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Abstract. Let Xn be a cycle of n projective lines, and Tn a symplectic torus

with n punctures. In this paper we review results of [STZ] and [Si], which

establish a version of homological mirror symmetry relating Xn and Tn, and
define on Db(Coh(Xn)) an action of the pure mapping class group of Tn.

1. Introduction.

As originally formulated by Kontsevich [K], Homological Mirror Symmetry
(from now on, HMS) relates the derived category of coherent sheaves on a smooth
projective Calabi-Yau manifold X, Db(Coh(X)), and the Fukaya category of a
compact symplectic manifold X̃, by stating that if X and X̃ are mirror partners,
then Db(Coh(X)) ∼= Fuk(X̃). Since its proposal, much work has been done towards
establishing Kontsevich’s conjecture in important classes of examples, see [PZ, S,
Sh], and references therein.

In [STZ], joint with Treumann and Zaslow, we address mirror symmetry in
dimension 1, by proving a version of HMS which pairs singular degenerations of
elliptic curves, given by cycles of projective lines, and punctured symplectic tori.
This result relies on the use of a conjectural model for the Fukaya category of
a punctured Riemann surface Σ, which is constructed in terms of a sheaf of dg
categories, CPM(−),1 defined over the Lagrangian skeleton of Σ.2 In [Si], using the
theory of spherical objects and twist functors introduced by Seidel and Thomas in
[SeT], we test one of the predictions of the mirror symmetry framework developed
in [STZ], by showing that the (pure) mapping class group of a punctured torus
acts by equivalences on the derived category of a cycle of projective lines.

In this paper we will review these results, by focusing on motivations and
examples, and keeping the presentation of the arguments as explicit and concrete
as possible. Let Xn be a cycle of projective lines, with n components, and Tn a
symplectic torus with n punctures. We will review the construction of CPM for
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stimulating discussions.
1CPM stands for ‘constructible plumbing model.’ The name depends on the fact that CPM

can be defined in greater generality, and supplies a dg model for the Fukaya category of plumbings

of cotangent bundles in any dimension [STZ2].
2HMS for punctured spheres has been investigated also in [AAEKO].

1



2 NICOLÒ SIBILLA

Tn in Section 2. The HMS statement relating the CPM model for Fuk(Tn) and
Perf(Xn) will be proved in Section 3. We will conclude by giving, in Section 4, a
brief overview of the results in [Si], focusing on the case of Db(Coh(X2)).

2. A model for the Fukaya category of punctured Riemann surfaces

Starting in 2009, in various talks, Kontsevich has argued [K1] that the Fukaya
category of a Stein manifold should have good local-to-global properties, and there-
fore conjecturally could be recovered as the global sections of a suitable sheaf of
dg categories (note also [S1], and [N1]). This is in keeping with previous work
of Nadler and Zaslow who, in [NZ] and [N], establish an equivalence between the
Fukaya category of exact Lagrangians in a cotangent bundle T ∗X, and the dg
category of (complexes of cohomologically) constructible sheaves over X, Sh(X).

Following Kontsevich’s insight, in [STZ] we equip the Lagrangian skeleton of
a punctured Riemann surface Σ with a sheaf of dg categories,3 called CPM(−),
such that its local behavior is dictated by Nadler and Zaslow’s work on cotangent
bundles, while its global sections are conjecturally quasi-equivalent to the Fukaya
category of exact Lagrangians in Σ, Fuk(Σ). Before discussing the construction of
CPM(−) in Section 2.2, we collect in Section 2.1 below the necessary background
on sheaf theory.

2.1. Microlocal sheaf theory in dimension 1. In [KS], Kashiwara and
Schapira explain how to attach to a constructible sheaf F ∈ Sh(X) a conical
(i.e. invariant under fiberwise dilation) Lagrangian subset of T ∗X, called singular
support, and denoted by SS(F). Informally, SS(F) is an invariant encoding the
co-directions along which F does not ‘propagate.’ Rather than giving the exact
definition, for which we refer the reader to Section 5.1 of [KS], we will describe in
Lemma 2.2 how the singular support works in the cases which will be relevant for
us. If Λ ↪→ T ∗X is a conical Lagrangian subset, denote by Sh(X,Λ) ↪→ Sh(X) the
full subcategory of constructible sheaves F ∈ Sh(X) such that SS(F) ⊂ Λ.

