
123

Applied Intelligence (2023) 53:22818–22833
https://doi.org/10.1007/s10489-023-04730-1

A dimensionality reduction approach for convolutional
neural networks

Laura Meneghetti1 · Nicola Demo1 · Gianluigi Rozza1

Accepted: 23 May 2023
© The Author(s) 2023

Abstract
The focus of this work is on the application of classical Model Order Reduction techniques, such as Active Subspaces and
Proper Orthogonal Decomposition, to Deep Neural Networks. We propose a generic methodology to reduce the number of
layers in a pre-trained network by combining the aforementioned techniques for dimensionality reduction with input-output
mappings, such as Polynomial Chaos Expansion and Feedforward Neural Networks. The motivation behind compressing the
architecture of an existing Convolutional Neural Network arises from its usage in embedded systems with specific storage
constraints. The conducted numerical tests demonstrate that the resulting reduced networks can achieve a level of accuracy
comparable to the original Convolutional Neural Network being examined, while also saving memory allocation. Our primary
emphasis lies in the field of image recognition, where we tested ourmethodology usingVGG-16 and ResNet-110 architectures
against three different datasets: CIFAR-10, CIFAR-100, and a custom dataset.

Keywords Deep neural networks · Active subspaces · Proper orthogonal decomposition · Neural network reduction

1 Introduction andmotivations

Neural networks are a widespread machine learning tech-
nique, increasingly employed in various fields such as
computer vision [1–3], natural language processing [4, 5],
robotics [6, 7], and speech recognition [8, 9]. The accuracy
of such models is strictly related to the number of layers,
neurons, and inputs [10–12], therefore, to tackle more com-
plex problems, these architectures are forced to go in depth.
While on the one hand we have increasing precision, on the
other hand the high number of degrees of freedom trans-
lates into a longer optimization step and, from a practical
point of view, into a larger architecture to manage. The

Nicola Demo and Gianluigi Rozza are authors contributed equally to
this work.

B Gianluigi Rozza
gianluigi.rozza@sissa.it

Laura Meneghetti
laura.meneghetti@sissa.it

Nicola Demo
nicola.demo@sissa.it

1 Mathematics Area, mathLab, SISSA,
via Bonomea 265, Trieste I-34136, Italy

dimension of the network is rarely considered a bottleneck
of this methodology, but the diffusion of neural networks
in many engineering fields led to its employment also in
embedded systems [13–15], which typically show limited
hardware.Deepvision algorithms are indeeddevelopedusing
workstations with high computational resources, posing a
challenge when deploying them in industrial applications.
The vision devices, in which these nets need to be integrated,
are often characterized by restricted memory sizes and low
CPU performance [16–18]. In these contexts the size of the
architecture can thus become an additional constraint, requir-
ing a reduction in the network’s degrees of freedom.

Finding the intrinsic dimension of neural networks is a
very challenging task and, to the best of the authors’ knowl-
edge, lacks rigorous theoretical proofs. Various methods
have been proposed, including network pruning and shar-
ing [19–23], low-rank matrix and tensor factorization [24–
27], parameter quantization [28–30], and knowledge distilla-
tion [31–34]. In this contribution (see Fig. 1), we present an
extension of the idea explored in [35], where the Active Sub-
space (AS) property andPolynomialChaosExpansion (PCE)
are exploited to provide a reduced andmore robust version of
the original network. While such work has focused on ana-
lyzing the AS capability in reducing deep architectures, we
aim here to provide a generic framework for neural network

/ Published online: 4 July 2023

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-023-04730-1&domain=pdf
http://orcid.org/0000-0002-0810-8812

123

A dimensionality reduction approach for CNNs

Fig. 1 Graphical representation of the problem and the proposed solution, as described in this contribution

reduction, investigating other mathematical tools rather than
AS and PCE. Mimicking the procedure presented in [35],
the original architecture is initially split into two cascading
parts: thepre- andpost-model.We assume that the secondone
brings a negligible contribution to the final outcome, giving
us the possibility to approximate such part of themodel with-
out introducing a significant error. A response surface (or in
more general terms, an input-output mapping) is indeed built
to fit the data, replacing the last layers of the network. This
response surface may belong to a high-dimensional space
since the input dimension is equal to the dimension of the
output features of the pre-model. Consequently, in order to
maintain the reduction computationally affordable, we also
need to reduce the dimensionality of the pre-model outputs,
which, it should be noted, are also the input parameters for
the response surface. By combining all these ingredients, we
obtain a reduced version of the network that only includes
a few of the initial layers, but achieves a level of accuracy
comparable to the full model. It is important to specify that
the numerical experiments we are about to present exclu-
sively involve Convolutional Neural Networks (CNNs), but
the methodology can potentially be applied to other models
as well.

In this contribution, we examine various tools for the
dimensional reduction and response surface analysis. In addi-
tion to AS and PCE, already tested in the aforementioned
reference, we employ Proper Orthogonal Decomposition

(POD) and Feedforward Neural Network (FNN). The for-
mer, similar to AS, is a well-established technique for Model
Order Reduction [36–38], which compresses the data by
projecting it onto a lower-dimensional space. On the other
hand, FNN is employed to construct the surface response as
an alternative to PCE. The advantage of FNN over PCE is
twofold: i,) the simplified input-output mapping (thanks to
the low-dimensional space) allows for a FNNwith fewer lay-
ers and neurons, further reducing the already minimal space
demanded for the PCEmethod; ii,) from a programming per-
spective, the possibility to approximate a part of the neural
networkwith another networkmakes the software integration
easier, especially when the hosting system is embedded.

The article is organized as follows. Section 2 provides an
algorithmic overview of all the numerical methods involved
in the reduction framework. This includes an analysis of AS
in Section 2.1.1, POD in Section 2.1.2, PCE in Section 2.2.1,
and FNN in Section 2.2.2. In Section 3, we delve into the
details of the framework used to reduce the neural networks.
Section 4 is dedicated to presenting the results obtained by
reducing benchmark CNNs designed for image recognition
with the proposed methodology. We conduct this analysis
using three different datasets during the initial learning step,
investigating the dependency of the results on the original
problem. Finally, in Section 5 we summarize the entire pro-
cedure and propose some future perspectives to enhance the
framework.

22819

123

L. Meneghetti et al.

2 Numerical tools

In this section we introduce all the techniques employed for
the reduction of the network, in order to facilitate the com-
prehension of the framework discussed in Section 3.

2.1 Dimensionality reduction techniques

This subsection provides an algorithmic overview of the
reduction methods examined in this contribution: the Active
Subspace (AS) property, and the Proper Orthogonal Decom-
position (POD). Widely employed in the reduced order
modeling community, such techniques are used here to
decrease the dimensionality of the intermediate convolutive
features. However, the specific details will be discussed in the
next section. We just specify that, while this work concen-
trates on AS and POD, the framework is generic, allowing
to replace these two methods with others for dimensionality
reduction.

2.1.1 Active subspaces

Active Subspaces (AS) [39, 40] method is a reduction tool
used to identify important directions in the parameter space
by exploiting the gradients of the function of interest. Such
information allows the application of a rotational transfor-
mation to the domain, in order to obtain an approximation
of the original function but in a lower dimension. Let μ =
[μ1 . . . μn]T ∈ R

n represent a n-dimensional variable with
an associated probability density function ρ(μ), and let g be
the function of interest, g(μ) : Rn → R. We assume here
g is scalar and continuous (for the vector-valued extension
see [41, 42]). Starting from this, an uncentered covariance
matrix C of the gradient of g can be constructed by consid-
ering the average of the outer product of the gradient with
itself:

C = E[∇g(μ)∇g(μ)T] =
∫

(∇μg)(∇μg)
T ρdμ, (1)

where the symbol E[·] denotes the expected value, and
∇μg ≡ ∇g(μ). We assume the gradients are computed dur-
ing the simulation, otherwise, if not provided, they can be
approximated with different techniques such as local linear
models, global models, finite difference, or Gaussian pro-
cess [43–45], for example. Since C is symmetric, it admits
the following eigenvalue decomposition:

C = V�VT , � = diag(λ1, . . . , λn), λ1 ≥ · · · ≥ λn ≥ 0,

(2)

where V is the n × n orthogonal matrix whose columns
{v1, . . . , vn} are the normalized eigenvectors of C, whereas

� is a diagonal matrix containing the corresponding non-
negative eigenvalues λi , for i = 1, . . . , n, arranged in
descending order.

We can decompose these two matrices as:

� =
[
�1

�2

]
,

V = [V1 V2], V1 ∈ R
n×nAS, V2 ∈ R

n×(n−nAS). (3)

The space spanned byV1 columns is called the active sub-
space of dimension nAS < n, whereas the inactive subspace
is defined as the range of the remaining eigenvectors in V2.
Once we have defined these spaces, the input μ ∈ R

n can be
reduced to a low-dimensional vector μ̃1 ∈ R

nAS using V1

as projection map. To be more precise, any μ ∈ R
n can be

expressed in this way using the decomposition in Eq. 3 and
the properties of V:

μ = VVTμ = V1VT
1 μ + V2VT

2 μ = V1μ̃1 + V2μ̃2, (4)

where the two new variables μ̃1 and μ̃2 are the active and
inactive variable respectively:

μ̃1 = VT
1 μ ∈ R

nAS, μ̃2 = VT
2 μ ∈ R

n−nAS . (5)

For the actual computations of the AS, we have used the
open-source Python package called ATHENA [46].

