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Abstract. We study the non-equilibrium phase diagram of a fully-connected
Ising p-spin model, for generic p> 2, and investigate its robustness with respect
to the inclusion of spin-wave fluctuations, resulting from a ferromagnetic, short-
range spin interaction. In particular, we investigate the dynamics of the mean-
field model after a quantum quench: we observe a new dynamical phase trans-
ition which is either first or second order depending on the even or odd parity
of p, in stark contrast with its thermal counterpart which is first order for all p.
The dynamical phase diagram is qualitatively modified by the fluctuations intro-
duced by a short-range interaction which drive the system always towards various
prethermal paramagnetic phases determined by the strength of time dependent
fluctuations of the magnetization.
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1. Introduction

Equilibrium phase transitions, either at zero or finite-temperature, are known to leave
a substantial imprint in the non-equilibrium dynamics of a quantum many-body sys-
tem [1]. For example, even when a stationary state attained after a quantum quench
does not reveal signatures of order as in low-dimensional systems [2–4], a linear ramp
through a second order quantum critical point leaves universal signatures in the scal-
ing of the number of excitations with the ramp speed [5–11], as confirmed extensively
in a number of experiments [12–18]. Analogous signatures are left when a first-order
quantum phase transition is crossed [19–21] through the nucleation of resonant bubbles
of the new phase close to the critical point [22–24] which leads to a modified Kibble-
Zurek-like power-law scaling [25].

Among the signatures of criticality observed out-of-equilibrium, dynamical phase
transitions (DPT) occupy a special place. A dynamical quantum criticality can be
observed as singular temporal behavior of the Loschmidt echo (LE) most notably after
a quench across a quantum phase transition [26–28], even in situations where long-range
order cannot be sustained in stationary states. In systems with long-range interactions,
on the contrary, intertwined with the singular behavior of the LE [29–34], a standard
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Landau-type critical behavior based on the dependence of a time averaged order para-
meter with respect to the quench parameters can be observed [35, 36]. Peculiar to the
second-order dynamical transitions arising in these models is the fact that they are
associated to critical trajectories with a divergent time scale in the dynamics separat-
ing revivals with a finite order parameter [29]. In the presence of fluctuations critical
trajectories become unstable and second order dynamical critical points widen up into
chaotic dynamical phases [37–40].

While a great deal is known about second-order DPT, the dynamics of systems dis-
playing equilibrium first order transitions is much less explored. The notion of dynam-
ical criticality associated to the LE has been extended to include first order beha-
vior [41] while first-order and dissipative phase transitions in infinite range p-spin sys-
tems coupled to an external bath have been studied in [42]. However, dynamical trans-
itions occurring in systems displaying first order equilibrium transitions are much less
studied.

In this work we address this issue by studying DPT and their stability against
fluctuations in a system displaying a first order equilibrium transition: a spin system
with infinite range p-spin interactions in a transverse field. We show that, already at
mean-field level where the dynamics is effectively classical, the system undergoes a
DPT after a quench of the transverse field g, whose order depends non-trivially on p,
despite its equilibrium counterpart being always of first order. In particular, we show
that the order of the dynamical transition can be inferred entirely from the profile of
the underlying energy landscape. We then perturb the model by a short-range two-
body interaction tuning the strength of spin fluctuations [37, 38, 43]. While for p = 2 a
chaotic dynamical region opens up near mean-field criticality [37, 38], we show that for
p> 2 dynamical chaos is almost entirely replaced by a new prethermal regime, which
we define as ‘dynamical paramagnetic phase’, which appears for sufficiently large short-
range coupling. This is due to the emission of energy in the form of spin-waves, which
predominantly drive the system into a paramagnetic minimum even in the presence of
other minima in the energy landscape.

2. Mean-field dynamics

In this section, we study the dynamics of N spins 1/2 subject to all-to-all p-body and
a global transverse field g̃. The corresponding Hamiltonian is given by:

Ĥ0 = − λ

2N p−1

N∑
i1...ip=1

σ̂xi1 . . . σ̂
x
ip −

g̃

2

∑
i

σ̂zi . (1)

Here, the operators σ̂αi denote the Pauli matrices at site i. The fully connected p-
spin model in equation (1), which was originally introduced in the context of spin
glasses [44, 45], plays a central role for studies on quantum annealing [46, 47]. Its zero-
temperature equilibrium phase diagram can be derived analytically [46–49], utilizing
a Suzuki–Trotter decomposition in the thermodynamic limit [50]. The phase diagram
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displays a quantum phase transition driven by g̃ and detected by the magnetization
Sx =

∑
i⟨σ̂xi ⟩/N along the x -axis. The transition, located at some g̃ = gc, separates a

ferromagnetic state, defined by a non-vanishing Sx, from a paramagnetic where Sx = 0.
The transition is continuous for p = 2, where Sx vanishes with a square-root singular-
ity [48], while it is of the first order for p> 2, where Sx displays a discontinuity. In this
section we will address the dynamics and DPT of this p-spin model.

2.1. Semi-classical theory for the post-quench dynamics

Our goal is to study the dynamics of the average magnetization, S⃗(t) = ⟨
∑

j σ⃗j(t)⟩/N ,

after a quench in the transverse field g̃ in equation (1), where the field g abruptly
changes from a value g0 = 0 to a value g > 0. Specifically, we prepare the system in the
fully polarized state,

|ψ0⟩ = | → · · · →⟩ , (2)

corresponding to a ground state Ĥ0 at g0 = 0. The dynamics of S⃗(t) is obtained by aver-

aging over |ψ0⟩ the Heisenberg equations generated by the Hamiltonian Ĥ0. However,

due to the all-to-all interacting nature of Ĥ0, this dynamics becomes effectively classical
in the thermodynamic limit N →∞. This classical behavior is derived from the general
theory outlined in [35], which we briefly review in the following.

To begin with, we observe that the Hamiltonian in equation (1), for the post-quench

transverse field g̃ = g, can be rewritten in terms of the collective spin operators, Ŝα =∑
j σ̂

α
j /N , as follows:

Ĥ0 = −N
[
λ

2

(
Ŝx
)p

+
g

2
Ŝz
]

. (3)

The collective spin components satisfy the commutation relations[
Ŝα, Ŝβ

]
=

2i

N

∑
γ=x,y,z

ϵαβγŜγ , (4)

where ϵαβγ is the Levi-Civita symbol. The commutators, controlled by an effective
Planck constant 1/N , vanish in the thermodynamic limit. As a consequence, the dynam-
ics of the average magnetization becomes effectively classical for N →∞ and is governed
by the Hamilton equation (see also [42, 51]):

dS⃗ (t)

dt
=
{
S⃗ (t) ,Hcl

(
S⃗ (t) ,g

)}
= S⃗ (t)×

∂Hcl

(
S⃗ (t) ,g

)
∂S⃗

. (5)

The right-hand side of equation (5) is derived by substituting the rescaled average

commutators, N⟨[Ĥ0, Ŝ
α]⟩/i, with the corresponding Poisson brackets, {Hcl(S⃗),Sα}.
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Here, the effective classical potential Hcl(S⃗,g) is obtained as the thermodynamic limit

of ⟨Ĥ0⟩/N and is given by

Hcl

(
S⃗,g

)
= −λ(Sx)p− gSz . (6)

The initial condition for equation (5) is S⃗(0) = x, corresponding to the fully polarized
state in equation (2). Here and throughout this paper, we use the notation {x,y,z}
to denote the unit vectors along the corresponding axes. We also observe that, as the
modulus of the magnetization is a constant of motion, the classical dynamics from
equation (5) takes place on the Bloch sphere |S⃗|2 = 1. Thus, the system under con-
sideration is always in a non-equilibrium state, as all the microscopic spins perform a
coherent, undamped precession.

