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ABSTRACT

Discrepancies between cosmological parameter estimates from cosmic shear surveys and from recent Planck cosmic microwave
background measurements challenge the ability of the highly successful ACDM model to describe the nature of the Universe.
To rule out systematic biases in cosmic shear survey analyses, accurate redshift calibration within tomographic bins is key. In
this paper, we improve photo-z calibration via Bayesian hierarchical modeling of full galaxy photo-z conditional densities, by
employing StratLearn, a recently developed statistical methodology, which accounts for systematic differences in the distribution
of the spectroscopic training/source set and the photometric target set. Using realistic simulations that were designed to resemble
the KiDS + VIKING-450 data set, we show that StratLearn-estimated conditional densities improve the galaxy tomographic bin
assignment, and that our StratLearn-Bayesian framework leads to nearly unbiased estimates of the target population means. This
leads to a factor of ~ 2 improvement upon often used and state-of-the-art photo-z calibration methods. Our approach delivers a
maximum bias per tomographic bin of A(z) = 0.0095 =+ 0.0089, with an average absolute bias of 0.0052 £ 0.0067 across the
five tomographic bins.

Key words: methods: statistical — galaxies: distances and redshifts —large-scale structure of Universe —cosmology: observa-
tions.

tations of the current generation of cosmic shear surveys, the Dark

1 INTRODUCTION Energy Survey (DES), the Hyper-Suprime Camera (HSC) survey, and

Cosmological parameter estimation from the cosmic microwave
background (CMB; Planck Collaboration 2020) and from tomo-
graphic cosmic shear measurements (e.g. Asgari et al. 2021; Abbott
et al. 2022; Sugiyama et al. 2023) lead to discrepancies in the
estimated clustering strength of dark matter (see Abdalla et al.
2022 for a recent review on cosmic tensions). Such systematic
discrepancies could challenge the highly successful dark energy and
cold dark matter paradigm (ACDM) in describing the true nature
of the Universe. Of course, such a claim needs critical and detailed
consideration of the surveys and analysis steps performed by the
various collaborations to rule out systematic biases in the different
procedures, which might explain said discrepancies.

Extensive explorations of various survey, model, and analysis
modifications have been performed in recent cosmological interpre-
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the Kilo-Degree Survey (KiDS). These highlight that inaccuracies
and statistical uncertainty in the line-of-sight distribution of galaxies
as determined by photometric redshifts can limit, and potentially
bias, constraints on cosmological parameters (cf. Troxel et al. 2018a,
b; Hikage et al. 2019; Joudaki et al. 2020; Asgari et al. 2021; Amon
et al. 2022; Secco et al. 2022; Dark Energy Survey and Kilo-Degree
Survey Collaboration et al. 2023; Rau et al. 2023).

In cosmic shear tomography, galaxies are assigned to (pre-
defined) tomographic redshift bins (Hu 1999) based on an esti-
mate of their photometric redshift (photo-z). For recent reviews
on photometric redshift estimation and its application in large
galaxy surveys see Salvato, Ilbert & Hoyle (2019) and New-
man & Gruen (2022), respectively. If the estimated population
redshift distribution (in a tomographic bin) differs systematically
from the (non-observable) true redshift distribution, the parameter
estimates from cosmic shear tomography might be systematically
biased.
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For instance, if the estimated redshift distribution is systematically
lower than it is in reality, then observed gravitational distortions
are attributed to an overly dense and too highly clustered matter
distribution. It is thus essential to obtain accurate redshift distribution
estimates. In particular, it is crucial to obtain an unbiased estimate of
the first moment (mean) of the true underlying redshift population
distribution (per tomographic bin), in order to avoid such systematic
biases in the analysis (Amara & Refregier 2008; Reischke 2024). This
is because the accuracy of cosmic shear cosmological measurements
is highly dependent on the accuracy of the first moment of the
binned redshift population distributions, but much less sensitive to
the higher-order moments: Reischke (2024), for example, demon-
strates that a one-sigma shift in the desired cosmological model
parameters (for a Euclid-like survey) is induced when the first
moment of the redshift distributions is mis-specified at the level
of < 1 per cent. Conversely, a similar bias is only introduced for the
second-order moment with a ~ 10 per cent mis-specification, and
all higher-order moments can be essentially ignored (Reischke 2024,
Fig. 2).

Several redshift calibration methods have been investigated to
improve cosmic shear tomography. Wright et al. (2019) group these
approaches into three categories:

(i) cross-correlation with reference galaxy samples that have
precise and accurate redshifts (Schneider et al. 2006; Newman
2008; McQuinn & White 2013; Morrison et al. 2017). This strategy
aims to constrain the photometric redshift population distribution by
using spatial cross-correlations between the spectroscopic reference
sample (with accurate redshift) and the photometric target sample
(without accurate redshift). For each tomographic bin, the pho-
tometric redshift distribution is reconstructed by cross-correlating
spectroscopic samples selected within thin redshift slices with the
photometric samples (Gatti et al. 2018, 2022; Rau et al. 2022). More
recently, Bayesian hierarchical frameworks have successfully been
adopted to improve photometric redshift population estimates (Leist-
edt, Mortlock & Peiris 2016; Jones & Heavens 2019; Sanchez &
Bernstein 2019; Alarcon et al. 2020; Rau, Wilson & Mandelbaum
2020; Gatti et al. 2022; Rau et al. 2022, 2023), allowing the com-
bination of cross-correlation with template fitting and/or empirical
approaches (Tanaka et al. 2018; Rau et al. 2022, 2023).

(ii) stacking of individual galaxy redshift distributions, as adopted
by Hildebrandt et al. (2012), Hoyle et al. (2018), Tanaka et al. (2018),
Hamana et al. (2020), and Malz & Hogg (2022), and lastly;

(iii) direct redshift calibration (Lima et al. 2008; Hildebrandt et al.
2016, 2020; Buchs et al. 2019; Wright et al. 2020). The idea of direct
redshift calibration is to reweight the distribution of spectroscopic
redshift, obtained only for a small and non-representative subsample
of the data (source/training data), to match the distribution of the
photometric target data. In recent work, Masters et al. (2015), Buchs
et al. (2019), and Wright et al. (2020, hereafter W20) develop direct
redshift calibration methods based on self organizing maps (SOM;
Kohonen 1982). In W20, their implementation of SOM-based direct
calibration is shown to outperform previously proposed methods
on comprehensive simulations designed to realistically resemble the
KIDS + VIKING-450 data set (Wright et al. 2019, W20; Hildebrandt
et al. 2020). Their (and previous) methods obtain a tomographic bin
assignment via a Bayesian-Photometric-Redshift estimate (Benitez
2000), further denoted as zp, calculated for each galaxy. While
improving on other direct redshift calibration methods, the SOM
method proposed in W20 still leads to potentially concerning bias
in some tomographic bins, and mitigates these biases by introducing
additional systematic selections to the data. Such selections lead to
fewer sources available for science, and therefore constitute a source
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of increased statistical uncertainty in down-stream cosmological
analyses.

In addition, several methods have been employed to assign
galaxies to tomographic (typically four or five non-overlapping) bins.
The common approach is to group galaxies based on a choice of point
estimate of redshift, e.g. from template fitting or machine learning
codes. One approach is to employ SOM-based bin assignment by
assigning galaxies to tomographic bins with adaptive bin edges based
on the SOM cell assignment of the galaxies (Buchs et al. 2019; Alar-
con et al. 2020; Myles et al. 2021; Gatti et al. 2022; Secco et al. 2022).
Another approach is to assign galaxies to tomographic bins according
to a Directional Neighbourhood Fitting (DNF) photo-z estimate
(Gatti et al. 2018; Abbott et al. 2022). DNF is a machine learning
method that obtains photo-z estimates based on the neighbourhood of
galaxies in a multiband flux space (De Vicente, Sanchez & Sevilla-
Noarbe 2016; Gatti et al. 2018). More recently, Rau et al. (2023)
employ a neural network-based photometric redshift conditional
density code (DNNz) to bin galaxies within four tomographic redshift
intervals. Rau et al. (2023) identify regions of the data space that
are difficult to calibrate and remove some of the galaxies based on
differences in the estimates of DNNz and an SED template fitting
approach. Others employ photometric redshifts estimated using the
Bayesian-Photometric-Redshift code (BPZ; Benitez 2000), which
constructs a posterior probability distribution of redshift given a
source’s observed photometry. This code produces a posterior mode
point-estimate of photometric redshift, zg, which is subsequently
used for tomographic binning (Hoyle et al. 2018; Hartley et al. 2020;
Hildebrandt et al. 2020; Van Den Busch et al. 2020; Wright et al.
2020; Asgari et al. 2021).

In this paper, we propose a different strategy to improve redshift
calibration, based on galaxy (object level) conditional photo-z den-
sity estimates. More precisely, we employ a recently proposed statis-
tical method, StratLearn (Autenrieth et al. 2024), that allows princi-
pled photo-z conditional density estimation under non-representative
source/training data. StratLearn alleviates (or bypasses) the problem
of non-representative source/training data (identified as covariate
shift), by subgrouping the data into strata based on estimated propen-
sity scores, a pivotal methodology in causal inference (Rosenbaum &
Rubin 1983). In our context, the propensity score is the probability
of a galaxy being assigned to the spectroscopic training/source set
given the observed covariates (i.e. photometric magnitudes/colours).
Autenrieth et al. (2024) demonstrate that fitting conditional density
estimators within strata, constructed by partitioning the data based
on the estimated propensity scores, improves full conditional photo-
z density estimates under non-representative source/training data.
Here, we show that the StratLearn conditional densities' can be used
directly to improve the tomographic bin assignment, by assigning
each galaxy to the tomographic bin with its highest conditional
probability. In a second step, we construct a Bayesian hierarchical
framework to model summaries of each galaxy’s conditional density
(within tomographic bins), leading to nearly unbiased estimates
of the mean redshift of each tomographic bin. We evaluate our
novel StratLearn-Bayes approach on comprehensive simulations

!StratLearn is a general-purpose statistical method for learning under covari-
ate shift. While Autenrieth et al. (2024) show the effectiveness of conditional
density estimation within the StratLearn framework, the conditional density
estimators themselves are not part of the StratLearn methodology, and
have been proposed elsewhere (Izbicki & Lee 2016; Izbicki et al. 2017).
For conciseness, we loosely refer to the conditional density estimates as
‘StratLearn conditional densities’.
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constructed by W20, demonstrating a substantial reduction of bias
compared to the previously proposed SOM calibration method.

While the primary sensitivity of cosmic shear is to the first moment
of the redshift distribution, other cosmological probes, which also
require redshift distribution estimation and calibration, are more
sensitive to the accurate recovery of higher-order redshift distribution
moments. Reischke (2024) shows that higher-order moments have
much more influence on bias in an analysis of photometric galaxy
clustering. Additionally, cosmic shear surveys will become increas-
ingly sensitive to higher-order moments with increasing statistical
power. As such, it is sensible to consider how we can best estimate
the full redshift distribution. While our StratLearn-Bayes method
is specifically designed to obtain accurate estimates of the first
moments of the redshift distributions, we demonstrate how estimated
propensity scores can be used in a direct redshift calibration scheme
to obtain accurate estimates of the redshift population distribution
shapes.