2.1.2 Proper orthogonal decomposition

In this section,wewill discuss theProperOrthogonalDecom-
position (POD) approach of ReduceOrderModeling [36–38,
47] for reducing the number of degrees of freedom of a para-
metric system. Specifically, we will focus on the POD with
interpolation (PODI) method [48–50].

Let S = [u1 . . . unS] be the matrix of snapshots, i.e. the
full order system outputs ui ∈ R

N . Once these solutions are
collected, we aim to describe them as a linear combination of
a fewmain structures, the PODmodes, and thus project them
onto a low dimensional space spanned by these modes. To
calculate the POD modes, we need to compute the singular
value decomposition (SVD) of the snapshots matrix S:

S = ���T , (6)

where the left-singular vectors, i.e. the columns of the uni-
tary matrix �, are the POD modes, and the diagonal matrix
� contains the corresponding singular values in decreasing
order. Therefore, by selecting the first modeswe are retaining
only the most energetic ones and we can construct a reduced

22820

123

A dimensionality reduction approach for CNNs

space into which we project the high-fidelity solutions. As a
results, we obtain:

SPOD = �T
NPOD

S, (7)

where �NPOD is the matrix containing only the first NPOD

modes, and the columns of SPOD represent the reduced snap-
shot ũi ∈ R

NPOD .

2.2 Input–output mapping

After reducing the dimensions of the outputs from the inter-
mediate layer, we need to establish a correlation between
these outputs and the final output of the original network.
For example, in an image identification problem, this would
involve determining the classes to which the image belongs.
To achieve this, we construct an input–output mapping using
the input dataset. The following subsections provide an algo-
rithmic overview of the two methods that were explored to
approximate this mapping: the Polynomial Chaos Expansion
(PCE) [51] and the Feed–forward Neural Network (FNN)
[52].

2.2.1 Polynomial chaos expansion

The Polynomial Chaos Expansion (PCE) theory was initially
proposed byWiener in [53], demonstrating that a real-valued
random variable X : RR → R can be decomposed in the
following manner:

X(ξ) =
∞∑
j=0

c jφ j (ξ), (8)

i.e. as an infinite sum of orthogonal polynomials weighted
by unknown deterministic coefficients c j [54]. The vector
ξ = (ξ1, . . . , ξR) represents the multi-dimensional random
vector, where each element is associated with uncertain
input parameters, while φ j (ξ) are multivariate orthogo-
nal polynomials, that can be decomposed into products
of one-dimensional orthogonal polynomials with different
variables.

We can approximate the infinite sum in Eq. 8 by truncating
it at the (P + 1)-th term, such that:

X(ξ) ≈
P∑
j=0

c jφ j (ξ). (9)

The number of unknown coefficients in this summation
is given by P + 1 = (p+R)!

p!R! [55], where p is the degree
of the polynomial we are considering in the R-dimensional
space.

When the parameters ξ1, . . . , ξR are independent, φ j (ξ)

can be decomposed into products of one-dimensional
functions:

φ j (ξ) = φ j (ξ1, . . . , ξR)

=
R∏

k=1

φ
dk
k (ξk), j = 0, . . . , P,

dk = 0, . . . , p s.t.
R∑

k=1

dk ≤ p. (10)

To determine the PCE, we need to find out the poly-
nomial chaos expansion coefficients c j for j = 0, . . . , P ,

and the one-dimensional orthogonal polynomials φ
dk
k , k =

1, . . . , R, of degree dk .
Based on the work of Askey andWilson [56], we can pro-

vide the orthogonal polynomials for different distributions.
One of the possible choices is represented by the Gaussian
distribution with the related Hermite polynomials.

The estimation of the coefficients of PCE can then be
carried out in different ways [57, 58]. One method involves
using a projection technique based on the orthogonality of
the polynomials. Another method, which we will describe,
is a regression-based approach.

In order to determine the coefficients c j , we need to solve
a minimization problem:

c = argminc∗∈RP
1

NPCE

NPCE∑
i=1

⎛
⎝X̂ −

P∑
j=0

c∗
jφ j (ξ

i)

⎞
⎠ , (11)

where NPCE indicates the total number of realizations of the
input vector we are considering, whereas X̂ represents the
real output of the model. To solve Eq. 11 we consider the
following matrix:

� =

⎛
⎜⎜⎜⎝

φ0(ξ
1) φ1(ξ

1) · · · φP (ξ1)

φ0(ξ
2) φ1(ξ

2) · · · φP (ξ2)
...

...
. . .

...

φ0(ξ
NPCE) φ1(ξ

NPCE) · · · φP (ξ NPCE)

⎞
⎟⎟⎟⎠ . (12)

Thus, the solution of Eq. 11 is computed using a least-
square optimization approach, as shown in Eq. 13:

c = (�T�)−1�T X̂ . (13)

It is important to emphasize that if the matrix �T� is
ill-conditioned, as may occur, then the singular value decom-
position method should be employed.

22821

123

L. Meneghetti et al.

Fig. 2 Schematic structure of a
Feedforward Neural Network
with 2 hidden layers

2.2.2 Feedforward neural network

A Feedforward Neural Network (FNN), also known as
multilayer perceptron, is a popular neural network model
commonly used for function regression [52]. As depicted
in Fig. 2, it mainly comprises an input layer, an output layer,
and a certain number of hidden layers1, where the process-
ing units composing them are called neurons. Each neuron
is then characterized by a weight vector that determines the
strength of its connections with neurons in the subsequent
layer.

From a more technical perspective, let x̃ ∈ R
nin represent

the input vector and M denote the total number of hidden
layers in the FNN. The output vector h ∈ R

nout is obtained
by applying an activation function to the weighted sum of all
the inputs received by that neuron. The role of this activation
function is to introduce non-linearity in the network. There
are numerous options available [10, 60], and some common
ones are represented by the ReLU function, sigmoid, logistic
function, and radial activation functions.

To better understand the derivation of the general formula
(15), we start by considering a FNN that comprises a single
output and one hidden layer. In this scenario, the final output
can be expressed as:

h = σ

(
nin∑
i=1

wi x̃i + bi

)
, (14)

where σ is the activation function, W = {wi }nini=1 repre-
sents the weights of the net and b the bias2. Therefore,
when considering M layers, the final output can be seen

1 A priori there is not a right number of hidden layers to use: it depends
on the fields of application of your net and on the problem under con-
sideration [12, 59].
2 For simplicity the bias is put to zero in the following discussion.

as a weighted sum of its inputs followed by the activation
function, where each input can be rewritten using the same
approach described in Eq. 14:

h j = σ

(nM∑
i=1

w
(M+1)
j i x̃ (M)

i

)

= σ

⎛
⎝ nM∑

i=1

w
(M+1)
j i

⎛
⎝σ

⎛
⎝

nM−1∑
q=1

w
(M)
iq x̃ (M−1)

q

⎞
⎠

⎞
⎠

⎞
⎠ =

. . . = σ

⎛
⎝ nM∑

i=1

w
(M+1)
j i

⎛
⎝σ

⎛
⎝

nM−1∑
q=1

w
(M)
iq

(
σ

(
. . .

(
σ

(nin∑
k=1

w
(1)
sk x̃k

))))⎞
⎠

⎞
⎠

⎞
⎠ ,

j = 1, . . . , nout, (15)

where nm , m = 1, . . . , M , represents the number of neu-
rons in layer m, whereas nin and nout are the neurons in the
input and output layers respectively. Wm = (w

(m)
ki)ki , k =

1, . . . , nm, i = 1, . . . , nm−1 indicates then theweightmatrix
related to layer m. Note that the first number in any weight’s
subscript matches the index of the neuron in the next layer
and the second number matches the index of the neuron in
the previous layer.

Once we have constructed an FNN by choosing its archi-
tecture, we need to gain a performing model for a desired
task. One of the main characteristics of an FNN is indeed its
ability to learn from observational data during the so-called
training process. In this phase, the net acquires knowledge
from our dataset by minimizing the loss function3 L:

min
W

{
1

nout

nout∑
i=1

L(hi , ĥi)

}
, (16)

3 There exists several types of loss functions that are used in this context,
such as theCross-EntropyLoss, theEuclideanLoss, and theHingeLoss.
The appropriate choice depends on the problem being considered [10,
61].

22822

123

A dimensionality reduction approach for CNNs

where h = {h j }noutj=0 represents the expected output and

ĥ = ĥ(x̃;W) = {ĥ j (x̃;W)}noutj=0 is the predictionmade by our
FNN. To solve this minimization problem, the Backpropaga-
tion algorithm [62] is commonly employed. Consequently,
the model’s parameters are optimized by adjusting the net-
work’s weights using the following procedure:

w
(m),t
ki = w

(m),t−1
ki − ε

dL
dw

(m)
ki

, (17)

where ε is the learning rate, which is appropriately chosen
according to the problem under consideration. The parameter
t represents the training epoch, which indicates a complete
repetition of the parameter update involving the complete
training dataset at once. The gradients required for theweight
update in Eq. 17 are then computed using the chain rule.

3 The reduced artificial neural networks

In this section, we provide the rigorous description of the
proposed framework, which is summarized in Fig. 3 and Fig.
1. The primary objective of our framework is to reduce, in
terms of dimensionality, a generic Artificial Neural Network
(ANN). Indeed, it is important to note that the only assump-
tion we make about the original network is that it consists of
L layers.

