the latent space dimension of the cGMs is R = 10. Some deformations of the cGMs
introduced are shown in Figure 4.13: it is shown the overlapping hull’s bulbs from the reference STL
(in blue) and the STL files generated by cFFD and the other cGMs (in red). The results with respect
to the geometrical and physical metrics defined previously are shown in Table 4.2.

Qualitatively the histograms of each architecture are reported in Figure 4.17 for the Mz angular
momentum along the z-axis and in Figure 4.16 for the cd drag coefficient. There is an evident bias of
the cGMs distributions with respect to the cFFD’s one when considering the drag coefficient. Possible
reasons for this bias are the sharp edges introduced with the cFFD deformations on the gluing sites of
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Fig. 4.10 HB. Left: pressure field minus the hydrostatic pressure contribution computed on the last
pseudo-time instant T = 4000. Right: velocity magnitude computed on the last pseudo-time instant
T = 4000.

the bulb on the hull and the coarse computational mesh employed for the numerical simulations with
respect to the resolution of the STL files used to train the cGMs.

The non-intrusive reduced order models implemented with GPR-PODI, RBF-PODI and NN-PODI
are shown in Figures 4.18 for the effective pressure and 4.20 for the velocity magnitude on the whole
computational domain Ω. The original parameters space’s dimension of cFFD changes from p = 84
to R = 10 for the cGMs, while keeping more or less the same accuracy on the surrogate models for
the pressure and velocity fields. We apply a further level of reduction in the space of parameters with
the AS method on the latent space of R = 10 coordinates of the cGMs: the new parameter space is
a one-dimensional active subspace for each variable. The accuracy of the AS response surfaces is
almost the same for the pressure and the velocity magnitude while reducing the parameter space’s
dimension from R = 10 to rAS = 1. For simplicity, we show the AS response surface with dimension
rAS = 1, even if from the plot in Figure 4.22 of the first 20 eigenvalues of the uncentered covariance
matrix from equation (4.30), the spectral gap [60] suggests rAS = 2.
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Fig. 4.11 HB. Left: pressure field minus the hydrostatic pressure contribution computed on the last
pseudo-time instant T = 4000 on the hull’s surface. Right: interphase field α on the hull at the final
pseudo-time instant T = 4000: the value of 1 correspond to the water phase and the value of 0 to the
air phase.

Fig. 4.12 HB. Interphase field α on the whole domain at the final pseudo-time instant T = 4000: only
the values less than 0.5 of the field α are shown, representing the water level.

Table 4.2 HB. In this table we show the evaluation metrics of the Duisburg test case defined in
equations (4.39):Ixx, Ixy, Ixz, Iyy, Iyz, Izz are the components of the inertia tensor, Ahull area of the surface
of the bulb, cd is the drag coefficient evaluated on the hull, Mz is the angular momentum along
the z-axis. The metrics Ixx, Ixy, Ixz, Iyy, Iyz, Izz,Abulb are obtained from ntest = 200 test samples, while
the metrics cd ,Mz are based on nROM,test = 20 test samples. The model that has overall the best
performance is the AE, since the BEGAN produces too many out-of-training distribution samples as
can be seen comparing the values of the total variance: the variance of the training data from cFFD is
1.2e-03.

AE AAE VAE BEGAN
JSD(Abulb) 1.2e-01 2.3e-01 3.6e-01 5.2e-01
JSD(Ixx) 1.6e-01 3.0e-01 3.8e-01 6.0e-01
JSD(Ixy) 5.5e-01 6.9e-01 4.7e-01 6.7e-01
JSD(Ixz) 2.1e-01 2.1e-01 5.0e-01 2.0e-01
JSD(Iyy) 2.4e-01 4.9e-01 8.8e-01 9.1e-01
JSD(Iyz) 8.7e-01 5.6e-01 6.6e-01 4.8e-01
JSD(Izz) 1.5e-01 4.5e-10 5.6e-1 3.2e-01
JSD(cd) 9.1e-01 9.4e-01 8.5e-01 8.1e-01
JSD(Mz) 3.4e-01 2.9e-01 2.9e-01 2.6e-01
Var 1.2e-03 2.4e-03 4e-04 7.0e-03
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Fig. 4.13 HB. In this figure is shown the overlapping of the newly sampled bulbs from cFFD and
cGMs (in red) with respect to the reference STL file used for this test case (in blue). The reference
geometry is shown on the top left. Each row corresponds to a different architecture: the first row refers
to constrained cFFD of section 4.2.2, the second to the adversarial autoencoder of paragraph 4.3.1,
the third to the simple autoencoder of paragraph 4.3.1, the fourth to the beta variational autoencoder
of paragraph 4.3.1 and the last to the boundary equilibrium generative adversarial networks of
paragraph 4.3.1. All the generative models implement the multilinear constraints enforcing layer of
section 4.3 to preserve the volume.

Fig. 4.14 HB. Difference of the effective pressure field on the reference computational mesh with the
effective pressure fields on different geometries sampled from constrained generative models, namely
from top left to bottom right from the simple autoencoder, from the adversarial autoencoder, from the
beta variational autoencoder and from the boundary equilibrium generative adversarial network. The
geometrical constraint preserved is the bulb’s and thus the hull’s volume.
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Fig. 4.15 HB. In this figure the histograms of the area of the bulb’s deformed with cFFD or with
cGMs are shown. The histogram area intersection is more than 50%. For a quantitative measure see
Table 4.2. The histograms are obtained from the ntest = 200 test samples.
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Fig. 4.16 HB. In this figure the histograms of the drag coefficient from cFFD and from the cGMs are
shown. It can be seen that the drag coefficient is very sensitive to the deformations of the bulb and that
our generated geometries are probably biased towards higher values of the drag. For a quantitative
measure see Table 4.2. The histograms are obtained from the nROM,test = 20 test samples.
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Fig. 4.17 HB. In this figure the histograms of the angular momentum along the z-axis Mz from the
mesh obtained from cFFD or cGMs are shown. The histogram area intersection is more than 50%.
For a quantitative measure see Table 4.2. The histograms are obtained from the nROM,test = 20 test
samples.
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Fig. 4.18 HB. Here we show the ROM performance on the pressure on the whole domain over various
datasets, using different interpolation and regression techniques combined with proper orthogonal
decomposition with interpolation (PODI): Gaussian process regression (GPR), radial basis functions
interpolation (RBF) and feed-forward neural networks (NN). For every method, there is at least a
cGM that performs slightly better than the cFFD in terms of accuracy, while reducing the parameters’
space dimension from p = 84 to R = 10. The active subspace (AS) dimension chosen is rAS = 1. The
training and test errors are evaluated on nROM,test = 80 and nROM,test = 20 training and test samples.
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Fig. 4.19 HB. In this figure we show the ROM-PODI performance, for the effective pressure on the
whole domain, on the training and test datasets coupled with AS dimension reduction in the space of
parameters. It can be seen that the latent dimension can be reduced further with AS rAS = 1 without
compromising too much the accuracy. The AS response surface is built over the GPR, RBF, NN
interpolations/regressions with an additional GPR from the active one-dimensional variables to the
same outputs. The training and test errors are evaluated on nROM,test = 80 and nROM,test = 20 training
and test samples.
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Fig. 4.20 HB. Here we show the ROM performance on the velocity magnitude on the whole domain
over various datasets, using different interpolation and regression techniques combined with proper
orthogonal decomposition with interpolation (PODI): Gaussian process regression (GPR), radial basis
functions interpolation (RBF) and feed-forward neural networks (NN). For every method, there is
at least a cGM that performs slightly better than the cFFD in terms of accuracy, while reducing the
parameters’ space dimension from p = 84 to R = 10. The active subspace (AS) dimension chosen is
rAS = 1. The training and test errors are evaluated on nROM,test = 80 and nROM,test = 20 training and
test samples.
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Fig. 4.21 HB. In this figure we show the ROM-PODI performance, for the velocity magnitude on the
whole domain, on the training and test datasets coupled with AS dimension reduction in the space of
parameters. It can be seen that the latent dimension can be reduced further with AS rAS = 1 without
compromising too much the accuracy. The AS response surface is built over the GPR, RBF, NN
interpolations/regressions with an additional GPR from the active one-dimensional variables to the
same outputs. The training and test errors are evaluated on nROM,test = 80 and nROM,test = 20 training
and test samples.
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Fig. 4.22 SB and HB. In this figure, we show the first 20 eigenvalues of the Active Subspace method
for the SB test case on the left and the HB test case on the right. The shaded grey areas are delimited
by the minimum and maximum values of the 100 bootstrap replicates. The black line corresponds to
the average value. The spectral gaps suggest an AS dimension equal to rAS = 9 and rAS = 2, for the
SB and HB test cases, respectively.
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The speedup for the generation of the geometries employing the cGMs instead of cFFD is
around 360. The speedup of PODI non-intrusive model order reduction with respect to the full-order
simulations is around 432000.

4.5.3 Generative models’ training specifics and architectures

The following specifics are the same for the test cases SB of section 4.5.1 and HB of section 4.5.2.
Every hidden unit of our models is composed of a linear layer, a normalization layer (typically batch
normalization), an Activation Layer (typically ReLU), and a dropout Layer. The AdamW [166]
optimizer with 500 epochs is employed with a learning rate of 1e− 3 without any scheduler. The
batch size is 200. The entire dataset size is 600. We use ntrain = 400 samples for the training set and
the remaining for the test set. An Nvidia RTX 3050 has been used for the training. In the following
Tables 4.3, 4.4, 4.5 and 4.6, Act. stands for activation, Norm. for normalization and Drp. for dropout:
they summarize in order, the architectures of the AAE, AE, VAE and BEGAN GMs we employed for
both the test cases in section 4.5.

Table 4.3 Adversarial Autoencoder Structure. The number of PCA modes used is rPCA = 140 for the
rabbit and rPCA = 30 for the hull, M is the number of mesh points and it is equal to 145821 for the SB
test case and 5000 for the HB test case.

Encoder Act. Weights Norm. Drp.

None PCA [ M, rPCA] None None
Linear ReLU [rPCA, 500] Batch 0.1
Linear ReLU [500, 500] Batch 0.1
Linear ReLU [500, 500] Batch 0.1
Linear ReLU [500, 500] Batch 0.1
Linear ReLU [500, 500] Batch 0.1
Linear ReLU [500, 500] Batch 0,1
Linear None [500, 10] Batch None

Decoder Act. Weights Norm. Drp.

Linear ReLU [10, 500] Batch 0.1
Linear ReLU [500, 500] Batch 0.1
Linear ReLU [500, 500] Batch 0.1
Linear ReLU [500, 500] Batch 0.1
Linear ReLU [500, 500] Batch 0.1
Linear ReLU [500, 500] Batch 0.1
Linear None [500, rPCA] None None
None PCA (inverse) [rPCA, M] None None

Discriminator Act. Weights Norm. Drp.

Linear ReLU [10, 500] Batch 0.95
Linear ReLU [500, 500] Batch 0.95
Linear ReLU [500, 500] Batch 0.95
Linear ReLU [500, 500] Batch 0.95
Linear ReLU [500, 500] Batch 0.95
Linear ReLU [500, 500] Batch 0.95
Linear Sigmoid [500, 1] None None

We report the PODI-NN specifics. The training set consists of nROM,train = 80 samples and the
test set of HB f nROM,test = 20 samples. The AdamW [166] optimizer with 1000 epochs has been
used, with a learning rate of 1e−3 without any scheduler.
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Table 4.4 Autoencoder Structure. The number of PCA modes used is rPCA = 140 for the rabbit and
rPCA = 30 for the hull, M is the number of mesh points and it is equal to 145821 for the SB test case
and 5000 for the HB test case.

Encoder Act. Weights Norm. Drp.

None PCA [ M, rPCA] None None
Linear ReLU [rPCA, 500] Batch 0.1
Linear ReLU [500, 500] Batch 0.1
Linear ReLU [500, 500] Batch 0.1
Linear ReLU [500, 500] Batch 0.1
Linear ReLU [500, 500] Batch 0.1
Linear ReLU [500, 500] Batch 0,1
Linear None [500, 10] Batch None

Decoder Act. Weights Norm. Drp.

Linear ReLU [10, 500] Batch 0.1
Linear ReLU [500, 500] Batch 0.1
Linear ReLU [500, 500] Batch 0.1
Linear ReLU [500, 500] Batch 0.1
Linear ReLU [500, 500] Batch 0.1
Linear ReLU [500, 500] Batch 0.1
Linear None [500, rPCA] None None
None PCA (inverse) [rPCA, M] None None

Table 4.5 Beta Variational Autoencoder Structure. The number of PCA modes used is rPCA = 140 for
the rabbit and rPCA = 30 for the hull, M is the number of mesh points and it is equal to 145821 for the
SB test case and 5000 for the HB test case.

Encoder Act. Weights Norm. Drp.

None PCA [ M, rPCA] None None
Linear ReLU [rPCA, 500] Batch 0.1
Linear ReLU [500, 500] Batch 0.1
Linear ReLU [500, 500] Batch 0.1
Linear ReLU [500, 500] Batch 0.1
Linear ReLU [500, 500] Batch 0.1
Linear ReLU [500, 500] Batch 0,1
Linear None [500, 10] Batch None

Decoder Act. Weights Norm. Drp.

Linear ReLU [10, 500] Batch 0.1
Linear ReLU [500, 500] Batch 0.1
Linear ReLU [500, 500] Batch 0.1
Linear ReLU [500, 500] Batch 0.1
Linear ReLU [500, 500] Batch 0.1
Linear ReLU [500, 500] Batch 0.1
Linear None [500, rPCA] None None
None PCA (inverse) [rPCA, M] None None

Table 4.6 Boundary Equilibrium Generative Adversarial Network Structure. The number of PCA
modes used is rPCA = 140 for the rabbit and rPCA = 30 for the hull, M is the number of mesh points
and it is equal to 145821 for the SB test case and 5000 for the HB test case. The terms DisEnc and
DisDec stand for the discriminator’s encoder and decoder.

DisEnc Act. Weights Norm. Drp.

None PCA [ M, rPCA] None None
Linear ReLU [rPCA, 500] Batch 0.1
Linear ReLU [500, 500] Batch 0.1
Linear ReLU [500, 500] Batch 0.1
Linear ReLU [500, 500] Batch 0.1
Linear ReLU [500, 500] Batch 0.1
Linear ReLU [500, 500] Batch 0,1
Linear None [500, 10] Batch None

DisDec Act. Weights Norm. Drp.

Linear ReLU [10, 500] Batch 0.1
Linear ReLU [500, 500] Batch 0.1
Linear ReLU [500, 500] Batch 0.1
Linear ReLU [500, 500] Batch 0.1
Linear ReLU [500, 500] Batch 0.1
Linear ReLU [500, 500] Batch 0.1
Linear None [500, rPCA] None None
None PCA (inverse) [rPCA, M] None None

Generator Act. Weights Norm. Drp.

Linear ReLU [10, 500] Batch 0.1
Linear ReLU [500, 500] Batch 0.1
Linear ReLU [500, 500] Batch 0.1
Linear ReLU [500, 500] Batch 0.1
Linear ReLU [500, 500] Batch 0.1
Linear ReLU [500, 500] Batch 0.1
Linear None [500, rPCA] None None
None PCA (inverse) [rPCA, M] None None
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Table 4.7 PODI-NN interpolation: rPOD = 3 for both test cases SB and HB, M is the number of
degrees of freedom and P the number of parameters that can vary if cFFD (P = p = 54 for SB or
P = p = 84 for HB), or cGMs (P = R = 15 for SB or P = R = 10 for HB) are considered.

Regressor Activation Weights Norm. Drp.

Linear ReLU [P, 2000] None 0
Linear ReLU [2000, 2000] None 0
Linear ReLU [2000, rPOD] None 0
POD reconstruction - [rPOD, M] None 0

4.6 Discussion

We address some questions that may arise, the critical parts of the developed methodology and other
observations:

• more complex 3d objects. The respective distributions of the test cases SB and HB are relatively
easy to approximate with GMs, in fact, we need only ntrain = 400 training data. Provided
that enough data and a sufficient computational budget are available, our methodology can be
extended to more complex distributions of 3d objects. For example, points clouds with different
numbers of points for each geometry or topological changes can still be approximated by GMs.
Eventually, Graph Neural networks can be employed [34].

• validate the results with ad hoc metrics. Especially when cGMs are employed for real-world
applications, guarantees that the new geometries are not biased or satisfy certain requirements
must be verified. For our test cases, we devised several geometrical and physical metrics
relevant to validate our cGMs. In particular, from the drag coefficient histograms in Figure 4.16
we could detect a bias that changed the mean value of the distributions of the cGMs. In our
case, it probably depends on the application of RBF interpolation to deform the reference
computational mesh, on the way the bulb was extracted from the hull and on the coarseness of
the mesh. As mentioned in section 4.4, RBF interpolation can be avoided and the cGMs can be
directly trained on specific regions of the computational mesh as it was done for the SB test
case.

• the constraint enforcing layer is independent of the numerical methods used to generate the
training datasets. For our test cases, we used cFFD because it is relatively simple to implement,
even if the constrained deformations it provides are not particularly large. It is crucial to observe
that the cGMs and their multilinear constraints enforcing layers do not depend on how the
training data are obtained. For example, as long as linear or multilinear and not nonlinear
geometrical constraints are enforced, also other volume-preserving techniques like [262, 83]
can be used.

• intrusive model order reduction. It is clear that cGMs with their nonlinear layers introduce
nonlinearities also in the numerical models at hand through the mesh deformations. From
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the point of view of intrusive model order reduction [228], this adds an ulterior complexity
especially when the numerical model itself is linear. In this case, hyper-reduction methods
must be implemented to completely lose the dependency on the number of degrees of freedom.
Non-intusive reduced order models are instead not affected.

• principal component analysis as preprocessing for GMs. We remark that our choice to employ
PCA modes to project the training datasets of the GMs onto lower dimensional spaces is valid
only when the training distribution can be well approximated with linear subspaces. If this is
not the case, an evident result is a high test error even though the training error is low because
the GMs cannot generalize well. Moreover, with the projection of the training data through PCA
modes, the spatial correlations are lost in favor of the correlations in the space of frequencies of
PCA. These lost spatial correlations could instead be exploited with ad hoc architectures like
convolutional layers on Cartesian grids or graph neural networks for general meshes.

4.7 Conclusions and perspectives

A novel approach to impose linear or multilinear constraints on classical generative models is tested
successfully on two academic benchmarks: the Stanford bunny and the Duisburg test case’s naval hull.
We proposed to validate the results through specific geometrical and physical metrics of interest for
the problem at hand. How to perform non-intrusive model order reduction with proper orthogonal
decomposition with interpolation was shown. The benefits of coupling dimension reduction in the
space of parameters with cGMs and model order reduction are clear.

Future directions of research include the approximation of more complex distributions with
possibly different numbers of degrees of freedom per geometry or topological changes. A relevant
task is to enforce nonlinear constraints without weighting too much on the computational cost of the
training of the cGMs. We think that our methodology could speed up the generation of geometrically
constrained 3d shapes and solve the problem of the lack of experimental data typical of some real-
world applications.
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Nonlinear model order reduction





Chapter 5

Friedrichs’ systems

Friedrichs’ systems (FS) are symmetric positive linear systems of first-order partial differential
equations (PDEs), which provide a unified framework for describing various elliptic, parabolic and
hyperbolic semi-linear PDEs such as the linearized Euler equations of gas dynamics, the equations of
compressible linear elasticity and the Dirac-Klein-Gordon system. FS were studied to approximate
PDEs of mixed elliptic and hyperbolic type in the same domain. For this and other reasons, the
versatility of the discontinuous Galerkin method (DGM) represents the best approximation space for
FS. A distributed memory solver for stationary FS is implemented in deal.II. The focus is on model
order reduction. Since FS model hyperbolic PDEs, they often suffer from a slow Kolmogorov n-width
decay. Two approaches to tackle this problem are developed. The first is domain decomposable
reduced-order models (DD-ROMs). It is shown that the DGM offers a natural formulation of DD-
ROMs, in particular regarding interface penalties, compared to the continuous finite element method.
Also, new repartitioning strategies to obtain more efficient local approximations of the solution
manifold are developed. The second approach involves graph neural networks used to infer the limit
of a succession of projection-based linear ROMs corresponding to lower viscosity constants: the
heuristic behind is to develop a multi-fidelity super-resolution paradigm to mimic the mathematical
convergence to vanishing viscosity solutions while exploiting to the most interpretable and certified
projection-based ROMs.
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5.1 Literature review

Friedrichs’ systems (FS) are a class of symmetric positive linear systems of first-order partial derivative
equations (PDEs). They were introduced by Friedrichs [96] as a tool to study hyperbolic and elliptic
phenomena in different parts of the domain within a unifying framework. The main ideas that allow
recasting many models into the FS frameworks are the introduction of extra variables to lower the
order of the higher derivatives and the linearization of nonlinear problems. FS are characterized
by linear and positive operators and (non-uniquely defined) boundary operators that allow them to
impose classical boundary conditions (BCs). Various works proved the uniqueness, existence and
well–posedness of the FS in their strong, weak and ultraweak formulation and the necessary conditions
to properly define the boundary operators [96, 215, 216, 85, 87, 8, 76].

In the last decades, different numerical discretizations of the FS have been proposed to approximate
the analytical solutions. The strategies vary among finite volume [235] and discontinuous Galerkin
(DGM) formulations [130, 140, 85, 84, 87, 86, 40, 49]. Along with the DGM discretization, also error
estimation analysis that provides, according to the type of edge penalization, optimal or sub–optimal
estimates, have been carried out [85, 84, 76]. We focus on the DGM method since it is more versatile
to approximate both elliptic and hyperbolic PDEs and it fits naturally the framework of domain
decomposable ROMs (DD-ROMs).

In the context of parametric PDEs, for multi–query tasks or real–time simulations, fast and reliable
simulations of the same problem for different parameters are needed. This is especially true when the
full-order models (FOMs) are based on expensive and high-order DGM discretizations. Reduced order
models (ROMs) decrease the computational costs by looking for the solutions of unseen parametric
instances on low-dimensional discretization spaces, called reduced basis spaces. This is possible
because the new solutions to be predicted are expected to be highly correlated with the database of
training DGM solutions used to build the reduced spaces. ROMs have been proven to be a powerful
tool for many applications [207, 172, 126, 228]. In particular for linear problems, classical Galerkin
and Petrov-Galerkin projection methods are very easy to set up and extremely convenient in terms
of computational costs. FS are perfectly suited for such algorithms due to their linearity. Also, this
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is a preliminary step needed to reduce parametric nonlinear PDEs whose linearization results in FS.
In the most simple formulation, we will apply singular value decomposition (SVD) to compress a
database of snapshots and provide a reliable reduced order model (ROM), with standard a posteriori
error estimators.

In the context of model order reduction, FS are particularly beneficial as theoretical frameworks
for many reasons. They represent a new form of structure-preserving ROMs: the positive symmetric
properties of FS are in fact easily inherited by the reduced numerical formulations. This advocates
for the employment of FS for reduced order modelling whenever a PDE can be reformulated in the
FS framework. This is the case for the Euler equations of gas dynamics, when they are written in
terms of entropy variables [235, 193]. The same rationale is behind structure-preserving symplectic or
Hamiltonian ROMs [127] and port-Hamiltonian ROMs [259, 22]. Moreover, since FS are often studied
in their ultraweak formulation, they are good candidates for optimally stable error estimates [39] at
the full-order level [40], also in a hybridized DGM implementation in [49], and at the reduced order
level, similarly to what has been achieved in the works [28, 116, 124]. Finally, from the point of view
of software design, the possibility to implement in a unique maintainable generic manner ROMs for
PDEs ascribed to the class of FS is a convenient feature to search for.

Though being linear, FS are hyperbolic systems and often show an advection dominated character,
which is not easily approximable through a simple proper orthogonal decomposition (POD). This
leads to a slow Kolmogorov n-width (KnW) decay that results in very inefficient approximations of
the reduced models. Several approaches have been studied to overcome this difficulty [242, 135, 198,
217, 45, 43, 7, 161, 64, 254, 136].

A strategy that has been developed to reduce PDEs solved numerically with domain decomposition
approaches, like fluid-structure interaction systems, are domain decomposable ROMS (DD-ROMS).
The initial formulations [172, 173, 134, 82, 134] involved continuous finite elements discretizations
for which new ways to couple the solutions restricted to different subdomains needed to be devised,
especially to enforce continuity at the interfaces. We show that the DGM imposes naturally flux
interface penalties from the full-order discretizations and it is, thus, amenable for straightforward
implementations of DD-ROMs. From the point of view of solution manifold approximability and
so KnW decay, DD-ROMs are based on local linear approximants that are employed to reach a
higher accuracy for unseen solutions. This is useful when the computational domain is divided into
subdomains that are independently affected by the parametric instances. The typical case in which
this may happen is parametric models for which discontinuous values of the parameters over fixed
subdomains cause non-correlated responses on their respective subdomains. Similar cases will be
studied in section 5.5.3. Another example is represented by parametric fluid-structure interaction
systems in which the parameters cause complex interdependencies between the structure and fluid
components in favor of partitioned linear solution manifold approximations (SVD is performed
separately for the fluid, for the structure and for the interface) rather than monolithic ones. In
our implementation of DD-ROMs, we exploit the partitions obtained from the distributed memory
solver in deal.II. Since these domain decompositions typically satisfy constraints related to the
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computational efficiency, we devise some strategies to repartition the domain responding to solution
manifold approximability concerns instead. Another work that implements this is [274] where the
Reynolds stress tensor is employed, among others, as indicator for partitioning the computational
domain. Similarly, we develop new indicators.

Another way to approach the problem of a slow KnW decay is exploiting the mathematical proofs
of existence of vanishing viscosity solutions [187, 152, 80, 107]. In fact, solutions to hyperbolic
problems can be obtained as a limit process of solutions associated with viscosity terms approaching
zero. The crucial point is that ROMs associated with larger viscosity values may not suffer from
a slow Kolmogorov n-width decay. Hence, we can set up classical projection based ROMs for the
high viscosity solutions, and use graph neural networks (GNNs) [245] only to infer the vanishing
viscosity solution in a very efficient manner. This procedure can be applied also to more general
hyperbolic problems, not necessarily FS. The key features of this new methodology are the following:
the employment of computationally heavy graph neural networks is reduced to a minimum and, at the
same time, interpretable certified projection ROMs are exploited as much as possible in their regime
of accurate linear approximability. In fact, GNNs, used generally to perform non-intrusive MOR, have
high training computational costs and they are employed mainly for small academic benchmarks in
terms of numbers of degrees of freedom, up to now. We avoid these high computational efforts with our
multi-fidelity formulation: the GNNs are employed only to infer the vanishing viscosity solutions from
the previous higher viscosity level, not to approximate and perform dimension reduction of the entire
solution manifold. The overhead is the collection of additional full-order snapshots corresponding to
high viscosity values, but this can also be performed on coarser meshes as it will be done in section 5.6.
Moreover, the support of our GNNs is the DGM discretization space, so, we can enrich the typical
machine learning framework of GNNs with data structure and operators from numerical analysis.
We validate the use of data augmentation with numerical filters (discretized Laplacian, gradients
operators), as proposed in [245].

In brief, we summarize our contributions with the present work:

• structure-preserving model order reduction for Friedrichs’ systems. We synthetically describe
the realization of ROMs for FS and define standard a posteriori error estimators. Hints towards
the implementation of optimally stable ROMs are highlighted.

• domain decomposable reduced-order models for full-order models discretized with the discon-
tinuous Galerkin method. We introduce DD-ROMs for DGM discretizations and introduce
novel indicators to repartition the computational domain with the aim of obtaining more efficient
local solution manifold approximants.

• surrogate modelling of vanishing viscosity solutions with graph neural networks. We propose a
new framework for the MOR of parametric hyperbolic PDEs with a slow Kolmogorov n-width
decay.
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The topics addressed in this work are presented as follows. In Section 5.2, we introduce the
definition of FS and well–posedness results and we will provide several examples of models that fall
into this framework: the Maxwell equations in stationary regime, the equations of linear compressible
elasticity and the advection diffusion reaction equations. Then, we provide a DGM discretization of
the FS following [76] with related error estimates in Section 5.3. In Section 5.4, we introduce the
projection-based MOR technique and some error bounds that can be effectively used. In Section 5.5,
we will discuss a new implementation of domain decomposable ROMs for FOMs discretized with
the DGM and we will test the approach on three parametric models. In Section 5.6, we introduce the
concept of vanishing viscosity solutions and how graph neural network are exploited to overcome
the problem of a slow Kolmogorov n-width decay. We will provide some numerical tests to show
the effectiveness of the proposed approach. Finally, in Section 5.7 we summarize our results and we
suggest further directions of research.

5.2 Friedrichs’ systems

In this section, we will provide a summary of FS theory: their definition, existence, uniqueness and
well-posedness results, their weak and ultraweak forms and many PDEs which can be rewritten into
FS. The following discussion collects many results from [96, 215, 133, 216, 132, 140, 235, 140, 84,
87, 86, 8, 40, 76], but we will follow the notation in [76]. Let us represent with d the ambient space
dimension and with m ≥ 1 the number of equations of the FS. We consider a connected Lipschitz
domain Ω⊂ Rd , with boundary ∂Ω and outward unit normal n : ∂Ω→ Rd .

A FS is defined through (d+1) matrix-valued fields A0,A1 . . . ,Ad ∈ [L∞(Ω)]m×m and the following
differential operators X ,A, Ã : Ω→ Rm×m. We suppose that X ∈ [L∞(Ω)]m×m and define

X =
d

∑
k=1

∂kAk , A = A0 +
d

∑
i=1

Ai
∂i , Ã =

(
A0)t −X −

d

∑
i=1

Ai
∂i , (5.1)

assuming that

Ak = (Ak)T a.e. in Ω, for k = 1, . . . ,d, (symmetry property) (5.2a)

A0 +(A0)T −X is u.p.d. a.e. in Ω, (positivity property) (5.2b)

thus, the name symmetric positive operators or Friedrichs operators, which is used to refer to (A,
Ã). We recall that the operator in (5.2b) is uniformly positive definite (u.p.d) if and only if

∃µ > 0 : A0 +(A0)T −X > 2µ0I a.e. in Ω. (5.3)

If this property is not satisfied, it can be sometimes recovered as shown in section 5.2.1. A weaker
condition can be required for two-field systems [86].
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The boundary conditions are expressed through two boundary operators D : ∂Ω→ Rm×m with

D =
d

∑
k=1

nkAk, a.e. in ∂Ω (5.4)

andM : ∂Ω→ Rm×m satisfying the following admissible boundary conditions

M is nonnegative a.e. on ∂Ω, (monotonicity property) (5.5a)

ker(D−M)+ker(D+M) = Rm a.e. on ∂Ω. (strict adjointness property) (5.5b)

Remark 11 (Strict adjointness). The term strict adjointness property comes from Jensen [140, Theorem
31]. The strict adjointness property is needed for the solution of the ultra-weak formulation of the FS
to uniquely satisfy the boundary conditions: in a slightly different framework from the one presented
here, see [140, Theorem 29] and [40, proof of Lemma 2.4].

Theorem 2 (Friedrichs’ system strong solution [96]). Let f ∈ [L2(Ω)]m, the strong solution z ∈
[C1(Ω)]m to Friedrichs’ system Az = f , in Ω,

(D−M)z = 0, on ∂Ω.
(5.6)

is unique. Moreover, there exists a solution of the ultra-weak formulation

(z, Ãy)L2 = ( f ,y)L2 , ∀y ∈ [C1(Ω)]m s.t. (D+Mt)y = 0. (5.7)

Let L = [L2(Ω)]m. We define the weak formulation on the graph space V = {z ∈ L : Az ∈ L},
which amounts to differentiability in the characteristics directions: A ∈ L(V,L) and Ã ∈ L(V ′,L). The
boundary operator D is translated into the abstract operator D ∈ L(V,V ′):

⟨Dz,y⟩V,V ′ = (Az,y)L− (z, Ãy)L, ∀z,y ∈V. (5.8)

When z is smooth, it can be seen as the integration by parts formula [140, 40]:

⟨Dz,y⟩V,V ′ = ⟨Dz,y⟩
H

1
2 (∂Ω),H−

1
2 (∂Ω)

, ∀z ∈ H1(Ω), y ∈ H1(Ω). (5.9)

A sufficient condition for well-posedness of the weak formulation is provided by the cone formalism [8,
76] that poses the existence of two linear subdomains (V0,V ∗0 ) of V :

V0 maximal in C+, V ∗0 maximal in C− (5.10a)

V0 = D(V ∗0 )
⊥, V ∗0 = D(V0)

⊥, (5.10b)

such that A : V0→ L and Ã : V ∗0 → L are isomorphism, where C± = {w ∈V |± ⟨Dw,w⟩V,V ′ ≥ 0}.



5.2 Friedrichs’ systems 103

Provided that V0 +V ∗0 ⊂V is closed [8], the conditions in (5.10) are equivalent to the existence of
the boundary operator M ∈ L(V,V ′) that satisfies admissible boundary conditions analogue to the
ones in (5.5):

M is monotone, (monotonicity property) (5.11a)

ker(D−M)+ker(D+M) =V, (strict adjointness property) (5.11b)

identifying V0 = ker(D−M) and V ∗0 = ker(D+M∗).

Theorem 3 (Friedrichs’ System weak form [85, 84, 76, 40]). Let us assume that the boundary
operator M ∈L(V,V ′) satisfies the monotonicity and strict adjointness properties (5.11). Let us define
for z,z∗ ∈V the bilinear forms

a(z,y) = (Az,y)L +
1
2⟨(D−M)z,y⟩V ′,V , ∀y ∈V, (5.12a)

a∗(z∗,y) =
(
Ãz∗,y

)
L +

1
2⟨(D+M∗)z∗,y⟩V ′,V , ∀y ∈V. (5.12b)

Then, Friedrichs’ operators A : V0→ L and Ã : V ∗0 → L are isomorphisms: for all f ∈ L and g ∈V
there exists unique z,z∗ ∈V s.t.

a(z,y) = ( f ,y)L + ⟨(D−M)g,y⟩V ′,V ∀y ∈V, (5.13a)

a∗(z∗,y) = ( f ,y)L + ⟨(D+M∗)g,y⟩V ′,V ∀y ∈V, (5.13b)

that is Az = f , in L,

(M−D)(z−g) = 0 in V ′,

Ãz∗ = f , in L,

(M∗+D)(z∗−g) = 0 in V ′.
(5.14)

5.2.1 A unifying framework

The theory of Friedrichs’ systems provides a unified framework to study different classes of PDEs [140]:
first-order uniformly hyperbolic, second-order uniformly hyperbolic, elliptic and parabolic partial
differential equations. Originally, Friedrichs’ aim was to study equations of mixed type (hyperbolic,
parabolic, elliptic) inside the same domain such as the Tricomi equation [96] (or more generally the
Frankl equation [140]) inspired by models from compressible gas dynamics for which the domain is
subdivided in a hyperbolic supersonic and an elliptic subsonic part.
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Some examples of FS can be found in the literature:

(x2∂
2
1 •+∂

2
1 •)u = 0, Tricomi [96][

−∂1• ∂2•
−∂2• ∂1•

](
u1

u2

)
= 0, Cauchy-Riemann [96]

(A(x2)∂
2
1 +∂

2
1 )u = 0, Frankl [140][

I3 −λ−1I3(∇ · •)− (∇•+(∇•)t)
2

−1
2 ∇ · (•+•t) αI3

](
σ

u

)
= 0, Compressible linear elasticity [85][

µI3 ∇×•
−∇×• σI3

](
H
E

)
= 0, Maxwell eq. in stationary regime [85]

(−∇ · (κ∇•)+βββ ·∇•+µ•)u = 0, Diffusion advection reaction [85]

(A0∂t •+Σ
3
i=1Ãi∂i•)V = 0, Linearized symmetric Euler [133, 235]

(aγ
0
∂t •+γ

1
∂1 •+γ

2
∂2 •+γ

3
∂3 •+B)ψψψ = 0, Dirac system [9][

−aiγ0∂t •−iγ1∂1 •−iγ2∂2 •−iγ3∂3 •+M 14

04 ∂ 2
t •−∆•+m2I1

](
ψψψ

φ

)
= f,

Dirac-Klein-Gordon system [9][
− i

2π
(aγ0∂t •+γ1∂1 •+γ2∂2 •+γ3∂3 •+B) 14

04 −∂ 2
t •+∆•

](
ψψψ

A

)
= f, Maxwell-Dirac system [9][

−iωµI3 ∇×•
−∇×• (−iωε +σ)I3

](
H
E

)
= 0, Time-harmonic Maxwell [9][

νI3 ∇×•
µβββ ×•−∇×• σI3

](
H
E

)
= f, Magneto-hydrodynamics [84] ν−1I3 13 − (∇•+(∇•)t)

2

tr(•) dI1 0
−1

2 ∇ · (•+•t) 0 βββ ·∇•


σ

p
u

= f, Incompressible linearized Navier-Stokes [86]

for the employed notation we refer to the respective reported references. A non-stationary version of
(Maxwell eq. in stationary regime [85]) and (Diffusion advection reaction [85]) from [76] is omitted.
The FS framework here presented easily extends to complex-valued systems as in (Dirac system [9]),
(Dirac-Klein-Gordon system [9]), (Maxwell-Dirac system [9]) and (Time-harmonic Maxwell [9]) from [9].
We will consider only semi-linear PDEs but FS can be encountered as intermediate steps when solv-
ing quasi-linear PDEs: for example solving the compressible Euler equations of gas dynamics in
entropy variables with the Newton method brings to the FS (Linearized symmetric Euler [133, 235]),
as studied in [235].

One of the critical points of FS is the definition of the boundary conditions. Friedrichs’s idea [96]
was to impose boundary conditions through a matrix-valued boundary operator. Ern, Guermond
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and Caplain [87] revised the FS theory, without employing the trace of functions in the graph space
as developed in [215, 216, 132, 140], but in terms of operators acting in abstract Hilbert spaces, as
presented here.

The most common homogeneous boundary conditions (homogeneous Dirichlet, Neumann,
Robin) for (Compressible linear elasticity [85]), (Maxwell eq. in stationary regime [85]) and also for
(Diffusion advection reaction [85]) can be found in the literature [85, 84, 87]. For a choice of bound-
ary conditions, and thus for a choice of spaces (V0,V ∗0 ), there can be more than one definition of
the boundary operator M [87, Remark 5.3]. A constructive methodology for defining the boundary
operator M ∈L(V,V ′) from specific boundary conditions can be found in [87] and it will be employed
for the compressible linear elasticity test case in Section 5.2.1. Also, inhomogeneous boundary
conditions can be imposed through the definition of traces of functions in graph spaces as in [140] or
through a Petrov-Galerkin formulation as in [40]. In the following, we will present in detail three FS
on which we will focus in the numerical test section.

Curl–curl problem: Maxwell equations in stationary regime

We will consider the Maxwell equations in stationary regime, also known as the curl-curl problem.
Let E ∈ Rd = R3 be the electric field and H ∈ R3 be the magnetic field. The curl–curl problem is
defined as µH+∇×E = r,

σE−∇×H = g,

with µ,σ > 0, the permeability and permittivity constants. The FS is obtained by setting

A0 =

[
µId,d 0d,d

0d,d σId,d

]
, Ak =

[
0d,d Rk

(Rk)T 0d,d

]
, f =

(
r
g

)

with Rk
i j = εik j being the Levi-Civita tensor. The graph space is V = H(curl,Ω)×H(curl,Ω). The

boundary operator is

D =
d

∑
k=1

nkAk =

[
0d,d T
T T 0d,d

]
, with T ξ := n×ξξξ , (5.16)

⟨D(H,E),(h,e)⟩V ′ ,V = (n×E,e)L2(∂Ω)− (n×H,h)L2(∂Ω). (5.17)

We impose homogeneous Dirichlet boundary conditions tangential to the electric field (n×E)|∂Ω
= 0

through

M=

[
0d,d −T
T T 0d,d

]
, ⟨M(H,E),(h,e)⟩V ′ ,V =−(n×E,e)L2(∂Ω)− (n×H,h)L2(∂Ω). (5.18)
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Compressible linear elasticity

We consider the parametric compressible linear elasticity system in Rd = R3, where σσσ ∈ Rd×d is the
stress tensor and u ∈ Rd is the displacement vector. The system can be written as(

σσσ −µ1(∇ ·u)I3,3−2µ2
(∇u+(∇u)t)

2

−1
2 ∇ · (σσσ +σσσ t)+µ3u

)
=

(
0
r

)
, ∀x ∈Ω, (5.19)

where r ∈ R3, and µ1, µ2 > 0 are the Lamé constants. Rescaling the displacement u by 2µ2, we
obtain  σσσ − µ1

2µ2+3µ1
tr(σσσ)I3,3− (∇uuu+(∇uuu)T)

2

−1
2 ∇ ·

(
σσσ +σσσT

)
+ µ3

2µ2
uuu

=

(
0
r

)
, ∀x ∈Ω. (5.20)

In this case, we consider the graph space

V = Hσσσ × [H1(Ω)]d , Hσσσ = {σσσ ∈ [L2(Ω)]d×d | ∇ · (σσσ +σσσ
t) ∈ [L2(Ω)]d}. (5.21)

If we reorder the coefficients of σσσ into a vector, we can define z =

(
σσσ

u

)
and have

A0 =

[
Id2,d2− µ1

2µ2+3µ1
Z 0d2,d

0d,d2
µ3

2µ2
Id,d

]
, Ak =

[
0d2,d2 Ek

(Ek)T 0d,d

]
, f =

[
0d2

r

]
, (5.22)

with Z[i j],[kl] = δi jδkl and Ek
[i j],l = −1

2

(
δikδ jl +δilδ jk

)
. This leads to the definition of the boundary

operator

D =
d

∑
k=1

nkAk =

[
0d2,d2 N
N T 0d,d

]
with Nξξξ :=−1

2
(n⊗ξξξ +ξξξ ⊗n), (5.23a)

⟨D(σσσ ,u),(τττ,v)⟩V ′ ,V =−⟨1
2(σσσ +σσσ

t) ·n,v⟩− 1
2 ,

1
2
−⟨1

2(τττ + τττ
t) ·n,u⟩− 1

2 ,
1
2
. (5.23b)

Mixed boundary conditions u|ΓD = 0 and (σσσ ·n)|ΓN = 0 can be applied through the following boundary
operator on the Dirichlet boundary ΓD and on the Neumann boundary ΓN :

⟨M(σσσ ,u),(τττ,v)⟩V ′ ,V =−⟨1
2(σσσ +σσσ

t) ·n,v⟩− 1
2 ,

1
2 ,ΓD

+ ⟨1
2(τττ + τττ

t) ·n,u⟩− 1
2 ,

1
2 ,ΓD

+ ⟨1
2(σσσ +σσσ

t) ·n,v⟩− 1
2 ,

1
2 ,ΓN
−⟨1

2(τττ + τττ
t) ·n,u⟩− 1

2 ,
1
2 ,ΓN

,
(5.24)

the constructive procedure employed to define the boundary operator M ∈ L(V,V ′) is reported in the
section 5.2.1.
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Grad–div problem: advection–diffusion–reaction equations

Another example is the advection–diffusion–reaction equation

−∇ · (κ∇u)+βββ ·∇u+µu = r, (5.25)

with κ ∈ [L∞(Ω)]d×d and βββ ∈ [W 1,∞(Ω)]d , under the hypothesis that κ ∈ [L∞(Ω)]d×d and µ−∇ ·βββ ∈
L∞(Ω) are uniformly bounded from below to satisfy the positivity property (5.2b). Let us write the

equation in the mixed form with σσσ =−κ∇u and z =

(
σσσ

u

)
. Then, (5.25) can be rewritten as (5.6)

with

A0 =

[
κ−1 0d,1

01,d µ

]
, Ak =

[
0d,d ek

(ek)
T βk

]
, f =

(
0
r

)
. (5.26)

Here, 0m,ℓ ∈ Rm×ℓ is a matrix of zeros and ek is the unitary vector with the k-th entry equal to 1. The
graph space is V = H(div,Ω)×H2(Ω). The boundary operator D becomes

D =
d

∑
k=1

nkAk =

[
0d,d n
nt β ·n

]
, ⟨D(σσσ ,u),(τττ,v)⟩V ′ ,V = ⟨σσσ ·n,v⟩− 1

2 ,
1
2
−⟨τττ ·n,u⟩− 1

2 ,
1
2
. (5.27)

Homogeneous Dirichlet boundary conditions u|∂Ω = 0 can be imposed with

M=

[
0d,d −n
nt 0

]
, (5.28)

while Robin/Neumann boundary conditions of the type σσσ ·n = γu are imposed with

M=

[
0d,d n
−nt 2γ +βββ ·n

]
. (5.29)

For our test case in Section 5.6, we will consider as advection field βββ : Ω→ Rd an incompressible
velocity field from the solution of the 2d incompressible Navier-Stokes equations as described later.
Similarly to the linear compressible elasticity mixed boundary conditions in Section 5.2.1, we want to
impose u|ΓD = g ∈ [L

1
2 (ΓD)]

d and (σσσ ·n)|ΓN
= 0. This is possible with

⟨M(σσσ ,u),(τττ,v)⟩V ′ ,V = ⟨σσσ ·n,v⟩− 1
2 ,

1
2 ,ΓD

+ ⟨τττ ·n,u⟩− 1
2 ,

1
2 ,ΓD
−⟨σσσ ·n,v⟩− 1

2 ,
1
2 ,ΓN
−⟨τττ ·n,u⟩− 1

2 ,
1
2 ,ΓN

,

(5.30)
the proof is similar to the one reported in section 5.2.1.
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Transformation into dissipative system

In some cases, the term A0 = 0 or property (5.2b) is not satisfied, but there is a way to recover the
previous framework. We want to recover a dissipative [171] or accretive system [140]. For example,
the linearized Euler equations in entropy variables [235] have A0 = 0.

