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Critical points in the RPN−1 model

Youness Diouane1,2, Noel Lamsen1 and Gesualdo Delfino1

1SISSA and INFN – Via Bonomea 265, 34136 Trieste, Italy
2ICTP, Strada Costiera 11, 34151 Trieste, Italy

Abstract

The space of solutions of the exact renormalization group fixed point equations of the two-

dimensional RPN−1 model, which we recently obtained within the scale invariant scattering

framework, is explored for continuous values of N ≥ 0. Quasi-long-range order occurs only

for N = 2, and allows for several lines of fixed points meeting at the BKT transition point.

A rich pattern of fixed points is present below N∗ = 2.24421.., while only zero temperature

criticality in the O(N(N + 1)/2 − 1) universality class can occur above this value. The

interpretation of an extra solution at N = 3 requires the identitication of a path to criticality

specific to this value of N .
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1 Introduction

The RPN−1 lattice model differs from the O(N) vector model for the additional invariance under

inversion of individual spins. The consequent head-tail symmetry of the elementary degrees

of freedom makes the model relevant for liquid crystals [1], and paradigmatic for studying the

ability of an extra local symmetry to affect critical behavior. While the weak first order transition

observed in numerical simulations of the three-dimensional ferromagnetic model [2] is consistent

with the mean field scenario [1], the situation is more subtle in two dimensions. Here, the effect of

the fluctuations is stronger and mean field is maximally unreliable, as illustrated by the example

of the three-state Potts model, whose transition becomes second order in two dimensions [3].

In addition, since in two dimensions the continuous symmetry of the RPN−1 model cannot

break spontaneously [4], finite temperature criticality could only be produced by a topological

transition similar to the Berezinskii-Kosterlitz-Thouless (BKT) one [5, 6], and ”disclination”

defects [7, 8] have been proposed as possible mediators of such a transition. Alternatively, zero

temperature criticality can occur, analogously to what happens in the O(N > 2) model.

While the presence of the local symmetry adds to the nonperturbative character of these

issues, the model remained out of reach also for the traditional exact approaches in two di-

mensions, namely lattice integrability [9] and conformal field theory [10, 11]. Only in a recent

Letter [12] we showed that the renormalization group fixed points of the RPN−1 model can be

accessed exactly. This was achieved exploiting the scale invariant scattering theory [13, 14] that

in the last years allowed to obtain new results for the critical properties of pure and disordered
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two-dimensional systems [15, 16, 17, 18, 19, 20]. The novelty of the method is that conformal

invariance, which in two dimensions has infinitely many generators, is implemented in the basis

of particle excitations, and this yields exact equations for the renormalization group fixed points.

In this paper we explore the space of solutions of the fixed point equations of the RPN−1 model

for N ≥ 0. The analysis is performed for continuous values of N , and allows to distinguish

the range N < N∗ = 2.24421.. characterized by a rich pattern of fixed points from the range

N > N∗ in which the equations generically possess a single solution. Quasi-long-range order is

found only at N = 2, but turns out to allow for several lines of fixed points meeting at the BKT

transition point. For N ≥ 3 we confirm and further discuss the results anticipated in [12].

The paper is organized as follows. In the next section we review the scale invariant scattering

formalism and illustrate its application on the example of the O(M) model, which is relevant

for the continuation of the analysis. Section 3 is devoted to the RPN−1 fixed point equations,

whose solutions are then given in section 4. Section 5 contains additional remarks, while more

technical aspects are presented in the appendices.

2 Scale invariant scattering

2.1 Generalities

Before turning to theRPN−1 model, in this section we recall the generalities of the scale invariant

scattering theory [13, 14], as well as its application to the O(M) vector model. Scale invariant

scattering exploits the fact that a two-dimensional statistical system at criticality is described

in the continuum limit by a Euclidean field theory, and that the latter is the continuation to

imaginary time of a conformally invariant quantum field theory with one space and one time

dimension. Such a quantum theory possesses massless particles describing the fluctuation modes

of the system. The fact that conformal symmetry in two dimensions possesses infinitely many

generators implies an infinite number of conservation laws for the scattering processes of the

particles, with the result that scattering is completely elastic (i.e. initial and final states are

kinematically identical). Moreover, the fact that the center of mass energy is the only relativistic

invariant of two-particle scattering and is dimensionful leaves an energy-independent scattering

amplitude for the critical system as a consequence of scale invariance.

Such special features of two-dimensional criticality are responsible for a substantial simpli-

fication of the unitarity and crossing equations that generally apply to relativistic scattering

[21, 22]. Indeed, if we denote by µ = 1, 2, . . . , k the particle species1, by S the scattering oper-

ator, and by Sρσµν = 〈ρσ|S|µν〉 the amplitude for a scattering process with particles µ and ν in

the initial state and particles ρ and σ in the final state (figure 1), we have [13]

Sρσµν =
[

Sρνµσ
]∗

(1)

1In this paper we can limit our discussion to self-conjugated particles.
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Figure 1: Scattering amplitude Sρσµν (left) and product of amplitudes appearing in the unitarity

equations (2) (right).

for crossing and
∑

λ,τ

Sλτµν
[

Sρσλτ
]∗

= δµρδνσ (2)

for unitarity. The relations

Sρσµν = Sµνρσ = Sσρνµ (3)

also hold and express invariance of the amplitudes under time reversal and spatial inversion.