Network splitting
In the beginning, the original network, denoted asANN :

R
n0 → R

nL is split into two distinct parts. The first l layers

constitute the pre-model, while the last L − l layers form the
so-called post-model. By describing the network as compo-
sition of functions ANN ≡ fL ◦ fL−1 ◦ · · · ◦ f1, we can
formally define the pre- and the post-model as follows:

ANN l
pre = fl ◦ fl−1 ◦ · · · ◦ f1,

ANN l
post = fL ◦ fL−1 ◦ · · · ◦ fl+1, (18)

where each function f j : Rn j−1 → R
n j for j = 1, . . . , L ,

represents the different layers of the network—e.g. convolu-
tional, fully connected, batch-normalization, ReLU, pooling
layers. The original model can then be rewritten as:

ANN (x0) = ANN l
post(ANN l

pre(x
0)), (19)

for any 1 ≤ l < L and x0 ∈ R
n0 .

As described in [35], the reduction of the network is
achieved by approximating the post-model,whichmeans that
the pre-model is actually copied from the original network
to the reduced one. Before proceeding with the algorithmic
explanation of how the post-model is approximated, we spec-
ify that the index l, denoting the cut-off layer, is the only
parameter of this initial step, and it plays an important role in
the final outcome. This index indeed determines how many
layers of the original network are retained in the reduced
architecture, controlling, in a fewwords, howmuch informa-
tion of the original network we are discarding. As described
in [35], it is then chosen empirically based on considerations
about the network and the dataset at hand, balancing the final
accuracy and the compression ratio.

Fig. 3 Graphical representation
of the reduction method
proposed for a CNN

22823

123

L. Meneghetti et al.

Algorithm1Pseudo-code for the construction of the reduced
Artificial Neural Network.
Inputs:

• a dataset with Ntrain input samples D0 = {x(0), j }Ntrain
j=1 ,

• an artificial neural network ANN ,
• {y j }Ntrain

j=1 real output of the ANN ,
• reduced dimension r ,
• index of the cut-off layer l

1: ANN l
pre,ANN l

post = splitting_net(ANN , l)

2: x(l) = ANN l
pre(x

0)

3: z = reduce(x(l), r)
4: ŷ = input_output_map(z, y)
5: Training of the constructed reduced net
Output: Reduced Net ANN red

Dimensionality reduction
As mentioned earlier, our goal is to project the output

x(l) of the pre-model onto a lower-dimensional space using
reduction techniques as:

• Active Subspaces: as described in Section 2.1.1 and in
[35], we consider a function gl defined by:

gl(x(l)) = loss(ANN l
post(x

(l))), (20)

in order to extract themost important directions anddeter-
mine the projection matrix used to reduce the pre-model
output.

• Proper Orthogonal Decomposition: as discussed in
Section 2.1.2, the SVD decomposition (6) is exploited
to compute the projection matrix �r and subsequently
obtain the reduced solution

z = �T
r x

(l). (21)

It is important to emphasize that in order to apply these
methodologies to the pre-model output, a flattening of x(l)

should be carried out. These approaches are specifically
based on flat-view matrix models, requiring the transforma-
tion of x(l) from a tensorial structure to a two-dimensional
one.

Input-Output mapping
The final part of the reduced neural network is dedicated to

classifying the output generated by the reduction layer. Two
different techniques have been employed for this purpose:

• the Polynomial Chaos Expansion, as introduced in Sec-
tion 2.2.1. According to Eq. 9, the final output of the
network, denoted as y = ANN (x0) ∈ R

nL , which
represents the true response of the model, can be approx-

imated as follows:

ŷ ≈
p∑

|α|=0

cαφα(z), |α| = α1 + · · · + αr , (22)

where φα(z) are the multivariate polynomial functions
chosen based on the probability density function ρ asso-
ciated with z. Therefore, the estimation of coefficients cα

is carried out by solving the minimization problem (11):

min
cα

1

Ntrain

Ntrain∑
j=1

∥∥∥∥∥∥y
j −

p∑
|α|=0

cαφα(z j)

∥∥∥∥∥∥
2

. (23)

• aFeedforwardNeuralNetwork, as described in Section
2.2.2. In this case, the output of the reduction layer z
coincides with the network input. By applying Eq. 15,
we can determine the final output ŷ of the reduced net4,
which is given by:

ŷ j =
n1∑
i=1

w
(2)
j i z

(1)
i

=
n1∑
i=1

w
(2)
j i σ

(
r∑

m=1

w
(1)
im zm

)
, j = 1, . . . , nout, (24)

where nout corresponds to the number of categories that
compose the dataset under consideration, and σ is the
Softplus function:

Softplus(x) = 1

β
log(1 + exp(βx)). (25)

3.1 Training phase

Once the reduced version of the network is constructed, we
need to train it. Following [35], for the training phase of the
reduced ANN, we employ the technique of knowledge dis-
tillation [31]. A knowledge distillation framework involves
a large pre-trained teacher model, which is our full network,
and a small student model, in our case ANN red. Therefore,
the main goal is to efficiently train the student network under
the guidance of the teacher network to achieve comparable
or even superior performance.

Let y be a vector of logits, which refers to the output of
the last layer in a deep neural network. The probability pi

4 Note that in this case the number of hidden layers is set to 1 since,
as discussed in Section 4, we notice that one hidden layer is enough to
gain a good level of accuracy (see for example Table 1).

22824

123

A dimensionality reduction approach for CNNs

that the input belongs to the i-th class is determined by the
softmax function:

pi = exp(yi)∑nclass
j=0 exp(y j)

. (26)

As described in [31], a temperature factor T needs to be
introduced in order to control the importance of each target:

pi = exp(yi/T)∑nclass
j=0 exp(y j/T)

, (27)

where if T → ∞ all classes have the same probability,
whereas if T → 0 the targets pi become one-hot labels.

Firstly, we need then to define the distillation loss, which
matches the logits between the teacher model and the student
model, asmentioned in [35].Theknowledge transfer from the
teacher to the student is accomplished bymimicking the final
prediction of the full net, using response-based knowledge.
Therefore, in this case, the distillation loss [31, 32] is given
by:

LD(p(yt , T), p(ys, T)) = LKL(p(yt , T), p(ys, T)), (28)

where yt and ys indicate the logits of the teacher and student
networks, respectively, while LKL represents the Kullback-
Leibler (KL) divergence loss [63]:

LKL((p(ys, T), p(yt , T))

= T 2
∑
j

p j (yt, j , T) log
p j (yt, j , T)

p j (ys, j , T)
. (29)

The student loss is then defined as the cross-entropy loss
between the ground truth label and the logits of the student
network [32]:

LS(y, p(ys, T)) = LCE(ŷ, p(ys, T)), (30)

where ŷ is a ground truth vector, characterized by having
only the component corresponding to the ground truth label
on the training sample set to 1, while the other components
are set to 0. LCE represents instead the cross entropy loss,
which is described as follows:

LCE(ŷ, p(ys, T)) =
∑
i

−ŷi log(pi (ys,i , T)). (31)

As can be observed, both losses, Eqs. 28 and 30, use the same
logits of the studentmodel but with different temperatures. In
the distillation loss, the temperature T is set to a value greater
than 1 (T = τ > 1) while in the student loss, the temperature
is set to 1 (T = 1). Finally, the final loss is calculated as a

weighted sum between the distillation loss and the student
loss:

L(x0,W) = λLD(p(yt , T = τ), p(ys, T = τ))

+(1 − λ)LS(ŷ, p(ys, T = 1)), (32)

whereλ is the regularizationparameter,x0 represents an input
vector from the training set, andW coincides with the param-
eters of the student model.

4 Numerical results

In this section, we present a comparison between the results
obtained using different reduction methods in terms of final
accuracy, memory allocation, and procedure speed.

4.1 Neural network architectures

We used Convolutional Neural Networks (CNNs) as a test
network, which is a type ofANNcommonly applied to image
recognition problems [64, 65]. In the past decade, several
CNN architectures have been introduced [11, 61] to address
this problem, such as AlexNet, ResNet, Inception, VGGNet.

As starting point for testing our methods, we have
employed one of theVGGnetwork architectures, specifically
VGG-16 [66]. As shown in Fig. 4, this architecture consists
of the following components:

• 13 convolutional blocks. Each block includes a convolu-
tional layer followed by a non-linear layer, where ReLU
is used as the activation function.

• 5 max-pooling layers,
• 3 fully-connected layers.

The ConvNet used in our study is called VGG-16, as it
is composed of a total of 16 layers with tunable parameters.
Out of these 16 layers, 13 are convolutional layers, and the
remaining 3 are fully connected layers.

In comparison, we also tested our methodology on
ResNet [67], and in particular onResNet-110, as done in [35].
As the name suggests, ResNet-110 comprises a total of 110
layers. These layers are divided into 3 groups, each con-
taining 18 basic residual blocks. We recall that these blocks
consist of two convolutional layers, followed by batch nor-
malization, and a skip/shortcut connection that adds the input
to the output of the block.

22825

123

L. Meneghetti et al.

Fig. 4 Graphical representation of VGG-16 architecture

4.2 Dataset

For training and testing our net we have used5:

• CIFAR-10 dataset [68], a computer-vision dataset used
for object recognition. It comprises 60000 color images
of size 32×32,which are divided into 10 non-overlapping
classes: airplane, automobile, bird, cat, deer, dog, frog,
horse, ship, and truck.