The remainder of the paper is structured as follows. In Section 2.1,
we specify notation and we formally introduce the underlying
covariate shift scenario, arising through the non-representativeness
of the training/source data. In Section 2.2, we summarize the direct
redshift calibration method. We then briefly introduce the supervised
learning task with a focus on conditional density estimation under
the covariate shift scenario. In Section 3, we formally introduce
our approach. In Section 3.1, we provide a detailed description of
how we estimate conditional densities under covariate shift within
StratLearn. We then specify how these conditional densities can be
used to improve galaxy tomographic bin assignment (Section 3.2).
In Section 3.3, we demonstrate how summaries of the estimated
conditional densities can be employed in a Bayesian hierarchical
framework to accurately estimate the redshift population means
(within a tomographic bin). In Section 4, we demonstrate how
inverse propensity score weighting (inverse-PS) can be employed
to estimate the redshift population shapes for each tomographic bin.
In Section 5, we present numerical evaluation of our method. We
first introduce the simulation setting in Section 5.1. We then evaluate
our new bin assignment with a comparison to previously used zz bin
assignment (Section 5.2). We present our redshift calibration results
in Section 5.3, and illustrate the inverse-PS population distribution
estimates in Section 5.5. Finally, in Section 6, we conclude with a
discussion of our findings, limitations, and implications for future
weak lensing survey analyses.

2 ADDRESSING NON-REPRESENTATIVE
TRAINING DATA

2.1 Non-representative spectroscopic data and covariate shift

Let z; be the true spectroscopic redshift of galaxy i, and x; be the
vector of its observed photometric magnitudes/colours (the exact
choice of covariates is described in Section 5.1.3). In a cosmic shear
analysis, we have access to a relatively small set of galaxies with
measured spectroscopic redshift, since obtaining spectroscopy for
millions of objects is observationally expensive (over the magnitude
range in question). For our purposes, spectroscopically measured
redshifts can be considered equal to the true redshift. We denote this
spectroscopic set as source (or training) data Dg = {(x§’, z{)}",,
with ng galaxies sampled at random from the joint distribution
ps(x, z). The so-called photo-z estimation problem (Hildebrandt
et al. 2010; Freeman, Izbicki & Lee 2017; Izbicki et al. 2017; Dey
et al. 2022) is to find a redshift estimate that can be deployed on
a much larger set of galaxies, for which only the photometric data
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xr are available, but not spectroscopically measured redshifps, r.
We denote this photometric set as our target data Dy = {x\"}/T,,
with n7 unlabelled samples from the joint distribution pr(x, z)
(with nr > ng). The problem is compounded by the fact that
ps(x, 7) # pr(x, z), i.e. the spectroscopic source and photometric
target distributions differ systematically due to selection effects in
the acquisition of spectroscopy based on characteristics of the photo-
metric magnitudes, leading to ps(x) # pr(x). We assume, however,
that the conditional distributions of redshift z given the magnitudes x
are the same in spectroscopic source and photometric target data, i.e.
ps(zlx) = pr(zlx). The situation, in which ps(z|x) = pr(z|x) but
ps(x) # pr(x), is called ‘covariate shift’ in the statistical learning
literature (Moreno-Torres et al. 2012). If such covariate shift is not
accounted for, machine learning or other statistical methods that
aim to learn the relationship between the covariates and redshift
can perform poorly; the training set is not representative of the
target/test, meaning that patterns learned from the training set are
not generalizable.

The covariate shift assumption has been frequently (sometimes
implicitly) made in previous photo-z calibration work, (e.g. Lima
et al. 2008; Hildebrandt et al. 2020; Wright et al. 2020). Others
(e.g. Hartley et al. 2020 and Newman et al. 2015) argue that
redshift failures, the use of quality flags based on galaxy spectral
characteristics to address these failures, and selecting data based
on these flags may result in the violation of the covariate shift
assumption. We provide additional discussion on the matter in
Appendix B.

2.2 Direct redshift calibration

Since in the covariate shift scenario ps(z|x) = pr(z|x) but ps(x) #
pr(x), it generally follows that the redshift distribution of the
spectroscopic set differs from that of the target, ps(z) # pr(z). Direct
redshift calibration methods reweight the spectroscopic redshift
sample to match the photometric redshift distribution (Lima et al.
2008).

More precisely, under the covariate shift scenario, it holds that

pr(z, x) = prz|x)pr(x) (D
= ps(z|x)pr(x) )
— ps(z o 2T 3)

ps(x)

That is, one can express the joint target distribution by reweighting
the joint source distribution. Precisely, pr(z, x) = w(x)ps(z, x),
with weights w(x) = pr(x)/ps(x). In practice, one can reweight
galaxies in the spectroscopic source set [with weights w(x)] to
obtain a representative sample of the joint target distribution. In
principle, looking at the marginal sample of z in the weighted
joint distribution thus provides us a consistent estimate of the target
redshift distribution p7(z).

Accurate estimation of the weights w(x) is key for direct redshift
calibration methods. Lima et al. (2008) and Hildebrandt et al.
(2020) implement a k-nearest-neighbour (kNN) method for weight
estimation. W20 demonstrate improvement over the KNN method by
computing the weights via an SOM method, a form of unsupervised
neural network which can map a high-dimensional covariate space
to a lower-dimensional grid.

Unfortunately, weighting methods typically entail high variance,
particularly if there is a small number of objects with very large
weights. In addition, finding a suitable set of weights w is not trivial,
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but key for direct calibration methods. Noisy, inaccurate weights
might lead to potentially severe bias and strongly increased variance.

2.3 Photometric redshift regression

Instead of reweighting, our approach uses the labelled spectroscopic
source data as a training set to fit supervised full conditional density
models. Our trained models then deliver a non-parametric estimate of
the full conditional redshift (photo-z) distribution for each galaxy in
the photometric target data (conditional on its observed covariates),
f (z|x). If source and target data follow the same distribution,
conditional density estimators aim to minimize the generalized risk
under the L2—loss (generalized in that the underlying loss can be
negative), given by:

/ F(zlxs”) d Zf k). @

(see Section A for the derivations of 4 and Izbicki et al. 2017 for
further details). To provide intuition for the generalized risk in (4),
note that, the second term of (4) averages the values of the conditional
density estimates at the true spectroscopic redshift (known for the
source data); this is optimized if the true redshift is at (or close to) the
mode of the conditional density estimate f (zi|x;), with f (z;|x;) being
very tall and narrow (the Dirac delta distribution at the true redshift
value is the optimal limiting case). In contrast, the first term of (4),
which integrates the squared conditional density estimates over the
redshift range (without information of the true redshift), is minimized
for wide and (nearly) uniform conditional density estimates, thus
penalizing highly localized predictions. Thus, overall estimates that
are very certain (i.e. low variance), but fail to cover the truth lead to
a high risk.

In the presence of covariate shift, however, obtaining accurate
target estimates requires minimization of the target risk Ry (f),
which is obtained by replacing all source samples in (4) with target
samples, which typically means Rs(f) # R7(f). The challenge is
to minimize Ry (f) without access to the target true redshift z7.
In the next section, we provide a summary of our approach, called
StratLearn (Autenrieth et al. 2024), which allows minimization of
R7(f) under the covariate shift scenario.

Rs(f) =

Skl

3 BAYESIAN PHOTOMETRIC REDSHIFT
CALIBRATION VIA STRATLEARN

3.1 Photo-z conditional densities within StratLearn

StratLearn allows target risk minimization by subgrouping the source
and target data into strata based on estimated propensity scores.
Within strata, the joint distribution of target data and source data is
approximately the same, and target risk can thus be minimized via
source risk minimization. In the following, we provide a detailed
description of the procedure.

Let S be a binary indicator variable, with s; = 1 indicating the
assignment of galaxy i to the spectroscopic source set (s; =0
indicates assignment to the photometric target set). In the context
of this paper, the propensity score is the probability of a galaxy i
being in the spectroscopic source data, given its observed covariates
(photometry) x;, i.e.

e(x;) := P(s; = 1|x;), with0 < e(x;) < 1. (5)

In practice, we obtain an estimate é(x;) of (5) via binary, probabilistic
classification of source and target data using a logistic regression
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model with all the photometric magnitudes/colours as independent
predictor variables (main effects) and the source/target set assign-
ment variable S as the binary dependent variable. We then subgroup
(stratify) the source and target data into kK = 5 strata based on the
quintiles of the estimated propensity score distribution é(x). The
use of five strata is suggested by Autenrieth et al. (2024), based on
numerical evidence provided by Cochran (1968) that subgrouping
into k = 5 strata removes at least 90 per cent of the bias for many
continuous distributions.
By Proposition 1 of Autenrieth et al. (2024), within strata,

pri(z,x) = ps;(z,x), for jel,... k, (6)

where §; indicates conditioning on assignment to the jth source
stratum (analogously for target Tj), It directly follows that Ry i ( )~
RS/( f ) within strata j € 1, ..., k. Thus, we can minimize the target
risk Ry J( f ) within strata by minimizing the source risk Rs; ;i ( f ) within
strata. See Autenrieth et al. (2024) for details.

Given the strata conditional on the estimated propensity score,
we can now fit any supervized model on the spectroscopic source
data within each stratum and predict on its respective photometric
target stratum. As suggested in Autenrieth et al. (2024), within each
strata, we employ a weighted average (convex combination) of two
conditional density estimators: ker-NN (Izbicki et al. 2017) and Series
(Izbicki & Lee 2016). The kernel nearest neighbour estimator (ker-
NN) computes the conditional density of an object via a kernel
smoothed histogram of the redshift of its k nearest neighbours in
the respective source stratum. The spectral series estimator (Series)
adapts a lower-dimensional subspace of the x-space as the intrinsic
dimension of the data, based on data-dependent eigenfunctions of a
kernel-based operator (Izbicki & Lee 2016). Details can be found in
Izbicki et al. (2017) and Izbicki & Lee (2016). Previous studies
(Izbicki et al. 2017; Autenrieth et al. 2024) indicate that each
estimator appears to perform better in a different data regime, and
combining them leads to a more robust estimator.>

We individually optimize the conditional density estimators (ker-
NN, Series) by minimizing (4) in each source stratum separately.
The final StratLearn conditional density estimate is obtained by
combining the ker-NN and Series conditional density estimates
ﬁ(erfNN(ZpC) and fSeries(le) by OptimiZing

F@x) = (1 — @) feeries(21%) + o freran(z]x), (7

with 0 < o < 1. The parameter « is optimized to minimize the
generalized risk

. 1 <&,
Ra(f) = / Pl de =2 S FE ) @
k=1 k=1

within each strata. We note that (8) only differs from (4) in that
the first term is averaged over the photometric sample, x7, rather
than the spectroscopic sample, xs, which does not require any target
redshift z7. Finally, (7) provides a galaxy-by-galaxy full conditional
density redshift estimate f (zi|x;).>Some illustrative examples of
the resulting galaxy conditional density estimates are shown in

Fig. 1. Section 5.1.3 provides additional details on computation and
parameter optimization of the conditional density estimators.

