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Thermodynamics and dielectric response of BaTiO3 by
data-driven modeling
Lorenzo Gigli 1✉, Max Veit 1, Michele Kotiuga 2, Giovanni Pizzi 2, Nicola Marzari 2 and Michele Ceriotti 1

Modeling ferroelectric materials from first principles is one of the successes of density-functional theory and the driver of much
development effort, requiring an accurate description of the electronic processes and the thermodynamic equilibrium that drive
the spontaneous symmetry breaking and the emergence of macroscopic polarization. We demonstrate the development and
application of an integrated machine learning model that describes on the same footing structural, energetic, and functional
properties of barium titanate (BaTiO3), a prototypical ferroelectric. The model uses ab initio calculations as a reference and achieves
accurate yet inexpensive predictions of energy and polarization on time and length scales that are not accessible to direct ab initio
modeling. These predictions allow us to assess the microscopic mechanism of the ferroelectric transition. The presence of an order-
disorder transition for the Ti off-centered states is the main driver of the ferroelectric transition, even though the coupling between
symmetry breaking and cell distortions determines the presence of intermediate, partly-ordered phases. Moreover, we thoroughly
probe the static and dynamical behavior of BaTiO3 across its phase diagram without the need to introduce a coarse-grained
description of the ferroelectric transition. Finally, we apply the polarization model to calculate the dielectric response properties of
the material in a full ab initio manner, again reproducing the correct qualitative experimental behavior.
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INTRODUCTION
Ferroelectric materials possess a spontaneous electric polarization
that can be switched with an external electric field. The discovery
of ferroelectricity in barium titanate (BaTiO3), the prototypical
ferroelectric perovskite, changed the general understanding and
perception of ferroelectrics due in large part to its relatively
simple crystal structure1. At low temperatures, BaTiO3 is
rhombohedral with polarization along the 〈111〉 direction; at
higher temperatures, it undergoes three phase transitions, first to
an orthorhombic phase with the polarization along the 〈110〉
direction at 183 K, then to a tetragonal phase with the
polarization along 〈100〉 at 278 K, and finally, at 393 K, to a cubic,
paraelectric phase2. It has been long understood that the
spontaneous polarization is a result of the titanium atom off-
centering within the enclosing oxygen octahedron, but the
detailed microscopic nature of the ferroelectric transition has
been the subject of intense, ongoing research with a variety of
experimental and theoretical techniques. The ferroelectric transi-
tions were first described with a displacive model in which the Ti-
displacements are driven by a transverse phonon instability3.
Almost concurrently, an order-disorder model was proposed to
explain the origin of the Ti-displacements along any one of the
eight local 〈111〉 directions in the cubic phase, as driven by the
pseudo Jahn-Teller effect 4, showing how these displacements
order at lower temperatures in different ferroelectric phases5,6.
These models capture some of the phenomena experimentally
observed in characterizing BaTiO3, such as phonon softening at
the transition temperatures7,8 —consistent with the displacive
model—and diffuse X-ray scattering in all phases except the
rhombohedral one9–11—consistent with the order-disorder model
—leading also to approaches combining the two models12–14. In
this context, simulations – especially from first principles—can

offer a precious microscopic understanding of the nature of the
phase transitions.
A computer simulation of the ferroelectric phase transition of

any given material requires three key ingredients: first, a model of
the potential energy surface (PES) that describes the energetic
response to atomic and structural distortions, second, the free-
energy surface (FES) sampled at the relevant, finite-temperature
thermodynamic conditions, and third, the polarization of individual
configurations that determines, through averaging over samples,
the macroscopic polarization.
Density-functional theory (DFT) calculations have long been

used to explore the PES of BaTiO3 as well as the soft phonons and
their strong dependence on pressure15–18. Further DFT investiga-
tions have found that Ti-displacements along local 〈111〉
directions can result in dynamically stable structures19–21. The
phase transitions and rhombohedral-orthorhombic-tetragonal-
cubic (R-O-T-C) phase sequence of BaTiO3 has been extensively
studied and reproduced using effective Hamiltonians solved using
both Monte-Carlo22,23 and molecular dynamics (MD)24–26; further-
more, similar studies have been carried out on other perovskite
systems27, including solid solutions28. Despite their successes,
effective models rely on the choice of an explicit parametrization
of the Hamiltonian; therefore, in order to confidently make first-
principles-accurate predictions of the thermodynamics, it is
desirable to use an unbiased, agnostic approach without any
prior assumption in the form of the PES.
To this aim, we introduce an integrated machine learning (ML)

framework allowing us to carry out MD without the need to
compromise on simulation size and time scales. This framework,
based on a combination of an interatomic ML potential and a
vector ML model for the polarization, is used to simultaneously
predict the total energy, atomic forces, and polarization of a
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ferroelectric material in order to explore its complex, temperature-
dependent phase diagram as well as to predict its functional
properties. This approach allows us to compute macroscopic
observables—chemical potentials and dielectric susceptibilities,
specifically—with an accuracy equivalent to that of the level of
theory of the underlying DFT calculations, but at a much smaller
computational cost. Moreover, it is applicable with only minor
changes to any perovskite or even any other type of ferroelectric
material, including 2D ferroelectrics29. Although we do not reach a
quantitative agreement with the experimental R-O-T-C transition
temperatures, we demonstrate that this limitation in accuracy
stems from the DFT reference itself and not the approximation
made in modeling the potential energy surface. Thus, we foresee
clear, systematic pathways to improving the model potential,
with only slight modifications of the ML methodology. Specifically,
the generality of the framework and the relatively small size
of the training dataset make it possible to improve the model
accuracy by computing the reference structures with more
advanced functionals such as Hubbard-corrected DFT30,31, meta-
GGAs,32 and hybrids33.
The key advance underlying this work is a unified ML framework

combining an interatomic potential based on the SOAP-GAP
method34 and a microscopic polarization model based on the
symmetry-adapted Gaussian process regression (SA-GPR)
method35. The use of ML for materials modeling has gained
considerable momentum in the past decade34,36–56. Specifically,
the prediction of finite-temperature properties of materials as the
ones we focus on in this paper relies on the construction of ML
potential energy surfaces based on a set of reference structures
computed with ab initio methods53,57,58. Such potentials allow the
simulation of molecules and complex solids with almost the same
accuracy as the reference method used to generate the dataset. In
this way, it is possible to investigate the meso- and macroscopic
properties of materials at a considerably reduced computational
effort compared to direct ab initio simulations. Notable successes
of the machine learning potentials approach include the study of
bulk and interfacial properties of metallic alloys from cryogenic
temperatures up to the melting point45; finite-temperature
modeling of binary systems with variable concentration, such as
GaAs46; accurate calculations on the relative stability of competing
phases of various compounds, such as sodium58, carbon59,
water47, iron49, and silicon50; as well as MD studies of polycrystal-
line phase-change materials57 and hybrid perovskites60.
Two important developments have enabled the great success

of machine learning in condensed matter and chemical physics.
First, appropriate regression schemes—such as kernel methods,
typified by Gaussian approximation potentials (GAP)34; neural
networks (e.g., of the Behler–Parrinello type36 or more recent
graph convolutional approaches43,61); or non-kernel-based linear
fitting schemes (with appropriate representations62–65)—have
been designed and specialized for atomistic systems. The key to
nearly all of these methods is the decomposition of a global
(extensive) physical observable of the system into local contribu-
tions, each written as a function of the neighborhood of individual
atoms. Note that this decomposition carries with it an implicit
assumption of the locality of the potential energy surface, thus
neglecting the effect of long-range electrostatic and dispersion
forces. Several extensions have previously been proposed to
include such forces within existing ML frameworks66–69, but for
the purpose of this work, we use an explicitly short-range model
with an appropriately chosen cutoff.
The second advancement is the construction of suitable,

physically-motivated representations to predict the target proper-
ties of interest42,70–73. In particular, the representation of an atomic
configuration should reflect all the physical symmetries of the
target property. The framework built around the Smooth Overlap
of Atomic Positions (SOAP) descriptor74 and its covariant counter-
parts35,73, which we call the atom-centered density-correlation

framework, is well suited to the task of integrated machine
learning modeling of multiple properties since it allows us to treat
these properties within the same unified mathematical framework.
We provide further details on the mathematical framework, as well
as the construction of the unified ML model, including the
definition of a polarization-derived collective variable, in the
Methods section. Looking forward, the flexibility and extensibility
of this framework will also allow us in future studies to include
long-range interactions in a natural and general way, using a
recent approach called LODE75,76. This will allow us to address
some of the observed disagreements with DFT benchmarks in the
prediction of the phonon spectra, which likely derive from the
neglect of long-range forces (see the subsection “Phonon
dispersions” for additional details).
The modeling of multiple properties within a single ML

framework is gaining importance as a way to extract richer
information from simulations than the PES alone can provide.
Such models combine the extensive, accurate, finite-temperature
thermodynamic sampling afforded by an ML potential, as in a
series of the previous works45,47,49,50,57,58,60,77,78, with the expres-
siveness and utility of an ML property model. Particularly relevant
are the studies using a potential energy surface combined with a
dipole-moment model for studying the infrared spectra of isolated
molecules79,80. To date, such combined models have not yet been
applied to ferroelectric materials; one important difficulty for ML
modeling is the multi-valued character of the polarization in the
condensed phase (although see ref. 81 and ref. 82 for applications
in liquid water, where this difficulty is much less severe). We
describe a method of overcoming this difficulty in a systematic
and generalizable way in the Methods section and in Supple-
mentary Note 3. In the following study, we show how a combined
modeling study can advance the field of ferroelectrics by
providing a rich array of experimentally relevant properties from
one unified mathematical framework.