The dynamics from equation (5) is strongly influenced by the shape of the effective

Hamiltonian Hcl(S⃗,g). Depending on the value of p and for sufficiently small values of

g, the profile Hcl(S⃗,g) on the Bloch sphere exhibits various topologies, characterized
by the number and positions of its maxima and minima. To determine their locations,
we parameterize the magnetization with the spherical angles (θ,ϕ) ∈ [0,π/2]× [0,2π],

as S⃗ =
(

sinθ cosϕ, sinθ sinϕ, cosθ
)
. The stationary points of Hcl(S⃗,g) are then defined

by the equations:
∂Hcl

∂ϕ
= −λp(sinθ)p (cosϕ)p−1 sinϕ = 0

∂Hcl

∂θ
= −λp(sinθ)p−1 (cosϕ)p cosθ+ g sinθ = 0 .

(7)

In the following, consider only the stationary points falling in the in the Northern
hemisphere (Sz > 0) of the Bloch sphere, where the dynamics is confined for g > 0. One

possible solution of the system of equation (7) is given by θ= 0 (the North Pole S⃗ = z of
the Bloch sphere), being a maximum for p = 2 and a minimum for p> 2. All the other
solutions are obtained by solving the system:sinϕ = 0

(sinθ)p−2 cosθ (cosϕ)p =
g

λp
.

(8)

From the first equation, we get that stationary points lie in the plane Sy = 0 for every
p, while the number and the precise location of the solutions depend on the value of
p. Specifically, for p = 2, we observe two symmetric minima separated by a maximum
at the North pole, S⃗ = z. For p⩾ 3 odd, the same topology persists, but the profile
becomes asymmetric with respect to the North pole. Conversely, for p⩾ 4 even, the
potential features three minima: one at the North pole and two symmetric minima with
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respect to it. To summarize, the projection of Hcl(S⃗,g) in the plane Sy = 0 exhibits
three distinct shapes, corresponding to different values of p:

- A symmetric double-well for p = 2.

- An asymmetric double-well for p⩾ 3 (odd), with one paramagnetic and one ferro-
magnetic minimum.

- A symmetric triple-well for p⩾ 4 (even), with one paramagnetic minimum and two
opposite ferromagnetic minima.

It is worth noting that these three profiles undergo a qualitative transformation
beyond the spinodal point [47], defined as

gsp = p(p− 2)(p−2)/2 /(p− 1)(p−1)/2 . (9)

More precisely, for each value of p the profile of Hcl(S⃗,g) becomes a single well, centered

around its only minimum at S⃗ = z, when g > gsp. For these values of g, the second of
equation (8) has no solution.

2.2. The dynamical transition

The presence of multiple local minima in the profile has a strong impact on the dynamics
of S⃗(t), which evolves according to equation (5) from the initial condition S⃗(0) = x, loc-
ated in the rightmost ferromagnetic well. We denote the position of the local maximum
that separates this well from the rest of the landscape as S⃗m(g). The dynamics exhibits
qualitatively different orbits, depending on the value of the post-quench transverse field
g3, as qualitatively depicted in figure 1:

1. Below a certain threshold, g < gdyn (trajectory (a)), the dynamics starts from a ferro-
magnetic well, and the initial energy is insufficient to surmount the energy barrier in
correspondence of nearest maximum in S⃗ = S⃗m(g). Consequently, the magnetization
oscillates in the ferromagnetic well, with Sx(t)> Sxm(g) at every time t.

2. For g > gdyn (trajectory (b)), the post-quench energy is larger than the energy barrier
and the corresponding orbit encompasses all the minima in the landscape.

3. At precisely g = gdyn (trajectory (c)), the system has sufficient energy to reach the

top of the barrier in S⃗m(g), but it is unable to surpass it. Here the period of the

oscillations, Tcl(g), diverges and the magnetization approaches S⃗m(g) infinitely slowly.
The resulting orbit forms a separatrix.

The three cases listed above correspond to three different possible topologies for
the underlying orbits at large times. We classify each distinct topology as a dynamical
phase [52]. Consequently, the singular dynamics at g = gdyn leads to a dynamical phase

3 Our discussion can also be generalized to non-vanishing pre-quench values of the transverse field, g0 > 0, following the approach
of [35]
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Figure 1. Energy profiles described by equation (6), projected on the plane Sy =
0. The projection is obtained from the black cut on the Northern hemisphere of
the corresponding Bloch spheres in the insets, where Sz =

√
1− (Sx)2. Each panel

illustrates the shape of the energy landscape corresponding to a different set of
values of p: p = 2 (left), p= 2n+ 1 (center) and p= 2n+ 2 (right), respectively,
with n⩾ 1 integer. For practical purposes, we fixed n = 1. In each panel, the profiles
correspond to different values of g : g = gdyn − 0.1 (a), g = gdyn + 0.1 (b) and g = gdyn

(c). For each p, the value of gdyn is obtained from equations (8) and (10), as discussed
in the main text. For each energy profile, the corresponding trajectory evolving
from S⃗(0) = x (black dot on the profile) is represented by a dashed horizontal line.
In particular, the gray dashed horizontal line corresponds to a separatrix (white
trajectory on the Bloch sphere). See figures 2(a) and (d) for a comparison.

transition (DPT). The corresponding dynamical critical point gdyn is obtained by equat-

ing the energy of the initial configuration, S⃗(0) = x, with that of the local maximum in

S⃗c ≡ S⃗m(gdyn). In terms of the variables θ and ϕ, the corresponding equation reads:

−λ(sinθ)p− g cosθ = −g . (10)

Then, the simultaneous solutions of equations (8) and (10) determines both gdyn and

the spherical coordinates of the maximum in S⃗c. From a practical point of view, the
DPT can be studied also in terms of a ‘dynamical order parameter’, such as the time
averaged longitudinal magnetization

Sx =
1

T
lim
T→∞

ˆ T

0

dtSx (t) . (11)

As discussed also in appendix A, the two indicators are equivalent to each other: as g
approaches gdyn, the change of topology in the orbits is signalled by a divergence of their

period Tcl(g), in turn creating a non-analiticity in the function Sx(g). In particular, both
Tcl(g) and Sx(g) display a log-singularity while approaching the dynamical transition,
a feature already known for other mean-field models driven away from equilibrium [35,
53]. It is important to note that such a DPT can be observed in the N →∞ limit only:
for a finite size, quantum fluctuations are restored and induce dephasing between local
spins, leading to the relaxation of time averaged observables to their thermodynamic
expectation values [38]. In the following, we show that the nature of the mean-field DPT
is determined by the topology of the landscape, which depends solely on the parity of p
(if p> 2). As a consequence, we will focus on studying equation (5) for p = 3 and p = 4

https://doi.org/10.1088/1742-5468/ad401e 7
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only. These cases, alongside with p = 2, are paradigmatic and encapsulate the three
possible landscape shapes discussed in the previous section, respectively.