Proposition 2.1. Let X be a 1-dimensional manifold, let Λ ↪→ T ∗X be a
conical Lagrangian subset, and denote by π : T ∗X → X the natural projection. The
assigment sending a conical open subset V ⊂ Λ, to the dg category Sh(π(V ), V ),
can be extended to a sheaf of dg categories, denoted by MSh(−), over Λ equipped
with its natural topology.

Proof. The proof of the statement is discussed in Section 3.1 of [STZ], and
depends on the microlocal theory of sheaves developed in [KS]. In fact, a similar
statement holds in all dimensions [STZ2]. �

Lemma 2.2. Let X be a 1-dimensional manifold, and P = {p1, p2 · · · , pn} a
finite collection of points in X, then ΛP = X ∪ (T ∗p1X ∪ . . . ∪ T

∗
pn
X) is a con-

ical Lagrangian, and Sh(X,ΛP ) ⊂ Sh(X) coincides with the full subcategory of
constructible sheaves which are locally constant on P , and on X \ P .

Sh(X,ΛP ) admits a very simple combinatorial description in terms of quiver
representations. Call S the partition of X given by the points in P , and by the
connected components of X \ P . Denote by QS the quiver whose vertices are the

3Sh(X) is the dg enhancement of the derived category of constructible shaves of C-vector
spaces over X. From now on, we will refer to objects in Sh(X) simply as ‘constructible sheaves.’

See [KS] for a comprehensive introduction to the subject.
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elements of S, and with an arrow joining S, S′ ∈ S, with that orientation, if and
only if S is a point, and S′ is a sub-interval such that S ∈ S′. For example, if P has
cardinality 1, then QS is equal to • ← • → • if X = R, and to •⇒ • if X = S1.

Lemma 2.3. Sh(X,ΛP ) ∼= Rep(QS).4

Proof. If F ∈ Sh(X,Λ), by taking its stalks over p1, . . . pn, and over points
lying on the different components of X \ P , we obtain a complex of vector spaces
for each vertex of QS . Further, the restriction maps of F yield linear maps corre-
sponding to the arrows of QS . This prescription maps F to a representation of QS
in a functorial way, and defines the equivalence. �

Remark 2.4. Under the assumptions of Lemma 2.3, the sheaf MSh(−) can be
described explicitly. Assume, for concreteness, that X = S1, and P = {p}. Also,
fix an orientation on T ∗S1, and note that this allows us to decompose T ∗p S

1 as the
union of 0 and two rays, R+ and R−, respectively upward and downward pointing.
Below, we describe the sections of MSh(−) on contractible open subsets U ⊂ Λ,
and the assignment defining, on the objects, the restriction functors

ResU : MSh(Λ) = Sh(X,Λ) ∼= Rep(•⇒ •)→MSh(U),

the definition on morphisms will be obvious. This is enough to reconstructMSh(−).

Let M = V1

f //
g
// V2 be an object in Rep(•⇒ •), then

• if U ⊂ S1, MSh(U) ∼= C−mod, and ResU (M) = V2,
• if U ⊂ R+, MSh(U) ∼= C−mod, and ResU (M) = Cone(f),
• if U ⊂ R−, Msh(U) ∼= C−mod, and ResU (M) = Cone(g),

• if p ∈ U , MSh(U) ∼= Rep(• ← • → •), and ResU (M) = V2
f← V1

g→ V2.

2.2. The construction of CPM for Tn. A ribbon graph is a graph equipped
with a cyclic ordering on the set of half-edges incident to each vertex. Recall that
ribbon graphs label cells in the moduli space of punctured Riemann surfaces (see
e.g. [P]). Further, if the Riemann surface Σ lies in the cell labelled by ΓΣ, there
is an embedding ΓΣ ↪→ Σ, and a nicely behaved retraction of Σ onto ΓΣ. In the
language of Stein geometry, ΓΣ is the skeleton of Σ.