The condition of uniform positive definiteness

∃µ0, A0 +(A0)t −X ≥ 2µ0Im a.e. in Ω, (5.31)

is still valid if there exist ξξξ ∈ Rd , ∥ξξξ∥= 1 and β ∈ R, β > 0 such that after the transformation

v(x) = e−βξ ·xz(x), (5.32)

the resulting system

∑
i

Ai
∂iv(x)+β

d

∑
i=1

ξiAiv(x) = e−β (ξ ·x) f , (5.33)

satisfies, with the newly found A0 = β ∑
d
i=1 ξiAi,

∃µ0, A0 +(A0)t −X = 2β

d

∑
i=1

ξiAi−X ≥ 2µ0Im a.e. in Ω. (5.34)

In some cases, such ξ and β exist, for example if the symmetric matrix ∑
d
i=1 ξiAi has at least one

positive eigenvalue for some ξ for almost every x ∈Ω, then taking β sufficiently large is enough to
satisfy the condition. It is also sufficient that ∑

d
i=1 ξi(x)Ai(x) has at least a positive eigenvalue for

almost every x ∈Ω where ξ = ξ (x), see [140, Example 28].

Remark 12. A more general transformation is

v(x) = w(x)z(x), (5.35)

so that the positive definiteness condition becomes

∃µ0, A0 +(A0)t −X = 2
d

∑
i=1

∂i(− logw)Ai−X ≥ 2µ0Im a.e. in Ω. (5.36)

Constructive method to define boundary operators

We report a procedure to define a boundary operator M ∈ L(V,V ′) starting from some specified
boundary conditions. We exploit Theorem 4.3, Lemma 4.4 and Corallary 4.1 from [87]. It can be seen
that the most common Dirichlet, Neumann and Robin boundary conditions can be found for some
FS [85, 84, 76], following this procedure.

Lemma 1 (Theorem 4.3, Lemma 4.4 and Corollary 4.1 from [87]). Let us assume that (V0,V ∗0 )
satisfy (5.10) and that V0 +V ∗0 ⊂ V is closed. We denote with P : V → V0 and Q : V :→ V ∗0 the
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projectors onto the subspaces V0 ⊂ V and V ∗0 ⊂ V of the Hilbert space V , respectively. Then, the
boundary operatorM∈L(V,V ′) defined as

⟨Mu,v⟩V ′,V =⟨DPu,Pv⟩V ′,V −⟨DQu,Qv⟩V ′,V +

⟨D(P+Q−PQ)u,v⟩V ′,V −⟨Du,(P+Q−PQ)v⟩V ′,V
(5.37)

is admissible and satisfies V0 = ker(D−M) and V ∗0 = ker(D+M∗). In particular,

1. If V =V0 +V ∗0 , thenM is self-adjoint and

⟨Mu,v⟩V ′,V = ⟨DPu,Pv⟩V ′,V −⟨DQu,Qv⟩V ′,V . (5.38)

2. If V0 =V ∗0 , thenM is skew-symmetric and

⟨Mu,v⟩V ′,V = ⟨DPu,v⟩V ′,V −⟨DPv,u⟩V ′,V . (5.39)

We remark that, for fixed (V0,V ∗0 ), admissible boundary operators M∈ L(V,V ′) that satisfy
V0 = ker(D−M) and V ∗0 = ker(D+M∗) are not unique. The boundary operator defined in Lemma 1
is just a possible explicit definition, in general.

As an exercise, we show how to find the definition of the operatorM for our linear compressible
elasticity FS, from Section 5.2.1. We want to impose the boundary conditions u|ΓD = 0 and (σσσ ·n)|ΓN =

0, so,
V0 =V ∗0 = {(u,σσσ) ∈V | u|ΓD = 0, (σσσ ·n)|ΓN = 0}= Hσσσ ,ΓN × [H1

ΓD
(Ω)]d , (5.40)

since we defined V = Hσσσ × [H1(Ω)]d , with Hσσσ = {σσσ ∈ [L2(Ω)]d×d | ∇ · (σσσ +σσσ t) ∈ [L2(Ω)]d}, the
traces γD : [H1(Ω)]d → [H

1
2 (ΓD)]

d and γN : Hd
σσσ → [H−

1
2 (ΓN)]

d on ΓD and ΓN are well-defined. In
particular,

Hσσσ ,ΓN = {σσσ ∈ Hσσσ | γN(σσσ) = (σσσ ·n)|ΓN = 0}, [H1
ΓD
(Ω)]d = {u ∈ [H1(Ω)]d | γD(u) = u|ΓD = 0}.

(5.41)
Moreover, (V0,V ∗0 ) satisfy the properties of cone formalism (5.10). Thus, we can use the defini-
tion (5.39) of Lemma 1:

⟨M(σσσ ,u),(τττ,v)⟩V ′,V =⟨DP(σσσ ,u),(τττ,v)⟩V ′,V −⟨DP(τττ,v),(σσσ ,u)⟩V ′,V
=−⟨1

2(σσσ +σσσ
t) ·n,v⟩− 1

2 ,
1
2 ,ΓD

+ ⟨1
2(τττ + τττ

t) ·n,u⟩− 1
2 ,

1
2 ,ΓD

+

⟨1
2(σσσ +σσσ

t) ·n,v⟩− 1
2 ,

1
2 ,ΓN
−⟨1

2(τττ + τττ
t) ·n,u⟩− 1

2 ,
1
2 ,ΓN

,

(5.42)

where P : V = Hσσσ × [H1(Ω)]d →V0 = Hσσσ ,ΓN × [H1
ΓD
(Ω)]d is the projector into the subspace V0 of the

Hilbert graph space V with scalar product:

((σσσ ,u),(τττ,v))V = (u,v)[Ld(Ω)]d +(σσσ ,τττ)[L2(Ω)]d×d +(A(σσσ ,u),A(τττ,v)). (5.43)
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5.3 Discontinuous Galerkin discretization

In the literature, a few discretization approaches for FS are presented, e.g. finite volume method [235]
or discontinuous Galerkin (DGM) method [85, 76, 40]. More recently, a hp-adaptive hybridizable
DGM formulation was introduced in [49]. In this work, we perform a DGM discretization following
the notation reported in [85, 76]. Consider a shape-regular tessellation Th of the domain Ω and take
a piecewise polynomial space Vh over Th, defined by Vh = {z ∈V : z|T ∈ Pk

d(T ),∀T ∈ Th}, where k
is the polynomial degree. We assume that there is a partition PΩ = {Ωi}1≤i≤NΩ

of Ω into disjoint
polyhedra such that the exact solution z belongs to V ∗ = V ∩ [H1(PΩ)]

m. We define the discrete
bilinear form ∀yh ∈Vh, z ∈V ∗

ac f
h (z,yh) = ∑

T∈Th

(Az,yh)L2(T )+
1
2 ∑

F∈Fb
h

((M−D)z,yh)L2(F)− ∑
F∈F i

h

(DF [[z]],{{yh}})L2(F) (5.44a)

= ∑
T∈Th

(z, Ãyh)L2(T )+
1
2 ∑

F∈Fb
h

((M+D)z,yh)L2(F)+ ∑
F∈F i

h

(DF{{z}}, [[yh]])L2(F), (5.44b)

where the first two terms are the piece-wise discontinuous discretization of the bilinear form (5.12a)
and the last term penalizes the jump across neighboring cells and stabilizes the method. Here, Fb

h is
the collection of the faces of the triangulation Th belonging to the boundary of Ωh, while F i

h is the
collection of internal faces. The jump and the average of a function on a face F shared by two elements
T1 and T2 are defined as [[u]] = u|T1 − u|T2 and {{u}} = 1

2(u|T1 + u|T2), respectively. The boundary
operator D : ∂Ω→ Rm×m can be extended also on the internal faces F ∈ F i

h as DF = ∑
d
k=1 nF

k Ak,
where nF is a normal to the face F and it is well-defined.

In order to obtain quasi-optimal error estimates, extra stabilization terms are needed. We addition-

ally impose that Ai ∈ [C0,12 (Ω j)]
m×m, ∀T ∈ Th, i = 1, . . . ,d, ∀Ω j ∈ PΩ. A possibility is given by the

following stabilization term

sh(z,yh) = ∑
F∈Fb

h

(Sb
Fz,yh)L2(F)+ ∑

F∈F i
h

(Si
h[[z]], [[yh]])L2(F), (5.45)
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where the operators Si
h and Sb

F have to satisfy the following constraints for some α j > 0 for j = 1, . . . ,5:

Sb
Fz = 0 ∀F ∈ Fb

h , Si
F [[z]] = 0 ∀F ∈ F i

h, with z the exact solution, (5.46a)

Sb
F and Si

F are symmetric and nonnegative, (5.46b)

Sb
F ≤ α1Im,m, α2|DF | ≤ Si

F ≤ α3Im,m, (5.46c)

|((M−D)y,z)L2(F)| ≤ α4((Sb
F +M)y,y)1/2

L2(F)
∥z∥L2(F), (5.46d)

|((M+D)y,z)L2(F)| ≤ α5((Sb
F +M)z,z)1/2

L2(F)
∥y∥L2(F). (5.46e)

Specific definitions of these operators for our test cases are presented in [85, 76], properly declined for
our mixed boundary conditions in the compressible linear elasticity and advection–diffusion–reaction
test cases, see Sections 5.2.1 and 5.2.1, respectively. Finally, we can define the bilinear form and the
right-hand side

ah(z,yh) = ac f
h (z,yh)+ sh(z,yh), lh(yh) = ∑

T∈Th

( f ,yh)L2(T )+
1
2 ∑

F∈Fb
h

((M−D)g,yh)L2(F) (5.47)

that lead to the definition of the discrete problem.

Definition 5 (DG Friedrichs’ System). Given f ∈ L and g ∈Vh, the DGM approximation of the FS
constitute in finding a zh ∈Vh such that

ah(zh,yh) = lh(yh), ∀yh ∈Vh. (5.48)

To prove the accuracy of the discrete problem, it is necessary to have the following conditions:

• Consistency, i.e., ah(z,yh) = a(z,yh) for z ∈V ∗;

• L2-coercivity, i.e., ah(yh,yh)≥ µ0∥yh∥2
L +

1
2 |yh|2M, with |yh|2M =

´
∂Ω

ytMy;

• Inf-sup stability

|||zh|||≲ sup
yh ̸=0

ah(zh,yh)

|||yh|||
(5.49)

with |||y|||2 = ||y||2L2 + |y|2M + |y|2S +∑T∈Th
hT
∥∥Ak∂ky

∥∥2
L2(T ) and |y|2S = sh(y,y);

• Boundedness ah(w,yh)≲ |||w|||∗|||yh||| with

|||y|||2∗ = |||y|||2 + ∑
T∈Th

(
h−1

T ||y||2L2(T )+ ||y||2L2(∂T )

)
. (5.50)

Theorem 4 (Error estimate from [85, 76]). Let z ∈V ∗ be the solution of the weak problem (5.13a)
and z ∈ Vh be the solution of the discrete DGM problem (5.48). Then, the consistency and inf-sup
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stability of the discrete system (5.48) imply

|||z− zh|||≲ inf
yh∈Vh
|||z− yh|||∗, (5.51)

in particular, if z ∈ [Hk+1(Ω)]m the following convergence rate holds

|||z− zh|||≲ hk+1
2 ∥z∥[Hk+1(Ω)]m . (5.52)

5.4 Projection-based model order reduction

The computation of discrete solutions of parametrized PDEs can require a not negligible computational
time. In particular, in multi-query context, when many evaluations for different parameters are required,
the computations may become unbearable. In this section, we introduce a reduced order model (ROM)
for the FS in case of parameter dependent problems [126, 228], in order to drastically reduce the
computational costs. To do so, we exploit two aspects of the above presented FS: the linearity of the
problems and the affine dependence of the operators on the physical parameters.

As we have seen in Section 5.2.1, all the problems are depending on some parameters ρρρ ∈ P ⊂
RNpar and the dependence is affine. This means that it is possible to find Naff terms independent of the
parameters for each form, such that they can be affinely combined with some parameter dependent
functions to obtain the original operator, i.e.,

ah(z,yh;ρρρ) =
Naff

∑
ℓ=1

θ
a
ℓ (ρρρ)aℓ,h(z,yh), lh(yh) =

Naff

∑
ℓ=1

θ
f
ℓ (ρρρ)lh,l(yh). (5.53)

Then, we select a reduced space Vn⊂Vh provided by a compression algorithm, e.g. SVD/POD/PCA
[141, 153, 255] or Greedy algorithm [206, 207, 126, 64]. We suppose that the reduced dimension n is
much smaller than the dimension Nh of the full-order model space Vh. We look as ansatz for a reduced
solution zRB ∈Vn a linear combination of the bases {ψRB

j }n
j=1 of Vn, i.e.,

zRB =
n

∑
j=1

z j
RBψ

RB
j , (5.54)

then, performing a standard Galerkin projection, we obtain the following RB problem.

Definition 6 (Reduced Basis Problem). Find zRB ∈Vn, given by the coefficients z j
RB, such that

n

∑
i=1

z j
RB(ρρρ)

Naff

∑
ℓ=1

θ
a
ℓ (ρρρ)aℓ,h(ψ

RB
j ,ψRB

i ) =
Naff

∑
ℓ=1

θ
f
ℓ (ρρρ)( fℓ,ψRB

i ), for all i = 1, . . . ,n. (5.55)

The obtained problem scales depend on the dimension n and Naff in its assembly and only on n
in its solution, and it is completely independent of Nh. To obtain computational advantages for the
parametric problem, we split the tasks into an expensive offline phase and a cheap online phase. In the
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offline phase, we find the reduced space Vn and we assemble the reduced matrices and right-hand sides

Aℓ := {aℓ,h(ψRB
j ,ψRB

i )}i, j, bℓ := {( fℓ,ψRB
i )}i. (5.56)

In the online phase, we can simply evaluate the coefficients θ a
ℓ (ρρρ) and θ

f
ℓ (ρρρ) and obtain the reduced

linear system

A(ρρρ)zRB = b(ρρρ), with A(ρρρ) := ∑
ℓ

θ
a
ℓ (ρρρ)Aℓ and b(ρρρ) := ∑

ℓ

θ
f
ℓ (ρρρ)bℓ. (5.57)

This gives a great speedup in computational times.

5.4.1 Reduced basis a posteriori error estimate

We derive two error estimators for the energy norm and the L2 norm of the reduced basis error
eh = zh− zRB ∈Vh following the procedure in [126]. Exploiting the equality in (5.44), we obtain the
following lower bound

ah(eh,eh) =ac f
h (eh,eh)+ sh(eh,eh) (5.58a)

= ∑
T∈Th

(Aeh,eh)L2(T )+
1
2 ∑

F∈Fb

((M−D)eh,eh)L2(F)− ∑
F∈F i

h

(DF [[eh]],{{eh}})L2(F)+

(5.58b)

∑
F∈Fb

h

(Sb
Feh,eh)L2(F)+ ∑

F∈F i
h

(Si
h[[eh]], [[eh]])L2(F) (5.58c)

= ∑
T∈Th

((A0− 1
2X )eh,eh)L2(T )+

1
2 ∑

F∈Fb

(Meh,eh)L2(F)+ ∑
F∈Fb

h

(Sb
Feh,eh)L2(F)+ ∑

F∈F i
h

(Si
h[[eh]], [[eh]])L2(F)

(5.58d)

≥µ0∥eh∥2
L +

1
2 |eh|2M + |eh|2S, (5.58e)

where we have defined | · |2M = 1
2 ∑F∈Fb (M·, ·)L2(F) and | · |2S = sh(·, ·). We define the R-norm

||yh||2R = µ0∥yh∥2
L +

1
2 |yh|2M + |yh|2S, ∀yh ∈Vh, (5.59)

that may depend on ρ only through µ0 and is generated by the scalar product

⟨uh,vh⟩R = µ0 ∑
T∈Th

(uh,vh)L2(T )+
1
2 ∑

F∈Fb

(Msymuh,vh)L2(F)+∑
Fb

(Sbuh,vh)+∑
F i

(Siuh,vh). (5.60)

The boundary operators we will employ in our benchmarks are all skew-symmetric soMsym = M+Mt

2

is the null matrix and |eh|M = 0. Now, we can proceed to provide an a posteriori error estimate for
the R-norm and energy norm. Hence, let us define rRB(yh) = lh(yh;ρ)−ah(zRB,yh;ρ) and its R and



114 Friedrichs’ systems

L-Riesz representations as r̂R and r̂L such that

rRB(uh) = ⟨r̂R,uh⟩R, XRr̂R = Lh−AhzRB, rRB(uh) = ⟨r̂L,uh⟩L, XLr̂L = Lh−AhzRB, (5.61)

where XR and XL are the R-norm and L-norm mass matrices, and Lh, Ah and zRB are the representations
of lh(·;ρ), ah(·, ·;ρ) and zRB in the DG basis of Vh. The r̂L representation can be computed cheaply
when the parametric model is affinely decomposable with respect to the parameters, while r̂R requires
the inversion of a possibly parametric dependent matrix XR.

Now, consider the energy norm of the error ∥eh∥2
nrg = ah(eh,eh) and the coercivity constant

∥eh∥2
nrg ≥ µ0∥eh∥2

L derived in (5.58e), we have the following a posteriori error estimates

∥eh∥nrg

∥zh∥nrg
≤ ||r̂R||R
∥zh∥nrg

,
∥eh∥R

∥zh∥R
≤ ||r̂R||R
∥zh∥R

,
∥eh∥nrg

∥zh∥nrg
≤ ||r̂L||L√

µ0∥zh∥nrg
,

∥eh∥L

∥zh∥L
≤ ||r̂L||L

µ0∥zh∥L
,

(5.62)
namely, the relative energy error with the corresponding a posteriori R-norm energy estimate, the
relative R-norm error with the corresponding a posteriori R-norm estimate, the relative energy error
with the corresponding a posteriori L-norm energy estimate, and the relative L-norm error with the
corresponding a posteriori L-norm estimate.

5.4.2 Optimally stable error estimates for the ultraweak Petrov-Galerkin formulation

In this section, we show that Friedrichs’ systems are a desirable unifying formulation to consider
when performing model order reduction also due to the possibility to achieve an optimally stable
formulation. This can further simplify the error estimator analysis reaching the equality between
the error and the residual norm. This is not the first case in which optimally stable formulations are
introduced also at the reduced level, see [28, 116, 124]. In the following, we describe how to achieve
this ultraweak formulation and we delineate the path one should follow to use such formulation.
Nevertheless, we will not use this formulation in our numerical tests and we leave the implementation
to future studies.

We introduce the following Discontinuous Petrov-Galerkin (DPG) formulation from [40]. To do
so, we first define V (Th) the broken graph space with norm ∥•∥2

V (Th)
= ∥•∥2

L +∑T∈Th
∥A•∥2

L2(T ) and
Ṽ =V/Q(Ω) the quotient of the graph space V with

Q(Ω) =

{
z ∈V

∣∣∣∣ ∑
T∈Th

⟨Dz,y⟩Ṽ (T ),V (T )+
1
2⟨(M−D)z,y⟩Ṽ (Ω),V (Ω) = 0, ∀y ∈V (Th)

}

=

{
z ∈V

∣∣∣∣a(z,y) = 0, ∀y ∈V (Th)

}
.

(5.63)
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The DPG formulation reads: find (z,q) ∈ L×Ṽ such that, for all y ∈V (Th),

∑
T∈Th

(z, Ãy)L2(T )+ ∑
T∈Th

⟨Dq,y⟩Ṽ (T ),V (T )+
1
2⟨(M−D)q,y⟩Ṽ ,V = ∑

T∈Th

( f ,v)Ṽ (T ),V (T )+
1
2⟨(M−D)g,y⟩Ṽ ,V .

(5.64)
The introduction of the hybrid face variables q ∈ Ṽ is necessary since z ∈ L does not satify (5.8). In
practice, assuming that the traces of y ∈V (Th) are well-defined and belong to a space X(Fi,b), we can
formulate (5.64) as follows: find (z,q) ∈ L×X(Fi,b) such that, for all y ∈V (Th),

∑
T∈Th

(z, Ãy)L2(T )+ ∑
F∈Fi

(Dq, [[y]])X(F)+
1
2 ∑

F∈Fb

((M−D)q,y)X(F)= ∑
T∈Th

( f ,v)Ṽ (T ),V (T )+
1
2 ∑

F∈Fb

((M−D)g,y)X(F),

(5.65)
where X(Fi,b) is, for example, [H−

1
2 (Fi,b)]

d×[H 1
2 (Fi,b)]

d for compressible linear elasticity, H−
1
2 (Fi,b)×

H
1
2 (Fi,b) for the scalar advection–diffusion–reaction and L2

T (Fi,b)×L2
T (Fi,b) for the Maxwell equa-

tions in stationary regime, with L2
T (Fi,b) being the space of fields in H(curl,Th) whose tangential

component belongs to [L2(Fi,b)]
3.

The problem (5.64) above is well-posed and consistent [40, Lemma 2.4] with the previous
formulation in (5.13a). We consider the optimal norms,

∥(z,q)∥2
U = ∑

T∈Th

∥z∥2
L(T )+∥q∥2

Ṽ , ∥y∥2
Y = ∑

T∈Th

∥Ãy∥2
L(T )+∥[[y]]∥2

∂Ωh
, with ∥[[y]]∥∂Ωh = sup

q∈Ṽ

a(q,y)
∥q∥Ṽ

,

(5.66)
or formally, considering (5.65)

∥(z,q)∥2
U = ∑

T∈Th

∥z∥2
L(T )+ ∑

F∈Fi,b

∥q∥2
X(F), ∥y∥2

Y = ∑
T∈Th

∥Ãy∥2
L(T )+ ∑

F∈Fi

∥DF [[y]]∥2
X(F)+ ∑

F∈Fb

∥(Mt−D)y∥2
X(F).

(5.67)
With these optimal norms for the trial and test spaces, we have the following result [39, Theorem 2.6].

Theorem 5 (Optimally stable formulation). The bilinear form b : (L× Ṽ ,∥•∥U )→ (V (Th),∥•∥Y)
defined as

b(u,y) = ∑
T∈Th

(z, Ãy)L2(T )+ ∑
T∈Th

⟨Dq,y⟩Ṽ (T ),V (T )+
1
2⟨(M−D)q,y⟩Ṽ ,V (5.68)

with u = (z,q), is an isometry between L×Ṽ and V ′(Th): we have that γ = β = β ∗ = 1, where

γ := sup
u∈U

sup
y∈Y

b(u,y)
∥u∥U∥y∥Y

, β := inf
u∈U

sup
y∈Y

b(u,y)
∥u∥U∥y∥Y

, β
∗ := inf

y∈Y
sup
u∈U

b(u,y)
∥u∥U∥y∥Y

(5.69)

with U = (L×Ṽ ,∥•∥U ).
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This property is inherited at the discrete level as long as fixed UNh
h ⊂ U a discretization of the trial

space with dim Zh = Nh, the discrete test space Y Nh
h ⊂V (Th) is the set of supremizers

Y Nh
h = span

{
yuh ∈V (Th)

∣∣∣∣y = argmax
y∈V (Th)

b(uh,y)
∥y∥Y

, uh ∈ ZNh
h

}
(5.70)

and dim Uh = dim Yh, see [39, Lemma 2.8]. In particular, for every uh = (zh,qh) ∈UNh
h , we have the

optimal a posteriori error estimate

∥u−uh∥U = sup
y∈V (Th)

b(u−uh,y)
∥y∥Y

= ∥rh(uh)∥(V (Th))′ , ⟨rh(uh),v⟩(V (Th))′,V (Th)= ⟨ f ,v⟩(V (Th))′,V (Th)−b(uh,v).

(5.71)
The same reasoning can be iterated another time to perform model order reduction with the choice
Vn = {ψRB

j }n
j=1 ⊂UNh

h ⊂ U , and

Y RB = span

{
yuRB ∈V (Th)

∣∣∣∣y = argmax
y∈V (Th)

b(uRB,y)
∥y∥Y

, uRB ∈Vn

}
, (5.72)

such that for uRB ∈Vn,

∥u−uRB∥U = ∥rRB(uRB)∥(V (Th))′ , ⟨rRB(uRB),v⟩(V (Th))′,V (Th) = ⟨ f ,v⟩(V (Th))′,V (Th)−b(uRB,v).
(5.73)

The main difficulty is the evaluation of the trial spaces Y Nh
h and Y RB since the bilinear form b may

depend on the parameters ρρρ . If the parameters affect only the source terms, the boundary conditions
or the initial conditions for time-dependent FS, this problem is avoided. The evaluation of Y Nh

h can be
performed locally for each element T ∈ Th, differently from Y RB. An example of the evaluation of the
basis of Y Nh

h is presented in [39, Equations 24, 25] for linear scalar hyperbolic equations that can be
interpreted as FS.

5.5 Domain decomposable Discontinuous Galerkin ROMs

Extreme-scale parametric models are unfeasible to reduce with standard approaches due to the
high computational costs of the offline stage. Parametric multi-physics simulations, such as fluid-
structure interaction problems, are reduced inefficiently with a global reduced basis, depending on the
complexity of the interactions between the physical models considered and the parametric dependency.
In some cases, only a part of a decomposable system is reducible with a ROM, thus a possible solution
is to implement a ROM-FOM coupling through an interface. In the presence of moving shocks [14]
affected by the parametrization, one may want to isolate these difficult features to approximate and
apply different dimension reduction methodologies depending on the subdomain. These are the main
reasons to develop domain decomposable or partitioned ROMs (DD-ROMs).
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Some approaches from the literature are the reduced basis element methods [172, 173], the static
condensation reduced basis element method [134, 82, 134], non-intrusive methods based on local
regressions in each subdomain [275, 274] and hyper-reduced ROMs [168]. In this last case, local
approximations are useful because the local reduced dimensions are smaller and therefore more
accurate local regressions can be designed to perform non-intrusive surrogate modelling. Little
has been developed for the DGM method, even though its formulation imposes naturally flux and
solution interface penalties at the internal boundaries of the subdomains, in perspective of performing
model order reduction. In our case, the linear systems associated with the parametric models are
algebraically partitioned in disjoint subdomains coupled with the standard penalties from the weak
DGM formulations, without the need to devise additional operators to perform the coupling as long as
the interfaces’ cuts fall on the cell boundaries.

Another less explored feature of DD-ROMs is the possibility to repartition the computational
domain while keeping the data structures relative to each subdomain local in memory, with the
aim of obtaining more efficient or accurate ROMs. In fact, one additional reason to subdivide the
computational domain is to partition the solution manifold into local solution manifolds that have
a faster decay of the Kolmogorov n-width. The repartition of the computational domain can be
performed with ad hoc domain decomposition strategies. To our knowledge, the only case found
in the literature is introduced in [274], where the degrees of freedom are split in each subdomain
minimizing the communication and activity between them and balancing the computational load
across them. Relevant is the choice of weights to assign to each degree of freedom: uniform weights,
nodal values of Reynolds stresses for the turbulent Navier-Stokes equations or the largest singular
value of the discarded local POD modes. In particular, the last option results in a balance of energy in
L2 norm retained in each subdomain. We explore a different approach.

It must be remarked that in any case, fixed the value of the reconstruction error of the training
dataset in Frobenious norm ∥·∥F , there must be at least a local reduced basis dimension greater
or equal to the global reduced basis space dimension. In fact, for the Eckhart-Young theorem, if
X ∈ Rd×n is the snapshots matrix ordered by columns, we have that the projection into the first k
modes {vk}k

i=1 achieves the best approximation error in the Frobenious norm in the space of matrices
of rank k:

Pk = argmin
P∈Rm×ns.t. r(P)=k

∥X−PX∥F , Pk =
k

∑
i=1

vi⊗ vi, (5.74)

where r(·) is the matrix rank. So, in general, it is not possible to achieve a better training approximation
error in the Frobenious norm ∥·∥F employing a number of local reduced basis smaller than what would
be needed to achieve the same accuracy with a global reduced basis. So, differently from [274], instead
of balancing the local reduced basis dimension among subdomains, we repartition the computational
domain in regions whose restricted solution manifold is approximable by linear subspaces of higher
or lower local dimension. Anyway, for truly decomposable systems we expect that the reconstruction
error on the test set is lower when considering local reduced basis instead of global ones, as will be
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shown for the Maxwell equation in stationary regime test case with discontinuous piecewise constant
parameters, see Figure 5.7.

5.5.1 Implementation of Domain Decomposable ROMs

Let us assume that the full-order model is implemented in parallel with memory distributed parallelism
with K > 1 cores, i.e., each i-th core owns locally the data structures relevant only to its assigned
subdomain Ωi of the whole computational domain ∪K

i=1Ωi = Ωh ⊂ Rd , for i = 1, . . . ,K. We will
employ the deal.II library [12] to discretize the FS with the DGM method, assemble the associated
linear systems and solve them in parallel [18]. In particular, we employ p4est [42] to decompose the
computational domain, PETSc [17] to assemble the linear system and solve it at the full-order level
and petsc4py [66] to assemble and solve the reduced order system. At the offline and online stages,
the computations are performed in a distributed memory setting in which each core assembles its own
affine decomposition so that the evaluation of the reduced basis and of the projected local operators is
always performed in parallel.

The weak formulation (5.48) is easily decomposable thanks to the additive properties of the
integrals. We recall the definition of the weak formulation ∀yh ∈Vh, zh ∈V ∗

ac f
h (zh,yh)+ sh(zh,yh) = ∑

T∈Th

(zh, Ãyh)L2(T )+
1
2 ∑

F∈Fb
h

((M+D)zh,yh)L2(F)+ ∑
F∈F i

h

(DF{{zh}}, [[yh]])L2(F)+

∑
F∈Fb

h

(Sb
Fzh,yh)L2(F)+ ∑

F∈F i
h

(Si
h[[zh]], [[yh]])L2(F),

(5.75)

and we decompose it into the K subdomains as

ac f
h (zh,yh)+ sh(zh,yh) =

K

∑
i=1

 ∑
T∈Th,i

(zh, Ãyh)L2(T )+
1
2 ∑

F∈Fb
h,i

((M+D)zh,yh)L2(F)+ ∑
F∈F i

h,i

(DF{{zh}}, [[yh]])L2(F)+

∑
F∈Fb

h,i

(Sb
Fzh,yh)L2(F)+ ∑

F∈F i
h,i

(Si
h[[zh]], [[yh]])L2(F)

+
K

∑
i=1
j=i

 ∑
F∈F i

h,i, j

(DF{{zh}}, [[yh]])L2(F)+

∑
F∈F i

h,i, j

(Si
h[[zh]], [[yh]])L2(F)

 ,

(5.76)

lh(yh) = ∑
T∈Th

( f ,yh)L2(T )+
1
2 ∑

F∈Fb
h

((M−D)g,yh)L2(F) =
K

∑
i=1

 ∑
T∈Th,i

( f ,yh)L2(T )+
1
2 ∑

F∈Fb
h,i

((M−D)g,yh)L2(F)

 ,

(5.77)
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where we have defined the internal subsets Th,i = Th∩Ωi, F i
h,i = F i

h∩ Ω̊i and Fb
h,i = Fb

h ∩ Ω̊i, ∀i =
1, . . . ,K and the interfaces subsets F i

h,i, j =F i
h∩Ωi∩Ω j and Fb

h,i, j =Fb
h ∩Ωi∩Ω j, ∀i = 1, . . . ,K. We

remark that the computational domain is always decomposed such that the cuts of the subdomains
{∂Ωi}K

i=1 fall on the interfaces of the triangulation F i
h∪Fb

h .
We define the bilinear and linear operators in V ∗h ,

Aii = ∑
T∈Th,i

(•, Ã•)L2(T )+
1
2 ∑

F∈Fb
h,i

((M+D)•,•)L2(F)+ ∑
F∈F i

h,i

(DF{{•}}, [[•]])L2(F)+

∑
F∈Fb

h,i

(Sb
F•,•)L2(F)+ ∑

F∈F i
h,i

(Si
h[[•]], [[•]])L2(F), ∀i = 1, . . . ,K,

(5.78)

Ai j =A ji = ∑
F∈F i

h,i, j

(DF{{•}}, [[•]])L2(F)+ ∑
F∈F i

h,i, j

(Si
h[[•]], [[•]])L2(F), ∀ j, i = 1, . . . ,K, i ̸= j, (5.79)

Fi = ∑
T∈Th,i

( f ,•)L2(T )+
1
2 ∑

F∈Fb
h,i

((M−D)g,•)L2(F), ∀i = 1, . . . ,K, (5.80)

and their matrix representation in the discontinuous Galerkin basis of Vh,

(Aii)|Vh
=Aii, Fi|Vh

=Fi, ∀i= 1, . . . ,K, (Ai j)
∣∣
Vh
= (A ji)

∣∣
Vh
=Ai j =A ji, ∀ j, i= 1, . . . ,K, i ̸= j,

(5.81)
and in the local reduced basis Vi = {ψRB

j,i }n
j=1 ⊂Vh(Ωi), i = 1, . . . ,K,

(Aii)|VRB
=Bii, Fi|VRB

=Li, ∀i= 1, . . . ,K, (Ai j)
∣∣
VRB

= (A ji)
∣∣
VRB

=Bi j =B ji, ∀ j, i= 1, . . . ,K, i ̸= j.
(5.82)

As anticipated, in our test cases the subdomains interface penalties are naturally included inside
{Ai j}i, j=1,...,K . In practice, additional penalty terms could be implemented:

Si j = ∑
F∈F i

h,i, j

(S[[•]], [[•]])L2(F), Si j
∣∣
Vh
= Si j (Ai j +Si j)

∣∣
VRB

= Bi j, ∀ j, i = 1, . . . ,K, i ̸= j.

(5.83)
A matrix representation of the projection of the full-order block matrix (Ai j)

K
i, j=1 ∈ Rd×d into

the reduced order block matrix (Bi j)
K
i, j=1 ∈ RKn×Kn is shown in Figure 5.1 for K = 4. We remark

that, differently from continuous Galerkin formulations, the DGM penalization on jumps across the
interfaces is already enough to couple the subdomains and there is no need for further stabilization,
as shown in Figure 5.1. Nonetheless, additional interface penalties terms can be easily introduced,
taking also into account DGM numerical fluxes. The reduced dimension is the number of subdomains
K times the local reduced basis dimensions {ni}K

i=1, here supposed equal n = ni, i = 1, . . . ,K, but in
general can be different.
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Fig. 5.1 Assembly of the reduced block matrix {Bi, j}4
i, j=1 through the projection onto the local reduced

basis {Vi}4
i=1 of the full-order partitioned matrix A = {Ai, j}4

i, j=1 when considering 4 subdomains. The
natural DGM penalty terms are included in the matrix A without the need for additional penalty terms
{Si, j}4

i ̸= j, ,i, j=1 to impose stability at the reduced level.

5.5.2 Repartitioning strategy

A great number of subdomains can pollute the efficiency of the developed DD-ROMs at the online
stage since the reduced dimension would be ∑

K
i=1 ni that scales linearly with the number of cores if the

local dimensions are equal. In order to keep the computational savings in the assembly of the affine
decomposition at the offline stage, we may want to preserve the distributed property of our ROM.
One possible solution is to fix a reduced number of subdomains k≪ K such that ∑

k
i=1 ni is small

enough to achieve a significant speedup with respect to the FOM. The additional cost with respect to
a monodomain ROM is associated with the evaluation of the k local reduced basis with SVD and the
assembly of the affine decomposition operators. The new k reduced subdomains do not need to be
agglomerations of the FOM subdomains, hence, different strategies to assemble the new k reduced
subdomains can be investigated.

The number of subdomains K was kept the same as the FOM since it is necessary to collect the
snapshots efficiently at the full-order level through p4est. However, if we decide to repartition our
computational domain, we can develop decomposition strategies that reduce ∑

K
i=1 ni. Ideally, having

in mind the Eckhart-Young theorem, a possible strategy is to lump together all the dofs of the cells that
have a fast decaying Kolmogorov n-width, and focus on the remaining ones. We test this procedure in
the practical case k = 2, K = 4 to perform numerical experiments in section 5.5.3.

To solve the classification problem of partitioning the elements of the mesh into k subdomains,
we describe here two scalar indicators that will be used as metrics. For k = 2 subdomains, it will be
sufficient to choose the percentage of cells Pl corresponding to the lowest values of the chosen scalar
indicator. Other strategies for k > 2 may also involve clustering algorithms and techniques to impose
connectedness of the clusters, as done for local dimension reduction in parameter spaces in [220]. A
first crude and cheap indicator to repartition the computational domain is the cellwise variance of
the training snapshots, as it measures how well, in mean squared error, the training snapshots are
approximated by their mean, ∀T ∈ Th.
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Definition 7 (Cellwise variance indicator). We define the cellwise variace indicator Ivar : Th→ R+,

Ivar(T )=
ˆ

T
∥Var({z(ρρρ i)}n

i=1)∥L2(Rm) dx, (Var({z(ρρρ i)}n
i=1))l =

1
n

n

∑
i=1

∣∣∣∣∣zl(ρρρ i)− 1
n

n

∑
j=1

zl(ρρρ j)

∣∣∣∣∣
2

, l = 1, . . . ,m,

(5.84)
where n > 0 is the number of training DGM solutions {z(ρρρ i)}n

i=1 with z(ρρρ i) : Ω⊂ Rd → Rm, ∀i ∈
{1, . . . ,n}.

Note that the indicator is a scalar function on the set of elements of the triangulation Th. This is
possible thanks to the assumption that boundaries of the subdomains belong to the interfaces of the
elements of Th. Moreover, when this hypothesis is not fulfilled, we would need to evaluate additional
operators to impose penalties at the algebraical interfaces between subdomains that are not included
in the set F i

h∪Fb
h , not to degrade the accuracy.

The cellwise variance indicator is effective for all the test cases for which there is a relatively
large region that is not sensitive to the parametric instances, as in our advection diffusion reaction
test case in Section 5.5.3. Common examples are all the CFD numerical simulations that have a
far-field with fixed boundary conditions. However, the variance indicator may be blind to regions in
which the snapshots can be spanned by a one or higher dimensional linear subspace and are not well
approximated by a constant field, as in the compressible linear elasticity test case in Section 5.5.3.

In these cases, a valid choice is represented by a cellwise Grassmannian dimension indicator. We
denote with DT the number of degrees of freedom associated with each element T , assumed constant
in our test cases.

Definition 8 (Cellwise Grassmannian dimension indicator). Fixed 1≤ nT ∈ N, and 1≤ nneig ∈ N, we
define the cellwise Grassmannian dimension indicator IG : Th→ R+,

IG(T ) = ∥XT −UTUT
T XT∥F , (5.85)

where XT ∈ RnneigDT×n is the snapshots matrix restricted to the cell T and its nneig nearest neighbours,
and UT ∈ RnneigDT×rT are the modes of the truncated SVD of XT with dimension rT .

The cellwise Grassmannian dimension indicator IG is a measure of how well the training snap-
shots restricted to a neighbour of each cell are approximated by a nT dimensional linear subspace.
Employing this indicator, we recover an effective repartitioning of the computational subdomain of
the compressible linear elasticity test case, see Section 5.5.3. The Grassmannian indicator has two
hyperparameters that we fix for each test case in section 5.5.3: the number of nearest-neighbour cells
is nneigh = 3 and the number of reduced local dimension used to evaluate the L2 reconstruction error
is nT = 1.

We remark that both indicators do not guarantee that the obtained subdomains belong to the
same connected components and, though this might be a problem in terms of connectivity and
computational costs for the FOM, at the reduced level this does not affect the online computational
costs. Nevertheless, in the tests we perform, the obtained subdomains are connected.
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Now, the assembly of the affine decomposition proceeds as explained in Section 5.5.1 with
the difference that at least one local reduced basis and reduced operator is split between at least 2
subdomains/cores. A schematic block matrix representation of the procedure is shown in Figure 5.2.

Fig. 5.2 Repartitioning of the reduced block matrix shown in Figure 5.1 from K = 4 subdomains
to k = 2 repartitioned subdomains. The projection from the full-order matrix A = {Ai, j}4

i, j=1 to the
reduced matrix B = {Bi, j}2

i, j=1 is sketched. It is performed locally in a distributed memory setting,
the re-ordering shown by the arrows is reported only to visually see which block structure of the
full-order matrix A would correspond to the blocks of the reduced matrix B.

5.5.3 Numerical experiments

In this section, we test the presented methodology for different linear parametric partial differential
equations: the Maxwell equations in stationary regime in section 5.5.3 (MS), the compressible
linear elasticity equations in section 5.5.3 (CLE) and the advection diffusion reaction equations
in section 5.5.3 (ADR). We study two different parametrizations for the test cases MS and CLE: one
with parameters that affect the whole domain MS1 and CLE1, and one with parameters that affect
independently different subdomains MS2 and CLE2. We show a case in which DD-ROMs work
effectively MS2 and a case CL2 in which the performance is analogous to single domain ROMs, even
if the parameters have a local influence.