First, it is crucial to note that the order of the DPT is not necessarily identical to
that of the thermal phase transition for the p-spin model at the same p value. The
case of p = 2 is special, exhibiting both a second-order thermal phase transition [54]
and a second-order dynamical phase transition [29, 35, 48]. For p = 2, the dynamical
transition occurs at g = λ and is identified through Sx, which is positive when g < λ
(indicative of a dynamics confined within a ferromagnetic well) and vanishing for g > λ
(due to oscillations between the two symmetric wells). We classify these two behaviours
as dynamical ferromagnetic and dynamical paramagnetic phases, respectively. The con-
tinuity of this DPT is not just a consequence of the symmetry of Hcl(S⃗,g) under the
reflection Sx →−Sx. Instead, it emerges as a general property linked to the topology
of the phase space, which is characterized by only one maximum. To understand why,
we notice that, as g approaches gdyn either from above or below, the energy of the orbit
gets close to the one of the separatrix. The dynamics on the separatrix asymptotically
converges to the only local maximum of Hcl(S⃗,gdyn), located at S⃗c (S⃗c = z for p = 2),
implying that:

lim
t→∞

S⃗ (t) = S⃗c . (12)

The orbits asymptotically close to the separatrix, approached as g→ g±dyn, exhibit a

plateau S⃗c, whose length diverges with the period of the orbit Tcl(g). As a consequence,
we have that

lim
g→g±dyn

Sx (g) = Sxc (13)

and the dynamical transition is continuous.
For p> 2, the results illustrated figure 2 consistently demonstrate the occurrence

of a DPT at some g = gdyn, whose order depends on the parity of p, unlike its static
counterpart. For p = 3 the topology of the phase space is the one of a double well,
akin to the case of p = 2 but without Z2 symmetry. Consequently, the transition is
continuous, following the same argument made for p = 2 and as illustrated in figure 2(b).
Specifically, a dynamical ferromagnetic phase re-emerges for g < gdyn, as all the orbits are
confined in a ferromagnetic well (green trajectories, figure 2(a)). Conversely, for g > gdyn,
the oscillations of the orbits between the two asymmetric wells (orange trajectories,
figure 2(a)) lead to a dynamical bistable phase. In this dynamical phase, Sx is a weighted
average of the two minima, that varies continuously with g and exhibits a cusp at
g = gdyn. The connection between the continuity of Sx to the presence of a single local
maximum is quantitatively validated by the results presented in figure 2(c). This figure
illustrates the plateaus developed by the longitudinal magnetization near gdyn, both for
g ≲ gdyn (green plot) and g ≳ gdyn (orange plot).

For p = 4 the DPT becomes discontinuous, as shown in figure 2(e). The discontinu-
ity results from a drastic change in the topology of the energy landscape, which now
exhibits one paramagnetic and two opposite ferromagnetic minima. Specifically, for
g < gdyn, the system is still in a dynamical ferromagnetic phase, where the orbits (green

https://doi.org/10.1088/1742-5468/ad401e 8
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Figure 2. From left to right: orbits of the magnetization on the Bloch sphere (a) and
(d), time averaged magnetization Sx calculated from equation (11) as a function of
g (b) and (e), time evolution of Sx(t) near the critical point (c) and (f). The plots in
the upper row corresponds to the case of p = 3, the ones below to p = 4. (Left) Orbits
on the Bloch sphere, resulting from the integration equation (5), from the initial

condition S⃗ = x. Each trajectory corresponds to one of 20 values of g,uniformly
sampled in the interval [0.2,3.6], where gdyn falls for both p = 3 and p = 4. For
both values of p, the system evolves along trajectories that are either confined in
a ferromagnetic well (green trajectories), for g < gdyn, or encompass all the local
minima (orange trajectory), for g > gdyn. At g = gdyn, the trajectory is a separatrix
(white), asymptotically converging to the nearest local maximum. gdyn is calculated
from equations (8) and (10), as discussed in the main text. (Center) Plot of the
dynamical order parameter Sx, from equation (11), as a function of g. The red dot
correspond to the dynamical critical point (gdyn,Sxc ), obtained by simultaneously
solving simultaneously solving equations (8) and (10).At the dynamical critical
point, Sx is continuous for p = 3 only. (Right) Time evolution of the longitudinal
magnetization Sx(t), for a transverse field g either equal to gdyn − 10−7 (green plots)
or to gdyn + 10−7 (orange plots). For each value of p, the dashed lines correspond
to the local maxima of the landscape when g = gdyn. For each value of p, gdyn and
Sxc are obtained as in the central panels.

plots in figure 2(d)) are confined in the rightmost ferromagnetic well and Sx > 0. Then,
approaching gdyn from below, Sx still tends to the value determined by the position Sxc of
the nearest, non-vanishing local maximum. However, upon moving even slightly above
gdyn, the orbits (orange plots, figure 2(d)) become symmetric with respect to the y− z

plane, resulting in Sx = 0 and marking a discontinuous dynamical transition. From a
broader perspective, the discontinuity arises from the existence of two local maxima of
Hcl(S⃗,gdyn), having the same energy. These maxima are at located at Sx = ±Sxc . As a
consequence, Sx(t) displays two distinct plateaus for g ≳ gdyn, around Sx = ±Sxc (see

https://doi.org/10.1088/1742-5468/ad401e 9
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green and orange plots in figure 2(f)): when g approaches gdyn from above, Sx converges
to the vanishing average of the two plateaus, creating a discontinuity at gdyn.

3. Non-equilibrium spin-wave dynamics

3.1. Non-equilibrium spin-wave theory (NEQSWT)

The dynamical transitions investigated in section 2(b) originate from the coherent
dynamics of the local spins in the N →∞ limit. In this limit, the spins are effect-
ively decoupled from each other due to the all-to-all interaction among them. Their
coherence is expected to be unstable with respect to the inclusion of short-range inter-
actions, which introduce fluctuations in the dynamics and drive the system towards
eventual thermalization. However, if the short-range coupling is small, the amplitude
of these fluctuations is expected to be small for a parametrically long time, leav-
ing possible instances of dynamical phases in the prethermal stage of the dynamics
[55–57].

This scenario was investigated in [37], using the NEQSWT. For p = 2, it was shown
that the dynamical critical point retrieved at the mean-field level is melted into an
entire chaotic region of the phase diagram when short-range fluctuations are included
in equation (1). In this work, we extend this analysis to the more general case of p> 2,
employing the NEQSWT to study the same quench dynamics discussed in section 2,
under the influence of an extra, short-range term in the Hamiltonian. For the purposes
of our study, we assume that our system is on a one-dimensional lattice with periodic
boundary conditions, so that the short-range interaction term is expressed as [37]:

Û = −J
N∑
i=1

σ̂xi σ̂
x
i+1 +

J

N

(
N∑
i=1

σ̂xi

)2

. (14)

To provide a clearer interpretation of equation (14), we introduce Fourier modes σ̃αk =∑N
j=1 e

−ikjσ̂αj , with k = 2πn/N and n= 0, . . . ,N − 1. Here, N denotes the system size.
Then, the full Hamiltonian is given by

Ĥ = Ĥ0 + Û = − λ

N p−1
(σ̃x0 )p− gσ̃z0 −

J

N

∑
k ̸=0

cosk σ̃xk σ̃
x
−k . (15)

Ĥ depends on the zero-momentum mode components σ̃α0 , related to the magnetiza-

tion through Sα(t) = ⟨σ̃α0 ⟩/N , solely via Ĥ0. On the other hand, the perturbation Û
from equation (14) includes only k ̸= 0 contributions, which are the ones expected to
induce dynamical fluctuations in the magnetization. The expression in equation (14) is
then the simplest perturbation that breaks the permutation symmetry in equation (1).
Nevertheless, as we shall discuss later, our findings are expected to be independent of
the range of interaction and of the dimensionality of the lattice. Hereafter, we outline the
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technical steps needed for implementing the NEQSWT, for the Hamiltonian presented
in equation (15).

