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1 Introduction

It is reasonable to hope that the four-dimensional maximally-supersymmetric Yang-Mills
theory may be exactly solved. In the large N ’t Hooft limit, the theory becomes famously
integrable, and Yangian symmetries emerge, which has led to the exact determination of
various planar observables. At finite N , these special properties are obscured; however, the
theory enjoys a non-perturbative S-duality symmetry [1–4], which for simply-laced gauge
groups is an invariance (up to global identifications [5]) under SL(2,Z) transformations of
the complexified gauge coupling,

τ = θ

2π + i
4π
g2

YM
. (1.1)

It seems likely that a solution of this theory (henceforth N = 4 SYM) will be possible
only with judicious treatment of S-duality. Even so, determining the exact τ -dependence
of N = 4 SYM observables should be very hard in general, precisely because the theory is
strongly interacting over most of its parameter space, even after modding out by SL(2,Z).

There is a special family of observables in N = 4 SYM, introduced in [6], which sit
askew of this expectation: they vary as functions of τ , and yet are determinable by super-
symmetric localization. They are integrated four-point functions of half-BPS operators,
whose definition will be recalled further below. In this paper, following [6–8], we find strik-
ingly compact solutions for an infinite class of these integrated correlators in the SU(N)
theory, exact in N and τ , and study their general systematics. Tantalizingly, they are
optimally understood in a complete basis of SL(2,Z)-invariant functions [8]: in this basis,
the integrated correlators are essentially polynomials in the relevant spectral parameter.

To set the context for these results, let us recall the status of (unintegrated) N = 4
SYM four-point functions. We henceforth specialize to the SU(N) theory. Half-BPS su-
perconformal primary operators in N = 4 SYM, call them O(i)

p with p ≥ 2, are spacetime
scalars in the [0 p 0] representation of the SU(4) R-symmetry with dimension ∆p = p. The
case p = 2 is the 20′ of the stress tensor multiplet. At p > 3 there is degeneracy, which is
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captured by the label i. Consider the family of four-point functions 〈O2O2O(i)
p O(j)

p 〉. At
finite N , this is known only in weak-coupling perturbation theory (g2

YM � 1) through two
loops in general [9], and three loops for p = 2 [10] (though integrands are known to four
loops [11, 12]). In the planar limit, it is known through three loops at weak coupling [13]
(with their integrands being known to five-loop order [14] and even through ten loops for
p = 2 [15]), while at strong coupling holographic and bootstrap approaches determine
the leading strong coupling limit [16–23], as well as some sub-leading 1/λ [6, 24–29] and
1/N [30–38] corrections. Knowing any of the 〈O2O2O(i)

p O(j)
p 〉 exactly in the planar limit

would be tantamount to knowing the holographic dual of the AdS5× S5 Virasoro-Shapiro
amplitude — that is, the four-point scattering of AdS5× S5 supergravitons in classical
string theory — and, upon developing its operator product expansion, would furnish a
substantial part of the solution of planar N = 4 SYM. Unfortunately, due to the inherent
difficulty of intermediate coupling, what is known about this object is essentially pertur-
bative around either weak or strong coupling.

And yet, rather astoundingly, if one integrates these four-point functions against a
fairly vanilla spacetime measure, these correlators can be determined exactly and, as we
will see, simply. In particular, the integrated correlators of interest here are defined as
follows [6]:

G(N |i,j)
p (τ) := − 2

π

∫ ∞
0

dr

∫ π

0
dθ
r3 sin2 θ

u2 H(N |i,j)
p (u, v; τ)|u=1+r2−2r cos θ, v=r2 , (1.2)

where H(N |i,j)
p (u, v; τ) is the “dynamical” part of the correlator not fixed by superconformal

Ward identities (recalled explicitly in section 2.1 below). The magic is that G(N |i,j)
p (τ) are

computable from derivatives of a free energy on S4 deformed by sources, which in turn is
determined by supersymmetric localization. The aim is then to find simpler expressions
upon starting from the localization integrals. In [6], these were computed exactly in the ’t
Hooft limit for all p, yielding an elegant integral formula for the integrated AdS-Virasoro-
Shapiro amplitude. Our goal here is to study these integrated correlators at finite N ,
for all p.

For p = 2, this was done in [7], who found a conjecturally exact, recursive solution at
finite N , an elegant result subjected to many checks. (See [39–42] for subsequent related
work.) That solution was elucidated in [8] from another point of view, one which will be
crucial for this paper: namely, that of the SL(2,Z) spectral decomposition. To introduce
this briefly, any SL(2,Z)-invariant observable of N = 4 SYM admits, by way of finiteness
of free N = 4 SYM and the spectral theorem for SL(2,Z), a decomposition into a complete,
SL(2,Z)-invariant eigenbasis of the Laplacian on the upper-half τ -plane. There are three
branches of eigenfunctions: a continuous branch (the non-holomorphic Eisenstein series,
E∗s (τ), with Re s = 1

2), a discrete branch (the Maass cusp forms, φn(τ)), and a constant.
The overlap with the constant term is equal to the ensemble average, with respect to the
Zamolodchikov metric, over the space of N = 4 theories parameterized by τ .

This is a powerful tool in the N = 4 SYM context because the complete eigenbasis
“decouples” the τ -dependence from the core information, not made redundant by S-duality,
that characterizes a given observable. The entire content of an observable is characterized

– 2 –



J
H
E
P
0
1
(
2
0
2
3
)
1
4
9

by its overlaps with these basis elements: τ -space is traded for “spectral space.” As in
any other physical context where a complete basis is identified, it gives a systematic way
to understand the possible τ -dependence of SL(2,Z)-invariant N = 4 SYM observables,
and, therefore, to classify these dependences according to the functional complexity of the
overlaps.1

Applied to the p = 2 integrated correlator, G(N)
2 (τ), [8] found that the entire integrated

correlator is determined by a single polynomial. First, the cusp form overlap vanishes.
Second, the Eisenstein overlap is given by a universal gauge-theoretic prefactor times an
N -dependent polynomial in the spectral parameter s; this polynomial may be determined
solely from the perturbative expansion of G(N |i,j)

p (τ) to finite order. These polynomials solve
a short recursion relation in N , equivalent to the recursion originally found by [7]. Finally,
the ensemble average, which is simply (one half times) the aforementioned polynomial
evaluated at s = 1, is also just a polynomial inN . If one prefers to restore the τ -dependence,
the result is

G(N)
2 (τ) = N(N − 1)

4 + 1
4πi

∫
Re s= 1

2

ds
π

sin(πs)s(1− s)f
(N)
2 (s)E∗s (τ) , (1.3)

where the full information (including the additive constant) is contained in the polynomial
f

(N)
2 (s). A consequence of this structure is that the entire G(N)

2 (τ) is fixed by the sector
of zero total instanton number. The origin of the recursion remains mysterious. However,
what the SL(2,Z) decomposition makes clear is that the integrated correlator is about as
simple of a non-trivial τ -dependent observable as one could hope for.

In this paper, we carry forward this analysis to the general class of integrated corre-
lators G(N |i,j)

p (τ). The results are highly uniform in p. We will compute the full matrix
of correlators for p ≤ 5 — recall that for p ≥ 4 there are multiple trace structures — as
well as a certain infinite family that exists for all p. The results will again be very sim-
ple in the SL(2,Z) spectral decomposition, with all integrated correlators computed herein
determined simply by polynomials in the spectral parameter s. These polynomials obey fas-
cinating recursion relations relating different values of both N and p. They are determined
by a finite number of orders in weak coupling perturbation theory. The structural rigidity
of these results raises obvious questions about why, exactly, they are so, and begs for a
fundamental derivation of these recursion relations. From the AdS5× S5 point of view, the
fact that these are known for all N and τ means that the quantum type IIB string theory
scattering amplitudes, upon suitable integration over AdS5 boundary points, are known.
To what extent that recasting can be made substantive, by telling us something non-trivial
about type IIB string theory, is an intriguing open question for the future.

In section 2 we introduce the necessary tools and background to study the integrated
correlators — half-BPS operators, their correlators both integrated and unintegrated, and
the SL(2,Z) spectral decomposition — and review the p = 2 case.

1It also makes connections, so far nascent, between N = 4 SYM observables, on the one hand, and
mathematical questions in arithmetic chaos and the analytic structure of the fundamental domain, on the
other. See [43–45] for some mathematical background.
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In section 3 we present our first results, namely, the integrated correlators for p ≤ 5.
At both p = 4 and p = 5 there are two half-BPS operators, one single-trace and one
double-trace, so each case furnishes a 2×2 matrix. The technique is straightforward: using
localization, one develops the perturbative expansion in g2

YM; infers from this the Eisenstein
overlap by matching to the perturbative expansion of the spectral decomposition; and then
justifies that the cusp form overlap vanishes. The result, as advertised above, is that the
integrated correlators are determined in terms of a single polynomial, f (N |i,j)

p (s), of degree
2N + 2bp2c − 4 and symmetric under s → 1 − s.2 That is, G(N |i,j)

p (τ) takes the same
functional form as (1.3) with different polynomial and constant terms. Having enumerated
the polynomials for many values of N , we search for, and indeed find, linear recursion
relations. Let us reproduce, as an example, the recursion for p = 3 here:

N(N + 1)
[
f

(N+1)
3 (s)− f (N)

3 (s)
]

= 2N(N − 1) f (N+1)
2 (s) + 2(N + 1)(N + 2) f (N)

2 (s) . (1.4)

This is a very tidy recursion, that relates the p = 2 and p = 3 polynomials f (N)
2 (s) and

f
(N)
3 (s), respectively, such that the latter are ultimately fixed by the former in the SU(2)
theory (plus a trivial initial condition at N = 1). This phenomenon persists for all cases
that we study.

As for the cusp forms, in subsection 3.3 we provide strong analytical support for their
vanishing overlap from first principles, by performing explicit instanton calculations on
the localization side and checking that they match the spectral result without cusp forms.
These calculations use the instanton partition function in the presence of sources for half-
BPS operators of higher charge [46], generalizing the original Nekrasov partition function.
All told, this means that G(N |i,j)

p (τ) is determined completely by the first N+bp2c−2 orders
in perturbation theory. We do not know the fundamental reason for this remarkable fact.
The recursion relations may be immediately uplifted to Laplace difference equations, which
we show in subsection 3.4.

In sections 4 and 5, we further analyze the p ≤ 5 results. Section 4 collects their ensem-
ble averages. Section 5 analyzes the integrated correlators of single-particle operators3 at
large N , developing the 1/N expansion of the spectral overlaps and the ensemble averages.
This may be done algorithmically to arbitrary genus. We observe a match between the
large N ensemble averages and the strongly coupled planar results, verifying the general
relation established in [8]. Using the same correspondence between ensemble averages and
bulk quantities, we also make a prediction for the one-loop AdS5× S5 supergravity result
for the integrated correlator at generic p — see (5.15). We explicitly develop the ’t Hooft
and very strongly coupled large N limits from the genus expansion of the spectral overlaps,
noting some interesting functional representations along the way.

In section 6, we present our second slate of results. We study the integrated corre-
lator for which both operators O(i)

p and O(j)
p are taken to be composites of O2 with p/2

2In fact, we find that f (N|i,j)
p (s) ∝ (2s − 1)2, which further reduces the degree of the undetermined

polynomial.
3These operators, dual to single-particle states in AdS5× S5, are linear combinations of O(i)

p defined to
be orthogonal to all multi-trace operators. See (2.5).
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constituents, for arbitrary p ∈ 2Z+:

O(max)
p := [O2]p/2 . (1.5)

We call this the maximal-trace family of integrated correlators, G(N |max)
p (τ). These are a

type of generalization of the extremal two-point functions studied in the context of N = 2
SCFTs in four dimensions (e.g. [47–52]). We again find an explicit recursive solution for
all N and p, with the same features as described earlier, but with one key difference: the
recursion relation operates at fixed N , only shifting p. It takes the form of a semi-infinite
lattice chain equation

∆τ Ĝ(N |max)
2n−2 = 2

(
(n− 1)2 + 2nc− c

)
Ĝ(N |max)

2n−2 − n (n+ 2c− 1) Ĝ(N |max)
2n

− (n− 1) (n+ 2c− 2) Ĝ(N |max)
2n−4 + 2c Ĝ(N |max)

2 , (1.6)

where Ĝ(N |max)
p (τ) refers to an appropriately normalized G(N |max)

p (τ) defined in (6.5), c =
1
4(N2 − 1) is the central charge and p = 2n. This is evocative of the Toda chain equation
obeyed by the extremal correlators. The ensemble average admits a closed-form expres-
sion in terms of harmonic numbers — see (6.7). The large p limit of this sequence is a
large charge limit, the details of which will appear in future work. We also develop the
1/N expansion of these correlators, with more nice polynomials emerging, see e.g. (6.10)
and (6.20).

In section 7, we make an ansatz (7.1) for the general integrated correlator G(N |i,j)
p (τ)

with arbitrary trace structures i, j.
In section 8, we conclude with some open problems and future directions.
Several appendices round out the text with computational details, consistency checks

and collected formulas.

2 Setup

In this section, we introduce the half-BPS operators and their four-point functions; de-
fine the integrated correlators and how one computes them from localisation; recall the
rudiments of the SL(2,Z) spectral decomposition, a central tool in our study of the inte-
grated correlators; and finally, as a segue to the next sections, review the p = 2 integrated
correlator studied in [7, 8].