RESULTS
Summary
In this section, we summarize the main results obtained via the
integrated ML model described in the Methods section. In the
subsection “Structural transition in BaTiO3”, we recover the
well-known sequence of R-O-T-C phases and highlight the key
role of the ML-predicted polarization vector in distinguishing
each of the phases. In the subsection “The microscopic
mechanism of the ferroelectric phase transition”, we find that
the Ti off-centering is the driving mechanism of ferroelectricity
and not just a result of cell distorsions.
In the subsection “Thermodynamics of BaTiO3”, we provide an

explicit calculation of the phase transition temperatures. Finally, in
the subsection “Dielectric response of BaTiO3”, we compute its
temperature- and frequency-dependent dielectric properties and
compare these with the experiment.

Structural transitions in BaTiO3

The detection of the ferroelectric transitions of BaTiO3 in MD
simulations is challenging due to the small lattice distortions and
free-energy differences that differentiate the phases. To overcome
these challenges, one has to choose a sufficiently large cell so as
to make the transitions clearly visible while allowing for a well-
converged statistical sampling of configurations across each of the
coexistence regions. As a qualitative indicator of the phase
transitions, we track the MD time evolution of the cell parameters
(a, b, c, α, β, γ) and the histograms of the ML-predicted unit-cell
polarization components for each phase. The unit-cell polarization
correlates strongly with the magnitude and direction of the
Ti-displacement (see SI).
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Figure 1 shows that the high-temperature cubic phase consists
of a collection of local minima arranged at the vertices of a cube,
as proposed by the eight-site model5,13,83,84. The presence of large
thermal fluctuations, as compared to the energy barriers separat-
ing the minima, allows for diffusion of the polarization vector
across the minima over a timescale of the order of a few ps in the
MD trajectories. This makes the eight local Ti minima equally
probable, yielding 〈P〉= 0.
A reduction of the temperature results in a structural first-order

phase transition, both in agreement with ref. 26 and with previous
experimental85 and theoretical works22,86 showing a divergence of
the latent heat at the Curie point. Such transition is characterized

by a clear breaking of reflection symmetry of the cell dipoles
across one Cartesian (X-Y, Y-Z, or X-Z) plane. The polarization
vector can only visit four of the eight available cubic sites, marking
the onset of the tetragonal phase. Any further decrease in the
temperature further reduces the symmetry of the polarization
histograms by successive freezing of the polarization components
along a specific axis. At 50 K, the polarization densities show a
single and broad minimum corresponding to an orthorhombic
state, while at 15 K finally, the system is completely frozen in one
minimum corresponding to the rhombohedral state. Note that
each of the 6 tetragonal, 12 orthorhombic, and 8 rhombohedral
minima that are trivially equivalent by symmetry can be reached

Fig. 1 The four phases of BaTiO3. a Time evolution of the lattice vector lengths (a, b, and c) and angles (α, β, γ) over fully flexible MD simulations
at (from left to right) 250, 100, 50 and 15 K; b 3D histograms of the unit-cell polarization predicted by the SA-GPR polarization model, computed
across the same simulations; c projections of those 3D histograms onto the three principal Cartesian planes (X-Y, X-Z, and Y-Z). The light gray
boxes mark the range ±2e for easier comparison between the phases. The structure of the high-frequency (dark blue) regions characterizes the
different phases of BaTiO3, while the phase transitions are marked by a clear symmetry-breaking pattern that restricts the cell dipole to visit only a
subset of the available off-centered sites.
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depending on the initial configuration. These states are associated
with different distortions of the lattice vectors (that are not
symmetry invariants) and one can observe occasional transitions
between them. Thus we can infer from Fig. 1 that the
phenomenology of the ferroelectric-paraelectric transition agrees
well with the eight-site model. Under this model, the breakdown
of ferroelectricity is characterized by thermal fluctuations across
cubic off-centered sites that restore, on average, the centrosym-
metry of the Ti-displacements.
Furthermore, we see that the action of a large isotropic

pressure of 30 GPa in the cubic state fully restores the isotropy of
the polarization densities (see Supplementary Fig. 4) and
generates a paraelectric BaTiO3 phase down to 0 K. This is
consistent with the experimentally observed loss of ferroelec-
tricity in BaTiO3 at high pressures87, as well as with the flattening
of the calculated PES 15,16, the disappearance of all unstable
phonon modes of cubic BaTiO3, and the isotropic Ti-displacement
distribution observed in Car-Parrinello MD simulations of cubic
BaTiO3 under pressure20. This evidence strengthens the hypoth-
esis that the fluctuations of the unit-cell polarization between
preferential orientations act as a microscopic precursor of the
macroscopic ferroelectricity of the material.
Moreover, the emergence of a ferroelectric state is facilitated by

the presence of spatial and directional correlations across the
structures, which have been proposed to explain X-ray diffraction
results10,88 and directly observed in ref. 89, with further evidence
from first-principles calculations14,90,91.
Figure 2 shows the extent and directionality of the spatial

correlations (specifically, component-wise Pearson correlation
coefficients; see Supplementary Note 5 for the exact expres-
sion) of the unit-cell dipoles correlated against a central
reference cell in the cubic phase at 250 K. The correlations are
not only large and slowly decaying—they extend well up to the
edges of the 5 × 5 × 5 supercell—but they are highly direc-
tional, with the slow decay taking place along the direction of
the unit-cell dipole.
It has long been assumed that these correlations arise from a

combination of an Ising-like nearest-neighbor interaction with a
long-range dipole–dipole interaction, as typified e.g., in the
model Hamiltonian of ref. 22. Indeed, the authors of that study
observed that the Coulomb interaction was critical for reprodu-
cing the ferroelectric ground state in their model—when it was
turned off, the ground state became antiferroelectric. However,
our simulations show long-range correlations and a ferroelectric
ground state even though the energy model itself is explicitly
short-ranged—that is, the energy of an atom i is only sensitive to
changes within a short-ranged, local environment of 5.5 Å of the
atom (see Methods, subsection “Training the ML model for
BaTiO3”)—making the correlations observed in our simulations
an emergent phenomenon, not relying on the existence of any
explicit long-ranged interaction. This range is sufficient to
capture short-range correlations between two neighboring Ti
atoms, whose average distance in a typical MD run fluctuates
about ≈4.0 Å. Furthermore, we observe these correlations even
in the disordered, cubic phase, in contrast e.g., to ref. 91, where
the strongest correlations were observed only in the ordered
phase (albeit in a different material, and where the phase
transition was triggered not by temperature but by including
quantum nuclear effects).
Thus, our understanding of the nature of ferroelectricity in

BaTiO3 must take into account these emergent, long-range
correlations. We will see, for instance, how they give rise to
spontaneous ferroelectric states—even in the absence of lattice
distortions—in the following subsection. On the other hand,
these correlations also hamper the statistical and simulation-cell
size convergence of various quantities computed from statistical
averages of the total dipole moment, as will be discussed in the
subsection “Dielectric response of BaTiO3”.

The microscopic mechanism of the ferroelectric transition
A fundamental question that arises in relation to the structural
transitions observed in perovskite ferroelectrics concerns the
driving mechanism of the transitions. We have seen in the previous
subsection that the presence of the ferroelectric behavior is
accompanied by the onset of a macroscopic polarization, mostly
driven by ordered displacements of the transition metal atoms and
cell deformation. This indicates that reducing the temperature
makes it energetically favorable to develop polarized states, even at
the expense of an internal strain introduced by the subsequent cell
deformation.
One might, however, question whether it is the Ti off-centering

or the cell deformation that drives this sequence of transitions or
whether these distinct mechanisms are equally present and
competing. To this end, ambient-pressure simulations of a
4 × 4 × 4 cell over a wide range of temperatures (between 20
and 250 K) were carried out in a restricted cubic geometry. The
geometric constraint inhibits the structural distortions, making it