• Custom dataset, composed of 3448 color images of size
32×32, organized in 4 classes: 3 non-overlapping classes
and a mixed one, characterized by pictures with objects
of different categories present at the same time.

• CIFAR-100 dataset [68], another benchmark computer-
vision dataset for object recognition. It consists of 60000
color images of size 32 × 32, divided into 100 classes,
with each class containing 600 images.

4.3 Software and hardware configuration

To implement and construct the reduced version of the convo-
lutional neural networks described in the previous sections,
we utilized PyTorch [69] as our development environment.
We also employed the open-source Python library SciPy [70]
for scientific computing and the open-source Python pack-
age ATHENA [46] for the actual computation of the active
subspaces.

Regarding the hardware configuration, we ran all experi-
ments involving VGG-16, except for the CIFAR-100 dataset,
on theCPU.All other testswere performed using anNVIDIA
GPU. This decision was influenced by the availability of
hardware resources during the development and testing
phases for the selected architectures.

4.4 Results VGG-16

We now present the results of the reduced network con-
structed starting from VGG-16 and based on CIFAR-10,

5 It is important to emphasize that the implementation for both VGG-
16 and ResNet-110 differs from the standard approach when applied to
the CIFAR dataset. Therefore, as suggested in [35], we have considered
this aspect while constructing the models to maintain consistency with
the original works.

CIFAR-100 and our custom dataset. First of all, the original
network VGG-16 has been trained6 on each of the different
datasets presented. We needed only a 60 epochs training
phase for CIFAR-10 and the custom case, whereas a longer
training of 300 epochs was required for CIFAR-100. From
Tables 2 and 3, it can be seen that at the end of these learn-
ing processes, VGG-16 gains good accuracy: 77.98% for the
CIFAR-10 and 95.65% for the custom dataset. Table 4 pro-
vides instead the accuracy achieved in the CIFAR-100 case,
presenting the Top-1 and Top-5 scores, as done in [35]. It
can be observed that the increase in the number of classes
has resulted in a lower Top-1 value, as well as the need for
longer training.

We report the results obtained with different reduced
versions of VGG-16 constructed following the steps of Algo-
rithm 1 and using several cut-off layers7 l, as reported
in [35]: 5, 6, and 7 for CIFAR-10 and the custom case, 7,
8 and 9 for the other dataset. We remark that in the case of
dimensionality reduction using the Active Subspaces tech-
nique, we employed the Frequent Direction method [71],
which was implemented within ATHENA to compute the
AS.We set the parameter r , representing the dimension of the
reduced space, to 50 for both AS and for POD in accordance
with [35], where considerations on the structural analysis of
VGG-16 can be found.

When a FNN was employed to classify our image, we
trained it for 500 epochs with the dataset at hand before
re-training the entire reduced net. In Table 1, we provide
a summary of the results obtained by training a reduced
net using various FNN architectures. This includes different
numbers of hidden layers and constant numbers of hidden
neurons within each hidden layer of the network. Specifi-
cally, we compare the storage requirements of the FNN with

6 We have selected 60 and 300 as the number of epochs for the training
phases, and for the reduced nets, we have chosen 10 and 20 epochs.
This decision was made as a trade-off between achieving a high final
accuracy andminimizing the required time. To ensure a fair comparison,
we have maintained the same epoch values across all the different cases
we are considering.
7 In [35] and its corresponding implementation, they refer to indices
5, 6, 7, 8 and 9. These indices represent the convolutional layers in a list
where only convolutional and linear layers are taken into consideration
as possible cut-off layers. Thus, if we consider the entire network with
all the different layers, the corresponding layers would be 11, 13, 16,
18 and 20 respectively.

22826

123

A dimensionality reduction approach for CNNs

Table 1 Results obtained for the reduced net POD+FNN (7) trained on CIFAR-10 with different structures for the FNN

Hidden layers
1 2 3 4

Hidden neurons 10 Epoch 0 81.39% 67.92% 75.52% 81.57%

Epoch 10 87.89% 87.59% 87.46% 87.26%

Storage FNN (MB) 0.0024 0.0028 0.0032 0.0036

20 Epoch 0 80.17% 80.05% 79.97% 78.28%

Epoch 10 87.45% 87.13% 87.42% 86.68%

Storage FNN (MB) 0.0047 0.0063 0.0079 0.0095

30 Epoch 0 77.57% 80.36% 80.43% 76.26%

Epoch 10 86.92% 86.25% 86.30% 85.25%

Storage FNN (MB) 0.0070 0.0106 0.0141 0.0177

40 Epoch 0 71.24% 70.38% 69.31% 68.15%

Epoch 10 85.04% 84.60% 84.18% 83.64%

Storage FNN (MB) 0.0093 0.0156 0.0219 0.0281

Table 2 Results obtained with CIFAR-10 dataset

Network Accuracy Storage (MB) Time
VGG-16 77.98% 56.15 46 h

Epoch 0 Epoch 10 Pre-M AS/POD PCE/FNN Init Train

AS+PCE (5) 13.52% 82.01% 2.12 3.12 0.05 43 min 4.5 h

AS+FNN (5) 33.06% 80.43% 2.12 3.12 0.0047 5 h 4.5 h

POD+FNN (5) 62.16% 80.24% 2.12 3.12 0.0047 79 min 5 h

AS+PCE (6) 14.42% 84.69% 4.37 3.12 0.05 49 min 5.5 h

AS+FNN (6) 33.76% 82.13% 4.37 3.12 0.0047 5 h 4.5 h

POD+FNN (6) 63.84% 83.93% 4.37 3.12 0.0047 83 min 5 h

AS+PCE (7) 4.25% 85.60% 6.62 0.78 0.05 35 min 5.5 h

AS+FNN (7) 75.66% 86.03% 6.62 0.78 0.0047 1.5 h 5 h

POD+FNN (7) 80.17% 87.45% 6.62 0.78 0.0047 12 min 5 h

Table 3 Results obtained with a custom dataset

Network Accuracy Storage (MB) Time
VGG-16 95.65% 56.14 22 min

Epoch 0 Epoch 10 Pre-M AS/POD PCE/FNN Init Train

AS+PCE (5) 29.03% 95.21% 2.12 3.12 0.02 2 min 10 min

AS+FNN (5) 94.63% 94.92% 2.12 3.12 0.0021 12.5 min 12 min

POD+FNN (5) 96.52% 96.66% 2.12 3.12 0.0021 28 sec 11.5 min

AS+PCE (6) 29.75% 95.79% 4.37 3.12 0.02 2.5 min 10 min

AS+FNN (6) 94.92% 95.36% 4.37 3.12 0.0021 12.5 min 12.5 min

POD+FNN (6) 96.23% 96.37% 4.37 3.12 0.0021 33 sec 13 min

AS+PCE (7) 28.59% 94.05% 6.62 0.78 0.02 1.5 min 11 min

AS+FNN (7) 94.34% 94.63% 6.62 0.78 0.0021 4.5 min 13 min

POD+FNN (7) 96.37% 96.52% 6.62 0.78 0.0021 33 sec 14 min

22827

123

L. Meneghetti et al.

Table 4 Results obtained with CIFAR-100 dataset

Network Accuracy Storage (MB) Time
Top-1 Top-5

VGG-16 68.46% 89.81% 56.33 5 h
Pre-M AS/POD PCE/FNN Init Train

AS+PCE (7) 66.10% 90.40% 6.62 0.78 0.51 34 min 8 h

AS+FNN (7) 58.33% 80.19% 6.62 0.78 0.047 39 min 7 h

POD+FNN (7) 61.48% 85.04% 6.62 0.78 0.047 16 min 6.5 h

AS+PCE (8) 68.73% 91.37% 11.12 1.56 0.51 43 min 8.5 h

AS+FNN (8) 56.87% 78.43% 11.12 1.56 0.047 48 min 7.5 h

POD+FNN (8) 65.43% 87.10% 11.12 1.56 0.047 21 min 7 h

AS+PCE (9) 69.77% 91.08% 20.12 1.56 0.51 43 min 8.5 h

AS+FNN (9) 67.10% 86.57% 20.12 1.56 0.047 47 min 8 h

POD+FNN (9) 67.61% 87.08% 20.12 1.56 0.047 21 min 8 h

the accuracy of the considered reduced network POD-FNN
under consideration at epoch 0, i.e. after its initialization, and
at epoch 10, i.e. after the re-training of thewhole reduced net.
From the results, it can thus be observed that increasing the
number of hidden layers and hidden neurons does not result
in improved accuracy. Based on accuracy and memory allo-
cation considerations (refer to Table 1 for details), we opted
for the following architecture:

• CIFAR-10: FNN with 50 input neurons, 10 output neu-
rons, and one hidden layer with 20 hidden neurons.

• Custom Dataset: FNN with 50 input neurons, 4 output
neurons, and one hidden layer with 10 hidden neurons.

• CIFAR-100: FNN with 50 input neurons, 100 output
neurons, and one hidden layer with 70 hidden neurons.