2.1 Half-BPS operators and their four-point functions

We will study four-point correlation functions of half-BPS superconformal primary oper-
ators in N = 4 SYM theory with gauge group SU(N). These operators have protected
scaling dimension ∆ = p and transform in the [0, p, 0] representation of the R-symmetry
group SU(4). The simplest realisation of such operators is in terms of single-trace operators
Tp, which we define by

Tp(x, y) = 1
p
yI1 · · · yIpTr

(
ΦI1(x) · · ·ΦIp(x)

)
, (2.1)
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where ΦI(x), with I = 1, . . . 6, are the six real scalars of the theory and we introduced
auxiliary SO(6) null-vectors yI (obeying y2 ≡ yI y

I = 0) to project onto the symmetric
traceless representation. In addition to these, we will also consider multi-trace operators,
which can be obtained from products of the form

Tp1,...,pn(x, y) = p1 · · · pn
p

Tp1(x, y) · · ·Tpn(x, y), 2 ≤ p1 ≤ . . . ≤ pn, (2.2)

with p1 + · · · + pn = p. Due to this degeneracy in the space of half-BPS operators, we
introduce the notation O(i)

p to distinguish the different single- and multi-trace operators of
a given dimension p, assuming an ordering with increasing number of traces.4 The species
of operators appearing at weight p are in one-to-one correspondence with restricted integer
partitions of p that do not include one. In what follows we will sometimes study operators
with p ≤ 5, where we encounter at most double-trace operators:

O(i)
2 ∈ {T2}, O(i)

3 ∈ {T3}, O(i)
4 ∈ {T4, T2,2}, O(i)

5 ∈ {T5, T2,3}. (2.3)

Since the operators O(i)
p are half-BPS, their two-point functions are protected (meaning

they are independent of the coupling τ) and hence can be computed within the free theory.
They are of the general form

〈O(i)
p (x1, y1)O(j)

p (x2, y2)〉 = gp12R
(i,j)
p (N), (2.4)

where gij = y2
ij/x

2
ij is the superpropagator and the colour-factors R(i,j)

p (N) = R
(j,i)
p (N)

encode the non-trivial N -dependence. For the operators given in (2.3), we record the
corresponding colour-factors in appendix A. Note that in the trace-basis the two-point
functions are not diagonal.

In the context of the AdS/CFT correspondence it is also useful to consider so-called
single-particle operators (SPO’s), which we denote by Op without the superscript.5 These
operators are dual to single-particle states in AdS5× S5 supergravity, namely the AdS5
supergraviton multiplet (p = 2) and higher Kaluza-Klein modes (p ≥ 3) on S5. They are
given by particular linear combinations of the O(i)

p and can be elegantly defined for all N
by their orthogonality to all multi-trace operators [34, 53]:

〈OpTp1,...,pn〉 = 0 , n ≥ 2. (2.5)

At leading order in large N , Op coincides with the single-trace operator Tp but receives
1/N suppressed multi-trace admixtures.6 The first few SPO’s are given by

O2 = T2 , O3 = T3 , O4 = T4 −
2N2 − 3
N(N2 + 1)T2,2 , O5 = T5 −

5(N2 − 2)
N(N2 + 5)T2,3 . (2.6)

4For example, since the single-trace operator always comes first, we simply have O(1)
p = Tp. Within the

same number of traces we adopt lexicographic ordering, such that e.g. T2,4 comes before T3,3, etc.
5In the following, any quantity without a superscript (i) is evaluated in the SPO basis.
6The coefficient of an n-trace admixture is suppressed by 1/Nn−1 with respect to the single-trace con-

tribution Tp.
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While we do not have an explicit formula for the generic colour-factors R(i,j)
p (N) in (2.4),

the N -dependence of the two-point function in the SPO basis is simply given by7 [54]

Rp(N) = (p− 1)
[ 1

(N − p+ 1)p−1
− 1

(N + 1)p−1

]−1
, (2.7)

For the first few SPO’s given above, this yields

R2(N) = (N2− 1)
2 , R3(N) = (N2− 1)(N2− 4)

3N , R4(N) = (N2− 1)(N2− 4)(N2 − 9)
4(N2+ 1) ,

R5(N) = (N2 − 1)(N2 − 4)(N2 − 9)(N2 − 16)
5N(N2 + 5) . (2.8)

Note that Rp vanishes for N = 1, 2, . . . , p − 1, meaning that Op vanishes as an operator
for those values of N , thereby relating various elements O(i)

p in (2.3) at fixed p. For
instance, 2T4 = T2,2 for N = 2, 3 and 6T5 = 5T2,3 for N = 3, 4. At large N , Rp scales as
Rp(N) ∼ Np/p.

Next, let us introduce four-point correlation functions of the half-BPS operators
defined above. In particular, we will be interested in the class of correlators given
by 〈O2O2O(i)

p O(j)
p 〉. Superconformal symmetry constrains these correlators to take the

form [55, 56]8

〈O2O2O(i)
p O(j)

p 〉 = g2
12g

p
34

[
G(i,j)
p,free(u, v;σ, µ) + I H(i,j)

p (u, v; τ)
]
, (2.10)

The factorH(i,j)
p is the only part of the correlator which depends on τ , and hence contains all

of the non-trivial dynamics. It is multiplied by the factor I which is fixed by superconformal
Ward identities to take the factorised form

I = (x− y)(x− ȳ)(x̄− y)(x̄− ȳ)
(yȳ)2 . (2.11)

On the other hand, the first term in (2.10) is the correlator in the free theory which can be
computed by Wick contractions. It takes a particularly nice form in the SPO basis, which
in our conventions reads

Gp,free(u, v;σ, µ) = R2Rp

([
1 + δ2,p

(
u2σ2 + u2µ2

v2

)]
+ p

2c

[
uσ + uµ

v
+ (p− 1)u

2σµ

v

])
,

(2.12)
7Due to our choice of normalisation for the external operators (2.1), the colour-factor Rp used here has

a factor of p2 difference with respect to [54], i.e. Rp|here = Rp|there/p
2.

8Our conventions for the conformal and SU(4) R-symmetry cross-ratios read

u = xx̄ = x2
12x

2
34

x2
13x

2
24
, v = (1− x)(1− x̄) = x2

14x
2
23

x2
13x

2
24
,

1
σ

= yȳ = y2
12y

2
34

y2
13y

2
24
,

µ

σ
= (1− y)(1− ȳ) = y2

14y
2
23

y2
13y

2
24
, (2.9)

We denote the second R-symmetry cross ratio as µ instead of the canonical τ , to avoid confusion with the
coupling.
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where c is the central charge c = (N2 − 1)/4 of the SU(N) theory. While the structure of
G(i,j)
p,free for generic (i, j) takes a similar form in terms of the cross-ratios (u, v) and (σ, µ),

the N dependence of the different (σ, µ) monomials is in general very non-trivial and
the simplicity of the above result is a consequence of the orthogonality property of the
SPO’s Op [54].

2.2 Integrated correlators

Our main focus henceforth will be on a family of observables defined by a Euclidean inte-
gration of the dynamical part of 〈O2O2O(i)

p O(j)
p 〉:

G(N |i,j)
p (τ) := − 2

π

∫ ∞
0

dr

∫ π

0
dθ
r3 sin2 θ

u2 H(N |i,j)
p (u, v; τ)|u=1+r2−2r cos θ, v=r2 . (2.13)

It was first shown in [6] that G(N |i,j)
p is given by derivatives of S4 partition function of

N = 2∗ gauge theory deformed by couplings τ ′A of higher-weight chiral operators (here
and below τ ′A collectively denotes all irrelevant couplings τ ′3, τ ′4, ... which couple to chiral
primary operators of dimension ∆ > 2, whereas τ denotes the exactly marginal coupling).9
In our conventions, this relation reads

G(N |i,j)
p (τ) = R

(i,j)
p

4
vi,µp v̄j,νp ∂τ ′µ∂τ̄ ′ν∂

2
m logZN (τ, τ ′A,m)

vi,µp v̄j,νp ∂τ ′µ∂τ̄ ′ν logZN (τ, τ ′A,m)

∣∣∣∣
τ ′A=m=0

. (2.14)

The S4 partition function10 ZN (τ, τ ′A,m) takes the following form [46, 50, 57, 58]

ZN (τ, τ ′A,m) =
∫
dNa

∏
i<j

(aij)2δ

(
N∑
i=1

ai

)∣∣∣∣ exp
(
iπτ

N∑
i=1

a2
i +

∞∑
p=3

iπp/2τ ′p

N∑
i=1

api

)∣∣∣∣2
∣∣Zinst(τ, τ ′A,m, a)

∣∣2 1
H(m)N

∏
i<j

H2(aij)
H(aij +m)H(aij −m) . (2.15)

The derivatives in (2.14) ensure that G(N |i,j)
p (τ) are unambiguous functions of the cou-

pling [50, 59, 60].
Let us unpack these expressions. The integration variables ai are over the Cartan

subalgebra of the gauge group SU(N) — i.e. ai ∈ R and are constrained by the condi-
tion ∑i ai = 0 — and aij := ai − aj . m is the N = 2-preserving mass of the adjoint
hypermultiplet. The function H(z) is given by product of two Barnes G-functions

H(z) = e−(1+γ)z2
G(1 + iz)G(1− iz) . (2.16)

9We note that [6] studied the relation (2.14) in the ’t Hooft limit where contributions from single-trace
operators dominate: that is, for the case (i, j) = (1, 1) in our notation. However, as we will discuss in
more detail below, (2.14) is also valid for multi-trace operators, i.e. for all pairs (i, j), with the appropriate
prescription for multi-trace sources.

10Strictly speaking, for non-vanishing τ ′A, ZN (τ, τ ′A,m) should be viewed as a generating functional for
correlators of chiral primary operators.
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The instanton factor Zinst(τ, τ ′A,m, a) in (2.15) is the localized contribution to the partition
function from non-trivial instanton configurations of SYM gauge fields. It admits the
decomposition

Zinst(τ, τ ′A,m, a) =
∞∑
k=0

e2πiτkZ
(k)
inst(τ ′A,m, a) , (2.17)

where Z(k)
inst(τ ′A,m, a) denotes the contribution from the k′th instanton sector. The expan-

sion of
∣∣Zinst

∣∣2 appearing in (2.15), in powers of the instanton counting factor q := e2πiτ , is∣∣Zinst
∣∣2 = 1 + q Z

(1)
inst + q̄ Z̄

(1)
inst + qq̄ |Z(1)

inst|
2 + · · · (2.18)

The explicit form of Z(k)
inst(τ ′A,m, a) is known for generic k. For our purposes we will only

need the expression for k = 1 [46]:

Z
(1)
inst(τ ′A,m, a)=−m2

N∑
`=1

exp

− ∞∑
p=3

iπp/2τ ′p
(
ap` + (a`+2i)p−2(a`+i)p

)∏
j 6=`

(a`j+i)2−m2

(a`j+i)2+1
(2.19)

We note that this expression from [46] is for U(N) gauge group.11 However, it is applicable
for computing correlators in N = 4 SYM with SU(N) gauge group by simply imposing the
constraint ∑i ai = 0 on the eigenvalues in the U(N) matrix model.12

At the N = 4 conformal point, where m = τ ′A = 0, Zinst(τ, 0, 0, a) = H(0) = 1, and
ZN (τ, 0, 0) is just a Gaussian matrix model in the (special) unitary ensemble that can be
explicitly evaluated:

ZN=4
N (τ) =

∫
dNai

∏
i<j

(aij)2 δ
(∑

ai
)∣∣∣eiπτ∑i

a2
i

∣∣∣2 = G(N + 2)
(2π)N(N−1)/2 (2Im τ)(N2−1)/2√N

.

(2.20)
An important detail in (2.14) is the operator mixing problem on S4. As explained

in [50], in curved space, the source for a chiral operator O(i)
p can have non-minimal couplings

to lower-dimensional chiral operators O(i)
p−2n with n ∈ Z+, due to non-vanishing background

fields such as the spatial curvature. Therefore, to compute correlators on R4 from the
deformed S4 partition function, one must solve this operator mixing problem. This is
achieved through a Gram-Schmidt orthogonalization process which allows us to compute
the complex vectors vi,µp from the matrix of S4 two-point functions. These vectors encode
the mixing of weight-p chiral operators of species i with lower-weight chiral operators.
Insertion of a chiral operator O(i)

p in a correlation function on R4 is then obtained through
the combination of derivatives vi,µp ∂τ ′µ , where we sum over the index µ which indexes
operators in the following set:

{O(i)
p } ∪ {O

(j1)
p−2} ∪ {O

(j2)
p−4} ∪ · · · , (2.21)

11Our notation is related to those of eq. (2.24) in [46] as follows: athere
i = −iahere

i , mthere = −(imhere +1) ,
(−i)p2πτ there

p = −πp/2p!τ ′p .
12This is unlike generic N = 2 theories. We are grateful to Silviu Pufu for a discussion.
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where i is a fixed index, whereas the jn indices run over all species of operators of indicated
weight, in accord with the discussion in subsection 2.1. In a slight (but hopefully intuitive)
abuse of notation, we write µ = p(j) to refer to the indicated operator O(j)

p of some fixed
p and j.

Each operator O(j)
p is associated with a source in the partition function ZN ; the mean-

ing of ∂τ ′
p(j)

is to differentiate with respect to that source. The derivatives are defined as

follows: for a given multi-trace operator O(j)
p ≡ Tp1,...,pn such that p1 + · · ·+ pn = p,

∂

∂τ ′
p(j)

:=
n∏
i=1

∂

∂τ ′pi
, (2.22)

with the understanding that τ ′2 ≡ τ . Its action on ZN defines differentiation with respect
to the source for the composite operators.

As an example, consider the insertion of the double-trace operator O(2)
5 ≡ T2,3 for which

µ ∈ {5(2), 3(1)}. The expressions of interest will have derivatives of the form ∂/∂τ ′
p(j) acting

on ZN . Applying (2.22), for p(j) = 3(1), this is a single-trace operator, so ∂ZN/∂τ ′3(1) :=
∂τ ′3ZN . Likewise, for p(j) = 5(2) we have ∂ZN/∂τ ′5(2) := ∂τ ′3∂τZN . Appendix B contains
more details on this procedure for cases up to p = 5.