Fig. 2 Spatial correlations of the unit-cell dipoles computed on a
5 × 5 × 5 supercell simulated at 250 K. a Slice at constant Z of the
correlation of the X-component of the dipole of the unit-cell
centered on one Ti-atom (circled in red) with the X-component of
the dipole of every other Ti-centered cell. b 3D view of the dipole
correlations for the lower half of the same 5 × 5 × 5 supercell; the full
3 × 3 correlation tensor of each dipole with the central Ti-atom (red
sphere) is shown as an ellipsoid, where the elongation along the
Cartesian axes shows the presence of highly directional, needle-like
correlations91.
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possible to investigate whether the displacements and ferro-
electric states are still observable.
Two-dimensional histograms of the Ti-displacements for a series of

representative trajectories at 25, 80, 130, and 250 K are provided in
Fig. 3. The lowest-temperature trajectory is equivalent to a fast-
freezing experiment, where the Ti atoms relax to the closest potential
energy minimum. We still observe off-centered states according to
the eight-site model picture, but no transitions between neighboring
cubic sites take place due to the negligible thermal fluctuations.
By slightly increasing the temperature, the thermal fluctuations

are still smaller than the energy barrier between neighboring
cubic sites but are sufficient to induce rare jumps between them.
The Ti atoms consequently freeze in a local minimum, but notably,
they all collectively jump to a single off-centered state after a small
transient of the order of a few ps. The system stays trapped in this
state for the whole simulation time.
This gives us evidence that the GAP inherently favors correlated

ferroelectric displacements, despite the short-ranged description
of the interactions (in an Ising-like fashion) and indicates that a
low-temperature ferroelectric state arises in fully flexible simula-
tions and in experiments as a consequence of a dipolar ordering,
which is suppressed at high-temperatures by thermal fluctuations.
At higher temperatures, thermal fluctuations enable transitions

between cubic sites with a rate that increases with the temperature.
Due to the restored cubic centrosymmetry of the displacements,
states with a net polarization are no longer observed, provided

sufficiently long MD runs are performed. We find this same
sequence of states in NVT cubic simulations (see Supplementary
Note 7), showing that constraining the volume does not affect
the qualitative picture of Fig. 3. Additionally, we note that the
intermediate tetragonal and orthorhombic states do not occur in
these simulations, as opposed to the fully flexible ones.
In conclusion, the presence of a dipolar ordering is responsible

for the emergence of a low-temperature ferroelectric state, as
shown in Fig. 4 and in agreement with ref. 88. At the same time,
the absence of cell distortions considerably affects the shape of
the FES, as the intermediate tetragonal and orthorhombic states
do not occur with a fixed cell. This effect has also been reported in
ref. 22, where Monte-Carlo simulation with no homogeneous strain
showed the disappearance of such phases.

Thermodynamics of BaTiO3

A challenge in modeling phase transitions such as the ones we
focus on in this paper is that they are associated with small
structural distortions that are comparable with the thermal
fluctuations of individual atoms. A commonly-used strategy to
improve the signal-to-noise ratio is to use collective variables
(CVs), such as the lattice parameters60, which are naturally
averaged over multiple atomic environments and directly reflect
the macroscopic observables associated with the transition. Cell
vectors, however, are not symmetry-adapted so that multiple
equivalent states are mapped to different values of the CVs.
What is more, as we have seen in the previous subsection, cell
distortions alone do not drive the different phase transitions of
BaTiO3, making them poor order parameters to distinguish these
phases (see Supplementary Note 4 for a discussion of our
metadynamics simulations that use a symmetrized combination
of lattice parameters).
More effective characterization of the ferroelectric ordering can

be obtained by explicitly using the predicted polarization P as an
order parameter and, in particular, by building descriptors that
show the orientation of the cell polarization relative to the atomic
distortions. In Methods, subsection “Physically-inspired order
parameters”, we provide the construction of a two-component
CV, namely s= (s1, s2), that gives us an effective low-dimensional
description of the phases of BaTiO3.
In Fig. 5, we show 2D contour lines of s across fully flexible

MD runs of a BaTiO3 4 × 4 × 4 supercell between 10 and 250 K.
These represent molecular dynamics runs where the GAP
predicts the coexistence of R-O, O-T, and T-C states respec-
tively, with comparable probability. Four distinct phases are
clearly visible, showing how a polarization-derived two-
component CV can easily identify the subtle differences
between the four phases. The relative positions of the clusters
give additional (but only qualitative) physical insights: as the
C-T-O clusters are maximally distinguishable by s1 and the C
center corresponds to the one with the lowest s1 value, the first
CV is clearly related to the average polarization magnitude.
This is predicted to be exactly zero for paraelectric cubic
BaTiO3 in the thermodynamic limit while positive and increas-
ingly large for the ferroelectric tetragonal and orthorhombic
phases. The CV s1 can then be used to discriminate ferroelectric
and paraelectric BaTiO3 states. Further evidence in this respect
is provided in Supplementary Fig. 12, where we show how
it is possible to reconstruct free-energy profiles as a function
of s1 across the T-C transition and thus capture their finite-
temperature stability.
On the other hand, s2 maximizes the difference between the

R-O-T ferroelectric states; thus, we can relate it physically to the
polarization orientation, in agreement with our observations of
the subsection “Structural transitions in BaTiO3”. Additional
evidence for this interpretation is provided in Supplementary
Fig. 8, where we analyze the correlation between the CVs,

Fig. 3 2D displacement maps, mapped onto the three principal
Cartesian planes (X-Y, X-Z, and Y-Z) in a series of NpT
4 × 4 × 4 simulations with restricted cubic geometry. The 20 K
trajectory shows fast fast-freezing of the Ti degrees of freedom to
the nearest cubic sites (depending on the initial configuration) in
the first few ps of trajectory. In this specific case, only states
corresponding to positive displacements along the y-axis are
sampled across the 4 × 4 × 4 supercell. At 80 K the presence of one
single maximum in the 3D density marks the onset of a clear
“rhombohedral-like” ferroelectric state (with a polarization parallel to
the [−1, +1, +1] axis), showing how the GAP favors aligned
displacements even in the presence of geometric constraints on the
supercell. Simulations at higher temperatures (250 K and beyond)
restore instead the eight-site structure of the displacement density.
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constructed here, with a meaningful physical observable,
namely the polarization magnitude, in a series of 5 × 5 × 5 fully
flexible trajectories.
Based on 2D maps as the one shown in Fig. 5, it is possible to

cluster the MD trajectories and compute directly the temperature-
dependent FES by calculating the relative concentration of the
R-O-T-C phases in sufficiently long MD runs so that many reversible
transitions can be sampled. In practice, we never find more than
two phases explored at each temperature. Fully flexible MD runs of
a BaTiO34 × 4 × 4 cell, each with a total simulation time up to 1.6 ns,
between 10 and 250 K, allow us to compute the relative Gibbs free
energy ΔGk;k0 ðTÞ of the phase pair ðk; k0Þ at temperature T and
the corresponding chemical potential difference Δμk;k

0 ðTÞ using
the following equations:

ΔGk;k0 ðTÞ ¼ �NkBT ln
P

t
PkðtÞwðtÞP

t
Pk0 ðtÞwðtÞ

Δμk;k
0 ðTÞ ¼ ΔGk;k0 ðTÞ

N

(1)

where N= 320 is the number of atoms, w(t) is the weight of the
t-th structure, Pk(t) is the probability that the t-th structure belongs

to the phase k, and kB is the Boltzmann constant. For the O-T and
T-C transition, unbiased MD simulations are used, i.e., with
w(t)= 1, for every t. In the case of the R-O transition, w(t)
represents the weight of the t-th structure computed via the
iterative trajectory reweighting (ITRE) technique92, which is used
to remove the time-dependent bias in the distribution of the
microstates introduced by metadynamics.
The estimates of the critical temperatures at ambient pressure

are computed by linear fits of the relative chemical potentials Δμ
profiles, see Equation (1) and are reported for each pair of phases
in Table 1. We note that our computed temperatures differ
significantly from the experimentally observed transition tem-
peratures, 393 K (T-C), 278 K (O-T), and 183 K (R-O)2. This under-
estimation of the critical temperatures, stemming from an
underestimation of the free-energy barriers between the phases,
could come, in principle, from a variety of mechanisms,
particularly the neglect of long-range electrostatics (and conse-
quently of the LO-TO splitting in the training-set structures), as
well as the presence of finite-size effects that could stabilize the
high-temperature disordered phases in the MD. In fact, a
significant size dependence of the finite-temperature properties
of another perovskite, PbTiO3, has been reported in a recent ML-
driven study by ref. 93.
However, previous work based on effective Hamiltonian models

already pointed out this same underestimation of the critical
temperatures and connected them to a shortcoming of the
underlying exchange-correlation functionals22,26, which can be
compensated by rescaling the potential energy surface or introdu-
cing an artificial negative pressure.
To confirm that pressure can significantly affect the transition

temperature, in Fig. 9, we investigate the sensitivity of the Curie
temperature to negative pressure (p=−2 GPa) within our ML
framework. We observe a shift of the Curie temperature that is
increased by a significant 82 K with respect to the ambient
pressure estimate via NST simulations, while a very small variation
in the lattice constant of the MD supercell (0.7% at 250 K) is seen
in NpT. We note that the corresponding change in the volume
(2.1%) is within the variation of calculated volumes of cubic BaTiO3

with different DFT exchange-correlation functionals20. Further-
more, experimental data94 on the elastic properties of BaTiO3

show that the bulk modulus of BaTiO3 is in the range of ≈200 GPa,
implying that the action of relatively high pressure would result in
a small change in the cell volumes while completely modifying the
free-energy landscape. This effect induces the Curie temperature
shift. We note in this respect that the PBEsol functional that
we used to compute energies and atomic forces of the training-set
structures, predicts a slightly underestimated lattice constant
−4.0Å at 400 K from Car-Parrinello MD20 as compared to the
experimental value of 4.012 Å of cubic BaTiO3

95. This is a
minuscule underestimation that is, however, not negligible in
the calculation of these tiny free-energy barriers. Moreover, we
also rule out that the main source of discrepancy with the
experimental transition temperatures might arise from an
incorrect prediction of thermal expansion (see Supplementary
Fig. 11), as previously shown in ref. 23, where the underestimation

Table 1. Critical temperatures of the T-C, O-T, and R-O transition at
ambient pressure. R2 represents the coefficient of determination of
best linear fits of Δμ(T) across the coexistence regions, as shown in
Fig. 6.

phase transition Tc(K) R2

T-C 182.4 ± 0.7 0.99

O-T 91.4 ± 0.5 0.99

R-O 18.6 ± 0.4 0.97

Fig. 4 Schematic of the ferroelectric transition. 2D sketch of the sequence of events marking the onset of a ferroelectric state starting from a
perfect cubic configuration.