Bracketing issues of valency, given a pair formed by a punctured Riemann
surface and its skeleton, ΓΣ ↪→ Σ, we can consider an open covering {Ui}i∈I of ΓΣ

with the property that, for all i ∈ I, there is a symplectomorphism φi : Ui → T ∗Mi,
where Mi is a 1-dimensional manifold, and Λi := φi(Ui ∩ ΓΣ) ↪→ T ∗Mi is a conical
Lagrangian subset. In conformity with Kontsevich’s ansatz, we should be able to
recover Fuk(Σ) by first applying Nadler and Zaslow’s theory [NZ, N] to compute
the Fukaya category of each member of the covering family (this yields Sh(Mi,Λi)),
and then exploiting the fact that the Fukaya category behaves like a sheaf over ΓΣ.

Roughly speaking, the theory developed in [STZ] formalizes this heuristics by
constructing a sheaf of dg categories CPM(−) over ΓΣ, which is characterized by the
property that, when restricted to Ui∩ΓΣ

∼= Λi, it coincides with the sheaf MSh(−)
over Λi introduced in Proposition 2.1. Since {Ui}i∈I covers ΓΣ, this prescription

4Rep(QS) denotes the dg derived category of representations. In the proof below and every-
where in the paper, all functors, such as the stalk functor, are implictly assumed to be derived.
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is actually sufficient to compute sections and restriction functors for CPM(−) on
arbitrary open subsets U ⊂ ΓΣ, and therefore determines CPM(−) uniquely.5

Conjecture 2.5. CPM(ΓΣ) is quasi-equivalent to the Fukaya category of com-
pact exact Lagrangians in Σ, Fuk(Σ)

For the purposes of HMS, it is important to understand how this works for a
symplectic torus with n punctures, Tn. Let Λi, i ∈ I = {1, . . . , n}, be a collection
of n copies of the conical Lagrangian Λp := S1∪T ∗p S1 ↪→ T ∗S1. Note that, if we fix
an orientation on T ∗S1, Λp acquires a natural structure of ribbon graph. For each
i ∈ I there are open embeddings j+

i : R>0
∼= R+

i ↪→ Λi, and j−i : R>0
∼= R−i ↪→ Λi,

where R+
i and R−i are defined as in Remark 2.4. Denote by Γn the ribbon graph

constructed as the push-out of the diagram

R>0

j+1

}}{{{{{{{{ j−2

!!CCCCCCCC R>0

j+2

}}{{{{{{{{ j−3

!!CCCCCCCC
· · ·

~~}}}}}}}}

  BBBBBBBB j−1 R>0

j+n}}zzzzzzzz

qqcccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

Λ1 Λ2 Λ3 Λn

Provided that Tn is equipped with an appropriate complex structure, Γn is
isomorphic to the skeleton of Tn.6 Also, the Λi supply an open covering for Γn. As
CPM(−) defines a sheaf over Γn, its global sections CPM(Γn) can be calculated
in the usual way, by taking the (homotopy) equalizer of the Čech diagram (2.1)
below, and thus, informally, picking out local sections on the Λi-s which agree on
the overlaps,

(2.1)
∏
i∈I

(CPM(Λi) = Sh(S1,Λp))
Res+ //

Res−

//
∏
j∈I

(CPM(R>0) ∼= C−mod).

Note that the functors Res+ and Res− can be explicitly computed, since they
are products of restriction functors for Sh(S1,Λp) ∼= Rep(• ⇒ •) which were de-
scribed in Remark 2.4. We will conclude this section by giving a concrete recipe
for constructing homotopy equalizers in dgCat.

Lemma 2.6. Let C
F //

G
// D be a diagram in dgCat, and denote by E the dg

category having,
• as objects, pairs (C, u), where C ∈ C, and u is a degree zero, closed mor-

phism u : F (C) ∼= G(C), which becomes invertible in the homotopy cate-
gory,

• as morphisms, pairs (f,H) ∈ homk(C,C ′)⊕ homk−1(F (C), G(C ′)), with
differential given by d(f,H) = (df, dH − (u′F (f)−G(f)u)). The compo-
sition is obvious.