We test the effectiveness of the a posteriori error estimates introduced in section 5.4.1, the
accuracy of DD-ROMs for K = 4 and the results of repartitioning strategies with k = 2 subdomains.
When performing a repartition of the computational domain Ω in subdomains {Ωi}k

i=1 with reduced
dimensions {rΩi}k

i=1, we call the subdomains with lower values of the variance indicator Ivar, see
definition 7, low variance regions and with lower values of the Grassmannian indicator IG, see
definition 8, low Grassmannian reconstruction error. The complementary subdomains are the high
variance and high Grassmannian reconstruction error regions, respectively. We show a case (CLE1)
in which the Grassmannian indicator detects a better partition in terms of local reconstruction error
with respect to the variance indicator.

We will observe that the relative errors in R-norm and energy norm and the L2 relative error
estimator and L2 relative energy norm estimator are the most affected by the domain partitions.
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The open–source software library employed for the implementation of the full-order Friedrichs’
systems discontinuous Galerkin solvers is deal.II [12]. The partition of the computational domain is
performed in deal.II through the open–source p4est package [42]. The distributed affine decompo-
sition data structures are collected in the offline stage and exported in the sparse NumPy format [121].
The reduced order models and the repartition of the computational domains are implemented in
Python with MPI-based parallel distributed computing mpi4py [65] and petsc4py [17] for solving
the linear full-order systems through MUMPS [6], a sparse direct solver.

Maxwell equations in stationary regime (MS)

We consider the parametric Maxwell equations in the stationary regime in d = 3 spatial dimensions,
with m = 6 equations, on a torus Ω⊂ R3 with inner radius r = 0.5 and outer radius R = 2 centered in
000 and lying along the (x,z) plane:(

µH+∇×E
σE−∇×H

)
=

(
g
f

)
, ∀x ∈Ω, (5.86)

the tangential homogeneous boundary conditions n×E = 0 are applied with the boundary opera-
tor (5.18). We vary the parameters in the interval ρρρ = (µ,σ) ∈ [0.5,2]× [0.5,3] ⊂ R2, leading to
µ0 = min(µ,σ).

We consider the exact solutions

Hexact(x) =−
1
µ

(
2xy√

x2 + z2
,
−4y2

√
x2 + z2 +

√
x2 + z2(−12(x2 + z2)−15)+32(x2 + z2)

4(x2 + z2)
,

2xy√
x2 + z2

)
,

Eexact(x) =
(

z√
x2 + z2

,0,− x√
x2 + z2

)
·
(

r2− y2−
(

R−
√

x2 + z2
)2
)
.

We remark that the exact solutions can be approximated with a linear reduced subspace of dimension
1, if we obtained the reduced basis with a partitioned SVD on the fields (H,E) separately. We do not
choose this approach and perform a monolithic SVD to test the convergence of the approximation with
a DD-ROMs with respect to the local reduced dimensions. The source terms are defined consequently
as

g(x) = 0, f(x) = σEexact−∇×Hexact. (5.87)

We consider two parametric spaces:

ρρρ = (µ,σ) ∈ [0.5,2]× [0.5,3] = P1 ⊂ R2, (MS1) (5.88a)

ρρρ = (µ1,σ1,µ2,σ2) ∈ [0.5,2]× [0.5,3]× [0.5,2]× [0.5,3] = P2 ⊂ R4, (MS2) (5.88b)
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where in the second case, the parameters µ and σ are now piecewise constant:

µ =

µ1, x < 0,

µ2, x≥ 0,
σ =

σ1, x < 0,

σ2, x≥ 0,
(5.89)

where x = (x,y,z) ∈Ω⊂ R3. In Figure 5.3, we show solutions for µ = σ = 1 and for discontinuous
values of the parameters: µ1 = σ1 = 1 in {x < 0}∩Ω and µ2 = σ2 = 2 in {x ≥ 0}∩Ω. The FOM
partitioned and DD-ROM repartitioned subdomains are shown in Figure 5.4. For MS1, we choose the
variance indicator to repartition the computational subdomain in two subsets: Pl = 20% of the cells
for the low variance part and 80% for the high variance part. For MS2, we split the computational
domain into two parts with the Grassmannian indicator and Pl = 50%.

At the end of this subsection a comparison of the effectiveness of DD-ROMs with and without
discontinuous parameters will be performed, the associated error plots are reported in Figure 5.6 and
Figure 5.7. We will see that, for this simple test case MS2, there is an appreciable improvement of the
accuracy when the computational domain subdivisions match the regions {x < 0}∩Ω and {x≥ 0}∩Ω

in which µ and σ are constant. Such subdivision is detected by the Grassmannian indicator with
Pl = 50%, as shown in Figure 5.4 on the right. This is the archetypal case in which DD-ROMs are
employed successfully, in comparison with MS1 for which there is no significant improvement with
respect to classical global linear reduced basis.

Fig. 5.3 MS. Electric and magnetic fields of the Maxwell equations in stationary regime with Dirichlet
homogeneous boundary conditions n×E = 0. The vectors of the magnetic and electric fields are
scaled by 0.5 and 2 of their magnitude respectively. Left: MS1, µ = σ = 1, test case errors shown in
Figure 5.6. Right: MS2, µ = σ = 1 in {x < 0}∩Ω and µ = σ = 2 in {x≥ 0}∩Ω, test case errors
shown in Figure 5.7.
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Fig. 5.4 MS. Left: FOM computational domain partitioned in K = 4 subdomains inside deal.II.
Center: MS1, DD-ROM repartition of the computational subdomain k = 2 with the cellwise variance
indicator Ivar, definition 7: 20% of the cells belong to the low variance part, represented in blue
inside the torus, and the other 80% belong to the high variance part, represented in red. Right: MS2,
DD-ROM repartition with variance indicator Pl = 50%. The computational domain is exactly split at
the interfaces that separate the subdomains {x < 0}∩Ω and µ = σ = 2 in which the parameters µ

and σ are constant.

In Figure 5.5, we show how the different thresholds applied to the two indicators can affect
the reconstruction error on a reduced space with nΩi = 3. All the lines plot the local relative error
computed on different subdomains (either one of the k DD-ROM subdomains or on the whole
domain). On the x-axis it is shown the percentage of cells that are grouped into the low variance or
low Grassmannian DD-ROM subdomain. We observe that the cellwise variance indicator is a good
choice for the purpose of repartitioning the subdomain from K = 4 to k = 2. Indeed, it is possible to
build a low variance subdomain (value of the abscissa 20% in Figure 5.5) with a low local relative
reconstruction error (5 ·10−4) with respect to the global one (8.6 ·10−4). This means that by choosing
the threshold Pl = 20% for the low variance subdomain, we should be able to use less reduced basis
functions for that subdomain without affecting too much the global error.
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Fig. 5.5 MS1. Local relative L2-reconstruction errors of the snapshots matrix restricted to the two
subdomains of the repartitioning performed with the indicator Ivar (in red and light-blue), Definition 7,
and IG (in orange and blue), Definition 8. The relative L2-reconstruction error attained on the whole
domain is shown in black for the indicator Ivar and in brown for the indicator IG. The local reduced
dimensions used to evaluate the local reconstruction errors is nΩi = 3, i = 1,2.

Test case MS1. We evaluate ntrain = 20 training full-order solutions and ntest = 80 test full-
order solutions, corresponding to a uniform independent sampling from the parametric domain
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P1 ⊂ R2. Figure 5.6 shows the result relative to the relative L2-error and relative errors in energy
norm, with associated a posteriori estimators. The numberd abscissae 0,5,10, . . . ,95 represents the
train parameters ntrain = 20 while the others ntest = 80 parameters are the test set. For these studies,
we have fixed the local reduced dimensions to nΩi = 3, i = 1, . . . ,K for K = 4, nΩ = 3 for the whole
computational domain and nΩ1 = 2, nΩ2 = 3 for the DD-ROM repartitioned case with k = 2. This
choice of repartitioning with the 20% of low variance cells and local reduced dimension nΩ1 = 2 does
not deteriorate significantly the accuracy and the errors almost coincide for all approaches. However,
unless the parameters σ ,µ assume different discontinuous values in the computational domain Ω,
DD-ROMs are not advisable for this test case if the objective is improving the predictions’ accuracy.

100

10 1

10 2

10 3

10 4

4 
pa

rti
tio

ns
{r

i}K i=
1=

[3
, 3

, 3
, 3

]

Maxwell equations in stationary regime (MS1)
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Fig. 5.6 MS1. Errors and estimators for Maxwell equations corresponding to the ntrain = 20 uniformly
sampled training snapshots corresponding to the abscissae 0,5,10, . . . ,95, and ntest = 80 uniformly
sampled test snapshots, corresponding to the other abscissae. The reduced dimensions of the ROMs
are {nΩi}K

i=1 = [3,3,3,3] for K = 4 partitions, nΩ = 3 for k = 1 partition, and {nΩi}k
i=1 = [2,3] for

k = 2 partitions. For the case k = 2 we employed the cellwise variance indicator IG, Definition 7, with
Pl = 20%. It can be seen that even by reducing the local dimension from 3 to 2 of one of the k = 2
repartitioned subdomains, the accuracy of the predictions does not decrease sensibly.

Test case MS2. Similarly to the previous case, we evaluate ntrain = 20 training full-order solutions
and ntest = 80 test full-order solutions, corresponding to a uniform independent sampling from the
parametric domain P2 ⊂ R4. As mentioned above, if we vary the parameters ρρρ = (µ,σ) discontinu-
ously on the subdomains {x≥ 0}∩Ω and x ∈ {x < 0}∩Ω, we obtain the results shown in Figure 5.7.
It can be seen that repartitioning Ω in k = 2 DD-ROM subdomains with the local Grassmannian
indicator IG and Pl = 50% produces effective DD-ROMs compared to the case of a single reduced
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solution manifold for the whole computational domain and for the DD-ROM with k = 4 for which the
subdomains do not match {x < 0}∩Ω and {x≥ 0}∩Ω. In this case, we kept the local dimension of
DD-ROM repartitioned case with k = 2 equal nΩ1 = nΩ2 = 3. For this simple test case, there is an
appreciable improvement for some test parameters in the accuracy for k = 2 instead of K = 4 or a
classical global linear basis ROM.
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Maxwell equations in stationary regime, discontinuous parameters (MS2)
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Fig. 5.7 MS2. Errors and estimators for Maxwell equations with discontinuous µ and σ corresponding
to the ntrain = 20 uniformly sampled training snapshots corresponding to the abscissae 0,5,10, . . . ,95,
and ntest = 80 uniformly sampled test snapshots, corresponding to the other abscissae. The reduced
dimensions of the ROMs are {nΩi}K

i=1 = [3,3,3,3] for K = 4 partitions, nΩ = 3 for k = 1 partition, and
{nΩi}k

i=1 = [3,3] for k = 2 partitions. For the case k = 2 we employed the cellwise local Grassmannian
dimension indicator IG, Definition 7, with Pl = 50%. The subdivisions detected exactly match the
subdomains {x < 0}∩Ω and {x≥ 0}∩Ω in which the parameters are constant. An improvement of
the predictions can be appreciated for some test parameters when employing k = 2 repartitions.

In Table 5.1, we list the computational times and speedups for a simulation with the different
methods. For an error convergence analysis with respect to the size of the reduced space, we refer to
section 5.5.3.

Compressibile linear elasticity (CLE)

Next, we consider the parametric compressible linear elasticity system in d = 3 physical dimensions
with a cylindrical shell along the z-axis as domain: the inner radius is 1, outer radius 3 and height 10,
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Table 5.1 MS1. Average computational times and speedups for ROM and DD-ROM approaches for
Maxwell equations. The speedup is computed as the FOM computational time over the ROM one.
The FOM runs in parallel with 4 cores, so “FOM time” refers to wallclock time.

FOM ROM DD-ROM
Nh time n time speedup ni time speedup

6480 254.851 [ms] 3 51.436 [µs] ∼ 495 [3, 3, 3, 3] 62.680 [µs] ∼ 406

and the base centered in 000. The m = 12 equations of the FS are(
σσσ −µ1(∇ ·u)I3−2µ2

(∇u+(∇u)t)
2

−1
2 ∇ · (σσσ +σσσ t)+µ3u

)
=

(
0
f

)
, ∀x ∈Ω⊂ R3, (5.90)

where ρρρ = (µ1,µ2,µ3) ∈ [100,1000]2× [1,1] = P ⊂ R3 and f = (0,−1,0). The system can be
rewritten as FS as in (5.20). We define the boundaries

ΓD = ∂Ω∩{z = 0}, ΓN = ∂Ω\ΓD. (5.91)

Mixed boundary conditions are applied with the boundary operator (5.24): homogeneous Dirichlet
boundary conditions are imposed on ΓD and homogeneous Neumann boundary conditions on ΓN .

We consider two parametric spaces:

ρρρ = (µ1,µ2) ∈ [100,1000]2 = P1 ⊂ R2, (CLE1) (5.92a)

ρρρ = (µ1,µ2, f1, f2) ∈ [100,1000]2× [−2,2]2 = P2 ⊂ R4, (CLE2) (5.92b)

where in the second case, the source term f is now piecewise constant:

f =

 f1 · (0,−1,0), z < 5,

f2 · (0,−1,0), z≥ 5.
(5.93)

We show two sample solutions for µ1 = µ2 = 1000 in Figure 5.8 for CLE1 and µ1 = µ2 = 1000,
f1 = 1 and f2 = −1 for CLE2, on the left and on the right, respectively. The partitioned and
repartitioned subdomains are shown in Figure 5.9. For the first case CLE1 we employ a mesh of 24
cells and 7776 dofs, for the second CLE2 a mesh of 60 cells and 19440 dofs.

Test case CLE1. This test case presents no region for which the restricted solutions are more or
less approximable with a constant field, as would be detected by the variance indicator: as shown in
Figure 5.10, the local relative L2-reconstruction error in the region with low variance, assigned by
Ivar, deteriorates from the value 2 ·10−3 of the abscissae 0% and 100% to 1 ·10−2 of the abscissae
4%. Nonetheless, despite the parametric solutions are not approximabile efficiently with a constant
field, they are well represented by a one-dimensional linear subspace in the region located by the
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Fig. 5.8 CLE. Left: solution of the compressible linear elasticity FS CLE1 with parameter values
µ1 = µ2 = 1000. The cylindrical shell displacement u, and with a different colorbar also the field
σez, named sigma_3, are shown. At the extremity close to z = 0 homogeneous Dirichlet boundary
conditions are imposed. Right: solution of the test case CLE2 with discontinuous values of the
source terms along the computational domain {z < 5}∩Ω and {z≥ 5}∩Ω: µ1 = µ2 = 1000, f1 = 1
and f2 =−1.

cellwise Grassmannian dimension indicator IG, for Pl = 12%. The associated low local Grassmannian
dimension region for Pl = 12% is shown in Figure 5.9 in blue.

Also in this test case, the employment of DD-ROMs is not advisable, since there are little gains in
the local relative L2-reconstruction error for the low local Grassmannian dimensional region (values
around 3 ·10−3, in orange for the abscissa Pl = 12%, in Figure 5.10). The choice of local reduced
dimensions nΩ1 = 2 and nΩ2 = 3 does not affect greatly the errors shown in Figure 5.11. Also in
this case, we evaluate ntrain = 20 training full-order solutions and ntest = 80 test full-order solutions,
corresponding to a uniform independent sampling from the parametric domain P ⊂ R3. Also for
these studies, we have fixed the local dimensions to nΩi = 3, i = 1, . . . ,K for K = 4, nΩ = 3 for the
whole computational domain and nΩ1 = 2, nΩ2 = 3 for the repartitioned case with k = 2.

Fig. 5.9 CLE. Left: computational subdomains partitioned in K = 4 subdomains by petsc4py
inside deal.II. Center: test case CLE1 repartition of the computational subdomain k = 2 with
the cellwise Grassmannian dimension indicator IG, Definition 8: 12% of the cells belong to the low
local Grassmannian dimension part, represented in blue inside the torus, and the other 88% belong to
the high local Grassmannian dimension part, represented in red. Right: test case CLE2 repartition
of the computational subdomain k = 2 with the cellwise Grassmannian dimension indicator IG and
Pl = 50%.
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Fig. 5.10 CLE1. Local relative L2-reconstruction errors of the snapshots matrix for elasticity equations
restricted to the two subdomains of the repartitioning performed with the indicator Ivar (in red and
light-blue), Definition 7, and IG (in orange and blue), Definition 8. The relative L2-reconstruction error
attained on the whole domain is shown in black for the indicator Ivar and in brown for the indicator IG.
The local reduced dimensions used to evaluate the local reconstruction errors is nΩi = 3, i = 1,2.
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Fig. 5.11 CLE1. Errors and estimators for elasticity equations corresponding to the ntrain = 20
uniformly sampled training snapshots corresponding to the abscissae 0,5,10, . . . ,95, and ntest = 80
uniformly sampled test snapshots, corresponding to the other abscissae. The reduced dimensions of the
ROMs are {nΩi}K

i=1 = [3,3,3,3] for K = 4 partitions, rΩ = 3 for k = 1 partition, and {nΩi}k
i=1 = [2,3]

for k = 2 partitions. For the case k = 2 we employed the cellwise local Grassmannian dimension
indicator IG, Definition 8, with Pl = 12%.
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Test case CLE2. Similarly to the previous case, we evaluate ntrain = 20 training full-order
solutions and ntest = 80 test full-order solutions, corresponding to a uniform independent sampling
from the parametric domain P2 ⊂ R4. This time, if we vary the parameters f1 and f2 inside different
subdomains {z ≥ 5}∩Ω and {z < 5}∩Ω, we obtain the results shown in Figure 5.12. It can be
seen that repartitioning Ω in k = 2 DD-ROM subdomains with the local Grassmannian indicator IG

and Pl = 50% does not produce more accurate DD-ROMs compared to the case of a single reduced
solution manifold for the whole computational domain and for the DD-ROM with k = 4. In this
case, we kept the local dimension of DD-ROM repartitioned case with k = 2 equal nΩ1 = nΩ2 = 3.
For this simple test case, there is not an appreciable improvement for some test parameters in the
accuracy for k = 2 instead of K = 4 or a classical global linear basis ROM. The reason is that even if
the parameters f1 and f2 affect different subdomains of Ω, the solutions on the whole domain are still
well correlated. Differently from the previous test case MS2 from section 5.5.3, this is a typical case
for which DD-ROMs are not effective, even if the parametrization affects independently two regions
of the whole domain Ω.
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Fig. 5.12 CLE2. Errors and estimators corresponding to the ntest=80 uniformly sampled test snapshots
corresponding to the abscissae 0,5,10, . . . ,95, and ntrain=20 uniformly sampled training snapshots,
corresponding to the other abscissae. The reduced dimensions of the ROMs are {nΩi}K

i=1 = [3,3,3,3]
for K = 4 partitions, nΩ = 3 for k = 1 partition, and {nΩi}k

i=1 = [3,3] for k = 2 partitions. For the
case k = 2 we employed the cellwise variance dimension indicator Ivar, Definition 7, with Pl = 50%.

In Table 5.2, we list the computational times and speedups for a simulation with the different
methods. For an error analysis with respect to the size of the reduced space, we refer to section 5.5.3.
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Table 5.2 CLE. Average computational times and speedups for ROM and DD-ROM approaches
for Maxwell equations. The speedup is computed as the FOM computational time over the ROM
one. The FOM runs in parallel with 4 cores, so “FOM time” refers to wallclock time. The first row
correspond to test case CLE1, the second to test case CLE2.

FOM ROM DD-ROM
Nh time n time speedup ni time speedup

7776 411.510 [ms] 3 80.444 [µs] ∼ 5115 [3, 3, 3 ,3] 85.108 [µs] ∼ 4835
19440 2.080 [s] 3 69.992 [µs] ∼ 29718 [3, 3, 3 ,3] 94.258 [µs] ∼ 22067

ROM convergence studies

In this section, we validate the DD-ROM implementation, checking the convergence towards the
FOM solutions with respect to the dimension of the reduced space. Uniform local reduced dimensions
are employed {rΩi}K

i=1 and {rΩi}k
i=1. For each convergence study, 20 uniformly independent samples

are used as training dataset and 50 uniformly independent samples as test dataset.
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Fig. 5.13 MS1. The convergence of DD-ROMS with uniform local reduced dimensions {rΩi}K
i=1 and

{rΩi}k
i=1 is assessed. The uniform value of the local reduced dimensions is reported in the abscissae.

For this test case, an improvement of the accuracy with respect to the single domain reduced basis is
not observed.

In Figure 5.13, we show the L2-error, the R-error and the energy error decay and their respective
error estimators for the Maxwell equations test case MS1, section 5.5.3, with constant parameters
µ and σ on the whole domain. We clearly see an exponential behavior in the error as we add basis
functions. On the other hand, we do not observe strong differences between the ROM, DD-ROM with



5.5 Domain decomposable Discontinuous Galerkin ROMs 133

100

10 2

10 4

10 6
4 

pa
rti

tio
ns

Compressible linear elasticity (CLE1)

100

10 2

10 4

10 6

1 
pa

rti
tio

n

2 3 4 5 6 7 8 9 10
Reduced basis dimensions

100

10 2

10 4

10 6

2 
pa

rti
tio

ns

mean L2 absolute error
mean R-norm absolute error

absolute energy error
L2 absolute error estimator

L2 absolute energy estimator
R-norm and energy absolute error estimator

Fig. 5.14 CLE1. The convergence of DD-ROMS with uniform local reduced dimensions {rΩi}K
i=1 and

{rΩi}k
i=1 is assessed. The uniform value of the local reduced dimensions is reported in the abscissae.

For this test case, an improvement of the accuracy with respect to the single domain reduced basis is
not observed.

repartitioning and DD-ROM with deal.II subdomains, for this simple test case. Similar results can
be observed in Figure 5.14, where the same analysis is applied for the compressible linear elasticity
test CLE1 from section 5.5.3.

From these results, it should be clear that the employment of local reduced basis is not always
useful to increase the accuracy of the predictions. Nonetheless, it may be used to locally reduce the
dimension of the linear approximants. Possible benefits include the adaptation of the computational
resources (higher dimensional reduced bases are chosen only where it is necessary) and the possibility
to speed up parametric studies and non-intrusive surrogate modelling thanks to the further reduced
local dimensions [275, 274].

Typical cases where DD-ROMs are effective to increase the accuracy of the predictions are
truly decomposable systems where the parameters affect independently different regions of the
computational domain, as in test case MS2 in section 5.5.3.
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Scalar concentration advected by an incompressible flow (ADR)

We consider the parametric semi-linear advection diffusion reaction equation in d = 2 dimensions,
with m = 3 equations, rewritten in mixed form:

κ−1σ +∇u = 0, in Ω,

∇ ·σ +v ·∇u+u = f , in Ω,

σ ·n = 0, on ΓN ∪ΓD,0,

u = ∑
P
i=1 µiχIi , on ΓD,

(5.94)

where κ = 0.05 is fixed for this study,

ρρρ = (µ1, . . . ,µP) ∈ P ⊂ RP, P = {ρρρ ∈ {0,1}P|µi = 1, µ j = 0, ∀ j ∈ {0, . . . ,99}\{i}}, (5.95)

and {χIi}
Npar
i=0 are the characteristic functions of the symmetric intervals Ii = 0× [−i0.01+1.5, i0.01+

2.5], with Npar = 99. The domain is shown in Figure 5.15. The advection velocity v is obtained from
the following incompressible Navier-Stokes equation at t = 2s:

∂tv+v ·∇v−ν∆v+∇p = 0, in Ω

∇ ·v = 0, in Ω

v×n = 0, p = 0, on ΓN

v = 0, on ΓD,0

v(t = 0) = vb, on ΓD

(5.96)

with initial conditions on the boundary ΓD, vb = v(x,y, t = 0) = (6y(4.1−y)/4.12,0) ∈R2 and ν ∈R
such that the Reynolds number is Re = 100. The implementation is the one of step-35 of the
tutorials of the deal.II library [12]. Homogeneous Neumann boundary on ΓN ∪ΓD,0 and Dirichlet

Fig. 5.15 ADR. Computational domain of the advection diffusion reaction equation FS (5.94) and the
incompressible Navier-Stokes equations (5.96). The boundary conditions specified for each system
are reported in the text.

non-homogeneous boundary conditions on ΓD are applied with the boundary operator (5.30). A
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sample solution is shown in Figure 5.16 for µi = 0, i = 0, . . . ,98 and µ99 = 1, κ = 0.05. We remark
that, for the moment, we consider only fixed values of κ = 0.05. For the convergence of ROMs to
vanishing viscosity solutions with graph neural networks, see Section 5.6.

Scalar concentration u Magnitude of the advection velocity v

Fig. 5.16 ADR. Left: scalar concentration u of the advection diffusion reaction equations (5.94),
with µi = 0, i = 0,98 and µ99 = 1, κ = 0.05. Right: advection velocity employed for the FS (5.94),
obtained as the velocity v from the INS (5.96) at t = 2s.

The FOM partitioned and DD-ROM repartitioned subdomains are shown in Figure 5.17. We
choose the variance indicator to repartition the computational subdomain in two subsets: 21% of the
cells for the low variance part and 79% for the high variance part. With respect to the previous test
cases, now it is evident the change in the order of magnitude of the local relative L2-reconstruction
error in Figure 5.18, especially for the cellwise variance indicator Ivar. We expect that lowering the
local reduced dimension of the low variance repartitioned region will not affect sensibly the accuracy.

We use for the monodomain approach nΩ = 5 reduced basis as well as nΩi = 5 for i = 1, . . . ,K for
the FOM partitioned subdomains. In the DD-ROM approach, we can use even nΩ1 = 2 and nΩ2 = 5
for the lower and higher variance subdomains, respectively, without affecting the error of the ROM
solution, as we see in Figure 5.19. Indeed, the accuracy in terms of L2 and energy norms is essentially
identical for all approaches, even with so little number of basis functions for the DD-ROM one.

Fig. 5.17 ADR. Domain of advection diffusion reaction equation. Left: computational subdomains
partitioned in K = 4 subdomains by petsc4py inside deal.II. Right: DD-ROM repartition of the
computational subdomain k = 2 with the cellwise variance indicator Ivar, Definition 7: 21% of the
cells belong to the low variance part, represented in blue, and the other 79% belong to the high
variance part in red.

Again, we evaluate ntrain = 20 training full-order solutions and ntest = 80 test full-order solutions,
corresponding to the parameter choices µi = 1 and µī = 0, for i = 0, . . . ,99, with fixed viscosity
κ = 0.05, where ī represents all the indices in {0, . . . ,99} except from i. So, the training snapshots
correspond to i = 0,5,10, . . . ,95. For these studies we have fixed the local dimensions to nΩi =
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Fig. 5.18 ADR. Local relative L2-reconstruction errors of the snapshots matrix of the advection
diffusion reaction equation restricted to the two subdomains of the repartitioning performed with
the indicator Ivar (in red and light-blue), Definition 7, and IG (in orange and blue), Definition 8. The
relative L2-reconstruction error attained on the whole domain is shown in black for the indicator
Ivar and in brown for the indicator IG. The local reduced dimensions used to evaluate the local
reconstruction errors is nΩi = 3, i = 1,2.
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Fig. 5.19 ADR. Errors and estimators for advection diffusion reaction equation corresponding to the
ntrain=20 uniformly sampled train snapshots corresponding to the abscissae 0,5,10, . . . ,95, and ntest=80
uniformly sampled test snapshots, corresponding to the other abscissae. The reduced dimensions of the
ROMs are {nΩi}K

i=1 = [5,5,5,5] for K = 4 partitions, rΩ = 5 for k = 1 partition, and {nΩi}k
i=1 = [2,5]

for k = 2 partitions. For the case k = 2 we employed the cellwise variance indicator IG, Definition 7,
with Pl = 21%.
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Table 5.3 ADR. Average computational times and speedups for ROM and DD-ROM approaches for
Maxwell equations. The speedup is computed as the FOM computational time over the ROM one.
The FOM runs in parallel with 4 cores, so “FOM time” refers to wallclock time.

FOM ROM DD-ROM
Nh time n time speedup ni time speedup

131328 3.243 [s] 5 79.112 [µs] ∼ 40992 [5, 5, 5, 5] 59.912 [µs] ∼ 54129

5, i = 1, . . . ,K for K = 4, nΩ = 5 for the whole computational domain and nΩ1 = 2, rΩ2 = 5 for the
repartitioned case with k = 2, as mentioned.

In Table 5.3, we list the computational times and speedups for a simulation with the different
methods.

5.6 Graph Neural Networks approximating Vanishing Viscosity solu-
tions

In this section, we want to highlight how the well-known concept of vanishing viscosity solutions
can be related to FS. In hyperbolic problems, the uniqueness of the weak solution is not guaranteed,
already for very simple problems, e.g. inviscid Burgers’ equations. In order to filter out the physically
relevant solution, the concept of vanishing viscosity solution has been introduced, inter alia [104],
and, consequently, vanishing viscosity methods have been developed, e.g. [81, 174].

We will consider the topic of vanishing viscosity solutions from the different perspectives of model
order reduction. It is known that slow decaying Kolmogorov n-width solution manifolds result in
ineffective linear reduced order models. The origin of this problem rests theoretically on the regularity
of the parameter to solution map [58, 59], and with less generality on the nature of some PDEs
(e.g. advection dominated PDEs, nonlinearities, complex dynamics), on the size of the parameter
space, and on the smoothness of the parametric initial data or parametric boundary conditions [10],
mainly. A possible way to obtain more approximable solution manifolds is through regularization
or filtering [276, 265], e.g. adding artificial viscosity. Heuristically, the objective is to smoothen out
the parametric solutions of the PDEs, for example removing sharp edges, local features, complex
patterns, with the aim of designing more efficient ROMs for the filtered solution manifolds. Then, the
linear ROMs will be applied to different levels of regularization, still remaining in the regime where
they have good approximation properties. Finally, the original (vanishing viscosity) solutions will
be recovered with a regression method from the succession of filtered linear ROMs. This is realized
without the need to directly reduce with a linear reduced manifold the original solution manifold, thus
avoiding the problem of its approximability with a linear subspace and the slow Kolmogorov n-width
decay.

In our case, we consider regularization by viscosity levels: the vanishing viscosity solutions
uν with viscosity 0≤ ν ≪ 1, will be recovered as the limit limi→∞ uνi = uν of a potentially infinite
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succession of viscosity levels {νi}∞
i=0, ν0 > ν1 > · · ·> 0, each associated to its efficient reduced order

model. In practice, {νi}∞
i=0 ≈ {νi}q

i=0, where q is the number of additional viscosity ROMs. It is
clear the connection with multi-fidelity and super-resolution methods [97, 150]. The rationale of the
approach is supported by the proofs of convergence to vanishing viscosity solutions of hyperbolic
PDEs under various hypotheses [187, 152, 80, 107].

The framework is general and can be applied in particular to FS. We will achieve this for the
advection–diffusion–reaction problem changing the viscosity constant R ∋ κ > 0 in (5.94). While
this choice is specific to the model we are considering, a more general approach could consist in
adding a viscous dissipative term to the generic FS obtaining another FS:

Au = f +κκκ∆∆∆u, in Ω

(D−M)(u−g) = 0, on ∂Ω

→


κ−1σ +∇u = 0

∇ ·σ +Au = f
, in Ω

(D−M)(u−g) = 0, on ∂Ω,

(5.97)

recalling that the additional degrees of freedom are needed only for the high viscosity ROMs and
FOMs (to collect the snapshots) and not the full-order vanishing viscosity solutions. This is only an
example of how the procedure could be applied to any FS. In fact, the methodology is not designed
specifically for FS.

The overhead of the methodology is related to the evaluation of the snapshots, the assembling
of each level of viscosity {νi}q

i=0, and the computational costs of the regression method. We remark
that the full matrices of the affine decomposition of each {ROMνi}q

i=0 are the same. This is the price
necessary to tackle the realization of reduced order models of parametric PDEs affected by a slow
Kolmogorov n-width decay with our approach.

With respect to standard techniques for nonlinear manifold approximation, the proposed one is
more interpretable as a mathematical limit of a succession of solutions to the vanishing viscosity one.
Moreover, it has a faster training stage relying on the efficiency of the {ROMνi}q

i=0. To the authors’
knowledge, cheap analytical ways to obtain the vanishing viscosity solution from a finite succession
of high viscosity ones are not available, so we will rely on data-driven regression methods.

5.6.1 Graph neural networks augmented with differential operators

Generally, machine learning (ML) architectures are employed in surrogate modelling to approximate
nonlinear solution manifolds, otherwise linear subspaces are always preferred. The literature is vast on
the subject and there are many frameworks that develop surrogate models with ML architectures. They
promise to define data-driven reduced order models that infer solutions for new unseen parameters
provided that there are enough data to train such architectures. This depends crucially on the choice
of the encoding and inductive biases employed to represent the involved datasets: the training
computational time and the amount of training data can change drastically.



5.6 Graph Neural Networks approximating Vanishing Viscosity solutions 139

On this matter, convolutional autoencoders (CNN) are one of the most efficient architectures to
approximate nonlinear solution manifolds [161] for data structured on Cartesian grids, mainly thanks
to their shift-equivariance property. For fields on unstructured meshes the natural choice are Graph
neural networks (GNNs). Since their employment, GNNs architectures from the ML community have
been enriched with physical inductive biases and other tools from numerical analysis. We want to test
one of the first implementations and modifications of GNNs [245]. We also want to remark that in
the literature, there are still very few test cases of ROMs that employ GNNs with more than ≥ 50000
degrees of freedom. The difficulty arises when the training is performed on large meshes, thus the
need for tailored approaches.

The majority of GNNs employed for surrogate modelling are included in autoencoders [93, 203]
or are directly parametrized to infer the unseen solution with a forward evaluation. These architectures
may become heavy, especially for non-academic test cases. One way to tackle the problem of
parametric model order reduction of slow Kolmogorov n-width solution manifolds is to employ GNNs
only to recover the high-fidelity solution in a multi-fidelity setting, through super-resolution. Since
efficient ROMs are employed to obtain the lower levels of fidelity (high viscosity solutions in our
case), the solution manifold dimension reduction is performed only at those levels, avoiding the costly
and heavy in memory training of autoencoders of GNNs.

We describe the implementation of augmented GNNs as in [245], with the difference that we need
to train only a map from a collection of DD-ROMs solutions to the full-order vanishing viscosity
solution, and not an autoencoder with pooling and unpooling layers to perform dimension reduction.
The GNN we will employ is rather thin with respect to autoencoder GNNs used to perform dimension
reduction. Its details are reported in Table 5.4.

We represent with

G = (V,E ,W), V ∈ Rnnodes× f , E ∈ Nnedges×2, W ∈ Rnattr×d , (5.98)

a graph with node features V , edges E and edge attributesW . The number f represents the nodal
features dimension. We denote with ei j = (i, j) ∈ N2 the edge between the nodes ni,n j ∈ R f : ei j

corresponds to a row of E , and ni,n j correspond to the i-th and j-th rows of V , for i, j = 1, . . . ,nnodes.
Similarly, ωωω i j represents the edge attributes of edge ei j. We have nedges = nattr. For their efficiency,
GNNs rely on a message-passing scheme composed of propagation and aggregation steps. Supposing
that the graph is sparsely connected their implementation is efficient.

When the graph is supported on a mesh, it is natural to consider the generalized support points of
finite element spaces as nodes of the graph and the sparsity pattern of the linear system associated
to the numerical model as the adjacency matrix of the graph. We employ only Lagrangian nodal
basis of discontinuous finite element spaces, but the framework can be applied to more general finite
element spaces. As edge attributes ωωω i j, we will employ the difference ωωω i j = xi−x j ∈ Rd between
the corresponding spatial coordinates associated to the nodes ni,n j ∈ R f . The nodes adjacent to node
ni are represented with the set Nneigh(i) for all i = 1, . . . ,nnodes.
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We consider only the two following types of GNN layers: a continuous kernel-based convolutional
operator lNNconv [103, 232] and the GraphSAGE operator lSAGEconv [118],

Vout = lNNconv(Vinp,E ,W) = VinpW3 +Avg1(Vinp,h(W))+b3, h(W) = ReLU(WW1 +b1)W2 +b2,

(5.99)

Vout = lSAGEconv(Vinp,E ,W) = VinpW6 +Avg2(ReLU(VinpW4 +b4))W5 +b5, (5.100)

with weight matrices dimensions,

W1 ∈ R2×l, W2 ∈ Rl×( finp× fout), W3 ∈ R finp× fout , W4 ∈ R finp× finp , W5,W6 ∈ R finp× fout , (5.101)

b1 ∈ Rl, b2 ∈ R( finp× fout), b3,b5 ∈ R fout , b5 ∈ R finp , (5.102)

h(W) ∈ Rnedges×( finp× fout), W = {W h
s }

nedges
s=1 , W h

s ∈ R finp,s× fout,s , ∀s = 1, . . . ,nedges, (5.103)

with the following average operators used as aggregation operators,

(Avg1(V,{W h
s }

nedges
s=1 ))i =

1
Nneigh(i)

∑
s∈Nneigh(i)

W h
s ns, (Avg2(V))i =

1
Nneigh(i)

∑
s∈Nneigh(i)

ns, ∀i= 1, . . . ,nnodes,

(5.104)
where Vinp ∈ Rnnodes× finp ,Vout ∈ Rnnodes× fout are the input and output nodes with feature dimensions
finp, fout. We remark that, differently from graph neural networks with heterogeneous layers, i.e., with
changing mesh structure between different layers, in this network the edges E and edge attributesW are
kept fixed, only the node features change. The feed-forward neural network h : Rnedges×d→R finp,s× fout,s

defines a weight matrix W h
s ∈ R finp,s× fout,s for each edge s = 1, . . . ,nedges. The number l is the hidden

layer dimension of h.
The aggregation operators are defined from the edges E that are related to the sparsity pattern

of the linear system of the numerical model. So, the aggregation is performed on the stencils of the
numerical scheme chosen for every layer of the GNN architecture in Table 5.4. Many variants are
possible, in particular, we do not employ pooling and unpooling layers to move from different meshes:
we always consider the same adapted mesh.

Since our GNNs work on the nodal features, a good strategy is to augment their dimensions as
proposed in [245]. In fact, in the majority of applications of GNNs for physical models the input
features dimensions is the dimension of the physical fields considered and it is usually very small.
Considering FS, the fields’ dimension is m. To augment the input features, we will filter them with
some differential operators discretized on the same mesh in which the GNN is supported. We consider
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the following differential operators

∆ : Vh(Ω)→Vh(Ω), (Laplace operator) (5.105)

v ·∇ : Vh(Ω)→Vh(Ω), (Advection operator) (5.106)

∇x : Vh(Ω)→Vh(Ω), (Gradient x-component) (5.107)

∇y : Vh(Ω)→Vh(Ω), (Gradient y-component) (5.108)

for a total of four possible feature augmentation operators, where, in our case, v is the advection
velocity from the incompressible Navier-Stokes equations (5.96). We employ the representation of
the previous differential operators with respect to the polynomial basis of Lagrangian shape functions,
so they act on the vectors of nodal evaluations in RNh . As in [245], we consider three sets of possible
augmentations:

O1 = {INh ,∆,v ·∇,∇x,∇y}, (5.109)

O2 = {INh ,∇x,∇y} (5.110)

O3 = {INh} (5.111)

where INh is the identity matrix in RNh , |O1| = 5 = naug, |O2| = 3 = naug and |O3| = 1 = naug. We
will reconstruct only the scalar concentration u with the GNN, so, in our case, the field dimension
is 1, which is the output dimension. The input dimension depends on the number of high viscosity
DD-ROMs employed that we denote with q. Given a single parametric instance ρρρ ∈RP the associated
solutions of {D-ROMκi}q

i=1 are {uRB(ρρρ i)}q
i=1.

We divide the snapshots {uRB(ρρρ i)}ntrain+ntest
i=1 in training {uRB(ρρρ i)}i∈Intrain and test snapshots {uRB(ρρρ i)}i∈Intest ,

with |Itrain|= ntrain and |Itest|= ntest. We have decided to encode the reconstruction of the vanishing
viscosity solution uq+1 learning the difference uq+1(ρρρ)−uRB

q (ρρρ)−uq+1train with the mesh-supported-
augmented GNN (MSA-GNN) described in Table 5.4:

uq+1(ρρρ)=ReLU
(

uRB
q (ρρρ)+MSA-GNN

(
{Oa{{uRB

i (ρρρ)}q
i=1,{uRB

i (ρρρ)−uRB
i−1(ρρρ)}q−1

i=1 }}
naug
a=2

)
+uq+1train

)
,

(5.112)
where uq+1train =

1
ntrain

∑
ntrain
i=1 uq+1(ρρρ iii). Learning the difference instead of the solution itself helps in

getting more informative features. The input dimension is therefore 3naug = 15 for O1 and 3naug = 9
for O2.

5.6.2 Decomposable ROMs approximating vanishing viscosity (VV) solution through
GNNs

In this section, we test the proposed multi–fidelity approach that reconstructs the lowest viscosity
level with the GNN. We consider the FS (5.94), with three levels of viscosity: from highest to lowest
κ1 = 0.05, κ2 = 0.01 and κ3 = 0.0005. We want to build a surrogate model that efficiently predicts
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Table 5.4 Mesh supported augmented GNN

Net Weights [ finp, fout] Aggregation Activation
Input NNConv [3naug, 18] Avg1 ReLU
SAGEconv [18, 21] Avg2 ReLU
SAGEconv [21, 24] Avg2 ReLU
SAGEconv [24, 27] Avg2 ReLU
SAGEconv [27, 30] Avg2 ReLU
Output NNcrshortNNConv [30, 1] Avg1 -

NNConvFilters First Layer [2, l] Activation Second Layer [l, finp fout]

Input NNConv [2, 12] ReLU [12, 3naug ·18]
Output NNConv [2, 8] ReLU [8, 30]

the parametric solutions of the FS (5.94) for unseen values of ρρρ ∈ P with fixed viscosity κ3 = 0.0005.
These solutions will be referred to as vanishing viscosity solutions. The other two viscosity levels
are employed to build the DD-ROMκ1 and DD-ROMκ2 with viscosities κ1 = 0.05 and κ2 = 0.01,
respectively. The parametrization affects the inflow boundary condition and is the same as the one
described in section 5.5.3, see equation (5.95). We also employ the same number of training 20 and
test 80 parameters.

The DD-ROMs provided for κ1 = 0.05 and κ2 = 0.01 can be efficiently designed with reduced
dimensions {rΩi}K

i=1[5,5,5,5]. To further reduce the cost, we employ an even coarser mesh for
ROMκ1 and ROMκ2 and a finer mesh for the vanishing viscosity solutions. The former is represented
on the left of Figure 5.20, the latter on the right. The degrees of freedom related to the coarse mesh
are 43776, while the ones on the fine one are 175104.

For the training of the GNN we use the open source software library PyTorch Geometric [89].
The employment of efficient samplers that partition the graphs on which the training set is supported
is crucial to lowering the otherwise heavy memory burden [118]. We preferred samplers that partition
the mesh with METIS [143] as it is often employed in this context. We decided to train the GNN
with early stopping at 50 epochs as our focus is also in the reduction of the training time of the NN
architectures used for model order reduction. It corresponds on average to less than 60 minutes of
training time. The batch size is 100 and we clustered the whole domain in 100000 subgraphs in order
to fit the batches in our limited GPU memory. Each augmentation strategy and additional fidelity
level, do not affect the whole training time as they only increase the dimension of the input features
from a minimum of 1 (1 fidelity, no augmentation) to a maximum of 15 (all augmentations O3, 2
fidelities). As optimizer, we use ADAM [147] stochastic optimizers. Every architecture is trained on
a single GPU NVIDIA Quadro RTX 4000.
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Fig. 5.20 VV. Left part of the computational domain partitioned in 4 for distributed parallelism:
coarse mesh (left), fine mesh (right). The solution with viscosity κ ∈ {0.05,0.01} are evaluated on
the coarse mesh with 4868 cells and 43776 dofs, those with κ = 0.0005 on the finer with 19456 cells
and 175104 dofs.