2.2 O(M) model

Consider now the O(M) model [13, 18]. It is defined on the lattice by the Hamiltonian

H1 = −J
∑

〈i,j〉
si · sj , (4)

where J is the coupling, si is a M -component unit vector located at site i, and the sum is

taken over nearest neighboring sites. In the scattering description the order parameter variable

si corresponds to a vector multiplet of particles labeled by an index a = 1, 2, . . . ,M . The

scattering of a particle a with a particle b involves a tensorial structure that has to be preserved

by the scattering. The O(M) scattering matrix is then written as

Scdab = S1 δabδcd + S2 δacδbd + S3 δadδbc , (5)

where the amplitudes S1, S2 and S3 correspond to annihilation, transmission and reflection,

respectively; they are depicted in figure 2. The crossing symmetry equations (1) translate into

the relations

S1 = S∗
3 ≡ ρ1 e

iφ, (6)

S2 = S∗
2 ≡ ρ2, (7)
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S1 S2 S3

Figure 2: Scattering amplitudes entering (5). Time runs upwards.

Solution M ρ1 ρ2 cosφ

I± (−∞,∞) 0 ±1 -

II± [−2, 2] 1 0 ±1
2

√
2−M

III± 2 [0, 1] ±
√

1− ρ21 0

Table 1: Solutions of equations (8)-(10), yielding the renormalization group fixed points with

O(M) symmetry.

where we introduced the parametrizations in terms of the variables ρ2 and φ real, and ρ1 ≥ 0.

This in turn allows us to write the unitarity equations (2) in the form

ρ21 + ρ22 = 1 , (8)

ρ1ρ2 cosφ = 0 , (9)

Mρ21 + 2ρ1ρ2 cosφ+ 2ρ21 cos 2φ = 0 . (10)

The solutions of equations (8)-(10) [13, 18], which are listed in table 1, yield the renormalization

group fixed points with O(M) symmetry. Referring the reader to [18] for the detailed discussion

of the solutions, here we recall some main points useful for the subsequent sections. Starting

from the two solutions II±, we notice that they are characterized by S2 = 0, namely by absence

of intersection of particle trajectories (see figure 2); in addition, they are defined in the range

M ∈ [−2, 2], and meet at M = 2. These properties identify them as the critical lines of the

dilute and dense regimes of the loop gas model, for which the mapping of the partition function

onto that of the O(M) model is well known [6, 23]. In particular, the loop formulation realizes

on the lattice the continuation to noninteger values ofM that equations (8)-(10) provide directly

in the continuum; self-avoiding walks are obtained in the limit M → 0 [24]. Nonintersection of

loop paths corresponds to nonintersection of particle trajectories, as originally pointed out in

[25] for the off-critical case.

The solutions III±, which are defined only for M = 2, are characterized by the fact of

containing ρ1 as a free parameter. Hence, they are immediately identified with the line of fixed

points responsible for the BKT transition in the O(2) ferromagnet [5, 6]. The meeting point

ρ1 = 1 of III+ and III− corresponds to the BKT transition point, where the field driving the

transition is marginal in the renormalizaion group sense [13, 18]. This field is instead irrelevant
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along III+, so that this is the BKT phase in which correlations decay algebraically (quasi-long-

range order).

The remaining solutions I± only allow for transmission. Since scattering on a line involves

position exchange and mixes interaction and statistics, these solutions correspond to noninter-

acting bosons for S2 = 1, and noninteracting fermions for S2 = −1. The bosonic solution I+

describes the T = 0 critical point of the nonlinear sigma model with reduced Hamiltonian

HSM =
1

T

∫

d2x (∇s)2 , s2 = 1 , (11)

where s(x) is the counterpart in the continuum of the lattice variable si and T is the temperature.

When M > 2 the sigma model exhibits exponentially diverging correlation length and vanishing

interaction for T → 0 (asymptotic freedom) [6, 26]; it describes the continuum limit of the O(M)

model in this range of M . Consistency requires that the zero temperature endpoint ρ1 = 0 of

the BKT phase III+ coincides with I+, a property that is indeed exhibited by the solutions of

table 1. On the other hand, the solution I− is not relevant for the critical behavior of the vector

model (4), since it yields a realization of the symmetry in terms of M fermions.

3 Fixed point equations of the RP
N−1 model

The RPN−1 lattice model is defined by the Hamiltonian

H2 = −J
∑

〈i,j〉
(si · sj)2 , (12)

where si is a N -component unit vector located at site i. The difference with respect to the

Hamiltonian (4) is the square in the r.h.s., which makes (12) invariant under any local reversal

si → −si, thus ensuring head-tail symmetry. This means that si effectively takes values on the

unit hypersphere with opposite points identified, namely in the real projective space the model

is named after. The global and local symmetries of the model are represented through an order

parameter variable quadratic in the vector components sai , namely by the symmetric tensor [1]

Qabi = sai s
b
i −

1

N
δab . (13)

While
∑

a s
a
i s
a
i = 1 excludes the presence of an invariant linear in the order parameter compo-

nents, TrQabi = 0 ensures that, upon diagonalization in generic dimension, the order parameter

〈Qabi 〉 vanishes in the isotropic phase. We denote by 〈· · · 〉 the average over configurations

weighted by e−H2/T .