2We refer the interested reader to the ensemble learning literature for further
background (Wolpert 1992; Van der Laan, Polley & Hubbard 2007; Naimi &
Balzer 2018).

3Note that, for better readability in (4) and (8), we use superscripts (k) to
enumerate objects, elsewhere we use subscripts i.
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Figure 1. Examples of the conditional density estimates f(z;|x;), for galaxies in the photometric target samples, illustrated on the tomographic bin grid. The
StratLearn assigned bin (the one containing the highest conditional probability) is shaded in blue. The true spectroscopic redshift is shown by the red cross.
The zp estimate is shown by the green star. A fraction of 30 per cent of the conditional density estimates appear to be roughly bell-shaped like in the top left
example, but many conditional densities can be skewed and multimodal. Normal distributions with the same means and variances as the conditional density

examples f'(z,- |x;) are added as dashed lines (as discussed in Section 3.3.).

3.2 Tomographic bin assignment

For cosmic shear analysis, the photometric galaxies are assigned to
groups along the line-of-sight called tomographic bins. These bins
are constructed with the best available proxy for the true line-of-sight
distance of the galaxies. For wide-field photometric surveys, bins are
typically constructed based on a redshift estimate determined from
broad-band photometry (called the photometric redshift estimate or
photo-z estimate).

The KiDS survey employs photometric redshifts estimated using
the BPZ code (Benitez 2000). More precisely, based on the zp
point-estimate (i.e. the posterior mode of the BPZ photometric
redshift posterior probability distributions), W20 assign the photo-
metric galaxies to five non-overlapping top-hat photometric redshift
bins: (0.1, 0.3], (0.3, 0.5], (0.5, 0.7], (0.7, 0.9], (0.9, 1.2]; we denote
these ranges as bins 1 through 5, respectively. Galaxies with zp
estimates outside of the five bin ranges (zz < 0.1 and zp > 1.2) are
discarded.

MNRAS 534, 3808-3831 (2024)

A central step of our proposed photo-z calibration method is the
computation of galaxy-by-galaxy full conditional density redshift
estimates f (z;|x;). Instead of relying on z g, we can therefore use the
full conditional density estimates f (zi|x;) to provide an alternative
tomographic bin assignment for each galaxy i. A natural choice is to
assign each galaxy to the bin which contains the highest conditional
probability: let b(7) be the bin assignment of galaxy i, then
Fzilx)dz, m=1,....51r, )

b(i) = argmax,, /

B(m)

with B(i),i = 1, ..., 5 specifying the five tomographic bin redshift
ranges. B(l) := {z|z < 0.1} and B(r) := {z|z > 1.2} specify two end
bins for galaxies outside of the bin ranges; galaxies assigned to the
end bins are not used in the analysis. Fig. 1 shows examples of
conditional density estimates, plotted on the tomographic redshift
bin grid. The assigned bins b(i) with highest conditional probabilities
are shaded.
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Figure 2. Graphical representation of our Gaussian hierarchical Bayesian
model for the estimation of the redshift population mean in each tomographic
bin, based on (summaries) of the photo-z conditional density estimates
f (zi|x;). Observed quantities are illustrated in shaded squares. Unobserved
parameters are illustrated via circles. Dashed arrows illustrate deterministic
relations, and distributional relations are illustrated via solid arrows. We note
that & and fiz are summary statistics derived from the conditional density
estimates f(z,- |xi).

3.3 Bayesian hierarchical modelling of conditional densities

In this section, we detail our Bayesian hierarchical framework for
accurate estimation of the redshift population mean within each
tomographic bin, given the object-level (galaxy) conditional density
estimates. Employing a hierarchical Bayesian framework allows
us to model the conditional density estimates in a statistically
principled framework, with optimal shrinkage on the object-level
photo-z estimates, allowing more precise population mean estimates.
Fig. 2 provides an overview of our hierarchical Bayesian framework,
with details described hereafter.

On the object (galaxy) level, f(z,-lx,-) is an estimate of the
conditional density p(z;|x;). Via Bayes theorem, the conditional
density p(z;|x;) can be expressed as

p(zilx;) o p(xilzi) p(zi)- (10)

The estimation of the conditional densities f (zi]x;) is performed be-
fore and outside of the hierarchical Bayesian model fit (as described
in Section 3.1) and without incorporation of prior information on
the redshift distributions. By assuming a flat prior on z; (e.g. a wide
uniform prior that covers the expected photometric redshift range),*
we have p(z;) o 1. Then, (10) simplifies to

p(zilxi) o< p(xi|z;). (11)

On the population level, recall that we aim to accurately estimate
the population mean u, of z; (i =1, ..., nyp, with nr, being the
number of galaxies within tomographic bin b). Accurate estimation
of uy is crucial to avoid systematic biases in the downstream cosmic
shear analysis (Amara & Refregier 2008; Reischke 2024). Thus,
we model the redshift population within each bin with a normal
distribution — a convenient choice that facilitates the introduction of
a hierarchical Bayesian framework and a reasonable simplification

4We note that in future work a more informative prior on the object level
redshift distributions could principally be included via our hierarchical
Bayesian model in (14).
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given that we are primarily interested in the population mean.
Specifically, at the redshift population level within bin b, we model

Population Level:  z;|up, 0 ndep N(ip, abz), (12)

with o7 being the redshift population variance.

Thus, we formulate the joint posterior distribution
Pty Zugys Wy 051 Xngy)s With Xy := {x;}775, via
P(Zl, c oo Zngps UMby Ublxn-n,)

08 p(XnTb|le c ooy Zngps UMby Ub)p(zla ey Znﬂ,l“’b’ Gb)p(“bv O-b)

13)
= p(uy, o) [ [ pxilz) p(ilien, o) (14)
i

o p(s, v) | [ pilx)p(ilis, o), (15)

where (13) to (14) holds due to the independence in (12) and the
conditional independence x; L ({z;};i, s, 0)|z;. That is, given
the redshift z; for an object i, the distribution of its photometry x;
does not depend on other observed redshifts, nor on the parameters
describing the population of redshift. (14) to (15) follows from (11).
Since we are not targeting the object-level redshifts z; themselves,
but rather an accurate estimate of the population-level mean, wu;, we
integrate over the individual galaxies’ redshifts to obtain the marginal
posterior distribution

s, 011Xy o pGus ) [T [ pCalepilun,on dzi.— (16)

3.3.1 Replacing p(z;|x;) with a Gaussian approximation

Although we could substitute the estimates, f (zilx;), of p(zi|x;)
directly into (16), the required integrals would be computationally
expensive. Instead, we simplify the problem by modelling each
p(z;|x;) with a normal distribution:

aln NG ), (17)
where the estimate of the object-level mean £; is simply the mean
of the conditional density estimate, f (zi|x;), while the object-
level Gaussian variance £/ is obtained by computing the variance
of f (z;|x;). More precisely, by treating f (z;|x;) as a histogram
evaluated on K bins, we have

= Z P Gilxi)mie — &2, (18)
Zk f mg (Zt |xl

where each k = 1, ..., K specifies a histogram bin with location

my, and fmk is the value of the conditional density (histogram) at

location m;.>The summary statistics & and £2 are observed quantities

summarized by XnTb = {&, T},

There are two reasons behind our replacement of the condi-
tional density estimates f(z;|x;) by normal distributions. First, by
modelling both the population- and object-level distributions as
Gaussians, the Bayesian posterior distribution for the population
mean can be calculated analytically. This allows us to scale our
model to the large photometric data set at hand. Second, and more
importantly, modelling the conditional densities as Gaussians leads to

SWe note that by bins k (with locations m(k)), we refer to the density
(histogram) bins and not the tomographic redshift bins.

MNRAS 534, 3808-3831 (2024)
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almost unbiased estimates of the population means in all tomographic
bins, as demonstrated in Section 5.3. In our simulation studies,
we also investigate an alternative hierarchical model that uses the
conditional densities f (z;]x;) directly (without Normal replacement).
In this case, we obtained the posterior distributions via MCMC
sampling (using 5 per cent of the target data due to computational
limitations). Given the results from the subset, the Normal-Normal
model led to better estimates of the population means than using the
conditional density estimates directly. We refer to Appendix C4 for
further details.
With this approximation, (16) can be written as

p(lLbs Gblanb) X P(Mln Gb) H/N (Z['éi! fiz)

XN (Zl'“-hv Ub) dzly (19)

where N(t|6, ¢2) is the probability density function (pdf) of a normal
distribution with mean 6 and variance ¢2, evaluated at 7.

The integral in (19) can be solved analytically (see Appendix C
for theoretical justifications) to obtain the (joint) marginal posterior
density

(1, 05 Xuy) 0 p(pi, o) [ [N (Eilpos €7+ 07) - (20)
Writing p(us, 0p) = p(uslop) p(op) and adopting a uniform con-

ditional prior density p(up|op) o 1, yields the conditional posterior
distribution of u, given oy:

l’l’blabv nrp N(/lba /l.b) (21)
with

Zi 2 102 éi 1
fiv = and V! =3 22)

2
7+ o0

with Vl;hl being the total precision.

Since we are not interested in the posterior uncertainty of oy,
we choose an empirical Bayesian approach by setting o}, to a fixed
value estimated from the data, i.e. by choosing p(o;) = §(0p — 63).
An obvious choice for the estimate &5 is the MAP of the marginal
posterior p(ob|XnTh) (shown in the Appendix 36). However, in
our simulations, we found that the MAP estimate strongly and
consistently underestimates o,,. For this reason, we do not advocate
the MAP estimate of o}, and instead choose a different estimation
strategy, as detailed below.

Finally, given an estimate of 0;, an estimate of i, can be obtained
analytically via (22), as fi,, the MAP estimate of py.

3.3.2 Population variance estimation via stacking of conditional
densities

Given the poor performance of the MAP estimate for o}, we instead
estimate the population variance o via a ‘stacked estimate’ of the
marginal redshift population distribution p,(z) of galaxies within
tomographic bin b. More precisely, we obtain an estimate p;**(z)
of p,(z) by averaging (stacking) the conditional densities within bin,
that is,
. 1 A
PN = — Y fzjlx)). (23)

b A

J

with x;, j =1, ..., nry, being the photometric magnitudes of the

observed galaxies within tomographic bin . While quite intuitive,
the form of (23) is justified more formally in Section C3.
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An estimate for the redshift population variance o can then be

obtained by calculating the variance of p{*(z), via

A Astac Acac 2
sz Astack ( )Zpblm]((k)(z) m(k) ‘ k) s (24)

> Py m(o\&

where k = 1,

tion my, ﬁfffz(k) is the value of the stacked density (histogram) p

of bin b at location m(k), and 1i,"** is the mean of pJ*(z). An
estimate of the population standard deviation o, is then obtained by
simply taking the square-root of (24).

We compare two versions of (24). First, we compute (24) via
stacking over f(z;|x;), the galaxy conditional density estimates
obtained via StratLearn. We denote this method as option StratLearn-
Bayes (A). Second, we substitute the conditional density estimates
f (zi|x;) by their normal replacements described in (17). We denote
this option as StratLearn-Bayes (B).