2.3 The SL(2,Z) spectral decomposition

Many observables of N = 4 SYM are SL(2,Z)-invariant. Such observables, call them O(τ),
admit a spectral decomposition into a complete SL(2,Z)-invariant eigenbasis of the Lapla-
cian on the upper half plane. Let us introduce the main elements of this decomposition.
More complete explanations may be found in sections 2–3 of [8] in the N = 4 SYM con-
text, and in [61, 62] in great mathematical detail; see also [63] for a pertinent review. The
fundamental domain for SL(2,Z) may be defined as

F = H/SL(2,Z) =
{
τ = x+ iy ∈ H

∣∣∣∣− 1
2 ≤ x ≤

1
2 , |τ | ≥ 1

}
. (2.23)

This space is endowed with the hyperbolic metric

ds2 = dx2 + dy2

y2 , (2.24)

which defines a Laplacian

∆τ = −y2(∂2
x + ∂2

y) . (2.25)

We define inner products of square-integrable SL(2,Z)-invariant functions via the Petersson
inner product,

(f, g) :=
∫
F

dxdy

y2 f(τ)g(τ). (2.26)

The observable O(τ), which is square-integrable [8], obeys the invariance equation

O(γτ) = O(τ), γτ = aτ + b

cτ + d
, γ =

(
a b

c d

)
∈ SL(2,Z). (2.27)
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Restricting to real-valued O(τ), we develop a Fourier decomposition with respect to x,

O(τ) = O0(y) +
∞∑
k=1

2 cos(2πkx)Ok(y). (2.28)

In N = 4 SYM, where x = θ/2π, the mode number k is the total instanton number.
Instanton-anti-instanton pairs contribute integer powers of qq̄ = e−4πy, where q := e2πiτ ,
with total instanton number zero.

The Roelcke-Selberg spectral decomposition takes the following form:

O(τ) = 〈O〉+ 1
4πi

∫
Re s= 1

2

ds {O, Es}E∗s (τ) +
∞∑
n=1

(O, φn)φn(τ), (2.29)

This defines a convergent decomposition for any τ ∈ F . There are three branches here.
The first is the constant function, φ0 = vol(F)−1/2, so 〈O〉 = vol(F)−1(O, 1) is the

normalized average of O(τ) over F :

〈O〉 := vol(F)−1
∫
F

dxdy

y2 O(τ) (2.30)

The bracket notation indicates that this is equivalent to the normalized ensemble average
of O(τ), that is, the average value of O(τ) over the N = 4 supersymmetry-preserving con-
formal manifold with respect to the Zamolodchikov measure. This identification between
modular and ensemble averages is special to N = 4 SYM, in which the Zamolodchikov
metric is exactly hyperbolic due to maximal supersymmetry [64], unlike other sub-maximal
theories whose conformal manifolds admit an SL(2,Z) action (e.g. N = 2 SQCD in four
dimensions [47, 65]).

The second is the continuous branch of non-holomorphic Eisenstein series,

∆τE
∗
s (τ) = s(1− s)E∗s (τ) , Re (s) = 1

2 . (2.31)

The star denotes that we use the “completed” Eisenstein series, whose Fourier expansion
with respect to x is

E∗s (τ) = Λ(s)ys + Λ(1− s)y1−s +
∞∑
k=1

4 cos(2πkx)σ2s−1(k)
ks−

1
2

√
yKs− 1

2
(2πky), (2.32)

where Λ(s) := π−sΓ(s)ζ(2s) is the completed Riemann zeta function and σ2s−1(k) is
the divisor function. This normalization is convenient because it manifests the reflection
symmetry

E∗s (τ) = E∗1−s(τ) . (2.33)

The overlap with O(τ) is then a rescaled Petersson inner product, which may be simpli-
fied to

{O, Es} := Λ(s)−1(O, Es)

= Λ(s)−1
∫ ∞

0
dy y−s−1 O0(y) .

(2.34)
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The second line will be important for the physics: the Eisenstein overlap is fully determined
by the zero mode of O(τ), i.e. the projection of O(τ) onto the sector of zero total instanton
number. This sector includes the weak-coupling regime g2

YM � 1. The reflection symmetry
of E∗s (τ) implies the same property of {O, Es}. Note that the ensemble average may be
extracted from the s→ 1 limit of the Eisenstein overlap,

〈O〉 = 1
2 lim
s→1
{O, Es} , (2.35)

which follows from E0(τ) = 1.
The third is an infinite discrete branch of Maass cusp forms in the so-called L2 norm,

(φn, φn) = 1. These functions, infinite in number, obey the eigenvalue equation

∆τφn(τ) =
(1

4 + t2n

)
φn(τ) , n ∈ Z+ , tn ∈ R , 0 < t1 < t2 < . . . (2.36)

Reality of O(τ) restricts the basis to the even cusp forms, invariant under x → −x. The
cusp forms φn(τ) have no zero mode, instead decaying exponentially at the cusp y → ∞,
hence contributing to neither the perturbative nor ’t Hooft regimes. The cusp forms are
rich mathematical objects exhibiting various signs of arithmetic chaos [43–45]; however,
quite intriguingly, the integrated correlators G(N)

p (τ) will be seen to have vanishing cusp
form overlap, so we will not say anything further about the cusp forms here.

In summary, the entire content of O(τ) is stored in the spectral overlaps {O, Es}
and (O, φn).

Looking ahead slightly, our computations will begin from the zero mode, O0(y):

O0(y) = 〈O〉+ 1
2πi

∫
Re s= 1

2

ds {O, Es}Λ(s)ys (2.37)

As shown in [8], N = 4 SYM observables with a consistent perturbative expansion in g2
YM

admit a rather constrained analytic form for their Eisenstein overlaps:

{O, Es} = π

sin(πs)s(1− s)fp(s) + fnp(s) (2.38)

The function fp(s) encodes the complete perturbative part of O(τ), its residues giving the
weak coupling (y � 1) data. The function fnp(s) encodes non-perturbative, instanton-
anti-instanton corrections. Both functions must be invariant under s 7→ 1 − s, and are
regular for s ∈ C away from s = 0 and its reflection. For the observables we consider, it
will turn out that fnp(s) = 0, a fact whose origin lies in the Borel summability of their
perturbative expansions; this further implies [8] that fp(s) must be regular at s = 0 and is
thus entire.

2.4 Prelude: review of p = 2 result

To illustrate the spectral decomposition (2.29) at work — and to set the stage for our
computations ahead — let us consider the example of the p = 2 integrated correlator,
G(N)

2 (τ). The result is

G(N)
2 (τ) = N(N − 1)

4 + 1
4πi

∫
Re s= 1

2

ds
π

sin(πs)s(1− s)f
(N)
2 (s)E∗s (τ). (2.39)
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That is, the ensemble average, and Eisenstein and cusp form overlaps, are

〈G(N)
2 〉 = N(N − 1)

4 , {G(N)
2 , Es} = π

sin(πs)s(1− s)f
(N)
2 (s), (G(N)

2 , φn) = 0. (2.40)

For N ≤ 2,
f

(1)
2 (s) = 0, f

(2)
2 (s) = (2s− 1)2. (2.41)

For N > 2, it turns out that the spectral overlaps obey a powerful three-term recursion
relation [7]

N(N − 1)f (N+1)
2 (s) =

[
2(N2 − 1)− s(1− s)

]
f

(N)
2 (s)−N(N + 1)f (N−1)

2 (s), (2.42)

This fully determines G(N)
2 (τ) for any SU(N) in terms of the SU(2) result alone (and its

triviality at N = 1).
To reiterate, the complete content of G(N)

2 (τ) is contained in (2.40)–(2.42).
This observable also admits a (formally equivalent) lattice-integral representation, as

originally seen in [7], which may be derived by performing an SL(2,Z) Poincaré sum of
the zero mode of (a Borel resummation of) G(N)

2 (τ). The same will be true of the p > 2
integrated correlators.13 As discussed in the Introduction and hopefully made clear by our
presentation, instead writing G(N)

2 (τ) in a complete, SL(2,Z)-invariant basis illuminates
just how simple it is in the space of possible N = 4 observables:

• The cusp form overlap vanishes for all N .

• The non-perturbative part of the Eisenstein overlap vanishes for all N .

• The perturbative part of the Eisenstein overlap, f (N)
2 (s), is an even polynomial of

order 2N − 2.

The passage between bases also helps to clarify the physical meaning of some of the math-
ematical aspects of the lattice-integral representation itself, such as the identification of
the lattice-integral kernel as an SL(2,Z) Borel transform and the observed properties of
G(N)

2 (τ) under integration and inversion.
Let us make a few further comments. First, the SU(2) result is, rather literally, the

simplest result consistent with the analyticity properties of the overlap: in particular,
f

(N)
p (s) must be an entire, reflection-symmetric (i.e. even under s → 1 − s), non-constant
function of s, the simplest example of which is the degree-two monomial shown above.
Second, since the cusp form overlap vanishes, the above recursion relation may be uplifted
to a ‘Laplace difference equation’ for the integrated correlator [7], which reads

N(N − 1)G(N+1)
2 (τ) =

[
2(N2 − 1)−∆τ

]
G(N)

2 (τ)−N(N + 1)G(N−1)
2 (τ), (2.43)

13It is straightforward to prove [8] that any SL(2,Z)-invariant, square-integrable observable O(τ) with
(O, φn) = 0 admits a lattice-integral representation of the form admitted by G(N)

2 (τ). On the other hand,
a generic SL(2,Z)-invariant observable, with nonzero cusp form overlap, need not.
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where we have used (2.31). This differential relation is equivalent to the algebraic rela-
tion (2.42). Finally, the largeN expansion of G(N)

2 (τ) was analyzed in [7, 8], in various limits
and including non-perturbative corrections in both 1/λ [7] and 1/N [8], where λ := g2

YMN

is the ’t Hooft coupling. We refer the reader to those papers for details. Here we just
highlight one result, to be generalized to p > 2 later in this work: at λ� 1,

G(N)
2 (λ) ≈ N2

4
(
1− 24ζ(3)λ−3/2 +O(λ−5/2)

)
+O(N0) . (2.44)

The leading term, which gives the value of the integrated correlator in tree-level
AdS5× S5 supergravity in our normalization, manifestly equals the ensemble average
in (2.40) at large N [8].

With these observations in place, we now proceed to study the more general class of
integrated correlators G(N |i,j)

p (τ). The SL(2,Z) spectral decomposition will greatly simplify
the physical and technical analysis.

3 Results I: integrated correlators for p ≤ 5

We now derive the integrated correlators G(N |i,j)
p (τ) for p ≤ 5 in the SL(2,Z) spectral

decomposition. As we will see, their general structure is uniform in p, essentially identical
to that of the p = 2 case presented in (2.40)–(2.42). The derivation is a three-step process:

1) In subsection 3.1, we reconstruct the full zero(-instanton) mode of the integrated
correlator from its weak-coupling expansion. The latter is computed from localization
as outlined in section 2.2 and appendix B.

2) In subsection 3.2, we leverage the zero mode to deduce the Eisenstein overlap (2.38)
by matching to the spectral decomposition. Just as for p = 2, these will have van-
ishing non-perturbative part, fnp(s) = 0, and the remaining piece will be fixed by
polynomials obeying powerful recursion relations in N .

3) Finally, in subsection 3.3, we upgrade this to the result for the full integrated corre-
lator by arguing that the cusp form overlap vanishes. We do so with several explicit
computations. This then implies that the aforementioned recursion relations are re-
lations for the full integrated correlator. We note that they may be recast as Laplace
difference equations, an exercise we carry out in subsection 3.4.

3.1 Perturbative expansion

The weak-coupling expansion of G(N |i,j)
p (around a zero-instanton background), may be

extracted from the localization expression (2.14)–(2.15) by expanding the latter at y � 1
(recall that y := Im τ). Details of this computation may be found in appendix B for all
p ≤ 5. The final result may be written as

G(N |i,j)
p (τ)

∣∣∣
0-inst

= R
(i,j)
p

4
C

(N |i,j)
p

D
(N |i,j)
p

, (3.1)
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where C(N |i,j)
p and D

(N |i,j)
p are given in (B.14) and (B.8) respectively. Let us copy the

result from appendix B for p = 2, 3 below:

G(N)
2 (τ)

∣∣∣
0-inst

= R2
4

(12Nζ(3)
yπ

− 75N2ζ(5)
y2π2 + 735N3ζ(7)

2y3π3 − 945N2 (7N2 + 2
)
ζ(9)

4y4π4

+ 114345N3 (N2 + 1
)
ζ(11)

16y5π5 − 351351N2 (11N4 + 25N2 + 4
)
ζ(13)

128y6π6 + . . .

)
,

(3.2)

G(N)
3 (τ)

∣∣∣
0-inst

= R3
4

(18Nζ(3)
yπ

− 90N2ζ(5)
y2π2 + 735N3ζ(7)

2y3π3 − 2835N2 (2N2 + 1
)
ζ(9)

4y4π4

+ 114345N3 (3N2+ 5
)
ζ(11)

64y5π5 − 117117N2 (11N4+ 40N2+ 9
)
ζ(13)

64y6π6 + . . .

)
.

(3.3)

The results for p = 4, 5 may similarly be assembled from appendix B.
Before extracting the spectral overlaps from these, we note that these results are in

agreement with previous results from two-loop perturbation theory: in particular, follow-
ing the strategy of [7], in appendix E we take the two-loop results for the unintegrated
〈O2O2O(i)

p O(j)
p 〉 correlators from [9], integrate them against the measure (2.13), and com-

pare to the localization result shown above. The results match, as seen in appendix E. This
provides a non-trivial check of the method used here. It also probes a novel aspect of the
p = 4, 5 cases, in which there is a matrix of integrated correlators involving double-trace
composite operators; the agreement described above verifies that the localization method
works even when the external operators are composites.14

3.2 Spectral overlaps and recursion relations

To deduce the Eisenstein overlap from the perturbative expansion, one must develop the
latter from the spectral decomposition. This is straightforwardly done by closing the
integration contour in (2.37) to the left, yielding15

G(N |i,j)
p (τ)

∣∣∣
0-inst

= −
∞∑
n=1

(−1)nn(n+ 1)Λ
(
n+ 1

2

)
f (N |i,j)
p (n+ 1) y−n . (3.4)

where we recall the definition of the completed Riemann zeta function Λ(n+ 1
2) below (2.32).