Then E, endowed with the natural forgetful functor E → C, is a homotopy equalizer
for F and G.

Proof. Lemma 2.6 depends on the availabilty of an explicit construction of the
path object P (D) for D, which can be found in Lemma 4.1 of [Tab1]. This allows us

5This informal account disregards various technical aspects of the theory, for which see [STZ].
6Note that, although a different choice of complex structure on Tn could alter the geometry

of the skeleton, this would not affect, up to quasi-equivalence, the global sections of CPM(−).
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to compute the homotopy equalizer in the usual way, by taking appropriate fibrant
replacements. We leave the details to the reader. �

3. CPM and mirror symmetry for degenerate elliptic curves

Let Xn be a cycle of n projective lines. That is, Xn is a connected reduced
curve with n nodal singularities, such that its normalization X̃n

p→ X is a disjoint
union of n projective lines D1, . . . , Dn, with the property that the pre-image along
π of the singular set interesects each Di in exactly two points. Theorem 3.3 below
yields a description of Perf(Xn) as a suitable homotopy equalizer of dg categories.
This is one of the key steps in the proof of HMS for Xn, which will be presented in
Section 3.2.

3.1. Perfect complexes over a nodal curve. It will be covenient to make
use of the following general result.

Theorem 3.1 (see [To], Proposition 11). Let X = U ∪ V , where U and V are
two Zariski open subschemes. Then the following square:

Perf(X) //

��

Perf(U)

��
Perf(V ) // Perf(U ∩ V )

is a fiber product of dg categories.

Recall that a nodal curve is a curve having only double points as singularities.

Lemma 3.2. Let X be a nodal curve, with singular set Z, and normalization
π : X̃ → X. Let σ, τ : Z → X be two non-overlapping sections of π−1(Z) → Z.

Then, for every F̃ vector bundle on X̃ and isomorphism u : σ∗(F̃) → τ∗(F̃), the
assignment

U ⊂open X 7→ {s ∈ F̃(π−1(U))|u(σ∗(s)) = τ∗(s)},
defines a vector bundle F̃u on X such that π∗(Fu) ∼= F̃ . Conversely, if F is a
vector bundle on X such that π∗F ∼= F̃ , then F ∼= F̃u for some isomorphism
u : σ∗(F̃)→ τ∗(F̃).

Proof. See Proposition 4.4 in [L]. �

Theorem 3.3. Let X be a nodal curve, and let Z, X̃, π, σ, and τ be as in
Lemma 3.2; then the diagram

Perf(X) π∗ // Db(Coh(X̃))
σ∗ //

τ∗
// Db(Coh(Z))

is an equalizer of dg categories.

Proof. Since limits commute with limits, it is sufficient, after Theorem 3.1, to
prove the claim for affine X, so we will rectrict to this case. Let E be the equalizer
of the diagram

Db(Coh(X̃))
σ∗ //

τ∗
// Db(Coh(Z))

constructed according to the prescriptions of Lemma 2.6. Recall that the objects
of E are pairs (F̃ , u), where F̃ is an object of Db(Coh(X̃)), and u is a degree zero,
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closed morphism u : σ∗F̃ ∼= τ∗F̃ , which becomes invertible in the homotopy cate-
gory. The morphisms of E are pairs (f,H) ∈ homk(F̃ , G̃)⊕homk−1(σ∗π∗F̃ , τ∗π∗G̃),
and the differential is given by d(f,H) = (df, dH − (u′σ∗(f)− τ∗(f)u)).

Fix a natural equivalence α : σ∗π∗ ∼= τ∗π∗. As Perf(X) is generated by line
bundles, and E is generated by objects of the form (F̃ , u) with F̃ a line bundle
on X̃, it is sufficient to define a (quasi-)equivalence ψ between these two linear
subcategories. Define ψ as follows:

• if F is a line bundle on X, then ψ(F) = (π∗F , σ∗π∗F α→ τ∗π∗F),
• if F ,G are line bundles on X, and f ∈ homk(F ,G), then ψ(f) = (π∗f, 0).