The fundamental hypothesis underlying NEQSWT is that, at least as long as J is
sufficiently small, the net effect of the term from equation (14) is to give rise to small

spin-wave excitations on top of the classical magnetization S⃗(t). In particular, the mag-

netization length is still close to its maximal value, |S⃗(t)| ≃ 1, when the short-range fluc-
tuations are sufficiently small. This allows the dynamics to be still effectively described
by trajectories near the Bloch sphere, perturbed by fluctuations induced by the finite k
degrees of freedom. The NEQSWT is then implemented by studying the dynamics in a
time-dependent, rotating reference frame R, identified by the time-dependent Cartesian
vector basis {X(t),Y(t),Z(t)}. The frame R is constructed such that the magnetization
is aligned with the Z-axis at any time t. The base vectors of R can be identified by their
components in the original frame {x,y,z}, given by:

X(t) =

cosθ(t)cosϕ(t)
cosθ(t)sinϕ(t)

−sinθ(t)

 , Y(t) =

−sinϕ(t)
cosϕ(t)

0

 , Z(t) =

sinθ cosϕ(t)
sinθ sinϕ(t)

cosθ(t)

 .

We implement this change of frame in the Hilbert space, through the time-dependent
rotation operator V̂ (t) = exp(−iϕ(t)

∑
j σ̂

z
j/2)exp(−iθ(t)

∑
j σ̂

y
j /2), so that the spin

operators transform accordingly:

V̂ (t) σ̂xj V̂
† (t) = X(t) · σ⃗j ≡ σ̂Xj (t) , V̂ (t) σ̂yj V̂

† (t) = Y (t) · σ⃗j ≡ σ̂Yj (t) ,

V̂ (t) σ̂zj V̂
† (t) = Z(t) · σ⃗j ≡ σ̂Zj (t) . (16)

In the new frame R, the Heisenberg equation of motion for the components σ̂αj , for
α= X,Y,Z, can be written as

ih̄
d

dt
σ̂αj (t) =

[
σ̂αj (t) ,ĤR (t)

]
. (17)

Here, the modified Hamiltonian

ĤR (t) = Ĥ + i V̂ (t)∂tV̂
† (t) (18)

includes an additional term i V̂ (t)∂tV̂
†(t) = −ω⃗(t) ·

∑
j σ⃗j(t)/2, with ω⃗(t) =(

− sinθ(t)ϕ̇(t),−θ̇(t),cosθ(t)ϕ̇(t)
)
, plays a role analogous to the one of apparent forces
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in classical mechanics. The new Hamiltonian ĤR(t), describing the dynamics in the
rotating frame, can be explictily written as:

ĤR

N
=− g

[
(X · z)

σ̃X0
N

+ (Y · z)
σ̃Y0
N

+ (Z · z)
σ̃Z0
N

]
−λ

[
(X ·x)

σ̃X0
N

+ (Y ·x)
σ̃Y0
N

+ (Z ·x)
σ̃Z0
N

]p
− J

∑
k ̸=0

cosk

[
(X ·x)

σ̃Xk
N

+ (Y ·x)
σ̃Yk
N

+ (Z ·x)
σ̃Zk
N

][
(X ·x)

σ̃X−k
N

+ (Y ·x)
σ̃Y−k
N

+ (Z ·x)
σ̃Z−k
N

]

+ sinθ sϕ̇
σ̃X0
N

− sθ̇
σ̃Y0
N

− cosθ sϕ̇
σ̃Z0
N

. (19)

Here and in the following, we will often omit the time dependence of the operators and
of the basis vectors to keep the notation compact.

ĤR is the Hamiltonian describing the Heisenberg dynamics in the rotating frame R,
where the magnetization S⃗(t) is along Z(t). The time evolution of the angles θ(t) and

ϕ(t) is determined by self-consistently imposing that the transverse components of S⃗(t)
vanish in the new frame, that is:

SX (t) ≡ 1

N
⟨σ̃X0 (t)⟩ = 0 , SY (t) ≡ 1

N
⟨σ̃Y0 (t)⟩ = 0 . (20)

Solving equation (20) is in general a formidable task. However, as long as the fluctuations
transverse to the classical magnetization are small, we reasonably assume that the
dynamics is dominated by terms at the lowest nontrivial order in the Holstein–Primakoff
(HP) expansion [58]:

σ̂Xi ∼ q̂i√
s

, σ̂Yi ∼ p̂i√
s

, σ̂Zi = 1− q̂2
i + p̂2

i − 1

2s
, (21)

where s= 1/2 for the current case. As in the case of [37], we retain perturbative terms

from the HP expansion which are quadratic in the spin-wave modes q̃k =
∑

j e
−ikj q̂j/

√
N

and p̃k =
∑

j e
−ikj p̂j/

√
N , i.e. the Fourier transforms of q̂i and p̂i. This is equivalent to

keep the following terms in ĤR:

Û1 =
q̃0√
Ns

ssinθϕ̇− pλ(Z ·x)p−1 (X ·x)

(
1− (p− 1)

n̂SW
Ns

)
− g (X · z)

+
2(Z ·x)

Ns

∑
k ̸=0

J cosk

[
(X ·x) q̃kq̃−k + (Y ·x)

q̃kp̃−k + p̃kq̃−k
2

]
+

p̃0√
Ns

− sθ̇− pλ(Z ·x)p−1 (Y ·x)

(
1− (p− 1)

n̂SW
Ns

)
− g (Y · z)

+
2(Z ·x)

Ns

∑
k ̸=0

J cosk

[
(Y ·x) p̃kp̃−k + (X ·x)

q̃kp̃−k + p̃kq̃−k
2

] , (22)
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Û
(0)
2 =

(
pλ(Z ·x)p + g (Z · z) + scosθϕ̇

) 1

Ns

∑
k ̸=0

n̂k , (23)

Û2 = − 1

Ns

∑
k ̸=0

J cosk

{
(X ·x)2 q̃kq̃−k + (Y ·x)2 p̃kp̃−k + 2(X ·x)(Y ·x)

q̃kp̃−k + p̃kq̃−k
2

}
.

(24)

In equation (22), we also defined the spin-wave number operator n̂SW =
∑

i (q̂
2
i + p̂2

i )/2.

Specifically, the terms Û
(0)
2 and Û2 represent the quadratic terms from the HP expansion

of the mean-field term Ĥ0 and the short-range perturbation Û , respectively. Within this
quadratic approximation, imposing the equation (20) is equivalent to requiring that the
average of each coefficient, which appears either in front of q̃0 or p̃0 in equation (22),
vanishes self-consistently. After some algebra, this requirement leads to the following
equations of motion:

{
sϕ̇= pλ(sinθ)

p−2
(cosϕ)

p
cosθ

{
1− (p− 1)ϵ(t)

}
− g− 2Jδqq (t)cosθ cos2ϕ+ 2Jδqp (t)sinϕcosϕ

sθ̇ = pλ(sinθ cosϕ)
p−1

sinϕ{1− (p− 1)ϵ(t)}− 2Jδpp (t)sinθ sinϕcosϕ+ 2Jδqp (t)sinθ cosθ cos2ϕ .