This is then compared to the weak-coupling expansion of G(N |i,j)
p , from which f (N |i,j)

p (n+1)
is extracted. Using the perturbative expansions derived in the previous subsection and
appendix B, we find that in all cases we considered,

f (N |i,j)
p (s) = (2s− 1)2 g(N |i,j)

p (s), (3.5)

14This is also a further verification that the Konishi operator does not contribute to G(N|i,j)
p (τ), as was

discussed in [6] in the ’t Hooft limit and [7] for finite N .
15As we will point out momentarily, the non-perturbative part of the overlap vanishes for all p. This allows

us to employ an amusing abuse of notation, here and henceforth, in which we refer to the “p” subscript on
fp(s) as the label for the p’th integrated correlator.
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where g(N |i,j)
p (s) are reflection-symmetric polynomials of degree 2N + 2bp2c − 6, for all

labels (i, j).
The perturbative expansions are Borel summable. This typically (but not al-

ways [66, 67]) implies, in the context of resurgence, that non-perturbative corrections in
g2

YM are not present. This was confirmed in [7] for p = 2, implying that the non-perturbative
part of the Eisenstein overlap (2.38) vanishes [8]. One can confirm this property for the
p > 2 cases considered here as well:16

f (N |i,j)
np (s) = 0 (3.6)

Therefore, (3.5) gives the full Eisenstein overlap. Summarizing so far, the Eisenstein over-
laps of G(N |i,j)

p for p = 3, 4, 5 take the form

{G(N |i,j)
p , Es}= π

sin(πs)s(1−s)(2s−1)2g(N |i,j)
p (s) , where deg

[
g(N |i,j)
p (s)

]
=2N+2

⌊
p

2

⌋
−6 .

(3.7)

This implies that {G(N |i,j)
p , Es} may be completely fixed by the first N +

⌊p
2
⌋
− 2 orders in

weak-coupling perturbation theory.
Given this simplicity, and inspired by the p = 2 case (2.42), we are encouraged to

seek recursive relations for p > 2. To do so, we use the above observations on the general
structure of the spectral overlaps to construct the most restrictive polynomial ansatz,
allowing us to compute the overlaps f (N |i,j)

p (s) for p ≤ 5 and N ≤ 20 from the perturbative
expansions to order y−20. As we will discuss in detail in the following, we are then able
to find many interesting relations generalising the p = 2 recursion to relations not only
among theories with different values of N , but also among integrated correlators of different
values of p.

3.2.1 p = 3
In the p = 3 case, the perturbative expansion vanishes for N = 1, 2 (due to vanishing of the
operator O3 itself) and hence we have f (1)

3 (s) = f
(2)
3 (s) = 0. For concreteness, we display

the expressions for the next few values of N which read

f
(3)
3 (s) = 1

3(2s− 1)2(s2 − s+ 18),

f
(4)
3 (s) = 1

12(2s− 1)2(s4 − 2s3 + 47s2 − 46s+ 264),

f
(5)
3 (s) = 1

120(2s− 1)2(s6 − 3s5 + 95s4 − 185s3 + 1824s2 − 1732s+ 6240).

(3.8)

Considering many more cases up to N = 20, we find that the above overlaps satisfy the
following striking recursion relation:

N(N + 1)
[
f

(N+1)
3 (s)− f (N)

3 (s)
]

= 2N(N − 1) f (N+1)
2 (s) + 2(N + 1)(N + 2) f (N)

2 (s) .
(3.9)

16One can see this from the localisation point of view as follows. From the expansion (2.18) and the
partition function (2.19) it can be observed that the instanton-anti-instanton term |Z1-inst|2 goes like m4,
and therefore does not contribute to the integrated correlators (2.14). Persistence of this property to higher
orders leads to the above conclusion.
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This is a remarkable formula: it allows one to recursively compute the p = 3 overlaps for
generic N from knowledge of the p = 2 overlaps f (N)

2 (s), which in turn are fully determined
by the SU(2) theory alone, together with the trivial initial condition f

(1)
3 (s) = 0! Let us

note that this recursion is consistent starting from the value N = 1. In particular, the fact
that f (2)

3 (s) vanishes is compatible with f (2)
2 (s) 6= 0 in the first term on the r.h.s. thanks

to the presence of an (N − 1) factor.
An interesting feature of the above relation is that it has no explicit dependence on s,

in contrast with the p = 2 recursion relation (2.42). This is concordant with the fact that
the spectral overlaps f (N)

p (s) are polynomials of the same degree for p = 2 and p = 3.
This is not the only interesting relation the spectral overlaps f (N)

3 (s) obey. At the
cost of introducing some s-dependent terms, we find a recursion relation involving only the
p = 3 spectral overlaps:

(N − 2)(N − 3)(N + 1)f (N+1)
3 (s) = (N − 3)

[
(N2 + 2N − 2)− s(1− s)

]
f

(N)
3 (s)

+ (N + 2)
[
(N2 − 4N + 1)− s(1− s)

]
f

(N−1)
3 (s)

− (N − 2)(N + 2)(N + 1) f (N−2)
3 (s) . (3.10)

Note that due to the factors of (N − 2)(N − 3) on the r.h.s. , the recursion starts at N = 4,
and as a consequence of being a four-term recursion relation one needs to supply f (N)

3 (s)
with N = 2, 3, 4 as initial data, making it a somewhat less powerful statement than the
previous relation (3.9).

3.2.2 p = 4

Next, p = 4 is the first case with a degeneracy in the spectrum of half-BPS operators:
namely, the T4 and T2,2 operators. As such, we have three cases to consider: (i, j) =
(1, 1), (1, 2), (2, 2). We will also consider the case of single-particle operators, (i, j) →
(SPO, SPO).

Interestingly, while for N = 1 the perturbative expansions vanish, we find that for N =
2, 3 the three expansions degenerate and are simply proportional to each other termwise in
their 1/y expansions. In terms of spectral overlaps, this yields

N = 1 : f
(1|i,j)
4 (s) = 0 ,

N = 2 : f
(2|2,2)
4 (s) = 2 f (2|1,2)

4 (s) = 4 f (2|1,1)
4 (s) = (2s− 1)2(s2 − s+ 8) ,

N = 3 : f
(3|2,2)
4 (s) = 2 f (3|1,2)

4 (s) = 4 f (3|1,1)
4 (s) = 1

2(2s− 1)2(s2 − s+ 6)(s2 − s+ 18) .
(3.11)

This phenomenon is a non-trivial consequence of considering the SU(N) theory and is ex-
plained by the fact that for low values of N the single-trace operator T4 is no longer linearly
independent of the double-trace operator T2,2: for N = 2, 3 one has T4 ∝ T2,2 and therefore
also their correlators become proportional to each other. In view of the different intri-
cate N -dependence of the weak-coupling expansions (B.14c)–(B.14e), the degenerations
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for N = 2, 3 seem highly non-trivial (and further support our claim that the localisation
integrals correctly compute multi-trace insertions).

For N ≥ 4, the spectral overlaps f (N |i,j)
4 (s) start to differ for different (i, j). For

example, the case (i, j) = (2, 2), corresponding to the correlator with two double-trace
operators, is the one with simplest s-dependence:

f
(4|2,2)
4 (s) = 1

12(2s− 1)2(s2 − s+ 4)(s2 − s+ 18)(s2 − s+ 32) ,

f
(5|2,2)
4 (s) = 1

144(2s− 1)2(s2 − s+ 50)(s6 − 3s5 + 55s4 − 105s3 + 664s2 − 612s+ 1440) .
(3.12)

We have obtained analogous expressions for the (i, j) = (1, 1) and (1, 2) cases. However, we
refrain from presenting more explicit data since, by considering many cases of different N ,
we discover that the p = 4 spectral overlaps likewise obey interesting recursion relations,
which we present now.

(i, j) = (2, 2). Let us start with the simplest case given by the correlator involving two
double-trace operators. In this case we find the very direct relation

f
(N |2,2)
4 (s) =

[
2N2 − s(1− s)

]
f

(N)
2 (s) . (3.13)

The overlaps f (N |2,2)
4 (s) are fully determined by the p = 2 overlaps f (N)

2 (s) only. This will
be elaborated upon in section 6.

(i, j) = (1, 2). For the mixed correlator with one single-trace and one double-trace op-
erator,

f
(N+1|1,2)
4 (s)− f (N |1,2)

4 (s) = 1
2

[
N3 + 4N2 + 13N − 2

N + 1 − s(1− s)
]
f

(N+1)
2 (s)

− N3 + 2N2 − 4N − 6
N

f
(N)
2 (s)

+ N(N + 1)
2 f

(N−1)
2 (s) ,

(3.14)

This, too, determines f (N |1,2)
4 (s) from f

(N)
2 (s) alone.17

(i, j) = (1, 1). Recursion relations also exist for the overlaps of the correlator involving
two single-trace operators albeit in somewhat more complicated form. For this case, we find

f
(N+1|1,1)
4 (s)− f (N |1,1)

4 (s) = 1
4

[3N4 + 3N3 + 23N2 − 23N + 26
(N + 1)2 − s(1− s)

]
f

(N+1)
2 (s)

+ 3(2N2 + 2N + 3)
N(N + 1) f

(N)
3 (s)

− N5 + 7N4 − 18N2 − 12N − 36
2N2(N + 1) f

(N)
2 (s)

− N(N + 1)
4 f

(N−1)
2 (s) , (3.15)

17Here and in what follows, we leave implicit the trivial vanishing conditions of the spectral overlaps at
N = 0, 1.
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The new feature relative to the previous relations is the presence of f (N)
3 (s) on the r.h.s. .

However, since the latter is fixed by f (N)
2 (s) via (3.9), so, ultimately, is f (N |1,1)

4 (s).18

(SPO, SPO). Lastly, we can assemble the spectral overlap f (N)
4 (s) of the correlator of

two SPO’s O4, defined as the linear combination in (2.6). From that definition, one has

f
(N)
4 (s) = f

(N |1,1)
4 (s) + 2βf (N |1,2)

4 (s) + β2f
(N |2,2)
4 (s) , (3.16)

with mixing coefficient β = − 2N2−3
N(N2+1) . Note that this particular linear combination is

precisely such that f (N)
4 (s) = 0 for N = 1, 2, 3 since, by construction, the operator O4 itself

vanishes for those values of N .19 By combining the recursion relations for f (N |i,j)
p (s) given

in equations (3.13)–(3.15) one can derive a similar recursion for the overlaps of f (N)
p (s),

whose precise form we record in appendix C.

3.2.3 p = 5

Similarly to p = 4, the p = 5 case presents three cases to consider: (i, j) =
(1, 1), (1, 2), (2, 2), as well as the case of single-particle operators, (i, j)→ (SPO, SPO).

As for p = 4, we observe that the perturbative expansions degenerate for low values of
N : as a consequence of the two half-BPS operators becoming proportional to each other, i.e.
T5 ∝ T2,3 for N ≤ 4, we have that the weak-coupling expansions vanish for N = 1, 2 (due
to O3 which ceases to exist for N = 1, 2), and that for N = 3, 4 the expansions degenerate.
As mentioned for p = 4, the latter property is not at all obvious from the different N -
dependent coefficients in the perturbative expansions, see equations (B.14f)–(B.14h). For
the spectral overlaps we therefore have

N = 1, 2 : f (N |i,j)
5 (s) = 0 ,

N = 3 : f
(3|2,2)
5 (s) = 6

5 f
(3|1,2)
5 (s) = 36

25 f
(3|1,1)
5 (s)

= 4
25(2s− 1)2(3s4 − 6s3 + 98s2 − 95s+ 498) , (3.17)

N = 4 : f
(4|2,2)
5 (s) = 6

5 f
(4|1,2)
5 (s) = 36

25 f
(4|1,1)
5 (s)

= 3
50(2s−1)2(2s6 − 6s5 + 149s4 − 288s3 + 2297s2 − 2154s+ 7704) ,

and only from N ≥ 5 onwards their s-dependence differs. Comparing again cases with
varying N , we are able to find recursion relations for the p = 5 spectral overlaps, which we
list below:

18We have also found a recursion relation which does not involve the p = 3 overlaps, but its structure
as well as the N -dependence of the coefficients is more complicated and we refrain from giving it here.
Notably, the r.h.s. of that relation has a pole at N = 3 and hence the recursion can be used only for N ≥ 4.

19Because the overlaps f (N|i,j)
4 (s) become proportional to each other for N = 2, 3 (cf. (3.11)), the mixing

coefficient β must take the same value for N = 2 and N = 3 in order to be consistent with f (N)
4 (s) = 0 for

those N . Indeed, one has β|N=2 = β|N=3 = − 1
2 , which is a somewhat non-trivial property of β.
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(i, j) = (2, 2).

f
(N+1|2,2)
5 (s) = 12(N − 1)

25(N + 1)

[
(N3 + 20N2 + 24N + 18)− 6s(1− s)

]
f

(N+1)
2 (s)

+ 18(N2 + 2N + 18)
25 f

(N)
3 (s)− 36(N+2)(3N2+2N−18)

25N f
(N)
2 (s) .

(3.18)

(i, j) = (1, 2).

f
(N+1|1,2)
5 (s)− f (N |1,2)

5 (s) = 12(N − 1)
5(N + 1)

[2N3 + 3N2 + 8N − 3
N + 1 − s(1− s)

]
f

(N+1)
2 (s)

+ 24(N + 2)
5N f

(N |1,2)
4 (s) + 18(N − 1)(3N − 2)

5N(N + 1) f
(N)
3 (s)

− 12(N + 2)(2N4 +N3 − 12N2 + 11N − 8)
5N2(N + 1) f

(N)
2 (s) .

(3.19)

(i, j) = (1, 1).

f
(N+1|1,1)
5 (s)− f (N |1,1)

5 (s) = 2(N−1)
(N + 1)

[3N4 + 4N3 + 14N2 + 4N + 15
(N + 1)2 − s(1−s)

]
f

(N+1)
2 (s)

+ 8(N2 +N + 2)
N(N + 1) f

(N |1,1)
4 (s)

− 3(2N5 − 3N4 − 4N3 − 23N2 − 24N − 24)
N2(N + 1)2 f

(N)
3 (s) (3.20)

− 2(N7 + 8N6 − 18N4 − 5N3 − 42N2 − 24N − 48)
N3(N + 1)2 f

(N)
2 (s)

+ 4N f
(N−1)
2 (s) ,

where the above recursion relations start from N = 1 with initial values f (N |i,j)
p (s) = 0 for

N ≤ 1. As noted earlier in the p = 3 case, the factors of (N − 1) in front of the f (N+1)
2 (s)

terms on the r.h.s. are required by consistency of these formulae for N = 1.