Consider a line bundle F̃ over X̃. It follows from Lemma 3.2 that the set of
isomorphism classes of line bundles F on X such that π∗F ∼= F̃ carries a transitive
action by (C∗)|Z| (given by pointwise rescaling the ‘compatibility’ isomorphisms u,
see Lemma 3.2). Further, the same is true for the set of isomorphism classes of
objects of (G̃, v) ∈ E, such that (G̃, v) ∼= (F̃ , u) for some u ∈ hom0(σ∗F̃ , τ∗F̃).
Essential surjectivity follows from the fact that ψ defines a (C∗)|Z|-equivariant map
between these two sets of isomorphism classes.

We shall prove next that ψ is quasi-fully faithful, i.e. that the map between
hom-complexes defined by ψ induces an isomorphism in the homotopy category.
Denote by HoE the homotopy category of E. It is sufficient to show that for all
line bundles F on X, and for all i ∈ N,

ψ : Homi
X(OX ,F)(= Hi

X(F))
∼=→ Homi

HoE(ψ(OX), ψ(F)).

Note that, as X and X̃ are affine, cohomology vanishes in positive degree. It
follows that Homi

HoE(ψ(OX), ψ(F)) = 0 for all i > 0. 7. Further, in degree-zero,
the hom-space fits in the following short exact sequence

0→ Hom0
HoE(ψ(OX), ψ(F))→ Hom0

X̃
(OX̃ , π

∗F)→ Hom0
Z(σ∗OX̃ , τ

∗π∗F)→ 0.

Thus, proving fully faithfulness boils down to showing exactness of

(3.1) 0→ H0
X(F) π

∗

→ H0
X̃

(π∗F)→ H0
Z(τ∗π∗F)→ 0.

Now, (3.1) is obtained by taking global sections of the sequence

0→ F → π∗(π∗F)→ π∗τ∗τ
∗(π∗F)→ 0,

which is exact (see the proof of Proposition 4.4 of [L]). Since X is affine, taking
global sections is an exact operation, and this concludes the proof of Theorem
3.3. �

3.2. HMS for nodal elliptic curves. In this section we will prove that the
category of perfect complexes over Xn is quasi-equivalent to CPM(Γn). Granting
Conjecture 2.5, this result confirms well known mirror symmetry heuristics, which
suggest that the mirror of Xn should be a symplectic torus with n punctures, Tn.8

Theorem 3.4 ([Be]). There is an equivalence β : Db(Coh(P1))
∼=→ Rep(•⇒ •).

7Note that Hom1
HoE(ψ(OX), ψ(F)) vanishes, since it is isomorphic to the quotient of

Hom0
Z(σ∗OX̃ , τ

∗π∗F) ∼= C by the image of the differential, which is easily seen to be surjective.
8Kontsevich announced related results in [K1]. HMS for the nodal P1 is also treated in [LP].
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Proof. For the proof, see Beilinson’s famous paper [Be], which provides anal-
ogous descriptions of Db(Con(Pn)) for any n. The functor β can be defined as
follows. Fix a basis x0, x1 for H0(O(1)), and set

F ∈ Db(Coh(P1)) 7−→ β(F) = RΓ(F ⊗O(−1))
·x0 //
·x1
// RΓ(F) ∈ Rep(•⇒ •),

with the obvious definition on morphisms. �

In view of results of Nadler and Zaslow [NZ, N] discussed in Section 2.2,
Proposition 3.4, combined with the equivalence Rep(• ⇒ •) ∼= Sh(S1,Λp), yields
a homological mirror symmetry statement pairing Db(Coh(P1)), and a suitable
Fukaya category of exact Lagrangians in T ∗S1. This was explained as an instance
of T-duality by Fang [F], and fits in the framework of the coherent-constructible
correspondence developed by Fang, Liu, Treumann and Zaslow (see [FLTZ]), which
is one of the starting points for the project of [STZ].9