(25)

In equation (25), we defined the ‘quantum feedback’ variables

δαβ (t) ≡ 1

Ns

∑
k ̸=0

∆αβ
k (t)cosk , (26)

for α,β ∈ {p,q}. These variables couple the classical spin to the corresponding spin-wave
correlation functions, defined by

∆qq
k (t) ≡ ⟨q̃k (t) q̃−k (t)⟩ , ∆pp

k (t) ≡ ⟨p̃k (t) p̃−k (t)⟩ ,

∆qp
k (t) ≡ ⟨q̃k (t) p̃−k (t) + p̃k (t) q̃−k (t)⟩/2 , (27)

defined for each value of k = 2πn/N , where n= 1, . . . ,N − 1. We also defined the spin-
wave density,

ϵ(t) =
1

Ns

∑
k ̸=0

∆qq
k (t) + ∆pp

k (t)− 1

2
. (28)

https://doi.org/10.1088/1742-5468/ad401e 13

https://doi.org/10.1088/1742-5468/ad401e


Changing the order of a dynamical phase transition through fluctuations in a quantum p-spin model

J.S
tat.

M
ech.(2024)

053101

The equations of motion for the spin-wave correlators are derived from the Heisenberg
equations generated by the sum of the quadratic Hamiltonians Û 0

2 + Û2 and read as
follows:

s
d

dt
∆qq
k = (4J cosk cosθ sinϕcosϕ)∆qq

k + {2pλ(sinθ)
p−2

(cosϕ)
p− 4J cosk sin2ϕ}∆qp

k

s
d

dt
∆qp
k = −{pλ(sinθ)

p−2
(cosϕ)

p− 2J cosk cos2ϕ cos2 θ}∆qq
k + {pλ(sinθ)

p−2
(cosϕ)

p

− 2J cosk sin2ϕ}∆pp
k

s
d

dt
∆pp
k = −{2pλ(sinθ)

p−2
(cosϕ)

p− 4J cosk cos2ϕ cos2 θ}∆qp
k − (4J cosk cosθ sinϕcosϕ)∆pp

k .

(29)

We refer the reader to [37, 38] for a more detailed calculation. We observe that, in the
limit of J → 0, the equation (25) decouple from the quantum feedback and consistently
reduce to a representation of equation (5) in the spherical coordinates θ(t) and ϕ(t).

The NEQSWT is expected to be valid as long as the density of spin-wave excitations
is small, that is ϵ(t) ≪ 1. In this case, the modulus of the magnetization |S⃗(t)| = 1− ϵ(t)
is close to one and the dynamics can still be described in terms of classical trajectories.
In this regime, spin waves behave as free bosonic excitations, which interact with the
macroscopic collective spin only, corresponding to the k = 0 mode. Higher-order terms
appearing in equation (1), which account for nonlinear scattering among the spin waves,
can be neglected: they are expected to contribute significantly to the dynamics only at
longer times and to drive the system away from the prethermal regime relevant for the
DPT discussed here [38].

3.2. Modified non-equilibrium phase diagram

The dynamics of the magnetization, as described by equation (25) , is still equivalent
to the one of a particle moving into a multi-well shaped energy profile4, as discussed in
section 2.1. However, in this case, an additional damping effect arises from the exchange
of energy with the spin-wave degrees of freedom, essentially acting as a self-generated
bath. Further details on this mechanism are discussed in section 3.3. The strength of
the damping is controlled by the coupling J in equation (25). For p = 2, this mechanism
is responsible for the melting of the dynamical critical point into a chaotic crossover
phase [37, 38]. In this phase, the magnetization asymptotically localizes into one of the
two ferromagnetic wells, although the dynamics is strongly sensitive to perturbations,
either in the initial condition or in the integration parameters g and J. It is natural
to ask if the spin-wave emission is going to have the same effect in the first-order case
p> 2.

To understand the effect of fluctuations on the mean-field dynamical transition, we
study the post-quench dynamics of the system at J > 0, by simultaneously integrating
equations (25) and (29), for several values of the couplings g and J. Before the quench,
we prepare again the system in the fully polarized state from equation (2), which is

4 This is true as long as the g is below the spinodal point g sp from equation (9) a condition always satisfied in our study
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equivalent to the initial conditions ϕ(0) = 0 and θ(0) = π/2. In this initial state, there
are no spin-wave excitations. For each choice of g and J and within our maximum
simulation time, we verify the spin wave density ϵ(t) from equation (28) always settles
around a small value, so that the dynamics is consistently in a prethermal regime. In
particular, as shown in figure 5, ϵ(t) typically grows from zero and saturates to a small
value. Consequently, the magnetization is asymptotically damped to a trajectory whose
energy, Hcl(S⃗(t),g), is slightly lower than the one at t = 0. We define the new dynamical
phases in terms of the topology of these trajectories, asymptotically reached after the
damping. It is crucial to note once again that these new phases are prethermal : they are
expected to be disappear at longer times, as soon as the non-linear interaction among
the spin-wave degrees of freedom is taken into account, leading to thermal relaxation of
the system. Below we will reconstruct the dynamical phase diagrams by looking at Sx
as a function of g and J and at individual trajectories. Similar to section 2, our focus
will be on the cases of p = 3 and p = 4, which are paradigmatic for p> 2 odd and p> 2
even, respectively.

If spin waves were emitted at a constant rate in time, the orbits encompassing all
the minima (i.e. orange trajectories in figures 2(a) and (d)) would localize down one of

the wells of Hcl(S⃗,g) with approximately equal probability. The phase diagram for Sx,
depicted for p = 3 in figure 3, reveals a more nuanced behavior. While the dynamical
ferromagnetic phase is of course robust against fluctuations, the dynamical bistable
phase loses stability for sufficiently large values of J and its trajectories predominantly
localize around the paramagnetic minimum, asymptotically converging to stable orbits.
These asymptotic orbits identify a third, new dynamical paramagnetic phase on the
phase diagram. Quantitatively, each dynamical phase corresponds to a narrow interval
of values of Sx, with the greatest values in the dynamical ferromagnetic phase and the
smallest in the paramagnetic one (although non-vanishing due to the asymmetry of the
energy profile). In our discussion, we use the notation Jdyn(g) to identify the transition
line between the dynamical bistable and dynamical paramagnetic phases. As detailed
in appendix B, Sx exhibits a discontinuity when crossing Jdyn(g), so we retrieve a new
first-order DPT driven by J. The predominance of localization around Sx = 0 is softened
close to the mean-field critical point g = gdyn, where localization in the ferromagnetic
basin becomes more frequent. The line separating the dynamical ferromagnetic phase
from other phases is consequently melted in a narrow chaotic crossover region, akin to
the one observed for p = 2 [37].