(SPO, SPO). Lastly, the p = 5 spectral overlaps of the correlator of SPO’s are given by
an analogous equation as given in (3.16),

f
(N)
5 (s) = f

(N |1,1)
5 (s) + 2βf (N |1,2)

5 (s) + β2f
(N |2,2)
5 (s) , (3.21)

where the mixing coefficient now reads β = − 5(N2−2)
N(N2+5) . This is the right linear combination

which yields f (N)
5 (s) = 0 for N = 1, 2, 3, 4.20 We can then again use the recursion relations

for f (N |i,j)
5 (s) to assemble a similar recursion for f (N)

5 (s) which we give in appendix C.

20Consistency with the proportionality relations (3.17) demands that for N = 3, 4 the p = 5 mixing
coefficient takes the same value. This is indeed the case and one finds β|N=3 = β|N=4 = − 5

6 .
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3.3 Including instantons: completion to the full correlator

Having computed the zero mode of G(N)
p (τ), and therefore the Eisenstein spectral overlap,

what remains is to determine the cusp form overlap. We claim that it vanishes:(
G(N |i,j)
p , φn

)
= 0 ∀ n > 0 . (3.22)

That is, the full integrated correlator is

G(N |i,j)
p (τ) = 〈G(N |i,j)

p 〉+ 1
4πi

∫
Re s= 1

2

ds
π

sin(πs)s(1− s)(2s− 1)2g(N |i,j)
p (s)E∗s (τ) , (3.23)

where recall that the average is 〈G(N |i,j)
p 〉 = 1

2g
(N |i,j)
p (0). Note how strongly constraining

this is: because g(N |i,j)
p (s) is an even polynomial of degree given in (3.7), the integrated

correlator may be completely fixed by the first N +
⌊p

2
⌋
− 2 orders in weak-coupling per-

turbation theory.
We will provide strong support for (3.22) with explicit instanton computations be-

low. The basic idea behind the check is as follows. First, one can compute the pertur-
bative expansion of the integrated correlators in nonzero instanton sectors as predicted
by (3.23). This result is then to be compared with a direct computation from localisation
formula (2.14) using the relevant instanton partition function. For p = 2, the absence
of cusp forms was extensively checked in this manner in [7, 8]. In this subsection, we
carry out the check for several p > 2 integrated correlators using the instanton partition
function (2.19).21 Happily, the two results agree.

3.3.1 Calculation

The first step of extracting the perturbative expansion around k instantons from (3.23) is
straightforward. (The anti-instanton result, proportional to e−2πikτ̄ , is identical.) One just
inserts the k’th Fourier mode of E∗s (τ) from (2.32) and the y � 1 expansion

√
yKs− 1

2
(2πky) = 1

2
√
k
e−2πky

∞∑
n=0

an(s)
(2πky)n , an(s) = (s)n(1− s)n

(−2)nn! . (3.24)

Borel summability allows us to swap the s integral in (3.23) with the sum over n [8]. Closing
the contour towards the left, and taking k = 1, we find

G(N |i,j)
p (τ)

∣∣∣
1-inst

= 1
2e

2πiτ
∞∑
n=0

1
(2πy)n

( ∞∑
s=1

(−1)ss(s− 1)an(s)f (N |i,j)
p (s)

)
, (3.25)

where we have used the symmetry property an(−m) = an(1 + m). For fixed n, the sum
in parentheses is divergent, since both f (N |i,j)

p (s) and an(s) are polynomials in s. The sum
can be regulated in a standard manner using an exponential or zeta function regulator.

21Note that it is sufficient to check this in the one-instanton sector: as argued in [8] using properties of
the SL(2,Z) eigenbasis, all k > 1 sectors are fully determined by the k = 0, 1 sectors.
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Let us first apply this strategy to the p = 3 integrated correlator, G(N)
3 (τ). Plugging

its spectral overlap into (3.25) gives the prediction

G(N)
3 (τ)

∣∣∣
1-inst

= e2πiτ R3
4

∞∑
n=0

Γ
(
N − 1

2 − n
)

√
πΓ(N + 3)(πy)n h3,n(N) , (3.26)

where h3,n(N) are polynomials in N of degree n+2. These may be obtained algorithmically
for any n via recursion. For first few values of n,

h3,0(N) = −6N(4N + 3) , h3,1(N) = −9
8N(4N2 − 33N − 12) ,

h3,2(N) = 45
256N

2(4N2 + 47N − 237) , h3,3(N) = − 315
4096N

2(N + 1)(N + 2)(4N − 9) .
(3.27)

We now compare (3.26) to the exact localization calculation of the same quantity via the
definition (2.14). To proceed, we use the expression (2.19) for the one-instanton partition
function and set the higher-weight couplings τp>3 = 0, for which we have

Z
(1)
inst(τ3,m, a) = −m2

N∑
`=1

e6π3/2τ3(ia`−1) ∏
j 6=`

(a`j + i)2 −m2

(a`j + i)2 + 1
. (3.28)

Plugging this expression into (2.15), we develop a weak-coupling (large y) expansion for
the p = 3 integrated correlator in the one-instanton sector (exactly in the same manner as
we did for the zero-instanton computations) using the definition (2.14). A finite generic
N computation is technically involved due to the form of the instanton partition function.
But for low values of N , the computation is straightforward. Performing this calculation
for N = 3, 4, 5 through the first several orders in 1/y, we find precise agreement with (3.26)
as obtained from the spectral decomposition.22

The above strategy applies for any integrated correlators G(N |i,j)
p (τ). Analogous results

for the full matrix of p = 4, 5 correlators are deferred to appendix D for which we have also
checked in this way that the cusp form overlaps vanish at low values of N .23

There is yet another class of integrated correlators — to be introduced more thoroughly
in section 6 — which is especially simple. This is what we call the maximal-trace family of
integrated correlators. For p ∈ 2Z+, these are defined by taking both operators O(i)

p and
O(j)
p to be multi-trace composites of O2 with p/2 constituents,

O(max)
p := T2,...,2 . (3.29)

22The authors of [68] have, in work to appear, independently studied the p = 3 integrated correlator
at low values of N and performed numerical checks of the vanishing cusp form overlap at finite y, using
the convergent expansion of the deformed instanton partition function. This further complements our
conclusion. We thank Shai Chester for discussions.

23It would be interesting to reproduce and independently confirm these perturbative results by explicitly
integrating the one-instanton correction to the unintegrated 〈O2O2O(i)

p O(j)
p 〉 correlators against the mea-

sure (2.13). The latter may be computed in principle using methods based on the ADHM construction of
instantons [69–73], though very few explicit results for instanton corrections to the unintegrated correlator
exist in the literature [69, 74, 75].
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The lowest of these operators besides T2 is O(max)
4 = T2,2, whose corresponding integrated

correlator G(N |2,2)
4 (τ) was studied in section 3.2 above. Its Eisenstein overlap f

(N |2,2)
4 (s)

was computed in (3.13). Inserting this into (3.25), we find

G(N |2,2)
4 (τ)

∣∣∣
1-inst

= e2πiτ R
(2,2)
4
4

1
N2 + 1

∞∑
n=0

Γ
(
N − 3

2 − n
)

√
πΓ(N + 2)(πy)nh

(2,2)
4,n (N) , (3.30)

where h(2,2)
4,n (N) are polynomials in N of degree n+ 4. For first few values of n these are

h
(2,2)
4,0 (N) = −3N

2
(
8N3 − 12N2 + 3N − 12

)
,

h
(2,2)
4,1 (N) = −9N

32
(
8N4 − 52N3 + 83N2 − 57N + 80

)
,

h
(2,2)
4,2 (N) = 45

210 (N − 2)N2(N + 1)
(
8N2 − 12N − 21

)
,

h
(2,2)
4,3 (N) = −315

214 N
2(N + 1)

(
8N4 − 84N3 + 219N2 − 9N − 414

)
.

(3.31)

We now compare (3.30) to the exact localization calculation of the same quantity using the
instanton partition function with vanishing higher-weight sources (τp≥3 = 0),

Z
(1)
inst(m, a) = −m2

N∑
`=1

∏
j 6=`

(a`j + i)2 −m2

(a`j + i)2 + 1
. (3.32)

It is convenient to first compute 〈∂2
mZ

(1)
inst(0, a)〉 in a weak-coupling expansion (the expecta-

tion value is in the ensemble (2.20)). This result was obtained for finite N in [7, 76], with
the first few orders being

〈∂2
mZ

(1)
inst(0, a)〉 =

(
−

4Γ
(
N + 1

2

)
π1/2Γ(N)

− 1
y

3Γ
(
N − 1

2

)
4π3/2Γ(N − 1)

+ 1
y2

15NΓ
(
N − 3

2

)
128π5/2Γ(N − 1)

− 1
y3

105(N − 3)NΓ
(
N − 5

2

)
2048π7/2Γ(N − 1)

+ 1
y4

945N(N(5N − 33) + 58)Γ
(
N − 7

2

)
131072π9/2Γ(N − 1)

+ . . .

)
. (3.33)

Plugging the above into (2.14) (using (B.7) for solving the operator mixing problem) we
precisely find (3.30). The same calculation may be repeated for higher-p maximal-trace
integrated correlators, studied further in section 6; having done so for many p > 4 again
yields perfect agreement.

Altogether, these results provide substantial evidence of vanishing cusp form overlap
for integrated correlators G(N |i,j)

p (τ). We leave a deeper physical understanding of this
intriguing mathematical property for the future.
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3.4 Laplace difference equations

Having given evidence for vanishing cusp form overlap and thereby completion to the full
correlator, the various recursion relations from section 3.2 should be regarded as non-trivial
identities between the full integrated correlators. Said another way, relations for f (N |i,j)

p (s)
simply ‘uplift’ to relations for G(N)

p (τ). Starting from a given recursion relation for the
spectral overlap f (N |i,j)

p (s), this is achieved by applying the replacement rules

f (N |i,j)
p (s) 7→ G(N |i,j)

p (τ)− 〈G(N |i,j)
p 〉 , s(1− s)f (N |i,j)

p (s) 7→ ∆τ G(N |i,j)
p (τ) . (3.34)

Prime among these relations is the p = 3 recursion relation (3.9), which uplifts to the
following powerful difference equation obeyed by the integrated correlator G(N)

3 (τ):

N(N + 1)
[
G(N+1)

3 (τ)− G(N)
3 (τ)

]
= 2N(N − 1)G(N+1)

2 (τ) + 2(N + 2)(N + 1)G(N)
2 (τ) .

(3.35)

The absence of an inhomogeneous term coming from the ensemble averages 〈G(N |i,j)
p 〉 follows

from consistency of the recursion relations evaluated at s = 1.
One may, if desired, recast all of the previously derived recursion formulas as Laplace

difference equations. Let us just give one more example explicitly, namely, the very simple
relation (3.13) between G(N |2,2)

4 (τ) and G(N)
2 (τ):

G(N |2,2)
4 (τ) = −(∆τ − 2N2)G(N)

2 (τ) . (3.36)

We leave other applications of (3.34) as an exercise for the enthusiastic reader.

4 Ensemble averages

We now consider 〈G(N |i,j)
p 〉, the ensemble averages of the integrated correlators with respect

to the Zamolodchikov measure, cf. (2.30). As can be seen from equation (2.35), these are
obtained by simply evaluating the Eisenstein spectral overlaps f (N |i,j)

p (s) at s = 1.
For p = 2, this yields the result already given in [8], which for convenience we repro-

duce here:

〈G(N)
2 〉 = N(N − 1)

4 . (4.1)

We find that for higher p the ensemble averages continue to be given by rational functions
of N . Explicitly, we find (in slight abuse of matrix notation)

〈G(N)
3 〉 = 1

6(N − 1)(N − 2)(2N + 3) , (4.2)

〈G(N |i,j)
4 〉 =

 (N−1)(3N4−3N3−17N2+12N+36)
8N

(N−1)(4N2−N−6)
4

(N−1)(4N2−N−6)
4

(N−1)N3

2

 , (4.3)

〈G(N |i,j)
5 〉 =

 (N−2)(N−1)(4N5+2N4−17N3+10N2+120N+120)
10N2

3(N−2)(N−1)(3N3+4N2−8N−10)
5N

3(N−2)(N−1)(3N3+4N2−8N−10)
5N

3(N−2)(N−1)(3N3+5N2+9N+13)
25

 .
(4.4)
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We observe that at leading order in large N the diagonal entries scale as Np, while the
off-diagonal ones scale as Np−1:

〈G(N |i,j)
4 〉 −→

3N4

8 N3

N3 N4

2

 , 〈G(N |i,j)
5 〉 −→

2N5

5
9N4

5
9N4

5
9N5

25

 . (4.5)

Furthermore, note that the ensemble averages of correlators with two single-trace operators
(i.e. the (i, j) = (1, 1) components) at large N exhibit p-dependence given by

〈G(N |1,1)
p 〉 N→∞−−−−−→ p− 1

2p Np + . . . , (4.6)

For the correlators with one single-trace and one double-trace operator, the available data
for the ensemble averages at large N is consistent with the formula

〈G(N |1,j)
p 〉 N→∞−−−−−→ p1p2(p− 2)

2p Np−1 + . . . , (4.7)

where the label j denotes a specific double-trace operator Tp1,p2 with p1 + p2 = p.

Ensemble averages for SPO’s. To make contact with correlators describing scattering
amplitudes in AdS5×S5, let us also consider the ensemble averages of integrated correlators
involving SPO’s. For p = 2, 3 these are equal to the averages for single-trace operators
already given in equations (4.1) and (4.2) above. On the other hand, for p = 4, 5 we find

〈G(N)
4 〉 = Γ(N)

Γ(N − 3)

(
3N6 + 12N5 + 15N4 + 17N3 + 16N2 − 5N − 6

8N(N2 + 1)2

)
,

〈G(N)
5 〉 = Γ(N)

Γ(N − 4)

(
4N7 + 30N6 + 95N5 + 245N4 + 475N3 + 325N2 − 130N − 120

10N2(N2 + 5)2

)
.