Theorem 3.5 ([STZ]). Let Xn be a cycle of n projective lines. There is a
quasi-equivalence φ : Perf(Xn) ∼= CPM(Γn).10

Proof. Let Z ↪→ Xn be the singular set. Pick two non-overlapping sec-
tions σ, and τ of p−1(Z) → Z, as in Theorem 3.3, and choose an identification
Db(Coh(Z)) ∼=

∏j=n
j=1 C−mod. The proof is encoded in the following diagram:

Perf(Xn) //

φ

���
�
�

∏i=n
i=1 D

b(Coh(P1))

β

��

σ∗ //

τ∗
//
∏j=n
j=1 C−mod

ρ

��
CPM(Γn) // ∏i=n

i=1 Rep(•⇒ •)
Res+ //

Res−
//
∏j=n
j=1 C−mod.

In fact, we can choose ρ in such a way that ρ◦σ∗ ∼= Res+ ◦β, and ρ◦τ∗ ∼= Res− ◦β,
where, abusing notation, we are denoting ×i=ni=1β simply by β. This implies that the
equalizer of σ∗, τ∗ is quasi-equivalent to the equalizer of Res+, Res− (see diagram
2.1), and yields φ : Perf(Xn)

∼=→ CPM(Γn). �

4. A mapping class group action on Db(Coh(Xn))

Since the group of symplectic automorphisms of Tn acts by auto-equivalences
on Fuk(Tn), HMS predicts the existence of a mirror action on Db(Coh(Xn)).11

This is the content of the main theorem of [Si], which we state below.

Theorem 4.1 ([Si]). Let PM(Tn) be the pure mapping class group of Tn, then,
up to shift, there is an action of PM(Tn) over Db(Coh(Xn)).

Recall that the mapping class group of an oriented surface Σ, MCG(Σ), is
the group of symplectic automorphisms of Σ, up to isotopy. The pure mapping
class group is the subgroup PM(Σ) ↪→ MCG(Σ) generated by Dehn twists (see

9The significance for mirror symmetry of the equivalence Db(Coh(P1)) ∼= Sh(S1,Λp) was

first advocated by Bondal [B], in the context of HMS for weighted projective spaces.
10The result proved in [STZ] is actually more general, and extends to appropriate stacky

degenerations of elliptic curves.
11Note in fact that, although the HMS statement of Section 3.2 involves Perf(Xn), it is

possible to show that Db(Coh(Xn)) and Perf(Xn) have the same group of auto-equivalences.
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[FM]). Theorem 4.1 generalizes previous work of Seidel and Thomas [SeT], and
Burban and Kreussler [BK], who established, respectively, the existence of an
SL(2,Z)-action over Db(Coh(X)), where X is a smooth elliptic curve, and over
Db(Coh(X1)).12 The proof of Theorem 4.1 depends on the availability of an ex-
plicit presentation of PM(Tn), worked out in the first Section of [Si], and on Seidel
and Thomas’ theory of spherical objects and twist functors [SeT], which is designed
precisely to test this aspect of mirror symmetry.

In the rest of this section, we shall briefly describe the proof of Theorem 4.1
for n = 2, leaving out most details, and referring the reader to [Si] for the general
case. A presentation of PM(T2) can be found in [PS], and is reproduced below.

Proposition 4.2. The pure mapping class group PM(T2) is generated by Tα,
Tβ1 and Tβ2 ,13 with relations

• (Braid relations) Tβi
Tβj

= Tβj
Tβi

, Tβi
TαTβi

= TαTβi
Tα,

• (G-relation) (Tβ1TαTβ2)4 = 1.

Following the discussion in Section 1 of [SeT], the group acting on DbCoh(X2)
is going to be a suitable central extension of PM(T2), whose elements should be
viewed as graded symplectic automorphisms of the mirror of X2, i.e. T2.

Definition 4.3. Define P̃M(T2) as the Z-central extension of PM(T2), gener-
ated by Tα, Tβi

, i = 1, 2, and a central element t subject to the following relations
• (Braid relations), as in Proposition 4.2
• (G̃-relation) (Tβ1TαTβ2)4 = t2.