Figures 5.21, 5.22 and 5.23 show the results of the algorithm for parameters with index i ∈
{0,50,99}. In particular, we show on the left columns the FOM simulations, in the center column the
ROM simulations and the error in the right column. Moreover, in the different rows, we have different
viscosity levels. The first three rows use the classical DD-ROM approach. We can immediately see
that the vanishing viscosity κ = κ3 = 0.0005 level shows strong numerical oscillations along the
whole solution, which are not present in the FOM method. This phenomenon is observable also for
higher viscosity levels but it is less pronounced and concentrated on the left of the domain, where
the discontinuities are imposed as boundary conditions (see error plots). Finally, in the last row, we
see the GNN approach, which uses the first two viscosity levels to predict the vanishing viscosity
one. Contrary to DD-ROM, we do not observe many numerical oscillations in the reduced solutions
and they are much more physically meaningful. Thinking about extending this approach to more
complicated problems, such as Euler’s equations, one could guarantee the presence of the correct
amount of shocks and the right location or maintaining the positivity of density and pressure close to
discontinuities.

In Figure 5.24, we show a quantitative measure of the error of the reduced approaches presented
in terms of relative L2 error. Overall, we can immediately see that the new GNN approach can
always reach errors of the order of 10−3 for the vanishing viscosity solutions, with few peaks in the
extrapolatory regime of 8 ·10−3, while the classical DD-ROM on the vanishing viscosity solutions
perform really poorly with errors around 10%. On the other hand, the DD-ROM for higher viscosity
levels have lower errors around 3% for κ2 and 0.5% for κ1, hence, they are still reliably representing
those solutions.

On the different GNN approaches, in Figure 5.24 at the top we compare the different augmentations
O1,O2 and O3 and how many levels of viscosity we keep into considerations to derive the vanishing
viscosity solution. The usage of multiple fidelity levels (two viscosity levels) is a great improvement
for all the augmentations proposed and it can make gain a factor of 2 in terms of accuracy. There are
slight differences with the used augmentations and, in particular, we observe that theO1 augmentation,
with all operators, guarantees better performance, while there are no appreciable differences between
O2 andO3. Clearly, one could come up with many other augmentation possibilities by choosing more
operators, but at the cost of increasing the dimensions of the GNN and the offline training costs. We
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FOM u, κ = 0.05 ROM u, κ = 0.05

FOM–ROM u with κ = 0.05

FOM u, κ = 0.01 ROM u, κ = 0.01

FOM–ROM u, κ = 0.01

FOM u, κ = 0.0005 ROM u, κ = 0.0005

FOM–ROM u, κ = 0.0005

FOM u, κ = 0.0005 GNN u, κ = 0.0005

FOM–GNN u, κ = 0.0005

Fig. 5.21 VV. Scalar concentration advected by incompressible flow for i = 0. Comparison of ROM
approach at different viscosity levels κ ∈ {0.05,0.01,0.0005} and GNN for κ = 0.0005. FOMs on
the left, reduced solution at the center and error on the right.
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FOM u, κ = 0.05 ROM u, κ = 0.05

FOM–ROM u with κ = 0.05

FOM u, κ = 0.01 ROM u, κ = 0.01

FOM–ROM u, κ = 0.01

FOM u, κ = 0.0005 ROM u, κ = 0.0005

FOM–ROM u, κ = 0.0005

FOM u, κ = 0.0005 GNN u, κ = 0.0005

FOM–GNN u, κ = 0.0005

Fig. 5.22 VV. Scalar concentration advected by incompressible flow for i = 50. Comparison of ROM
approach at different viscosity levels κ ∈ {0.05,0.01,0.0005} and GNN for κ = 0.0005. FOMs on
the left, reduced solution at the center and error on the right.
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FOM u, κ = 0.05 ROM u, κ = 0.05

FOM–ROM u with κ = 0.05

FOM u, κ = 0.01 ROM u, κ = 0.01

FOM–ROM u, κ = 0.01

FOM u, κ = 0.0005 ROM u, κ = 0.0005

FOM–ROM u, κ = 0.0005

FOM u, κ = 0.0005 GNN u, κ = 0.0005

FOM–GNN u, κ = 0.0005

Fig. 5.23 VV. Scalar concentration advected by incompressible flow for i = 99. Comparison of ROM
approach at different viscosity levels κ ∈ {0.05,0.01,0.0005} and GNN for κ = 0.0005. FOMs on
the left, reduced solution at the center and error on the right.



5.7 Conclusions 147

10 1

Re
la

tiv
e 

L2  e
rro

r

augmentation all operators, all fidelities
augmentation all operators, 1 fidelity
augmentation adv operators, all fidelities
augmentation adv operators, 1 fidelity
no augmentation, all fidelities
no augmentation, 1 fidelity
rom = 0.0005
training range

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Parameter number

10 2

10 1

Re
la

tiv
e 

L2  e
rro

r

rom = 0.0005
rom = 0.01
rom = 0.05
training range

Vanishing viscosity solutions approximation with mesh-supported augmented GNNs

Fig. 5.24 VV. Relative errors for the scalar conservation advected by incompressible flow problem.
The parameters corresponding to the snapshots used for the GNNs and DD-ROMs training correspond
to the abscissae 0,5,10, . . . ,95 the rest are test parameters. The dashed red background highlights the
extrapolation range. Top: errors on train and test set with different GNN approaches given by the
three augmentation O1,O2 and O3 and by using either 1 viscosity level (1 fidelity) or 2 (all fidelities).
Bottom: errors for DD-ROM approaches at different viscosity levels. The reduced dimensions of the
ROMs are {nΩi}K

i=1 = [5,5,5,5] with K = 4 partitions.

believe that all the presented options already perform much better with respect to classical approaches
and can already be used without further changes.

In Table 5.5, we compare the computational times necessary to compute the FOM solutions, the
DD-ROM ones, the training time for the GNN and the online costs of the GNN. As mentioned, we
employ only one GPU NVIDIA Quadro RTX 4000 with 8GB of memory. Typical GNNs applications
that involve autoencoders to perform nonlinear dimension reduction are much heavier. The training
time of the GNNs for the different choice of augmentation operators vary between 48 minutes and
60 minutes approximately. We believe that shortly more optimized implementations will reduce the
training costs of GNNs. The computational time of the evaluation of a single forward of the GNN is on
average 2.661 seconds but vectorization ensures the evaluation of multiple online solutions altogether:
with our limited memory budget, we could predict all the 100 training and test snapshots with just
2 batches of 50 stacked inputs each. The "Total online time" computed as previously described is
17.166 seconds that is 171.66 milliseconds per online solution with a speedup of around 56 with
respect to the 9.668 seconds for the FOM.

5.7 Conclusions

We argue that Friedrichs’ systems represent a valuable framework to study and devise reduced order
models of many parametric PDEs at the same time: among them the ones studied in this work
and others, like mixed elliptic and hyperbolic problems, complex and time-dependent FS and also
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Table 5.5 VV. Computational costs for scalar advected by an incompressible flow problem with
GNNs approximating vanishing viscosity solutions (VV). The speedup is computed as the FOMs
computational time over the ROM one. The speedup of the GNN is with respect to the FOM with
viscosity ν = 0.0005. The FOM runs in parallel with K = 4 cores as the DD-ROMs, so "FOM time"
and "DD-ROM time" refers to wallclock time. Regarding the GNN results, "GNN forward" refers to a
single online evaluation while "Online" refers to the evaluation of the 100 training and test snapshots
altogether with only two separate GNN forward evaluations with batches of 50 inputs each. The
speedup is evaluated as "FOM time" over "Total online time" divided by 100.

FOM DD-ROM
κ Nh time ni time speedup mean L2 error

0.05 43776 3.243 [s] [5, 5, 5, 5] 59.912 [µs] 54129 0.00595
0.01 43776 3.236 [s] [5, 5, 5, 5] 79.798 [µs] 40552 0.0235

0.0005 175104 9.668 [s] [5, 5, 5, 5] 95.844 [µs] 100872 0.0796

κ GNN training time GNN forward Online GNN speedup mean L2 error
0.0005 ≤ 60 [min] 2.661 [s] 17.166 [s] 56 0.0217

nonlinear PDEs whose linearization results in FS, e.g. the Euler equations. The advantages include
the availability of a posteriori error estimators and the easy to preserve mathematical properties of
positivity and symmetry from the full-order formulations to the reduced-order ones. We underlined
in section 5.4.2 how optimally stable reduced-order models can be obtained from the ultraweak
formulation. A more efficient numerical solver for Friedrichs’ systems is the hybridized discontinuous
Galerkin method [49]. These are possible future directions of research.

Working with discontinuous Galerkin discretizations is not only crucial from the possibly mixed
elliptic and hyperbolic nature of Friedrichs’ systems, but also to design domain decomposable reduced-
order models with a minimum effort: in fact, penalties at the subdomains interfaces are inherited
directly from the full-order models. We demonstrated with numerical experiments the limits and the
ranges of application of domain decomposable ROMs: generally, with respect to single domain ROMs,
there are benefits only when the model under study is truly decomposable, that is when the parameters
affect independently different subdomains and the respective solutions are poorly correlated for
unseen parametric instances. The results we showed in our academic benchmarks were obtained
with the aim to tackle more complex multi-physics models like fluid-structure interaction systems. A
typical application of DD-ROMs for FS is represented by parametric PDEs with a mixed elliptic and
hyperbolic nature and possibly solution manifolds more and less linearly approximable respectively.
The repartitioning strategies we developed are suited to adapt the reduced local dimension of the
linear approximants, especially when the parameters influence only a limited region like in test case
ADR 5.5.3. The implementation of ad hoc physics inspired indicators can be a future direction of
research.

The Friedrichs’ systems formulation itself does not solve the problems caused by a slow decaying
Kolmogorov n-width. DD-ROMs can help in this regard, isolating regions with a slow Kolmogorov n-
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width for which nonlinear approximants can be employed and regions with a fast decaying Kolmogorov
n-width for which classical linear projection-based ROMs provide efficient and reliable predictions.
Related to this subject and motivated also by the heavy computational resources that graph neural
networks require when employed for model order reduction, we introduced a new paradigm for
surrogate modelling: the inference with GNNs of vanishing viscosity solutions from a succession of
higher viscosity projection-based ROMs. The approach is, of course, general and can be applied to
PDEs that are not FS. The crucial hypotheses underneath this approach is the approximability with
linear spaces of the solution manifolds corresponding to higher viscosity levels. We showed that the
additional computational costs are not too large in our test case in section 5.6. Possible directions of
research include more complex problems and different regularization or filtering choices, other than
additional viscous terms.





Chapter 6

Hyper-reduced nonlinear manifold
method: teacher-student training

Non-affine parametric dependencies, nonlinearities and advection-dominated regimes of the model of
interest can result in a slow Kolmogorov n-width decay, which precludes the realization of efficient
reduced-order models based on linear subspace approximations. Among the possible solutions,
there are purely data-driven methods that leverage autoencoders and their variants to learn a latent
representation of the dynamical system, and then evolve it in time with another architecture. Despite
their success in many applications where standard linear techniques fail, more has to be done to
increase the interpretability of the results, especially outside the training range and not in regimes
characterized by an abundance of data. Not to mention that none of the knowledge on the physics
of the model is exploited during the predictive phase. In order to overcome these weaknesses, it
is implemented the nonlinear manifold method introduced by Carlberg et al with hyper-reduction
achieved through reduced over-collocation and teacher-student training of a reduced decoder. The
methodology is tested on a 2d nonlinear conservation law and a 2d shallow water models, and compare
the results obtained with a purely data-driven method for which the dynamics is evolved in time with
a long-short term memory network.
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6.1 Literature review

In real world engineering scenarios, when performing outer loop applications such as optimization,
uncertainty quantification, sensitivity analysis, parametric partial differential equations (PDEs) often
need to be solved numerically numerous times. However, relying on the mathematical properties
of some parametric PDEs, the computational cost for many query problems can be drastically
reduced taking into account previous results on a set of training parameters: the procedure for the
design of reduced-order models (MORs) is divided in an offline (training) stage, during which a
set of training solutions is collected, and an online (testing or predictive) stage, which employs the
compressed information from the previous step to predict the solutions of the PDE of interest for
unseen parameters. This reduction is performed numerically defining a low-dimensional global basis
devised in the offline stage, and can be carried out independently of the class of numerical methods
chosen: finite element (FEM), spectral element (SEM), discontinuous Galerkin (DGM), and finite
volumes method (FVM). One of the most employed model-order reduction method (MOR) is the
reduced basis method [126, 210].

Depending on the parametric dependency and mathematical nature of some PDEs, various issues
may occur: the Kolmogorov n-width (KnW) is used to characterize the approximability of the solution
manifold, that is the set of parameter-dependent solutions of the PDE, by a linear trial subspace. A
slow decaying KnW is a symptom of the difficulties in the design of efficient ROMs: this results in the
necessity of using a high number of reduced basis or proper orthogonal decomposition (POD) method’s
modes, corrupting the efficiency of the ROMs till the point that the gain into the computational cost
becomes irrelevant. One class of PDEs where this behaviour is evident are time-dependent advection-
dominated PDEs. Moreover, nonlinear PDEs require hyper-reduction procedures to make the reduced
equations independent of the number of degrees of freedom of the full-order model (FOM).

Recently, leveraging machine learning’s advances in manifold learning, a class of ROMs that
employ a nonlinear trial manifold built with convolutional autoencoders (CAEs) [106] was developed
by Carlberg et al [161]. One of the benefits of this approach is the possibility to employ a small
latent dimension of the ROMs, thus overcoming the slow decay of the KnW for some parametric
PDEs, at the expense of introducing additional nonlinearities from the neural networks (NNs) and
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sometimes more substantial training costs in the offline stage. The properties of the nonlinear
manifold methods include the need of less stabilization mechanisms, the less intrusiveness on the
FOM solvers — they are in fact equations-based rather than fully-intrusive — and the possibility to
apply them for a much broader class of parametric PDEs, differently from ROMs devised specifically
for advection-dominated problems.

A hyper-reduction scheme for nonlinear manifold Least-Squares Petrov-Galerkin (NM-LSPG)
and nonlinear manifold Galerkin (NM-G), is introduced in [146]: it relies on Gauss-Newton tensor
approximation (GNAT) [46] hyper-reduction method and shallow masked autoencoders to select only
the degrees of freedom that explain the dynamics and therefore restrict efficiently the decoder and
the discretized residuals. As we will see in our test cases, the reconstruction error of the autoencoder
employed empirically bounds from below the errors of all the other nonlinear manifold ROMs built
upon. Therefore, we devise a method that is independent on the choice of the architecture: a sparse
shallow autoencoder is not necessary anymore, and any NN architecture, like CAEs, could be in
principle employed. This frees the way to imposing additional inductive biases that help to speedup
the offline stage and to achieve accurate approximations of the discrete solution manifolds, a crucial
requirement. Moreover, in some cases, reconstructing the residuals with GNAT is not efficient,
still because of a slow decaying KnW, so we choose to employ the reduced over-collocation hyper-
reduction method (ROC) [51]: in this case the equation’s numerical residual is not reconstructed on a
global basis, but collocated on some nodes of the mesh called collocation points.

Once the CAE reaches a satisfactory approximation of the discrete solution manifold, purely
data-driven NN PDE can be trained to predict the latent dynamics: the gold standard that is being
established for this task are long-short term memory networks (LSTM). Their online computational
cost is low even w.r.t linear ROMs, but some new issues appear: their accuracy depends on the
regularity of the latent dynamics, especially when predicting the solutions for parameters outside
the training range, in the extrapolation regimes; they require hyperparameters tuning, and all the
connections to the PDEs model are completely lost, resulting in a loss of interpretability of the results.
The nonlinear manifold hyper-reduced ROMs we develop solve these issues, at the expense of a higher
computational cost in the online stage, since at each time step a physics-based residual is minimized.
Moreover, a posteriori error estimates are available [161, 146]. In our test cases, we compare these
two approaches to enlight their differences, weak and strong points.

The structure of this paper is as follows. In section 6.2 we delve into the topic of manifold
learning which has many connections with reduced-order modelling, especially since the recent
entry of machine learning in the design of ROMs. We will proceed introducing the Kolmogorov
n-with (KnW), and we will show that some classes of parametric PDEs suffer from the so called slow
decaying Kolmogorov n-width. In section 6.3, the nonlinear manifold (NM) reduced-order models
based on the work of Carlberg et al [161] are introduced. We will focus on the nonlinear manifold
least-squares Petrov-Galerkin method (NM-LSPG). Afterwords, we describe our new hyper-reduced
ROMs: NM-LSPG with reduced over-collocation (NM-LSPG-ROC) and NM-LSPG with reduced
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over-collocation and teacher-student training of a compressed decoder (NM-LSPG-ROC-TS). These
two approaches, to the best of the authors’ knowledge, are introduced here for the first time. In
section 6.4, the new model order reduction (MOR) methods are tested on a 2d parametric nonlinear
time-dependent conservation law model and a 2d parametric nonlinear time-dependent shallow water
equations model. In section 6.5, a discussion on the results obtained follows, and in the conclusive
section 6.6 possible future directions of research are explored.

6.2 Manifold learning

The subject of manifold learning, classified as a topic of machine learning, had its unique flavour
in model order reduction even before nowadays breakout of scientific machine learning [15]. The
workhorse of the model order reduction community is POD or SVD. A lot of real applications though,
required new methods to approximate the solution manifold in a nonlinear fashion. The symptom
of this behaviour is a slow decaying Kolmogorov n-width. Some approaches rely on the locality
of the validity region of a linear approximation with POD, both in the parameter space and in the
spatial and temporal domains, others implement nonlinear dimensionality reduction methods from
machine learning [182]: kernel principal component analysis (KPCA), Isomap, clustering algorithms.
Nonlinear MORs include approximations by rational functions, splines or other nonlinear functions
collected in a dictionary [25].

Interpolatory approaches of the solution manifold with respect to the parameters have been
developed, sometimes combined with nonlinear dimension reduction techniques like KPCA and its
variants: interpolation with geodesics on the Grassmann manifold [7], interpolation on the latent
space obtained with Isomap dimensionality reduction method [94, 29], interpolation with optimal
transport [26], dictionary-based ROM that make use of clustering in the Grassmannian manifold and
classification with neural networks (NN) [79], local kernel principal component analysis [163]. At
the same time, domain decomposition approaches tackled locality in space [169, 38].

One particular class of dimension reduction techniques is represented by autoencoders, and
more generally by other architectures that rely on NNs. In the recent literature many achievements
are brought by CAEs, and by extension by Generative Adversarial Networks (GANs), Variational
Autoencoders (VAEs), Bayesian convolutional autoencoders [106]: in [181] convolutional autoen-
coders are utilized for dimensionality reduction and long-short Term Memory (LSTM) NNs or causal
convolutional neural networks are used for time-stepping; in [95] the evolution of the dynamics and
the parameter dependency is learned at the same time of the latent space with a forward NN and a
CNNs on randomized SVD compressed snapshots, respectively; and in [278] spatial and temporal
features are separately learned with a multi-level convolutional autoencoder.

In order to extend these architectures to datasets not structured in orthogonal grids, geometric
deep learning [34] is called to the task. There are not many works on geometric deep learning applied
to model order reduction for mesh-based simulations that achieve the same accuracy of CNNs, yet.
Promising results are reached by an architecture that employs graph neural networks (GNNs) and a
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physics-informed loss [201]. In the future, the potential of GNNs will probably be leveraged extending
the range of applicability of nowadays frameworks.

The setting we will base our studies on, does not depend directly on the numerical method used to
discretize the parametric PDEs at hand (FVM, FEM, SEM, DGM), so the mathematical formulation
will generically be founded on models represented by a parametric system of time-dependent (but
also time-independent) PDEs, consisting of a nonlinear parametric differential operator G and of the
boundary differential operators B,B0 that represent the boundary and initial conditions respectively,

∀µµµ ∈ P


G(µµµ,U(µµµ, t,x)) = 0 (x, t) ∈Ω× [0,T ],

B(µµµ,U(µµµ, t,y)) = 0 (y, t) ∈ ∂Ω× [0,T ],

B0(µµµ,U(µµµ,0,x)) = 0 x ∈Ω,

(6.1)

where P is the parameter space, U are the state variables and Ω is the 2D or 3D spatial domain. This
formulation includes also coupled systems of PDEs. We assume that the solutions belong to a certain
Banach or Hilbert space Y , varying (µµµ, t) ∈ P × [0,T ]. The solution manifoldM is represented by
the set

M= {U(µµµ, t) ∈ Y | µµµ ∈ P, t ∈ [0,T ]}. (6.2)

6.2.1 Approximability by n-dimensional subspaces and Kolmogorov n-width

We want to remark some results available in the literature, in order to state and comment, for our needs,
the problem of solution manifold approximability. In particular, our benchmarks belong to a class of
parametric PDEs for which the Kolmogorov n-width decays slowly. Thus, classical Petrov-Galerkin
projection with POD needs to be overcome with nonlinear methods in place of POD to achieve
efficient ROMs.

Let (X ,∥·∥)X be a complex Banach space, and K ⊂ X a compact subspace, the Kolmogorov
n-width (KnW) of K in X is defined as

dn(K)X = inf
dim(W )=n

max
v∈K

min
w∈W
∥v−w∥X . (6.3)

Let (Y,∥·∥Y ) be a complex Banach space and L : K ⊂⊂ X → Y . In our framework K is the parameter
space, possibly infinite dimensional and L is the solution map of the system of parametric PDEs at
hand, from the parameter space to the solution manifold. In order to define L we have to suppose that
for each parameter in K there is a unique solution in Y .

Following [59], it can be proved that for holomorphic L, thus not necessarily linear, the Kol-
mogorov n-width decay is one polynomial order below the Kolmogorov n-width of the parameter
space K.
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Theorem 6 (Theorem 1, [59]). Suppose u is a holomorphic mapping from an open set O⊂ X into Y
and u is uniformly bounded on O,

∃B > 0, sup
x∈O
∥u(x)∥Y ≤ B. (6.4)

If K ⊂ O is a compact subset of X, then for any s > 1 and t < s−1,

sup
n≥1

nsdn(K)X < ∞⇒ sup
n≥1

ntdn(u(K))K < ∞. (6.5)

In particular, if the hypothesis of the previous theorem are satisfied and if K is a finite dimensional
linear subspace, the Kolmogorov n-width decay is exponential. In general, elliptic PDEs, affinely
decomposable with respect to the parameters, satisfy the hypothesis of the previous theorem [13, 155].
Not always nonlinearities cause a slow decaying KnW: using theorem 6, in [59] they prove that the
parametric PDE on a bounded Lipschitz domain Ω⊂ R3

u3−∇ · (expa)∇u = f , (6.6)

K = {a ∈ L∞(Ω) : ∥a∥Cα ≤M}, f ∈ H−1(Ω), (6.7)

with homogeneous Dirichlet boundary conditions, where Cα is the space of Hölder functions, satisfies
the hypothesis of the previous theorem. Actually, for Hölder functions the KnW is bounded above by
n−α/3, which is not a fast convergence, but if instead a belongs to the Sobolev space W s,∞(Ω) then
the upper bound is ns/3 [99]. We will consider a good KnW decay if it has a higher infinitesimal order
than n−1.

The same is not valid in the case of the simplest linear advection problem. We briefly report some
results from the literature on classical hyperbolic PDEs, for (t,µ) ∈ K = [0,1]2 with the standard
norm and Y = L2([0,1]),

L : (t,µ) 7→ u(t,x,µ) s.t. ∂tu−µ∂xu = 0 dn(M)L2 > n−
1
2 , (6.8)

L : (t,µ) 7→ u(t,x,µ) s.t. ∂
2
tt u−µ∂

2
xxu = 0 dn(M)L2 > n−

1
2 , (6.9)

where, the results are respectively proven in [185] and [110].
This behaviour is not restricted only to advection-dominated problems. Intuitively also solution

manifolds that are characterized by a parametrized locality in space suffer from slow decaying KnW,
like elliptic problems with singular sources parametrically moving in the domain [92].

Our newly developed ROMs, should solve the issue of slow decaying KnW in the applications,
guaranteeing a low latent or reduced dimension of the approximate solution manifold. This, because
the linear trial manifold, frequently generated by the leading POD modes, is substituted with a
nonlinear trial manifold, parametrized by the decoder of an autoencoder. The test cases we present
in section 6.4, were chosen in order to be advection-dominated and particularly not suited for linear
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ROMs, as shown in [146] for the 2d Burgers’ equation, that has a close relationship with the NCL
problem.

Remark 13 (Extensions of the Kolmogorov n-width to nonlinear approximations). The autoencoders
we implement in our test cases are at least continuous as composition of continuous activations and
linear functions. In the literature there exist possible nonlinear extensions of the KnW such as the
manifold width [75],

δn(L(K),X) = inf
ψ∈C(X ,Rn)
φ∈C(Rn,X)

sup
x∈L(K)

∥x− (φ ◦ψ)(x)∥X , (6.10)

library widths [244], and entropy numbers, for more insights see [25].

6.2.2 Singular values decomposition and discrete spectral decay

From the discrete point of view the same problematic in tackling the reduction of parametric PDEs
with slow KnW decay is encountered: in this case the discrete solution manifold is actually the set
of discrete solutions of the full-order model for a selected finite set of parameters. Singular Value
Decomposition (SVD) or eigenvalue decomposition (for symmetric positive definite matrices), usually
employed on the snapshots matrix for the evaluation of the reduced modes, are characterized by the
fact that modes are linear combinations of the snapshots. This is not enough to approximate snapshots
that are orthogonal with respect to the collection of the training set.

In practice, looking at the residual energy retained by the discarded modes, is an indicator of
approximability with linear subspaces. Let us assume that d is the total number of degrees of freedom
of the discrete problem, Ntrain is the number of training snapshots, and, r, the reduced dimension such
that, r ≤ Ntrain≪ d. Then, X ∈ Rd×RNtrain is the matrix that has the training snapshots {Ui}Ntrain

i=1 as
columns, V ∈ Rd×Rr are the reduced modes from the SVD of X , and {σi}d

i=1 are the increasingly
ordered singular values. It is valid the following relationship of the residual energy (to the left) with
the KnW (to the right),√√√√ d

∑
i=r+1

σ2
i = ∥(I−VV T )X∥F ≥ max

i=1,...,Ntrain
∥(I−VV T )Ui∥2 ≥ dn({Ui}Ntrain

i=1 )Rd ,

where ∥·∥F is the Frobenious norm.
Even though some problems have a slow decaying KnW, this affects only the asymptotic conver-

gence of the ROMs w.r.t. the reduced dimension, while for some applications a satisfying accuracy of
the projection error is reached with less than 100 modes, as shown in our benchmarks. So what is
actually lost in MOR for problems with a slow decaying KnW is the fast convergence of the projec-
tion error w.r.t. the reduced dimension, not the possibility to perform a MOR with enough modes.
Moreover, the discrete solution manifold’s KnW depends on the time step and spatial discretization
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size, so that, especially when a coarse mesh is employed, the Knw decays faster w.r.t. the KnW of the
continuous solution manifold.

6.2.3 Convolutional Autoencoders

We have chosen to overcome the slowly decaying KnW problem employing autoencoders [106] as
nonlinear dimension reduction method substituting POD. Some ROMs predict the latent dynamics on a
linear trial manifold with artificial neural networks [202], so are still classified as linear ROMs and, in
fact, they are still affected by the slow KnW decay. We remark that while some nonlinear approaches
to model order reduction are specifically tailored for advection-dominated problems [254, 191],
autoencoders are a more general approach. On the other hand, they are also particularly suited to
advection-dominated problems with respect to local and/or partitioned ROMs that implement domain
decomposition, even when nonlinear dimension reduction techniques are employed locally [163]:
this is because considering a non-discrete parametric space, like the time interval of a simple linear
advection problem, an infinite number of local linear and/or nonlinear ROMs would be needed to
counter the slow decaying KnW. As anticipated, we implement convolutional autoencoders [106] in
libtorch the C++ frontend of PyTorch [196]. We remark that the procedure we developed, considering
also teacher-student training of a reduced decoder in section 6.3.4, can be generally extended to any
architecture that can approximate with a sufficiently good accuracy the solution manifold through
a low-dimensional latent representation. The choice of a CAE is particularly beneficial when the
solution snapshots are associated to a structured mesh and when the components of the vectorial
solution fields to be approximated have similar features so that the convolutional filters can be shared
among the channels of the CAE.

Let us define Xh ⊂ Rd as the state discretization space with d the number of degrees of freedom
and h the discretization step. The snapshots are divided in a training set Utrain = {Ui}i=1,...,Ntrain ⊂ Xh

and a test set Utest = {Ui}i=1,...,Ntest ⊂ Xh. If the problem has different states and/or vectorial states
the training and test set are split in channels for each state and/or component. For example in the
2d nonlinear conservation law, we consider two channels, one for each velocity component. In the
shallow water test case, we consider three channels, one for each velocity component and one for the
free surface height. So, in general, we reshape the snapshots such that Utrain,Utest ⊂ (Rd/c)c where c
is the number of channels.

As preprocessing step the snapshots are centered and normalized to assume values in the interval
[−1,1]

2
Umax−Umin

(
Utrain−Umean−

Umin +Umax

2

)
, (6.11)

where Umean,Umax, Umin ∈ (Rd/c)c are evaluated channel wise. The same values obtained from the
training snapshots Utrain, are employed to center and normalize the test set Utest.

We define the encoder ψ : (Rd/c)c → Rr and the decoder φ : Rr → (Rd/c)c, where r ≪ d is
the reduced or latent dimension, as neural networks made by subsequent convolutional layers and



6.2 Manifold learning 159

linear layers at the end and at the beginning, respectively. For the particular architecture used in the
applications we defer it to the section 6.4.3. In Figure 6.1 is represented the convolutional autoencoder
applied for the 2d nonlinear conservation law test case, with an approximate size of the filters and the
actual number of layers 1.

Fig. 6.1 The convolutional autoencoder architecture employed for the 2d nonlinear conservation
law test case: the same number of convolutional layers are shown, while the sizes of each layer are
rescaled for a better graphical representation of the architecture.

Remark 14 (Regularity). Regarding the regularity of the CAE, related to the choice of activation
functions, it is proved in Theorem 4.2 from [161] that NM-LSTM and nonlinear manifold Galerkin
methods are asymptotically equivalent provided that the decoder is twice differentiable. Since we
are only employing the NM-LSTM method, our only concern in the choice of activation functions
is that the reconstruction error is sufficiently low, so that the accuracy of the whole procedure is not
undermined.

For each batch {Ui}b
i=1 ⊂ Utrain, the loss employed is the sum of the reconstruction error, and a

regularizing term for the weights:

L({Uti
i }b

i=1;Θ) =
1
b

b

∑
i=1

∥Uti
i − (φ ◦ψ)(Uti

i )∥2
2

∥Uti
i ∥2

2
+λ1∥Θ∥2

2, (6.12)

where Θ represents the weights of the convolutional autoencoder. The choice of the relative mean
squared reconstruction error is important when, varying the parameter {µµµ i}Ntrain

i=1 , the snapshots
{Ui}Ntrain

i=1 have different orders of magnitude: for example this is the case of flows propagating from a
local source on the whole domain with a constant zero state as initial condition.

The training is performed with Adam stochastic optimization method [147]. After the training the
whole evolution of the dynamics is carried out with a nonlinear optimization algorithm minimizing

1Figure 6.1 and Figure 6.3 were made with the open-source package from GitHub https://github.com/HarisIqbal88/
PlotNeuralNet.

https://github.com/HarisIqbal88/PlotNeuralNet
https://github.com/HarisIqbal88/PlotNeuralNet
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the residual on the latent domain, as described in section 6.3. For each new parametric instance
and associated initial state U0 ∈ Xh, the latent initial condition is found with a single forward of the
encoder z0 = ψ(U0) after centering and normalizing U0. Then, for each time instant t, the decoder

φ(z(t)) = U(t) ∈ (φ ◦ψ)(Xh)⊂ Rd , (6.13)

is used as parametrization of an approximate solution manifold as will be explained in section 6.3,
including in φ the renormalization of the output.

Remark 15 (Initial condition). With respect to the initial implementation of Carlberg et al [161] our
approach for the definition of the latent parametrization of the solution manifold is different in the
management of the initial condition. Instead of using directly the decoder φ , they define the map from
the latent to the state space f : Rr→ Rd , including the renormalization in the φ map for brevity, as

f (z) = φ(z)+U0(µ)−φ(ψ(0)), s.t. f (ψ(0)) = U0(µ), (6.14)

so that the reconstruction is exact at the initial parametric time instances. So, supposing that the initial
condition is parametrically dependent, all initial conditions coincide to ψ(0) in the latent space, and
the decoder has to learn variations from the initial latent condition. We prefer instead to split the
initial conditions in the latent space in order to aid the nonlinear optimization algorithm, and leave
to the training of the CAE the accurate approximation of the initial condition. This splitting of the
initial conditions can be seen in Figure 6.6 and 6.13. The additional cost of our implementation is the
forward of the initial parametric condition through the encoder as first step.

Remark 16 (Inductive biases). Imposing inductive biases to increase the convergence speed of a
deep learning model to the desired solution has always been a winning strategy in machine learning.
This is translated in the context of physical models with the possibility to include, among others, the
following inductive biases: first principles (conservation laws [161], equations governing the physical
phenomenon), geometrical simmetries (group invariant filters [233, 90]), numerical schemes/residuals
(discrete residuals, latent time advancement with Runge-Kutta schemes), latent regularity (minimize
the curvature of latent trajectories), latent dynamics (linear or quadratic latent dynamics [109]). As
inductive bias, we will impose the positivity of the state variables that are known to be positive
throughout their trajectory with a final ReLU activation.

6.3 Evolution of the latent dynamics with NM-LSPG-ROC

The nonlinear manifold method introduced by Carlberg et al [161] does not perform a complete
dimension reduction since at each time step the decoder reconstructs the state from the latent coor-
dinates to the whole domain, still depending on the number of degrees of freedom of the FOM. We
revisit the nonlinear manifold least-squares Petrov-Galerkin method (NM-LSPG) with small modifi-
cations and introduce two novel hyper-reduction procedures: one combines teacher-student training
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of a compressed decoder with the reduced over-collocation method (NM-LSPG-ROC-TS), the other
implements only the hyper-reduction of the residual with reduced over-collocation (NM-LSPG-ROC).

6.3.1 Nonlinear manifold least-squares Petrov-Galerkin

We assume that the numerical method of preference discretizes the system 6.1 in space and in time
with an implicit scheme, Gh,δ t : P×Xh×X |It |h → Xh

Gh,δ t(µµµ,Ut
h,{Us

h}s∈It ) = 0, (6.15)

where h, δ t are the spatial and temporal discretization steps chosen, Xh ⊂Rd is the state discretization
space (d is the number of degrees of freedom), and It is the set of past state indexes employed in the
temporal numerical scheme to solve for Ut

h. We remark that the numerical discretization employed
can differ from the one used to solve for the full-order training snapshots. The method is thus
equations-based rather than fully intrusive. This will be the case for the 2d shallow water equations
model in Subsection 6.4.2.

For each discrete time instant t the following nonlinear least-squares problem is solved for the
latent state zt ∈ Z, with the Levenberg-Marquardt algorithm [209]

zt = argmin
z∈Rr

∥Gh,δ t(µµµ,φ(z),{φ(zs)}s∈It )∥2
Xh
. (6.16)

That is for each time instant the following intermediate solutions {zt,k}k∈{0,...,N(t)}, zt,0 = zt−1,N(t−1)

of the linear system in Rr are computed,(
(dGt,k−1dφ

t,k−1)T dGt,k−1dφ
t,k−1 +λ Id

)
δzt,k =−(dGt,k−1dφ

t,k−1)T Gt,k, (6.17)

zt,k = zt,k−1 +α
k

δzt,k, (6.18)

where

dφ
t,k−1 :=

dφ(zt,k−1)

dzt,k−1 ∈ Rd×r, (6.19)

dGt,k−1 :=
dGh,δ t(µµµ,Ut

h,{Us
h}s∈It )

dUt
h

∣∣∣∣
(Ut

h,{Us
h}s∈It )=(φ(zt,k−1),{φ(zs)}s∈It )

∈ Rd×d , (6.20)

λ is a factor that evolves during the nonlinear optimization and balances between a Gauss-Newton
and a steepest descent method, and finally αk is a parameter found with a trust-region method.
In the implementation in Eigen [111], λ Id is scaled with respect to the diagonal elements of
(dGt,k−1dφ t,k−1)T dGt,k−1dφ t,k−1. All the tolerances for convergence are set to machine precision,
and the maximum number of residual evaluations is set to 7 unless explicitly stated differently in the
numerical results section 6.4.
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Remark 17 (Least-squares Petrov-Galerkin). The method is called manifold LSPG because it refers to
the LSPG method usually applied when the manifold is linear. It consists in multiplying the residual
to the left with a different matrix Ψ with respect to the linear embedding Φ of the reduced coordinates
into the state space,

Ψ
T Gh,δ t(µµµ,Φz) = 0, (6.21)

where, Φ ∈Rd×r is the basis of the linear reduced manifold contained in Xh ⊂Rd , z ∈Rr, and Ψ is to
be defined: the left subspace Ψ ∈ Rd×r is used to enforce the orthogonality of the nonlinear residual
to a left subspace L ⊂ Rd . Applying Newton’s method because of the nonlinearities, the problem is
translated into the iterations for k = 1, . . . ,K:

Ψ
T dGΦ δzk =−Ψ

T Gk, (6.22)

zk = zk−1 +α
k

δzk. (6.23)

The step length αk is computed after a line search along the direction pk. Usually Φ is chosen from a
POD basis of the state variable z ∈ Xh. For the left subspace, that imposes orthogonality constraints,
different choices can be applied. In general, given the system

dGΦ δzk =−Gk, (6.24)

the least squares solution is the one orthogonal to the range of dGΦ. In the case of dG symmetric
positive definite we have that Ψ⊂< dGΦ >=< Φ > i.e. Ψ = Φ and the method is called Galerkin
projection, but in general if this is not true then the optimal left subspace remains Ψ = dGΦ. For
examples where the Galerkin projection is not optimal see [45], section 3.4 Numerical comparison of
left subspaces. This is often the case for advection-dominated discretized systems of PDEs: in these
cases LSPG is preferred to Galerkin projection.

Remark 18 (Manifold Galerkin). The manifold Galerkin method proposed in [161] assumes that the
columns of the Jacobian of the decoder are good approximations of the state velocity space: if a
spatial discretization is applied and the residual has the form Gh(µµµ,U) = U̇− f(µµµ,U), where f is a
generic, possibly nonlinear, vector field, then

ż = argmin
v∈Rr

∥dφ(z)v− f(µµµ,φ(z))∥2, (6.25)

is solved for the latent state velocity, under the hypothesis that dφ(z) has full-rank and dφ is a good
approximation of the full-order state velocity even if the autoencoder is trained only on the values of
the state for different times and parameters, without considering its velocity. If φ is linear, we obtain
the Galerkin method presented in the remark 17, after having applied a temporal discretization scheme
and multiplied the resulting equation to the left with dφ(z) = Φ as is the case for linear Galerkin
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projection: the discretize-then-project and project-then-discretize approaches are equivalent in this
case [161].

The LSPG performs better as shown in [161], even if they are asymptotically equivalent also in
the case of a nonlinear manifold, provided φ is twice differentiable. So we have chosen to employ
only the NM-LSPG method and do not compare it with the nonlinear manifold Galerkin (NM-G)
method.

For the numerical tests we have performed, the numerical approximation of the Jacobian of the
residual Gh,δ t(µµµ,φ(z),{φ(zs)}s∈It ) is accurate enough. So in the implementation, at each iteration step
the Jacobian of the residual with respect to the latent variable, that is dGt,k−1dφ t,k−1 of equation 6.17,
is approximated with finite differences. The step size is taken sufficiently lower than the distance
between consecutive latent states.

6.3.2 Reduced over-collocation method

At the point of equation 6.17, the model still depends on the number of degrees of freedom of the
full-order model d, since at each time step and optimization step the latent reduced variable z ∈ Rr

is forwarded to the reconstructed state Uh = φ(z) ∈ Rd . A possible solution is represented by the
reduced over-collocation method [51], for which the least squares problem 6.16 is solved only on a
limited number of points r < rh << d,

zt = argmin
z∈Rr

∥PrhGh,δ t(µµµ,φ(z),{φ(zs)}s∈It )∥2
Rrh , (6.26)

where Prh is the projection onto rh standard basis elements in Rd associated to the over-collocation
nodes or magic points and selected as described later. Afterwards the Levenberg-Marquardt algorithm
is applied as described in the previous section, to solve the least squares problem 6.26.

At this point we make the assumption that the method used to discretize the model has a local
formulation so that each discrete differential operator can be restricted to the nodes/magic points of
the hyper-reduction and consequently, the least-squares problem 6.26 reduces to

zt = argmin
z∈Rr

∥PrhGh,δ t(µµµ,Prh(φ(z)),{Prh(φ(z
s))}s∈It )∥2

Rrh , (6.27)

= argmin
z∈Rr

∥G̃h,δ t(µµµ, φ̃(z),{φ̃(zs)}s∈It )∥2
Rrh , (6.28)

where the projected residual G̃ = Prh ◦G is introduced and the compressed decoder φ̃ is defined to
substitute Prh ◦φ with another embedding from the latent space to the hyper-reduced space in Rrh ,
such that the whole structure of the decoder is reduced as described in subsection 6.3.4 to further
decrease the computational cost.
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The Levenberg-Marquardt method is applied also to the hyper-reduced system(
(dG̃t,k−1dφ̃

t,k−1)T dG̃t,k−1dφ̃
t,k−1 +λ Id

)
δzt,k =−(dG̃t,k−1dφ̃

t,k−1)T G̃t,k, (6.29)

zt,k = zt,k−1 +α
k

δzt,k, (6.30)

and as for the manifold LSPG method, the Jacobian matrix dG̃t,k−1dφ̃ t,k−1 is numerically approxi-
mated at each optimization step in the implementations.

Remark 19 (Submesh needed to define the hyper-reduced differential operators). To compute G̃h,δ t in
the nodes/magic points of the reduced over-collocation method, some adjacent degrees of freedom
are needed by the discrete differential operators involved. So, actually, at each time step not only the
values of the state variables at the magic points are needed, but also at the adjacent degrees of freedom
in the mesh with possible overlappings. We represent the restriction to this submesh of magic points
and adjacent degrees of freedom with the projector Ps

rh
∈ Rsh×d , where sh is the number of degrees of

freedom of the submesh. Equation 6.28 becomes

zt = argmin
z∈Rr

∥PrhGh,δ t(µµµ,P
s
rh
(φ(z)),{Ps

rh
(φ(zs))}s∈It )∥2

Rrh . (6.31)

The stencil around each magic point to consider depends on the type of numerical scheme. Since we
are using the finite volume method we have to consider the degrees of freedom of the adjacent cells.
For example, for Cartesian grids, the schemes chosen for the 2d nonlinear conservation law have a
stencil of 1 layer of adjacent cells, 4 additional nodes in total for a cell of the interior of the mesh.
The 2d shallow water equations case requires a stencil of 2 layers instead, 12 additional nodes in total
for a cell of the interior of the mesh. The two cases are shown in Figure 6.2.