As shown in the phase diagrams from figure 4, a similar phenomenon is observed
for p = 4. Here, as soon as J is moved above a critical threshold Jdyn(g) (generically
distinct from the one retrieved for p = 3), the trajectories from the mean-field dynam-
ical paramagnetic phase, initially encompassing all the three minima of the landscape,
become unstable and localize in the paramagnetic well. However, this discontinuity in
the time-evolution can not be observed from Sx, displayed in figure 4(left). Specifically,
Sx is zero for orbits either surrounding all the minima or asymptotically localizing in
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Figure 3. (Left) Non-equilibrium phase diagram for the time average magnetization
Sx, from equation (11). Each point of the phase diagram is obtained corresponds

to a value of S§, obtained by simultaneously equations (25) and (29), for a given

choice of the couplings g and J. The initial condition is fixed at S⃗ = x. The results
shown in this figure refer to the case of p = 3. We fix the maximum simulation
time as T = 2000. Other simulation parameters are fixed at N = 100 and λ= 1.
The color of each point on the phase diagram corresponds to a value of the time
averaged magnetization Sx, as specified in the interval shown on the right of the
diagram. In particular, the yellow and the orange regions correspond to dynamical
ferromagnetic and paramagnetic phases, respectively. (Right) The corresponding
orbits are either confined in the ferromagnetic well (plot T1) or encircle both the
two minima (plot T2). In the blue region, instead, is the dynamical paramagnetic
phase where the magnetization revolves around the minimum on the North pole
(plot T3); here Sx is closer to 0 than in any other phase, though non-vanishing, and
increases discontinuously when moving across the border with the orange zone. The
crossover region is instead a narrow chaotic phase, reminiscent of the one found in
[37], where collective spin can localize at large times in either the paramagnetic or
the ferromagnetic minima (plot T4).

the paramagnetic well, while Sx > 0 in the ferromagnetic basin. Thus, we also examine
the behaviour of the time averaged fluctuation [42], defined as

(δSx)2 = lim
T→∞

1

T

ˆ T

0

dt
(
Sx (t)−Sx

)2
. (30)

From the phase diagram in figure 4(right), it is clear that (δSx)2 is discontinuous across
the transition line Jdyn(g), where the topology of the asymptotic trajectories abruptly

changes. As a consequence, the dynamical paramagnetic phase, corresponding to Sx = 0,
can be divided in two sub-phases:

- A dynamical paramagnetic phase 1, where the asymptotic orbits surround all the
minima, like in the corresponding mean-field phase.
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Figure 4. Two examples of the profile of the function ϵ(t), from equation (28). ϵ(t)
is computed by simultaneously integrating equations (25) and (29). We fix p = 3,
J = 0.25, g = 1.15 in the red plot and p = 4, J = 0.2, g = 1.12 in blue plot. In both
plots we fix N = 100 and λ= 1.

Figure 5. Simultaneous plot of the time averaged magnetization Sx (left) and

time averaged fluctuations (δSx)2 (right), for p = 4. These are obtained integrating
equations (25) and (29) for the same default parameters of N,λ and the maximum
time T listed in the caption of figure 3. For both the plots, each color corresponds
to a value of the observable we plot, as specified in the legends reported on the
right of each diagram. (Left) From the plot of Sx, we identify two main regions: one
corresponds to a dynamical ferromagnetic phase(yellow), where Sx > 0 (plot T1),
while the other is a paramagnetic phase (orange) where Sx = 0. In between, some
chaotic spots (blue and yellow spots) are found occasionally, where the magnetiza-
tion eventually falls in one of the other two symmetric, ferromagnetic minima (plot

T4). (Right) Looking at the average fluctuations (δSx)2, we clearly see that the in
dynamical paramagnetic phase, coinciding with the non-blue region of the phase
diagram, can be split in a sub-phase 1 (yellow), where the dynamical trajectories
either surround symmetrically all the three minima of the landscape (plot T2) and
a sub-phase 2 (blue), where the magnetization localizes (predominantly) in a para-
magnetic well (plot T3). The border between the two identifies the transition line
J = Jdyn(g).
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- A dynamical paramagnetic phase 2, where the trajectories eventually localize in the
paramagnetic well.

Like in the case of p = 3, these phases are identified by different narrow intervals of
values of (δSx)2. The smaller values correspond to the dynamical paramagnetic phase
2 and to eventual localization in the paramagnetic basin.

3.3. The mechanism behind the localization of the magnetization

Our results are very different from the ones found in [37] for the case of p = 2, where
the same short-range perturbation from equation (14) led to dynamical chaos. In this
section we show that, despite the apparent difference, the dynamical phases retrieved
both for p = 2 and p> 2 share a common origin, which can be related to the predominant
emission of spin waves when the classical trajectory visits the paramagnetic well.

Intuitively, the inhomogeneous emission is due to the specific form of the short-range
perturbation in equation (14), which induces fluctuations in the collective dynamics
when the local spins are not aligned with the x -axis: as the maximal misalignment in
the dynamics is reached when the magnetization crosses the plane Sx = 0, spin waves
are expected to be mostly emitted there. The previous argument can be made quant-
itative by investigating the time evolution of the spin-wave density ϵ(t), which quanti-
fies the degree of spin-wave excitations in the system. By differentiating both sides of
equation (28), we obtain the spin-wave emission rate:

dϵ(t)

dt
=

1

2Ns

∑
k ̸=0

(
d∆qq

k (t)

dt
+

d∆pp
k (t)

dt

)
. (31)

Then, substituting equation (29) on the right-hand side we obtain the following evolu-
tion equation for ϵ(t):

dϵ(t)

dt
= −4

J

s
(X(t) ·x)(Y (t) ·x) (δqq (t)− δpp (t)) + 4

J

s

(
(X(t) ·x)2 − (Y (t) ·x)2)δqp (t)

= 4
J

s
cosθ (t)sinϕ(t)cosϕ(t) (δqq (t)− δpp (t)) + 4

J

s

(
cos2 θ (t)cos2ϕ(t)− sin2ϕ(t)

)
δqp(t).

(32)

The quantum feedback terms δαβ(t) are the ones defined in equation (26).
From equation (32), it is evident that the emission rate dϵ/dt depends explicitly on

the position of the magnetization on the Bloch sphere. This dependency is encapsulated
in the coefficients:

C1 (θ,ϕ) = (X ·x)(Y ·x) = cosθ sinϕcosϕ

C2 (θ,ϕ) = (X ·x)2 − (Y ·x)2 = cos2 θ cos2ϕ− sin2ϕ
. (33)

We observe that the coefficients C1(θ,ϕ) and C2(θ,ϕ) do not depend on p. Instead,
they are derived from a combination of the coefficients appearing in the Hamiltonian
Û2 from equation (24), obtained by a quadratic expansion of the perturbation Û , from

https://doi.org/10.1088/1742-5468/ad401e 18

https://doi.org/10.1088/1742-5468/ad401e


Changing the order of a dynamical phase transition through fluctuations in a quantum p-spin model

J.S
tat.