The steps through which we implement scale invariant scattering for the two-dimensional

RPN−1 model at criticality parallel those seen in the previous section for the vector model.

In the continuum limit, the order parameter field is now the symmetric tensor Qab(x), which

creates particles that we label by µ = ab, with a and b going from 1 to N . The scattering

processes corresponding to these particles are those shown in figure 3. Taking into account also
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Figure 3: Scattering amplitudes appearing in (14). Time runs upwards.

the relations (3), the scattering matrix is expressed in terms of the amplitudes S1, . . . , S11 as

Sef,ghab,cd = S1 δ
(2)
(ab),(cd)δ

(2)
(ef),(gh) + S2 δ

(2)
(ab),(ef)δ

(2)
(cd),(gh) + S3 δ

(2)
(ab),(gh)δ

(2)
(cd),(ef)

+ S4 δ
(4)
(ab)(gh),(cd)(ef) + S5 δ

(4)
(ab)(ef),(cd)(gh) + S6 δ

(4)
(ab)(cd),(ef)(gh)

+ S7

[

δabδefδ
(2)
(cd),(gh) + δcdδghδ

(2)
(ab),(ef)

]

+ S8

[

δabδghδ
(2)
(cd),(ef) + δcdδefδ

(2)
(ab),(gh)

]

+ S9

[

δabδ
(3)
(cd),(ef),(gh) + δcdδ

(3)
(ab),(ef),(gh) + δefδ

(3)
(cd),(ab),(gh) + δghδ

(3)
(cd),(ef),(ab)

]

+ S10 δabδcdδef δgh + S11

[

δabδcdδ
2
(ef),(gh) + δef δghδ

(2)
(ab),(cd)

]

,

(14)

where we introduced the notations

δ
(2)
(ab),(cd)

≡ (δacδbd + δadδbc)/2 , (15)

δ
(3)
(ab),(cd),(ef) ≡ (δaf δbdδce + δadδbf δce + δaeδbdδcf + δadδbeδcf

+ δaf δbcδde + δacδbf δde + δaeδbcδdf + δacδbeδdf )/8 , (16)

δ
(4)
(ab)(cd),(ef)(gh) ≡ (δahδbf δcgδde + δaf δbhδcgδde + δagδbf δchδde + δaf δbgδchδde

+ δahδbeδc,gδdf + δa,eδbhδcgδdf + δagδbeδchδdf + δaeδbgδchδdf

+ δahδbf δceδdg + δaf δbhδceδdg + δahδbeδcfδdg + δaeδbhδcf δdg

+ δagδbf δceδdh + δaf δbgδceδdh + δagδbeδcf δdh + δaeδbgδcfδdh)/4 (17)

to take into account the different ways of contracting the particle indices for a given process in

figure 3. The fact that the indices of a particle aa can annihilate each other gives rise to the

amplitudes Si≥7.

Since the amplitudes Si≤3 satisfy the crossing equations (6) and (7), we keep for them the

same parametrization in terms of ρ1, ρ2 and φ. On the other hand, the crossing relations for
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the remaining amplitudes lead to the parametrizations

S4 = S∗
6 ≡ ρ4e

iθ , (18)

S5 = S∗
5 ≡ ρ5 , (19)

S7 = S∗
7 ≡ ρ7 , (20)

S8 = S∗
11 ≡ ρ8e

iψ , (21)

S9 = S∗
9 ≡ ρ9 , (22)

S10 = S∗
10 ≡ ρ10 . (23)

The unitarity equations (2) now take the explicit form

N
∑

e,f,g,h=1

Sef,ghab,cd

[

Sa
′b′,c′d′

ef,gh

]∗
= δ

(2)
(ab),(a′b′)δ

(2)
(cd),(c′d′) , (24)

which takes into account the present way of indexing the particles. The different possible choices

of external indices (see table 2) then yield the equations

1 = ρ21 + ρ22 + 4ρ24, (25)

0 = 2ρ1ρ2 cosφ+ 4ρ24, (26)

0 = (MN + 1)ρ21 + 2ρ21 cos 2φ+ 2ρ1ρ2 cosφ+ 4ρ1ρ4 cos(φ+ θ) + 4(ρ24 + ρ25 + 2ρ4ρ5 cos θ)

+ 4(N + 1)(ρ1ρ4 cos(φ− θ) + ρ1ρ5 cosφ) + 2Nρ1ρ8 cos(φ+ ψ) + 8ρ4ρ8 cos(θ − ψ)

+ 8ρ4ρ8 cos(θ + ψ) + 8ρ5ρ8 cosψ +N2ρ28 + 4ρ1ρ9 cosφ+ 4Nρ8ρ9 cosψ + 2ρ29, (27)

0 = 2ρ2ρ5 + 2ρ1ρ4 cos(φ+ θ) + 2ρ24 cos 2θ + 2(N + 3)ρ4ρ5 cos θ + 4ρ4ρ9 cos θ

+ 2ρ5ρ9 +
1
4Nρ

2
9, (28)

0 = 2ρ1ρ5 cosφ+ 2ρ2ρ4 cos θ + 2ρ24 cos 2θ + 2ρ4ρ5 cos θ + (N + 2)(ρ24 + ρ25)