(4.8)

Due to the gamma factors, these have the expected property that they vanish for
N = 1, 2, . . . , p − 1. While at first sight these expressions look rather messy, a surprising
simplification occurs upon pulling out a factor of the SPO two-point function normalisation
Rp, given in (2.7), and performing a decomposition into partial fractions:

〈G(N)
2 〉 = R2

2

(
1− 1

(N + 1)

)
,

〈G(N)
3 〉 = R3

2

(
2− 1

(N + 1) −
2

(N + 2)

)
,

〈G(N)
4 〉 = R4

2

(
3− 1

(N + 1) −
2

(N + 2) −
3

(N + 3) + (N + 1)
(N2 + 1) −

1
N

)
,

〈G(N)
5 〉 = R5

2

(
4− 1

(N + 1) −
2

(N + 2) −
3

(N + 3) −
4

(N + 4) + (N + 5)
(N2 + 5) −

1
N

)
.

(4.9)
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Recalling that at large N we have Rp ∼ Np/p, one recognises that the first term in the
brackets is again consistent with the leading contribution (4.6), which is then followed
by a string of 1/N suppressed terms. Moreover, a clear pattern is visible in the above
expressions, namely

〈G(N)
p 〉 = Rp

2

(
(p− 1)−

p−1∑
m=1

m

(N +m) + (N + xp)
(N2 + xp)

− 1
N

)
, (4.10)

with the variable xp taking the values xp = 0, 0, 1, 5 for p = 2, 3, 4, 5, respectively. Let us
emphasise that the above pattern is based on data up to p = 5 only. It would be interesting
to consider higher values of p to either confirm that this nice structure persists or to find
a more general structure of 1/N corrections.

We will further analyze the large N structure of 〈G(N |i,j)
p 〉 in section 5.2.

5 Large N

In this section we study the large N limit of the integrated correlators G(N)
p (τ). In order

to make contact with the dual AdS5× S5 supergravity, we restrict ourselves in this section
to correlators of single-particle operators (SPOs) Op. As such, we drop the (i, j) labels.

All of the N -dependence of a given observable O(τ) lies purely in its spectral overlaps,
so the large N expansion of the former follows from that of the latter. The large N

expansion of G(N)
p (τ), therefore, follows from that of f (N)

p (s), the Eisenstein overlaps. It
was shown in [8] that the 1/N expansion takes the form24

f (N)
p (s) =

∞∑
g=0

Np−2g
[
N s−1f (g)

p (s) + (s→ 1− s)
]
. (5.1)

Anticipating the genus expansion of the ’t Hooft limit in (5.16), we call f (g)
p (s) the genus-g

spectral overlap.
Developing the genus expansion of f (N)

p (s) is straightforward because of the recursion
relations of section 3.2. Solving the recursion in a 1/N expansion yields f (g>0)

p (s) in terms of
f

(0)
p (s). The latter may be computed in various ways: for example, by studying the leading-
order N -dependence order-by-order in the 1/y weak-coupling expansion and reconstructing
the s-dependence; or, by using the previously known results for p = 2 to seed the recursion.

In subsection 5.1 we present results for f (g)
p (s) through g = 2, though it is straightfor-

ward to compute to arbitrary genus using the recursion formulas. Taking their s→ 1 limit,
it is then trivial to compute ensemble averages at large N (cf. (2.35)) and make contact

24The canonical development of the genus expansion of a general observable O(τ) starts at order N2.
While a given observable may have vanishing contributions at low genus — for example, a conformal
dimension which starts at order N0 — it is nevertheless convenient to refer to its leading contribution as
genus zero, instead adjusting the leading power of N accordingly. Our conventions for G(N)

p (τ) are, for
various reasons of clarity, unnormalized, which gives them a leading power Np. Upon normalizing by the
two-point functions of O2 and Op using the colour factors R2 and Rp given in (2.7), their leading power
would be 1/N2, which is the correct scaling of a normalized connected four-point function in a CFT obeying
large N factorization.
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with AdS5× S5 supergravity. We do this in subsection 5.2. Finally, plugging in the large N
expansion (5.1) of the spectral overlaps into the spectral decomposition (2.29) allows us to
make manifest two different large N limits of G(N)

p (τ): the ’t Hooft limit in subsection 5.3.1
and the very strongly coupled (VSC) limit in subsection 5.3.2.

5.1 Genus expansion of spectral overlaps

At genus zero, we find the following result for p = 2

f
(0)
2 (s) =

22s−1(2s− 1)Γ
(
s+ 1

2

)
√
πΓ(s+ 1)Γ(s+ 2) , (5.2)

which reproduces the result of [7, 8]. The arbitrary p generalization of this result is given by

f (0)
p (s) = s+ 1

2s− 1

(
1 + (−1)pΓ(s− 1)Γ(s+ 1)

Γ(s− p)Γ(s+ p)

)
f

(0)
2 (s) . (5.3)

For a derivation of the equation we refer the reader to appendix G. The presence of simple
poles at s = 1

2 − m for m ∈ Z+ (in addition to zeros at s ∈ Z−) is consistent with the
allowed general properties of spectral overlaps in the genus expansion.25

Let us make a curious observation. If we write (5.3) in the form

f (0)
p (s) = n

(0)
p (s)

(s+ 2)p−2
f

(0)
2 (s) , (5.4)

we find that the numerator polynomials n(0)
p (s), of degree 2bp−2

2 c, obey a reflection sym-
metry for all p ≥ 2: that is,

n(0)
p (1− s) = n(0)

p (s) . (5.5)
This symmetry is not required by SL(2,Z)-invariance of the spectral decomposition.

Having computed the leading order result, we then solve the recursion relations for
the spectral overlaps for p = 2, 3, 4, 5 in a 1/N expansion and find that the higher-genus
overlaps are related to the genus-zero p = 2 overlap in the following simple manner:

f (g)
p (s) = n

(g)
p (s)

(−2)g (4g)!
(

3
2 − s

)
g

(s+ 2)p−2
f

(0)
2 (s) . (5.6)

Here we note that the higher-genus overlaps have additional poles from the (3
2 − s)g factor,

which includes a finite number of positive values, as opposed to genus zero (this point will
be important later when we discuss the ’t Hooft limit). The polynomials n(g)

p (s) are of
degree 2bp−2

2 + 2gc; unlike the genus-zero case, the n(g>0)
p (s) are not reflection-symmetric.

To give some explicit examples, the polynomials n(1)
p (s) of the genus-one overlaps read

n
(1)
2 (s) = (s− 6)(s− 1)s(s+ 1) ,

n
(1)
3 (s) = 4(s+ 2)(s3 − 2s2 − 51s+ 72) ,

n
(1)
4 (s) = (s+ 3)(s5 + 2s4 − 181s3 + 622s2 − 3180s+ 3816) ,

n
(1)
5 (s) = 12(s+ 4)(s5 + 11s4 − 387s3 + 1125s2 − 3270s+ 3528) ,

(5.7)

25We recall from [8] that whereas the finite N overlap f (N)
p (s) must be regular for all complex s 6= 0, 1,

the large N expansion allows f (g)
p (s) to have poles at s ∈ Z/2 at fixed genus g.
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whereas at genus two we find

n
(2)
2 (s) = 7(s− 4)(s− 3)(s− 2)(s− 1)s(s+ 1)(5s2 − 47s+ 30) ,

n
(2)
3 (s) = 28(s− 1)s(s+ 1)(s+ 2)(5s4 − 42s3 − 473s2 + 4374s− 7560) ,

n
(2)
4 (s) = 7(s+ 3)(5s9 + 8s8 − 2084s7 + 8138s6 + 62635s5

− 13978s4 − 601996s3 + 2937672s2 − 9717120s+ 8985600) ,

n
(2)
5 (s) = 84(s+ 4)(5s9 + 103s8 − 4022s7 − 16146s6 + 485093s5

+ 40775s4 − 7260020s3 + 24585444s2 − 47580480s+ 35942400) .

(5.8)

Let us point out the occurrence of certain zeroes in these polynomials, which have non-
trivial consequences for the large N expansion of the ensemble averages discussed in the
next section. In particular, note that for p = 2 the spectral overlap f

(g)
p (s) vanishes at

s = 0, 1 for g ≥ 1, while for p = 3 the same is the case for g ≥ 2. On the other hand, the
p = 4, 5 overlaps do not vanish at s = 0, 1, and the reason for this will be explained next.

5.2 Ensemble averages at large N and supergravity

We now make contact with semiclassical AdS5× S5 supergravity.
It was shown in [8] that for any SL(2,Z)-invariant observable O(τ) that admits a genus

expansion in the ’t Hooft limit, the ensemble average 〈O〉 and the large ’t Hooft coupling
limit of O(τ) are equal at leading order in large N :

〈O〉 = O(λ→∞) . (5.9)

This correspondence extends to all genera: defining the leading-order term at genus-g as

〈〈O(g)〉〉 := lim
N→∞

N2g−2〈O(g)〉 , (5.10)

there is an equivalence
〈〈O(g)〉〉 = O(g)(λ→∞) ∀ g . (5.11)

Translated into bulk terms, the genus-zero relation implies an equivalence between the
large N ensemble average of O(τ) and its value in tree-level AdS5× S5 supergravity, while
the g > 0 relation relates the higher-genera averages to loop-level AdS5× S5 supergravity
after string theory regularization of divergences.26 (The g > 0 statement of (5.11) will be
elaborated upon below.)

At g = 0, our results confirm this equivalence. As foreshadowed in (4.6), we find

〈〈G(g=0)
p 〉〉 = p− 1

2p . (5.12)

After accounting for differences in normalisations, this agrees with the λ → ∞ limit at
g = 0 [6].

26We note that one can perform a mutual consistency check of this dictionary and our results: namely,
matching the large N expansion of the finite N ensemble averages 〈G(N)

p 〉 to the genus expansion of the
spectral overlaps fp(s). We do so in appendix F.
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At g = 1, the results (4.9) for p ≤ 5 are consistent with the following pattern:

〈〈G(g=1)
p 〉〉 = −(p2 − 1)(p2 − 4)

48 . (5.13)

Via (5.11), this makes a prediction for the finite term in the λ → ∞ limit at genus one.
This amounts to a holographic computation of the 1-loop supergravity computation of
G(N)
p (τ). To put this in conventional supergravity language, we note that the bulk loop

expansion proceeds not in powers of 1/N but in powers of 1/c = 4/(N2 − 1). In addition,
let us divide by the product of colour factors R2Rp to normalize the correlator,27

G̃(N)
p (τ) := G(N)

p (τ)(R2Rp)−1 . (5.14)

Putting things together leads to

G̃(N)
p (τ)

∣∣∣
1-loop sugra

= 1
c2

(p− 1)p(p+ 1)(p+ 2)
384 . (5.15)

This sets a benchmark for a direct bulk computation of the integrated correlators in reg-
ularized 1-loop AdS5× S5 supergravity.28 We reiterate that this is the finite result that
remains after the (unambiguous) string theory regularization of 1-loop supergravity di-
vergences. It is notable that the ensemble average is sensitive to the UV details of this
regularization; in particular, string theory regularizes divergences unambiguously, choosing
a specific renormalization scheme, and the SL(2,Z) average identifies precisely this scheme.

Finally, let us make the side remark that (4.7) gives a prediction for tree-level super-
gravity, this time for the integrated correlator involving one single-trace operator Tp and
one double-trace operator Tp1,p2 with p1 + p2 = p.

5.3 Integrated correlators at strong coupling

As emphasized throughout this section, the spectral overlaps in the 1/N expansion contain
complete information about the large N integrated correlators themselves: simply plug the
formulas for the overlaps f (g)

p (s) into the spectral representation (2.29), and expand in the
desired limit.

Having said that, for convenience of future study, we assemble these ingredients into
explicit expressions for G(N)

p (τ) in two strongly coupled limits of interest: the ’t Hooft
limit, and the very strongly coupled (VSC) limit. We will briefly review salient aspects
of these limits in the spectral language; a systematic treatment of these limits for general
SL(2,Z)-invariant observables can be found in [8].

5.3.1 ’t Hooft limit

In the ’t Hooft limit, where gYM → 0 and N →∞ with λ := g2
YMN fixed, the 1/N expan-

sion organises into a genus expansion, up to non-perturbative corrections in 1/N . Because
27In this convention, the tree-level supergravity result is G̃(N)

p (τ) ≈ (p− 1)/4c.
28The results of [34] imply that (5.15), in conjunction with the results of [33, 35] and the flat space limit,

can be used to determine the unintegrated 1-loop 〈O2O2OpOp〉 correlator, as anticipated in [77].
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instantons and anti-instantons are non-perturbatively suppressed in 1/N , the genus expan-
sion is an expansion of the zero-instanton mode:

G(N)
p (τ) =

∞∑
g=0

Np−2g G(g)
p,0(λ) + (non-perturbative) . (5.16)

We henceforth drop the “0” subscript with the understanding that we are working per-
turbatively in 1/N . The parameter g differs from the previous definition of genus in (5.1)
because of a non-trivial repackaging of the 1/N expansion by the SL(2,Z) spectral decom-
position, a fact we return to momentarily.

We want to perform a spectral decomposition of this quantity. The zero mode of
completed Eisenstein series may be written in terms of a ’t Hooft coupling as

E∗s,0(y) = Λ(s)N sλ̃−s + Λ(1− s)N1−sλ̃s−1 , (5.17)

where
λ̃ := λ

4π . (5.18)

Upon inserting (5.17) and the large N expansion of the perturbative overlaps (5.1) into
the spectral decomposition (2.29), one finds

G(N)
p (λ) = 〈G(N)

p 〉 (5.19)

+ 1
2πi

∫
Re s= 1

2

ds
π

sin(πs)s(1−s)
∞∑
g=0

Np−2g
[
Λ(1−s)λ̃s−1 + Λ(s)N2s−1λ̃−s

]
f (g)
p (s) ,

As the constant term in the spectral decomposition, the ensemble average 〈G(N)
p 〉 does not

depend on λ. There are two terms in brackets, each of a different nature. Large N forces
us to close the contour of the second term in brackets, carrying an N2s−1, to the left; this
generates terms with positive powers of λ, regardless of the value of λ. These terms were
denoted ‘renormalization terms’ in [8], due to their strong coupling interpretation as bulk
UV divergences regularized by the string scale cutoff.29 The integration contour of the first
term in brackets may be closed either to the left to develop the strong coupling expansion
(in negative powers of λ̃); to the right to develop the weak-coupling expansion (in positive
powers of λ̃); or not deformed at all, thus giving an expression which is exact in λ.