M
ech.(2024)

053101

Figure 6. Dynamics of two trajectories, parametrized by θ(t) and ϕ(t) and com-
puted respectively for p = 3, g = 1.09, J = 0.26 (black plots) and p = 4, g = 1.13,
J = 0.15 (green plots). (Left) Spherical plots of the magnitude of the couplings
C1(θ,ϕ) and C2(θ,ϕ), against the dynamical evolution of the two trajectories on
the Bloch Sphere. (Center) Time evolution of the couplings C1(θ(t),ϕ(t)) (blue) and
C2(θ(t),ϕ(t)) (red) along the trajectory obtained at p = 3, each compared against
the longitudinal magnetization Sx(t) = (1− ϵ(t))sinϕ(t)cosϕ(t) (black). (Right)
Same plots represented at the center, this time for the trajectory computed at
p = 4.

equation (14), in the moving frame R. This observation aligns with the physical expect-

ation that Û is the only term in the Hamiltonian which generates spin-waves excita-
tions. Both C1(θ,ϕ) and C2(θ,ϕ) vanish when the magnetization is along the x-axis, i.e.
θ = π/2 and ϕ= 0. In figure 6, we plot the time evolution of the amplitudes |C1(θ,ϕ)|
and |C2(θ,ϕ)|, along two sample trajectories from the dynamical paramagnetic phases
retrieved for p = 3 and p = 4, respectively. The results shown therein confirm that these
amplitudes are maximised when the magnetization crosses the plane Sx = 0, located in
the paramagnetic well. The previous observations confirm our intuition that the max-
imum spin-wave emission occurs concomitantly with the maximal misalignment between
S⃗(t) and x.

As the predominant emission in the paramagnetic well is determined only by
the short-range perturbation, the different phenomena observed for p = 2 and p> 2
respectively can be addressed to the different stability properties of paramagnetic the
stationary point S⃗ = z of the energy landscape in equation (6). For p = 2, S⃗ = z is
unstable and symmetric fluctuations in the two wells 5 induce dynamical chaos [37, 38].

However, for p> 2, S⃗ = z becomes a stable minimum so that the magnetization moves

5 We observe that the right hand side of equation (32) is invariant under reflection ϕ → ϕ + π with respect to the z -axis, so that
spin-wave emission are symmetric in the two wells for p = 2
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on stationary orbits after being damped, giving birth to the dynamical paramagnetic
phases shown in figures 3(left) and 4(right). This phenomenon is reminiscent of Hopf
bifurcations [59] occurring in classical dynamical systems.

It is also worth noticing that the mechanism by which the fluctuations induce
the localization of the collective spin is slightly more subtle than a simple dissipa-
tion mechanism. In particular, we observe that when ϵ(t)> 0, the magnetization length

is |S⃗(t)| = 1− ϵ(t) decreases, so that the dynamics in equation (25) takes place in the
time-dependent modified potential

Hϵ(t) (θ,ϕ) = −(1− ϵ(t))p
{
λ(sinθ cosϕ)p− g

(1− ϵ(t))p−1 sinθ

}
(34)

As shown in the animated plots (see Ancillary Files 6), the profile of the Hϵ(t)(θ,ϕ) is
squeezed towards zero energy when ϵ(t) grows: this eventually leads the magnetization
to be trapped in the paramagnetic region, where ϵ(t) exhibits large spikes, while the
ϵ(t) is nearly stationary across the ferromagnetic wells.

All the results presented in this section are expected to be independent of the range
of interaction of the perturbation in equation (14) and of the dimensionality of the lat-

tice: replacing the k -dependent couplings J cos(k) with generic J̃k
7 leaves equation (32)

invariant 8 and spin-waves are still expected to be emitted around the plane Sx = 0,
as explicitly shown for the case of p = 2 [38]. On the other hand, if the short-range
interaction was along a direction not coinciding with the x-axis, the dependency of the
coefficients from equation (33) on the angles θ and ϕ could be different: in this case,
spin-wave emission may occur in different regions on the Bloch sphere, leading to a
different non-equilibrium phase diagram.

4. Conclusions

In conclusion, in this work we have studied the the post-quench dynamics of a fully-
connected p-spin model (for p> 2) perturbed by a short-ranged interaction, controlled
by the coupling J, generalizing to arbitrary values of p the system studied in previous
work [29, 35, 37]. In the mean-field limit of J = 0, the dynamics is equivalent to the
one of a particle in a classical energy landscape. By identifying the topology of each
orbit as a dynamical phase, we observe a dynamical phase transition (DPT) driven by
the transverse field g. The order of the DPT depends on the parity of p, for p> 2,
which determines the qualitative shape of the effective potential. In particular, we find
a second order dynamical transition for odd values of p (where the potential is an
asymmetric double-well) and first order one for an even p (where the profile is made

6 See ancillary files Animated plot p = 3.mpeg and Animated plot p = 4.mpeg
7 Here k is a d -dimensional vector if the lattice has dimensionality d > 1.
8 Up to replacing all the terms in the form of Jδαβ(t) with the more generic expression δαβ(t) ≡

∑
k ̸=0 ∆αβ

k (t)J̃k/(Ns).
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by three basins). The nature of this transition is modified by the presence of a short-
range perturbation, treated in the framework of the NEQSWT. The latter generates
an effective damping in the dynamics which is maximal when the magnetization visits
the paramagnetic well. The damping induces a prethermal stage of the dynamics and
changes the nature of the dynamical phases, now being defined by the asymptotic
behaviour of the magnetization. For p⩾ 3 odd, the short-range coupling drives a new
first-order transition on the phase diagram, while a more subtle transition appears for
p⩾ 4 even, detected in the order parameter fluctuations and being of the first-order
like the one obtained in the mean-field limit. Our analysis can be straightforwardly
generalized to a wider class of fully-connected spin models with generic integrability
breaking terms: the profile of the energy landscape and the axis where the integrability
breaking interaction takes place are the only two ingredients which fully determine the
features of the non-equilibrium phase diagram.
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Appendix A. The period of classical orbits and its relation with dynamical
singularities

In this appendix we derive a closed formula for the period Tcl(g) of the classical orbits
discussed in section 2 of the main text. In particular, we show that Tcl(g) diverges logar-
ithmically when approaching the transition point g = gdyn both from above and below.

We also show that the same singularity is retrieved also in Sx(g), from equation (11).
To compute Tcl(g), we first perform the change of variables:

Sx =Q, Sy =
√

1−Q2 sin(P ) , Sz =
√

1−Q2 cos(P ) (A1)

where Q ∈ [−1,1] and P ∈ [0,π]. By doing so, it can be shown [35, 47] that the dynamics
described by the equation (5) is equivalent to an Hamilton dynamics, induced by the
effective Hamiltonian

Hcl (Q,P ) = −λQP − g
√

1−Q2 cos(P ) (A2)

and by the Poisson bracket {Q,P} = 1. The first of these new Hamilton equations is
given by

∂tQ= g
√

1−Q2 sin(P ) . (A3)

Plugging equation (A3) into the expression (A2), one straightforwardly obtains the
following expression:

(Hcl (Q,P ) +λQp)2 = g2
(
1−Q2

)
− (∂tQ)2 . (A4)
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Figure 7. Plot of the period Tcl(g) of the classical trajectories originating from the
dynamics discussed in section 2 of the main text, respectively for p = 3 (left) and
p = 4 (right). Tcl(g) is compared against log |g− gdyn|, both for g < gdyn (blue) and
g > gdyn (orange). Tcl(g) is computed as outlined in appendix A. We pose λ= 1,
like in the main text.