Fig. 5 Phases of BaTiO3 in CV space. 2D contour plots of the two-
component CV s= (s1, s2) plane across fully flexible MD trajectories,
highlighting the presence of the R-O-T-C clusters.
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of the critical temperatures by an effective Hamiltonian model was
related to the approximations made in the construction of the PES.
This sensitivity of the relative free energies on the equilibrium

volume shows how it is possible to tune the applied pressure to
obtain a better agreement with the experiment. Moreover, while
the use of external pressure is a common strategy to improve the
accuracy of ab initio MD—including in the recent ML-driven study
by ref. 93, to correct the so-called supertetragonality problem—our
strategy opens up other avenues for improvement. For instance,
since our ML potential is trained on a relatively small set of 1458
self-consistent energy calculations, one could systematically test
more accurate and demanding electronic structure approxima-
tions30–33, by running them on the existing dataset to improve the
quantitative agreement between simulations and experiment.
So far, we have shown the capability of the GAP of both

qualitatively describing the emergence of ferroelectric states in
BaTiO3 and reproducing the correct phase sequence. Seeing,
however, the substantial disagreement between the critical
temperature predictions of the ML model with the experiments,
we shall now assess its accuracy as compared to the underlying
DFT method. A compelling test in this direction is provided by the
free-energy perturbation (FEP) method. From the collected MD
trajectories, we extract a validation set of 50 tetragonal and cubic
structures just below (170 K) and above (194 K) the Curie point
and recompute their energies with self-consistent DFT calcula-
tions. This allows us to compute how the error of the GAP-
predicted energies on the test set propagates to the error of the
chemical potential estimate at a given temperature.
The FEP on the chemical potentials is first computed as a

correction on the Gibbs free energy Gk of phase k= T, C:

ΔGk
FEPðTÞ ¼ �kBT ln exp � EkGAP � EkDFT

kBT

� �� �
(2)

where 〈⋅〉 represent the average over the test set structures,
EkGAP � EkDFT the deviation between GAP and DFT total energies in
phase k, and T the temperature. The FEP on the Gibbs free

energies can then be translated into a correction on the chemical
potential differences as follows:

μkFEP ¼
Gk
GAP þ ΔGk

FEP

N
; (3)

where N is the number of atoms. Equation (2) represents an
average of Boltzmann factors: if the energy deviations between
the DFT and GAP estimates are small compared to the thermal
fluctuations at temperature T for both the tetragonal and cubic
phases, the correction on the corresponding chemical potential is
negligible, due to the exponential factors. This propagation of
errors can, however become significant or even dominant if the
energy deviations are of the same order of magnitude or larger
than the thermal fluctuations.
Panel (f) of Fig. 6 shows the effect of the FEP correction on the

estimate of the chemical potentials for the two selected
temperatures. The GAP shows good performance in the predic-
tion of both tetragonal and cubic structures (compared to kBT)
and the FEP correction is one order of magnitude smaller than
the actual prediction of Δμ and is still well within the error bars
computed with the MD runs. The correction is hence negligible
and no shift in the Curie point is observed, providing strong
numerical evidence of the DFT accuracy of the GAP in free-energy
predictions.

Dielectric response of BaTiO3

Let us now turn our attention to using the polarization model
developed and described in Methods, subsection “Polarization
model” to compute experimentally measurable quantities. As
previously mentioned in ref. 96 and elsewhere in the literature on
the modern theory of polarization97,98, the polarization of a
condensed-phase system is well defined only modulo the quantum
of polarization; however, we can still compute experimentally
observable quantities as changes and fluctuations in its value.
The first of these experimentally relevant quantities is the static

dielectric constant, which can be computed directly from the

Fig. 6 Phase diagram of BaTiO3 at ambient pressure. Panels a–c show the R-O, O-T, and T-C clusters in the (s1, s2) plane across the
coexistence regions. Each configuration generated in the MD is a point in this plane, colored according to its probability P. The latter is
computed via the probabilistic analysis of molecular motifs (PAMM)139 algorithm (see Methods, subsection “Physically-inspired order
parameters” for additional details). P is smoothly increasing in the [0, 1] interval while going from R to O (panel a), then from O to T (panel b),
and finally from T to C (panel c). Panels d–f show the temperature-dependent chemical potential differences across the R-O (d), O-T (e), and
T-C (f) transitions. Blue error bars represent standard deviations computed across multiple MD runs, the cyan line the best linear fit across the
coexistence regions, and the purple error bars the propagated errors on the critical temperatures. In addition, the orange triangles in panel f
show the free-energy perturbed chemical potentials, using 50 reference tetragonal and cubic structures just below (170 K) and above (194 K)
the Curie point. 6× magnified insets corresponding to these two temperatures show how the FEP-corrected chemical potentials consistently
fall within the error bars due to the MD sampling, confirming the DFT accuracy of the GAP (see subsection “Thermodynamics of BaTiO3”).
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fluctuations of the system’s total dipole96. In the cubic phase:

εr ¼ 1þ M2
� �

3ε0VkBT
þ ε1 (4)

where both the total dipole magnitude M and the vacuum
permittivity ε0 are expressed in SI units and the average value of
the cell dipole Mh i ¼ 0 by symmetry. The optical (electronic)
dielectric constant ε∞ from both measurements and calcula-
tions17,99,100 is in the range of 5 to 6, which is much smaller than
the typical range of εr we calculate for this material, so this term
will be neglected in the following analysis. In any case, the
analyses below are nearly or completely insensitive to such a
small constant shift. For non-cubic phases, we must modify the
equation to subtract off the (now nonzero) average polarization,
replacing M2

� �
with MαMβ

� �� Mαh i Mβ

� �
, where α and β are

Cartesian components of the total dipole vector101. Notably,
since the non-cubic phases have an anisotropic structure, the
dielectric tensor εr,αβ will also generally be anisotropic. Indeed,
experimental measurements on single-domain crystals of BaTiO3

have shown a pronounced dielectric anisotropy, especially in the
tetragonal phase2,102.
Comparison of our results with experiments is complicated by

the dramatic variation in the measured value with temperature,
composition, and grain size103–105. We, therefore, study the
temperature dependence explicitly, as shown in Fig. 7. The
calculated values for the orthorhombic, tetragonal, and cubic

phases agree qualitatively with the calculations of ref. 100, which
used a similar computational methodology but with a shell-model
potential, as well as with measurements on single-domain
crystals2,102. In the tetragonal phase, we see the expected strong
anisotropy between the components parallel (ε∥) and perpendi-
cular (ε⊥) to the polarization axis—as we can already see from
Fig. 1, the polarization fluctuations in the tetragonal phase are
strongly suppressed along the polarization direction, which
matches the much smaller value of ε∥ seen here. In the
orthorhombic phase, the experimental measurements are averages
over different domains and thus do not show the same pattern of
anisotropy—namely, the splitting into three separate principal
components—seen here, but this splitting is present in ref. 100.
In the cubic phase, the expected temperature dependence

follows a version of the Curie–Weiss law103:

εr ¼ C
T � T c;ε

þ εT!1 (5)

where Tc,ε is the (dielectric) Curie temperature, which should—in
the limit of infinite system size and statistical sampling—agree
with the tetragonal-cubic phase transition temperature computed
above, Tc, C−T= 182.4 K.
From the temperature dependence data in Fig. 7, we determine

the best-fit parameters for the 4 × 4 × 4 cell data to be
εT→∞= 90 ± 18, Tc,ε= (167.4 ± 2.3) K, and C= (57100 ± 3600) K.
The most important discrepancy to note here is that the Curie
point predicted by this fit is still about 15 K lower than the
thermodynamic phase transition temperature predicted for ambi-
ent pressure in the subsection “Thermodynamics of BaTiO3”. This
discrepancy is likely a result of finite-size effects due to the small
supercell, which are known to broaden and shift critical points106.
The 5 × 5 × 5 fit, on the other hand, yields εT→∞= 99 ± 18,
Tc,ε= (171 ± 6) K, and C= (62200 ± 2500) K: the Curie temperature
Tc,ε is slightly closer to the predicted phase transition temperature
Tc,C−T, which is now within the 95% confidence interval of the fit
parameters. However, even with the larger supercell, we still note a
discrepancy from the parameters determined by fits to experimental
data103,107—namely, the Curie–Weiss constant C is under-predicted
by a factor of about 2 with respect to the experiment. This difference
could be due to approximations inherent in the underlying DFT
functional, either directly or indirectly, due to the underestimation of
the phase transition temperatures. We test this hypothesis in more
detail below by investigating the negative-pressure simulations.
The equation for the static dielectric constant, Equation (4), is, in

fact, only the zero-frequency limit of the whole frequency-
dependent response function. We can compute the frequency-
dependent susceptibility (and thus the relative dielectric constant)
via linear response theory from the one-sided Fourier transform of
the dipole–dipole autocorrelation function108,109 (again for the
cubic phase):