For example, at g = 0, 1 one finds

G(g=0)
p (λ) = p− 1

2p + 1
2πi

∫
Re s= 1

2

ds
π

sin(πs) s(1− s) Λ(1− s) λ̃s−1 f (0)
p (s) , (5.20)

G(g=1)
p (λ) =− p2 − 1

48
√
λ− (p2 − 1)(p2 − 4)

48
+ 1

2πi

∫
Re s= 1

2

ds
π

sin(πs) s(1− s) Λ(1− s) λ̃s−1 f (1)
p (s) . (5.21)

29At strong coupling, these terms lead to super-leading powers of λ with respect to the supergravity term;
as argued in [78], they can be seen as finite string theory counterterms which regulate the UV divergences
of the AdS5× S5 supergravity loop expansion. Their presence is in fact crucial to restoring the SL(2,Z)
invariance (S-duality) of the strong coupling expansion. At weak coupling, their cancellation — required
so that the perturbative expansion proceeds only in integer powers of λ — implies intriguing inter-genera
relations among the residues, see eq. (7.9) of [8]. (See also [42].)
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where f (0)
p (s) and f (1)

p (s) were given in (5.3) and (5.6), respectively. The first term in (5.21)
is the ‘renormalization term’ discussed above, and descends from the second term in brack-
ets in (5.19) for g = 0. At risk of repetition, we stress anew that this spectral representation
is exact in λ: no expansion has been made.
G(N)
p (τ) contains non-perturbative effects at both large λ and large N . This follows

from the analysis in [8], where they were determined for p = 2, and the fact that the
p-dependence of f (g)

p (s) in (5.3) and (5.6) does not enter the large-order asymptotics of the
relevant series (for all genera). The effects at large λ and large N will therefore come in
positive even powers of the scales [8]

Λλ := exp
(
−
√
λ
)

and ΛλS := exp
(
−
√
λS
)

(5.22)

respectively, where λS := 16π2N2/λ is an S-dual ’t Hooft coupling. Both corrections are
present in the ’t Hooft limit. The p-dependence of the non-perturbative series, entering
only in the expansion coefficients, would be nice to examine in future work.

It is formally interesting to derive two alternative presentations of these same objects
G(g)
p (λ).

First, it is possible to show (see appendix G.3) that the genus-g correlator can be
written entirely in terms of genus-g spectral overlaps as follows:

G(g)
p (λ) = 1

2πi

∫
Re s=g+ 1

2 +ε
ds

π

sin(πs)s(1− s)Λ(1− s)λ̃s−1f (g)
p (s)

−
g∑

k=2
(−1)k+1λ̃k−1k(k − 1)Λ(1− k)f (g)

p (k) (5.23)

This rewriting involves shifting the contour of (5.19) and making use of identities relating
different genera — namely, eq. (7.9) of [8] — that are required by consistency of the
weak-coupling expansion in integer powers of λ. The novelty of this expression is that the
integrand involves only the genus-g overlap, unlike what (5.19) seems to give. Note the
absence of the second line for g < 2.

Secondly, in [6] the genus-zero result G(g=0)
p (λ) was derived for all λ as an integral

expression involving squared Bessel functions. In appendix G, we prove its equivalence
to (5.20). Indeed, a “Bessel representation” at all genera maybe derived by deforming the
contour in (5.23) to the right, yielding

G(g)
p (λ) = −

∞∑
k=2

(−1)k+1λ̃k−1k(k − 1)Λ(1− k)f (g)
p (k) . (5.24)

This is convergent for |λ| ≤ π2 for all finite g and p. The expansion may be resummed
using the integral identity

22s−2

Γ(2s)

∫ ∞
0

dw
w2s−1

sinh2(w)
= ζ(2s− 1) . (5.25)
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The resulting expression is a one-dimensional integral of products of Bessel functions. For
example, we present such a result for G(g=1)

3 (λ):

G(g=1)
3 (λ) =−

∫ ∞
0

dω

12π2λω sinh2 ω

[ (
7λ2ω4 + 48π2λω2 − 192π4

)
J1(
√
λω/π)2 (5.26)

+ λω2
(
5λω2 − 48π2

)
J0(
√
λω/π)2

+ 4π
√
λω
(
48π2 − λω2

)
J1(
√
λω/π)J0(

√
λω/π)

]
.

For the sake of completeness, we provide the results at genus one for p = 2, 4, 5 in ap-
pendix G. Similar expressions for G(g)

p (λ) for various g and p are easily obtained from (5.24).

5.3.2 Very strongly coupled limit

The VSC limit is the limit of N → ∞ with τ fixed. In contrast to the ’t Hooft limit, in-
stanton contributions are not suppressed. This limit is trivially extracted from the spectral
decomposition (2.29) upon inserting the large N expansion of the overlaps (5.1) into (2.29),
and deforming the integration contour to develop the 1/N expansion. Summing over
residues in this way gives [8]

G(N)
p (τ) =

∞∑
g=0

Np−2g
(
〈〈G(g)

p 〉〉 −
∞∑
m=1

N−m−
1
2 R(g)

m E 1
2 +m(τ)

)
, (5.27)

with residue function R(g)
m defined as

R(g)
m := Res

s= 1
2 +m

[
π

sin πss(1− s)Λ(s)f (g)
p (1− s)

]
. (5.28)

The τ -dependence appears only via Eisenstein series, and only down by odd-half-integer
powers of 1/N .30 Both of these features, like many others in this work, follow from the
relations f (N)

np (s) = (G(N)
p , φn) = 0.

For example, applying the above formulae to the p = 3 case using the genus expan-
sion (5.6) of its spectral overlap through g = 2 yields the following VSC expansion:

G(N)
3 (τ) = N3

3 −
1
2N

3
2 Ẽ 3

2
(τ)− 5N

6 + 45
25N

1
2 Ẽ 5

2
(τ) + 25N−

1
2

31Ẽ 3
2
(τ)

210 −
189Ẽ 7

2
(τ)

212


− 225N−

3
2

25Ẽ 5
2
(τ)

213 +
147Ẽ 9

2
(τ)

215


+N−

5
2

10517Ẽ 3
2
(τ)

219 −
2159325Ẽ 7

2
(τ)

222 −
49116375Ẽ 11

2
(τ)

224

 (5.29)

+ 45N−
7
2

26699Ẽ 5
2
(τ)

224 −
215355Ẽ 9

2
(τ)

223 −
93648555Ẽ 13

2
(τ)

228

+O(N−
9
2 ) ,

30There can be terms down by powers of 1/N2 as well, due to the ensemble average terms 〈〈G(g)
p 〉〉, but

these are τ -independent.
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where

Ẽs(τ) := 2Λ(s)
Γ(s) Es(τ) . (5.30)

6 Results II: integrated maximal-trace correlators for all p

So far, we have mostly restricted ourselves to integrated correlators with p ≤ 5. Recall that
our approach was to obtain the weak-coupling expansion of G(N |i,j)

p (τ) using the localisation
relation (2.14), from which we then inferred the spectral overlaps. When trying to generalise
the localisation computation to higher values of p for most choices of (i, j), one is met with
some computational expense, to be elaborated upon in section 7.

However, there exists a special class of integrated correlators, defined for arbitrary p,
which we now determine exactly: the so-called maximal-trace correlators.

The key point is that, as shown in [50], one can recursively construct a basis of operators
on the sphere such that certain families of operators become orthogonal to each other. The
simplest such family of operators with this property is given by maximal-trace operators,
introduced earlier in (3.29), which for even p are given by

O(max)
p ≡ T2,...,2 . (6.1)

They mix only among themselves, leading to an effective reduction in the size of mixing
matrices.31 The solution to the sphere mixing is given in terms of the vectors vjp, recall the
discussion around (2.21). For the first few cases of p we find

vj2 =
{

1 0 0 0 0 · · ·
}
,

vj4 =
{
− iN

2 + 1
2y 1 0 0 0 · · ·

}
,

vj6 =
{
− 3(N2 + 1)(N2 + 3)

16y − i3(N2 + 3)
4y 1 0 0 · · ·

}
.

(6.2)

The above vectors admit the closed form expression

vjp =
(
p
2
j

) (N2−1
2 + j

)
p
2−j

(2iy)
p
2−j

, (6.3)

where the label j = 1, 2, 3 . . . now runs only over the subset of maximal-trace operators
O(max)
p ∈ {T2, T2,2, T2,2,2, . . .} due to decoupling from all other operators on the sphere.

The other simplifying feature is that, since O(max)
p is built from products of T2 only,

one only needs to act with repeated ∂τ and ∂τ̄ derivatives in order to bring down insertions
of these operators in the localisation computation. As such, no new matrix integrals have
to be performed when considering correlators of these maximal-trace operators.

31The same reasoning applies also to the odd p family of maximal-trace operators, {T3, T2,3, T2,2,3,
T2,2,2,3, . . .}, but in what follows we restrict ourselves to the even p case.
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In what follows, we will denote the integrated correlators 〈O2O2O(max)
p O(max)

p 〉 for p
even by G(N |max)

p (τ):

G(N |max)
p (τ) := − 2

π

∫ ∞
0

dr

∫ π

0
dθ
r3 sin2 θ

u2 H(N |max)
p (u, v; τ)

∣∣∣
u=1+r2−2r cos θ, v=r2

. (6.4)

following the notation of (2.10) and (2.13).32 The corresponding colour-factor appearing
in the localisation relation (2.14) is recorded in (A.2). We also introduce a hatted notation
to denote normalization by R(max)

p (N), e.g.

Ĝ(N |max)
p (τ) := G(N |max)

p (τ)R(max)
p (N)−1 , (6.5)

and likewise for other quantities.
Let us present, then elaborate upon, the result:

Ĝ(N |max)
p (τ) = 〈Ĝ(N |max)

p 〉+ 1
4πi

∫
Re s= 1

2

ds
π

sin(πs)s(1− s)(2s− 1)2 ĝ(N |max)
p (s)E∗s (τ)

(6.6)
The ensemble average is

〈Ĝ(N |max)
p 〉 = 〈G(N)

2 〉
(
HN2+p−3

2
−HN2−3

2

)
(6.7)

where Hn denotes the harmonic number, and the overlaps obey the polynomial recursion

p(N2 + p− 3) ĝ(N |max)
p (s) = 2

[(
(p− 1)N2 + p2 − 5p+ 5

)
− 2 s(1− s)

]
ĝ

(N |max)
p−2 (s)

− (p− 2)(N2 + p− 5) ĝ(N |max)
p−4 (s) + 4g(N)

2 (s) ,
(6.8)

Recall that 〈G(N)
2 〉 = N(N − 1)/4.

We first address the spectral overlaps. These are deduced as usual from the weak-
coupling expansion obtained from localisation.33 The usual function f (N |max)

p (s) parame-
terizing the Eisenstein overlap à la (2.38) is found to be of the now-familiar form

f (N |max)
p (s) = (2s− 1)2 g(N |max)

p (s) , where deg
[
g(N |max)
p (s)

]
= 2N + p− 6 (6.9)

where the polynomials g(N |max)
p (s) are even and of indicated degree. Considering many cases

of different N and p leads to (6.8).34 The central property here is that there are no shifts in
32Note that for p = 2, 4, G(N|max)

p (τ) reduces to the previously discussed cases G(N)
2 (τ) and G(N|2,2)

4 (τ),
respectively.

33As mentioned earlier, one can verify that the weak-coupling expansion agrees with the explicit results
from perturbation theory upon integration. For the maximal-trace correlators, we have performed this
check to two-loop order and up to p = 6, see appendix E.

34As we have observed in previous cases, for low values of p the above formula neatly degenerates in a
consistent way. This can be most easily seen when considering the recursion relation for the unnormalised
overlaps g(N|max)

p (s), i.e. after reinstating the normalisation factors R(max)
p (N) in the recursion (6.8): for

p = 2, the equation is trivially satisfied. For p = 4, the first term in the second line vanishes, as it should
since g(N|max)

0 (s) = 0: p = 0 corresponds to an external identity operator, for which the connected correlator
vanishes. Moreover, the other coefficients combine to correctly recover relation (3.13). Finally, for p = 6,
the two terms in the second line of (6.8) degenerate and in particular their coefficients combine to give the
correct recursion relation consistent with the data.
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N : in contrast to the previously-studied cases, this is a recursion relation in p alone, with
g

(N)
2 (s) as the initial condition (together with the trivial condition g(N |max)

0 (s) = 0). Indeed,
the solution of the recursion relation for general p and finite N is simply proportional to
the p = 2 solution:

ĝ(N |max)
p (s) = Fp(N, s) ĝ(N)

2 (s) . (6.10)

The functions Fp(N, s) have the structure

Fp(N, s) = 2−
p
2(

N2+1
2

)
p
2−1

∞∑
m=0

2m+1

Γ(m+ 2)2

(p− 2m
2

)
m+1

h(m)
p (s)Np−2−2m , (6.11)

where the complete s-dependence is captured by the h(m)
p (s), which turn out to be poly-

nomials of order 2m. Since p ∈ 2Z+, the infinite sum over m truncates at m = p/2. For
some low values of m, the polynomials h(m)

p (s) read

h(0)
p (s) = 1 ,
h(1)
p (s) = s2 − s+ p− 4 ,

h(2)
p (s) = s4 − 2s3 + 1

4(9p− 28)s2 − 1
4(9p− 32)s+ 3

8(3p2 − 26p+ 44) ,

h(3)
p (s) = s6 − 3s5 + (4p− 9)s4 − (8p− 23)s3 + 1

2(9p2 − 62p+ 76)s2

− 1
2(9p2 − 70p+ 100)s+ 3

2(p− 4)(p2 − 10p+ 12) .

(6.12)

More data can be generated straightforwardly from the recursion relation (6.8). The reflec-
tion symmetry of ĝ(N |max)

p (s) implies that Fp(N, s) and the individual polynomials h(m)
p (s)

also have this symmetry:

Fp(N, s) = Fp(N, 1− s) , h(m)
p (s) = h(m)

p (1− s) . (6.13)

As is evident from (6.6), the cusp form overlap vanishes:

(G(N |max)
p , φn) = 0 ∀ n > 0 . (6.14)

This assertion follows from the computations discussed in section 3.3: for many values of
p, we have directly checked to the first few perturbative orders in 1/y around one instanton
that (6.6) agrees with the first-principles localisation computation.