, K specifies the (density/histogram) bin with loca-

A stack

4 ESTIMATING THE POPULATION
DISTRIBUTION VIA INVERSE-PROPENSITY
SCORE WEIGHTING

As we demonstrate below, our hierarchical Bayesian framework
delivers highly accurate and precise estimates of the redshift means
within each tomographic bin, the quantity of main interest. Its
use of Gaussian distributions for the redshift populations, however,
precludes realistic distribution shapes. Here, we propose a different
approach for estimation of the redshift population distributions,
where we use propensity scores for direct redshift calibration, thereby
yielding an estimate of the full tomographic redshift distribution.
As described in Section 2.2, direct redshift calibration methods
depend on the estimation of weights w(x) = pr(x)/ps(x), used to
reweight a spetroscopic sample (with known true redshifts) to obtain
an estimate of the redshift distribution of the photometric sample
(per tomographic bin). The weights w(x) can also be expressed via

p(s =1) p(s =0Jx)

pr(x) ( 1 )
w(x) = = o —1]).
ps(x)  p(s =0) ps = 1]x) pls = 1|x)
(25)

‘We can thus obtain an estimate of the weights w(x) by employing the
inverse of the propensity score (inverse-PS), via the right-hand side
of (25). To estimate the tomographic binned redshift distributions,
we first obtain a StratLearn conditional density estimate f (zilx;) as
described in Section 3.1 for each galaxy in both the photometric
and the spectroscopic set. Based on these estimates, each galaxy (in
both sets) is assigned to its respective tomographic bin, following the
StratLearn binning strategy described in Section 3.2.°

For each tomographic bin, following (3), we obtain an estimate of
the binned joint target distribution pr,(z, x) via

pro(z, x) = wp(x) psip(z, X), (26)

The binning of the spectroscopic set (as previously performed by W20)
is needed when performing direct redshift calibration of the binned photo-
metric set, since the photometric bin assignment is based on (summaries)
of the conditional density estimates (as described in Section 3.2). The
conditional density estimates implicitly incorporate information of source
redshift (through the fitting process described in Section 3.1). To prevent
unmeasured confounding (information encoded in the spectroscopic redshift,
but not in the magnitudes/colors) the same selection function is applied for
source and target data.
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with pg,(z, x) being the binned joined source distribution of tomo-
graphic bin b, and with weights w,(x) computed via inverse-PS
following (25) for each bin b. We estimate the propensity scores
(employing logistic regression as detailed in Section 5.1) based on
the covariates of the spectroscopic source galaxies and photometric
target galaxies in the respective tomographic bin. In practice, we
employ the relation in (26) by reweighting galaxies in the binned
spectroscopic source data using the respective estimated inverse-
PS weights (obtained via 25). We then obtain an estimate of the
photometric redshift distribution p,(z) (for each tomographic bin
b) by looking at the marginal sample of z in the weighted joint
distribution. This method is numerically demonstrated in Section 5.5.

5 NUMERICAL DEMONSTRATIONS

5.1 Simulation study

We explore the performance of our framework using the comprehen-
sive set of realistic simulations introduced in W20. The simulations
aim to mimic the KiDS + VIKING-450 data set, presented in Wright
et al. (2019) and Hildebrandt et al. (2020), starting from the MICE2
simulation (Carretero et al. 2015; Crocce et al. 2015; Fosalba et al.
2015; Hoffmann et al. 2015) and based on a framework provided
in Van Den Busch et al. (2020). In the following, we provide a
summary of the simulated data employed in our study (see W20
for a full description of the construction and validation of the
simulations).

5.1.1 Photometric survey

The simulations are designed to mimic the wide-field, multiband pho-
tometric data set of KiDS 4 VIKING-450. The KiDS + VIKING-
450 data set consists of imaging in nine photometric bands
(ugriZY JHKj): the four optical bands (ugri) are observed as
part of the KiDS survey (Kuijken et al. 2019) using the VLT
Survey Telescope (VST; Capaccioli, Mancini & Sedmak 2005)
located at the European Southern Observatory’s Cerro Paranal
observatory in Chile, and the five near-infrared filters (ZY J H K)
are observed as part of the VIKING survey (Edge et al. 2013)
using the Visible and Infrared Survey Telescope for Astronomy
(VISTA; Dalton et al. 2006; Emerson, McPherson & Sutherland
2006, also located at Cerro Paranal). The first 450 square degrees of
joint imaging from the two surveys forms the KiDS + VIKING-450
cosmic shear survey (referred to simply as ‘KiDS’ hereafter). The
simulated photometric data D7 (where the superscript u refers to
‘unweighted’; below, we describe a pre-processing step to produce
a shear-measurement weighted photometric sample as employed in
the downstream scientific analysis) consists of ~21 x 100 galaxies,
for each of which, a simulated measurement of its position, lensing
convergence, morphological information, and model magnitudes in
the ugriZYJHK ;-bands is provided. Magnitudes include photometric
noise, realistic to KiDS survey data (W20, Section 5.1). A large
proportion of galaxies (~17 percent) have a flux error greater
than or equal to the flux measurement in at least one band, and
are therefore flagged as ‘non-detections’ in the KiDS photometric
processing pipeline. Fig. D1 in the Appendix illustrates the full
pattern of such cases. The flux measurement of such non-detections
was removed prior to our analysis and only placeholder/indicator
values were available to indicate these non-detection cases. We
thus treat these cases as ‘missing data’ (details on processing of
these cases appear at the end of this section). While the spec-
troscopic redshift z is unavailable for galaxies in the photometric
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Figure 3. Spectroscopic redshift distributions of the three spectroscopic
surveys used as source data.

set, a Bayesian redshift estimate zp is also provided (see Section
3.2), which was used in previous works to assign galaxies to the
tomographic bins.

Finally, a cosmic shear-measurement weight ; is provided for
each galaxy, which relates to the quality of its shear measurement, and
which filters through to the cosmological analysis for cosmological
parameter estimation. As a pre-processing step, we resample the
data D7, proportionally to the cosmic shear-measurement weights
W;. In this way, we obtain the target sample Dy, with |Dr| =
12.48 x 10° galaxies. Fig. D2 in the appendix demonstrates that
there is a negligible difference in targeting the shear-measurement
resampled distribution (obtained via the above pre-processing step)
and targeting the shear-measurement weighted distribution (as done
in W20). Our results on the resampled data thus hold without loss of
generality.

5.1.2 Spectroscopic survey

A much smaller spectroscopic source data set Dg, with |Dg| =
21, 537, galaxies is provided, composed of simulated data mimicking
three surveys: zCOSMOS (9930 galaxies), DEEP2 (6919 galaxies),
and VVDS (4688 galaxies), altogether spanning a redshift range
of 0.07 < z < 1.43. The spectroscopic redshift distributions of the
three surveys are illustrated in Fig. 3. The spectroscopic source set
is not a representative sample of the photometric target distribution
(selection effects are described in W20). Fig. 4 illustrates the density
of the spectroscopic source redshift distribution (red), and the (true)
redshift distribution of the photometric simulated target data (blue;
not available in practice). While both distributions cover the same
redshift range, the difference in densities is immediately apparent,
an effect of the underlying covariate shift. For each galaxy in
the spectroscopic set, the same set of covariates as provided for
galaxies in the photometric set is available. In addition, an accurate
spectroscopic measurement of the true redshift z is available for each
galaxy, with measurement error that is negligible for our purposes.

MNRAS 534, 3808-3831 (2024)

$20Z Jaquiaoa( | | UO Jasn NlezueAy Ipnig Ip aioladng ajeuoizeulaju| Blonos - YSSIS A9 0228/ 2/808€/v/ES/8101e/SeIuW/Woo dno-olwspese//:sdny woJj papeojumoq



3816 M. Autenrieth et al.

A

Survey

photometric

. spectroscopic

1.0-

Density

0.5

0.0-

0.5 1.0
Spectroscopic Redshift

Figure 4. Spectroscopic (true) redshift distributions of the photometric
simulated target data D7 (not available in practice) compared with the
spectroscopic source data.

To account for sampling variance, 100 independent spectroscopic
catalogues are provided, each with above described specifications.
These correspond to 100 independent fields (lines-of-sights, abbre-
viated as LoS). The fields of the three spectroscopic surveys are
independent of each other across the 100 LoS.

5.1.3 Choice of covariates and handling of missing data

To obtain the conditional density estimates for all objects in the pho-
tometric target data, we choose as covariates the r-band magnitude
and the § colours: (4 — g, g —r,r —i,i —2,Z-Y,Y—-J,J — H,
H — Ks), a set-up previously adopted (e.g. W20; Izbicki et al. 2017,
Autenrieth et al. 2024). Using colours instead of magnitudes does
not worsen the ‘missing data’ pattern, as illustrated in Fig. D1. As a
pre-processing step, all covariates are scaled to have mean zero and
standard deviation one. In the StratLearn framework, the missing
data pattern has to be taken into account in the propensity score
estimation step, and in the computation of the conditional density
estimators within strata. For propensity score estimation, we use
mean imputation of the 9 covariates to fill the missing values; we also
add 9 binary indicator variables as dependent variables (main effects)
to the logistic regression propensity score model, which describe the
missingness of each covariate. Fig. D3 in the appendix illustrates the
distributions of the estimated propensity scores for source and target
data. The support of the target propensity score distribution is well
covered by the support of the source propensity score distribution,
demonstrating the availability of source galaxies that match the
covariate space of the target galaxies.

The computation of the conditional density estimators (ker-NN
and Series) requires the calculation of Euclidean distances between
the covariate vectors of each galaxy. In the missing data cases,
we compute the pairwise distances of two galaxieas using only
the covariate values with measurements (no missingness) for both
galaxies. The large size of the photometric target set causes addi-
tional computational challenges: for prediction of the conditional
densities on the target data, distance matrices between photometric

MNRAS 534, 3808-3831 (2024)

Table 1. Composition of the five StratLearn strata. The number of galaxies
and the average spectroscopic (true) redshift is presented in each source and
target stratum. (Composition of one random batch of 60 000 photometric
samples is shown for illustration).

Stratum Set #galaxies Mean z
1 Source 6091 0.74
Target 10217 0.74
2 Source 5036 0.77
Target 11271 0.74
3 Source 4351 0.72
Target 11957 0.72
4 Source 3668 0.65
Target 12639 0.66
5 Source 2391 0.58
Target 13916 0.57
All Source 21537 0.71
Target 60000 0.68

target set and spectroscopic source set are required, which is not
computationally feasible for the entire target set at once. We thus
process the prediction on the photometric target set in batches of
60000 target samples. Table 1 shows the strata composition of
spectroscopic source and photometric target data for one random
batch, illustrating that there is enough spectroscopic source/training
data in each stratum to fit the conditional density estimators within
strata separately. While there is a slight discrepancy between the
average redshift in source (0.71) and target data (0.68) overall, most
strata have well-balanced redshift means between source and target,
an indicator of reduced covariate shift after the propensity score
stratification (Autenrieth et al. 2024). Other batches demonstrate
a similar pattern. To reduce the computational burden, for each
LoS, we use a fixed set of hyperparameters for prediction of the
conditional density estimators on all target batches. For each LoS,
we obtained the fixed hyperparameter set by optimizing (4) and (8),
separately for each stratum, using one initial strata composition,
with a randomly selected target batch.” Using batches of photo-
metric target data has the advantage that distance matrices can be
stored in memory, and predictions can be processed in parallel on
several batches.?