+ 4ρ4ρ9 cos θ + 2ρ5ρ9 +
1
4Nρ

2
9, (29)

0 = 2ρ1ρ4 cos(φ− θ) + 2ρ2ρ4 cos θ + 2ρ24, (30)

0 = 2ρ1ρ7 cosφ+ 2ρ2ρ8 cosψ + 2Nρ7ρ8 cosψ + 2ρ4ρ9 cos θ + 2ρ7ρ9 + 2ρ8ρ9 cosψ

+ 1
4 (N + 2)ρ29, (31)

0 = 2ρ1ρ8 cos(φ+ ψ) + 2ρ2ρ7 +N(ρ27 + ρ28) + 2ρ4ρ9 cos θ + 2ρ7ρ9 + 2ρ8ρ9 cosψ

+ 1
4 (N + 2)ρ29, (32)

0 = 4ρ8ρ4e
iψ cos θ + 2e−2iθρ24 + 2e−iθρ5ρ4 + 4ρ7ρ4 cos θ + 2ρ9ρ4 cos θ +

1

2
e−iθNρ9ρ4

+
1

2
Nρ8ρ9e

iψ +

(

N

2
+ 1

)

ρ5ρ9 +
1

2
Nρ7ρ9 + 2ρ5ρ8e

iψ + ρ1ρ9 cosφ+ ρ29 + 2ρ5ρ7

+ ρ2ρ9, (33)
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Equation µ ν ρ σ

(25) ab cd ab cd

(26) ab cd cd ab

(27) ab ba cd dc

(28) ab bc cd da

(29) ab bc ad dc

(30) ab cd ac bd

(31) aa bc bc dd

(32) aa bc dd bc

(33) aa bc bd dc

(34) aa bb cc dd

(35) aa bb cd dc

Table 2: External indices used in (2) to obtain the equations (25)-(35).

0 = 4ρ4ρ8 cos(θ − ψ) + (MN + 3) ρ28 +N2ρ210 + 2(N + 1)ρ8ρ9 cosψ + 6Nρ8ρ10 cosψ

+ 4Nρ7ρ10 + 8ρ7ρ8 cosψ + 4ρ28 cos 2ψ + 2ρ1ρ10 cosφ+ 2ρ27 + ρ29 + 2ρ2ρ10 + 4ρ9ρ10, (34)

0 = 4ρ1ρ4e
−i(θ+φ) + 4ρ4ρ9e

−iθ + 16ρ4ρ10 cos θ + 2(MN + 1)ρ1ρ8e
−i(ψ+φ) + 4ρ1ρ8e

−i(φ−ψ)

+ 4ρ1ρ8 cos(φ− ψ) + 2N2ρ8ρ10e
iψ + 4

(

2 cos θ + e−iθN
)

ρ4ρ8e
−iψ +N

(

2 + 4e2iψ
)

ρ28

+ 4Nρ7ρ8e
iψ + 4(N + 1)ρ5ρ8e

−iψ + 2Nρ1ρ10e
−iφ + 2(N + 1)ρ1ρ9e

−iφ + 4Nρ9ρ10

+ 4
(

2 cosψ + eiψ
)

ρ8ρ9 + 4ρ2ρ8 cosψ + 4ρ1ρ7e
−iφ + 4ρ5ρ9 + 4ρ7ρ9 + 8ρ5ρ10 (35)

where

MN ≡ 1

2
N(N + 1)− 1 (36)

coincides with the number of independent components of the order parameter variable (13). In

table 2 different latin letters correspond to different values from 1 to N ; we checked that no new

constraints arise from different choices.

At this stage we did not yet take into account the fact that the field Qab(x) that creates the

particles is traceless. We do this now defining T =
∑

a aa and requiring

S|(ab)T 〉 = S0|(ab)T 〉 , S0 = ±1 (37)

for any particle state |(ab)〉 = |ab〉+ |ba〉. In other words, we require that the trace mode T is a

noninteracting2 (and then decoupled) particle that can be discarded, thus yielding the desired

sector with TrQab = 0. The condition (37) gives the relations

S2 + S9 +NS7 − S0 = S1 + S9 +NS11 = S3 + S9 +NS8 =

4(S4 + S5 + S6) +NS9 = S7 + S8 + S11 +NS10 = 0 , (38)

2The sign factor S0 takes into account that the trace mode can decouple as a free boson or a free fermion.
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which we use to express the amplitudes Si≥7 in terms of Si≤6, namely

ρ7 = − 1

N
(ρ2 − S0) +

4

N2
(2ρ4 cos θ + ρ5), (39)

ρ8 cosψ = − 1

N
ρ1 cosφ+

4

N2
(2ρ4 cos θ + ρ5), (40)

ρ8 sinψ =
1

N
ρ1 sinφ, (41)

ρ9 = − 4

N
(2ρ4 cos θ + ρ5), (42)

ρ10 =
1

N2

(

2ρ1 cosφ+ ρ2 − S0 −
12

N
(2ρ4 cos θ + ρ5)

)

. (43)

Upon substitution of these expressions in (25)-(35), the imaginary parts of (33) and (35) vanish,

while the real parts as well as the equations (31), (32) and (34) become linear combinations of

(25)-(30). The latter are the only remaining equations and can be written in the form

1 = ρ21 + ρ22 + 4ρ24 , (44)