As the energy is conserved in the Hamilton dynamics, we can fix Hcl(Q(0),P (0)) = E0,
where E 0 is the initial energy. Then, we can solve the dynamics by separation of variables
to obtain

t=

ˆ max(Q(0),Q(t))

min(Q(0),Q(t))

dx√
g2 (1−x2)− (E0 +λxp)2

. (A5)

For the initial condition S⃗(0) = x set in the main text, we have E0 = −λ, Q(0) = 1 and
P (0) = 0. Plugging this information in equation (A5), we obtain a formula for the period
of the classical orbits:

Tcl (g) = 2

ˆ 1

q1

dx√
g2 (1−x2)− (λxp−λ)2

(A6)

where q1 is the turning point of the orbit, obtained as the solution of the equation

Hcl (q1,0) = −λ , (A7)

for Q < 1. We compute Tcl(g) numerically from equations (A6) and (A7), for several
values of g and in the paradigmatic cases of p = 3 and p = 4. The result, shown in
figure 7, is that for g→ g±dyn the period diverges as Tcl ∼ log |g− gdyn|−1, with a prefactor
which is different above and below gdyn.

The divergence of Tcl(g) at gdyn is connected to change of topology of the underlying
trajectories, being confined in a single ferromagnetic well for g < gdyn and exploring the
whole landscape for g > gdyn. In particular, at g = gdyn the trajectory is a separatrix,
that is a singular, non-periodic orbit. Any dynamics evolving on the separatrix asymp-
totically converges to the nearest local maximum S⃗c, separating the well where the
motion takes place from the others. For any value of p, this implies that Sx(gdyn) = Sxc .

Then, the divergence of Tcl(g) also generates a singularity in Sx, for g→ g−dyn. In this
case, the orbits evolving into the rightmost ferromagnetic well develop a plateau of
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Figure 8. Plot of the singularity of the time average magnetization Sx, respectively
for p = 3 (blue) and p = 4 (red). Sx is plotted as a function of g in the dynamical
ferromagnetic phase, where g < gdyn, and Sxc is defined as an unstable stationary
point of the potential in equation (6) of the main text at gdyn. We refer the reader
to appendix A for further details.

diverging length near Sxc (see figures 2(c) and (f) of the main text), so that Sx can be
estimated as

Sx (g) =
1

Tcl (g)

ˆ Tcl(g)

0

dtSx (t) = Sxc +
1

Tcl (g)

ˆ Tcl(g)

0

dt(Sx (t)−Sxc ) ≃ Sxc +
c

Tcl (g)
, (A8)

Equation (A8) holds under the reasonable assumption that the integral´ Tcl(g)

0 dt
(
Sx(t)−Sxc

)
is bounded and converges to a positive constant c> 0 at the trans-

ition point. Equation (A8) implies that

Sx−Sxc ∝ 1

log |gdyn − g|−1
, (A9)

when approaching the transition from below. The log-singularity is quantitatively con-
firmed by the results shown in figure 8, obtained by computing Sx numerically (as in
section 2 of the main text) and Sxc from equations (8) and (10) of the main text. We
remark that, while the log-singularity in the time average magnetization Sx are intim-
ately connected to the one of the periods, its continuity is determined by the topology
of the effective potential, as discussed in the main text.

Appendix B. Details on the first-order transition line

In this appendix, examine in greater detail the discontinuity line J = Jdyn(g), appearing
in figures 3(left) and 4(right) of the main text, analyzing the cases of p = 3 and p = 4
separately.

For p = 3, the transition line Jdyn(g) emerges clearly fixing a sufficiently large value

of g : the plot in figure 9(top-right) shows that the time average magnetization Sx has
a discontinuity in J, though not being either completely smooth J above and below
the discontinuity point, because of the noise induced by the spin-wave emission. In this
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Figure 9. Non-equilibrium phase diagram for the p-spin model in equation (1), for
p = 3. (Left) Over the same phase diagram shown in figure 3(left) of the main text,
we plot the threshold line from equation (B1) (red), above which ϵ > ϵsp (see details
in appendix B). The black vertical line and the green box indicate the values of g
and J investigated in the plots on the right. (Top-right) Plot of the time averaged
magnetization Sx, as function of J and at fixed g ≃ 1.142 (black line on the phase
diagram on the left). Sx is discontinuous around J ≃ 0.194. (Bottom-right) Inset
from the phase diagram on the left (in the green box), around the chaotic region
where the second-order and first-order transition line merge.

regime, it is possible to make a semi-analytical estimation of the point Jdyn(g) where the
transition happens, as discussed in the following. First we remind that, as discussed in
section 3.3, the effective potential determining the dynamics is squeezed by the emission
of spin waves and is expressed by equation (34) of the main text. From this expression,
it is evident that the dynamics is driven by an effective transverse field

gϵ =
g

(1− ϵ)p−1 . (B1)

Here, g ϵ depends on time through the spin-wave density ϵ(t), defined in equation (28).
However, equation (9) also indicates the existence of a critical value of g, denoted as gsp,
such that for g > gsp the energy landscape becomes a single well. These observations
leads us to the conclusion that it exist a threshold value ϵsp for the spin-wave density,
defined by the equation

g

(1− ϵ)p−1 = gsp , (B2)

such that the squeezed potential from equation (34) displays a single paramagnetic well
whenever ϵ > ϵsp. Then, a sufficient condition for the localization of the magnetization in
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Figure 10. Non-equilibrium phase diagram for the p-spin model in equation (1),
for p = 4. (Left) Same phase diagram shown in figure 4(left). The black vertical
line and the green box indicate the values of g and J investigated in the plots
on the right. (Right) Plot of the time averaged fluctuations (δSx)2, as function of

J and at fixed g ≃ 1.133 (black line on the phase diagram on the left). (δSx)2 is
discontinuous around J ≃ 0.131.

the paramagnetic well corresponds to ϵ(t) asymptotically exceeding ϵsp. Quantitatively,
this corresponds to:

ϵ= lim
T→∞

1

T

ˆ T

0

ϵ(t)> ϵsp. (B3)

Equation (B3) condition implies that, for large times, the squeezed potential from
equation (34) displays a single, paramagnetic well, where the magnetization is by defin-
ition localized. The plots in figure 9(left) show that, fixing a sufficiently large g, the
values of J where ϵ overcomes the threshold ϵsp matches the transition point Jdyn(g):
this provides a semi-analytical argument for the prediction of Jdyn(g) at large g, as
the threshold ϵsp can be predicted analytically, but there is no explicit formula relating
Jdyn(g) to ϵ. Our argument fails for smaller g, where the localization mechanism becomes
more subtle (as discussed in section 3.3 the main text) and the first-order transition line
is smeared into a chaotic crossover close to the mean-field critical point gdyn. A similar
fate happens to the second-order critical line, extending from the point (g,J) = (gdyn,0),
to finite values of J, so that the chaotic crossover prevents the possibility of a precise
estimation of the tricritical point where the two lines meet. However, we can roughly
identify the transition point as the center of the finite-width area where the two trans-
ition lines merge completely with the chaotic region: in the inset in figure 9(bottom-
right), we show that this happens approximately around (g,J) ≃ (1.026,0.17).

For p = 4, the results in figure 10(right) show a discontinuous transition driven by

J, this time detected by the time averaged fluctuations (δSx)2, even though the semi-
analytical estimation of Jdyn(g) fails in this case. Moreover, here both the mean-field
dynamical transition, driven by g, as well as the one driven by J, are of the first-order,
so that we do not retrieve the tricritical behaviour discussed for p = 3.
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