χðωÞ ¼ 1
3ε0VkBT

M2
� ��

� iω
R1
0 MðτÞ �Mðt þ τÞh ie�iωtd t

	
¼ ðεr � 1Þ 1� iω

R1
0

~CMMðtÞe�iωtd t
� 	 (6)

where ~CMMðtÞ ¼ 1
M2h i Mð0Þ �MðtÞh i is the normalized dipole–dipole

autocorrelation function and εr is the static dielectric constant
computed from Equation (4).
We show the frequency-dependent susceptibility for a

6 × 6 × 6 supercell trajectory at 250 K, computed using
Equation (6), in Fig. 8. In general, we see the same structure as
predicted for the high-temperature cubic phase by both theore-
tical effective-Hamiltonian MD calculations25 and observed experi-
mentally103, namely, that of a large absorption peak corresponding
to the soft-mode (TO1) phonon frequency. Note the slight negative
dip in the real dielectric constant is expected and seen in many
previous observations25,101,102. This does not imply that the real or

Fig. 7 Static dielectric constant of BaTiO3. a Temperature depen-
dence of the static dielectric constant computed for a
4 × 4 × 4 supercell across the orthorhombic, tetragonal, and cubic
phases. The phase transition temperatures computed from the
chemical potential (see Table 1 are shown as vertical dashed lines.
b Supercell-size comparison of dielectric constants computed in the
cubic phase, including fits to the Curie–Weiss law Equation (5)—
note the log scale on the y-axis. The effective Curie temperature Tc,ε
predicted by each fit is shown by the shaded vertical spans and the
error bars towards the bottom left of the figure. Error bars show one
standard deviation and are computed as described in Supplemen-
tary Note 6.
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imaginary part of the refractive index n ¼ ffiffiffiffi
ϵr

p
is anywhere

negative. It was previously proposed110,111 that the “soft-mode”
part of the absorption spectrum of BaTiO3 could be described with
a single, strongly damped harmonic oscillator of the form

χðωÞ ¼ Aω2
0

ω2
0 � ω2 þ iγω

(7)

with amplitude A, damping constant γ, and resonant frequency ω0

(which is always larger than the actual apparent peak frequency).
However, a later study112 uncovered possible inadequacies of this
single-oscillator model, especially in the high-frequency range
(ω0 ≈ 100 cm−1), and suggested a two-oscillator model as a
possible replacement, though it was not yet justified by the
available experimental data.
More recently, ref. 25 both measured high-accuracy infrared

spectra and computed theoretical spectra from MD simulations
of the effective Hamiltonian model of ref. 28, and they found
strong evidence that the spectrum indeed is best modeled by
two harmonic oscillators. The computed spectrum from our
model at 250 K, shown in Fig. 8, further supports this picture: we
also find that the imaginary part of the spectrum could only be
satisfactorily described with two oscillators, although with
different parameters from those calculated in ref. 25: we find
one oscillator with fundamental frequency ω1= 86 cm−1 and
damping ratio γ1/ω1= 3.0, and another with fundamental
frequency ω2= 187 cm−1 and damping ratio γ2/ω2= 1.1. Com-
paring these parameters with those calculated in ref. 25, we find
both frequencies to be rather high, so our agreement with their
results remains mostly qualitative for now.
On the one hand, the differences we observe could be due to the

large oscillations and lack of resolution at high frequencies due to
the limited sampling time imposed by the relatively large
computational cost of our model. However, it is more likely that
both these discrepancies have the same origin as the under-
estimation of the phase transition temperatures discussed above –
either inaccuracies in the underlying DFT model or some other effect
not yet accounted for. As noted in the subsection “Thermodynamics
of BaTiO3”, the phase transition temperatures can be compensated
by applying negative pressure. Indeed, ref. 25 associate the higher-
frequency mode with short-range correlations between (mostly)
neighboring unit-cell dipoles, so it is likely that this frequency shift
has the same origin as the pressure effect.
To investigate this discrepancy further and to assess the effect of

negative pressure on the dielectric response, we compute frequency-
dependent susceptibility spectra for all the negative-pressure

simulations previously run for subsection “Thermodynamics of
BaTiO3” (specifically, Fig. 9), where the material remained in the
cubic phase. The spectra are also compared to those derived from
ambient-pressure simulations, specifically those used to compute the
temperature dependence of the dielectric constant in Fig. 7. The
comparison is shown in Fig. 10. On the one hand, we see the main
peak shifting towards higher frequencies as the temperature
increases, as expected from previous theoretical and experimental
studies25,111. On the other hand, we also see the peak shifting
towards lower frequencies when negative pressure is applied at any
given temperature. While the peak frequencies for the negative-
pressure simulations still do not match experimental data for the
same temperatures, the shifts are in the right direction.
Furthermore, all simulations show a small narrow peak or edge

at around 340 cm−1, independent of the temperature. The
frequency of the mode does depend on pressure, but due to
the large bulk modulus of BaTiO3, the mode shifts very little: only
about 7 cm−1 under −2 GPa of pressure.
Although this peak likely represents a feature of our model and

not just a simulation artifact, we do not yet have enough
information to confidently identify this peak with known vibrational
modes of BaTiO3

103,110,113.
In fact, the difficulties we encounter here in reproducing the

results of simpler, experimentally accurate—but empirically
adjusted—models are reminiscent of the difficulties encountered
previously, e.g., in ref. 68, in applying more accurate (in the sense
of reproducing the quantum PES) ML potentials that must, in turn,
account for more accurate physics, such as many-body dispersion
and quantum nuclear effects, in order to arrive at the right
predictions for the right reasons. Rather than being a deficiency in
the machine learning simulation approach, we see this as an
opportunity to discover interesting physical behaviors and
mechanisms that were overlooked before.
The calculations presented here are a promising first step towards

using the ML-PES and polarization framework as a generally
applicable tool to predict experimentally relevant response proper-
ties. This tool will be a valuable future asset for investigating new
candidate ferroelectric materials or gaining more insight into the
underlying behavior of existing ones.

DISCUSSION
In this work, we introduce a modern, general ML framework to
describe at once the finite-temperature and functional properties
(dielectric response) of perovskite ferroelectrics and apply it
specifically to model barium titanate (BaTiO3). This framework
matches the accuracy of the underlying DFT method and does not
require to preselect a given effective Hamiltonian model22,114. The
simulations made possible by this framework recover the correct
R-O-T-C phase ordering in fully flexible simulations and allow to
investigate of the emergence of Ti off-centerings. In particular, we
highlight the driving mechanism of the ferroelectric transition,
showing how the presence of these off-centered displacements
gives rise to a low-temperature ferroelectric phase due to a long-
range dipolar ordering. Moreover, the interplay between the
displacements and the cell deformations leads to the emergence
of intermediate tetragonal and orthorhombic phases. We further
proceed to reconstruct the thermodynamics of BaTiO3 (see
subsection “Thermodynamics of BaTiO3”) by means of a two-
component, polarization-derived CV.
Finally, we apply the ML polarization model to calculate dielectric

response properties of experimental interest, including the static and
frequency-dependent dielectric constants, and investigate their
dependence on temperature. While we do not reach a quantitative
agreement with experimental measurements for many of the
properties computed here, we see several clear, systematic pathways
to improving the model potential and its predictions, such as
including long-range electrostatic effects, simulating larger system

Fig. 8 Frequency-dependent dielectric response of cubic BaTiO3
at 250 K computed with a 6 × 6 × 6 supercell. The imaginary part of
the spectrum is fitted to a sum of two simple harmonic oscillator
response functions, as in ref. 25; the two separate oscillator
responses are shown in thin light blue lines, while the fitted sum
is shown as a thick light blue line.
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sizes, as well as addressing the possible deficiencies in the underlying
DFT model for both energies and polarizations. We expect that such
improvements will allow us to reach a quantitative agreement with
the experiments. Our results obtained with negative pressure
calculations and the FEP show how this discrepancy can, in fact, be
traced back in part to the sensitivity of the transition temperatures to
cell volume combined with the deviation of the DFT cell volume from
the experimental one. This effect suggests that a more in-depth
investigation of the effects of pressure—which is well known to
influence the onset of ferroelectricity—could provide further insights
into the deviation from experiments. A closer agreement could also
be obtained by combining, as recently proposed, different DFT
schemes to describe simultaneously the energy, structure, and
electronic density of perovskite oxides115.
We also plan to make improvements to the model performance

by means of the feature sparsification technique, as detailed in
ref. 70. The latter has proven to reduce the computational cost (in
energies and force predictions) by a factor of 3 or 4 for realistic
systems and, in combination with larger-scale parallelization
techniques, will allow us to treat larger, more complex systems.
Importantly, this ML framework automates the construction of a

model of the PES and the polarization and can then be used to
investigate finite-temperature properties in detail and with first-
principles accuracy. Since the ML-PES was made with no explicit
assumption on the functional form of the underlying PES and no
prior definition of the relevant degrees of freedom of the system,
this strategy is generalizable to other materials to study, e.g., 2D
ferroelectrics29 and solid solutions with variable stoichiometries,
that are known to possess different and more complex ferro-
electric states. For instance, BaxSr1−xTiyZr1−yO3 is known to display
a rich phase diagram, depending on composition, and shows both
ferroelectric and relaxor ferroelectric phases116. Furthermore, the
framework developed is easily applicable to study the role of
nuclear quantum effects, for instance, in incipient ferroelectrics
such as SrTiO3 and KTaO3, where quantum fluctuations appear to
suppress the ferroelectric state91,117. Further extensions of this
framework include the investigation of the role of a finite electric
field in the MD and its effect on polarization. This will allow us to
simulate, for instance, hysteresis loops, which are key to measure
the energy storage of ferroelectric devices.
In conclusion, we have shown how a comprehensive, data-

driven modeling framework for a perovskite ferroelectric material,
based on DFT reference data, can capture the mechanisms of the
ferroelectric transition, as well as make predictions of thermo-
dynamic and functional properties with first-principles accuracy.
The work opens the door for a new avenue of fruitful research into
the understanding and characterization of known ferroelectric

materials, as well as the discovery and design of new candidate
compounds with improved industrially relevant properties.