0 = 2ρ1ρ2 cosφ+ 4ρ24 , (45)

0 =MNρ
2
1 + 2ρ21 cos 2φ+ 2ρ1ρ2 cosφ+ 4

(

1− 2

N
+N

)

ρ1ρ4 cos(φ− θ)

+ 4

(

1− 2

N

)

ρ1ρ4 cos(φ+ θ) +
32

N2
ρ24 cos 2θ + 4

(

1− 2

N
+N

)

ρ1ρ5 cosφ

+ 8

(

1 +
8

N2

)

ρ4ρ5 cos θ + 4

(

1 +
8

N2

)

ρ24 + 4

(

1 +
4

N2

)

ρ25 , (46)

0 = 2ρ2ρ5 + 2ρ1ρ4 cos(φ+ θ)− 8

N
ρ24 + 2

(

1− 4

N

)

ρ24 cos 2θ

+ 2

(

3− 8

N
+N

)

ρ4ρ5 cos θ −
4

N
ρ25 , (47)

0 = 2ρ2ρ4 cos θ +

(

2− 8

N
+N

)

ρ24 + 2

(

1− 4

N

)

ρ24 cos 2θ + 2ρ1ρ5 cosφ

+ 2

(

1− 8

N

)

ρ4ρ5 cos θ +

(

2− 4

N
+N

)

ρ25 , (48)

0 = 2ρ1ρ4 cos(φ− θ) + 2ρ2ρ4 cos θ + 2ρ24 . (49)

The solutions of these equations yield the renormalization group fixed points of the RPN−1

model in two dimensions. Since the equations were obtained relying only on the symmetries

of the Hamiltonian (12), their space of solutions contains the fixed points that arise in the

ferromagnetic case (J > 0) as well as in antiferromagnets3 (J < 0).

4 Solutions

The solutions of the equations (44)-(49) that we could determine analytically are listed in ap-

pendix A and summarized in table 3. The remaining solutions, which we determined numerically,

are discussed in section 4.2 below.
3See [16, 14] for the illustration of this point in the case of the q-state Potts model.
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Solution N ρ1 ρ2 cosφ ρ4 ρ5 cos θ

A1± R 0 ±1 − 0 0 −
A2± [−3, 2] 1 0 ± 1

2

√
2−MN 0 0 −

A3 −3, 2
√

1− ρ22 [−1, 1] 0 0 0 −
B1 2

1−ρ2

2√
1+3ρ2

2

[−1, 1] − 2ρ2√
1+3ρ2

2

|ρ2|
√

1−ρ2

2

1+3ρ2

2

ρ2(1−ρ2

2
)

1+3ρ2

2

−sgn(ρ2)
√

1−ρ2

2

1+3ρ2

2

B2± 2
√

1 + 2xρ2 − ρ22 α±(x)
x√

1+2xρ2−ρ2

2

√

−xρ2

2
−x
2

x+2ρ2

2
√
−2xρ2

B3± 3 2
3 ± 1

3 ∓1 1
3 ± 1

3 ±1

Table 3: Analytic solutions of the equations (44)-(49). In the expression of B2±, x ∈
[

− 1√
2

1√
2

]

is a free parameter, and α±(x) ≡ x
2x2−3±

√
2(x2−4)(2x2−1)

2(6x2+1) .

Since for ρ4 = ρ5 = 0 the equations (44)-(49) reduce to (8)-(10) with M =MN , the RP
N−1

model possesses, in particular, the FPs of the O(MN ) model. Notice that, for ρ4 = ρ5 = 0,

equation (42) also implies ρ9 = 0. Hence, for this class of solutions we have the vanishing of the

amplidutes S4, S5, S6 and S9, namely of the amplitudes responsible for mixing indices coming

from different particles (see figure 3). This is why in the following we refer to these solutions as

nonmixing; they are all determined analytically.

On the other hand, not all solutions of equations (44)-(49) are nonmixing. We now discuss

the different solutions, starting from the case N = 2.

4.1 N = 2

The equations (44)-(49) with N = 2 admit the solutions A3, B1 and B2 of appendix A and

table 3. The common feature of these solutions is that they possess a free parameter, so that

each of them describes a line of fixed points at N = 2. The presence of a continuum of fixed

points at N = 2 is expected due to the topological correspondence RP 1 ∼ O(2). The solution

A3 directly corresponds to the O(2) solution III of table 1, which we saw accounts for the BKT

transition. We now see that the RP 1 fixed point equations also allow for the realization of such

a transition via the mixing solutions B1 and B2. This results into several lines of fixed points

meeting at the BKT transition point (figure 4). A similar concurrence of lines of fixed points

at the BKT transition occurs in the Ashkin-Teller model, for which it was originally argued on

perturbative grounds [27] and has recently been shown exactly [19].

4.2 Other solutions for N < 3

Besides the N = 2 solutions of the previous subsection, the other solutions with N < 3 of the

fixed point equations (44)-(49) that we determined analytically are the solutions A1 and A2 of

table 3. These are nonmixing solutions corresponding to I and II, respectively, of the O(MN )

case (see also appendix B). The fact that MN is quadratic in N is responsible for the fact that

solution A3 exists also at N = −3 (M−3 =M2 = 2), and that A2 extends down to N = −3.

10



Figure 4: The N = 2 solutions A3, B1 and B2. They all meet at the BKT transition point.