5.2 Improved bin assignment accuracy

In this section, we evaluate the accuracy of the new tomographic
bin assignment, obtained via StratLearn-based conditional density
estimates, as described in Section 3.2, and illustrated in Fig. 1.

In Table 2, we compare our bin assignment with the standard
practice of using zp for the assignment, across five different clas-
sification performance metrics, demonstrating improvement in all

7Optimization of (4) was performed by splitting the source data within each
strata in a training and validation set (one half each). The parameters which
led to the best predictive performance on the source validation sets (in each
stratum) were then selected for each conditional density estimator (ker-NN
and Series) separately. The final optimization in (8) was then performed on
the same source strata validation sets, using the optimized ker-NN and Series
source validation set predictions. The hyperparameters for the five strata and
for all 100 LoS are illustrated in the Appendix, Figs D4, D5, and D6.

8We performed all computations on a CPU cluster employing up to ~ 150
CPU, simultaneously.
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Table2. Tomographic bin assignment performance evaluated over 100 LoS,
comparing the StratLearn bin assignment (following Section 3.2) and the
zp bin assignment. The average (sd) of the performance metrics computed
for each of the 100 LoS is reported for StratLearn. Using zp, the bin
assignment is consistently the same for all 100 LoS. For all metrics, higher
values indicate better performance.

StratLearn B
Performance metric mean (sd) mean (sd)
Accuracy 0.622 (0.003) 0.526 (—)
Balanced accuracy 0.718 (0.003) 0.706 (—)
Sensitivity 0.502 (0.006) 0.493 (-)
Specificity 0.934 (0.001) 0.918 (—)
Cohen’s Kappa 0.439 (0.006) 0.415 (—)

of them. On average across the 100 LoS, the StratLearn binning
assigns the photometric target galaxies to the correct tomographic
bin in 62.2 percent of the cases (considering the five tomographic
bins, and both end bins separately). This is a substantial improvement
over the zp binning, with an accuracy of 52.5 percent. StratLearn
improves both the sensitivity (true positive rate) and the specificity
(true negative rate) of tomographic bin assignment compared to z g,
thus also leading to an improvement of the balanced accuracy and
Cohen’s kappa, which take into account the imbalance of class (bin)
proportions.” The standard deviations of all performance measures
across the 100 LoS is relatively low (Table 2), which demonstrates
that the improvement is consistent throughout the 100 LoS (the zp
assignment is the same for all 100 LoS).

Figs 5(a) and (b) show the confusion matrices of tomographic bin
assignment using StratLearn and zp (averaged over the 100 LoS).
The confusion matrices demonstrate that StratLearn improves the
bin assignment across all five tomographic bins (top five diagonal
values), and most substantially in the second bin (with z € (0.3, 0.5]),
the one with the largest fraction of galaxies (21.7 percent). In this
bin, StratLearn improves over the z bin assignment by more than
55 per cent.

The heatmap in Fig. 6 provides a visual comparison of the
confusion matrices in Figs 5(a) and (b). Green squares in Fig. 6
correspond to an improvement of StratLearn over zp, while pink
squares correspond to better performance of the zp assignment.
The heatmap is computed by subtracting the diagonal values of
Fig. 5(b), the bin assignment accuracy of zp, from the diagonal
values of Fig. 5(a), the bin assignment accuracy of StratLearn; on
the off-diagonal, the sign is reversed, so that green (positive) values
denote StratLearn improvement everywhere. The improvement of
StratLearn is particularly strong in the top five diagonal squares, the
five tomographic bins, which are of highest interest for the scientific
analysis.

Fig. D7 in the appendix illustrates the changes in bin assignment of
StratLearn versus z g, showing a moderate to strong disagreement of
StratLearn and zp in most of the bins. The reassignment of galaxies,
and especially the improved bin assignment accuracy of StratLearn,
might thus substantially improve cosmological results — this will be
subject of a future, dedicated study.

9The balanced accuracy is defined as (specificity + sensitivity)/2. The
Cohen’s Kappa measures the relative performance of the classifier with the
performance of a random guess (based on the class frequency). Both metrics
take on values between 0 and 1 (with 1 being a perfect classifier).
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(a) StratLearn tomographic bin assignment.
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(b) zp tomographic bin assignment.

Figure 5. (a) Confusion matrix of the StratLearn tomographic bin assign-
ment (averaged over 100 LoS). (b) Confusion matrix of the zp tomographic
bin assignment. The labels ‘" and ‘r’ refer to the left and right end bins,
respectively (for galaxies outside the tomographic bin ranges).

5.3 Improved population mean estimates accuracy

The main purpose of this study is to obtain accurate estimates of
the (true) redshift population means within tomographic bins. The
foremost criteria to evaluate redshift calibration methods (Newman &
Gruen 2022) is the mean discrepancy

1 & _
Eljiy — uy™1 > 7 > (Ans = u5), (= biasy) 27)
=1
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where L = 100 is the number of LoS, fi;; the estimated mean
redshift and pujff the true redshift mean for LoS I for galaxies
assigned to tomographic bin b. We note that (27) is not a bias in a strict
statistical sense, since the true redshift mean (within tomographic
bin) varies across lines of sights. However, being consistent with the
notation of previous studies, we will loosely refer to (27) as ‘bias’.
In addition to (27), we are interested in the standard deviation, SD,
of the mean differences across the 100 LoS:

L diff b/\ 2
>z (Mo 148
L—1

SD (@ — up™) = (28)

withugfffz fpg—pmyy.forl=1,...,Landb=1,...,5.

Table 3 presents the bias results obtained for our novel StratLearn-
Bayes method, with a comparison to the SOM direct redshift
calibration method introduced by W20. While there is a variety
of cutting-edge redshift calibration methods in the literature (e.g.
Rau et al. 2020; Wright et al. 2020; Myles et al. 2021; Malz & Hogg
2022; Rau et al. 2023, among others), the SOM method is an obvious
choice for comparison, since it has been shown to outperform other
direct redshift calibration methods (e.g. using k-nearest-neighbour
methods, KNN; Hildebrandt et al. 2016, 2020) on the realistic and
comprehensive simulations (mimicking the KiDS + VIKING-450
data) considered in this work (W20), thus making it most comparable.
Based on the StratLearn binning, our method options StratLearn-
Bayes (A) and (B) lead to an average absolute bias of 0.0053
and 0.0052 across the five tomographic bins, an improvement of
~ 40 per cent w.r.t the SOM method with zg binning, which leads
to an average absolute bias of 0.0085. We further note that the SOM
(with zp binning) method requires systematic quality cuts, which
reduce the data size for the scientific analysis (we return to this point
below).

We also apply the SOM calibration method using the new
StratLearn binning, applying quality cuts as described in W20, which
leads to an increase of bias (0.105 absolute average bias) compared
to SOM with the zz binning (0.0085 absolute average bias). Using
the StratLearn-Bayes model on the zp bin assignment also leads
to an increase in bias to 0.0141 and 0.0131 (on absolute average
across the five bins). Such a reduction in performance could in fact
be expected: the StratLearn-Bayes model is based on the modelling
of the StratLearn object level (galaxy) conditional density estimates,
but by applying a different binning (e.g. via z) additional (external)
errors are introduced in the assignment of galaxies per tomographic
bin. The StratLearn-Bayes framework is not designed for correction
of such external errors (biases), which lead to systematic shifts of
the population mean estimates. For instance, if the zp galaxy bin
assignment is correlated with the variance of StratLearn galaxy
conditional density estimates, then the (tomographic bin) population
mean estimate in (22) can be systematically shifted. We thus advise
against the combination of StratLearn-Bayes based on zp binning,
and advocate for the use of StratLearn-Bayes via the StratLearn-
based binning, which leads to the best performance.

Table 4 shows the standard deviation (SD) population scatters
from the 100 LoS. StratLearn-Bayes with StratLearn binning leads
to slightly increased standard deviations of 0.0066 [option (A)] and
0.0067 [option (B)] on average across the five tomographic bins,
compared to the SOM method based on z binning with an average
of 0.0051. The results in Table 4 indicate that the standard deviation
results are related to the binning strategy, rather than to the calibration
method. Using SOM calibration on the StratLearn binning (with gold
quality cuts) leads to comparable increase in SD of 0.0066 on average
across the five bins. On the other hand, using the StratLearn-Bayes
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model applied on the zz binning leads to a decrease in SD to an
average of 0.0048 and 0.0047, even lower than applying SOM on the
zp binning.

In general, the similarity in results of the StratLearn-Bayes options
(A) and (B) demonstrate robustness with respect to the computation
of the population variance (last paragraph of Section 3.3). Both
methods outperform the most comparable calibration method (SOM
on zp binning). Given a slight improvement of bias reduction, we
propose the application of StratLearn-Bayes (B) as our best method.

Finally, our proposed method, StratLearn-Bayes (B), leads to a
maximum bias within tomographic bins of A(z) = 0.0095 % 0.0089
(in bin 1). In contrast, using SOM based on zp binning, leads
to maximum biases of 0.0135 £ 0.0052 and 0.0147 £ 0.0040 (in
bin 3 and 4). In addition, SOM based on zp binning requires
systematic quality cuts (gold selection), which are not necessary
for our methodology.

The improved accuracy that we see with our proposed method
brings the biases down to A(z) < 0.01 in all bins. This threshold has
been chosen in previous work as delineating ‘negligible’ and ‘non-
negligible’ biases (W20; Abdalla et al. 2022). Moreover, our method
produces biases that are consistent with zero within 1.5¢ in all bins,
whereas the SOM method produces biases that are inconsistent with
zero at the level of ~ 3.7¢ in the fourth bin. As such, our method
is intrinsically less biased given the same calibrating data and target
wide-field population, while retaining a greater number of sources
for scientific analysis.

5.4 Larger sample size for weak lensing analysis

In Table 5, we show the absolute numbers of galaxies obtained via
the different tomographic bin assignment strategies and quality cuts.
In bins 2, 4, and 5, the number of galaxies is higher when using
StratLearn binning compared to zp. In bins 1 and 3, the number of
galaxies is slightly higher using the z binning. Overall, due to the
improved binning accuracy of StratLearn, there is an approximately
10 percent increase in the number of available galaxies for science
(summing over all bins) when using StratLearn for tomography
instead of zgz. StratLearn assigns substantially fewer galaxies to
the right end bin than zp (see Figs 5a and b), leading to a lower
proportion of galaxies that are falsely removed from the analysis (the
five tomographic bins), but also to a higher proportion of galaxies
that actually are in the right end bin (having redshift greater than
1.2), but are assigned to one of the five tomographic bins (mostly to
bin 4 and 5). Given the small biases of StratLearn-Bayes in bins 4
and 5 (Table 3), the inclusion of such high-redshift galaxies does not
seem to have a negative impact on the calibration, but the positive
effect of increasing the available data size within tomographic bins.