After completing these steps, the reduced neural network
was re-trained using CIFAR-10 and the custom dataset for
a total of 10 epochs. Additionally, it was re-trained for 20
epochs specifically on the CIFAR-100 dataset. The outcomes
of this training process are summarized in Tables 2, 3, and
in 4, presenting a comparison among various reduced neu-
ral networks in terms of accuracy (both before and after the
final training, or usingTop-1 andTop-5 scores),memory stor-
age requirements, and the time needed for initialization and
training of each reduced network. As mentioned earlier, we

Table 5 Results obtained for POD+FNN(7) without using a pre-trained
original network

Dataset Accuracy Storage (MB) Time
Top-1 Top-5 Init Train

CIFAR-10 86.58% – 7.42 15.5 min 3.5 h

Custom 96.81% – 7.42 51 sec 7.5 min

CIFAR-100 56.63% 81.61% 7.45 16 min 13.5 h

provide results for each reduced network, namely AS+PCE,
AS+FNN, POD+FNN, using three different cut-off layers:
5,6, and 7 or 7, 8 and 9, depending on the case.

In our context, which specifically involves working with a
custom dataset, understanding memory allocation is crucial.
This is because we aim to include a CNN into an embed-
ded system that has specific storage constraints. Tables 2, 3
and 4 demonstrate that thememory allocation required for the
created reduced nets is decreased with respect to that of the
originalVGG-16. For instance, the checkpoint file8 needed to
store the full net occupies approximately 56MB,whereas that
of its reduced versions is less than 10 MB in most cases. It is
then important to note that for CIFAR-100, opting for higher
cut-off values results in a larger storage requirement due to
the increased pre-model size. This emphasizes the significant
role the cut-off index plays in the final model compression.
Additionally, it is worth mentioning that replacing PCE with
an FNN leads to a substantial memory space savings of two
orders of magnitude: 10−4 as opposed to 10−2.

Table 2 shows that in the case of POD+FNN, the net does
not require an additional training with the entire dataset.
This is because, after the initialization (epoch 0), the net-
work’s accuracy is already acceptable, and for index 7, it
is already high. Additionally, we observe that all proposed
reduced nets require less time to achieve well-performing
models. This is reasonable since the compression in size is
strictly related to the decrease in the number of CNN param-
eters. However, while this holds true for CIFAR-10 and the
custom dataset, the increased number of classes, and thus
complexity, in CIFAR-100 necessitates longer training time.

8 Note that in all cases (CIFAR-10, CIFAR-100 and custom dataset)
the checkpoint file requires 56 MB of memory. However, if you need
to store additional information, such as the architecture of the network,
training epochs, and loss, the required allocation increases to around
220 MB.

22828

123

A dimensionality reduction approach for CNNs

Table 6 Results obtained with CIFAR-10 dataset

Network Accuracy Storage (MB) Time
ResNet-110 88.77% 6.94 3 h

Epoch 0 Epoch 10 Pre-M AS/POD PCE/FNN Init Train

AS+PCE (31) 12.38% 80.19% 1.15 1.56 0.05 1.5 h 4.5 h

AS+FNN (31) 8.44% 78.59% 1.15 1.56 0.0047 1.5 h 4 h

POD+FNN (31) 12.01% 81.62% 1.15 1.56 0.0047 11 min 45 min

AS+PCE (33) 11.85% 81.95% 1.30 1.56 0.05 1.5 h 4.5 h

AS+FNN (33) 8.71% 78.10% 1.30 1.56 0.0047 1.5 h 4 h

POD+FNN (33) 9.76% 82.30% 1.30 1.56 0.0047 11 min 47 min

AS+PCE (35) 8.36% 82.53% 1.44 1.56 0.05 1.5 h 4.5 h

AS+FNN (35) 10.40% 80.69% 1.44 1.56 0.0047 1.5 h 4 h

POD+FNN (35) 14.21% 83.72% 1.44 1.56 0.0047 11.5 min 47.5 min

Nevertheless, an interesting aspect of this reduction
methodology is the non-necessity of having a pre-trained
starting model to obtain an exploitable net, as summarized
in Table 5. We provide the results obtained for our proposed
reduced net POD+FNN(7), constructedwithout starting from
the pre-trained VGG-16. It can be inferred that with all
datasets POD+FNN achieves a comparable level of accuracy
as in the previous cases where a pre-trained VGG-16 was
employed. However, for CIFAR-10 and the custom dataset,
we used the same number of epochs as the pre-trained case,
whereas for CIFAR-100, it required twice the number of
epochs to achieve the same level of accuracy. The immediate
consequence of this is the saving of the time needed to gain
a performing network, which amounts to approximately 5
hours. It is evident that these considerations remain valid even
when using the custom dataset under consideration. Table
3 reports also how after the initialization POD+FNN has
already a greater accuracy than VGG-16 for all the choices
of l.

In all cases, it can be observed that the proposed reduced
CNN achieves a similar, if not higher, accuracy compared to

the original VGG-16, while occupying significantly less stor-
age. Moreover,increasing the cut-off layer index l results in
improved accuracy since more original features are retained.
However, this also leads to a smaller compression ratio.
Consequently, as previously mentioned, determining the
appropriate value for l requires striking a trade-off between
the desired levels of accuracy and reduction, considering also
the specific field of application.

4.5 Results ResNet-110

After obtaining interesting results with VGGNet, we pro-
ceeded to test our reduction methodology on ResNet-110,
following the approach described in [35]. Initially, the net-
work has been trained on each dataset for 60 epochs,
achieving a good level of accuracy as reported in Table 6,
in Tables 7, and 8. Similarly to the VGG-16 case, we provide
the Top-1 and Top-5 accuracy scores for CIFAR-100.

Also in this setting, we have performed multiple exper-
iments to determine the FNN architecture. In analogy with
the approach outlined in Table 1 for reducing VGG-16, we

Table 7 Results obtained with the custom dataset

Network Accuracy Storage (MB) Time
ResNet-110 97.24% 6.94 36 min

Epoch 0 Epoch 10 Pre-M AS/POD PCE/FNN Init Train

AS+PCE (31) 26.27% 93.32% 1.15 1.56 0.02 4 min 10 min

AS+FNN (31) 33.53% 96.52% 1.15 1.56 0.002 4.5 min 9.5 min

POD+FNN (31) 23.95% 94.91% 1.15 1.56 0.002 48 sec 9.5 min

AS+PCE (33) 18.29% 91.58% 1.30 1.56 0.02 4.5 min 10.5 min

AS+FNN (33) 39.04% 96.08% 1.30 1.56 0.002 4.5 min 10 min

POD+FNN (33) 32.37% 95.07% 1.30 1.56 0.002 50 sec 10 min

AS+PCE (35) 19.45% 93.90% 1.44 1.56 0.02 4.5 min 10.5 min

AS+FNN (35) 37.16% 96.08% 1.44 1.56 0.002 4.5 min 10.5 min

POD+FNN (35) 31.93% 96.23% 1.44 1.56 0.002 51 sec 10 min

22829

123

L. Meneghetti et al.

Table 8 Results obtained with CIFAR-100 dataset

Network Accuracy Storage (MB) Time
Top-1 Top-5

ResNet-110 89.49% 99.60% 6.97 15 h
Pre-M AS/POD PCE/FNN Init Train

AS+PCE (37) 80.93% 98.75% 1.58 0.78 0.51 1.5 h 8.5 h

AS+FNN (37) 81.18% 99.12% 1.58 0.78 0.04 1.5 h 8.5 h

POD+FNN (37) 79.33% 99.02% 1.58 0.78 0.04 16 min 8 h

AS+PCE (39) 82.78% 99.21% 2.07 0.78 0.51 1.5 h 9.5 h

AS+FNN (39) 82.39% 98.87% 2.07 0.78 0.04 1.5 h 8.5 h

POD+FNN (39) 78.80% 98.79% 2.07 0.78 0.04 16 min 8.5 h

AS+PCE (43) 82.58% 98.75% 3.20 0.78 0.51 1.5 h 9.5 h

AS+FNN (43) 83.67% 99.12% 3.20 0.78 0.04 1.5 h 9 h

POD+FNN (43) 78.89% 98.90% 3.20 0.78 0.04 16 min 9 h

used the sameFNNstructures described previously forVGG-
16 across the different cases. Furthermore, for ResNet, the
chosen reduced dimension r is also set to 50, based on the
eigenvalue analysis presented in [35]. Numerous tests con-
firmed that this choice of r was optimal, as increasing its
value did not yield improved results.

Oncewe finalized the compression and input–outputmap-
ping techniques, we proceeded to construct the reduced
versions of our original model. Algorithm 1 describes the
entire procedure, with the last step corresponding to the train-
ing phase. During this phase, we re-trained the proposed
networks using the aforementioned datasets under consid-
eration. We have thus re-train our reduced nets for 10 epochs
in the case of CIFAR-10 and the custom dataset, and for
20 epochs with CIFAR-100. Tables 6, 7 and 8 provide the
outcomes obtained using the described experimental setup,
comparing them in terms of the achieved accuracy, mem-
ory footprint, and time required for the initialization and
learning processes. Similarly to what is explained in Sec-
tion 4.4, we report the results for each proposed reduced net
using three different cut-off values9: 31, 33, 35 for CIFAR-10
and the custom dataset, and 37, 39, 43 for CIFAR-100. By
combining the reduction and input–output mapping meth-
ods, we have constructed the following compressed models,
AS+PCE, AS+FNN, POD+FNN, of which we are now going
to analyze the performances.