Besides these analytic solutions, equations (44)-(49) admit for N < 3 solutions that we

determined numerically. All these numerical solutions are of the mixing type (ρ4 and/or ρ5

nonzero) and turn out to extend up to a maximal value N∗ = 2.24421.. . These solutions do not

possess free parameters for fixed N , and for N = 2 reduce to particular cases of the solutions

discussed in the previous subsection. The numerical solutions form a rich pattern and are shown,

together with the analytical ones, in figure 5 in the range N ∈ (0, N∗).

Apart from the case N = 2, the fixed points for N < 3 only make sense from the point of

view of the analytical continuation in N . This is true also for N = 1, since the RP 0 model

possesses no degrees of freedom. On the other hand, the fixed points obtained for N → 1 can

have a physical meaning, in the same way that those obtained for N → 0 in the O(N) model

are relevant for the critical behavior of self-avoiding walks.

4.3 N ≥ 3

The rich pattern of fixed points with N < 3 visible in figure 5 has to be contrasted with

the fact that solutions A1 and B3 of table 3 are the only fixed points existing for N ≥ 3.

The circumstance appears as a manifestation of the fact that continuous symmetries – integer

values of N > 1 in the present case – cannot break spontaneously in two dimensions [4], thus

confining criticality to zero temperature or to topological transitions. In the latter respect, the

fact that the RPN−1 fixed point solutions do not allow for free parameters at fixed N > 2

excludes the presence in this range of BKT-like transitions yielding quasi-long-range order. The

possibility of such a transition driven by disclination defects had been debated in numerical

studies [28, 29, 30, 31, 32, 33, 34, 35, 36].

Solution A1 corresponds to solution I of table 1, and then we know that it yields a zero

11



Figure 5: The solutions of the fixed point equations (44)-(49) in the interval N ∈ (0, N∗), with

N∗ = 2.24421.. indicated by the dashed vertical line. The dotted lines correspond to numerical

solutions, and the continuous ones to the analytic solutions of table 3.
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temperature fixed point in the O(MN ) universality class. This is the only fixed point allowed

for the RPN−1 Hamiltonian (12) for N > 3, a conclusion that has interesting implications [12].

In the first place, since MN > N for N > 2, we see that the T → 0 behaviors of the RPN−1 and

O(N) models falls into different universality classes, thus answering a question that had been

debated in the literature [37, 38, 39, 40, 41]. In addition, the correlation length of the O(M > 2)

model in the limit T → 0 can be computed from the Hamiltonian (11) and is given by [6, 26]

ξM ∝ T 1/(M−2)eA/[(M−2)T ] , (50)

with A a positive constant. Since ξM diverges less rapidly as M increases, the identification of

the RPN−1 zero temperature critical point with the O(MN > N) critical point means that the

correlation length of the RPN−1 model diverges less rapidly than that of the O(N) model, a

difference that increases exponentially as T decreases. This explains the very large difference

in the values of the correlation length for the two models observed in numerical studies [40, 42]

and interpreted as an indication of different universality classes [40, 41]. It also follows from

our result that, for T fixed, the suppression of the correlation length with respect to the O(N)

case decreases as N increases, again in agreement with the data of [40] for N = 3, 4. It is worth

recalling that in the RPN−1 model the correlation length is determined by 〈Qab(x)Qab(y)〉, while
〈s(x) · s(y)〉 vanishes as a consequence of head-tail symmetry.

Zero temperature O(MN ) criticality in the RPN−1 model corresponds to a nonmixing solu-

tion of the equations (44)-(49), namely to ρ4 = ρ5 = 0. Moving away from criticality, i.e. for

T > 0, these parameters are expected to acquire nonzero values, with the consequence that the

detection of O(MN ) behavior is likely to require very low temperatures and is numerically dif-

ficult due to the exponential divergence of the correlation length. This prediction of [12] seems

confirmed by an observation of the recent numerical study4 [43].

These considerations are expected to apply generically for N > 2. From this point of view,

the existence for N = 3 – and only for this value – of the additional solution B3 is not easy to

interpret. The continuous nature of the symmetry appears to rule out a fixed point related to

spontaneous breaking. On the other hand, we are not aware of a topological mechanism that

could specifically apply to N = 3. Also, a topological transition is normally associated to quasi-

long-range order and to the presence of a line of fixed points, while the solution B3 corresponds

to an isolated fixed point. The possibility of a zero temperature fixed point alternative to

O(M3) = O(5) cannot be ruled out, but again one would like to understand why it does not

arise for N > 3. At this stage the possible role of the solution B3 remains as an interesting open

question.

5 Conclusion

In this paper we explored the space of solutions of the exact fixed point equations of the two-

dimensional RPN−1 model for continuous values of N ≥ 0. For N = 2 we showed that the

4The preprint of [43] appeared after that of [12].
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quasi-long-range order expected from the topological correspondence RP 1 ∼ O(2) can actually

occur in an extended form consisting of several lines of fixed points intersecting at the BKT

transition point. For N < N∗ = 2.24421.. we found a rich pattern of fixed points that for N 6= 2

can play a role when the model is analytically continued in N , similarly to what happens with

the loop gas description of the O(N) model in the range N ∈ (−2, 2).