Table 5 also provides the number of galaxies within bin after
applying the gold selection, as introduced by W20. We note that the
gold selection cut is not needed when applying the StratLearn-Bayes
approach, while it is a necessary step to obtain the SOM results. Thus,
compared to the previously best combination of bin assignment and
calibration method on these simulated data in W20, the StratLearn-
Bayes approach leads to an increase of galaxies available for science
of ~18 per cent.

For weak lensing analyses, the relevant statistic is the increase in
the effective number of sources incorporating the shape measurement
weight. Heymans et al. (2012) derive the metric for effective number
density of weak lensing sources as

1L Eyw?

=— , 29
A3 @) (29)

Neff

$20Z Jaquiaoa( | | UO Jasn NlezueAy Ipnig Ip aioladng ajeuoizeulaju| Blonos - YSSIS A9 0228/ 2/808€/v/ES/8101e/SeIuW/Woo dno-olwspese//:sdny woJj papeojumoq



1 2 3 4 5 | r
' il ' ' ' ' ' 0‘06
—-0.002 0014 0.003 0.000 -0.000 -0.002 0.000
0.04
~ --0.010 XN -0.019 -0.002 -0.004 -0.000 -0.004
- 0.012 [N 0.012 -0.005 0.003 0.000 0.002 ~0.02
< --0.001 0.000 0.017 0.032 -0.010 -0.000 -0.004 20.00
i1 --0.004 -0.001 0.005  0.029 0.023 -0.000 -0.026 | 0.0
—-0.003 0.000 0.000 0.000 0.000 -0.002 0.000
—0.04
<0002 0.003 0.006 0.009 0.034 0.000 -0.031
—0.06

Figure 6. Heatmap of confusion matrix (accuracy) differences between
StratLearn and zg. On the diagonal, the difference of StratLearn — zp
accuracy’s is shown. Off-axis, the difference of z g - StratLearn is shown. Thus
higher values (see colour scale at right) illustrate that StratLearn performs
better than the zp estimate.

where w is the shape-measurement weight for each source i € N,
and A is the survey area in square-arcmin. The change in the n.g
due to the SOM gold selection and quality control is described as
Ane = n¥3 /nl. W20 quote this metric for SOM calibration with
quality control in their table 2, finding values of ~ 0.8 in all bins. This
suggests that, for a reanalysis of cosmic shear with our StratLearn-
Bayes approach, we would increase the available lensing sample
statistical power by a similar ~ 20 per cent in each tomographic
bin.

5.5 Population distribution estimates

In the previous sections, we demonstrate the ability of the StratLearn-
Bayes method to accurately and precisely estimate the redshift
population means, which is most crucial for photo-z calibration
in the weak lensing analysis. Since realistic estimates of the pop-
ulation distribution shapes will become more influential in cosmic
shear analysis and for photometric galaxy clustering (as discussed
in Section 1), here we numerically demonstrate how propensity
scores can be employed via inverse-PS weighting (as introduced
in Section 4) to improve estimation of the whole shape of the
distribution.
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In Fig. 7, we show the inverse-PS weighted redshift distribu-
tions per tomographic bin (in purple), obtained via the procedure
described in Section 4, and based on the StratLearn tomographic bin
assignment (following Section 3.2). The true redshift distributions
per tomographic bin (not known in practice) are shown in black. The
purple inverse-PS weighted distributions exhibit a similar shape as
the black true redshift population distributions recovering reasonably
well the true photometric population distribution shapes, particularly
throughout tomographic bins 1 to 3. Fig. 7 further illustrates the SOM
estimated population distributions (in orange), and its underlying
true redshift population distributions (in light blue) obtained on the
StratLearn tomographic binning after applying the gold selection
quality cuts (W20). Fig. 7 presents the average (estimated) redshift
population distributions across the 100 LoS per each tomographic
bin.!?

In Fig. 8, we assess the quality of the two estimation methods
(inverse-PS and SOM) w.r.t. their underlying true distributions
via probability—probability plots (pp-plots)'!: the figure shows the
average pp-plot (across the 100 LoS) for the inverse-PS estimated
distributions versus the true (full) photometric redshift distributions
per tomographic bin in purple lines, and the average pp-plot of the
SOM estimated distributions versus the gold selected true distri-
butions in orange dashed lines. The vertical bars gives 95 percent
intervals indicating the dispersion of the central 95 pp-plot lines from
the 100 LoS.

Both estimates (inverse-PS and SOM) are close to the diagonal
line throughout bins 1 to 3, with larger deviations in bins 4 and 5.
Notably, the Inverse-PS and SOM pp-plot lines exhibit very similar
deviation patterns from the diagonal line; both methods are based
on reweighting of the spectroscopic samples (following 3), which
explains similarities in their estimates. The purple (average) inverse-
PS lines are closer to the diagonal line than SOM in tomographic
bins 1,3,4, and 5, and almost identical with SOM in bin 2. In
addition, the vertical 95 percent intervals are generally smaller
for inverse-PS compared to SOM (particularly in bins 1 to 3),
indicating less variability in the estimate across the 100 LoS. Overall,
the inverse-PS estimate thus approximates its underlying truth (the
full binned photometric distribution) better than the SOM method
its underlying (gold-selected) true distribution, with the additional
advantage that no quality cuts are required for inverse-PS, leading
to ~ 18 per cent more galaxies in the photometric sample available

0For illustration purposes, a mild Gaussian kernel density smoothing
(with bandwidth 0.00294) was applied to the presented distributions in
Fig. 7. The non-smoothed distributions are illustrated in Fig. D9 in the
appendix.

" pp-plots are obtained by plotting two (empirical) cumulative distribution
functions (CDF) against each other. The distributions are equal iff the pp-plot
falls on the diagonal line from (0,0) to (1,1).

Table 3. Mean discrepancy (bias) computed over 100 lines of sight for different calibration methods, and different bin assignment strategies. We abbreviate
the StratLearn bin assignment as SL. The add-on (gold) denotes quality cuts applied to the data according to W20. The Galaxies column shows the total

number of galaxies (in millions) available in the five tomographic bins.

Binning Galaxies [M] Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 |Average|
StratLearn-Bayes (A) SL 12.02 0.0123 —0.0076 0.0053 —0.0010 0.0001 0.0053
StratLearn-Bayes (B) SL 12.02 0.0095 —0.0092 0.0047 —0.0013 0.0012 0.0052
SOM SL (gold) 11.48 —0.0084 0.0022 0.0156 0.0117 0.0148 0.0105
StratLearn-Bayes (A) ZB 10.90 0.0259 0.0127 0.0084 0.0003 —0.0231 0.0141
StratLearn-Bayes (B) ZB 10.90 0.0228 0.0117 0.0071 —0.0002 —0.0236 0.0131
SOM zp (gold) 10.17 —0.0005 0.0036 0.0135 0.0147 —0.0102 0.0085
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Table 4. As in Table 3, but showing standard deviation (SD) computed over 100 lines of sight for the different calibration methods, and different bin

assignment strategies.

Binning Bin 1 Bin2 Bin 3 Bin 4 Bin 5 |Average|
StratLearn-Bayes (A) SL 0.0087 0.0065 0.0046 0.0052 0.0082 0.0066
StratLearn-Bayes (B) SL 0.0089 0.0065 0.0045 0.0052 0.0082 0.0067
SOM SL (gold) 0.0085 0.0064 0.0059 0.0058 0.0066 0.0066
StratLearn-Bayes (A) B 0.0055 0.0048 0.0049 0.0037 0.0051 0.0048
StratLearn-Bayes (B) B 0.0052 0.0048 0.0047 0.0036 0.0051 0.0047
SOM zp (gold) 0.0055 0.0061 0.0052 0.0040 0.0049 0.0051

Table 5. Sample sizes (in millions) within tomographic bins obtained via different bin assignment strategies and quality cuts (mean and standard deviation
computed over 100 LoS). With (gold), we refer to the gold selection quality cuts described in W20.

Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Total
(0.1,0.3] (0.3,0.5] (0.5,0.7] (0.7, 0.9] 0.9,1.2] (0.1, 1.2]
StratLearn mean 1.14 3.18 2.29 2.51 2.90 12.03
(sd) (0.112) (0.207) (0.189) (0.204) (0.220)
StratLearn (gold) mean 1.06 2.94 2.21 2.51 2.75 11.48
(sd) (0.089) (0.158) (0.171) (0.205) (0.223)
ZB mean 1.31 1.94 2.84 2.16 2.66 10.90
(sd) =) =) =) =) =)
zp (gold) mean 1.15 1.91 2.36 2.10 2.65 10.17
(sd) (0.034) (0.007) (0.071) (0.047) (0.003)

for scientific analysis. For additional visualization of the distribution
differences presented in Fig. 8, Fig. D8 in the appendix illustrates
a slightly modified version of Fig. 8 by subtracting the x-axis
values (the quantiles of the true distributions) from the y-axis values
(the quantiles of the estimated distributions) in each tomographic
bin.!2

In Fig. 9, we assess the differences between the true full
photometric redshift distribution and the true redshift distribution
after gold selection, for each of the five tomographic bins. Fig. 9
presents a (modified) pp-plot, illustrating the full true photometric
distributions (on the x-axis) versus the gold selected true distributions
(on the y-axis); with the modification that the x-axis values (full true
distribution quantiles) are subtracted from the y-axis (gold selection
truth quantiles) for better visibility of the distribution differences.
Fig. 9 illustrates that there are some mild changes in the underlying
truth when applying the gold selection quality cuts (compared to the
full true photometric sample) for bins 1,2,3, and 5. In bin 4, the true
photometric distributions (before and after gold selection cuts) are
approximately the same.

Finally, as noted in Section 2.2, direct redshift calibration methods
are generally prone to high variance, in particularly in the presence
of a small number of large weights. While we have demonstrated
improvement of inverse-PS upon SOM for estimation of the redshift
population distribution shapes on the StratLearn-based binning, it
is true that the inverse-PS estimate can generally be affected by the
same large variance instability. We note however that the formulation
of the weights via propensity scores enables the use of methods

2While here we are mostly interested in the population estimates obtained
for the newly proposed and more accurate StratLearn-based tomographic
binning, we provide similar assessment of the population distribution esti-
mates obtained for zp-based tomographic binning in Figs D10 and D11 in
the appendix.
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developed in the (causal inference) propensity score literature to
improve assessment and estimation of the propensity scores for
direct redshift calibration (e.g. Imai & van Dyk 2004; Pirracchio,
Petersen & van der Laan 2014; Austin & Stuart 2015; Ridgeway
et al. 2022; Autenrieth et al. 2021), which will be the subject of a
dedicated future work.