6.3.3 Over-collocation nodes selection

The nodes/magic points of the over-collocation hyper-reduction method should be defined such that

Prh = argmin
PT P∈S

max
(zt ,{zs}s∈It )∈T

(6.32)

∥Gh,δ t(µµµ,(φ(z)),{(φ(zs))}s∈It )−PT PGh,δ t(µµµ,P(φ(zt)),{P(φ(zs))}s∈It )∥2
Rrh

where S = {P ∈ Rrh×d | P = (ei1 | . . . |eirh
)T} is the space of projectors onto rh coordinates associated

to the standard basis {ei}i∈{1,...,d} of Rd and T is the space of discrete solution trajectories varying
with respect to µµµ and the intermediate optimization steps

T = {(µµµ, t,k,zt,k,{zs,k}s∈It ) ∈ P ×Vh,µµµ ×Vh,µµµ,t ×Rd×Rd×|It | |,(
(dGt,k−1dφ

t,k−1)T dGt,k−1dφ
t,k−1 +λ Id

)
δzt,k =−(dGt,k−1dφ

t,k−1)T Gt,k},
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Fig. 6.2 Left: 100 magic points of the 2d nonlinear conservation law test case. Right: 100 magic
points of the 2d shallow water test case. The magic points are represented in red, the stencils of the
cells and associated degrees of freedom needed for the evaluation of the discrete differential operators
are in light-blue. The discarded nodes in the evolution of the dynamics with NM-LSPG-ROC are in
blue. The stencil is made by 1 layer of cells in the NCL case and 2 layers in the SW case.

where Vh,µµµ is the discrete space of time instants, possibly depending on h and the parameter µµµ , and
Vh,µµµ,t is the discrete space of optimization steps at time t. Essentially we want that the nodes/magic
points approximate the residuals among all time steps, optimization steps and parameter instances.

There are many possible algorithms to solve Equation 6.32 for Prh . Usually they are not optimal and
compromise between computational cost and accuracy, depending on the problem at hand. Among
others, these algorithms are part of the hyper-reduction methods such as empirical interpolation
method [20], discrete empirical interpolation method [48], Gauss-Newton tensor approximation
(GNAT) [46], space-time GNAT [55] and solution-based nonlinear subspace GNAT [56](SNS-GNAT).

In particular, if Gh(µµµ,U) = U̇− f(µµµ,U), then, following some considerations that justify SNS-
GNAT [56], the training modes employed to find the nodes/magic points of the over-collocation
method are represented by the state snapshots instead of the residual fields. We could in principle use
the reduced fields φ(z) but in practice, for the test case we considered, the full-order state snapshots
were enough, without even saving the intermediate optimization states.

The procedure is applied at the same time for all the components of the state field U ∈ Xh and
follows a greedy approach. We remark that the spatial discretization must not vary, so that the degrees
of freedom correspond to the same spatial and physical quantity over time and for every parameter
instance. Some approaches tackle also geometry deformations, but keeping the same number of
degrees of freedom in a reference system [239].

The algorithm 6 is an adaptation of GNAT from Algorithm 3 in [46] to the simpler case in which
the Jacobian matrix is not considered in the hyper-reduction (since in the LM method the Jacobian
matrix is approximated with finite differences from the residual, see equation 6.30). Also, with respect
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to Algorithm 3 in [46], the new node/magic point at line 21 in Algorithm 6 is found without computing
also the reconstruction error of the degrees of freedom associated to its stencil.

Algorithm 6: Greedy nodes/magic points evaluation for ROC method.
input : :

Utrain := {Uµµµ,t}µ∈Ptrain, t∈Vµµµ,h , training state fields,
nrinit nodes/magic points at the boundaries,
nrh , number of nodes/magic points,
Nmodes number of training modes.

output : :rh nodes/magic points used to define Prh .

Remark 20 (Comparison between GNAT and reduced over-collocation). We must say that the GNAT
method, employed for the implementation of NM-LSPG with shallow masked autoencoders in [146],
is a generalization of the reduced over-collocation method. In some cases though, they may perform
similarly. For P ∈ S , let us define

r = rt,µµµ,k = Gh,δ t(µµµ,P(φ(zt,k)),{P(φ(zs,k−1))}s∈I), ∀(t,k,µµµ) ∈Vh,µµµ ×Vh,µµµ,t ×P,

and the GNAT projection operator P=Φ(PΦ)†P, where Φ is the matrix where the columns correspond
to a chosen basis (it could be the FOM residual snapshots, ROM residual snapshots, ROM Jacobian
and residual snapshots, see [46]). In particular, if Φ = PT

rh
= PT we have that

P= Φ(PrhΦ)†Prh = Φ(PrhΦ)−1Prh = PT
rh
(PrhPT

rh
)−1Prh = PT

rh
Prh , (6.33)

that is the reduced over-collocation projection in the chosen nodes/magic points and extended to
0 in the remaining degrees of freedom. In this sense, the GNAT method includes the reduced
over-collocation one.

However, for the class of problems we are considering, the GNAT method suffers from the slow
decaying KnW. We have the inequalities

d2
n({rt,µµµ,k}t,µµµ,k) = inf

dimVn=n
max
t,µµµ,k
∥r−VnV T

n r∥2
2

≤ inf
dimVn=n

max
t,µµµ,k
∥r−VnV T

n r∥2
2 +∥VnV T

n r−Pr∥2
2

= inf
dimVn=n

max
t,µµµ,k
∥r−Pr∥2

2 = inf
dimVn=n

max
t,µµµ,k
∥(I−P)(I−VnV T

n )r∥2
2

≤ inf
dimVn=n

max
t,µµµ,k
∥(I−P)∥2

2∥(I−VnV T
n )r∥2

2

= inf
dimVn=n

max
t,µµµ,k
∥P∥2

2∥(I−VnV T
n )r∥2

2,

where (t,k,µµµ) ∈ Vh,µµµ ×Vh,µµµ,t ×P whenever the maximum is taken. The term r−Pr is the GNAT
approximation error. The rightmost term is the usual bound on the hyper-reduction error [48], where it
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was used the fact that ∥P∥= ∥I−P∥. The second equality is valid because r−VnV T
n r and VnV T

n r−Pr
are orthogonal. The third equality is obtained from the relations

r = (r− r∗)+ r∗ = w+ r∗, with r∗ :=VnV T
n r,

⇒ r−Pr = w+ r∗−Pw−Pr∗ = w−Pw,

where the last equality follows from Pr∗ = r∗. Here we have supposed the nodes/magic points
to be independent of Vn. So in the case of slow decaying Kolmogorov n-width, minimizing the
hyper-reduced residual Pr ∈<Vn >⊂ Rd is less efficient due to the slow convergence in n of the best
approximation error ∥r−VnV T

n r∥2
2. This is one of the reasons why we employed ROC for the SWE

test case; for the NCL test case GNAT and ROC performed similarly.

6.3.4 Compressed decoder teacher-student training

In order to make the whole methodology independent of the number of degrees of freedom, the
decoder has to be substituted with a map φ̃ : RR→ Prh(Xh)⊂ Rrh from the latent space to the space
of discrete full-order solutions evaluated only at the submesh containing the magic points and the
needed adjacent degrees of freedom. As architecture, we choose a feedforward neural network (FNN)
with one hidden layer, but actually the only requirement is that the computational cost is low enough
such that not only a theoretical dimension reduction is achieved, but also a speedup is reached.

In the literature, the procedure for the training of the compressed decoder φ̃ from the decoder
φ is called teacher-student training [108]. In principle, the compressed decoder can be composed
of layers inherited by the original decoder, such that the learning process involves only the final
new additional layers. In our case, we preferred to train the compressed decoder anew: the latent
projections of the training snapshots with the encoder ψ(Utrain) = {zi}Ntrain

i=1 are the inputs and the
restriction of the snapshots to the submesh Ps

rh
(Utrain) = {Ũi}Ntrain

i=1 are the targets, see Equation 6.31.
A schematic representation of the teacher-student training is represented in figure 6.3. Moreover, to
speedup the offline stage, we use the training FOM snapshots restricted to the magic points as training
outputs for the teacher-student training, while usually the reconstructed snapshots from the CAE -that
would additionally need to be computed- are employed.

Again, for the training, we use a relative mean square loss with an additional regularizing term

L({zi}b
i=1;Θ̃) =

1
b

b

∑
i=1

∥Ũi− φ̃(zi)∥2
2

∥Ũi∥2
2

+λ1∥Θ̃∥2
2, (6.34)

where Θ̃ are the weights of the compressed decoder.

Remark 21 (Jacobian evaluation in Levenberg-Marquardt algorithm). The main reason why finite
differences approximations of Jacobians are implemented in the NM-LSPG case, as explained at the
end of subsection 6.3.1, is that the computational cost of evaluating the Jacobian of the full decoder
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Fig. 6.3 Teacher-student training of the compressed decoder for the 2d nonlinear conservation law test
case. The magic points, which the snapshots are restricted to, are shown in red over the domain.

is too high. In principle Jacobian evaluations of the compressed decoder are cheaper and could be
employed, instead of relying again on finite differences approximations.

Remark 22 (Shallow masked autoencoders). We are motivated to write this article to extend the results
in [146] to a generic architecture composed by neural networks. They performed the hyper-reduction
of the nonlinear manifold method [161] with a shallow masked autoencoder, so that correctly masking
the weights matrices of the decoder, its outputs correspond only to the submesh needed by the GNAT
method, thus eliminating the dependence on the FOM’s degrees of freedom. We want to reproduce,
in some sense, this approach for an arbitrary autoencoder architecture, in this case a CAE, in order
to tackle with the latest architectures developed in the literature the problem of solution manifold
approximability: we think this is a major concern when trying to apply nonlinear MOR to real
applications. In fact, as will be clear in the numerical results section 6.4, the reconstruction error of
the autoencoder bounds from below the prediction error of our newly developed ROMs.

It can be seen that the new model order reduction is composed of two distinct procedures to
achieve the independence on the number of degrees of freedom: first the residual from NM-LSPG
in Equation 6.16 is hyper-reduced with ROC in Equation 6.26 and secondly the CAE’s decoder is
compressed with teacher-student training. In principle, we could substitute the use of the compressed
decoder with the restriction of the final layer of the CAE’s decoder into the magic points, while
keeping the hyper-reduction with ROC of the residual. In this case, the whole methodology would
still be dependent on the total number of degrees of freedom, but in practice a CAE’s decoder
forward is relatively cheap compared to the evaluation of the full residual. So, the hyper-reduction
performed with ROC or GNAT only at the equations/residuals level, is already beneficial to reduce
the computational cost. We will compare this variant of the NM-LSPG-ROC method with the one
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that employs the compressed decoder, also to verify the consistency of the teacher-student training
that is omitted in the first case.

In the numerical results section 6.4 we will adopt the acronym NM-LSPG-ROC-TS or NM-
LSPG-GNAT-TS for the method that employs the compressed decoder and NM-LSPG-ROC or
NM-LSPG-GNAT for the method that performs the hyper-reduction only at the equations/residuals
level.

6.4 Numerical results

We test the new methodology on two benchmarks with a relatively slow KnW: the first model is
governed by a nonlinear conservation law 6.4.1 the second by the shallow water equations 6.4.2.
Both are parametric, nonlinear and time-dependent, and the only other (non-temporal) parameter is a
multiplicative constant of the initial condition. The mesh employed is the same: a 60×60 structured
orthogonal grid.

All the CFD simulations are obtained by the use of an in-house open source library ITHACA-FV (In
real Time Highly Advanced Computational Applications for Finite Volumes) [238, 237], developed
in a finite volume environment based on the open-source library OpenFoam [264]. Regarding the
implementation of the convolutional autoencoders and compressed decoders (CAE) we used libtorch,
PyTorch C++ frontend, while for the training of the long-short term memory network (LSTM) we
used PyTorch [196]. All the CFD simulations were performed on a Intel(R) Core(TM) i7-8750H CPU
with 2.20GHz and all the neural networks trainings on a GeForce GTX 1060 GPU. Further reductions
in the computational costs could be achieved exploiting the parallel implementation of the training
procedures in PyTorch. The details of the architectures of the neural networks that will be employed
are reported in the section 6.4.3.

The following notations are introduced: Nµ

train, Nµ

test are the numbers of train and test parameters,
respectively; Nt

train, Nt
test are the number of time instances associated to the train and test parameters,

respectively. The total number of training and test snapshots is thus Ntrain = Nµ

train ·Nt
train, and Ntest =

Nµ

test ·Nt
test, respectively.

The accuracy of the reduced-order models devised is measured with the mean realtive L2-error and
the maximum relative L2-error, where the mean and max are taken with respect to the time scale: since
the test cases depend on a non-temporal parameter, for each instance of these parameters a time-series
corresponding to the discrete dynamics is associated; the mean and maximum are evaluated w.r.t the
elements of these time-series. Let {uti

µ}i=1,...Nt and {U ti
µ}i=1,...Nt be the predicted and true time-series

Nt elements long, associated to the train or test parameter µ , the mean relative L2-errors and maximum
relative L2-errors are then defined as

εmean(uµ ,Uµ) =
1

Nt

Nt

∑
i=1

∥uti
µ −U ti

µ∥L2

∥U ti
µ∥L2

, εmax(uµ ,Uµ) = max
i=1,...,Nt

∥uti
µ −U ti

µ∥L2

∥U ti
µ∥L2

. (6.35)
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Remark 23 (Levenberg-Marquardt parameters). Regarding the Levenberg-Marqurdt nonlinear opti-
mization algorithm, we remark that we approximate the Jacobians with forward finite differences,
and the optimization process, for each time step, is stopped when the maximum number of residual
evaluations is reached. This number is set to 7, including the evaluations related to the Jacobian
computations. When 7 residual evaluations are not enough for the method to converge, it is explicitly
reported.

6.4.1 Nonlinear conservation law (NCL)

We test our procedure for nonlinear model order reduction on a 2d nonlinear conservation law
model (NCL). Two main reasons are behind this choice: the slow Kolmogorov n-width decay of
the continuous solution manifold, and the possibility to compare our results with a similar test case
realized with an implementation of nonlinear manifold based on shallow masked autoencoders and
GNAT [146].

The parametrization affects the initial velocity as a scalar multiplicative constant µ ∈ [0.8,2]:
∂tu+ 1

2 ∇ · (u⊗u) = ν∆u (x, t) ∈ [0,1]2× [0,2],

u(x,0) = 0.8 ·µ · sin(2πx)sin(2πy)χ[0,0.5]2 x ∈ [0,1]2,

u(x, t) = 0 (x, t) ∈ ∂ [0,1]2× [0,2],

(6.36)

where the viscosity ν = 0.0001. We will collect Nµ

train = 12 equispaced training parameters from the
range µ ∈ [0.8,2] and Nµ

test = 16 equispaced test parameters from the range µ ∈ [0.6,2.2]. The first
two and the last two parameters will account for the extrapolation error. The time step is equal to
∆t = 1e−3 seconds, but the training snapshots are collected every 4 time steps and the test snapshots
every 20, thus Nt

train = 501, and Nt
test = 101. In the predictive online phase, the dynamics will be

evolved with the same time step ∆t = 1e−3. For easiness of representation, the train parameters are
labelled from 1 to 12, and the test parameters are labelled from 1 to 16.

To have a qualitative view on the range of the solution manifold, we report the initial and final
time snapshots for the extremal training parameters of the range µ ∈ [0.8,2], in Figure 6.4.



6.4 Numerical results 171

Fig. 6.4 NCL. From left to right: FOM solution of equation 6.36 at (t,µ) ∈ {(0,0.8),(2,0.8)} and
(t,µ) ∈ {(0,2),(2,2)}.

In this test case the GNAT method performed slightly better than the ROC method for hyper-
reduction, so we employed the former to obtain the results shown.

Full-order model

We solve the 2d nonlinear conservation law for different values of the parameter µ with OpenFoam [264]
open-source software for CFD. We employ the finite volumes method (FVM) in a structured orthogo-
nal grid of 60×60 cells. If we represent with M the mass matrix, with D the diffusive matrix term,
and with C(U t−1) the advection matrix, then, at every time instant t, the discrete equation

M
∆t

U t +C(U t−1)U t −νDU t =
M
∆t

U t−1, (6.37)

is solved for the state U t with a semi-implicit Euler method. The time step is 1e− 3, the initial
and final time instants are 0 and 2 seconds. The linear system is solved with the iterative method
BiCGStab preconditioned with DILU, until a tolerance of 1e−17 on the FVM residual is reached.

The stencil of the numerical scheme at each cell involves the adjacent cells that share an interface
(4 for an interior cell, 3 for a boundary cell and 2 for a corner cell): the value of the state at the
interfaces is obtained with the bounded upwind method for the advection term and the surface normal
gradient is obtained with central finite differences of two adjacent cell centers. So, in order to
implement the reduced over-collocation method, for each node/magic point we have to consider
an additional number of maximum 4 cells, that is 8 degrees of freedom to keep track of during the
evolution of the latent dynamics; of course in practice they may overlap reducing the computational
cost further.

The residual of the NMLSPG methods is evaluated with the same numerical scheme of the FOM.
In the SWE test case the FOM and the ROMs employ different numerical schemes 6.4.2.

Manifold learning

As first step of the procedure the discrete solution manifold is learned through the training of a
convolutional autoencoder (CAE) whose specific architecture is reported in Table 6.7. The CAE is
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trained with the ADAM [147] stochastic optimization algoritm for 2000 epochs, halving the learning
rate by a factor of 2 if after 200 epochs the loss does not decrease. The initial learning rate is 1e−3,
its lower bound is 1e−6. The number of training snapshots is Ntrain = 12×501 = 6012, the batch size
20. It could be further refined in order the increase the efficiency of the whole procedure.

We choose as latent dimension 4, 2 dimensions greater than the number of parameters (the scalar
multiplying the initial condition and time). We don’t perform a convergence study of the accuracy
with respect to the latent dimension since our focus is on the implementation of the NM-LSPG-ROC
and NM-LSPG-ROC-TS model-order reduction methods: we are satisfied as long as the accuracy
is relatively high, while the reduced dimension corresponds to an inaccurate linear approximating
manifold spanned by the same number of POD modes.

In Figure 6.5 is shown the reconstruction error of the CAE and its decay with respect to the
number of POD modes chosen [4,10,25,50,100]. To reach the same accuracy of the CAE with
latent dimension 4, around 50 POD modes are needed. In order to state that the slow KnW decay
problem is overcome by the CAE, the asymptotic convergence of the reconstruction error w.r.t. the
latent dimension should be studied as was done for similar problems in [161, 146]. Instead, we will
empirically prove that we can devise an hyper-reduced ROM with latent dimension 4 and accuracy
lower than the 2% for the mean relative L2-error, a task that would be impossible for a POD based
ROM with the same reduced dimension, since the reconstruction error is near 20% for all the test
parameters.

Fig. 6.5 NCL. Comparison between the CAE’s and POD’s projection errors of the discrete solution
manifold represented by the Ntrain = Nµ

train ·Nt
train = 12 ·501 training snapshots. The error is evaluated

on the 16 test parameters, each associated with a time series of Nt
test = 101, for a total of Ntest =

Nµ

test ·Nt
test = 16 ·101 = 1616 test snapshots. The mean is performed over the time scale.

Without imposing any additional inductive bias a part from the regularization term in the loss
from Equation 6.12 and the positiveness of the velocity components, the latent trajectories reported
in Figure 6.6 for the odd parameters of the test set, are qualitatively smooth. An important detail
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to observe is that the initial conditions are well separated one from another in the latent space, see
Remark 15, and that the dynamics is nonlinear. It also can be noticed that the 2 extremal parameters,
corresponding to the extrapolation regime and represented in the plot by the two most outer trajectories
that enclose the other 6, have smooth latent dynamics analogously to the others even though the
reconstruction error starts degrading, as can be seen from Figure 6.5.

Fig. 6.6 NCL. Correlations among the 4 latent coordinates of the odd parameters of the test set, 8
in total. They are obtained projecting the test snapshots into the latent space of the CAE with the
encoder. The coloring corresponds to the time instants from 0 to 2.

Hyper-reduction and teacher-student training

The selection of the magic points is carried out with the greedy Algorithm 6. The FOM snapshots
employed correspond to the training parameters 1 and 12, but are sampled every 10 time step instead
of every 4, as for the training snapshots of the CAE.

We perform a convergence study increasing the number of magic points from 50 to 100 and
150. The corresponding submesh sizes, i.e. the number of cells involved in the discretization of the
residuals, are reported in the Table 6.1. The submesh size is bounded above with the total number of
the cells in the mesh, that is 3600.

After the computation of the magic points, the FOM snapshots are restricted to those cells and
employed as training outputs of the compressed decoder, as described in Section 6.3.4. The actual
dimension of the outputs is twice the submesh size, since for each cell there are 2 degrees of freedom
corresponding to the velocity components. The inputs are the 4-dimensional latent coordinates of the
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encoded FOM training snapshots, for a total of 6012 training input-output pairs. The architecture of
the compressed decoder is a feedforward neural network (FNN) with one hidden layer, whose number
of nodes is reported in Table 6.1, under ’HL size’. The compressed decoders architecture’s specifics
are also summarized in Table 6.7.

Each compressed decoder is trained for 3000 epochs, with an initial learning rate of 1e−4, that
halves if the loss from Equation 6.34 does not decrease after 200 epochs. The batch size is 20. The
duration of the training is reported in Table 6.1 under ’TS total epochs’, that stands for Teacher-Student
training total epochs, along with the average cost for an epoch, under ’TS avg epoch’. The accuracy
of the predictions on the test snapshots restricted to the magic points is assessed in Figure 6.7.

Table 6.1 NCL. In this table are reported for the NCL test case: the submesh size and the hidden
layer (HL) number of nodes of the compressed decoder; the Teacher-Student training (TS) duration
in seconds (TS total epochs), the Teacher-Student training average epoch duration in seconds (TS
avg epoch); the average time step for NM-LSPG-GNAT with compressed decoder (avg GNAT-TS)
in milliseconds, and the average time step for NM-LSPG-GNAT with the hyper-reduced residuals
but full CAE decoder (avg GNAT-no-TS) in milliseconds. In red, the results are obtained with 13
maximum residual evaluations of the Levenberg-Marquardt algorithm, instead of the fixed 7, see
Remark 23.

MP Submesh size HL size TS total epochs

50 139 300 1682 s
100 246 350 2482 s
150 335 400 4245 s

MP TS avg epoch avg GNAT-TS GNAT avg GNAT-no-TS

50 0.560 s 1.88 ms 4.496 ms
100 0.827 s 4.599 ms 4.499 ms
150 1.415 s 2.318 ms 4.208 ms

The convergence with respect to the number of magic points is shown in Figure 6.8. Since,
especially for the NM-LSPG-GNAT-TS reduced-order model, the relative L2-error is not uniform
along the time scale, we report both the mean and max relative L2-errors over the time series associated
to each one of the 16 test parameters.

From Figure 6.8 and Table 6.1 it can be seen that NMLSPG-GNAT is more accurate than NM-
LSPG-GNAT-TS even tough computationally more costly in the online stage. We underline that in
the offline stage NM-LSPG-GNAT-TS requires the training of the compressed decoder. However, this
could be performed at the same time of the CAE training, see the discussion section 6.5. The NM-
LSPG-GNAT reduced-order model achieves better results also in the extrapolation error, sometimes
even lower than the NM-LSPG method: this remains true even when increasing the maximum
residual evaluations of the LM algorithm, and it may be related to the nonlinearity of the decoder that
introduces difficult to interpret correlations of the latent dynamics with the output solutions restricted
to the magic points.
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Fig. 6.7 NCL. Prediction accuracy on the test snapshots restricted to the magic points. The accuracy
is measured with the relative L∞-error averaged over the time trajectories associated to each one of
the Nµ

test = 16 test samples.

All the simulations of NM-LSPG, NM-LSPG-GNAT-TS and NM-LSPG-GNAT methods converge
with a maximum of 7 residual evaluations of the LM algorithm, for all magic points reported, that is
50, 100, and 150 and for all the 16 test parameters. However, 3 test parameters could not converge
for the method NM-LSPG-GNAT-TS with 100 magic points, so we increased the maximum function
evaluations to 13 for all the test points. The higher computational cost per time step is shown in
Table 6.1. Apart from those 3 test points not converging, the accuracy remains the same for the other
13 test parameters, so we have chosen to report the results in the case of 13 residual evaluations for all
the 16 test parameters in Figure 6.8.

Comparison with data-driven predictions based on a LSTM

To assess the quality of the reduced-order models devised, we compare the accuracy in the training
and extrapolation regimes, and the computational cost of the offline and online stages with a purely
data-driven ROM in which the solutions manifold is approximated by the same CAE, but the dynamics
is evolved in time with a LSTM neural network. The architecture of the LSTM employed is reported
in Table 6.9. The results are summarized in Figure 6.9, the computational costs in Table 6.2.

The LSTM is trained for 10000 epochs with the ADAM stochastic optimization algorithm and an
initial learning rate of 0.001, halved if after 500 epochs the loss does not decrease. The time series
used for the training are the same Ntrain = 6012 training snapshots employed for the CAE. We remark
that the LSTM cannot approximate the dynamics for an arbitrary time step, but it is fixed, depending
on the training time step used, in this case 0.004 seconds.

The offline stage’s computational cost is determined by the heavy CAE training for both the
procedures, see the Discussion section 6.5 for possible remedies. The LSTM-NN achives a speedup
close to 3 with respect to the FOM, differently from the NM-LSPG-GNAT and NM-LSPG-GNAT-TS
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Fig. 6.8 NCL. First row: NM-LSPG-GNAT mean and max relative L2-error. Second row: NM-LSPG-
GNAT-TS mean and max relative L2-error. In red also the NM-LSPG accuracy is reported. The mean
and max values are evaluated with respect to the time series of intermediate solutions associated to
each one of the Nµ

test = 16 test parameters.
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methods. However, since the models are hyper-reduced, increasing the degrees of freedom refining
the mesh should increase the computational cost of the FOM and NM-LSPG methods only, with due
precautions. The average cost of the evaluation of the dynamics for the LSTM model with a time step
of 0.004 seconds is associated to the label ’avg LSTM-NN full-dynamics’; thanks to vectorization,
the dynamics for all the Nµ

test = 16 parameters is evaluated with a single forward of the LSTM, thus
the low computational cost reported.

Table 6.2 NCL. Offline stage: full-order model (FOM) computation of the Ntrain = 6012 snapshots
(FOM snapshots evaluation), average cost of a single epoch for the training of the CAE with a batch
size of 20 (CAE training single epoch avg), and total cost for 3000 epochs (CAE training); average
epoch’s cost for the LSTM training with a batch size of 100, and total cost for 10000 epochs. Online
stage: for the FOM, NM-LSPG and LSTM-NN models it is reported the average of a single time step
cost over all the Ntest = 1616 test parameters and time series, and the average cost of the full dynamics
over the Nµ

test = 16 test parameters. The LSTM-NN full-dynamics is evaluated with a single forward.

Offline stage Time

FOM snapshots evaluation 29.04 [s]
CAE training single epoch avg 10.1 [s]
CAE training 20213.3 [s]
LSTM-NN training single epoch avg 0.139 [s]
LSTM-NN training 1365 [s]

Online stage Time

avg FOM time step 1.210 [ms]
avg FOM full dynamics 2.42 [s]
avg NM-LSPG time step 22.126 [ms]
avg NM-LSPG full-dynamics 133.2 [s]
avg LSTM-NN time step 0.432 [ms]
LSTM-NN full-dynamics 6.982 [ms]

The CAE reconstruction error in blue in Figure 6.9, lower bounds all the other models’ errors.
This is the reason why having a good accuracy of the CAE’s solution manifold approximation is
mandatory to build up nonlinear manifold methods. In this sense NM-LSPG-ROC-TS and NM-LSPG-
GNAT-TS with respect to NM-LSPG-GNAT with shallow autoencoders [146] offer the possibility to
choose an arbitrary architecture for the autoencoder, thus allowing a more accurate solution manifold
approximation.

While in the training range from test parameter 3 to 14, the accuracy of the LSTM-NN is
significantly better than NM-LSPG-GNAT and NM-LSPG-GNAT-TS models’, in the extrapolation
regime we observe that the predictions of the fully data-driven model degrades. The extrapolation
error of the LSTM-NN model depends on the architecture chosen, regularization applied, training
procedure, and hyperparameters tuning. What can be assessed from the results is that, outside the
training range, the LSTM-NN’s accuracy is dependent on all these factors, with sometimes a difficult
interpretation of the results, while NM-LSPG-GNAT relies only on the number of magic points
employed and the dynamics is evolved in time minimizing a physical residual directly related to the
NCL model’s equations.
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Fig. 6.9 NCL. Comparison of the accuracies between all the ROMs presented on the test set of
Nµ

test = 16 parameters, each associated to a time series of Nt
test = 101 intermediate solutions. The

number of magic points employed for NM-LSPG-GNAT and NM-LSPG-GNAT-TS is 150. The mean
and maximum relative L2-errors are taken with respect to the time scale.

6.4.2 Shallow Water Equations (SWE)

The second test case we present is a 2d nonlinear, time-dependent, parametric model based on the
shallow water equations (SWE). Also in this case, the non-temporal parameter affects the initial
conditions, µ ∈ [0.1,0.3], t ∈ [0,0.2] = I:

∂t(hu)+∇ · (hu⊗u)+ 1
2 | g | h∇h = 0 (x, t) ∈ [0,1]2× I,

∂th+∇ · (uh) = 0 (x, t) ∈ [0,1]2× I,

u(x,0) = 0 x ∈ [0,1]2,

h(x,0) = µ

(
1
e1 · e

− 1
0.04−∥x−O∥22 χ∥x∥2

2<0.2 +χ∥x∥2
2≥0.2

)
x ∈ [0,1]2,

u(x, t) ·n = 0 (x, t) ∈ ∂ [0,1]2× I,

∇h(x, t) ·n = 0 (x, t) ∈ ∂ [0,1]2× I,

(6.38)

where h is the water depth, u is the velocity vector, g is the gravitational acceleration, and O is
the point (0.5,0.5) ∈Ω. We consider a constant bathymetry h0 = 0, so that the free surface height
htotal = h+h0 is equal to the water depth h.

The time step that will be employed for the evolution of the dynamics of the FOM is 1e− 4
seconds. The training and test snapshots are sampled every 4 time steps. The training non-temporal
parameters are Nµ

train = 10 in number, and they are sampled equispacedly in the training interval
µ ∈ [0.1,0.3], for a total of Ntrain = Nµ

train ·Nt
train = 10 ·501 = 5010 training snapshots.

Due to an inaccurate reconstruction error of the CAE for the first time instants, the predictions
of the dynamics of the reduced model are evaluated from the time instant t0 = 0.01 seconds. The
test non-temporal parameters are Nµ

test = 8 in number and sampled equispacedly in the test interval
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µ ∈ [0.05,0.35], for a total of Ntest = Nµ

test ·Nt
test = 8 · 475 = 3800 test snapshots, since the first 26

are cut from the time series, Nt
train = 501 snapshots long. Again the first 2 and the last 2 parameters

correspond to the extrapolation regime. The initial latent variables are obtained projecting with the
encoder into the latent space the test snapshots corresponding to the time instants t0 = 0.01 instead of
t = 0. The training and test time series are labelled from 1 to 10 and from 1 to 8 with an increasing
order.

Fig. 6.10 SWE. From left to right: FOM solution of equation 6.36 at (t,µ) ∈ {(0.01,0.1),(0.2,0.1)}
and (t,µ) ∈ {(0.01,0.3),(0.2,0.3)}.

Fig. 6.11 SWE. From left to right: FOM solution of equation 6.36 at (t,µ) ∈ {(.010,0.1),(0.2,0.1)}
and (t,µ) ∈ {(0.01,0.3),(0.2,0.3)}.

In this test case the ROC hyper-reduction is more accurate with respect to the GNAT one, so the
results are reported w.r.t. this hyper-reduction method.

Full-order model

One detail that we didn’t stress in the previous test case is that the FOM and the NM-LSPG ROM can
discretize the residuals of the SWE differently: only the consistency of the discretization is required,
characterizing the NMLSPG family as equations-based rather than fully intrusive.
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The FOM solutions are computed with the OpenFoam solver shallowWaterFoam [264], while the
ROMs discretize the residual with a much simpler numerical scheme.

The FOM numerical scheme is the PIMPLE algorithm, a combination of PISO [197] (Pressure
Implicit with Splitting of Operator) and SIMPLE [138] (Semi-Implicit Method for Pressure-Linked
Equations). For the shallow water equations the free surface height h plays the role of the pressure in
the Navier-Stokes equations, regarding the PIMPLE algorithm implementation. The number of outer
PISO corrections is 3.

The time discretization is performed with the semi-implicit Euler method. The nonlinear advection
terms are discretized with the Linear-Upwind Stabilised Transport (LUST) scheme that requires a
stencil with 2 layers of adjacent cells for the hyper-reduction. The gradients are linearly interpolated
through Gauss formula. The solutions for hU are obtained with Gauss-Seidel iterative method, and
for h with the conjugate gradient method preconditioned by the Diagonal-based Incomplete Cholesky
(DIC) preconditioner. For both of them the absolute tolerance on the residual is 1e−6 and the relative
tolerance of the residual w.r.t. the initial condition is 0.1.

The residual of ROMs is instead discretized as follows. If we represent with MhU , Mh the mass
matrices, with G(h) the discrete gradient vector of h, and with ChU((hU)t−1), Ch(U t−1) the advection
matrices, then, at every time instant t, the discrete equations

MhU

∆t
(hU)t +ChU((hU)t−1)U t +ghG(h) =

MhU

∆t
(hU)t−1, (6.39)

Mh

∆t
ht +Ch(U t−1)ht =

Mh

∆t
ht−1, (6.40)

are solved for the state ((hU)t ,ht) with a semi-implicit Euler method. The same numerical schemes
and linear systems iterative solvers of the FOM are employed. In principle, they could be changed.

Since now the stencil of a single cell needs two layers of adjacent cells for the discretizations, for
each internal magic point, 12 additional cells need to be considered for the hyper-reduction.

Manifold Learning

The CAE architecture for the SWE model is reported in Table 6.6. This time one encoder and two
decoders, one for the velocity U and one for the height h are trained. Moreover, to increase the
generalization capabilities we converted 2 layers of the decoder for U in recurrent convolutional layers
as shown in the section 6.4.3. Even with this modification the initial time steps, from 0 to 0.01 are
associated to a high reconstruction error: the relative L2-error is around 0.1 for every test parameter at
the initial time instants, slowly decreasing towards the accuracy shown in Figure 6.12 after t = 0.01,
chosen as initial instant from here onward.

The CAE is trained for 500 epochs with a batch size of 20 and an initial learning rate of 1e−4,
that halves if the loss from Equation 6.12 does not decrease after 50 epochs. In this case the state
is (U,h) so the encoder has three channels, two for the velocity components, U1, U2, and one for
the height, h. The high computational cost is shown in Table 6.4. We have to observe that nor the



6.4 Numerical results 181

architecture is parsimonious for a good approximation of the discrete solution manifold in the time
interval [0.01,0.2], neither the number of training snapshots 5010 is optimized to reach the highest
efficiency with the lowest computational cost. Our focus is obtaining a satisfactory reconstruction
error in order to build up our ROMs.

The solution manifold parametrized by the decoder achieves the reconstruction error of a linear
manifold spanned by around 20 POD modes. In fact, the decay of the reconstruction error associated
to the POD approximations is faster than the previous test case in the time interval [0.01,0.2].

It can be seen from the representation of the latent dynamics associated to the train parameters in
Figure 6.13, that the initial solutions overlap. This and the low accuracy could be explained by the
fact that the FOM dynamics has different scales, especially for the velocity U that from the initial
constant zero solution reaches a magnitude of 10−1 meter per seconds. Further observations and
possible solutions are presented in the Discussion section 6.5.

Fig. 6.12 SWE. Comparison between the CAE’s and POD’s projection errors of the discrete solution
manifold represented by the Ntrain = Nµ

train ·Nt
train = 10 ·501 = 5010 training snapshots. The error is

evaluated on the 8 test parameters, each associated with a time series of Nt
test = 475, for a total of

Ntest = 3800 test snapshots. The mean is performed over the time scale.

Hyper-reduction and teacher-student training

Mimicking the structure of the CAE, the compressed decoder is split in two, one for the velocity U
and one for the free surface height h. The architecture for both the decoders is a feed-forward NN
with a single hidden layer; they are reported in the Table 6.8. The compressed decoders are trained
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Fig. 6.13 SWE. Correlations among the 4 latent coordinates of the train set, 10 in total. They are
obtained projecting the train snapshots into the latent space of the CAE with the encoder. The coloring
corresponds to the time instants from 0. to 0.2, with a time step of 4e−4 seconds. The initial time
steps employed in the ROMs is 0.01 seconds.
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for 1500 epochs, with a batch size of 20, and an initial learning rate of 1e−4 that halves after 100
epochs if the loss does not decrease, with a minimum value of 1e−6. As for the previous test case,
the number of magic points, hidden layer sizes, training times, average training epoch computational
cost are reported in Table 6.3. This time for each magic point correspond 3 degrees of freedom, so the
actual output dimension of the compressed decoders is three times the submesh sizes.

The relative L∞-error of the compressed decoder is shown in Figure 6.14. This time the extrapola-
tion error is sensibly higher as already seen in the reconstruction error of the CAE.

Table 6.3 SWE. In this table are reported for the SWE test case: the submesh size and the hidden
layer (HL) number of nodes of the compressed decoder; the Teacher-Student training (TS) duration
in seconds, the Teacher-Student training average epoch duration in seconds; the average time step
for NM-LSPG-GNAT with compressed decoder (GNAT-TS) in milliseconds, and the average time
step for NM-LSPG-GNAT with the hyper-reduced residuals but full CAE decoder (GNAT-no-TS) in
milliseconds. In red the average computational cost with 13 maximum residual evaluations due to the
instability in the evolution of the dynamics of the test parameter 4.

MP Submesh size HL size TS total epochs

25 238 600 582 [s]
50 345 600 1234 [s]
100 590 900 6428 [s]
150 654 900 6746 [s]

MP TS avg epoch avg GNAT-TS avg GNAT-no-TS

25 0.388432 [s] 3.227 [ms] 14.782 [ms]
50 0.823084 [s] 4.062 [ms] 13.742 [ms]
100 4.285968 [s] 4.387 [ms] 15.238/22.688 [ms]
150 4.497579 [s] 4.307 [ms] 14.307 [ms]

As in the previous case, both the NM-LSPG-ROC and NM-LSPG-ROC-TS ROMs are considered.
This time it’s the NM-LSPG-ROC’s dynamics to be less stable with 7 maximum residual evaluations
of the LM algorithm. In this respect, for parameter test 4 and mp = 100 the maximum number of
residual evaluations is increased to 13; in the error plots in Figures 6.15 and 6.16, only the value for
parameter 4, mp = 100 is substituted. It is relevant to notice that the extrapolation error is lower for
higher numbers of magic points and for the NM-LSPG-ROC method.

Comparison with data-driven predictions based on LSTM

The same LSTM architecture of the NCL test case is trained with the same training procedure, only
that now there are 5010 training parameters-latent coordinates pairs. For the architecture’s specifics
see Table 6.9. The computational costs introduced in the previous test case are reported also for the
SWE model in Table 6.4.
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Fig. 6.14 SWE. Prediction accuracy on the test snapshots restricted to the magic points. The accuracy
is measured with the relative L∞-error averaged over the time trajectories associated to each one of
the Nµ

test = 8 test samples.

With the architecture and training procedure employed, the LSTM could not achieve a good
accuracy at the initial time instants after t0 = 0.01 seconds: for this reason in the plot of the errors
in Figure 6.17 is reported both the mean over the whole test time series of 475 elements and over
the time series after the 40-th element of the 475, that corresponds to the time instant 0.017 seconds.
This issue should be ascribed at what we discussed in subsection 6.4.2, about the latent dynamics
overlappings. Further remarks are provided in the Discussion section 6.5.

A part from this, the LSTM predictions are for almost every test parameter above only the NM-
LSPG and CAE’s reconstruction errors. Even in the extrapolation regimes, the predictions are more
accurate than the NM-LSPG-ROC and NM-LSPG-ROC-TS reduced-order models. Regarding the
computational costs, this time not only the LSTM model but also the NM-LSPG-ROC-TS ROMs
achieve a little speedup w.r.t. the FOM. The choice of doubling the decoders has repercussions in the
online costs, but it was made only in an effort to reach a good reconstruction error of the CAE; maybe
more light architectures could be employed for the restricted time interval [0.01,0.2].

6.4.3 Neural networks’ architectures

The architectures of the CAEs are shown in Tables 6.5, 6.6, of the compressed decoders in Tables 6.7
and 6.8, and of the LSTMs in Table 6.9. We mainly employ the Exponential Linear Unit (ELU) and
Rectified Linear Unit (ReLU) activation functions. The padding is symmetric. The labels Conv2d,
ConvTr2d and ConvTr2dRec, stand for 2d convolutions, transposed 2d convolutions [196], and 2d
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Fig. 6.15 SWE. First row: NM-LSPG-ROC mean and max relative L2-error. Second row: NM-LSPG-
ROC-TS mean and max relative L2-error. In violet also the NM-LSPG accuracy is reported. The
mean and max values are evaluated with respect to the time series of intermediate solutions associated
to each one of the 8 test parameters.

Table 6.4 SWE. Offline stage: full-order model (FOM) computation of the 5010 snapshots, average
cost of a single epoch for the training of the CAE with a batch size of 20, and total cost for 500 epochs;
average epoch’s cost for the LSTM training with a batch size of 100, and total cost for 10000 epochs.
Online stage: for the FOM, NM-LSPG and LSTM-NN models it is reported the average of a single
time step cost over all the 8 test parameters and time series, and the average cost of the full dynamics
over the 8 test parameters. The LSTM-NN full-dynamics is evaluated with a single forward.

Offline stage Time

FOM snapshots evaluation 137.079881 [s]
CAE training single epoch avg 94.700484 [s]
CAE training 51431 [s]
LSTM-NN training single epoch avg 0.107722 [s]
LSTM-NN training 1076.150 [s]

Online stage Time

avg FOM time step 7.251 [ms]
avg FOM full dynamics 116.024578 [s]
avg NM-LSPG time step 22.126 [ms]
avg NM-LSPG full-dynamics 336.171916 [s]
avg LSTM-NN time step 1.802 [ms]
avg LSTM-NN full-dynamics 6.834247 [s]
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Fig. 6.16 SWE. First row: NM-LSPG-ROC mean and max relative L2-error. Second row: NM-LSPG-
ROC-TS mean and max relative L2-error. In violet also the NM-LSPG accuracy is reported. The
mean and max values are evaluated with respect to the time series of intermediate solutions associated
to each one of the 8 test parameters.
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Fig. 6.17 SWE. Comparison of the accuracies between all the ROMs presented on the test set of 8
parameters, each associated to a time series of 475 intermediate solutions. The number of magic
points employed for NM-LSPG-ROC and NM-LSPG-ROC-TS is 100. The mean and maximum
relative L2-errors are taken with respect to the time scale. Since the LSTM is inaccurate between the
time instants 0.01 and 0.017 seconds we report also the mean over the time interval [0.017, 0.2] witch
label ’LSTM-NN cut’, to establish a fair comparison.
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transposed convolution associated to a recurrent layer, i.e. they are summed to the previous layer and
then passed to an ELU activation function.