METHODS
In this section, we first summarize the construction and properties of the
symmetry-adapted features used to train the ML models; a more thorough
discussion of this family of features and an introduction to the notation we

Fig. 10 Temperature and pressure dependence of the imaginary
part of the dielectric response spectrum, all computed in the
cubic phase on a 4 × 4 × 4 supercell. For each two pressures,
spectra computed at different temperatures are displayed on the
same graph, vertically offset from one another for clarity. The units
of the y-axis are arbitrary, though all spectra on the same plot have
the same scale. While the increase in temperature broadens
the main peak and shifts it to higher frequencies, the negative
pressure instead shifts the main peak to lower frequencies for a
given temperature (i.e., closer to the experiment, as well as the
theoretical calculations of ref. 25).

Fig. 9 Results of the MD simulations with an externally applied negative pressure p=−2 GPa. Panel a shows the chemical potential
differences across the T-C transition, obtained via NST fully flexible simulations and with an estimated Curie temperature of Tc= (264 ± 1) K, as
opposed to (182.4 ± 0.7) K calculated at ambient pressure (see subsection “Thermodynamics of BaTiO3”). Panel b shows instead a comparison
between the time evolution of the lattice constant in NpT simulations at 250 K with negative pressure and ambient pressure. These show how
the effect of a negative pressure slightly increases the average unit-cell lattice parameter (by only 0.7%) due to the large bulk modulus of
BaTiO3. This has, however, important consequences on the relative stability of T and C phases, with a shift of the Curie point of 82 K with
respect to the ambient pressure estimate. Error bars have the same meaning as in Fig. 6.
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use here is given in Section 3 of ref. 73. With these features defined, we
detail how the potential energy surface and the polarization models are
constructed. Turning our attention to the specifics of modeling BaTiO3, we
report the training and validation of our ML model. Furthermore, we
develop physically-inspired order parameters, which we use to characterize
and interpret our results from subsection “Thermodynamics of BaTiO3”.
Finally, we report the computational details of the ML-MD simulations.

Symmetry-adapted features
To construct the family of features that are relevant for this paper, we
make use of the atom-centered density-correlation framework118. The
starting point is the definition of a set of features, namely 〈anlm∣A; ρi〉, from
an expansion of the atomic density for an environment i of structure A, as
in Equation (31) of ref. 118. The different indices in the bra identify the
chemical species (a), radial function (n), and angular momentum (l, m), the
latter being especially important to track the symmetry of the features.
Symmetry-adapted descriptors can be obtained as a symmetrized

average (referred to by an overline decoration) of the tensor product of ν
sets of expansion coefficients, resulting in density-correlation features
hqjρ�ν

i ; λμi. While the generic index q only enumerates the features, the
other indices encode the physical meaning of these descriptors. There are
two fundamental parameters: (a) the body-order exponent ν, which
indicates that the features describe the relative position of ν neighbors of
the central atom and (b) the λ, μ coefficients, which determine how the
descriptor transforms under rotations—namely as spherical harmonics Yμ

λ .
This framework allows us to build features that are not only invariant to
rotations but also explicitly covariant (more generally called equivariant)
features of any tensor order. Such equivariant features were first
introduced by ref. 119, for vector features, and in ref. 35 for tensors of
arbitrary order. Equivariant features are now gaining considerable
popularity, especially for graph convolutional neural networks to predict
scalar and tensor properties61,120–123. In this work we only deal with
spherical invariants or SOAP descriptors74—corresponding to λ= 0, μ= 0
and λ= 1, μ= (−1, 0, +1) features, representing spherical equivariants of
order 1. For instance, SOAP power spectrum features, which are invariant
under rotations, are obtained from the contraction of two sets of
coefficients (ν= 2):

han; a0n0; ljA; ρ�2
i ; 00i �

X
m

hanlmjA; ρiihA; ρi ja0n0 lmi: (8)

These features can thus be written as hqjA; ρ�2
i i.

Similarly, the simplest example of equivariant features only encodes
information on the radial distribution of neighbors. They are equivalent to
the density coefficients themselves:

hq ¼ ðanÞjA; ρ�1
i ; λμi ¼ hanλμjA; ρii; (9)

An extension of this construction allows one to build symmetry-adapted
tensors of arbitrary rank and body order65.
Given that, in order to learn dipole moments and polarizations, we

only need the special case of vector-valued features, we find it
convenient to exploit the relationship between real-valued spherical
harmonics of order λ= 1 and the Cartesian coordinates α= (x, y, z) to
define Cartesian equivariants

hqjA; ρ�ν
i ; α ¼ ðx; y; zÞi � hqjA; ρ�ν

i ; λ ¼ 1 μ ¼ ð1;�1; 0Þi; (10)

The Cartesian equivariants of Equation (10) now explicitly transform as a
3-vector under rotations:

hqjR̂A; ρ�ν
i ; αi ¼

X
α0

Rαα0 hqjA; ρνi ; α0i: (11)

R̂A indicates an arbitrary rotation of a structure A, while Rαα0 is its
representation as a 3 × 3 Cartesian matrix. We use this family of features to
model the polarization of a BaTiO3 structure and to build an order
parameter to distinguish the R-O-T-C phases (see Results, subsection
“Thermodynamics of BaTiO3”). We refer the reader to refs. 70,73 and the
documentation of librascal124 for implementation details.

Potential energy surface
A Gaussian approximation potential (GAP) is constructed by linear
regression of energies E and atomic force components frf gNr¼1, where N
is the number of atoms, in the space of the kernels of these descriptors,
representing the degree of correlation between the structures.

In order to control the computational cost of the calculation of energies
and forces, we also construct a sparse set of representative atomic
environments J that are used to define a basis of kernels k(⋅, Jj) in order to
approximate the structure-energy relation. This is discussed further in
subsection “Training the ML model for BaTiO3”.
We write the target properties as a sum of kernel contributions:

E ¼ P
i2A

P
j2J

bjkðAi ; JjÞ

fr ¼ �∇rE;
(12)

where the kernel is built as a function of a set of atom-centered invariant
features 〈q∣Ai〉, the index j runs over all environments Jj in the sparse set J
and bj are the weights on each sparse environment to be determined via

ridge regression. Here we use SOAP power spectrum features, hqjA; ρ�2
i i,

and we compute the kernel between atomic environments as a scalar
product raised to an integer power kðAi ; A0i0 Þ ¼ ðPqhAi jqihqjA0i0 iÞζ , using
ζ= 4 here, to introduce nonlinear behavior.

Polarization model
Besides this potential energy model, we construct a fully flexible,
conformationally sensitive dipole moment surface for the material by
employing the symmetry-adapted Gaussian process regression (SA-GPR)
framework35, previously benchmarked in the context of molecules in
ref. 125 and proven to extend to the condensed phase in ref. 81. Even
though the cell polarization (or dipole) is not uniquely defined in periodic
boundary conditions97,98, we can still make a model for only a single
branch of this polarization manifold with suitable pre-processing of the
training data, detailed in Supplementary Note 3. This branch choice is
essentially equivalent to fixing the polarization to be a single continuous
function whose linearization about P= 0 is the product of Born effective
charges and displacement from some non-polar reference structure, in the
spirit of ref. 126.
As with existing SA-GPR approaches, the total dipole of the cell is

decomposed into vector-valued atomic contributions. In analogy to
Equation (12), we express the total dipole M and polarization P of a
structure A as:

MðAÞ ¼
X
i2A

X
j2J0

bjkðAi ; JjÞ; (13)

PðAÞ ¼ MðAÞ
VA

: (14)