6 DISCUSSION

This paper introduced a novel statistically principled method that
improves photometric redshift calibration for weak lensing. The
central plank of our approach is the estimation of individual galaxy
photo-z conditional densities within a Bayesian hierarchical model,
coupled with the StratLearn framework, a recently proposed sta-
tistically principled method for learning under non-representative
source/training data in the presence of covariate shift (Autenrieth
et al. 2024). The computation of galaxy-level conditional density
estimates allows us to introduce an alternative tomographic binning
strategy to the previously used z g-based binning (Benitez 2000). We
presented a hierarchical Bayesian framework, (StratLearn-Bayes),
to model summaries of the conditional density estimates to obtain
nearly unbiased photometric redshift population mean estimates
within tomographic bins.

Before summarizing the main findings of our study, we briefly
discuss some limitations associated with our analysis and methodol-
ogy, and potential improvements for future work. First, we note that
throughout the paper, we assume that the covariate shift assumption
holds, i.e. we assume there are no unmeasured covariates that are
associated with both the source/target selection and the redshift of a
galaxy. As discussed in Appendix B, we plan to consider potential
violations of this assumptions due to quality cuts (Newman et al.
2015; Hartley et al. 2020) for prevention of redshift failures in
ongoing/future work, with the aim of further reducing bias. We
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Figure 7. Redshift population distribution (estimates) per tomographic bin, with tomographic bins obtained as described in Section 3.2 via StratLearn-based
binning. The figure illustrates the inverse-PS (purple) and SOM (orange) distribution estimates. The underlying true photometric redshift population distributions
per tomographic bin (not known in practice) are illustrated in black for the full sample truth, and in light blue for the gold selected true distributions. The
averaged (estimated) distributions across the 100 LoS are illustrated per tomographic bin.

further note that some of the remaining bias in the population
mean estimates may be explained by effects introduced via the
tomographic bin assignment described in Section 3.2. Employing
a soft classification of galaxies based on the tomographic bin
probabilities may lead to further bias improvement in future work.

We evaluated our method on a comprehensive and realistic
simulation study (W20; Van Den Busch et al. 2020) mimicking the
KiDS + VIKING-450 data set (Wright et al. 2019; Hildebrandt
et al. 2020) with realistic photometric noise and spectroscopic
incompleteness. The results of this study can be summarized in four
points:

(i) The StratLearn conditional density-based tomographic binning
strategy substantially improves upon the zg tomographic bin assign-
ment, with an overall binning accuracy of ~62.2 per cent using
StratLearn, compared to ~52.6 per cent using zz.

(ii) The StratLearn-Bayes model leads to the lowest bias in the
estimation of tomographic redshift population means. On average
across the five tomographic bins, the proposed StratLearn-Bayes
method leads to an absolute bias of 0.0052, a substantial improvement
over the previously best direct redshift calibration method employed
on this simulation study, SOM with zp binning (W20), of 0.0085
average absolute bias. The strong reduction of bias is accompanied
by a slight increase in uncertainty, leading to an average standard de-
viation of 0.0067, compared to 0.0051. Using the StratLearn-Bayes
framework, we find a maximum bias of A(z) = 0.0095 + 0.0089,
slightly below the potentially critical bias value of A(z) > 0.01,

compared to SOM based on zp binning, which leads to maximum
biases of 0.0135 £ 0.0052 and 0.0147 £ 0.0040.

(iii) While the SOM calibration method based on zp binning,
requires systematic quality cuts to define a gold sample (W20),
our method does not require any cuts of the photometric sample.
Thus, together with the improved tomographic bin assignment, the
StratLearn-Bayes framework delivers an increase of ~18 per cent
in the galaxies available for the cosmic shear analysis.

(iv) We demonstrate how propensity scores can be employed via
inverse-PS weighting in a direct redshift calibration approach to ob-
tain realistic estimates of the redshift population distribution shapes
per tomographic bin. Given the newly proposed StratLearn binning,
we show that using inverse-PS leads to a better approximation of the
true photometric population distributions compared to employing
SOM for estimation of the gold selected population distributions
(with the additional advantage of not requiring any quality cuts).

Finally, we believe that the improved tomographic binning assign-
ment, the reduction of population mean bias within tomographic bin,
and the increase in the number of galaxies available for cosmic shear
analysis will have a substantial impact on the eventual scientific
results and cosmological parameter inference. Analysing the final
KiDS data release with our improved calibration method might
lead to more precise and more accurate constraints on cosmological
parameter estimates, particularly on Sg, the clustering strength of
(predominantly dark) matter. We further believe that the proposed
method might provide a powerful tool to improve the analysis
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Figure 8. Probability—probability plots (pp-plot) for the inverse-PS estimated distributions versus the true (full) photometric redshift distributions in purple
lines, and pp-plots of the SOM estimated distributions versus the gold selected true distributions in orange dashed lines, based on the StratLearn tomographic
binning (following Section 3.2). For each tomographic bin, the averaged pp-plots across the 100 LoS are presented, with vertical bars illustrating 95 per cent
intervals indicating the range of the central 95 pp-plot lines from the 100 LoS.

of present and upcoming cosmic shear analysis. We will inves-
tigate if the expected availability of larger spectroscopic source
data sizes might allow further reduction of bias and variability
to meet the stringent accuracy requirements of Euclid (Laureijs
et al. 2011) and the Legacy Survey of Space and Time (LSST;
Abell et al. 2009).
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redshift distribution after applying gold selections, per tomographic bin
(based on StratLearn tomograhic binning, following Section 3.2). For better
readability, we illustrate ‘modified’ pp-plots, with the x-axis placing the
quantiles of the full sample truth and the y-axis showing the quantiles of
the gold selected truth subtracted by the x-axis values (the quantiles of the
full sample true redshift distribution). For each tomographic bin, means of
the pp-lines across the 100 LoS are illustrated, as well as 95 per cent intervals
(vertical bars).
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APPENDIX A: ADDITIONAL DETAILS FOR
CONDITIONAL DENSITY ESTIMATION

In this section, we provide derivations of the generalized risk under
the L?—loss given in (4). Following Izbicki et al. (2017), we start
with the risk based on the general L>—loss via

Rs(f) = / flx) = fzlx))* dPs(x) dz, (A1)
with f(z|x) being the full conditional density estimate of redshift
z given the covariates at point x, f(z|x) being the true conditional

density of z given x, and Pg(x) being the distribution of the source
covariates. In extended form, (30) can be written as

Rs(f) = / /f2<z|x>dPs<x)dz -2 / f(zlx) f(zlx) dPs(x) dz

+ / F2(z]x) dPs(x) dz, (A2)

= constant C

which up to the constant C is equal to

Rs(f) = / /fz(ZIX)dPs(X)dz -2 / f(zlx)dPs(x, 2). (A3)

From (31) to (32), the equality dPs(x, z) = f(z|x)dPs(x)dz (via
Radon—Nikodym derivative) is employed. Given the labelled source
samples (xg, z5), we can get an estimate of (32) via

ns ns
R = - > 7 () @ =2 > F (1) a0

as presented in (4).

APPENDIX B: COVARIATE SHIFT
ASSUMPTION

In this section, we discuss the covariate shift assumption and its
potential violation due to spectroscopic quality cuts as indicated
by Hartley et al. (2020). Following a number of previous studies
(e.g. Lima et al. 2008; Hildebrandt et al. 2020; Wright et al. 2020),
and as described in Section 2, we assume throughout this paper
that the covariate shift assumption holds, i.e. ps(x) # pr(x), but
ps(z|lx) = pr(z|x). That means there are no unmeasured covariates
that are associated to the selection of galaxies into the spectroscopic
source set, and also predictive for redshift z.

As discussed in Hartley et al. (2020), additional selection cuts
might lead to a violation of this assumption. More precisely, in
some cases, the spectroscopic redshift measurement/estimate (for
galaxies in the spectroscopic source set) may disagree significantly
with the true redshift, a situation referred to as ‘redshift failure’
(Hartley et al. 2020). To avoid contamination of subsequent analyses,
quality/confidence flags are introduced to indicate and remove
galaxies with suspected redshift failure.

These quality flags are primarily determined based on character-
istics of the galaxy spectra (e.g. the S/N of emission and absorption
lines, and the strength of the 4000 A break; Hartley et al. 2020).
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Here, we denote the spectroscopic features/covariates used to obtain
the quality flags for a galaxy i as y;. Based on y;, a galaxy is assigned
a high- or low-quality flag, and galaxies with low-quality flags are
removed from the analysis pipeline, so we can assume that the
total fraction of spectroscopic redshift failures will only be around
~ 1 per cent (Hildebrandt et al. 2020).

Of course, spectral information is obtained only for galaxies in the
spectroscopic source set, but not for galaxies in the photometric target
set. The spectral features y associated to the selection of galaxies into
the final spectroscopic source set are thus unmeasured for galaxies in
the photometric target set. As demonstrated in the causal inference
literature (e.g. Rubin 1997; Myers et al. 2011; Austin & Stuart 2015),
a correction of such covariates is only necessary/important if they
are also associated to the outcome variable.!3 A possible justification
of our covariate shift assumption is that, given the photometric
covariates x, the additional spectroscopic covariates y (employed
to indicate quality flags) are not further predictive/informative of
redshift z, i.e. p(z|x,y) = p(z|x). A thorough analysis of this
assumption along with possible correction strategies is a topic of
ongoing/future work.

APPENDIX C: ADDITIONAL MODEL DETAILS

C1 Posterior derivations

This section provides the theoretical justification of the posterior
derivations in Section 3.3.

Deriving (20) from (19) is obtained by integrating over the product
of normal densities in (19), which can analytically be done via
completing the squares. We note that flipping the z; and & in
(19) constitutes the standard normal-normal hierarchical model with
Gaussian measurement errors on latent z; with Gaussian population.
The analytical derivation of this model is a standard result in Bayesian
statistics (see e.g. Gelman et al. 1995, page 117), demonstrating that

/N (§ilzi» 27) NGilw, 0% dzi = N (&, 87 +07) . (C1)
R

Mathematically, the densities N &z, fiz) and N(z§;, f,-z) are iden-
tical, due to the symmetry of the normal distribution. It thus directly
follows that

/N (zil€.27) N@ilw, 02 dz; = N (i, 87 + 07) (€2)
R

which concludes (20) from (19).

With a uniform conditional prior density p(u,|op), the Gaussian
conditional posterior of w;, given oy, X,,” in (21) then follows
directly as another standard result (see e.g. Gelman et al. 1995, page
117). More precisely, (20) is a product of Gaussian densities, which
yields a Gaussian density (the log-posterior is quadratic in ;). The
parameters of the Gaussian conditional posterior in (21) are obtained
by considering the & as independent estimates of j, with variances
(£ + op).

13In the causal inference literature, covariates associated with the
source/target (control/treatment) selection but not with the outcome variable
are denoted as instrumental variables. In fact, it has been shown that the
inclusion of instrumental variables in the propensity score analysis does not
improve bias of the target estimates, but may lead to increased variability.
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C2 Posterior distribution of o

In our hierarchical Bayesian model, the marginal posterior distribu-
tion of the population variance o, can be obtained via

J g ~ N2
& 12 2 2\—1/2 (&j — iip)
P03 Xng,) o o)V, 2 ] (7 +07) " exp (—2 (T+od)

(C3)

J=1

with fi, and V), as defined in (22). Choosing a uniform prior on o,
p(op) x 1, makes (36) a proper posterior density (see e.g. Gelman
etal. 1995, page 117).