In terms of memory allocation, it is worth noting that each
of the aforementioned reduced nets requires less than 3 MB

9 The chosen cut-off indexes forResNet-110 are determined in a similar
manner as discussed for VGG-16. Specifically, they are based on the
indexes used in [35]. It is important to note that these indexes refer
solely to the convolutional layers. Hence, when considering the entire
ResNet-110 structure, these indexes correspond to layers 61, 67, 73, 75,
81, and 87, respectively.

of space, resulting in a reduction of approximately 60% in the
memory footprint. Furthermore, the introduction of an FNN
in the final part of the method leads to a storage decrease of
one order of magnitude.

In all cases, we can observe that the reduced networks
achieved a level of accuracy comparable to the original
ResNet-110. The advantage of constructing lightweight
architectures is that they result in faster models in most sit-
uations. Specifically, we want to emphasize the POD+FNN
net, since it consistently outperforms the other reduced net-
works in terms of achieved accuracy, storage requirements,
initialization, and training times. Regarding the initializa-
tion process, we can observe that POD requires less time
compared to AS, saving approximately one time hour. Fur-
thermore, the training duration is similar to AS in the case
of CIFAR-100 and the custom dataset, while it is faster for
CIFAR-10.

In conclusion, based on the aforementioned considera-
tions, we can deduce that the results obtained with ResNet-
110 are generally in line with those previously achieved
with VGG-16. The proposed reduced methodology enables
the creation of lightweight versions of ResNet-110 that are
equally accurate to the original model but have fewer param-
eters, making them more manageable to train.

5 Conclusions and perspectives

In this paper, we propose a generic framework for com-
pressing neural networks, specifically Convolutional Neural
Networks,with the objective of reducing the number of layers
in the network while minimizing the error in the final pre-
diction. This reduction is achieved by replacing a finite set
of network layers with a response surface, which involves
also dimensionality reduction techniques to operate on a
low-dimensional space. We analyze various dimensionality

22830

123

A dimensionality reduction approach for CNNs

reduction methods, and investigate how the combination of
these techniques with different input-output mappings can
impact the final accuracy.

The primary goal of creating this reduced network is
to compress existing deep neural network architectures to
be included in embedded systems with memory and space
constraints. The numerical experiments conducted on two
different CNNs, namely VGG-16 and ResNet-110, demon-
strate that the proposed techniques can produce a compressed
version of an existing network by reducing the number of lay-
ers and parameters. This reduction in size results in memory
savings while maintaining a comparable level of accuracy
to the original CNN. In comparison to VGG-16, the origi-
nal ResNet-110 requires less storage space, approximately
7 MB, making it already suitable for many applications
in vision-embedded systems. However, the use of smaller
devices or specific requirements may necessitate a com-
pressed and faster version of the network. Additionally, the
results reveal that the combination of POD with FNN gen-
erally leads to reduced training time, making the proposed
framework superior to the method presented in [35].

A potential drawback of this technique is the requirement
to beginwith a pre-trained network in order to reduce it.How-
ever, our experiments havedemonstrated the non-necessity of
this starting point to reach good accuracy with the proposed
reduced architecture. Despite the saved space and memory,
the actual bottleneck in many problems lies in the learning
procedure. In such cases, our framework could be extended
to reduce the architecture dimension during training, rather
than only after its completion, potentially resulting in a sig-
nificant speedup in the optimization step.

In conclusion, the conducted experiments illustrate the
consistency of our proposed methodology when applied to
different CNNs and datasets.While we cannot claim that this
reduction framework canbe universally applied to all existing
types of ANNs, it has proven effective in compressing CNNs
for image recognition tasks.

Acknowledgements We thank Marco Tezzele for the productive dis-
cussions and comments.

Author Contributions Conceptualization: Laura Meneghetti, Nicola
Demo;Methodology: LauraMeneghetti, NicolaDemo; Formal analysis
and investigation: Laura Meneghetti; Writing - original draft prepara-
tion: Laura Meneghetti; Writing - review and editing: Nicola Demo,
Gianluigi Rozza; Funding acquisition: Gianluigi Rozza; Supervision:
Gianluigi Rozza.

Funding This workwas partially supported by an industrial Ph.D. grant
sponsored byElectroluxProfessional, andwas partially fundedbyEuro-
pean Union Funding for Research and Innovation — Horizon 2020
Program — in the framework of European Research Council Execu-
tive Agency: H2020 ERC CoG 2015 AROMA-CFD project 681447
“Advanced Reduced Order Methods with Applications in Computa-
tional Fluid Dynamics” P.I. Professor Gianluigi Rozza. Open access
funding provided by Scuola Internazionale Superiore di Studi Avanzati
- SISSA within the CRUI-CARE Agreement.

Data availability and access Code for the reduction of neural network is
provided as part of the Smithers package. It is available at https://github.
com/mathLab/Smithers. The CIFAR-10 and CIFAR-100 datasets can
be downloaded from the official webpage: https://www.cs.toronto.edu/
\protect\unhbox\voidb@x\penalty\@M\kriz/cifar.html. Restrictions
are applied on the availability of the custom dataset, which was used
under license from Electrolux Professional for the current study, and
therefore is not publicly available.

Declarations

Ethical and informed consent for data used Fulfilled.

Competing interests No potential competing interest was reported by
the authors.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classifica-
tion with deep convolutional neural networks. Advances in neural
information processing systems 25:1097–1105. https://doi.org/10.
1145/3065386

2. Elgendy M (2020) Deep Learning for Vision Systems. Simon and
Schuster, New York

3. Liu L, Ouyang W, Wang X, Fieguth P, Chen J, Liu X, Pietikäinen
M (2020) Deep learning for generic object detection: A survey.
International journal of computer vision 128:261–318. https://doi.
org/10.1007/s11263-019-01247-4

4. Young T, Hazarika D, Poria S, Cambria E (2018) Recent trends
in deep learning based natural language processing. IEEE Com-
putational intelligenCe magazine 13(3):55–75. https://doi.org/10.
1109/MCI.2018.2840738

5. Khurana, D., Koli, A., Khatter, K., Singh, S.: Natural Language
Processing: State of The Art, Current Trends and Challenges. Mul-
timedia Tools and Applications 82 (2022). DOI: https://doi.org/10.
1007/s11042-022-13428-4

6. Noda K, Arie H, Suga Y, Ogata T (2014) Multimodal integration
learning of robot behavior using deep neural networks. Robotics
andAutonomous Systems 62(6):721–736. https://doi.org/10.1016/
j.robot.2014.03.003

7. Kiyokawa T, Katayama H, Tatsuta Y, Takamatsu J, Ogasawara T
(2021) RoboticWaste SorterWithAgileManipulation andQuickly
Trainable Detector. IEEE Access 9:124616–124631. https://doi.
org/10.1109/ACCESS.2021.3110795

8. Wali A, Alamgir Z, Karim S, Fawaz A, Ali MB, Adan M, Mujtaba
M (2022) Generative adversarial networks for speech processing:
A review. Computer Speech & Language 72:101308. https://doi.
org/10.1016/j.csl.2021.101308

22831

https://github.com/mathLab/Smithers
https://github.com/mathLab/Smithers
https://www.cs.toronto.edu/protect unhbox voidb@x penalty @M {}kriz/cifar.html
https://www.cs.toronto.edu/protect unhbox voidb@x penalty @M {}kriz/cifar.html
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1007/s11263-019-01247-4
https://doi.org/10.1007/s11263-019-01247-4
https://doi.org/10.1109/MCI.2018.2840738
https://doi.org/10.1109/MCI.2018.2840738
https://doi.org/10.1007/s11042-022-13428-4
https://doi.org/10.1007/s11042-022-13428-4
https://doi.org/10.1016/j.robot.2014.03.003
https://doi.org/10.1016/j.robot.2014.03.003
https://doi.org/10.1109/ACCESS.2021.3110795
https://doi.org/10.1109/ACCESS.2021.3110795
https://doi.org/10.1016/j.csl.2021.101308
https://doi.org/10.1016/j.csl.2021.101308

123

L. Meneghetti et al.

9. Yu, D., Deng, L.: Automatic Speech Recognition vol. 1. Springer,
London (2016). https://doi.org/10.1007/978-1-4471-5779-3

10. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT
Press, Cambridge, USA (2016). http://www.deeplearningbook.org

11. Khan A, Sohail A, Zahoora U, Qureshi AS (2020) A survey of
the recent architectures of deep convolutional neural networks.
Artificial Intelligence Review 53(8):5455–5516. https://doi.org/
10.1007/s10462-020-09825-6

12. Trenn S (2008) Multilayer Perceptrons: Approximation Order and
Necessary Number of Hidden Units. IEEE Transactions on Neu-
ral Networks 19(5):836–44. https://doi.org/10.1109/TNN.2007.
912306

13. Wang, E., Davis, J.J., Zhao, R., Ng, H.-C., Niu, X., Luk, W., Che-
ung, P.Y.K., Constantinides, G.A.: Deep neural network approx-
imation for custom hardware: Where we’ve been, where we’re
going. ACM Computing Surveys 52(2) (2019). https://doi.org/10.
1145/3309551

14. Wuraola A, Patel N (2022) Resource efficient activation functions
for neural network accelerators. Neurocomputing 482:163–185.
https://doi.org/10.1016/j.neucom.2021.11.032

15. Huang J, Zhao J, Cai W (2019) Compressing convolutional
neural networks using POD for the reconstruction of nonlinear
tomographic absorption spectroscopy. Computer Physics Commu-
nications 241:33–39. https://doi.org/10.1016/j.cpc.2019.03.020