Let x1 and x2 be two smooth points lying on different components of X2; then

Theorem 4.4. The assignment
• for all i = 1, 2, Tβi

7→ Tκ(xi),
• Tα 7→ TO, and
• t 7→ [1],

defines an action of P̃M(T2) on Db(Coh(X2)).

Note that the assigment described in Theorem 4.4 is compatible with mirror
symmetry considerations, according to which O and κ(xi) should be mirror to
Lagrangian branes whose supports are isotopic, respectively, to α and βi. We state
below two lemmas, formulated for a general cycle of projective lines Xn, which will
be important for proving Theorem 4.4.

Lemma 4.5. Let F : Db(Coh(Xn))→ Db(Coh(Xn)) be an auto-equivalence of
triangulated categories. If

• F (O) ∼= O, and
• for all i ∈ {1 . . . n}, F (κ(xi)) ∼= κ(xi),

then there exists an isomorphisms f : Xn → Xn, such that F is naturally equivalent
to f∗ : Db(Coh(Xn))→ Db(Coh(Xn)).

12Recall that the mapping class groups of the torus and of the once punctured torus are both

isomorphic to SL(2,Z).
13The generators Tα, Tβi

are given by isotopy classes of Dehn twists along simple closed

curves α, βi ↪→ T2. Explicit representatives can be described as follows. Identify the torus T
with [0, 1] × [0, 1]�∼, and set T2 = T \ {p1 = (0, 0), p2 = ( 1

2
, 0)}, then α = [0, 1] × { 1

2
}, and

βi = { i
3
} × [0, 1], i = 1, 2.
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Proof. See Lemma 3.3 of [Si]. The key fact is that if F preserves O and
κ(xi), then it will induce an automorphism of the homogeneous coordinate ring
associated to the ample line bundle L = O(x1 + x2 + · · · + xn). This implies the
existence of an isomorphism f : Xn → Xn such that F = f∗, when restricted to
the linear subcategory having as objects the tensor powers of L. The claim then
follows as in the proof of Theorem 3.1 of [BO]. Note that, under the assumptions
of the theorem, if n > 2, f has to be the identity. For n = 2, f might be non-trivial,
but has to be involutive, i.e. f2 = id. �

Lemma 4.6. Let x ∈ Xn be a smooth point, then
• Tκ(x)

∼= −⊗O(x),
• TO(κ(x)) ∼= O(−x)[1],
• TO(O(x)) ∼= κ(x),
• TO(O) ∼= O.

Proof. The first isomorphism is proved in [SeT], Section 3.d. For the other
isomorphisms, see Lemma 2.13 in [BK]. �

Proof of Theorem 4.4. The braid relations follow from Proposition 2.13 of
[SeT]. It remains to check that TO, Tκ(xi), i = 1, 2 satisfy the G̃-relation. Simply
by keeping track of the isomorphisms collected in Lemma 4.6, and applying the
braid relations, one can see that

• (Tκ(x1)TOTκ(x2))2(O) ∼= O[1], and
• (Tκ(x1)TOTκ(x2))2(κ(x1)) ∼= κ(x2)[1], (Tκ(x1)TOTκ(x2))2(κ(x2)) ∼= κ(x1)[1].

Let’s check this for κ(x1):

(Tκ(x1)TOTκ(x2))(Tκ(x1)TOTκ(x2))(κ(x1)) ∼= (Tκ(x1)TOTκ(x2))(O[1]) ∼= κ(x2)[1].

Consider an involution σ : X2 → X2 such that σ(x1) = x2, and σ(x2) = x1. It
follows from Lemma 4.5, and the comments made at the end of its proof, that there
is an involution f : X2 → X2, and a natural equivalence

(Tκ(x1)TOTκ(x2))2 ∼= f∗σ∗[1].

As σ and f commute, by taking the square of this natural equivalence, one gets

(Tκ(x1)TOTκ(x2))4 ∼= (f∗σ∗[1])(f∗σ∗[1]) ∼= (f∗)2(σ∗)2[2] ∼= [2].

This concludes the proof of the theorem. �
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