C3 Justification of stacked population variance estimate

In this section, we justify the stacked estimator of the marginal
redshift population distribution p,(z) in (23). Precisely, we can
express pp(z) via

pu(z) = /Pb(Z|x)Pl;(x) dx, (C4)

with x being photometric magnitudes/colours, p,(x) being the dis-
tribution of the covariates (magnitudes/colours) of bin b, and p,(z|x)
being the conditional distribution of redshift z given covariates x of
bin b. By assuming the set of photometric magnitudes/colours are
finite, and assuming that the conditional distribution of z given x is
the same for all bins (i.e. p,(z|x) = p(z|x)), we obtain

pp(2) =Y plzlx = x)py(x = x7). (C5)

We have an estimate of the conditional densities p(z;|x;) =~

f(zilx;). Since z; M p(2), it holds that p(z|x = x;) = p(z;|x
X))~ f (zi|x;). Further, we can approximate p,(x = x;) by counting
occurrences of x; in the sample of observed magnitudes/colours
within tomographic bin b. Alternatively, averaging over all estimated
conditional densities f(z;|x;) of galaxies in bin b directly incorpo-
rates these occurrence frequencies, leading to the estimator in (23).

C4 Posterior sampling without Gaussian replacement

In this section, we detail an alternative Bayesian model that di-
rectly employs the non-parametric conditional density estimates
f(z;|x,-) ~ p(zi|x;), instead of replacing f(z;|x,~) with a Gaus-
sian approximation as described in the methods developed in
Section 3.3.

C4.1 Model description

For each tomographic bin b, given the photometric data X, , the
joint posterior distribution of the population mean p,;, (our parameter
of interest) and the population standard deviation o}, can be written
via

P, 0 [ Xy, ) X P(Mb,Ub)H/f(ZHXi)N (Zi|//«b,%2) dz;.  (C6)

In practice, we compute the conditional density estimates f (zilxi)
as histograms on a fine equidistant grid. More precisely, we ob-
tain f(z,- |x;) = Z;Ll f(g)(z,- |xi)1,, where g =1, ..., G denote the
disjoint and equidistant grid points, and £ is the density at grid
location g. Evaluated on a fine grid (G = 201 grid points in practice),
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Table C1. Mean discrepancy (bias) and standard deviation (SD) computed
over 100 lines of sight obtained for the Bayesian model described in
Section C4, using the conditional densities f(z;|x;) directly for the object
level distributions instead of the Gaussian replacements.

Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 |Average|
Bias —0.0069 —0.0223 —0.0046 —0.0082 0.0279 0.0140
SD 0.0101 0.0084 0.0054 0.0061  0.0087 0.0077
(39) can then be approximated via
Py, 0p| Xng,) < p(p, 03)
x TID Auiaf Oibeon (21w, 07 ) ()
i g

with N (z,gg) | s, o) denoting the normal density at grid point g, and
Agiq being the width of each grid bin.

For the reasons as described in Section 3.3, we choose an empirical
Bayesian approach, employing the stacked estimate 67 for the
population variance parameter o2. With o}, = 6, fixed, and adopting
a uniform conditional prior density p(up|op) o 1 (as in Section 3.3),
we obtain

Py Xy ) 0 [T D7 Aiaf O ailioN (221, 62) . (C8)
i g

C4.2 Computation

We implement a simple Metropolis algorithm to obtain a posterior
sample of (41). For computational reasons, we use a subset of 5
percent (600000 galaxies) of the target set for our analysis in
this section. Galaxies are assigned to tomographic bins using the
StratLearn binning described in Section 3.2. For each tomographic
bin, we then use the Metropolis sample to obtain estimates [1;, of the
posterior means, which are then used as the point estimates of the
population means p,.'*

Table C1 presents the bias and SD computed over 100 lines of sight.
Employing the conditional densities f(z;|x;) led to substantially
larger bias, averaging 0.0140 across the five tomographic bins,
compared to the StratLearn-Bayes models employing the Gaussian
replacements of the conditional density estimates, which yielded
an average bias across the five bins of 0.0052 (see Table 3). The
increase in average bias is attributable to larger biases in tomographic
bins two and five. We note that we found a similar pattern with
various simulation settings, using different subsets of the shear-
measurement reweighted photometric sample D7, and the non-
reweighted photometric sample D7 (introduced in Section 5.1). This
illustrates that the model with Gaussian replacements appears to
perform better in various simulation settings.

APPENDIX D: ADDITIONAL FIGURES

This section presents additional figures, as previously referred to
in the main paper. More precisely, the figures provide additional
data/simulation study details, such as Figs D1 and D2; and additional
numerical results, Figs D3, D4, D5, D6, D7, D8, D9, D10, and D11.

4For each posterior sample (each tomographic bin and line of sight), the
Metropolis sampler was run for 4000 iterations, leading to an effective sample
size of around 400-800, treating the first 1000 iterations as burn-in. Visual
inspections of trace plots and auto-correlation plots indicate well converged
chains.

MNRAS 534, 3808-3831 (2024)

$20Z Jaquiaoa( | | UO Jasn NlezueAy Ipnig Ip aioladng ajeuoizeulaju| Blonos - YSSIS A9 0228/ 2/808€/v/ES/8101e/SeIuW/Woo dno-olwspese//:sdny woJj papeojumoq



3826 M. Autenrieth et al.

— N o> :IQ

w
N

49737
2192
1915
1133
3072
92
93
43
208
202
180
195
25
18
14
19
76
123
117
146
2 g
10 s vpi2tid

3 49737

35 2192

2 =

3072

82 i

2 136

1 76

3 386

1 ? 9

22

58 208

} 202

2 35

1 555

4 25

1 18

g Fl

39

1 76

4 i

3 2

1 1

9 2

} 4

6

] 2

% :

11 3

} 1
7
1
1
1
1

N s = =
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Figure D1. ‘Missing data’ pattern for (a) magnitudes, and (b) colours, of a
random subsample of 60 K galaxies from the photometric survey.
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Figure D2. Spectroscopic (true) redshift distributions of the photometric
survey (not known in practice), with and without incorporation of shear-
measurements weights. The blue dashed line shows the redshift distribution
of the full photometric sample D7 (before resampling). The black line shows
the redshift density of the full photometric density weighted by the shear-
measurement weights @, and the green line illustrates the redshift density of
the resampled sample D7. The black and green line perfectly match, with
a mean difference of ~1074, illustrating that there is negligible difference
of targeting the resampled distribution (as in this study) and targeting the
weighted distribution (as in W20).
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Figure D3. Propensity score distributions of source and target data in
Section 5.
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Figure D4. Illustration of the optimized hyperparameters for the Series conditional density estimator (described in Section 3.1). The heatmaps illustrate the
prevalence of the various hyperparameter combinations across the 100 LoS for each stratum, respectively. Hyperparameters were optimized as described in
Sections 3.1 and 5.1. We note that for the € hyperparameter two additional grid values (0.05 and 0.11) were available, but never selected as the optimal
hyperparameter, and thus not illustrated here for better readability. In addition, we note that our preliminary investigation showed that values for € which were
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greater than 0.4 did not (or only marginally) lead to risk improvements; we thus used 0.4 as the maximum value for the € grid.
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Figure D5. Tllustration of the optimized hyperparameters for the Ker-NN conditional density estimator (described in Section 3.1). The heatmaps illustrate the
prevalence of the various hyperparameter combinations across the 100 LoS for each stratum, respectively. Hyperparameters were optimized as described in
Sections 3.1 and 5.1. For the ‘bandwidth’ hyperparameter five additional grid values (0.0011 0.0013 0.0015 0.0018 0.002) were available, but never selected as
the optimal hyperparameter. For the ‘# of nearest neighbours parameter’ parameter three additional grid values (2,5,8) were available but never selected as the
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Figure D6. Frequency of the optimized o hyperparameter for the Comb
conditional density estimator (described in Section 3.1) across the 100 LoS,
for the five strata respectively. The o hyperparameter was optimized as
described in Sections 3.1 and 5.1.

Zp
1 2 3 4 5 [ r

~— 6.4% 1.2% 1% 0% 0% 0.4% 0.2%

Al 2.9% 0% 0.5%

- o 0.8% 0% 0.8%
f —
)
[}

- < 0.1% 0% 1.2%
=
©
S
%)

Te] 0.1% 0% 6.9%

— 0% 0%
— 0.2% 0.1% 0.3% 0.1% 0.3% 0% 2.7%

Figure D7. Changes in bin assignment using StratLearn versus zp binning,
averaged across the 100 LoS.
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Figure D8. Modification of the pp-plots illustrated in Fig. 8 to visualize
differences between the estimated distributions (Inverse-PS and SOM) with
their underlying ground truth (full photometric truth and gold selected truth);
modified by subtracting the x-axis values (the quantiles of the true distribu-
tions) from the y-axis values (the quantiles of the estimated distributions) in
each tomographic bin illustrated in Fig. 8. Solid lines illustrate the inverse-PS
results, and dashed lines illustrate the SOM results. The 95 per cent intervals
(vertical bars) are omitted for clarity.
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Figure D9. The same as Fig. 7, but without additional Gaussian Kernel smoothing of the population distributions. More precisely, the figure illustrates the
redshift population distribution (estimates) per tomographic bin, with tomographic bins obtained as described in Section 3.2 via StratLearn-based binning.
The figure illustrates the inverse-PS (purple) and SOM (orange) distribution estimates. The underlying true photometric redshift population distributions per
tomographic bin (not known in practice) are illustrated in black for the full sample truth, and in light blue for the gold selected true distributions. The averaged
(estimated) distributions across the 100 LoS are illustrated per tomographic bin.
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Figure D10. The same as in Fig. 8, but on zg-based binning instead of StratLearn-based binning. More precisely, the figure presents pp-plots for the inverse-PS
estimated distributions versus the true (full) photometric redshift distributions in purple lines, and pp-plots of the SOM estimated distributions versus the gold
selected true distributions in orange dashed lines, based on the zp tomographic binning (following Section 3.2). For each tomographic bin, the averaged pp-plots
across the 100 LoS are presented, with vertical bars illustrating 95 per cent intervals indicating the range of the central 95 pp-plot lines from the 100 LoS. In
bin 1, the SOM pp-plot line is closer to the 45° line, while in tomographic bins 3 to 5 the inverse-PS pp-plot line is slightly closer to the 45° line, with almost
identical performance in tomographic bin 2. Given the z g-based binning none of the estimators (inverse-PS or SOM) is thus consistently closer to its underlying
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Figure D11. The same as in Fig. 7, but on zg-based binning instead of StratLearn-based binning. More precisely, the figure illustrates the redshift population
distribution (estimates) per tomographic bin, with z z-based tomographic binning. The figure illustrates the inverse-PS (purple) and SOM (orange) distribution
estimates. The underlying true photometric redshift population distributions per tomographic bin (not known in practice) are illustrated in black for the full
sample truth, and in light blue for the gold selected true distributions. The averaged (estimated) distributions across the 100 LoS are illustrated per tomographic
bin.
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