Our model works with total dipoles rather than polarizations as only the
former are size extensive. A key advantage of this model is that we
represent the dipole moment as a sum of atom-centered contributions
(effectively, “partial dipoles”, in analogy to partial charges), giving us a
spatially resolved, atomistic picture of how the different parts of
the system contribute to the total polarization. Note that in contrast to
the model described in ref. 125, we do not define an additional partial-
charge model, since such a model would depend on the choice of the unit-
cell and be incompatible with the modern theory of polarization. The only
situation in which we use nonzero partial charges is in the linearized
effective-charge model used to shift the training-set polarizations to the
same branch; these effective charges are not used in the production
model. As already remarked in ref. 96 and later in ref. 125, this information
can give us a much deeper insight into the physics of the system than
predicting the total dipole alone. In this study, we use this information to
define Ti-centered unit-cell dipoles by an appropriate sum of atomic partial
dipoles. The dipole of the Ti-atom is added to the dipoles from
neighboring O and Ba atoms, with the neighboring contributions weighted
(by 1/2 for O and 1/8 for Ba) so that the sum of the unit-cell dipoles is still
equal to the total cell dipole. These unit-cell dipoles were used to make
Figs. 1 and 2.
The model is trained on the same set of structures as the potential

energy surface from subsection “Potential energy surface” but uses
different training data and, generally, a different sparse set J0 each with a
different set of weights {b}. These weights take the form of 3-component
vectors, corresponding to the kernel kðAi ;A0i0 Þ, which is now a rank-2
Cartesian tensor (i.e., a 3 × 3 matrix) for any pair of environments. This
kernel is computed, as in the scalar case, as an inner product of
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symmetry-adapted features hqjA; ρ�2
i ; αi

kαα0 ðAi ;A0i0 Þ ¼
X
q

hA; ρ�2
i ; αjqihqjA0; ρ�2

i ; α0i: (15)

Training the ML model for BaTiO3

As pointed out in the subsection “Potential energy surface”, constructing a
GAP model requires defining a representative set of environments to
control the computational cost in evaluating energies and atomic forces of
structures. The representative environments should be ideally as diverse as
possible so as to provide a good extrapolation across all the phases of
interest. Specifically, for our case study of BaTiO3, we use Farthest-Point
Sampling (FPS) to select a total of 250 environments centered around
barium and titanium atoms and 500 around oxygen atoms from the initial
training dataset obtained via DFT optimizations (additional details are
given below).
A second crucial parameter is the radial cutoff in the neighbor density

ρi(x), defined in subsection “Symmetry-adapted features”. This defines the
size of the atomic environment, centered around atom i. Choosing large
cutoff radii means including more neighbors in the density expansion and
allows, in general, a more accurate representation of the environment. This
happens, however, at the expense of increasing the computational
complexity. For the purpose of constructing a GAP for BaTiO3, we choose
a radial cutoff of 5.5Å around each center which is larger than the average
separation of the first nearest Ti neighbors (≈4.0Å). This cutoff allows us to
capture the short-ranged Ti–Ti interactions that ultimately result in long-
range emergent dipole correlations, a distinctive feature of polarized states
in BaTiO3, as seen in Results, subsection “Structural transitions in BaTiO3”.
The training dataset is constructed in an iterative fashion, which also

means it can be systematically extended. Energies and forces are
calculated using DFT as implemented in Quantum ESPRESSO127,128 with
the PBEsol129 functional, and managed with AiiDA130–132; further details
can be found in Supplementary Note 2. An initial training set of N0= 518
cubic structures (obtained from DFT optimizations with the PBEsol
functional) is used to train a preliminary GAP. Molecular dynamics
simulations with i-PI133 are then performed in all the R-O-T-C geometries
and for a total simulation time of up to 500 ps. Among all uncorrelated
structures thus generated with MD—the correlation being computed via
the time-dependent autocorrelation function of the total energy—only the
most diverse according to their SOAP descriptors are then selected via FPS
and recomputed with DFT self-consistent calculations. These are then used
to extend the training dataset and refit the GAP, thus restarting the loop
and obtaining an increasingly accurate description of the PES. The final
dataset built with this procedure has a total of 1458 structures, with an
adequate sampling of all the phases of BaTiO3. Specifically, on top of the

initial training set of 518 structures, we added 100 structures coming from
the first round of replica-exchange molecular dynamics (REMD) simulations
in the NVT ensemble and additional 840 structures coming from a
sampling of each of the R-O-T-C phases (210 per phase) in the second
round of NpT REMD calculations.
The learning curve of the GAP, trained on a total of 1200 training

structures, is shown in Fig. 11a, with 258 randomly selected structures used
as a validation set. The root mean square error (RMSE) decreases significantly
with an increasing number of training points and the final accuracy of the
potential in energy estimations is about 6meV per formula unit (f.u.). This
level of accuracy is sufficient to capture several interesting features of the
physics of BaTiO3, including the structural R-O-T-C phases, the presence of
needle-like correlations even in the high-temperature paraelectric phase,
and to enable predictions of the free-energy surface, that have the same
degree of accuracy as the underlying DFT method (see Results, subsection
“Thermodynamics of BaTiO3”).
The polarization model, in contrast to the GAP, is trained only on the set of

NT,pol= 840 structures sampled from the NpT REMD calculations described
above, with 210 structures coming from each of the four phases. A total of
200 randomly selected structures are withheld for testing; the largest model
has therefore been trained with Nmax,pol= 640 structures. The learning curve
of the polarization model, shown in Fig. 11b, shows good performance; the
largest model (N= 640 structures) achieves an accuracy of 3% of the intrinsic
variation of the total dipoles in the training set, corresponding to an RMSE of
0.013 a0 per atom, or 0.07 a0 per unit-cell—which is still small compared to
the scale of unit-cell polarizations shown, for example, in Fig. 1.

Phonon dispersions
A crucial test to evaluate the performance of the GAP is to compute
phonon spectra and the corresponding density of states (DOS) and
compare them with the DFT phonon spectra. In Fig. 12, we directly
compare the outcome on a 4 × 4 × 4q-mesh, taking two representative
structures as reference: the 5-atom cubic structure and the rhombohedral
ground state, optimized via variable-cell DFT calculations. The calculations
were carried out via the finite difference method using the atomic
simulation environment134 (ASE) for the GAP calculations and phonopy135

Fig. 11 Learning curves of the ML models. a The GAP model for
energies and atomic force components, trained on a total of 1200
training structures with 258 randomly selected structures used as
the validation set and b the SA-GPR polarization model, trained on a
total of 640 structures with 200 validation structures.

Fig. 12 Phonon dispersion and density of states (DOS) of the
stable (ω > 0) phonons for BaTiO3 calculated using finite differ-
ences with a 4 × 4 × 4 q-mesh for. a The 5-atom rhombohedral
ground state and b the 5-atom cubic structure (high-symmetry
k-point labels from ref. 146). We compare the GAP predictions with
the DFT calculations without long-range electrostatic contributions,
i.e., without LO-TO splitting. The vertical dashed lines indicate the
explicitly calculated q-points.
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in conjunction with Quantum ESPRESSO for the DFT calculations. Since no
explicit correction for the long-range electrostatics was explicitly taken into
account in constructing the ML model, we compare the GAP predictions
with the DFT calculations without such contributions. We stress, however,
that this contribution due to long-range electrostatic interactions should
be included to recover, e.g., the correct LO and TO mode splitting at Γ and
to stabilize the TA mode of the rhombohedral structure along the T-Γ and
Γ-F paths (see the Supplementary Fig. 10 for the DFT dispersion with LO-TO
splitting). It has been shown in the work of ref. 136 that short-ranged
potentials in polar materials can capture the correct phonon dispersions if
the appropriate long-range dielectric model is subtracted before fitting the
short-ranged potential and then added back analytically—in analogy to
what is done to Fourier interpolate phonon dispersions137. We also show,
in Supplementary Fig. 10, the full phonon spectra once these dielectric
contributions are considered. The spectra show an overall good
agreement, especially for the low-frequency acoustic modes, with the
most apparent discrepancies occurring for the highest LO mode. These
discrepancies are likely to be caused by two main effects: (a) the training
set construction and (b) the locality of the GAP. First, we recall that the
interatomic potential is only trained on 2 × 2 × 2 structures so that long-
wavelength modes that correspond to the periodicity of a 4 × 4 × 4 cell lie
in the extrapolative regime of the potential. Second, the GAP is only
sensitive to atomic displacements within the chosen radial cutoff, so
phonon modes with a small momentum q, and thus involving long-
wavelength excitations outside this radial cutoff, are not guaranteed to be
well reproduced. These effects are likely the root of the disagreement
between modes that lie along the Γ-X and Γ-L paths, like ð0; 0; 14Þ.
Additional studies in this direction to investigate the role of the long-range
electrostatic contribution on top of the GAP will shed light on this
discrepancy and likely offer a better agreement with the reference DFT

calculations. Furthermore, the inclusion of the LO-TO splitting will allow us
to perform a finite-temperature study of the phonon dispersion across the
T-C transition, to be compared with a recent study by ref. 138. As we have
seen, however, long-range electrostatic contributions are not essential to
model the thermodynamics and phase transitions of BaTiO3.