Table 6.5 NCL. Nonlinear Conservation Law model’s Convolutional Autoencoder.

Encoder Activation Weights Padding

Conv2d ELU [2, 8, 5, 5] 0
Conv2d ELU [8, 16, 3, 3] 1
Conv2d ELU [16, 32, 3, 3] 1
Conv2d ELU [32, 64, 3, 3] 1
Conv2d ELU [64, 128, 2, 2] 1
Linear ELU [1152, 4] -

Decoder Activation Weights Padding

Linear ELU [4, 1152] -
ConvTr2d ELU [128, 64, 2, 2] 1
ConvTr2d ELU [64, 32, 3, 3] 1
ConvTr2d ELU [32, 16, 4, 4] 1
ConvTr2d ELU [16, 8, 4, 4] 0
ConvTr2d ReLU [8, 2, 4, 4] 1

Table 6.6 SWE. Shallow Water Equations model’s Convolutional Autoencoder. The decoder for U
has two recurrent layers.

Encoder Activation Weights Padding

Conv2d ELU [2, 8, 5, 5] 0
Conv2d ELU [8, 16, 3, 3] 1
Conv2d ELU [16, 32, 3, 3] 1
Conv2d ELU [32, 64, 3, 3] 1
Conv2d ELU [64, 128, 2, 2] 1
Linear ELU [1152, 4] -

Decoder h Activation Weights Padding

Linear ELU [4, 1152] -
ConvTr2d ELU [240, 120, 2, 2] 1
ConvTr2d ELU [120, 60, 3, 3] 1
ConvTr2d ELU [60, 30, 4, 4] 1
ConvTr2d ELU [30, 15, 4, 4] 0
ConvTr2d ReLU [15, 1, 4, 4] 1

Decoder U Activation Weights Padding

Linear ELU [4, 2700] -
ConvTr2d ELU [300, 75, 2, 2] 1
ConvTr2d ELU [150, 75, 3, 3] 1
ConvTr2dRec - [150, 75, 3, 3] 1
ConvTr2d ELU [75, 35, 4, 4] 1
ConvTr2d ELU [35, 20, 4, 4] 0
ConvTr2dRec - [35, 20, 4, 4] 0
ConvTr2d - [20, 2, 4, 4] 1

Table 6.7 NCL. Nonlinear Conservation Law model’s Compressed Decoders.

Magic Points 1st layer weight 1st layer activation 2nd layer weight 2nd layer activation

50 [4, 300] ELU [300, 278] ReLU
100 [4, 350] ELU [350, 492] ReLU
150 [4, 400] ELU [400, 670] ReLU
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Table 6.8 SWE. Shallow Water Equations model’s Compressed Decoders: height h and velocity U in
order.

Magic Points 1st layer weight 1st layer activation 2nd layer weight 2nd layer activation

25 [4, 200] ELU [200, 238] ReLU
50 [4, 200] ELU [200, 345] ReLU
100 [4, 300] ELU [300, 590] ReLU
150 [4, 300] ELU [300, 654] ReLU

Magic Points 1st layer weight 1st layer activation 2nd layer weight 2nd layer activation

25 [4, 400] ELU [400, 478] -
50 [4, 400] ELU [400, 960] -
100 [4, 600] ELU [600, 1180] -
150 [4, 600] ELU [600, 1308] -

Table 6.9 Nonlinear Conservation Law model’s and Shallow Water Equations model’s Long-Shot
Term Memory Neural Network.

input dim output dim number of LSTM layers
LSTM layer 2 100 2

1st layer weight 1st layer activation 2nd layer weight 2nd layer activation
Linear encoding layer [100, 50] ELU [50, 4] -

6.5 Discussion

We comment the numerical results obtained:

• Computational cost of the CAEs training. It is evident from Tables 6.2 and 6.7 that the offline
stage’s computational cost is dominated by the CAEs trainings. We have to remark that the
architectures were not optimized to be the most parsimonious ones in order to achieve the
desired reconstruction error. Moreover, libtorch training took almost twice more time than the
same architecture’s training in PyTorch, due to implementation inconsistencies. The cost of the
forward evaluations of the decoder are comparable instead, not changing much the online costs.
The training of the CAEs could be further reduced with transfer learning [106] or preprocessing
steps that enlight some features of the dynamics that are more easily learnable, as was done
in [95]. Also, the number of training snapshots could be optimized further for the test cases
presented. The same observations apply also for the compressed decoders. Moreover, a parallel
implementation of the training procedures on more than one GPU is mandatory to achieve
competitive computational costs.

• Simultaneous CAE and compressed decoder/LSTM training. The additional costs of the LSTM
and compressed decoder training could be cut with a unified training of the CAE and compressed
decoder: after some epochs, the training of the LSTM or compressed decoder could be switched
on and performed at the same time of the CAE’s since the only additional information, apart
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from the restriction of the snapshots into the magic points, is the latent dynamics coordinates
learned anyway during the CAE’s optimization.

• Increasing the speedup of the nonlinear manifold ROMs. The bottleneck for the efficiency
of the NM-LSPG-ROC-TS and NM-LSPG-ROC ROMs in the online stage is the cost of the
compressed decoder or CAE’s decoder forward. Regarding the NCL model, our results for the
average time step of the NMLSPG-GNAT-TS and NM-LSPG-GNAT ROMs from Table 6.1
are comparable if not lower than the approximate time step of 7−8 milliseconds for the NM-
LSPG-GNAT with shallow autoencoders ROM presented in [146]. The difference is that now
the FOM implemented with the FVM in OpenFoam [264] takes 2.42 seconds for 2000 time
steps instead of 140.67 seconds for 1500 time steps in [146] with finite differences for a similar
test case, i.e. 2d burgers equation instead of our nonlinear conservation law. To show a more
consistent speedup w.r.t. the FOM, as for the SWE test case, the number of degrees of freedom
could be increased without influencing the NM-LSPG-ROC-TS ROM since it is not dependent
on the FOM’s dimension. In a weaker sense also the NM-LSPG-ROC ROM is also independent
on the number of degrees of freedom of the FOM, apart from the weights of the CAE’s decoder
that concur in increasing the cost of a single forward in the online stage.

• Generalization error of LSTM and CAE and additional inductive biases. The generalization
error of the NN employed depends on a lot of factors, from the number of training samples to
the regularization term in the loss, the architectures, etc. It is thus difficult to predict how much
the accuracy of the predictions will decay outside the training range. Adding a physics-informed
term in the loss of the CAE does not provide an improvement of the reconstruction error if
enough training data are employed as in our test cases. Some regularization properties could
be imposed in the latent dynamics to facilitate the evolution of the NMLSPG-ROC ROMs, for
example imposing a linear latent dynamics could be beneficial

• Purely data-driven LSTM ROM vs NM-LSPG-ROC and NM-LSPG-ROC-TS ROMs. One
crucial difference is interpretability: in the first case, the latent dynamics is obtained training
the LSTM to approximate the latent coordinates, in the second case, the latent dynamics is
evolved in time minimizing the hyper-reduced residual based on the physical model’s equations.
Regarding the LSTM predictions, we have seen in the test cases that despite the higher accuracy
in the training range and the low computational online cost, there might be other issues in
the extrapolation regime: in the NCL test case, the accuracy was sensitively lower in the
extrapolation regime, even if it could be improved in theory increasing the layers and nodes of
the LSTM in exchange for a higher training cost; in the SWE test case the initial time step from
0.01 to 0.017 seconds could not be well-approximated due to different scales and overlappings
in the latent dynamics. The NM-LSPG-ROC and NM-LSPG-ROC-TS mitigated in some
sense these issues, delegating less effort in the tuning of the hyperparameters of the LSTM
and increasing the interpretability of the results. Moreover, the LSTM-NN, approximate the



6.6 Conclusions and perspectives 191

dynamics only every time step imposed by the training input-output pairs, while the nonlinear
manifold ROMs, can in principle approximate the latent dynamics with an arbitrary small time
step, since the decoder provides a continuous approximation of the solution manifold and the
dynamics is evolved based on a numerical scheme with changeable time step. With respect to
purely data-driven methods though, nonlinear manifold methods require a lower reconstruction
error of the CAE since every successive ROMs’ dynamics evolution depends on how well the
intermediate solutions are reconstructed through the decoder.

• Learn the solution manifolds with autoencoders in unstructured meshes. The natural question
of how to extend the CAE architecture to 3D or unstructured meshes, is being currently studied.
In the literature there are already interesting results that employ graph neural networks and their
variants to find latent representations of 3d simulations [201].

6.6 Conclusions and perspectives

We have developed two new hyper-reduced nonlinear manifold ROMs: NM-LSPG-ROC and NM-
LSPG-ROC-TS, that can be converted in NM-LSPG-GNAT and NM-LSPG-GNAT-TS. In NMLSPG-
ROC-TS the residuals of the NM-LSPG ROM are hyper-reduced with over-collocation, while the
decoder of the CAE is approximated with teacher-student training into a compressed decoder. In
NM-LSPG-ROC only the residuals’ hyper-reduction is carried out. The methods perform similarly
in accuracy and computational cost w.r.t. the NM-LSPG-GNAT with shallow autoencoders ROM
introduced in [146], for a similar test case. The flexibility of our method permits to change the CAE
architecture depending on the problem at hand, without imposing too many constraints on its structure,
in order to reach the convergence faster and achieve a lower reconstruction error.

With respect to purely data-driven ROMs built on the CAE’s solution manifold, NM-LSPG-ROC
and NM-LSPG-ROC-TS provide more interpretable and, in the extrapolation regimes, sometimes
more accurate predictions, and they need less hyperparameters tuning, once the CAE is trained.
Moreover, the methods developed are equations-based rather than fully-intrusive, and exploit the
physics of the model to evolve the latent dynamics. It is crucial, though, that the CAE’s reconstruction
error is sufficiently low, since the latent dynamics needs to be computed with numerical schemes
that rely on the accuracy of the reconstructed solutions through the decoder of the CAE or the
compressed decoder. We base these observations on the results obtained for two parametric nonlinear
time-dependent benchmarks presented in the numerical results section 6.4, that is a 2d nonlinear
conservation law model (NCL) and a 2d shallow water equations model. Despite the speedup is not
achieved or not significant with respect to the FOMs, we reached satisfactory results in terms of the
accuracy and the latent or reduced dimension of the ROMs.

Future directions of research involve the implementation of the developed ROMs in more complex
applications with higher computational costs and degrees of freedom, such that a more evident
speedup is reached. This may involve the development of more parsimonious architectures and
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training procedures to reduce the offline cost. The research in geometric deep learning will be crucial
for the possible extensions of the present methodology to mesh-based 2d and 3d simulations. More
has to be done also to further improve the interpretability of the results possibly taking into account a
probabilistic approach, for example using Bayesian neural networks, and adhering more tightly to the
physics of the model with additional inductive biases.



Chapter 7

Hyper-reduced nonlinear manifold
method: adaptive strategies

A slow decaying Kolmogorov n-width of the solution manifold of a parametric partial differential
equation precludes the realization of efficient linear projection-based reduced-order models. This is
due to the high dimensionality of the reduced space needed to approximate with sufficient accuracy
the solution manifold. To solve this problem, neural networks, in the form of different architectures,
have been employed to build accurate nonlinear regressions of the solution manifolds. However,
the majority of the implementations are non-intrusive black-box surrogate models, and only a part
of them perform dimension reduction from the number of degrees of freedom of the discretized
parametric models to a latent dimension. It is presented a new intrusive and explicable methodology
for reduced-order modelling that employs neural networks for solution manifold approximation but
that does not discard the physical and numerical models underneath in the predictive/online stage.
The focus is on autoencoders used to compress further the dimensionality of linear approximants of
solution manifolds, achieving in the end a nonlinear dimension reduction. After having obtained an
accurate nonlinear approximant, the solutions on the latent manifold are sought with the residual-
based nonlinear least-squares Petrov-Galerkin method, opportunely hyper-reduced in order to be
independent of the number of degrees of freedom. New adaptive hyper-reduction strategies are
developed along with the employment of local nonlinear approximants. The methodology is tested
on two nonlinear time dependent parametric benchmarks involving a supersonic flow past a NACA
airfoil and an incompressible turbulent flow around the Ahmed body.
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7.1 Literature review

Real-world numerical models, coming from systems of partial differential equations (PDEs), usually
study a physical phenomenon under the influence of different parameters. For each parametric
instance, a single numerical simulation could take from hours to weeks to complete. Such is the
case for complex fluid dynamics models or large-scale geophysical simulations. Fortunately, in some
cases, the outputs of these models show evident correlations among them, partially because they
follow the same physical laws embedded in the same numerical models, and partially because the
parameters’ dependency affects the solutions only as relatively small perturbations. Reduced-order
modelling (ROM) leverages these correlations among snapshots, i.e. single solutions corresponding
to different parametric instances, to reduce the computational time. The most successful model order
reduction (MOR) methods combine the knowledge from the physical and the numerical models with
the information coming from a database of solutions. One of the most employed methods is the
reduced basis method [126, 228]. As most numerical models search for the solutions on discrete
finite dimensional vector spaces like the finite volumes method (FVM), the finite element method
(FEM), the spectral element method (SEM) and the discontinuous Galerkin method (DGM), model
order reduction exploits the prior information coming from a dataset of training snapshots to update
these ansatz spaces. The results are very low-dimensional linear vector spaces for which seeking the
solutions associated with new parametric instances is more efficient if these solutions are expected
to be correlated with the training dataset. Fundamentally, ROMs amortize the cost of computing an
initial training database of solutions and low-dimensional adapted ansatz spaces in the offline stage,
through subsequent efficient evaluations of unseen solutions in the online stage. It is important to
remark that the numerical models employed in the offline stage are still employed also in the online
stage so that the reduced solutions are discerned in the ansatz spaces through the satisfaction of the
physical principles and mathematical constraints underneath the original numerical models.
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Some difficulties arise when the solution manifold, that is the space of parameter dependent
solutions, cannot be approximated with a satisfactory accuracy by linear low-dimensional spaces.
If we consider a parameter space P ⊂ Rp, p > 0, and a solution map U : P ⊂ Rp→ Xh ∼ Rd that
associates to each parameter µµµ ∈ P the corresponding solution U(µµµ) ∈ Xh ∼ Rd in the discretization
space of choice Xh, where d > 0 is the number of degrees of freedom, we can quantify the linear
approximability of the solution manifold Xh ⊇M= U(P) with the Kolmogorov n-width (KnW):

dn(M,Xh) = inf
W⊂Rd

dimW=n

sup
µµµ∈P

inf
V∈Xh
∥V−U(µµµ)∥2. (7.1)

A slow decaying Kolmogorov n-width with respect to the dimension of the linear approximant
precludes the realization of efficient ROMs. One of the most prominent defects of linear ROMs is that
even simple physical models, like linear advection, suffer from a slow Kolmogorov n-width decay.
These are cases for which the snapshots are poorly correlated, sometimes almost orthogonal in Xh.

Recently, with the diffusion of scientific machine learning, black-box surrogate models have
tackled slow-decaying KnW solution manifolds thanks to nonlinear approximants represented by
neural networks (NNs), in the form of different combined architectures. The majority of these
surrogate models, being non-intrusive, do not even perform dimension reduction from the space of
degrees of freedom Rd to a reduced or latent space Rr, r≪ d. While a low-dimensional space is
needed for linear projection-based ROMs to seek the solutions efficiently in the online stage, surrogate
models built with NNs rely on the fast evaluation of the nonlinear approximants for different inputs
in the prediction phase. Apart from the imposition of additional inductive biases, the predicted
solutions do not consider the physical and mathematical knowledge of the models under study: in fact,
they are not obtained from the satisfaction of first principles like classical ROMs. Moreover, when
dimension reduction is performed, it is essentially needed for feature extraction rather than to increase
the efficiency of the surrogate models. Nonetheless, when architectures like autoencoders (AE) are
employed, the approximation error of the solution manifolds decays more rapidly with respect to the
latent dimension when compared to linear subspaces. This can be quantified with an extension of the
definition of KnW δn for continuous maps:

δn(M,Xh) = inf
ψ∈C(Xh,Rr)
φ∈C(Rr,Xh)

sup
µµµ∈P
∥U(µµµ)− (φ ◦ψ)(U(µµµ))∥2, (7.2)

where ψ ∈ C(Xh,Rr) and φ ∈ C(Rr,Xh) are continuous maps represented in our case by NNs. This
enables the design of efficient intrusive ROMs even for models with a slow KnW decay.

The first employment of convolutional autoencoders for intrusive ROMs, namely Galerkin and
least-squares Petrov-Galerkin nonlinear manifold methods appears in [161]. The major evident
drawback is that both the architecture and the numerical schemes employed in the online predictive
phase depend on the number of degrees of freedom (dofs), so the procedure itself is even slower
than the full-order models. Typically, when performing MOR of nonlinear parametric PDEs hyper-
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reduction is employed to achieve independence with respect to the number of dofs. In this case,
another ingredient complicates the matter since the nonlinearity coming from the decoder map needs
also to be treated and made independent of the number of dofs. One of the first approaches in this
direction is introduced in [146]. The architecture employed is a shallow masked autoencoder: the
sparsity pattern imposed on the last decoder layers reduces the computational costs of the forward
and Jacobian evaluations, while Gauss-Newton with approximated tensors (GNAT) is employed to
hyper-reduce the residual. One problem that arises is that shallow autoencoders are sometimes not
enough to accurately approximate complex solution manifolds and the methodology itself constrains
the choice of architecture. The methodology was tested on the 2d Burgers equations solved with finite
differences. Another strategy [223] uses teacher-student training to compress a generic architecture
that performs dimension reduction, in this case a convolutional AE, onto a small feedforward NN.
Possible combinations of hyper-reduction with reduced over-collocation [51] only on the residual or
for both the decoder and the residuals were taken into consideration. The methodology was tested on
a 2d nonlinear conservation law test case and a 2d shallow water equations benchmark solved with
OpenFoam [177]. Afterward, it is introduced a new implementation [19] that considers as nonlinear
approximant of the solution manifold the sum of a linear subspace and a linear closure term whose
coefficients are the output of a feedforward NN. The hyper-reduction method is the energy-conserving
sampling and weighting method (ECSW) and it was tested on a 2d Burgers’ equations model solved
with finite differences. Another approach [57], directly employs a relatively small decoder from the
latent space to the submesh identified by the reduced over-collocation hyper-reduction method as
nonlinear approximant of the solution manifold. In this way, the training phase is more efficient and
the solutions are finally reconstructed with the hyper-reduction linear basis from the collocation nodes.
To increase the accuracy of shallow masked AE, in [77] they implement domain decomposition and
build a local shallow masked AE for each subdomain. The procedure is tested on a 2d Burgers’
equation model.

In this work, we introduce a new methodology and we test it on more challenging benchmarks.
For a moderately slow KnW decay, classical ROMs fail, but linear subspaces can still be employed as
good approximants of the solution manifold. This is the rationale behind employing singular value
decomposition modes (SVD) [95], or other linear transforms or filters, as a preprocessing step to
dimension reduction with AE. In section 7.5, we will also show a case for which this assumption is not
valid anymore and more deep NN architectures should be employed and reduced with teacher-student
training following [223]. The novelties of our new approach are the following

• a new collocated hyper-reduction procedure specific for our nonlinear manifold approximant that
combines randomized singular value decomposition modes with 1d convolutional autoencoders,
in section 7.3

• an adaptive gradient-based hyper-reduction strategy, in section 7.3.2. Similar concepts of
adaptation strategies are present in the literature [198, 267].
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• the implementation of an efficient way to integrate local nonlinear manifolds with intrusive
nonlinear least-squares Petrov-Galerkin through a local change of basis, in section 7.4

• the validation of our methodology on challenging test cases with moderately slow Kolmogorov
n-width, in section 7.5

In summary, in section 7.2 the nonlinear least-squares Petrov-Galerkin method is presented, our
nonlinear manifold approximant is introduced and some specifications regarding the normalization
of the datasets and the evaluation of the randomized singular value decomposition (rSVD) modes
are made. Then, in section 7.3 the employed hyper-reduction methods are introduced. Particular
attention is focused on the reduced over-collocation method and its new adaptive formulation in
subsection 7.3. A brief section 7.4 introduces a straightforward way to include local nonlinear
manifolds in the methodology through a linear change of rSVD basis. Finally, two benchmarks
are introduced in section 7.5. A 2d nonlinear parametric time-dependent supersonic compressible
Navier-Stokes equations model is studied on a coarse and a finer mesh. A special focus is given to
the comparison of different hyper-reduction techniques in subsection 7 and to the implementation of
local nonlinear manifolds in subsection 7. The last subsections involve the study of a 3d nonlinear
time-dependent geometrically parametrized turbulent incompressible Navier-Stokes equations model.

7.2 Residual-based ROMs on nonlinear manifolds

The starting point is a parametric time-dependent partial differential equation (PDE) on a computa-
tional domain Ω ⊂ RD, D = {1,2,3}, with time interval [0,Tµµµ ] and parameter space µµµ ∈ P ⊂ Rp:

G(U(x, t),∂tU(x, t),∇U(x, t), . . . ; µµµ) = 0, (x, t) ∈Ωµµµ × [0,Tµµµ ], (7.3a)

B(U(x, t); µµµ) = 0, (x, t) ∈ ∂Ωµµµ × [0,Tµµµ ], (7.3b)

U(x, t) = U0,µµµ(x), (x, t) ∈Ωµµµ ×{0}, (7.3c)

where the state function U : Ωµµµ × [0,Tµµµ ]⊂ RD×R→ Rs, s≥ 1 belongs to a Banach space X(RD×
R;Rs) for all µµµ ∈ Pq, q ≥ 1, of vector-valued time-dependent functions. The function U0,µµµ(x)
represents the possibly parametric dependent initial condition. The state function U is a synthetic
notation that can include at the same time more than one physical field, like velocity, pressure, internal
energy, and density for example. The function G represents the PDE itself and has as arguments the
state function and its partial derivatives with respect to time and space. We do not restrict only to first
order, higher derivatives are omitted. The boundary conditions are expressed through the operator B
and we possibly parametric dependent. These definitions are introduced only to define the discretized
systems we will work with. We have included also geometric parametrizations Ωµµµ ⊂ RD through µµµ .

We will consider nonlinear time-dependent PDEs, but in general, the framework we are going to
introduce can be applied also to stationary PDEs and linear PDEs. The only requirement is the slow
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Kolmogorov n-width decay of the solution manifold, otherwise, it would be sufficient to apply the
well-developed theory of linear projection-based ROMS. In fact, employing a nonlinear approximation
of the solution manifold reduces the efficiency of linearly approximable solution manifolds, in general.

To be as general as possible, we will consider a generic discretization in space, with the constraints
that it is supported on a computational mesh Ωµµµ,h ⊂RD and the discretized differential operators have
local stencils in order to implement efficiently hyper-reduction schemes later. So, in our framework,
we include the Finite Volume Method (FVM), that we are employing, but also the Finite Element
Method (FEM) and the Discontinuous Galerkin method (DGM), for example. Applying the method
of lines, we discretize in space to obtain the following ordinary differential equation

Gh(Uh(t),∂tUh(t),∇Uh(t), . . . ; µµµ) = 0, t ∈ [0,Tµµµ ], (7.4a)

Bh(P∂Ωµµµ
(Uh(t)); µµµ) = 0, t ∈ [0,Tµµµ ], (7.4b)

Uh(0) = Uh,0, (7.4c)

where in this case the discrete state function Uh(t) ∈ Xh(Ωµµµ,h) belongs for all t ∈ [0,Tµµµ ] to a dis-
cretization space Xh(Ωµµµ,h) ∼ Rd where d > 0 is the number of degrees of freedom, with its norm
∥·∥Xh . The map P∂Ωµµµ

: Xh(Ωµµµ,h)→ Xh(∂Ωµµµ,h) is the projection onto the discrete boundary ∂Ωµµµ,h of
the computational domain Ωµµµ,h.

Finally, we apply a discretization in time to obtain the discrete residual Gh,δ t :P×Xh×X |It |h → Xh

at time t ∈ {t0, . . . , tNµµµ
}=Vµµµ

Gh,δ t(µµµ,Ut
h,{Us

h}s∈It ) = 0, (7.5a)

Bh,δ t(P∂Ωµµµ
(Ut

h); µµµ) = 0, (7.5b)

U0
h = Uh,0, (7.5c)

where the time instances ti ∈ [0,Tµµµ ], ∀i ∈ {0,1, . . . ,Nµµµ} and It is the set of previous time instances of
the state variable U t

h ∈ Xh at time t, needed for the numerical time scheme of choice. For most cases
of model order reduction, it is crucial that the discretization space Xh ∼ Rd is not time or parametric
dependent. With adaptive collocated hyper-reduction 7.3.2 these constraints can be relaxed.

7.2.1 Nonlinear least-squares Petrov-Galerkin method

We will introduce the nonlinear manifold least-squares Petrov-Galerkin method (NM-LSPG) [161]
from its linear manifold version (LM-LSPG), see Figure 7.1. To perform model order reduction with
LM-LSPG, we need to define a linear projection map Pr : Rr → Xh ∼ Rd from the reduced space
Rr, r≪ d to the full-state space Xh ∼ Rd . We require that, fixed a tolerance ε ≪ 1, the relative
reconstruction error of the linear solution manifoldM= {Uh ∈ Xh|∃µµµ ∈ P : g(µµµ) = Uh} is small:

∥Uh−PrPT
r Uh∥2

∥Uh∥2
< ε, ∀Uh ∈M. (7.6)
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Typically, this is achieved by sampling from the parameter space P a set of independent training
parameters Ptrain ⊂ P . The corresponding training snapshots Utrain = {Uh,µµµ}µµµ∈Ptrain are employed
to evaluate Pr. For every new parametric instance µ ∈ P\Ptrain, we can evaluate the corresponding
solution solving the following nonlinear least-squares problem at each time step t ∈ {t0, . . . , tNµµµ

}=Vµµµ

in the reduced variables z ∈ Rr and with initial condition z0

.zt = argmin
z∈Rr

∥Gh,δ t(µµµ,Pr(z),{Pr(zs)}s∈It )∥2
Xh
, (7.7a)

z0 = PT
r (Uh,0), (7.7b)

where zs ∈Rr, ∀s ∈ It are the previous reduced coordinates needed at time t by the numerical scheme.
The nonlinear least-squares problem can be solved with optimization methods like Gauss-Newton
with line-search [161], Levenberg-Marquardt [223] and derivative-free Pounders [270] implemented
in PETSc [16], that we will employ.

If Gh,δ t is linear, then we can solve for (7.7a) without reconstructing the solution onto the full-
state space Rd . If Gh,δ t is nonlinear, hyper-reduction techniques must be introduced to recover the
independence of the number of degrees of freedom.

The evolution of the reduced trajectory in the latent space Rr in Figure 7.1 is computed without
reconstructing the full-states U t

h(µµµ) = Pr(z(µµµ)). The reconstruction from Rr to the ambient space Rd

is performed only at the end with the projection map Pr.
The nonlinear counterpart of LM-LSPG, poses the approximability of the solution manifoldM

with a nonlinear manifold. We will define this approximating nonlinear manifold as the image of a
nonlinear parametrization map φ : U ⊂ Rr→ Rd , that is an atlas with a single chart, with U an open
subset of Rr. For our purposes, mainly linked to the definition of the initial conditions, we also need
an approximation of the right-inverse of φ , that is ψ : φ(U)→ Rr such that φ ◦ψ ≈ Id .

There are many definitions that extend the notion of Kolmogorov n-width to nonlinear approxi-
mating spaces [75]. Our requirement is that the relative reconstruction error is below a fixed tolerance
ε ≪ 1:

∥Uh− (φ ◦ψ)(Uh)∥2

∥Uh∥2
< ε, ∀Uh ∈M. (7.8)

The nonliear least squares problem solved for each time instance t ∈ {t0, . . . , tNµµµ
}=Vµµµ is similar

to the linear case with the substitution of the linear projection map Pr with φ and ψ:

zt = argmin
z∈Rr

∥Gh,δ t(µµµ,φ(z),{φ(zs)}s∈It )∥2
Xh
, (7.9a)

z0 = ψ(Uh,0). (7.9b)

In this case, the sources of nonlinearity are the parametrization φ of the nonlinear approximation
manifold and possibly also the residual Gh,δ t . So, even if the residual Gh,δ t is linear we obtain a
nonlinear least-squares problem to solve, due to the additional nonlinearity introduced with φ . As
mentioned in the introduction, this is often a necessary step to overcome the problem of a slow
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Fig. 7.1 Left: evolution trajectories on the r-dimensional linear latent space and solution manifold
embedded in the ambient space Rd . The map Pr is a linear projection. Right: evolution trajectories
on the r-dimensional latent space and nonlinear solution manifold in the ambient space Rd . The map
φ is a single chart nonlinear parametrization of the approximating solution manifold.

Kolmogorov n-width decay with a nonlinear approximating manifold that achieves a satisfactory
accuracy with a lower latent/reduced dimension with respect to linear approximations.

Due to the nonlinearity, in general, solving (7.9a) is inefficient since the dependence on the
number of degrees of freedom cannot be overcome. There are two factors that contribute to making
the formulation (7.9a) not feasible as it was introduced in [161]. As for the linear case, the first is the
nonlinearity of the residual Gh,δ t , for which hyper-reduction techniques must be implemented. The
second is the possibly expensive evaluation of φ and its dependence on the whole number of degrees
of freedom d since the image of φ is contained in Rd . So, hyper-reduction or similar techniques must
be implemented also for the map φ , that in our case will be a neural network. See section 7.3 for
more details on hyper-reduction and the next 7.2.2 for the definition of our nonlinear approximating
solution manifold through the parametrization map φ .

7.2.2 Convolutional autoencoders: encodings and inductive biases

Applying SVD or principal component analysis (PCA) in machine learning jargon, to extract small
dimensional and meaningful features from data is a technique largely employed in the data science
community. After PCA, the new features can be used to train a neural network architecture more
efficiently or for other purposes like clustering. This reasoning is applied also to data representing
physical fields in model order reduction. One of the first examples is introduced by Ghattas et al. [186]
in the context of inverse problems and model order reduction: the parameter-to-observable map is
trained as a deep neural network (DNN) from the inputs reduced with active subspaces [60] to the
outputs reduced with proper orthogonal decomposition (POD). In the context of model order reduction
with autoencoders this technique is applied in [95].

We remark that an autoencoder with linear activation functions can reproduce the accuracy of
truncated SVD if not also the principal modes. So, employing the SVD to extract meaningful features
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instead of adding a few linear neural network layers does not make the difference in terms of accuracy.
What is crucial, especially for problems with a huge number of degrees of freedom, is the efficiency
of SVD and its randomized version (rSVD) compared to the training of neural networks layers with
linear activations.

Since we are considering physical fields supported on meshes we should not be limited to SVD:
other compression algorithms possibly extracting meaningful features from spatial and temporal
correlations are the Fourier and Wavelet transforms. In this context, model order reduction in frequency
space is an active field of research [112, 184, 123]. Recently, also the Radon-Cumulative-Distribution
(RCD) transform was applied to advection-dominated problems in model order reduction [165]. We
will represent such generic transforms with ffilter : Xh ∼ Rd → Rp and their approximate or true left
inverse f−1

filter : Rp→ Xh ∼ Rd , such that f−1
filter ◦ ffilter ≈ Id .

In this work we will only consider rSVD to define the filtering maps ffilter and f−1
filter, but the

framework can be easily extended to other compression algorithms. The definitions of ffilter and f−1
filter

are reported in equation 7.18 of the next section. We will show some test cases where the number of
rSVD modes needed to achieve a satisfactory accuracy reach 300, underlying truly slow Kolmogorov
n-width applications, while in the literature only a moderate number of modes has been employed.

The neural network architectures we are going to use to define the maps φ : U ⊂ Rr→ Rd and
ψ : φ(U)→ Rr are reported in Tables 7.4 and 7.5 and shown in Figure 7.2. They are composed
of standard 1d-convolutional layers since the filtered states Ũh = ffilter(Uh) are not supported on a
possible unstructured mesh anymore, but belong to the space of frequencies. So, in general, this
approach is a viable alternative to graph neural networks [34] or other techniques to approximate
physical fields supported on unstructured meshes.

To separate the application of the filtering/transforms maps ffilter and f−1
filter from the convolutional

neural networks layers, we define ψ̃ : Rp→ Rr and φ̃ : Rr→ Rp through the relations φ = f−1
filter ◦ φ̃

and ψ = ψ̃ ◦ ffilter. So, the CNN layers are encapsulated in φ̃ and ψ̃ .
If the state vector Uh ∈ Xh includes more than one physical field, we have decided not to extract

the frequencies or SVD reduced variables Ũh for each field, but to do so all together in a monolithic
fashion. This results in single-channel input of the CNN ψ̃ and a single-channel output of the CNN φ̃ ,
instead of having as many channels as the number of physical fields included in Uh.

We remark that our CAE is trained only in the space of frequencies as input-output spaces
achieving a relevant speedup thanks to this, as pointed out in [95]. The nonlinearity of the autoencoder
is only exploited to further reduce the dimensionality from the frequency spaces and to directly
approximate the solution manifold, which is effectively linear approximated in our case. For truly
nonlinear solution manifold approximants we refer to [223].

7.2.3 Parallel Randomized Singular Value Decomposition

We recap in brief the procedure of randomized singular value decomposition (rSVD) [117], necessary
to evaluate the modes when the snapshots matrix cannot be assembled altogether due to memory and
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Fig. 7.2 The image shows schematically our implementation of the nonlinear maps φ = f−1
filter ◦ φ̃

and ψ = ψ̃ ◦ ffilter that define the approximate nonlinear solution manifold. The functions φ̃ and ψ̃

represent neural networks composed by subsequent 1d-convolutional and transposed 1d-convolutional
layers, their specifics are reported in Table 7.4 and 7.5. The maps ffilter and f−1

filter are the linear
projection onto the first p rSVD modes and its transpose, their definition is reported in equation (7.18).

computational constraints. An alternative is represented by the frequent directions algorithm [100].
We remarkrSVDo that rSVD requires only matrix-vector evaluations and therefore can be applied
also in a matrix-free fashion [137].

The only ingredient needed is the column-wise ordered matrix Atrain ∈ Rd×ntrain of the training
snapshots collection Utrain := {Uµµµ,t}µµµ∈Ptrain, t∈Vµµµ

, with Vµµµ = {t1, . . . , tNµµµ
},

Atrain =


 | | | |

Uµµµ1,t1 Uµµµ1,t2 . . . Uµµµ1,tNµµµ1

| | | |

 , . . . ,


| | | |

Uµµµ |Ptrain
|,t1 Uµµµ |Ptrain

|,t2 . . . Uµµµ |Ptrain
|,tNµµµ|Ptrain|

| | | |


∈Rd×ntrain

(7.10)
with |Utrain|= ntrain and Uµµµ,t ∈ Rd for all µµµ ∈ Ptrain, t ∈Vµµµ . In our case, we do not assemble Atrain

since the computational domain can be partitioned and assigned to different processors during the
evaluation of the full-order training solutions Utrain.

We represent with M ∈ N the number of cells T ⊂Ωh of the mesh {Ti}M
i=1 ⊂ T representing our

discretized computational domain, and with c∈N the number of physical fields we are approximating:
for the CNS test case c = 4 for the INS c = 3. The total number of degrees of freedom (dofs) is
d = c ·M.

Since we will reduce with rSVD all the physical fields altogether in a monolithic fashion, we
need to normalize the training snapshots with respect to the cell-wise measure V ∈ Rd (length, area
or volume of each cell depending on the dimensionality of the mesh) and the different order of
magnitudes and unit of measurement of the different physical fields considered.
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For example, for the CNS test case c = 4 we consider velocity uµµµ,t ∈ RM, density ρµµµ,t ∈ RM,
internal energy eµµµ,t ∈ RM and pressure pµµµ,t ∈ RM, so that

Uµµµ,t = (uµµµ,t ,ρµµµ,t ,eµµµ,t , pµµµ,t) ∈ RM×c = Rd .

Similarly, for the INS test case c = 3 we consider velocity uµµµ,t ∈ RM, pressure pµµµ,t ∈ RM and the
turbulence viscosity νµµµ,t ∈ RM, so that

Uµµµ,t = (uµµµ,t , pµµµ,t ,νµµµ,t) ∈ RM×c = Rd . (7.11)

The vector of cell-wise measures V ∈ Rd is assembled from the vector v = {LLebesgue(Ti)}M
i=1

where LLebesgue is the Lebesgue measure in RD ⊃Ωh. So that V = (v)c
i=1 ∈ Rd is formed stacking v

c-times. The pyhsical normalization field N ∈ Rd is obtained from the maximum L2-norm of each
field: for the CNS test case we have

umax = max
µµµ,t
∥uµµµ,t∥2, ρmax = max

µµµ,t
∥ρµµµ,t∥2, emax = max

µµµ,t
∥eµµµ,t∥2, pmax = max

µµµ,t
∥pµµµ,t∥2, (7.12)

so that N = (13M · umax,1M ·ρmax,1M · emax,1M · pmax) ∈ Rd , with 1M the M-dimensional vector of
ones. Similarly, for the INS test case we consider

umax = max
µµµ,t
∥uµµµ,t∥2, ρmax = max

µµµ,t
∥ρµµµ,t∥2, emax = max

µµµ,t
∥eµµµ,t∥2, pmax = max

µµµ,t
∥pµµµ,t∥2, (7.13)

so that N = (13M ·umax,1M · pmax,1M ·νmax) ∈ Rd .
So the columns {Atrain

µµµ,t }µµµ∈Ptrain, t∈Vµµµ
of Atrain are actually defined as

Rd ∋ Atrain
µµµ,t = Uµµµ,t ⊘W, W = N⊘V, (7.14)

where we have considered only element-wise divisions •⊘• between vectors in Rd . Notice that in
this way we obtain unit-less states Uµµµ,t/W ∈ Rd . For the impact of physical normalization in model
order reduction, see [193].

The reduced train and test rSVD coordinates are obtained with the following linear projection,
employing the rSVD modes U ∈ Rd×rrSVD from Algorithm 7:

RrrSVD×ntrain ∋ Ytrain =UT Atrain, (reduced train rSVD coordinates) (7.15a)

RrrSVD×ntest ∋ Ytest =UT Atest, (reduced test rSVD coordinates) (7.15b)
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Algorithm 7: Parallelized Randomized Singular Value Decomposition.

input : training column-wise ordered snapshots matrix Atrain ∈ Rd×ntrain ,
rrSVD reduced rSVD dimension, p oversampling parameter

output :U ∈ Rd×rrSVD rSVD modes

1 Define the sketch dimension l = rrSVD + p.
2 Draw the sketch matrix Ω ∈ Rntrain×l as a Gaussian random matrix.
3 Assemble in parallel Y = AtrainΩ, with Y ∈ Rd×l .
4 Evaluate the orthonormal basis Q ∈Rntrain using QR-factorization RY = QR, with

R ∈ Rntrain×ntrain .
5 Project the snapshots into a random lower l-dimensional space in parallel: S = QT Atrain,

with S ∈ Rl×ntrain .
6 Compute the thin SVD S = Ũ Σ̃Ṽ , with Ũ ∈ Rl×rrSVD , Σ ∈ RrrSVD×rrSVD , Ṽ ∈ RrrSVD×ntrain .
7 Evaluate the rSVD modes U = QŨ , with U ∈ Rd×rrSVD .

and the reconstructed train and test fields are obtained employing the normalizing vector W = N⊘V:

Rd×ntrain ∋ Arec
train = W⊙UYtrain = W⊙UUT Atrain, (reconstructed train snapshots)

(7.16a)

Rd×ntest ∋ Arec
test = W⊙UYtest = W⊙UUT Atest, (reconstructed test snapshots)

(7.16b)

where ⊙ is the Hadamard columns-wise product, inverse operation of the normalization applied
in (7.14).

To decide if the number of rSVD modes is sufficient to achieve the desired accuracy for the
problem at hand we consider the mean and max relative L2 reconstruction error on the training and
test sets:

∥Arec
train∥2,mean =

1
ntrain

∑
µµµ∈Ptrain, t∈Vµµµ

∥Urec, train
µµµ,t −Utrain

µµµ,t ∥2

∥Utrain
µµµ,t ∥2

, ∥Arec
train∥2,max = max

µµµ∈Ptrain, t∈Vµµµ

∥Urec, train
µµµ,t −Utrain

µµµ,t ∥2

∥Utrain
µµµ,t ∥2

,

(7.17a)

∥Arec
test∥2,mean =

1
ntest

∑
µµµ∈Ptest, t∈Vµµµ

∥Urec, test
µµµ,t −Utest

µµµ,t∥2

∥Utest
µµµ,t∥2

, ∥Arec
test∥2,max = max

µµµ∈Ptest, t∈Vµµµ

∥Urec, test
µµµ,t −Utest

µµµ,t∥2

∥Utest
µµµ,t∥2

,

(7.17b)

where Arec
train = (Urec, train

µµµ,t )µµµ∈Ptrain, t∈Vµµµ
∈ Rd×ntrain and Arec

test = (Urec, test
µµµ,t )µµµ∈Ptest, t∈Vµµµ

∈ Rd×ntest .
Finally, we want to explicitly define the filtering/transform map ffilter : Xh ∼ Rd → Rp and its

approximate left inverse f−1
filter : Rp→ Xh ∼ Rd with p = rrSVD:

ffilter(Uh) =UT (Uh⊘W) , f−1
filter(Ũh) = (W⊙U) Ũh. (7.18)
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7.3 Hyper-reduction

As introduced in section 7.2.1, there are two main problems that affect the efficient resolution of
the nonlinear least squares problem in equation (7.9a) at each time instance t ∈ Vµµµ and for each
intermediate optimization step i ∈ {1, . . . ,Nt,µµµ} required by the nonlinear least-squares method, and
they are both linked to the evaluation of the residual

Gh,δ t(µµµ,φ(z),{φ(zs)}s∈It ). (7.19)

We recall that we employ the derivative-free Pounders solver [270] implemented in PETSc [16]. Also,
nonlinear least-squares problem optimizers that employ an approximation or the true Jacobian of the
residual Gh,δ t can be employed.

The main problems to efficiently evaluate Gh,δ t are the following:

1. in general, the nonlinearity of Gh,δ t makes its evaluation dependent on the number of dofs d,

2. the map φ : U ⊂ Rr→ Rd might be computationally heavy to evaluate for each r-dimensional
input and depends on the number of dofs since its output is d-dimensional.

The reason why we need this independence on the number of dofs is for our model order reduction
procedure to be efficient even when d increases. Our two test cases CNS and INS have approximately
M = 30000 and M = 200000 cells, and d = 180000 and d = 1000000 dofs respectively, which are
still a moderate number of dofs compared to real applications. If we want to extend the methodology
to larger meshes, we have to guarantee the independence of the number of dofs of our procedure.

We will address first the nonlinearity coming from Gh,δ t . Typically, in the case of LM-LSPG, if
the residual has a nonlinear term directly coming from the parametric PDE model, a class of methods
under the name of hyper-reduction can be applied to ameliorate the situation. The idea is to reconstruct
the residual only from its evaluations on a subset of degrees of freedom, in general. To do so, from
the physical fields of the model considered taken as inputs, the values of those fields on the stencil
needed by the numerical discretization have to be computed.