16. Messaoud S, Bouaafia S, Maraoui A, Ammari AC, Khriji L,
Machhout M (2022) Deep convolutional neural networks-based
hardware-software on-chip system for computer vision applica-
tion. Computers & Electrical Engineering 98:107671. https://doi.
org/10.1016/j.compeleceng.2021.107671

17. Udendhran R, Balamurugan M, Suresh A, Varatharajan R (2020)
Enhancing image processing architecture using deep learning for
embedded vision systems. Microprocessors and Microsystems
76:103094. https://doi.org/10.1016/j.micpro.2020.103094

18. da Silva ET, Sampaio F, da Silva LC, Medeiros DS, Correia GP
(2020) Amethod for embedding a computer vision application into
a wearable device. Microprocessors andMicrosystems 76:103086.
https://doi.org/10.1016/j.micpro.2020.103086

19. He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very
deep neural networks. In: 2017 IEEE International Conference on
Computer Vision (ICCV), pp. 1398–1406 (2017). https://doi.org/
10.1109/ICCV.2017.155

20. Chen S, Zhao Q (2019) Shallowing deep networks: Layer-wise
pruning based on feature representations. IEEE Transactions on
Pattern Analysis and Machine Intelligence 41(12):3048–3056.
https://doi.org/10.1109/TPAMI.2018.2874634

21. Li, Y., Adamczewski, K., Li, W., Gu, S., Timofte, R., Van Gool, L.:
Revisiting random channel pruning for neural network compres-
sion. In: 2022 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 191–201 (2022). https://doi.org/
10.1109/CVPR52688.2022.00029

22. Molchanov, P., Mallya, A., Tyree, S., Frosio, I., Kautz, J.:
Importance estimation for neural network pruning. In: 2019
IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 11256–11264 (2019). https://doi.org/10.1109/
CVPR.2019.01152

23. Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., Zhang, C.: Learning
efficient convolutional networks through network slimming. In:
2017 IEEE International Conference on Computer Vision (ICCV),
pp. 2755–2763 (2017). https://doi.org/10.1109/ICCV.2017.298

24. Cichocki, A., Lee, N., Oseledets, I., Phan, A.-H., Zhao, Q.,Mandic,
D.P.: Tensor networks for dimensionality reduction and large-scale
optimization: Part 1 low-rank tensor decompositions. Foundations
and Trends® inMachine Learning 9(4-5), 249–429 (2016). https://
doi.org/10.1561/2200000059

25. Cichocki, A., Phan, A.-H., Zhao, Q., Lee, N., Oseledets, I.,
Sugiyama, M., Mandic, D.P.: Tensor networks for dimensional-

ity reduction and large-scale optimization: Part 2 applications and
future perspectives. Foundations and Trends® in Machine Learn-
ing 9(6), 431–673 (2017). https://doi.org/10.1561/2200000067

26. Li, Y., Gu, S.,Mayer, C., VanGool, L., Timofte, R.: GroupSparsity:
TheHingeBetweenFilter Pruning andDecomposition forNetwork
Compression. In: 2020 IEEE/CVFConference onComputerVision
and Pattern Recognition (CVPR), pp. 8015–8024 (2020). https://
doi.org/10.1109/CVPR42600.2020.00804

27. Li, Y., Gu, S., Van Gool, L., Timofte, R.: Learning Filter Basis for
Convolutional Neural Network Compression. In: 2019 IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 5622–
5631 (2019). https://doi.org/10.1109/ICCV.2019.00572

28. Yang, J., Shen, X., Xing, J., Tian, X., Li, H., Deng, B., Huang,
J., Hua, X.-s.: Quantization Networks. In: 2019 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), pp.
7300–7308 (2019). https://doi.org/10.1109/CVPR.2019.00748

29. Hubara I, Courbariaux M, Soudry D, El-Yaniv R, Bengio Y (2017)
Quantized neural networks: Training neural networkswith low pre-
cision weights and activations. The Journal of Machine Learning
Research 18(1):6869–6898

30. Deng L, Jiao P, Pei J, Wu Z, Li G (2018) GXNOR-Net: Train-
ing deep neural networks with ternary weights and activations
without full-precision memory under a unified discretization
framework. Neural Networks 100:49–58. https://doi.org/10.1016/
j.neunet.2018.01.010

31. Hinton, G., Vinyals, O., Dean, J.: Distilling the Knowledge in
a Neural Network. In: NIPS Deep Learning and Representation
Learning Workshop (2015)

32. Gou J, Yu B, Maybank SJ, Tao D (2021) Knowledge distillation:
A survey. International Journal of Computer Vision 129(6):1789–
1819. https://doi.org/10.1007/s11263-021-01453-z

33. Cho, J.H., Hariharan, B.: On the Efficacy of Knowledge Distilla-
tion. In: 2019 IEEE/CVF International Conference on Computer
Vision (ICCV), pp. 4793–4801 (2019). https://doi.org/10.1109/
ICCV.2019.00489

34. Bang D, Lee J, Shim H (2021) Distilling from professors: Enhanc-
ing the knowledge distillation of teachers. Information Sciences
576:743–755. https://doi.org/10.1016/j.ins.2021.08.020

35. Cui C, Zhang K, Daulbaev T, Gusak J, Oseledets I, Zhang Z (2020)
Active subspace of neural networks: Structural analysis and uni-
versal attacks. SIAM Journal on Mathematics of Data Science
2(4):1096–1122. https://doi.org/10.1137/19M1296070

36. Benner, P., Grivet-Talocia, S., Quarteroni, A., Rozza, G., Schilders,
W., Silveira, L.M.:ModelOrderReduction:Volume 1: System- and
Data-Driven Methods and Algorithms. De Gruyter, Berlin, Boston
(2021). https://doi.org/10.1515/9783110498967

37. Benner, P., Schilders,W., Grivet-Talocia, S., Quarteroni, A., Rozza,
G., Miguel Silveira, L.: Model Order Reduction: Volume 2:
Snapshot-Based Methods and Algorithms. De Gruyter, Berlin,
Boston (2020). https://doi.org/10.1515/9783110671490

38. Benner, P., Schilders,W., Grivet-Talocia, S., Quarteroni, A., Rozza,
G., Miguel Silveira, L.: Model Order Reduction: Volume 3: Appli-
cations. De Gruyter, Berlin, Boston (2020). https://doi.org/10.
1515/9783110499001

39. Constantine, P.G.: Active Subspaces: Emerging Ideas for Dimen-
sion Reduction in Parameter Studies. SIAM Spotlights, vol. 2.
SIAM, U.S. (2015). https://doi.org/10.1137/1.9781611973860

40. Constantine PG, DowE,WangQ (2014) Active SubspaceMethods
in Theory and Practice: Applications to Kriging Surfaces. SIAM
Journal on Scientific Computing 36(4):1500–1524. https://doi.org/
10.1137/130916138

41. Romor F, Tezzele M, Lario A, Rozza G (2022) Kernel-based
active subspaces with application to computational fluid dynam-
ics parametric problems using discontinuous Galerkin method.
International Journal for Numerical Methods in Engineering
123(23):6000–6027. https://doi.org/10.1002/nme.7099

22832

https://doi.org/10.1007/978-1-4471-5779-3
http://www.deeplearningbook.org
https://doi.org/10.1007/s10462-020-09825-6
https://doi.org/10.1007/s10462-020-09825-6
https://doi.org/10.1109/TNN.2007.912306
https://doi.org/10.1109/TNN.2007.912306
https://doi.org/10.1145/3309551
https://doi.org/10.1145/3309551
https://doi.org/10.1016/j.neucom.2021.11.032
https://doi.org/10.1016/j.cpc.2019.03.020
https://doi.org/10.1016/j.compeleceng.2021.107671
https://doi.org/10.1016/j.compeleceng.2021.107671
https://doi.org/10.1016/j.micpro.2020.103094
https://doi.org/10.1016/j.micpro.2020.103086
https://doi.org/10.1109/ICCV.2017.155
https://doi.org/10.1109/ICCV.2017.155
https://doi.org/10.1109/TPAMI.2018.2874634
https://doi.org/10.1109/CVPR52688.2022.00029
https://doi.org/10.1109/CVPR52688.2022.00029
https://doi.org/10.1109/CVPR.2019.01152
https://doi.org/10.1109/CVPR.2019.01152
https://doi.org/10.1109/ICCV.2017.298
https://doi.org/10.1561/2200000059
https://doi.org/10.1561/2200000059
https://doi.org/10.1561/2200000067
https://doi.org/10.1109/CVPR42600.2020.00804
https://doi.org/10.1109/CVPR42600.2020.00804
https://doi.org/10.1109/ICCV.2019.00572
https://doi.org/10.1109/CVPR.2019.00748
https://doi.org/10.1016/j.neunet.2018.01.010
https://doi.org/10.1016/j.neunet.2018.01.010
https://doi.org/10.1007/s11263-021-01453-z
https://doi.org/10.1109/ICCV.2019.00489
https://doi.org/10.1109/ICCV.2019.00489
https://doi.org/10.1016/j.ins.2021.08.020
https://doi.org/10.1137/19M1296070
https://doi.org/10.1515/9783110498967
https://doi.org/10.1515/9783110671490
https://doi.org/10.1515/9783110499001
https://doi.org/10.1515/9783110499001
https://doi.org/10.1137/1.9781611973860
https://doi.org/10.1137/130916138
https://doi.org/10.1137/130916138
https://doi.org/10.1002/nme.7099