Validation with local dipole rotations
As a further test, we evaluate the accuracy of the GAP by modeling some of
the distortions associated with the ferroelectric transition. In particular, the
states associated with the presence of off-centered Ti atoms relative to the O
cage and the energy barrier separating them is key. As we have discussed in
Results, subsection “Structural transitions in BaTiO3”, the long-range ordering
of these displacements is the fundamental driver of ferroelectricity in BaTiO3.
To test the performance of the GAP in reproducing these states, we

construct two paths, representing a local dipole rotation, across the
phase space of a 2 × 2 × 2 cubic supercell with a lattice parameter of 8Å.
We start with the DFT-optimized structure with all Ti displaced by
0.082Å along the 〈111〉 direction resulting in local dipoles, as depicted by
the arrows in panel a of Fig. 13. This is a rhombohedral structure—
spacegroup R3m (160)—with Ba and Ti occupying the 1a position
(zBa=−0.0004 and zTi= 0.51116), and O occupying the 3b position
(xO= 0.48823, zO=−0.01872). For reference, the cubic structure with no
dipole moment would have zBa= 0, zTi= 0.5, xO= 0.5, and zO= 0, resulting
in a cubic structure with spacegroup Pm3m (221). One dipole, depicted in
cyan, is then rotated about the barycenter of the enclosing oxygen
octahedron to align with h111i while keeping the magnitude of the Ti-
displacement constant and all other atoms fixed. The two paths, shown as
the insets in panel b, have the same endpoints but visit different vertices of
the cube centered at the barycenter of the octahedron with the h111i and
〈111〉 displacements defining a diagonal.
Physically, these paths represent the energy cost due to a relative

rotation of one local dipole starting from a perfect ferroelectric state. A
comparison between the GAP and the DFT energy variations across these
paths (see panel b of Fig. 13) shows that the GAP correctly reproduces the
energy profile and favors states that correspond to aligned Ti-displace-
ments, a feature that we have also seen in low-temperature MD
simulations (see Results, subsection “The microscopic mechanism of the
ferroelectric transition”). From a quantitative perspective, the GAP over-
estimates the energy barriers by some nonnegligible, but still reasonable,
18% for both paths. We stress, however, that these paths lie within the
extrapolative regime of the potential, as they are constructed artificially
and no MD simulation visits configurations that are close to them, except
for the starting, completely ordered structure that is visited at low
temperature (see Results, subsection “Structural transitions in BaTiO3”).

Physically-inspired order parameters
As mentioned in Results, subsection “Thermodynamics of BaTiO3”, the
construction of a CV that can effectively distinguish the structural phases of
BaTiO3 is key for the prediction of its phase diagram. In this section, we
provide the construction of a two-component CV, namely s= (s1, s2), by
explicitly using the predicted polarization P as an order parameter. As we
shall see, we will build a set of invariant descriptors that correspond, for
each structure, to a scalar product of vectors. These are constructed using
the equivariant features hanjA; ρ�ν

i ; αi defined in Equation (10), averaged

Fig. 13 Validation of the GAP. Panel a shows the starting configuration of the two selected paths: the Ti dipoles are aligned along the 〈111〉
state and marked by black arrows. They are kept frozen along the two paths shown as insets in panel (b). The dipole that is rotated is instead
marked by a cyan arrow. Panel b shows a comparison between GAP and DFT predictions for the two paths that connect the 〈111〉 and h111i
states.

Fig. 14 Sketch of the i-th Ti-center of structure A, along with its
enclosing oxygen cage and the two vectors ~PiðAÞ and ~Q

an
i ðAÞ

associated with it. The final CV is computed as a scalar product of
these quantities after first summing over all Ti-centers.
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over Ti-centered environments. Physically, they will carry information about
the orientation of P relative to the ’mean’ atomic distortion, which we call Q
(see also Fig. 14).
Firstly, in order to compute the CV efficiently for long MD runs, we need to

define an easy-to-compute proxy for P, which we will denote as ~P. In practice,
we find that some of the neighbor density coefficients 〈anlm∣A; ρi〉
introduced in the subsection “Symmetry-adapted features” correlate strongly
with P (see the correlation plots in Supplementary Fig. 7). We can then define
~P by restricting ourselves to Ti-centered environments, as follows:

~PαðAÞ ¼
X
i2A;Ti

~Pα;iðAÞ ¼
X
i2A;Ti

ha ¼ O n ¼ 6jρ�1
i ; αi (16)

where a=O represents the atomic species (the oxygen) onto which we
project the Ti-centered density. Note that here we use the expression for the
Cartesian equivariants defined in subsection “Symmetry-adapted features” so
that α= (x, y, z) and ~P transforms like a vector under rotations. It represents, in
fact a sum of vectors ~Pi , each assigned to one Ti-center, as shown in Fig. 14.

Similarly, we average the full neighbor density coefficient hanjρ�1
i ; αi over all

Ti-centers to obtain a measure of the mean structural deformations:

~Q
an
α ðAÞ ¼

X
i2A;Ti

~Q
an
α;iðAÞ ¼

X
i2A;Ti

hanjρ�1
i ; αi: (17)

Finally, we compute the scalar product of ~P and ~Q to construct a set of
invariants:

OanðAÞ ¼ ~PðAÞ � ~QanðAÞ (18)

and perform a principal component analysis (PCA) on the scalar descriptors
Oan(A) to obtain two physically-motivated and symmetry-invariant order
parameters. This step allows us to obtain the scalar components that mostly
contribute to the observed variance of the Oan invariants across a dataset of
structures. In particular, by performing a PCA analysis over the entirety of
the MD trajectories as a function of all simulated temperatures, we find that
the first two PCs, corresponding to s1 and s2 can neatly separate all four
phases (see Results, subsection “Thermodynamics of BaTiO3”).
At each temperature, we then perform a separate clustering using the

probabilistic analysis of molecular motifs (PAMM)139 algorithm, that
determines a Gaussian mixture model in which each cluster corresponds
to a different phase. Using the posterior probabilities associated with the
mixture model (named probabilistic motif identifiers in ref. 139), we can
associate with each MD frame a smooth probability Pk(t), based on the
corresponding values of the CVs (s1(t), s2(t)), that represents the probability
that the corresponding structure at time t belongs to the cluster k= (R, O,
T, C). These probabilities are then used to determine the relative stability of
the different phases. The advantage of this technique, as compared to
perhaps simpler methodologies, such as tracking the temperature
evolution of the lattice parameters, is the fact that it is fully automatized,
rotationally invariant, and makes direct use of the polarization vector—the
key ingredient to physically describe the onset of ferroelectricity.

ML-MD Computational details
All the machine learning data that we have generated to investigate the
physics of BaTiO3 combines the use of molecular dynamics simulations
performed with i-PI140—the MD integrator—and librascal70,124—the engine
to compute the total energy, atomic force components, and stress tensor of a
BaTiO3 structure. In all cases, we choose the smallest simulation-cell size that
provides converged results; this is to optimize the tradeoff between
adequate sampling in time and adequate sampling in system size that is
possible under a given computational budget.
In particular, the results of subsection “Structural transitions in BaTiO3”

correspond to NST fully flexible simulations of a 5 × 5 × 5 cell, i.e., with an
external constant stress tensor σ= diag(p, p, p) with p= 1 atm. The full
flexibility of the cell allows the system to relax the off-diagonal components
of the MD computed stress tensor as the system undergoes the structural
R-O-T-C phase transitions as a function of the temperature. In this case, we
choose the simulation size so as to show well-separated structural
minima as a function of the temperature while maintaining the simulations
computationally inexpensive.
The results of Results, subsection “The microscopic mechanism of the

ferroelectric transition“ correspond instead to isotropic NpT simulations of a
4 × 4 × 4 cell over a wide range of temperatures (between 20 and 250 K)
with a restricted cubic geometry. This supercell size is sufficient to identify
the Ti off-centering as the physical mechanism governing the emergence of
ferroelectricity.

Fully flexible MD runs of a BaTiO3 4 × 4 × 4 cell with a total simulation time
up to 1.6 ns between 10 and 250 K are performed for quantitative estimation
of the temperature-dependent free energies (see Results, subsection
“Thermodynamics of BaTiO3”). In particular, unbiased MD is used to generate
trajectories across the coexistence regions of the O-T and T-C transitions
(between 40 and 250 K), while well-tempered metadynamics141 runs across
the R-O transition are needed to enable collective jumps between R and O
states within times that are affordable by classical MD runs. Additional details
on the metadynamics runs are given in Supplementary Note 4. The relatively
small supercell size, in this case, allows both efficient sampling of the
structural transitions and simulation times, on the order of nanoseconds, that
are required to converge the chemical potential estimates.
The spatial correlations shown in Results, subsection “Structural transitions

in BaTiO3” are calculated on a 5 × 5 × 5 supercell trajectory of length 400 ps,
while the static and frequency-dependent dielectric constant in Results,
subsection “Dielectric response of BaTiO3” were calculated on a
6 × 6 × 6 supercell trajectory of length 200 ps in order to ensure supercell-
size convergence of the static value. The temperature dependence of the
dielectric constant, being a more expensive calculation requiring multiple
trajectories, instead used both a 4 × 4 × 4 and a 5 × 5 × 5 supercell, simulated
for 250 ps each, to explicitly assess the rate of supercell-size convergence.
All the NpT/NST simulations were carried out with an isotropic/

anisotropic barostat, leaving the cell volume/vectors free to equilibrate
at finite temperature. Thermalization of the cell degrees of freedom is
achieved by means of a generalized Langevin equation (GLE) thermo-
stat142, while thermalization of the atomic velocity distribution is realized
via stochastic velocity rescaling (SVR)143. This combination of thermostats
allows for an optimal equilibration of the system’s relevant degrees of
freedom on a timescale of the order of picoseconds without significantly
interfering with the dynamical properties of the system, especially the
polarization vectors. The characteristic times of the barostat, the SVR
thermostat, and the MD timestep are 1 ps, 10 fs, and 2 fs, respectively.

DATA AVAILABILITY
All numerical data supporting the results of this paper and allowing to reproduce the
results are openly available on the Materials Cloud Archive144.

CODE AVAILABILITY
In order to generate the data needed for this paper, we made use of the librascal124,
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