The simplest approach consists in collocating the residual on a subset of cells of the mesh, from
now on called nodes or magic points. So we introduce two projection maps: the projection onto the
magic points

Prh : Rd → Rrh , Prh(Uh) =

 | | | |
ei1 ei2 . . . eirh

| | | |


T

∈ Rrh×d , 0 < rh≪ d (7.20)
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where Srh = {ei j}rh
j=1 is a subset of the standard basis of Rd and the projection onto the submesh

needed to evaluate the residual on the magic points

Ps
rh

: Rd → Rs, Ps
rh
(Uh) =

 | | | |
ei1 ei2 . . . eis

| | | |


T

∈ Rs×d , 0 < rh < s≪ d (7.21)

where Ss
rh
= {ei j}s

j=1 is a subset of the standard basis of Rd containing Srh ⊂ Ss
rh

.
With these definitions, the residual from equation (7.9a) can be hyper-reduced as

zt =argmin
z∈Rr

∥PrhGh,δ t(µµµ,P
s
rh
(φ(z)),{Ps

rh
(φ(zs))}s∈It )∥2

Rrh (7.22a)

=argmin
z∈Rr

∥PrhGh,δ t(µµµ,(P
s
rh
◦ f−1

filter)(φ̃(z)),{(Ps
rh
◦ f−1

filter)(φ̃(z
s))}s∈It )∥2

Rrh , (7.22b)

where we have employed the definitions of φ̃ : Rr→ Rp and f−1
filter : Rp→ Rd from section 7.2.2.

In this way, we have addressed the problem coming from the nonlinearity of the residual Gh,δ t . At
the same time, thanks to the choice of φ = f−1

filter ◦ φ̃ as composition of a linear projection depending
on the dofs f−1

filter and a small nonlinear neural network φ̃ independent on the number of dofs, we have
also tackled the second problem. In fact, also the parametrization map (Ps

rh
◦ f−1

filter)(φ̃) restricted to
the submesh is now independent on the number of dofs.

To be more specific, since we will be employing only rSVD as linear projections we have

f−1
filter(Ũh) = Ps

rh
◦
(
(W⊙U) Ũh

)
=
(
Ps

rh
(W)⊙Ps

rh
(U)
)

Ũh. (7.23)

where we have employed definition 7.18. So the hyper-reduction affects only the rSVD modes
U ∈ Rd×p and the normalization vector W ∈ Rd . A schematic representation of the hyper-reduced
approximate nonlinear manifold parametrization map is shown in Figure 7.3.

We want to remark that the hyper-reduction procedure presented is effective thanks to the choice
of implementation of the parametrization map φ through a combination of neural networks and rSVD
modes. However, in some cases, the number of rSVD modes required p = rrSVD can become so large
to guarantee a threshold accuracy in the relative L2 reconstruction error that the methodology is no
more efficient, since p≫ 0 and φ̃ : Rr→ RrrSVD . This computational burden affects both the offline
stage for the training of the NN and the online residual evaluation. In these cases, one may want
to employ heavier and deep generic neural network architectures like CNNs for structured meshes
or GNNs for unstructured meshes that recover a good approximation of the solution manifold. The
employment of these deep NNs brings up the problem of how to hyper-reduce them. The methodology
introduced in this section cannot be applied, but a solution is represented by a strategy called teacher-
student training for which in a following training phase a smaller fast student NN is tuned to replicate
the results of the bigger slow teacher NN. This alternative approach is presented and studied in [223].
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Fig. 7.3 Left: the decoder map ψ̃ : Rr→ Rp followed by the vector matrix multiplication with the
rSVD modes f−1

filter(Ũh) :Rp→Xh∼Rd . The latter are restricted to the submesh through the projection
Ps

rh
: Xh ∼ Rd → Rs, that is the blackened dofs are discarded. Right: the map actually employed in

the hyper-reduced nonlinear manifold least-squares Petrov-Galerkin method φ : Rr→ Ps
rh
(Xh)∼ Rs.

It is independent of the number of dofs and its evaluation is efficient thanks to the relatively small size
of the decoder ψ̃ .

7.3.1 Hyper-reduction methods and Magic Points Selection Algorithms

We are left with the task of defining the set of magic points Srh since the submesh Ss ⊃ Srh is identified
from the magic points and the choice of numerical scheme employed to discretize the parametric
PDE. Until now, we have considered only the collocation of the residual on the magic points as
hyper-reduction method. However, not only this is not the sole possible implementation but also not
the most common one.

What we have actually described is part of the reduced over-collocation hyper-reduction method [51].
In this section, we will introduce also the gappy discrete empirical interpolation method (DEIM) [48],
the energy-conserving sampling and weighting method (ECSW) [88], and DEIM with the quasi-
optimal point selection algorithm (SOPT) from [156].

We have experimentally observed that for our test cases with slow Kolmogorov n-width and
rrSVD = 150 and rrSVD = 300 rSVD modes, the reduced over-collocation method performs better.
Further comments follow in section 7.6. Moreover, for test cases with a bigger number of dofs we have
also developed a more successful adaptive magic points selection method introduced in section 7.3.2.

So, what we will be particularly focused on are the magic points selection algorithms from DEIM,
ECSW and SOPT. The starting point for each one of them is the computation of a set of rSVD modes
Uhr ∈ Rd×nhr . Since we are hyper-reducing the residual Gh,δ t we need to collect a dataset of residual
snapshots Gtrain = {Gh,δ t(µµµ,Ut

h,{Us
h}s∈It )}µµµ∈Ptrain, t∈Vµµµ

= {Gµµµ,t}µµµ∈Ptrain, t∈Vµµµ
, with Vµµµ = {t1, . . . , tNµµµ

},
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in the training phase and compress them with rSVD:

Gtrain =


 | | | |

Gµµµ1,t1 Gµµµ2,t1 . . . Gµµµ1,tNµµµ1

| | | |

 , . . . ,


| | | |

Gµµµ |Ptrain|,t1
Gµµµ |Ptrain|,t1

. . . Gµµµ |Ptrain|,tNµµµ|Ptrain|

| | | |


∈Rd×ntrain ,

(7.24)
from this residual snapshots matrix Gtrain the rSVD modes are computed UG ∈ Rd×rG , rG > 0 and
utilzed for magic points sampling after setting Uhr =UG. In this case rG might possibly be different
than rrSVD.

However, employing the physical fields’ rSVD modes Uhr = U ∈ Rd×rrSVD also to perform the
magic points’ sampling is a fast alternative [56], since no additional snapshots of the residual need to
be collected, apart from those used to define the map φ , and the computational cost of an additional
application of the rSVD algorithm, this time on the residual snapshots, is avoided.

Gappy discrete empirical interpolation

In the gappy DEIM algorithm, after the computation of the hyper-reduction basis Uhr ∈ Rd×rhr from
the physical fields Atrain ∈ Rd×ntrain or residual snapshots Gtrain ∈ Rd×ntrain , Uhr is employed to find the
magic points with a greedy algorithm: at each step, it is selected the cell of the mesh associated to the
highest value of the hyper-reduction reconstruction error r ∈ Rd

r = Atrain−U(PrhU)†(PrhAtrain), or r = Gtrain−UG(PrhUG)
†(PrhGtrain) (7.25)

where with the notation (•)† we represent the Moore-Penrose pseudo-inverse matrix and Prh ∈ Rd×r̃

is the intermediate projection matrix that evaluates a vector on the full-state space Rd on the magic
points Srh = {ei j}r̃

j=1, 0 < r̃ ≤ rh, selected up to the considered step of the greedy algorithm. We
remark that if vector-valued states U ∈ Rd with d = M · c, c > 1 are considered, it is selected the cell
of the mesh that maximizes the sum over each of the c fields of the hyper-reduction reconstruction
error.

For our implementation of the gappy DEIM greedy nodes selection algorithm we have chosen the
one studied in [46] and applied to the Gauss-Newton tensor approximation (GNAT) hyper-reduction
method that is more general than DEIM.
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Once the magic points set Srh = {ei j}rh
j=1 has been evaluated, the magic points and submesh

projections Prh , Ps
rh

are computed and the following variants of nonlinear hyper-reduced least-squares
problem (7.9a) are solved for

zt = argmin
z∈Rr

∥(PrhU)† (PrhGh,δ t(µµµ,P
s
rh
(φ(z)),{Ps

rh
(φ(zs))}s∈It )⊘PrhW

)
∥2
Rrh , (FB-DEIM)

(7.26a)

zt = argmin
z∈Rr

∥(PrhUG)
† (PrhGh,δ t(µµµ,P

s
rh
(φ(z)),{Ps

rh
(φ(zs))}s∈It )⊘PrhWG

)
∥2
Rrh , (RB-DEIM)

(7.26b)

zt = argmin
z∈Rr

∥PrhGh,δ t(µµµ,P
s
rh
(φ(z)),{Ps

rh
(φ(zs))}s∈It )∥2

Rrh , (C-DEIM),

(7.26c)

depending on the choice of hyper-reduction basis chosen Uhr = U (FB-DEIM) or Uhr = UG (RB-
DEIM) or if it is performed reduced over-collocation (C-DEIM). In the case of FB-DEIM and
RB-DEIM, the residuals Gh,δ t are divided elment-wise by the normalization vectors W ∈ Rd defined
in (7.14) and WG ∈ Rd defined analogously from Gtrain.

A quasi-optimal nodes sampling method

As pointed out in [156], the matrix PrhUhr ∈ Rrh×rhr from the DEIM algorithm loses the orthogonality
of its columns with respect to Uhr ∈ Rd×rhr that is crucial for the numerical stability of DEIM and to
minimize the error in the L2-norm of the hyper-reduction interpolation. In fact, the hyper-reduction
L2 error can be decomposed [48] as the sum of the best approximation error on the linear subspace in
Rd spanned by the columns of Uhr ∈ Rd×rhr and the distance from the projection onto it

∥Atrain−Uhr(PrhUrh)
†(PrhAtrain)∥2

2 = ∥Atrain−UhrUT
hrAtrain∥2

2 +∥UhrUT
rh

Atrain−Uhr(PrhUrh)
†(PrhAtrain)∥2

2

(7.27a)

= ∥Atrain−UhrUT
hrAtrain∥2

2 +∥Uhr(PrhUrh)
†Prh(UrhU

T
rh
− Id)Atrain∥2

2

(7.27b)

= ∥Atrain−UhrUT
hrAtrain∥2

2 +∥(PrhUrh)
†Prh(UrhU

T
rh
− Id)Atrain∥2

2,

(7.27c)

where in the last step we have used the fact that Uhr ∈ Rd×rrh has orthonormal columns. Only the
second term depends on the magic points selection, so the optimal strategy would be to minimize the
solution of the least-squares problem

(PrhUrh)
†Prh(UrhU

T
rh
− Id)Atrain = argmin

X∈Rrhr×ntrain

∥PrhUrhX−Prh(UrhU
T
rh
− Id)Atrain∥2

2, (7.28)
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that is to minimize the hyper-reduction L2 error of the remaining part of Atrain ∈ Rd×ntrain after the
difference with its projection on the subspace spanned by the hyper-reduction basis Uhr ∈ Rd×rhr .

A possible way, not necessarily optimal, to minimize (7.28) is to maximize the determinant of
PrhUrh ∈ Rrh×rhr and at the same time maximize its column orthogonality. In [231], they developed an
efficient greedy algorithm to do so, maximizing

PS
rh
= argmax

P∈Rrh×rhr

S(PUhr), S(PUhr) =

(√
det((PUhr)T PUhr)

∏
rhr
i ∥(PUhr)i∥2

) 1
rhr

∈ [0,1], (7.29)

where {(PUhr)i}rrh
i=1 are the columns of PUhr ∈ Rrh×rhr , assuming ∥(PUhr)i∥2 ̸= 0,∀i ∈ {1, . . . ,rhr}.

In particular, in [231] it is proved that S(PUhr) = 1 if and only if the columns of PUhr are mutually
orthonormal. The same quasi-optimal criterion is employed for hyper-reduction in [156], under the
name of S-optimality (SOPT).

The DEIM algorithm with S-optimality magic points selection has the following formulation:

zt = argmin
z∈Rr

∥(PS
rh

U)† (PS
rh

Gh,δ t(µµµ,P
S,s
rh

(φ(z)),{PS,s
rh

(φ(zs))}s∈It )⊘PS
rh

W
)
∥2
Rrh , (FB-DEIM-SOPT)

(7.30a)

zt = argmin
z∈Rr

∥(PS
rh

UG)
† (PS

rh
Gh,δ t(µµµ,P

S,s
rh

(φ(z)),{PS,s
rh

(φ(zs))}s∈It )⊘PS
rh

WG
)
∥2
Rrh , (RB-DEIM-SOPT)

(7.30b)

zt = argmin
z∈Rr

∥PS
rh

Gh,δ t(µµµ,P
S,s
rh

(φ(z)),{PS,s
rh

(φ(zs))}s∈It )∥2
Rrh , (C-DEIM-SOPT),

(7.30c)

where PS,s
rh ∈Rs×d is the submesh projection corresponding to PS

rh
∈Rrh×d . Also in this case, depending

on the choice of hyper-reduction basis chosen Uhr =U (FB-DEIM-SOPT) or Uhr =UG (RB-DEIM-
SOPT) or if it is performed reduced over-collocation (C-DEIM-SOPT), there are three different
formulations.

Energy-conserving sampling and weighting method

Differently from DEIM, the ECSW hyper-reduction method finds a sparse integration formula to
approximate the quantity of interest, if it is obtained through an integration on the computational
domain Ω⊂ RD, like the residual Gh,δ t if it is calculated with the FVM, FEM or DGM.

The idea is to find a ∥•∥0-sparse quadrature formula (∥x∥0 = #{i ∈ N|xi ̸= 0}, ∀ ∈ Rd) such that
the new weights Qhr ∈ Rd are sparse ∥Qhr∥0≪ 1 and approximate up to a tolerance 0 < τ ≪ 1 the
sums of the training residual snapshots:

Qhr = argmin
Q∈Rd

+

∥Q∥0 s.t. ∥Q⊙Uhr− c∥2
2 < τ∥c∥2

2 (7.31)
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where Q⊙Uhr is the elment-wise multiplication of the quadrature weights vector Q ∈ Rd with the
columns of the training residual snapshots matrix Uhr ∈ Rd×rhr , and c ∈ Rrhr , c j = ∑

d
i=1(Uhr)i j, ∀ j ∈

{1, . . . ,rhr} is the vector of integrals. With the notation Rd
+ we consider the set of non-negative

d-dimensional vectors. In practice, this NP-hard problem is relaxed to the following non-negative
least-squares problem

Qrh = argmin
Q∈Rd

+

∥Q⊙Uhr− c∥2
2, (7.32)

we solve it with the non-negative least-squares algorithm based on [157] and implemented in the
Eigen library [111].

The nonlinear manifold least-squares problem (7.7a), is hyper-reduced with the ECSW method in
the following formulations:

zt = argmin
z∈Rr

∥Q̃hr⊙
(
PrhGh,δ t(µµµ,P

s
rh
(φ(z)),{Ps

rh
(φ(zs))}s∈It )⊘PrhW

)
∥2
Rrh , (FB-ECSW)

(7.33a)

zt = argmin
z∈Rr

∥Q̃hr⊙
(
PrhGh,δ t(µµµ,P

s
rh
(φ(z)),{Ps

rh
(φ(zs))}s∈It )⊘PrhWG

)
∥2
Rrh , (RB-ECSW)

(7.33b)

zt = argmin
z∈Rr

∥PrhGh,δ t(µµµ,P
s
rh
(φ(z)),{Ps

rh
(φ(zs))}s∈It )∥2

Rrh , (C-ECSW),

(7.33c)

where Q̃hr ∈ Rrh is the quadrature weights vector obtained from the restriction of Qhr ∈ Rd to its
non-zero entries. We also define Prh ∈ Rd×rh as the boolean matrix that selects the non-zero entries
of Qhr ∈ Rd so that Q̃hr = PrhQhr ∈ Rd , and as a consequence the projection onto the submesh
Ps

rh
∈ Rd×s.
Also for this case, depending on the choice of hyper-reduction basis chosen Uhr =U (FB-ECSW)

or Uhr =UG (RB-ECSW) or if it is performed reduced over-collocation (C-ECSW), there are three
different formulations.

7.3.2 Gradient-based adaptive hyper-reduction

The most successful hyper-reduction strategy for our implementation of the NM-LSPG method is the
adaptive reduced over-collocation method (C-UP) that we introduce now. The method employs the
standard formulation of the reduced over-collocation hyper-reduction method

zt = argmin
z∈Rr

∥PrhGh,δ t(µµµ,P
s
rh
(φ(z)),{Ps

rh
(φ(zs))}s∈It )∥2

Rrh , (C-UP) (7.34)

with the difference that the magic points are sampled adaptively during the time-evolution of the
NM-LSPG trajectories. Its cost is amortized over the successive NM-LSPG time evaluations.



212 Hyper-reduced nonlinear manifold method: adaptive strategies

A heuristic approach relies on the positioning of the magic points where the sensitivities of the
residual at time t have greater components in L2-norm. If we define the residual map at time t

Rr ∋ z 7→ Gh,δ t(µµµ,P
s
rh
(φ(z)),{Ps

rh
(φ(zs))}s∈It ) = Gh,δ t(φ(z)) ∈ Rd , Gh,δ t : Rr→ Rd , (7.35)

losing for brevity the dependencies on the previous time steps, its sensitivities with respect to the
latent coordinate zt at time t are for all i ∈ {1, . . . ,r},

Rd ∋ Ji =
∂Gh,δ t(φ(z))

∂zi

∣∣∣∣
z=zt

=

[
∂Gh,δ t(φ(z))

∂φφφ

∣∣∣∣
φ(z)=φ(zt)

]
d×s

◦
[

∂φ(z)
∂zi

∣∣∣∣
z=zt

]
s×1

(7.36a)

=

[
∂Gh,δ t(φ(z))

∂φφφ

∣∣∣∣
φ(z)=φ(zt)

]
d×s

◦
[
Ps

rh
◦ f−1

filter

]
s×rrSVD

◦
[

∂ φ̃(z)
∂zi

∣∣∣∣
z=zt

]
rrSVD×1

(7.36b)

= [G]d×s [F]s×rrSVD
[ΦΦΦi]rrSVD×1 (7.36c)

with

G =
∂Gh,δ t(φ(z))

∂φφφ

∣∣∣∣
φ(z)=φ(zt)

∈ Rd×s, F = Ps
rh
◦ f−1

filter ∈ Rs×rrSVD , ΦΦΦ =
∂ φ̃(z)

∂z

∣∣∣∣
z=zt
∈ RrrSVD×r

(7.37)
where with the chain rule we have highlighted the terms that compose the evaluation of the Jacobian
matrix of the residual.

The exact evaluation of the Jacobian ΦΦΦ ∈ RrrSVD×r of the parametrization map φ̃ : Rr→ RrrSVD is
efficient enough to be employed by our adaptive hyper-reduction procedure. However, the matrix
multiplication GFΦΦΦ is inefficient since G ∈ Rd×s depends on the number of degrees of freedom
and the submesh size s. If we wanted to apply DEIM to recover the residual on the full-space Rd

from PrhGh,δ t , so considering the sensitivities of Uhr(PrhUrh)
†PrhGh,δ t , we would need to compute

the pseudo-inverse (PrhUrh)
† which could become a heavy task if repeated multiple times during the

NM-LSPG method.
Our solution consists instead in evaluating O : U ⊂ Rr×P → Rd×r,

O(zt ,µµµ)= f−1
filter◦

(
∂ φ̃(z)

∂z

∣∣∣∣
z=zt
− ∂ φ̃(z)

∂z

∣∣∣∣
z=zt−1

)
= [W⊙U ]d×rrSVD

[
∂ φ̃(z)

∂z

∣∣∣∣
z=zt
− ∂ φ̃(z)

∂z

∣∣∣∣
z=zt−1

]
rrSVD×r

,

(7.38)
considering the current time-step t and the previous one t− 1. In this way, we are employing the
sensitivities of the neural network itself, rather than including also the information coming from the
residual through the Jacobian G ∈ Rd×s.

We select only the first rh cells of the computational domain that maximize

argmax
k={1,...,M}

argmax
j=1,...,r

(
c

∑
i=1

Oi(zt ,µµµ)2

)
k j

 (7.39)
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where Oi(zt ,µµµ) ∈ RM for i ∈ {1, . . . ,c} are the degrees of freedom corresponding to the i-th physical
field composing the full-state Uh ∈ Xh ∼ Rd . When we update the magic points and consequently the
submesh every n time-steps, we use the notation C-UPn, for example, C-UP50 for an adaption of the
magic points every 50 time-steps.

The methodology presented derives from heuristic considerations and the necessity to keep the
computational costs as low as possible. Experimentally it is shown that it is able to track the main
moving features of our transient numerical simulations, thus adapting the magic points’ position close
to the most informative regions of the computational domain. See Figure 7.4. Additional collocation
nodes are imposed on the boundaries to force the satisfaction of boundary conditions as can be noticed
in Figure 7.4, at the inflow left boundary.

Fig. 7.4 Visual example of adaptive gradient-based reduced over-collocation. Predicted velocity
magnitude time snapshots, for t ∈ {0,400,800,1200,1600,2000}, of the 2d compressible Navier-
Stokes equations’ model described in subsection 7 for a value of the Mach number Ma = 2.12422656,
the fourth of five test parameters. It can be seen that the 700 collocation nodes in black, and the
corresponding submesh in grey, updated with gradient-based adaptive hyper-reduction, through
equation (7.39), every 50 time-steps, follow the transient dynamics. The time instants reported refer
to the reference time interval t ∈ [0,2500], the real-time instants are obtained by applying the scaling
reported in equation (7.43).

7.4 Local nonlinear manifold

Sometimes the L2-norm relative reconstruction error (7.17a) cannot approximate with sufficient accu-
racy the nonlinear solution manifold in terms of reconstruction error, or the autoencoder architecture
φ ◦ψ : Rd → Rd or φ̃ ◦ ψ̃ : RrrSVD → RrrSVD does not meet the tolerance requirement (7.8). This
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happens when there are regions in the parameter space that correspond to less correlated solutions in
the solution manifold.

A possible solution is to partition the parameter space in subdomains where the approximation
properties of the rSVD modes and the autoencoder are satisfactory for the problem at hand. There
are many implementations of local ROMs, often under the name of dictionary-based ROMs [69].
Generally, they also can be efficiently applied to our framework, thanks to the definition of our
autoencoder through linear projections.

The setting is introduced only for two communicating local solution manifolds. For i = 1,2, with
the notations

P i
ntrain,i
⊂Pntrain , (local parameter subset)

(7.40a)

φ
i : Rr→ Xh ∼ Rd , φ̃

i : Rr→ Rp, ψ
i : Xh ∼ Rd → Rr, ψ̃

i : Rp→ Rr, (local autoencoder)
(7.40b)

f i
filter : Xh ∼ Rd → Rp, ( f i

filter)
−1 : Rp→ Xh ∼ Rd , (local linear projections)

(7.40c)

Ai
ntrain,i
∈ Rd×ntrain,i , Wi ∈ Rd , U i ∈ Rd×rrSVD (local rSVD quantities)

(7.40d)

we denote the corresponding parametric subsets, the decoder maps, the encoder maps, the linear
filter/transform maps, the training snapshots matrices, the normalizing vectors and the local rSVD
basis of the two local solution manifolds. In principle, the local latent dimensions r = r1 = r2

with our notation, can be different r1 ̸= r2 and the same is valid for p = rrSVD = p1 = p2, that is
p1 = r1

rSVD ̸= r2
rSVD = p2. In fact, it is possible to adapt the latent and linear filter dimensions of the

nonlinear approximating manifold parametrized by φ i to the local Kolmogorov n-width decay of the
subset of the parameter space under consideration. In a sense, the rationale is similar to the one behind
hp-FEM or hp-DGM methods.

Gluing two local solution manifolds requires care especially because it may not be guaranteed
that the corresponding full-states are close to each other with sufficient accuracy (( f 2

filter)
−1 ◦ f 2

filter ◦
( f 1

filter)
−1)(Ũ1

h)≈ ( f 1
filter)

−1(Ũ1
h). Many techniques have been developed to tackle this problem, but,

for the moment, we will study only the most simple one. In fact, a possible way to avoid this consists
in just overlapping the training datasets Antrain,1 ∈ Rd×ntrain,1 and Antrain,2 ∈ Rd×ntrain,2 , that is considering
a bigger intersection of their corresponding parameters subsets P1

ntrain,1
⊂ Pntrain and P2

ntrain,2
⊂ Pntrain ,

P1
ntrain,1

∩P2
ntrain,2

̸=∅.
In our case, we have that the change of basis linear map f 12

filter = f 2
filter ◦ ( f 1

filter)
−1 : RrrSVD → RrrSVD

is computed offline as

Ũ2
h = f 12

filter(Ũ
1
h) = ( f 2

filter ◦ ( f 1
filter)

−1)(Ũ1
h) = (U2)T (((W1⊙U1) Ũ1

h
)
⊘W2) . (7.41)
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This change of basis between communicating local solution manifolds is represented schematically in
Figure 7.5.

We will consider only two local solution manifolds such that only the time interval is partitioned,
see section 7.

Fig. 7.5 Above: the decoder φ 1 of subdomain 1 on the left, and the encoder ψ2 followed by the
decoder φ 2 of subdomain 2. To pass from one subdomain whose solution manifold is spanned by the
rSVD modes associated to ( f 1)−1

filter to the one spanned by the rSVD modes associated to f 2
filter and

( f 2)−1
filter, an efficient change of basis needs to be performed during the online stage. The dependency

on the number of dofs is avoided by multiplying in the offline stage the rSVD basis associated with
subdomain 1 with the ones associated with subdomain 2. Below: the same maps as above, only
now an efficient change of basis between subdomains Ũ2

h = f 12
filter(Ũ

1
h) = ( f 2

filter ◦ ( f 1
filter)

−1)(Ũ1
h) can

be used online, since it is precomputed offline as a change of basis matrix of sizes p2× p1.

7.5 Numerical experiments

We will test the presented methodology on two challenging benchmarks from the point of view of
model order reduction, as they evidently suffer from a slow Kolmogorov n-width decay. Employing
classical linear projection-based ROMs would be unfeasible as they would need more than hundreds
of rSVD modes. For the comparison of classical methods with intrusive ones exploiting nonlinear
approximants see [146, 19].
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The test cases we will present are developed with the open-source CFD software library OpenFoam [264].
Being rather small test cases, discretized with the finite volumes method on meshes with 4500, 32160
and 198633 cells, the speedups obtained are relatively small. However, since our ROMs are indepen-
dent of the number of dofs, as long as increasing the resolution does not bring a slower Kolmogorov
n-width decay, more evident speedups can be achieved. Compared to the finite differences method
employed in [146, 19], the FVM implementation in OpenFoam is highly optimized and it is therefore
more challenging to achieve a speedup for small test cases. The new methodology is implemented on
top of the open-source software library for model order reduction ITHACA-FV [238].

The first test case we consider involves the compressible Navier-Stokes equations (CNS) in the
supersonic regime. We will consider as parameters time and the Mach number Ma ∈ [2,5] imposed at
the inflow boundary. In order to show, that the method scales well increasing the number of dofs, we
employ two meshes: a coarse one with 4500 cells and a finer one with 32160 cells, see Figure 7.6.
On the first mesh in subsection 7, we test different hyper-reduction methods. On the second mesh in
subsection 7 we test the use of local nonlinear manifold approximants and the straight-forward change
of basis we have presented in section 7.4. The OpenFoam solver we employ is the sonicFoam [177]
solver.

The second test case we consider is the incompressible turbulent flow around the Ahmed body
(INS). The parameters are time and the slant angle of Ahmed’s body. The test case presented is intro-
duced and studied in [282]. Steady-state solutions are obtained with the solver SIMPLE [138](Semi-
Implicit Method for Pressure-Linked Equations), however, we employ PISO [197] (Pressure Implicit
with Splitting of Operator) since we want to reduce the transient dynamics that has a slow KnW.
Adding time as parameter brings a much more complex solution manifold to approximate.

The specifics of the convolutional autoencoders used are reported in section 7.5.3 along with the
training costs and other hyperparameters. For all the CAE trainings we employed the ADAM [147]
optimizer with initial learning rate of 0.001 and a scheduler that halves it every 200 epochs if the
validation loss has not improved. Every architecture is trained for 3000 epochs on a single GPU
NVIDIA Quadro RTX 4000. The wallclock time expended on training is between 1 hour and 1 hour
and half for the test cases in 7, 7 and 4. Substantial computational savings depend on the choice of the
architecture, especially on the fact that the training is independent with respect to the number of dofs
since the inputs and outputs of the autoencoder belong to the lower dimensional space generated by
the rSVD basis.

In order not to interrupt the presentation of the numerical results, we postponed to section 7.5.4
the showcase of some predicted solutions of each test case: Figure 7.23 refers to the CNS1 test case
in line 7, Figure 7.24 refers to the CNS2 test case in line 7 and finally Figures 7.25 and 7.27 refers to
the test case INS1 in line 4.
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7.5.1 Supersonic flow past a NACA airfoil (CNS)

The first nonlinear time-dependent parametric PDE model we consider are the compressible Navier-
Stokes equations for a perfect diatomic gas with ratio of specific heat γ = 7/5. A speed of sound

of c =
√

γ
R
M T = 1m/s is imposed through the choice of molar mass M at a temperature of T = 1K,

where R is the universal gas constant. The following system of PDEs is solved on the 2d computational
domain Ωh ⊂ R2 shown in Figure 7.6:

∂tρ +∇ · (ρu) = 0, (mass conservation)
(7.42a)

∂t(ρu)+∇ · (ρu⊗u)+∇p−∇ ·
(
ν
(
∇u+∇uT + 1

3(∇ ·u)Id
))

= 0, (momentum conservation)
(7.42b)

∂tρ(e+K)+∇ · ((ρ(e+K)+ p)u)−∇ ·
(
ν
(
∇u+∇uT + 1

3(∇ ·u)Id
)

u
)
= 0, (energy conservation)

(7.42c)

e = T cv, pcv = ρRe, K = 1
2 ρu2, (state equations),

(7.42d)

the parameters we consider are time and the inlet Mach number Ma = |u|/c = |u|, µ = Ma ∈ [2,5],
t ∈ Vµ = {1, . . . ,Nµ}. The viscosity is fixed at ν = 1e− 5. The boundary conditions are imposed
at the inflow Γinflow, outflow Γoutflow and airfoil Γairfoil boundaries, see Figure 7.6. The initial and
boundary conditions for the velocity u, pressure p and temperature T fields are:

u(x, t) = Ma, (x, t) ∈ (Ω̊h×{t = 0})∪ (Γinflow× [0,Tµµµ ])

p(x, t) = 1, (x, t) ∈ (Ω̊h×{t = 0})∪ (Γinflow× [0,Tµµµ ])

T (x, t) = 1, (x, t) ∈ (Ω̊h×{t = 0})∪ (Γinflow× [0,Tµµµ ])

,


n ·∇u(x, t) = 0, x ∈ Γoutflow

(non-reflective), x ∈ Γoutflow

n ·∇T (x, t) = 0, x ∈ Γoutflow

,


u(x, t) = 0, x ∈ Γairfoil

n ·∇p(x, t) = 0, x ∈ Γairfoil

n ·∇T (x, t) = 0, x ∈ Γairfoil

,

where non-reflective boundary conditions are imposed on the pressure field at the outflow boundaries.
The Mach number training and test instances are sampled from the parameter spaceP = [2,5]×Vµ ,

such that the Mach angle α is sampled uniformly, and the time step ∆t and final time Tµ are
chosen depending on the Mach number from the reference time step (∆t)ref = 0.001 and final time
(Tµ)ref = 2.5:

α = arcsin
1

Ma
, ∆t = (∆t)ref

Maref

Ma
, Tµ = (Tµ)ref

Maref

Ma
(7.43)

in this way, the training and test time series have the same length even if the final times are different.
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Fig. 7.6 Left: computational domain of the compressible flow past a NACA airfoil test case. Center:
coarse mesh with 4500 cells. Right: finer mesh with 32160 cells.

We take into account two different meshes a coarse one with 4500 cells and 2700 dofs and a finer
one with 32160 cells and 192960 dofs. We will refer to these two test cases with the notation CNS-1
for the coarse mesh and CNS-2 for the finer mesh. The employment of two meshes permits us to
show that our methodologies achieve more significant speedups when the number of dofs is increased
since they are independent of the number of dofs: the timings and relative speedups can be observed
from Tables 7.1 and 7.2.

The solver we will employ is OpenFoam’s [264] pressure-based transonic/supersonic solver for
compressible gases sonicFoam [177]. SonicFoam algorithm 8 solves for the solution at the n-th time
instant follows PIMPLE predictor-corrector scheme, a combination of PISO [197] and SIMPLE [138].
In algorithm 8, we highlight the predictor-corrector scheme and the main steps. We employ the Euler
scheme in time. Starting from the previous fields un velocity, ρn density, en internal energy, and
pn pressure, the solutions at time step n+1 are evaluated. After an intermediate density evaluation
ρ∗ in line 2 corresponding to the continuity equation (7.42a), begins the PIMPLE corrector loop
from line 3: this outer loop comes from SIMPLE and relaxes the intermediate solution fields after
every iteration. Then, at line 4, the intermediate velocity field u∗ is evaluated implicitly solving
the momentum equation (7.42b): the diagonal A[ρ∗,∆t] and over-diagonal H[u∗,ρ∗,∆t] parts of
the system are highlighted along with the pressure contribution ∇p∗ since they will be employed
later in the pressure-Poisson equation at line 10. The energy predictor step at line 5 is evaluated
afterwards corresponding to the energy conservation (7.42c). Then, the thermodynamics properties
corresponding to the state equations (7.42d) are corrected and the PISO pressure corrector loop
begins at line 7. Inside the non-orthogonal corrector loop in case of non-orthogonal meshes, the
pressure-Poisson equation is repeatedly solved and, afterward, the velocity is corrected to satisfy
the continuity equation and the density is updated with the new pressure through the equations of
state. Many steps have not been reported for simplicity, for a more detailed analysis see [177]. What
we want to show is that in comparison the nonlinear least-squares Petrov-Galerkin scheme for the
compressible Navier-Stokes (CNS) equations (NM-LSPG-CNS) is simplified, at each n-th time step
and i-th intermediate optimization step in algorithm 9: having a solution manifold, trained on a
previous database, as ansatz space, the corrector loops can be avoided and only the residual evaluation
of the mass (7.42a), momentum (7.42b), energy (7.42c) and pressure-Poisson equations are needed.
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For the same reasoning, the orthogonal corrector loops can be avoided as the solutions searched for
on the approximant nonlinear manifold should be already corrected.

Along the lines of the previous considerations, we can employ larger time steps. In fact, it will be
shown that using four times the reference time step, that is (∆t)ref = 0.004, brings a speedup also in
the case of a coarse mesh, see Table 7.1.

To get a grasp of the extension of the solution manifold for the test cases CNS-1 and CNS-2,
we show 4 snapshots corresponding to the time instants and Mach numbers t = 0.2s, Ma = 5.2,
t = 2.5s, Ma = 5.2, t = 0.2s, Ma = 1.8, and t = 2.5s, Ma = 1.8 in Figure 7.8.

The value of the L2 relative error is low for the internal energy field because its absolute value is
higher than the absolute errors as can be seen in section 7.5.4 for the test cases CNS1 and CNS2.

Interpolation and quadrature based hyper-reduction on a coarse mesh (CNS-1)

As anticipated, in this subsection we will consider a coarse mesh of 4500 cells, reported in Figure 7.6,
for a total of d = 27000 dofs. The training interval is Ma ∈ [2,5] and t ∈ {0,∆t, . . . ,2500 ·∆t}=Vµµµ

with Maref = 2 and (Tµ)ref = 2, and the time steps opportunely scaled with respect the current Mach
number through equation (7.43). We consider the following training and test Mach numbers

Ptrain = {5,4.256,3.709,3.291,2.960,2.693,2.473,2.290,2.134,2}×Vµµµ , |Ptrain|= 10 ·2500,
(7.44a)

Ptest = {5.2,4.042,3.314,2.816,2.455,2.182,1.970,1.8}×Vµµµ , |Ptest|= 8 ·2500, (7.44b)

it can be observed that the first and last two test parameters are in the extrapolation regime as they
don’t belong to the interval [2,5]. From now on, the test parameters will be numbered in the order in
which they appear in equation (7.44b) and refer only to the Mach number: from test parameter 1 with
Ma = 5.2 to test parameter 8 with Ma = 1.8, we will use this notation also in the following figures.
A grasp of the solution manifold extension can be observed in Figure 7.8. So, the training dataset
Atrain ∈Rd×ntrain is represented by ntrain = |Ptrain| ·1250 = 12500 training snapshots, as only one every
two time instants is saved. The test dataset Atest ∈ Rd×ntest is composed by ntest = |Ptest| ·500 = 5000
snapshots as only one every four time instants is saved. The number of rSVD modes considered is
rrSVD = 150 evaluated from the training dataset Atrain. The CAE architecture employed is reported in
Table 7.4.

As first study, we show in Figure 7.9 the accuracy of the different hyper-reduction methods
introduced in section 7.3. For all the methods, it is employed a fixed number of rh = 500 collocation
nodes and rrSVD = 150 rSVD modes used for both the definition of the nonlinear approximant map
introduced in section 7.2.2 and the hyper-reduction basis. When residual bases RB are employed they



220 Hyper-reduced nonlinear manifold method: adaptive strategies

Fig. 7.7 INS. Comparison between the n-th time instant iterations of the full-order model numerical
scheme sonicFoam (Left) and the nonlinear manifold least-squares Petrov Galerkin (NM-LSPG-CNS)
method (Right).

Algorithm 8: sonicFoam n-th itera-
tion

1 Start with an initial velocity field un,
density field ρn, internal energy
field en, and pressure field pn at the
n-th time step.

2 Density prediction step:

ρ
∗−ρ

n +∆t∇ · (ρ∗un) = 0

3 while Pressure-velocity PIMPLE
corrector loop do

4 Momentum predictor step:

A[ρ∗]u∗ = H[u∗,ρ∗]−∇p∗.

5 Energy predictor step:

∂t(ρ
∗(e∗+K∗))+∇ · (ρ∗u(e∗+K∗)+

u∗p∗) = 06

7 Correct thermodynamics
properties.

8 while Pressure corrector loop do
9 while Non-orthogonal

corrector loop do
10 Evaluate the

pressure-corrector p∗:

∇ · (A[ρ∗]−1
∇p∗) =

∇ · (A[ρ∗]−1H[un,i,νn,i
t ])11

12 Correct density and velocity

u∗← u∗−A−1
∇p∗

Algorithm 9: NM-LSPG-CNS
(i,n)-th step

1 Start with an initial velocity field un,
density field ρn, internal energy
field en, and pressure field pn at the
n-th time step.

2 Density residual evaluation:

rρ = ρ
∗−ρ

n +∆t∇ · (ρ∗un)

Momentum residual evaluation:

ru =A[ρ∗]un,i−H[un,i,νn,i
t ]+∇pn,i.

3 Energy residual evaluation:

re = ∂t(ρ
∗(e∗+K∗))+∇ · (ρ∗u(e∗+K∗)+u∗p∗)4

5 Pressure-Poisson residual evaluation:

rp =∇·(A[ρ∗]−1
∇pn,i)−∇·(A[ρ∗]−1H[un,i,νn,i

t ]).

6 Normalization of the residuals:

rρ ←
rρ

maxi ρi
, ru←

ru

maxi ui
, re←

re

maxi ei
,

rp←
rp

maxi pi7

are evaluated separately with respect to the ones used to define the nonlinear approximant φ : Rr→Rd .
It can be seen that the reconstruction error (7.8) of the autoencoder represents the baseline accuracy
that we want to reach in terms of mean L2 relative error. It is also clear that with our implementation
of hyper-reduction the most accurate but also performing methods are the collocated ones. The lower
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Fig. 7.8 CNS-1 and CNS-2. From left to right: test full-order snapshots representing the velocity
field magnitude corresponding to the parametric values (t = 0.2s, Ma = 5.2), (t = 2.5s, Ma = 5.2),
(t = 0.2s, Ma = 1.8), and (t = 2.5s, Ma = 1.8). The whole extension of the solution manifold
includes the transient dynamics from the time instants t = 0s to t = 2.5s opportunely rescaled through
equation (7.43) and the different test Mach number values Ma ∈ [1.8,5.2]. The presence of moving
discontinuities at different Mach angles makes this test case difficult to reduce with classical linear
projection based ROMs.

accuracy of the other methodologies may be attributed to our choice of considering the physical fields
of interest altogether in a monolithic fashion, both for the evaluation of the rSVD bases employed
in the HR offline stage and the computation of the normalization vectors from equation (7.14). See
section 7.6 for further comments. Moreover, collocation methods are more efficient as the collocated
residuals do not need to be multiplied further by a pseudo-inverse or a vector of weights as in DEIM
and ECSW methods. Further comments are delivered in section 7.6.

Since we observed that collocated hyper-reduction reached a better accuracy, we show in the next
study the decay of the mean L2 relative error associated to the C-DEIM, C-DEIM-SOPT, and C-UP50
methods, varying the number of collocation nodes/magic points from 150 to 1200. The results are
shown in Figure 7.10. The most performing method is C-UP50, the gradient-based adaptive one,
which pays the additional cost of a submesh update every 50 time-steps.

The advantage of having a continuous nonlinear approximant for the solution manifold enables
the possibility to choose a bigger reference time step in the online prediction stage. The results in
terms of mean and max L2 relative error are shown in Figure 7.11. Thanks to this choice of reference
time step (∆t)ref = 0.004 four times bigger than the full-order one (∆t)ref = 0.001 and twice as the
sampling step used to select the training snapshots Atrain ∈ Rd×ntrain , a speedup can be achieved also
for this small test case.

The average computational times of the NM-LSPG method with gradient-based adaptive hyper-
reduction C-UP50 are shown in Table 7.1. The average is performed considering all 8 test parameters
for different Mach numbers. The average total time includes the cost of submesh updates introduced
by the C-UP50 hyper-reduction. There is no evident speedup with respect to the full-order model.
However, when a four times bigger reference time step (∆t)ref = 0.004 is imposed a speedup of almost
2 is achieved also for this small test case.
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1 2 3 4 5 6 7 8
AE-REC
C-UP50
C-DEIM

C-DEIM-SOPT
C-ECSW
FB-DEIM

FB-DEIM-SOPT
FB-ECSW
RB-DEIM

RB-DEIM-SOPT
RB-ECSW

Velocity magnitude
1 2 3 4 5 6 7 8

Density
1 2 3 4 5 6 7 8

Internal energy
1 2 3 4 5 6 7 8

Pressure

10 3 10 2 10 1 10 2 10 1 100 10 5 10 4 10 3 10 2 10 1 100

Mean L2 relative error

Fig. 7.9 CNS-1. Comparison of hyper-reduction methods based on the mean L2 relative error evaluated
on each physical field of interest for the CNS test case. The acronyms correspond to: AE-REC is
the autoencoder reconstruction error from (7.8), C-UP50 is the reduced collocation method with
the gradient based-sampling strategy from subsection 7.3.2 applied every 50 time steps over 2000
time instants; the other notations are introduced in subsections 7.3.1, 7.3.1, and 7.3.1. For all the
methods, it is employed a fixed number of rh = 500 collocation nodes and rrSVD = 150 rSVD modes
used for both the definition of the nonlinear approximant map introduced in section 7.2.2 and the
hyper-reduction basis. With the current monolithic hyper-reduction implementation, the best methods
are the collocated ones, for further comments see section 7.6 on this matter.