The drastic rarefaction of solutions for N > N∗ is – for N integer – a manifestation of

the absence of spontaneous breaking of continuous symmetries in two dimensions. On the

other hand, the absence for N > 2 of lines of fixed points, i.e. of solutions containing a free

parameter, shows that disclination defects do not drive a topological transition leading to quasi-

long-range order at low temperatures. As a matter of fact, for generic N > N∗ the fixed

point equations only allow for a solution corresponding to zero temperature criticality in the

O(N(N+1)/2−1) universality class. As observed in [12], this identification accounts for features

of the low temperature behaviour of the correlation length observed in numerical studies. The

case N = 3 is peculiar due to the existence of an extra solution whose interpretation would

require the identification of a path to criticality specific to this value of N .

When comparing with numerical studies, we refer to the case of ferromagnetic interaction,

since we are not aware of numerical results for RPN−1 antiferromagnets in two dimensions.

On the other hand, the fixed point equations are obtained in the scale invariant scattering

framework relying only on the symmetry of the Hamiltonian. Hence, their space of solutions

contains also the fixed points that can arise in antiferromagnets (this is illustrated in [14, 16]

for the q-state Potts model). It follows, in particular, that if zero temperature criticality is

observed in a two-dimensional RPN−1 antiferromagnet, it should fall in the O(N(N +1)/2− 1)

universality class (with the possible caveat about N = 3 that we pointed out above). In three

dimensions the continuous symmetry can break spontaneously, and finite temperature criticality

in the O(5) universality class has been identified numerically for the RP 2 antiferromagnet on

the cubic lattice [44].

It must be observed that if, forN ≥ 2, the square in (12) is replaced by a power p, a first order

transition is known to arise when p becomes large enough [45, 46, 47, 48]. Such a breakdown of

universality induced by sufficiently nonlinear interactions on the lattice appears to go beyond

the relation between symmetry and criticality captured by field theoretical methods. For the

RPN−1 Hamiltonian (12) a first order transition was deduced for N = ∞ [49, 50] and debated

for the case of N large [51, 52, 53], while it was shown to be absent in numerical simulations

performed up to N = 40 [29]. Our results concern the fixed points of the renormalization group,

at which the correlation length diverges, and do not add to the discussion about the possibility

of a first order transition at large N .

A Analytic solutions

We give here the analytic solutions of the fixed point equations (44)-(49), using also (39)-(43)

to express the amplitudes Si>6.
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• Solution A1a± is defined for N ∈ R and reads

ρ2 = S0 , ρ1 = ρ4 = ρ5 = 0,

ρ7 = ρ8 = ρ9 = ρ10 = 0.
(51)

• Solution A1b± is defined for N ∈ R and reads

ρ2 = −S0 , ρ1 = ρ4 = ρ5 = 0,

ρ7 =
2S0
N

, ρ8 = ρ9 = 0 , ρ10 = −ρ7
N
.

(52)

• Solution A2± is defined for N ∈ [−3, 2] and reads

ρ1 = 1 , cosφ = (±)
1

2

√

2−MN , sinφ = (±)
1

2

√

2 +MN , ρ2 = ρ4 = ρ5 = 0,

ρ7 =
S0
N
, ρ8 =

1

|N | , ψ = πu(N)− φ , ρ9 = 0 , ρ10 =
2

N2
ρ1 cosφ− 1

N
ρ7,

(53)

with u(N) =







1 , N ≥ 0

0 , otherwise.

Here and below, signs in parenthesis are both allowed.

• Solution A3± is defined for N = −3, 2 and reads

ρ1 =
√

1− ρ22 , φ = (±)
π

2
, ρ2 ∈ [−1, 1] , ρ4 = ρ5 = 0,

ρ7 =
S0
N

− ρ2
N
, ρ8 =

1

|N |ρ1 , ψ = sgn(N)φ , ρ9 = 0 , ρ10 = −ρ7
N
.

(54)

• Solution B1± is defined for N = 2 and reads

ρ1 =
1− ρ22
√

1 + 3ρ22
, cosφ = − 2ρ2

√

1 + 3ρ22
, sinφ = ±

√

1− ρ22
√

1 + 3ρ22
, ρ2 ∈ [−1, 1] ,

ρ4 cos θ = −ρ2(1− ρ22)

1 + 3ρ22
, ρ4 sin θ = − 2ρ22

1− ρ22
ρ1 sinφ , ρ5 = −1

2
ρ1 cosφ ,

ρ7 =
S0
2

− ρ2
2

− ρ5 , ρ8 =
1

2
ρ1| sinφ| , ψ = ±π

2
, ρ9 = 2ρ5 , ρ10 = −ρ7

2
.

(55)

• Solution B2± is defined for N = 2 and reads

x ∈
[

− 1√
2
, 1√

2

]

, y = (±)
√

1− (x− ρ2)2 , ρ2 = x
2x2 − 3±

√

2(x2 − 4)(2x2 − 1)

2(1 + 6x2)

u =
x+ 2ρ2

4
, v = − sgn(y)

√

−xρ2
2

−
(

x+ 2ρ2
4

)2

, ρ5 = −x
2
, (56)

ρ7 =
S0
2

+
ρ2
2
, p = ρ2 + ρ5 , q =

y

2
, ρ9 = −2ρ2 , ρ10 = −ρ7

2
− p ,

where x = ρ1 cosφ, y = ρ1 sinφ, u = ρ4 cos θ, v = ρ4 sin θ, p = ρ8 cosψ, q = ρ8 sinψ.
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Figure 6: Scattering processes of a vector particle multiplet (continuous lines) and a scalar

particle (dashed lines). Time runs upwards.