123

A dimensionality reduction approach for CNNs

42. ZahmO, Constantine PG, Prieur C,MarzoukYM (2020) Gradient-
based dimension reduction ofmultivariate vector-valued functions.
SIAM Journal on Scientific Computing 42(1):534–558. https://doi.
org/10.1137/18M1221837

43. Ahnert K, Abel M (2007) Numerical differentiation of experimen-
tal data: local versus global methods. Computer Physics Commu-
nications 177:764–774. https://doi.org/10.2514/6.2003-4213

44. Williams CK, Rasmussen CE (2006) Gaussian Processes for
Machine Learning, vol 2. The MIT press, Cambridge, MA, USA

45. Mohamed, S., Rosca, M., Figurnov, M., Mnih, A.: Monte Carlo
Gradient Estimation in Machine Learning. Journal of Machine
LearningResearch 21(1) (2020). https://doi.org/10.5555/3455716.
3455848

46. Romor F, Tezzele M, Rozza G (2021) ATHENA: Advanced
Techniques for High dimensional parameter spaces to Enhance
Numerical Analysis. Software Impacts 10:100133. https://doi.org/
10.1016/j.simpa.2021.100133

47. Hesthaven, J.S., Rozza, G., Stamm, B.: Certified Reduced Basis
Methods for Parametrized Partial Differential Equations, 1st edn.
Springer Briefs in Mathematics, p. 135. Springer, Switzerland
(2015). https://doi.org/10.1007/978-3-319-22470-1. Springer

48. Bui-Thanh T, Damodaran M, Willcox K (2003) Proper orthogonal
decomposition extensions for parametric applications in com-
pressible aerodynamics. In: 21st AIAA Applied Aerodynamics
Conference, p. 4213. https://doi.org/10.2514/6.2003-4213

49. Bui-Thanh T, Damodaran M, Willcox K (2004) Aerodynamic data
reconstruction and inverse design using proper orthogonal decom-
position. AIAA journal 42(8):1505–1516. https://doi.org/10.2514/
1.2159

50. Rozza,G., Stabile,G.,Ballarin, F.:AdvancedReducedOrderMeth-
ods and Applications in Computational Fluid Dynamics. Society
for Industrial and Applied Mathematics, Philadelphia, PA (2022).
https://doi.org/10.1137/1.9781611977257

51. Xiu D, Karniadakis GE (2002) The Wiener-Askey polyno-
mial chaos for stochastic differential equations. SIAM journal
on scientific computing 24(2):619–644. https://doi.org/10.1137/
S1064827501387826

52. Fine, T.L.: Feedforward Neural Network Methodology. Informa-
tion Science and Statistics. Springer, New York (1999). https://doi.
org/10.1007/b97705

53. Wiener N (1938) The Homogeneous Chaos. American Journal of
Mathematics 60(4):897–936. https://doi.org/10.2307/2371268

54. Janya-Anurak, C.: Framework for Analysis and Identification of
Nonlinear Distributed Parameter Systems Using Bayesian Uncer-
tainty Quantification Based on Generalized Polynomial Chaos.
Karlsruher Schriften zur Anthropomatik, vol. 31. KIT Scien-
tific Publishing, Karlsruhe, Deutschland (2017). https://doi.org/10.
5445/KSP/1000066940

55. Ghanem, R.G., Spanos, P.D.: Stochastic Finite Elements: a Spec-
tralApproach. Springer,NewYork (1991). https://doi.org/10.1007/
978-1-4612-3094-6

56. Askey, R., Wilson, J.A.: Some basic hypergeometric orthogonal
polynomials that generalize Jacobi polynomials. Memoirs of the
American Mathematical Society 54(319) (1985). https://doi.org/
10.1090/memo/0319

57. Sudret B (2008)Global sensitivity analysis using polynomial chaos
expansions. Reliability engineering & system safety 93(7):964–
979. https://doi.org/10.1016/j.ress.2007.04.002

58. Cheng K, Lu Z (2018) Adaptive sparse polynomial chaos expan-
sions for global sensitivity analysis based on support vector
regression. Computers & Structures 194:86–96. https://doi.org/10.
1016/j.compstruc.2017.09.002

59. Shaham U, Cloninger A, Coifman RR (2018) Provable approx-
imation properties for deep neuralnetworks. Applied and

Computational HarmonicAnalysis 44(3):537–557. https://doi.org/
10.1016/j.acha.2016.04.003

60. Zaki MJ, Meira W Jr (2020) Data Mining and Machine Learn-
ing: Fundamental Concepts andAlgorithms.CambridgeUniversity
Press, U.K

61. Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Duan Y, Al-
Shamma O, Santamaría J, Fadhel MA, Al-Amidie M, Farhan L
(2021) Review of deep learning: Concepts, CNN architectures,
challenges, applications, future directions. Journal of big Data
8(1):1–74. https://doi.org/10.1186/s40537-021-00444-8

62. Rojas, R.: The Backpropagation Algorithm. In: Neural Networks,
pp. 149–182. Springer, Berlin, Heidelberg (1996). https://doi.org/
10.1007/978-3-642-61068-4_7

63. Borza, D.L., Ileni, T.A., Marinescu, A.I., Darabant, S.A.: Teacher
or supervisor? effective online knowledge distillation via guided
collaborative learning.ComputerVision and ImageUnderstanding,
103632 (2023). https://doi.org/10.1109/CVPR.2016.90

64. LeCun Y (1989) Generalization and network design strategies.
Connectionism in perspective 19(143–155):18

65. Gu J, Wang Z, Kuen J, Ma L, Shahroudy A, Shuai B, Liu T, Wang
X, Wang G, Cai J et al (2018) Recent advances in convolutional
neural networks. Pattern recognition 77:354–377. https://doi.org/
10.1016/j.patcog.2017.10.013

66. Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks
forLarge-Scale ImageRecognition. In:Bengio,Y., LeCun,Y. (eds.)
3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings (2015)

67. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for
image recognition. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 770–778. https://
doi.org/10.1109/CVPR.2016.90

68. Krizhevsky, A., Hinton, G.: Learning multiple layers of features
from tiny images. Master’s thesis, Department of Computer Sci-
ence, University of Toronto (2009)

69. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan,
G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison,
A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chil-
amkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch:
An Imperative Style, High-Performance Deep Learning Library.
In: Wallach, H., Larochelle, H., Beygelzimer, A., d’ Alché-Buc, F.,
Fox, E., Garnett, R. (eds.) Advances in Neural Information Pro-
cessing Systems 32, pp. 8024–8035. Curran Associates, Inc., new
York, United States (2019)

70. Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy,
T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W.,
Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J.,
Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey,
C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D.,
Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris,
C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., vanMulbregt,
P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms
for Scientific Computing in Python. Nature Methods 17, 261–272
(2020). https://doi.org/10.1038/s41592-019-0686-2

71. Ghashami M, Liberty E, Phillips JM, Woodruff DP (2016) Fre-
quent Directions: Simple and Deterministic Matrix Sketching.
SIAM Journal on Computing 45:1762–1792. https://doi.org/10.
1137/15M1009718

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

22833

https://doi.org/10.1137/18M1221837
https://doi.org/10.1137/18M1221837
https://doi.org/10.2514/6.2003-4213
https://doi.org/10.5555/3455716.3455848
https://doi.org/10.5555/3455716.3455848
https://doi.org/10.1016/j.simpa.2021.100133
https://doi.org/10.1016/j.simpa.2021.100133
https://doi.org/10.1007/978-3-319-22470-1
https://doi.org/10.2514/6.2003-4213
https://doi.org/10.2514/1.2159
https://doi.org/10.2514/1.2159
https://doi.org/10.1137/1.9781611977257
https://doi.org/10.1137/S1064827501387826
https://doi.org/10.1137/S1064827501387826
https://doi.org/10.1007/b97705
https://doi.org/10.1007/b97705
https://doi.org/10.2307/2371268
https://doi.org/10.5445/KSP/1000066940
https://doi.org/10.5445/KSP/1000066940
https://doi.org/10.1007/978-1-4612-3094-6
https://doi.org/10.1007/978-1-4612-3094-6
https://doi.org/10.1090/memo/0319
https://doi.org/10.1090/memo/0319
https://doi.org/10.1016/j.ress.2007.04.002
https://doi.org/10.1016/j.compstruc.2017.09.002
https://doi.org/10.1016/j.compstruc.2017.09.002
https://doi.org/10.1016/j.acha.2016.04.003
https://doi.org/10.1016/j.acha.2016.04.003
https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.1007/978-3-642-61068-4_7
https://doi.org/10.1007/978-3-642-61068-4_7
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1016/j.patcog.2017.10.013
https://doi.org/10.1016/j.patcog.2017.10.013
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1137/15M1009718
https://doi.org/10.1137/15M1009718

	A dimensionality reduction approach for convolutional neural networks
	Abstract
	1 Introduction and motivations
	2 Numerical tools
	2.1 Dimensionality reduction techniques
	2.1.1 Active subspaces
	2.1.2 Proper orthogonal decomposition

	2.2 Input–output mapping
	2.2.1 Polynomial chaos expansion
	2.2.2 Feedforward neural network

	3 The reduced artificial neural networks
	3.1 Training phase

	4 Numerical results
	4.1 Neural network architectures
	4.2 Dataset
	4.3 Software and hardware configuration
	4.4 Results VGG-16
	4.5 Results ResNet-110

	5 Conclusions and perspectives
	Acknowledgements
	References