Table 7.1 CNS-1. Timings of the CNS on a coarse mesh, subsection 7. The timings of the reduced
over-collocation method C-UP50 relative to the choice of rh = {150,300,600,1200} collocation
nodes is reported along the full-order model (FOM) timings of the sonicFoam solver. The same
reference time step as the FOM one is employed (∆t)ref = 0.001. Before the FOM results, the timings
of C-UP50 but with a larger reference time step of (∆t)ref = 0.004 are reported in bold for a number
of magic points rh = 500. For the timings of the CNS on the finer mesh, see Table 7.2.

collocation nodes (rh) mean time-step mean update every 50 average total time

rh = 150, (∆t)ref = 0.001 11.937 [ms] 56.830 [ms] 29.842 [s]
rh = 300, (∆t)ref = 0.001 25.294 [ms] 97.628 [ms] 63.235 [s]
rh = 600, (∆t)ref = 0.001 36.894 [ms] 110.110 [ms] 92.234 [s]

rh = 1200, (∆t)ref = 0.001 56.277 [ms] 119.707 [ms] 140.691 [s]

rh = 500, (∆t)ref = 0.004 28.736 [ms] 82.337 [ms] 17.960 [s]

FOM, (∆t)ref = 0.001 13.440 [ms] - 33.614 [s]

Collocated hyper-reduction on a finer mesh (CNS-2)

To be sure to obtain a good approximation with rSVD modes, we increase the number of training
snapshots for this CNS-2 test case on the finer mesh of 32160 cells shown in Figure 7.6. So we



7.5 Numerical experiments 223

10 3

10 2

10 1

Ve
lo

cit
y 

m
ag

ni
tu

de
param 1 param 2 param 3 param 4 param 5 param 6 param 7 param 8

10 2

10 1

De
ns

ity

10 5

10 4

10 3

In
te

rn
al

 e
ne

rg
y

150 300 600 1200

10 2

10 1

Pr
es

su
re

150 300 600 1200150 300 600 1200150 300 600 1200150 300 600 1200150 300 600 1200150 300 600 1200150 300 600 1200

m
ea

n 
re

la
tiv

e 
L2 -n

or
m

Number of magic points

C-DEIM C-DEIM-SOPT C-UP50 AE-REC

Fig. 7.10 CNS-1. The decay of the mean L2 relative error is assessed for the C-DEIM, C-DEIM-
SOPT, and C-UP50 reduced over-collocation methods with sampling strategies corresponding to a
greedy one, the quasi-optimal (SOPT) one and the gradient-based adaptive one every 50 time-steps.
In this case, we employ the same reference time step as the full-order model (∆t)ref = 0.001. The
baseline represented by the autoencoder mean L2 reconstruction error AE-REC is reported. The
extrapolation parameters have a shaded red background.

consider the following 20 training and 5 test parameters:

Ptrain = {5.,4.617,4.290,4.007,3.760,3.543,3.350,3.178,3.024,2.885,

2.758,2.644,2.539,2.442,2.354,2.272,2.196,2.126,2.061,2.}×Vµµµ , |Ptrain|= 20 ·2500,
(7.45a)

Ptest = {5.2,3.469,2.622,2.124,1.8}×Vµµµ , |Ptest|= 5 ·2500, (7.45b)

the first and last test parameters in bold correspond to the extrapolation regime. We remark that we did
not optimize the number of training snapshots: possibly, a smaller number of them is needed to obtain
an accurate regression of the solution manifold. As for the previous test case we will refer to the test
Mach numbers from Ma = 5.2 to Ma = 1.8 with the numbers from 1 to 5 in this order. A grasp of
the extension of the solution manifold we want to approximate is shown in Figure 7.8. The training
dataset Atrain ∈ Rd×ntrain is represented by ntrain = |Ptrain| ·625 = 20 ·625 = 12500 training snapshots,
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1 2 3 4 5 6 7 8
Parameters number
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 Max L2-norm relative error
C-UP50-NM-LSPG with reference time-steps ( t)ref = 0.004, rh = 500

U predicted
U AE reconstruction

rho predicted
rho AE reconstruction

e predicted
e AE reconstruction

p predicted
p AE reconstruction

Fig. 7.11 CNS-1. Accuracy of the nonlinear manifold least-squares Petrov-Galerkin (NM-LSPG)
method with adaptive gradient-based reduced over-collocation (C-UP50) every 50 time steps. The
results are reported in terms of the mean L2 relative error for the physical fields of interest with
respect to the 8 test parameters. The extrapolation regimes are delimited by a red-shaded background.
The number of magic points is hr = 500. It is important to notice that the reference time step
is (∆t)ref = 0.004 and not (∆t)ref = 0.001 equal to the full-order model one. This permits the
methodology to reach a speedup even for these small test cases with only 4500 cells.

since only one every four time instants is saved. The test dataset Atest ∈ Rd×ntest is composed by
ntest = |Ptest| ·625 = 5 ·625 = 3125 snapshots as only one every four time instants is saved. At first,
the number of rSVD modes considered on the whole parameter space is rrSVD = 300 evaluated from
the training dataset Atrain. Later, we will extract rSVD on two separate time intervals to study the
performance of local nonlinear solution manifolds. The decay of the mean and max L2 reconstruction
errors is shown for the fields of interest in Figures 7.12 and 7.13 for the training and test datasets.
The rSVD basis evaluated from the training dataset as explained in section 7.2.3 are the same used to
evaluate the test reconstruction error in Figure 7.13. The presence of moving discontinuities coming
from the transient dynamics and the different Mach angles causes an evident degradation of the test
reconstruction error with respect to the training reconstruction error.

For this test case, a moderately high number of rSVD modes equal to rrSVD = 300 can be employed
to approximate with sufficient accuracy the solution manifold. However, it can be observed that
more complex parameter dependencies can exacerbate this behavior and make the approximation
of the solution manifold with a linear rSVD basis unfeasible. In those cases, fully nonlinear NN
architectures directly supported on the dofs of the physical fields of interest can be employed and
hyper-reduced with the variant of the nonlinear manifold LSPG method introduced in [223].

We want to study the implementation of local nonlinear manifolds approximants and how to
efficiently change from one subdomain to the other in the online stage. We consider only two
parametric subdomains determined by the splitting of the reference time interval [0s,2.5s] into to
two subintervals [0s,1.2s] ⊃ V 1

µµµ and [0.6s,2.5s] ⊃ V 2
µµµ , with |V 1

µµµ | = 1.2/(∆t)ref = 300 and |V 2
µµµ | =
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Fig. 7.12 CNS-2. The decay of the mean and max L2 reconstruction errors defined through equa-
tions (7.17a) for the 20 train parameters introduced in equation (7.45a), is shown. The number of
rSVD modes initially chosen on the whole parameter space for this test case is rrSVD = 300. Even
though the solution manifold includes moving discontinuities at different Mach angles as shown in
Figure 7.8, a moderately high number of rSVD modes can still be employed to obtain a good recon-
struction error but at the same time precludes the implementation of efficient linear projection-based
ROMs. A heuristic understanding of the moderately slow Kolmogorov n-width decay for this test
case can be observed in the degradation of the reconstruction error on the test set 7.13.

(2.5−0.6)/(∆t)ref = 625−150 since one every 4 time instants in [0,2.5] is saved with a reference
time step of (∆t)ref = 0.001. Notice that they overlap in order to achieve a good accuracy when the
change of basis is performed. The change of basis between the domains is performed at the reference
time instant t = 0.8s. More sophisticated techniques can be implemented [284]. The notation we
employ to distinguish between the subdomains is introduced in section 7.4. So the parameter spaces
we consider are:

P1
ntrain,1

= {5.,4.617,4.290,4.007,3.760,3.543,3.350,3.178,3.024,2.885,

2.758,2.644,2.539,2.442,2.354,2.272,2.196,2.126,2.061,2.}×V 1
µµµ , |P1

ntrain,1
|= 20 ·300,

(7.46a)

P2
ntrain,2

= {5.,4.617,4.290,4.007,3.760,3.543,3.350,3.178,3.024,2.885,

2.758,2.644,2.539,2.442,2.354,2.272,2.196,2.126,2.061,2.}×V 2
µµµ , |P2

ntrain,2
|= 20 · (625−150),

(7.46b)

and consequently the training snapshots matrices Ai
ntrain,i

∈ Rd×ntrain,i i = 1,2 are assembled and the
two rSVD basis U i ∈Rd×rrSVD i = 1,2 evaluated. Each one has rrSVD = 300 modes, but in principle, a
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Fig. 7.13 CNS-2. The decay of the mean and max L2 reconstruction errors defined through equa-
tions (7.17a) for the 5 test parameters introduced in equation (7.17b), is shown. The number of rSVD
modes initially chosen on the whole parameter space for this test case is rrSVD = 300. The presence of
moving discontinuities at different Mach angles as shown in Figure 7.8 causes an evident degradation
of the reconstruction error with respect to the training reconstruction error in Figure 7.12. A shaded
red background identifies the extrapolation regime.

different number can be used. The number of training snapshots are ntrain,1 = 20 · |V 1
µµµ |= 20 ·300 and

ntrain,2 = 20 · |V 2
µµµ |= 20 · (625−150). The same CAE architecture for the two nonlinear approximants

φ i : Rr→ Xh ∼ Rd i = 1,2 is employed and reported in Table 7.5. The latent dimension is 4 in both
cases. We remind that the change of basis matrix from equation (7.41) is computed offline so the
methodology maintains the independence with respect to the number of dofs.

The results for the choice of rh = 800 collocation nodes, (∆t)ref = 0.001 reference time step
and C−UP50 hyper-reduction method, are reported in Figure 7.14. There, the whole trajectories
corresponding to the 5 test parameters numbered in order are shown. In particular, the extrapolation
regimes involving parameters 1 and 5 are shown, and the instant t = 0.8s in reference time scale is
highlighted for each test trajectory by an orange vertical line. It must be observed that not always the
employment of local nonlinear submanifolds permits reaching smaller prediction errors: the only test
parameter affected by an improvement is test parameter 4, which nonetheless corresponds to Mach
number Ma = 2.124, and therefore it is more difficult to approximate since the Mach angle is wider.
For this test case, we don’t notice discontinuities from the passage of the solution from one local
solution manifold to the other, as it can be seen also from the continuity of the errors in Figure 7.14.

Similarly to the previous test case CNS-1, the decay of the mean L2 relative error is studied
in Figure 7.15 for the C-UP20 and C-UP50 hyper-reduction methods with reference time step
(∆t)ref = 0.004, that is four times the reference time step of the FOM (∆t)ref = 0.001. In this case,
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always two local subdomains are considered. Associated with these studies, the computational costs
for mean time instant evaluation and mean total time expended for the whole trajectory evaluation with
reference time step (∆t)ref = 0.004, are shown in Table 7.2. It can be observed that the computational
costs increase from the same number of collocation nodes (MP) in Table 7.2 with respect to Table 7.1:
this is due mostly to the number of rSVD basis changed from 150 to 300.
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Fig. 7.14 CNS-2. Results corresponding to the employment of two local nonlinear manifolds
corresponding to the reference time intervals [0s,1.2s] =V 1

µµµ and [0.6s,2.5s] =V 2
µµµ , as introduced in

section 7.4. The mean L2 relative error and relative errors in max norm are shown for each of the
625 time instances associated with each one of the 5 test parameters corresponding to the test Mach
numbers in equation (7.45b). The reference time instant in which the change of basis is performed
is t = 0.8s and it is highlighted by an orange vertical line for each of the 5 test parameters. The
extrapolation parameters 1 and 5 have a shaded red background.
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Fig. 7.15 CNS-2. The decay of the mean L2 relative error is assessed for the C-UP20, and C-UP50
reduced over-collocation methods with sampling strategies corresponding to the gradient-based
adaptive one every 50 and 20 time-steps, respectively. In this case, we employ a reference time step
of four times (∆t)ref = 0.004s the full-order model one (∆t)ref = 0.001s. We always consider two
local nonlinear manifolds. The baseline represented by the autoencoder mean L2 reconstruction error
AE-REC is reported. The extrapolation parameters 1 and 5 have a shaded red background.

Table 7.2 CNS-2. Timings of the CNS on a finer mesh, subsection 7. The timings of the reduced
over-collocation method C-UP50 relative to the choice of rh = {150,300,600,1200} collocation
nodes is reported along the full-order model (FOM) timings of the sonicFoam solver. The reference
time step of C-UP50 is (∆t)ref = 0.004, four times bigger than the FOM. The different reference time
steps affect the mean total time and not the mean time steps computational costs. For the timings of
the CNS on the coarse mesh, see Table 7.1. The change of basis between the local nonlinear manifolds
is irrelevant but nonetheless included in the mean total time. The label m. stands for mean.

m. time-step m. update every 20 m. total time

150 38.615 [ms] 286.103 [ms] 34.215 [s]
300 52.209 [ms] 325.225 [ms] 42.774 [s]
600 62.888 [ms] 330.269 [ms] 49.642 [s]
1200 74.759 [ms] 362.719 [ms] 58.302 [s]

FOM 110.334 [ms] - 275.944 [s]

m. time-step m. update every 50 m. total time

35.297 [ms] 302.612 [ms] 25.890 [s]
48.940[ms] 316.992 [ms] 34.717 [s]
61.803 [ms] 358.956 [ms] 42.887 [s]
75.128 [ms] 362.236 [ms] 51.510 [s]

110.334 [ms] - 275.944 [s]
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7.5.2 Incompressible turbulent flow around the Ahmed body (INS)

The other benchmark (INS) we introduce to test our methodology involves the Reynolds-averaged
Navier-Stokes equations (RANS) used to model an incompressible flow around the Ahmed body:

∂t ū+∇ · (ū⊗ ū)+∇p̄−∇ ·
(
(ν +νt)

(
∇ū+∇ūT ))= 0, (momentum conservation) (7.47a)

∇ · ū = 0, (mass conservation) (7.47b)

where ū and p̄ are the time-averaged velocity and the kinematic pressure fields, and νt is the kine-
matic Eddy turbulent viscosity. The turbulence is modelled with the Spalart-Allmaras one-equation
model [236, 269]. The Reynolds’ number is in the order of Re = 2.8 ·106. The parameters we con-
sider are the slant angle θ of the Ahmed body and time P = [θmin,θmax]×Vµµµ . We will consider two
parameter ranges for the slant angle: one associated to small geometrical deformations in subsection 4
(INS-1) with θmin = 15◦ and θmax = 18.265◦ and one associated to large geometrical deformations
in subsection 4 (INS-2) with θmin = 15◦ and θmax = 35◦.The computational domain is shown in
Figure 7.16. The geometry of the Ahmed body and the mesh are deformed with radial basis function
interpolation as described in [282].

The mesh, geometries, initial and boundary conditions are taken from the studies performed
in [282] where a classical linear projection-based method is applied to reduce the SIMPLE [138]
numerical scheme with the employment of a neural network to approximate the Eddy viscosity. In
that case, steady-state solutions are predicted while we focus on the transient dynamics since it is
more challenging from the point of view of solution manifold approximation. In fact, we employ the
PISO [197] numerical scheme to achieve, from the initial conditions, convergence towards periodic
cycles rather than stationary solutions.

The time interval is not dependent on the slant angle θ , that is the final time is Tµµµ = T = 0.1s, the
time step is (∆t)µµµ =∆t = 0.0001s and the collection of time instants is Vµµµ =V = {0s,0.0001s, . . . ,0.1s}.
The initial and boundary conditions for the velocity ū and pressure p̄ averaged fields are:u(x, t) = 40ms−1, (x, t) ∈ Ω̊h×{t = 0}

p(x, t) = 0, (x, t) ∈ Ω̊h×{t = 0}
,

u(x, t) = 40ms−1, x ∈ Γinflow

n ·∇p(x, t) = 0, x ∈ Γinflow

,

n ·∇u(x, t) = 0, x ∈ Γoutflow

p(x, t) = 0, x ∈ Γoutflow

,

u(x, t) = 0, x ∈ ΓAhmed∪Γbottom

n ·∇p(x, t) = 0, x ∈ ΓAhmed∪Γbottom

,

n ·∇u(x, t) = 0, x ∈ Γsides

n ·∇p(x, t) = 0, x ∈ Γsides

where the computational domain and its boundaries Γoutflow,Γinflow,ΓAhmed,Γbottom and the remaining
faces Γsides are shown in Figure 7.16. The computational mesh considered has a fixed number of cells



230 Hyper-reduced nonlinear manifold method: adaptive strategies

for each geometrical deformation equal to M = 198633 for a total of d = 993165 dofs considering
the average velocity, pressure and Eddy viscosity fields.

Fig. 7.16 INS. Left: computational domain of the incompressible turbulent flow past the Ahmed body
test case. The mesh has 198633 cells, for a total of d = 993165 dofs for each geometrical deformation
corresponding to a different choice of the slant angle θ . Right: description of the boundaries of the
computational domain: a fixed velocity 40ms−1 and pressure p = 0 fields are imposed at the inflow
boundary Γinflow for each geometrical deformation.

The OpenFoam solver we employ is the transient PISO numerical scheme. The predictor-corrector
scheme is similar to the one described for the sonicFoam solver in subsection 7.5.1 and shown in
Algorithm 10 in a simplified version for a comparison with the nonlinear manifold least-squares
Petrov-Galerkin (NM-INS) method in Algorithm 11. As before, only we consider the n-th time instant
and possible i-th intermediate optimization steps for the NM-INS method. First, the velocity field
is obtained with an implicit predictor step in line 2, where the time discretization is hidden inside
the diagonal A and over-diagonal H[u∗,νn

t ] parts of the finite volume discretization of the Reynolds
averaged momentum equation (7.47a). Afterward, the velocity is corrected to satisfy the continuity
equation (7.47b) through the kinematic pressure, obtained with a pressure-Poisson equation in line 5.
Finally, the new Eddy viscosity is obtained.

The NM-INS method does not implement a predictor-correct strategy instead: only residual
evaluations need to be computed and PISO and non-orthogonal corrector loops are omitted, as we
search for the converged solutions corresponding to the last corrector steps. We remark that we don’t
consider the residual of the Eddy viscosity equation of the Spalart-Allmaras one-equation model in
the NM-INS algorithm, but only the velocity and pressure ones. This choice and the difficulty of
linearly approximating the Eddy viscosity, compared to the velocity and pressure fields, could be the
reasons behind the worse accuracy in the predictions of the Eddy viscosity. For example, this can be
observed in Figure 7.19.

As for the CNS test case, we consider a five times bigger time step for the nonlinear manifold
method: instead of ∆t = 0.0001s employed for the full-order solutions, we set ∆t = 0.0005 for the
NM-INS method.
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Fig. 7.17 INS. Comparison between the n-th time instant iterations of the full-order model numerical
scheme PISO (Left) and the nonlinear manifold least-squares Petrov Galerkin (NM-INS)method
(Right).

Algorithm 10: PISO n-th itera-
tion

1 Start with an initial pressure field
pn, velocity field un and
kinematic eddy viscosity νn

t at
the n-th time step.

2 Momentum predictor step:

Au∗ = H[u∗,νn
t ]−∇pn.

3 while PISO pressure-corrector
loop do

4 while Non-orthogonal
corrector loop do

5 Evaluate the
pressure-corrector term
p∗:

∇ ·(A−1
∇p∗)=∇·(A−1H[u∗,νn

t ]).

6 Correct velocity

u∗← u∗−A−1
∇p∗

7 Solve for the kinematic Eddy
viscosity.

Algorithm 11: NM-INS (i,n)-th
residual

1 Start with an initial pressure field
pn,i, velocity field un,i and
kinematic eddy viscosity ν

n,i
t at

the n-th time step.
2 Momentum residual evaluation:

ru = Aun,i−H[un,i,νn,i
t ]+∇pn,i.

3 Pressure-Poisson residual
evaluation:

rp =∇·(A−1
∇pn,i)−∇·(A−1H[un,i,νn,i

t ]).

4 Normalization of the residuals:

ru←
ru

maxi ui
, rp←

rp

maxi pi
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Small geometrical deformations (INS-1)

As can be understood from the small geometrical deformations in Figure 7.18, the difficulty resides in
the approximation of the transient dynamics rather than in the influence of the geometrical parameter.
We consider 5 training slant angles and 4 test slant angles inside the training range (no extrapolation):

Ptrain = {15◦+ i · ((35◦−15◦)/49) |i ∈ {0,2,4,6,8}}×V, |Ptrain|= 5, (7.48a)

Ptest = {15◦+ i · ((35◦−15◦)/49) |i ∈ {1,3,5,7}}×V, |Ptest|= 4, . (7.48b)

In the order written in equations (7.48a) and (7.48b), we name the training and test parameters from 1
to 5 and from 1 to 4, respectively.

Fig. 7.18 INS-1. Left: Ahmed body with slant angle θ = 15.408◦ from the training parameter set.
Right: Ahmed body with slant angle θ = 18.265◦ from the training parameter set.

As anticipated we employ a five times bigger time step ∆t = 0.0005s with respect to the full-order
one ∆t = 0.0001s. We apply the C-UP-20 hyper-reduction with rh = 1500 collocation nodes. For the
test parameter 1, θ = 15.4◦, the mean L2 relative errors corresponding to the 1000 time instants from
0.0005s to 0.1s are shown in Figure 7.19. As can be seen, efficient and relatively accurate predictions
can be obtained. The computational time spent is summarized in Table 7.3, reaching a speedup of
around 26 with respect to the full-order model for this simple test case. Local nonlinear manifold
approximations could be employed to achieve better predictions in the initial time instants, splitting
the time interval.

The convergence with respect to the number of collocation nodes is shown in Figure 7.20 for the
hyper-reduction methods C-UP-20 and C-UP-50 and collocation nodes rh ∈{500,1000,1500,2000,2500}.
The corresponding timings are reported in Table 7.3 for a comparison with the full-order method. The
computational cost of the submesh update can be reduced by restricting the collocation nodes that can
be selected only to a neighborhood of the current submesh.
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Fig. 7.19 INS-1. Every 10 time steps the L2 relative error is reported for the predicted physical fields
of interest associated with test parameter 1, corresponding to the slant angle θ = 15.408◦ and the
C-UP20 method with rh = 1500 collocation nodes. The training parameter range is relatively small
[15◦,18.265◦]. The L2 autoencoder relative reconstruction error represents an experimental lower
bound to the prediction error. The accuracy is worse in the first time steps, a possible strategy to
further reduce it is to employ local nonlinear manifold approximations as described in section 7.4.
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Fig. 7.20 INS-1. The decay of the mean L2 relative error is assessed for the C-UP20, and C-UP50
reduced over-collocation methods with sampling strategies corresponding to the gradient-based
adaptive one every 50 and 20 time-steps, respectively. In this case, we employ a reference time step
of four times (∆t)ref = 0.0005s the full-order model one (∆t)ref = 0.0001s. The baseline represented
by the autoencoder mean L2 reconstruction error AE-REC is reported.
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Table 7.3 INS-1. Timings of the INS for small geometrical deformations, subsection 4. The timings
of the reduced over-collocation methods C-UP20 (left) and C-UP50 (right) relative to the choice of
rh = {500,1000,1500,2000,2500} collocation nodes is reported along with the full-order model on
one single CPU core (FOM-1) timings of the PISO solver. The time step of C-UP20 and C-UP50 is
(∆t)ref = 0.0005, five times bigger than the FOM with (∆t)ref = 0.0001. The different reference time
steps affect the average total time and not the mean time steps computational costs. The timings for
the FOM-8 run in parallel with 8 cores are wallclock times. The label m. stands for mean and m.UP
stands for the mean computational time of the magic points and submesh updates.

MP m. time-step m. UP every 20 m. total time

500 66.650 [ms] 660.136 [ms] 19.931 [s]
1000 116.432 [ms] 749.300 [ms] 30.779 [s]
1500 171.507 [ms] 809.385 [ms] 42.395 [s]
2000 212.034 [ms] 777.112 [ms] 50.178 [s]
2500 276.482 [ms] 933.621 [ms] 64.633 [s]

FOM-1 791.318 [ms] - 13.189 [min]
FOM-8 365.355 [ms] - 3.589 [min]

m. time-step m. UP every 50 m. total time

49.171 [ms] 572.604 [ms] 12.125 [s]
136.320 [ms] 778.478 [ms] 30.378 [s]
160.974 [ms] 842.653 [ms] 35.565 [s]
194.183 [ms] 723.026 [ms] 41.729 [s]
312.016 [ms] 973.697 [ms] 66.298 [s]

791.318 [ms] - 13.189 [min]
365.355 [ms] - 3.589 [min]

Large geometrical deformations (INS-2)

A situation where the methodology devised may fail is considered. One of the main problems
of employing rSVD modes to linearly approximate solution manifolds with respect to nonlinear
dimension reduction methods that employ neural networks, is a slow Kolmogorov n-width decay
or, from a different point of view, the high generalization error on the test set. This is evident when
increasing the dimension of the linear reduced space, the error on the training set decreases, but the
error in the test set does not.

An example of this behavior is shown in Figure 7.22. This time we want to approximate the
solution manifold corresponding to the parameter range for the slant angle θ ∈ [15◦,35◦]. We sample
uniformly 50 slant angles:

P = {15◦+ i · ((35◦−15◦)/49) |i ∈ {0, . . . ,49}}×V, |P|= 50 ·1000, (7.49)

and, as usual, we number the parameters in order from 1 to 50. The training and test parameters of the
previous section 4, correspond to the indices {1,3,5,7,9} for the training slant angles and {2,4,6,8}
for the test slant angles.

With reference to Figure 7.21, it is clear that a linear approximant of the whole solution manifold
cannot be used, if the computational budget is limited to only 13 training time series. Increasing
the computational budget, local linear reduced basis achieve substantial improvements. The results
in terms of mean L2 reconstruction error are reported in Figure 7.21 below. Each local linear
solution manifold approximant is highlighted by shaded backgrounds of different colors. The leftmost
corresponds to the parameters’ range of the previous section 4.

Neural networks are known to overcome this problem with truly nonlinear dimension reduction
algorithms, that is with respect to the methodology introduced in this work, without the direct
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involvement of linear rSVD basis. Possible hyper-reduction strategies that can be applied to a general
truly nonlinear neural network architecture are studied in [223]. Nevertheless, the methodology
presented in this work could effectively be applied for each of the four subdomains in Figure 7.22
with satisfactory accuracy in terms of test reconstruction error.

Fig. 7.21 INS-2. Left: Ahmed body with slant angle θ = 15◦ from the training parameter set. Right:
Ahmed body with slant angle θ = 35◦ from the training parameter set.

7.5.3 Architectures

Table 7.4 The 1d Convolutional Autoencoder for the CNS1 on the coarse mesh in subsection 7. The
label Act stands for Activation and Pad. for padding.

Encoder Act Weights Pad. Stride

Conv1d ELU [1, 8, 4, 4] 1 2
Conv1d ELU [8, 16, 4, 4] 1 2
Conv1d ELU [16, 32, 4, 4] 1 2
Conv1d ELU [32, 64, 4, 4] 1 2
Conv1d ELU [64, 128, 4, 4] 1 2
Linear ELU [512, 4] -

Decoder Act Weights Pad. Stride

Linear ELU [4, 512] -
ConvTr1d ELU [128, 64, 5, 5] 1 2
ConvTr1d ELU [64, 32, 4, 4] 1 2
ConvTr1d ELU [32, 16, 5, 5] 1 2
ConvTr1d ELU [16, 8, 5, 5] 1 2
ConvTr1d ReLU [8, 1, 4, 4] 1 2

Table 7.5 The 1d Convolutional Autoencoder for the CNS2 on the finer mesh in subsections 7 and for
the INS1 in subsection 4. The label Act stands for Activation and Pad. for padding.

Encoder Act Weights Pad. Stride

Conv1d ELU [1, 8, 4, 4] 1 2
Conv1d ELU [8, 16, 4, 4] 1 2
Conv1d ELU [16, 32, 4, 4] 1 2
Conv1d ELU [32, 64, 4, 4] 1 2
Conv1d ELU [64, 128, 4, 4] 1 2
Linear ELU [512, 4] -

Decoder Act Weights Pad. Stride

Linear ELU [4, 512] -
ConvTr1d ELU [128, 64, 5, 5] 1 2
ConvTr1d ELU [64, 32, 4, 4] 1 2
ConvTr1d ELU [32, 16, 5, 5] 1 2
ConvTr1d ELU [16, 8, 5, 5] 1 2
ConvTr1d ReLU [8, 1, 4, 4] 1 2
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Fig. 7.22 INS-2. Studies of the decay of the mean L2 reconstruction errors defined trough equa-
tions (7.17a) for the 50 geometrical deformations in (7.49). For brevity, we report only the errors on
the velocity field. Above: approximation of the whole solution manifold with 13 training time series.
It is evident the major drawback in employing linear approximants: the generalization error on the test
set remains high even if the reduced dimension is increased from 50 to 800. Below: approximation of
the solution manifold with 4 local linear approximants. They are highlighted by the shaded regions in
background. The leftmost corresponds to the solution manifold studied in the previous section 4.
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7.5.4 Predicted snapshots

Some snapshots associated to the test cases studied are reported: Figure 7.23 refers to the CNS1 test
case in line 7, Figure 7.24 refers to the CNS2 test case in line 7 and finally Figures 7.25 and 7.27
refers to the test case INS1 in line 4.

Fig. 7.23 CNS1. Predicted velocity, density, internal energy and pressure fields for the test case
described in line 7 with Ma = 3.314 corresponding to test parameter number 3 at the final time instant
t = 2.5s. The number of cells is 4500 the total number of degrees of freedom is 27000. The number
of collocation nodes is rh = 500
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Fig. 7.24 CNS2. Predicted velocity, density, internal energy and pressure fields for the test case
described in line 7 with Ma = 2.622 corresponding to test parameter number 3 at the final time instant
t = 2.5s. The number of cells is 32160 the total number of degrees of freedom is 192960. The adaptive
magic points are shown in Figure 7.4. The number of collocation nodes is rh = 700

7.6 Discussion

Some crucial considerations not yet underlined, are the subject of this section:

• choice of latent dimension. The latent dimensionality equal to r = 4 and the number of
rSVD modes equal to rrSVD = 150 or rrSVD = 300 are not chosen after parametric studies and
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therefore more optimal values for the problems at hand can be generally found. As long as
we obtain a satisfactory approximation of the solution manifold for some values of the latent
dimension of the autoencoder and of the reduced dimension of the linear projections, we did not
change them, thus exploiting the possibility to employ the same neural networks architectures
shown in Tables 7.4 and 7.5 for our numerical investigations. In fact, our focus is in the
hyper-reduction methodologies applied after a relatively accurate nonlinear approximant of the
solution manifold is obtained. Fixed a tolerance for the L2 relative reconstruction error, the best
value for rrSVD can be efficiently found observing the decay of the reconstruction error as done
in section 4 for the INS-2 test case. Also, the latent dimensionality of the autoencoder cannot
be established a priori, for some theoretical bounds see [92]. Nevertheless, many empirical
studies can be performed to determine the latent dimensionality [74].

• non-collocated hyper-reduction methods. Due to our choice of monolithic normalization and
reduction of the physical fields of interest as described in section 7.2.3, the non-collocated
versions of the hyper-reduction methods introduced in section 7.3 do not perform well in terms
of accuracy as shown in Figure 7.9. The same gappy DEIM implementation performs well
when applied in synergy with teacher-student training of a reduced decoder for a 2d nonlinear
conservation law parametric model in [223], the only physical field considered is velocity, so
normalization is not needed. Anyway, in terms of efficiency, collocation methods are faster
since they do not perform additional matrix-vector multiplications (for DEIM and DEIM-SOPT)
or scalar products (ECSW), after the evaluation of the residuals at the magic points. Moreover,
employing adaptive hyper-reduction strategies in the online stage has higher computational
costs for non-collocated approaches since pseudo-inverse matrices need to be evaluated (for
DEIM).

• stability issues. Reduced over-collocation methods may bring unstable numerical schemes,
especially if the solution manifold is not approximated with enough accuracy by the nonlinear
approximant. Possible solutions involve the training of NN architectures with more smooth
latent space and more regular maps such as those that should be guaranteed by variational
autoencoders [148] or other machine learning architectures. On this line of thought, many
additional inductive biases can be imposed. However, from the point of view of numerical
analysis, stabilization strategies for ROMs have frequently been employed also for the classical
projection-based methodologies as they often suffer from stability issues, especially when
hyper-reduction is applied. Possible solutions include structure-preserving and/or regularized
versions [149, 125] of hyper-reduction methods.

• inductive biases and autoencoder regularity. The training and the NN architecture itself can be
enriched by inductive biases. Among them, there are first principles (e.g. conservation laws),
geometrical simmetries (group equivariant filters [34]), latent operators/numerical schemes
(e.g. operator inference [199, 258]) latent regularity (supposedly imposed by variational autoen-
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coders and other architectures), structure-preservation [37], other numerical and mathematical
properties (e.g. positiveness).

7.7 Conclusions

We developed and tested on challenging benchmarks a new method that exploits nonlinear solution
manifold approximants. It relies on convolutional autoencoders and linear transforms/filter maps
(specifically parallel randomized singular value decomposition) to approximate solution manifolds
even when affected by a moderately slow Kolmogorov n-width decay. The main novelty resides in the
implementation of new efficient collocated and adaptive gradient-based hyper-reduction strategies
specifically tailored for our choice of nonlinear approximants. Local solution manifold approximations
and efficient ways to perform the change of basis are also taken into consideration. We managed to
achieve significant speedups while keeping a satisfactory accuracy even when we considered small
benchmarks in terms of degrees of freedom, implemented in OpenFoam. Our test cases model complex
physics such as the compressible and incompressible turbulent Navier-Stokes equations and suffer
from a moderately slow Kolmogorov n-width decay that would need in the order of hundreds of linear
basis to be well-approximated by classical projection-based ROMs.

The crucial objective that we want to reach with our methodology is the development of numeri-
cally and physically explicable model order reduction methods while exploiting machine learning
architectures. The majority of scientific machine learning strategies employ neural networks in the
predictive/online stage as black box surrogate models, without exploiting the underlying physics of
the models embedded in the numerical schemes of the full-order models’ solvers. Differently, our
approach efficiently exploits the numerical schemes also in the predictive phase, with the possibility
to characterize the latent solutions found as minimizers of the residuals of conservation laws. The
interpretability of the results is evidently increased.

The main disadvantages regard the employment of linear basis: parametric models that suffer
from a slow Kolmogorov n-width decay, such as the incompressible flow around the Ahmed body
with geometrical deformations studied in section 4, may require too many computational resources to
obtain local linear approximations of the solution manifold. The use of more generic truly nonlinear
neural network architectures should bring lower generalization errors with less training data. Some
implementations of hyper-reduction for generic NN architectures involve teacher-student training and
are presented in [223].

Another aspect that can be substantially improved is stabilization issues: the development of
stabilization mechanisms that would aid the nonlinear least-squares optimizers in the search for
a physically accurate latent solution would greatly improve our methodology. On the same sub-
ject, structure-preserving and other regularizing frameworks, without mentioning additional useful
inductive biases, would also help to achieve more accurate solutions.
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Fig. 7.25 INS1. Predicted velocity fields for the test case described in line 4 with corresponding to
test parameter number 1 at the time instant s t ∈ {0.025s,0.05s,0.075s,0.1s}. The number of cells
is 32160 the total number of degrees of freedom is 192960. The number of collocation nodes is
rh = 2000. The adaptive magic points are shown in Figure 7.27.
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Fig. 7.26 INS1. Predicted pressure fields for the test case described in line 4 with corresponding to
test parameter number 1 at the time instant s t ∈ {0.025s,0.05s,0.075s,0.1s}. The number of cells
is 32160 the total number of degrees of freedom is 192960. The number of collocation nodes is
rh = 2000. The adaptive magic points are shown in Figure 7.27.
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Fig. 7.27 INS1. Adaptive collocation nodes for the test case described in line 4 with corresponding test
parameter number 1 at the time instants t ∈ {0.025s,0.05s,0.075s,0.1s}. The number of collocation
nodes is rh = 2000. The number of cells is 198633 the total number of degrees of freedom is 993165.
Above 4 slices: bottom view of the Ahmed body. Below 4 slices: lateral view of the Ahmed body.





Chapter 8

Conclusions and final remarks

In this thesis, we have presented and validated through numerical experiments different methods for
model order and parameter space reductions. They key strategy was to combine nonlinear dimension
reduction methods from scientific machine learning with classical numerical methods. The results
obtained rely on the increased expressiveness of neural networks with respect to linear approximants
and the increased interpretability with respect to purely data-driven non-intrusive approaches.

Let us summarize some of the results:

• local linear approximants have been applied successfully in combination with the Active
Subspaces method in chapter 2 for parameter space reduction, but also with the classical reduced
basis method in chapter 5 for domain-decomposable ROMs and with nonlinear approximants
in chapter 7. This also underlines the many analogies between model order and parameter
space reductions. The notion of a local Grassmannian dimension, is used to define a new
metric for clustering with the hierarchical top-down Active Subspaces in chapter 2, but also to
define a new indicator for repartitioning the computational domain when performing MOR in
chapter 5. Other analogies are confirmed by the application of other paradigms of nonlinear
dimension reduction from machine learning to both the fields of model order and parameter
space reductions, like kernel-based methods in [163] and [221], respectively.

• we have shown that the AS metric used to define the local Active Subspaces is effective for
regression tasks, in combination with k-medoids or hierarchical top-down clustering algorithms.
The subdivision of the parameter space and of the space of the outputs based on the local
AS dimensions can be used to locally adapt the intrinsic dimension of the local response
surfaces. The rationale behind this is similar to the hp-FEM but applied to data-driven surrogate
modelling.

• we have shown that the presence of an Active Subspace can be employed as inductive bias for
nonlinear multi-fidelity regression in chapter 3. In the low data regime, this strategy has been
proven to be effective for data-driven surrogate modelling. It can also be employed successfully
in combination with PODI for MOR as done in the work [252].
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• a way to exactly impose multilinear constraints on generative models was proposed. The
objective is not only to generate efficiently new geometries for real-world applications for
which experimental data are missing but also to speed up the imposition of the constraints
when the geometries are deformed manually. Typical contexts that may need cGMs are data
assimilation and shape optimization studies for industrial and biomedical applications. Crucial
is the validation of the posterior distributions with ad hoc metrics, as we have shown in
chapter 4.

• we proposed Friedrichs’ systems as a new framework for structure-preserving MOR. Among the
advantages we include the possibility to obtain optimally stable error estimators, the reduction
of PDEs of mixed elliptic and hyperbolic type, and the treatment in a unique formulation of
many classes of complex, time-dependent and also nonlinear (through linearization) parametric
PDEs.

• Domain Decomposable ROMs are developed for the DGM along with a posteriori error
estimates for some Friedrichs’ systems. They are based on distributed memory parallel full-
order models’ solvers. We showed how repartitioning strategies that achieve more tailored local
approximations of the solution manifold can be implemented.

• a new paradigm for MOR is introduced with graph neural networks approximating vanishing
viscosity solutions of hyperbolic PDEs, including some Friedrichs’ systems. The approach
is inspired by the proofs of convergence of high-viscosity solutions towards the vanishing
viscosity one. The method is effective provided that the ROMs devised for the high viscosity
regimes can be accurately approximated with low-dimensional linear spaces. We use GNNs to
infer the limit of a succession of DD-ROMs predictions in real-time. Heavy autoencoders of
GNNs that would be used for dimension reduction are avoided.

• we implemented efficient and accurate hyper-reduction methods for nonlinear manifold ap-
proximants. We applied them to convolutional autoencoders in chapter 6 but they can actually
be extended to generic NN architectures so that the choice of nonlinear dimension reduction
method is not a constraint. The hyper-reduction can be performed only on the residuals of the
LSPG method or on both the residuals and the decoder maps with teacher-student training of
a reduced decoder. Despite being more costly and more difficult to implement with respect
to non-intrusive ROM alternatives, our new methodology offers the advantage of achieving
a higher degree of interpretability and the possibility to study the results in a mathematical
framework. In fact, the solutions are predicted minimizing first principles with numerical
schemes related to the FOMs’ solvers.

• we showed how, in some cases, high dimensional linear approximants, obtained from a truncated
SVD of the snapshots, can be used, combined with convolutional autoencoders, as nonlinear
manifold approximants. Similarly to the methodology devised in chapter 6, we use this new
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nonlinear approximant of the solution manifold inside numerical schemes in chapter 7. The
advantage is that new adaptive hyper-reduction strategies can be implemented along with local
nonlinear approximations of the solution manifold. In fact, with the employment of SVD
modes, there is no need to further compress the decoder with teacher-student training as it is
already sufficiently small. The evaluation of adaptive magic points for hyper-reduction and the
computation of the change of basis between adjacent local nonlinear manifolds can be now
performed efficiently.

• we briefly summarize the numerical test cases we have implemented to test the novel methodolo-
gies: an elliptic PDE with the permeability parametrized by the Karhunen-Loéve expansion’s
coefficients distributed as a standard multivariate Gaussian and the unsteady incompressible
Navier-Stokes equations past a NACA airfoil in chapter 2; DDES and RANS for automotive
shape optimization in chapter 3; multiphase RANS for a naval engineering test case in chap-
ter 4; the advection–diffusion–reaction of a scalar concentration advected by the incompressible
Navier-Stokes equations with different discontinuous inflow profiles, the Maxwell equations in
stationary regime and the linear compressible elasticity both with discontinuous parameters,
all interpreted as Friedrichs’ systems in chapter 5; a nonlinear time-dependent conservation
law and the shallow water equations both with parametrized initial conditions in chapter 6; a
compressible flow past a NACA airfoil with different Mach numbers and an incompressible
turbulent flow around the Ahmed body with different slant angles in chapter 7. The full-order
numerical solvers are implemented in OpenFoam [264] or deal.II [12] for the FVM and
DGM, respectively. While the open-source libraries used for parameter space and model order
reductions are ITHACA-FV [237, 238] and ATHENA [218], respectively.

8.1 Future perspectives

During the investigation of the different methodologies presented in this thesis, we have identified
several research lines that should be further studied and developed. We briefly report some of them.

With due precautions moving from one topic to the other, nonlinear parameter space reduction
methods are used also in the investigation of new ways to approximate probability distributions. This
is of great importance for data assimilation, inverse problems and uncertainty quantification in general.
The aim is to lower the computational costs of Monte Carlo methods or data assimilation techniques
through nonlinear dimension reduction methods, possibly involving architectures like variational
autoencoders, generative models, normalizing flows, and transport maps [195]. This is an active field
of research where the synergies between numerical methods and scientific ML, highlighted also in
this thesis, produce relevant results.

Now that an efficient way to employ the nonlinear manifold LSPG method introduced in [161] has
been developed with two possible variants introduced in chapters 6 and 7, we hope that new theoretical
studies can be performed. Differently from black-box non-intrusive ROMs, now the methodology
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itself is framed in a mathematically formal environment in the online stage. Possible future directions
of research include the addition of informative inductive biases, the use of different NN architectures,
the development of stabilization and regularization mechanisms for hyper-reduction and the imposition
of structure preservation for some specific models. Enlarging the point of view beyond MOR, other
newly developed methods exploit a combination of NN architectures with numerical schemes: among
them physics-informed neural networks [44], operator inference [208], machine-learning-accelerated
numerical simulations [150], for a general review [261].

We believe that the employment of scientific machine learning formalized and adapted to nu-
merical applications with the tools of numerical analysis will bring more interpretable and effective
methodologies for the challenges of the future in model order reduction but also numerical modelling
in general.
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