• Solution B3± is defined for N = 3 and reads

ρ1 =
2

3
, φ = π − θ = π − ψ =

π

2
± π

2
, ρ2 = ±1

3
, ρ4 =

1

3
, ρ5 = ρ2,

ρ7 =
S0
3

+ ρ2 , ρ8 = ρ1 , ρ9 = ∓4

3
, ρ10 =

ρ9 − ρ7
3

.

(57)

The results for the scattering parameters entering equation (44)-(49) are summarized in

table 3. We show in the next appendix that solutions (51) and (52) only differ for the trace

mode decoupling as a free boson or a free fermion; for this reason they both appear as solution

A1 in table 3.

B Rewriting nonmixing solutions

In this appendix we show how the nonmixing (ρ4 = ρ5 = ρ9 = 0) solutions of the RPN−1 fixed

point equations can be written as those of a system consisting of a O(MN ) vector and a scalar

that are decoupled. The scattering amplitudes for such a system, in which the vector and the

scalar in general interact [19], are shown in figure 6 and take the form

S′
1 = S′∗

3 ≡ ρ′1e
iφ′ , (58)

S′
2 = S′∗

2 ≡ ρ′2, (59)

S′
4 = S′∗

6 ≡ ρ′4e
iθ′ , (60)

S′
5 = S′∗

5 ≡ ρ′5, (61)

S′
7 = S′∗

7 ≡ ρ′7, (62)

where ρ′1 and ρ′4 are non negative, while ρ′2, ρ
′
5, ρ

′
7, φ

′ and θ′ are real.

For the purpose of the mapping, we reorganize the particles µ = ab of the RPN−1 model

into the new basis

|Φµ〉 =































|Φ0〉 = 1
N

N
∑

a=1
|aa〉

1√
2
(|ab〉+ |ba〉) , µ = (ab), a 6= b

1√
k(k+1)

(

k
∑

j=1
|jj〉 − k|(k + 1)(k + 1)〉

)

, µ = kk, k = 1, . . . N − 1

(63)
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with 〈Φµ|Φν〉 = δµν and the trace mode Φ0 playing the role of the scalar of the vector-scalar

system. Then, in the nonmixing case, the RPN−1 scattering matrix can be expressed as

Sρ,σµ,ν =
(

S′
1δµ,νδ

ρ,σ + S′
2δ
ρ
µδ
σ
ν + S′

3δ
σ
µδ

ρ
ν

)

δ̄0µδ̄
0
ν δ̄
ρ
0 δ̄
σ
0 + S′

4(δµ,νδ
ρ
0δ
σ
0 + δ0µδ

0
νδ
ρ,σ)

+ S′
5δ

0
µδ

0
νδ
ρ
0δ
σ
0 + S′

6(δ
σ
µδ

0
νδ
ρ
0 + δ0µδ

σ
0 δ

ρ
ν) + S′

7(δ
ρ
µδ

0
νδ
σ
0 + δ0µδ

ρ
0δ
σ
ν ),

(64)

where δ̄νµ = 1− δνµ and

S′
1 = 〈ΦνΦν |S|ΦµΦµ〉 = S1, (65)

S′
2 = 〈ΦµΦν |S|ΦµΦν〉 = S2, (66)

S′
3 = 〈ΦνΦµ|S|ΦµΦν〉 = S3, (67)

S′
4 = 〈Φ0Φ0|S|ΦµΦµ〉 = 〈ΦνΦν |S|Φ0Φ0〉 = S1 +NS11, (68)

S′
5 = 〈Φ0Φ0|S|Φ0Φ0〉 = S1 + S2 + S3 + 2N(S7 + S8 + S11) +N2S10, (69)

S′
6 = 〈ΦµΦ0|S|Φ0Φµ〉 = 〈Φ0Φν |S|ΦνΦ0〉 = S3 +NS8, (70)

S′
7 = 〈Φ0Φµ|S|Φ0Φµ〉 = 〈ΦνΦ0|S|ΦνΦ0〉 = S2 +NS7. (71)

The condition (38) translate into the relations

S′
4 = S′

6 = 0 , S′
5 = S′

7 = S0, (72)

which express the decoupling between the vector and the scalar (see figure 6, recalling that

S0 = ±1). The explicit form of the RPN−1 nonmixing solutions in terms of the vector-scalar

amplitudes is given in table 4. Notice, in particular, that solutions A1a± and A1b∓ only differ

for the fermionic or bosonic nature of the decoupled scalar.

Solution N ρ′1 ρ′2 cosφ′ ρ′4 cos θ′ ρ′5 ρ′7

A1a± R 0 S0 − 0 − S0 S0

A1b± R 0 −S0 − 0 − S0 S0

A2± [−2, 2] 1 0 (±)12
√
2−MN 0 − S0 S0

A3± 2
√

1− ρ22 [−1, 1] 0 0 − S0 S0

Table 4: Mapping between nonmixing RPN−1 solutions and decoupled vector-scalar solutions.

Signs in parenthesis are both allowed.
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