Finally, we turn to the ensemble averages 〈Ĝ(N |max)
p 〉. For general p we have found

an explicit formula (6.7), not just a recursion relation. Since p ∈ 2Z+, an equivalent
representation of (6.7) for the ensemble averages is given by35

〈Ĝ(N |max)
p 〉 = N(N − 1)

2

p−2
2∑

m=0

1
N2 + 2m− 1 . (6.15)

35It may be worth noting that the unnormalised average, 〈G(N|max)
p 〉, is actually a polynomial in N of

total degree p. This follows from the explicit formula (A.2) for R(max)
p (N), whereupon the Pochhammer

factor and the sum combine to give rise to non-trivial polynomials in N of degree p − 2 containing only
even powers of N .
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At leading order in large N (with finite p),

〈Ĝ(N |max)
p 〉 N→∞−−−−−→ p

4 . (6.16)

For p = 2 and p = 4, we recover equations (4.6) and the lower-right entry of (4.5),
respectively, after multiplying by R(max)

p (N) at large N .36

6.1 Comments and connections to N = 2 extremal correlators

The maximal-trace family of integrated correlators, Ĝ(N |max)
p (τ), has been determined above

for all N and arbitrary p. Compared to the general trace structures studied earlier in this
work, its solution is especially clean. It also has interesting connections to various other
quantities studied in the literature.

First, note that G(N |max)
p (τ) may be thought of as a generalization of the so-called

“extremal correlators” studied in 4d N = 2 SCFTs. Let us summarize the latter. Extremal
correlators involve several chiral operators Om and a single anti-chiral operator On. The
most well-studied extremal correlators are two-point functions,

G2n(τ) := 〈On(0)On(∞)〉R4 (6.17)

These depend non-holomorphically on the complexified gauge coupling τ , and may be
determined by localisation. In an N = 2 SCFT of arbitrary rank, one may take On to
be n-fold composites of the weight-two chiral primary, what we called O2. Such an On is
precisely our family O(max)

p defined in (6.1), with the identification 2n = p. The correlators
G2n(τ) solve differential recursion relations in n [47, 64]. In rank-one N = 2 SCFTs, such
as SU(2) SQCD with four flavors, the G2n(τ) obey semi-infinite Toda equations relating
different values of n:37

∆τ logG2n(τ) = −4y2
(
G2n+2(τ)
G2n(τ) −

G2n(τ)
G2n−2(τ) −G2(τ)

)
(6.18)

At higher rank, differential relations are believed to exist, but to take a more involved form
that couples different families of operators besides merely composites of O2 [50].

We can now state the connections between G2n(τ) and G(N |max)
p (τ) with 2n = p. Both

are correlators involving the composite operators O(max)
p . While the former are two-point

functions, the latter are four-point functions, but integrated over positions, leaving only τ -
dependence. Strikingly, both obey a similar form of differential recursion: as a consequence
of (6.14), the recursion (6.8) uplifts to a differential relation for Ĝ(N |max)

p (τ),

∆τ Ĝ(N |max)
p−2 (τ) =− p

4(N2 + p− 3) Ĝ(N |max)
p (τ) + 1

2
(
(p− 1)N2 + p2 − 5p+ 5

)
Ĝ(N |max)
p−2 (τ)

− 1
4(p− 2)(N2 + p− 5) Ĝ(N |max)

p−4 (τ) + G(N)
2 (τ) . (6.19)

36We also observe that the linear scaling in p matches the large p limit of the classical, unintegrated
〈pppp〉 correlator studied in [79], a different, but related, observable.

37In the special case of N = 4 SYM, this may be solved for G2n(τ) [50], and matches the color factor
R

(max)
p (N) defined in (A.2), up to a p2 factor due to normalization differences (see footnote 7). In this case,

G2n(τ) ∝ y−2n, so the r.h.s. is manifestly τ -independent.
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This was written in terms of the central charge and n = p/2 in (1.6). Despite obvious
differences, this equation is intriguingly similar to the decoupled semi-infinite Toda chain
equations obeyed by the extremal two-point functions G2n(τ) in the SU(2) theory [47–50].38

Note, though, that (6.19) holds for all N ! Evidently, the extra power of N = 4 supersym-
metry makes the integrated four-point function even more soluble than its N = 2 extremal
counterparts. Altogether, this suggests that one may think of the Laplace difference equa-
tions for integrated N = 4 SYM correlators in general, and (6.19) in particular, in the same
spirit as the Toda equations (6.18), and that they may be derivable by some generalization
of the tt∗ method that led to (6.18).

The other point we wish to make is the following: the large p limit of G(N |max)
p (τ)

is a large charge limit [51, 80]. Since G(N |max)
p (τ) is determined explicitly for all p, this

regime is easy to access, given the simplicity of the recursion (6.8). For example, together
with the spectral decomposition (6.6), it is quick to see that G(N |max)

p�1 (τ) limit admits a
’t Hooft-like expansion with g2

YM p fixed, for any finite N . This generalizes a main result
of [52], which established the ’t Hooft-like limit of the extremal correlators (6.17) in rank-
one SCFTs at large charge (also previously studied in [81–83]). Non-perturbative effects in
large p or large λ are also straightforward to determine along the lines of [8], again using
the explicit recursion above. Moreover, there are several interesting regimes of p and N

scaling together. Work in these directions is ongoing [84].

6.2 Large N expansion

Let us proceed to develop the large N , fixed p expansion of the (normalised) maximal-trace
overlaps ĝ(N |max)

p (s).
In light of (6.10), the large N expansion follows from that of the functions Fp(N, s)

and ĝ
(N)
2 . The large N expansion of the latter39 has been discussed in [7, 8], with the

genus-g overlaps f (g)
2 (s) being of the general form depicted in (5.6).

On the other hand, the genuinely new information about the p-dependence of the
maximal-trace overlaps lies entirely in the functions Fp(N, s). For some fixed value of p,
we note that both the sum in the numerator as well as the Pochhammer factor in the
denominator of (6.11) give rise to even polynomials in N of degree p − 2. Therefore, the
large N expansion of Fp(N, s) starts at order N0 and proceeds in even powers of 1/N .
Explicitly, for the first few orders we find the expansion

Fp(N, s) = p

2 + p(p− 2)
8 (s+ 1)(s− 2)N−2

+ p(p− 2)
72 (s+ 1)(s− 2)

[
(p− 4)s(s− 1)− 3(2p− 5)

]
N−4

+ p(p− 2)
1152 (s+ 1)(s− 2)

[
(p− 4)(p− 6)s3(s− 2)− (p− 4)(17p− 38)s2

+ 2(p− 4)(9p− 22)s+ 24(3p2 − 14p+ 14)
]
N−6

+O(N−8) .

(6.20)

38Dividing both sides by G2(τ), the r.h.s. becomes reminiscent of a connected four-point function.
39Recall that ĝ(N)

2 (s) = 2/
(
(2s− 1)2(N2 − 1)

)
f

(N)
2 (s).
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At order N−2m (with m ≥ 1) we find an overall factor (s+ 1)(s− 2) times a degree 2m− 2
polynomial in s, whose coefficients depend only polynomially on p. We have verified that
this simple structure persists to high order in m. Moreover, as a consequence of (6.13),
every term in this expansion is invariant under s 7→ 1− s.

With this expansion of Fp(N, s) at hand, it is clear that the normalised overlaps
ĝ

(N |max)
p (s) for general p admit the large N expansion

ĝ(N |max)
p (s) =

∞∑
g=0

N−2g
[
N s−1 ĝ(g|max)

p (s) + (s→ 1− s)
]
. (6.21)

Let us reiterate that the genus-g overlaps ĝ(g|max)
p (s) can be computed using (6.10) from

the expansion (6.20) of Fp(N, s) together with the known genus-g overlaps f (g)
2 (s) studied

previously in [7, 8]. Importantly, since the Fp(N, s) are polynomial in s, the pole structure
of ĝ(g|max)

p (s) is identical to their p = 2 counterparts, which we discussed in section 5.1. As
such, the general structure of the expansion in the ’t Hooft or the very strongly coupled limit
remains unchanged, the only effect being that the coefficients acquire some p-dependence.
Let us illustrate this by explicitly developing the corresponding large N expansions.

6.2.1 ’t Hooft and very strongly coupled limits

We start by considering the ’t Hooft limit of the normalised correlators Ĝ(N |max)
p (τ), which

admit the genus expansion

Ĝ(N |max)
p (τ) =

∞∑
g=0

N−2g G(g|max)
p,0 (λ) + (non-perturbative in N) . (6.22)

As mentioned previously, (anti-)instanton contributions are non-perturbatively suppressed
in 1/N and hence this is an expansion in the zero-instanton sector only.40 Note that since
we consider the normalised correlator, there is a difference of Np in the overall power of N
compared to (5.16). Since the genus-zero overlaps are directly related to the p = 2 overlaps
by an overall factor of p, i.e. f̂ (0|max)

p (s) = p f
(0)
2 (s), it follows that the g = 0 term is simply

given by

Ĝ(g=0|max)
p (λ) = pG(g=0)

2 (λ) , (6.23)

where G(g=0)
2 (λ) was given in section 5.3.1. At higher orders in 1/N such a factorisation

no longer happens and some polynomial dependence on p will appear. For example at the
next order, for g = 1, one has

Ĝ(g=1|max)
p (λ) =− p

16
√
λ− p(p− 4)

8
+ 1

2πi

∫
Re s= 1

2

ds
π

sin(πs) s(1− s) Λ(1− s) λ̃s−1 f̂ (1|max)
p (s) .

(6.24)

40Again, we will drop the ‘0’ subscript and it is understood that we work perturbatively in 1/N .
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Like the SPO integrated correlators considered earlier, this admits a Bessel representation,
which we provide in appendix G.2. Its strong coupling expansion is

Ĝ(g=1|max)
p (λ� 1) = p

16

[
−
√
λ− 2(p− 4) + 15(32p− 169) ζ(3)

32λ 3
2

+ 315(16p+ 1) ζ(5)
64λ 5

2

+ 14175(576p− 1009) ζ(7)
8192λ 7

2
+ 1091475(80p− 173) ζ(9)

4096λ 9
2

+O(λ−
11
2 )
]
.

(6.25)

Lastly, let us also consider the large N expansion in the VSC limit. Following the same
steps as described in section 5.3.2, we arrive at

Ĝ(N |max)
p (τ) = p

4 −
3p
16N

− 3
2 Ẽ 3

2
(τ)− p(p− 4)

8 N−2 + 45p
28 N

− 5
2 Ẽ 5

2
(τ)

+ 15p
215 N

− 7
2
(
(128p− 676) Ẽ 3

2
(τ) + 315Ẽ 7

2
(τ)
)

+ p(p2 − 6p+ 11)
12 N−4

+ 315p
218 N−

9
2
(
(64p+ 4) Ẽ 5

2
(τ) + 315Ẽ 9

2
(τ)
)

− p

227N
− 11

2
(
32(143360p2 − 866400p+ 1961161) Ẽ 3

2
(τ)

− 56700(576p− 1009) Ẽ 7
2
(τ)− 245581875Ẽ 11

2
(τ)
)

+O(N−6) . (6.26)

This takes a remarkably simple form considering that this describes an infinite family of
integrated correlators. Compared to the corresponding expansion of the (unnormalised)
p = 2 correlator, as given in e.g. eq. (5.67) of [7], one notes that also higher-order even
powers of 1/N are present, which comes from the non-trivial large N expansion of the
ensemble averages 〈Ĝ(N |max)

p 〉, cf. (6.7).

7 General p ansatz

There is unlikely to be a simple closed-form expression for generic integrated correlators
for arbitrary multi-trace insertions (i, j) at arbitrary p, unlike for the maximal-trace
correlators considered in section 6. However, our computations provide a good deal of
insight into their general structure. In particular, the difficulties in obtaining general
higher p results appear to be of computational nature only.41 As such, we do not expect
any qualitative changes or new features to arise when considering correlators beyond the
explicit cases considered so far.

41To be clear, generic integrated correlator computations encounter two main technical complications.
The first is the degeneracy in the space of half-BPS operators and the associated mixing of chiral operators
on the sphere: as explained in section 2.2, to obtain correlators on R4 from the localisation relation (2.14)
one first needs to solve the mixing problem on S4. As a consequence of the growing number of multi-
trace operators, the size of the corresponding mixing matrices increases rapidly with p. The second is
the presence of multi-trace operators which leads to higher-point insertions in the matrix-model integrals.
This complicates the evaluation of their expectation values considerably. As described in appendix B.3
this amounts to the computation of higher-index N -dependent coefficients, which one has to perform on a
case-by-case basis.
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With some confidence afforded by the structural uniformity of our results, we now
make some conjectural assertions about the form of generic integrated correlators. The
ansatz is

G(N |i,j)
p (τ) = 1

2g
(N |i,j)
p (0) + 1

4πi

∫
Re s= 1

2

ds
π

sin(πs)s(1− s)(2s− 1)2 g(N |i,j)
p (s)E∗s (τ) , (7.1)

where the function g(N |i,j)
p (s) is polynomial in s with rational coefficients. Let us explicate

this ansatz in further detail:

• We expect that the Eisenstein overlaps continue to be of the form

{G(N |i,j)
p , Es} = π

sin(πs)s(1− s)f
(N |i,j)
p (s) , (7.2)

with the structure

f (N |i,j)
p (s) = (2s− 1)2 g(N |i,j)

p (s) , where deg
[
g(N |i,j)
p (s)

]
= 2N + 2

⌊
p

2

⌋
− 6 . (7.3)

The reflection-symmetric polynomials g(N |i,j)
p (s) have the indicated degree, with ex-

pansion coefficients rational in N and p. Consequently, the integrated correlator may
be completely fixed by the first N +

⌊p
2
⌋
− 2 orders in weak-coupling perturbation

theory.

• In section 3.3, we gave robust evidence that the cusp form overlaps vanish for
G(N |i,j)
p (τ) by matching the form (7.1) to explicit calculations of instanton effects

using localisation. We conjecture that this remarkable property extends to general p
and all trace-structures (i, j):

(G(N |i,j)
p , φn) = 0 ∀ (N |i, j), p, n > 0 . (7.4)

• In accord with our remarks above, the normalised ensemble averages will be rational
functions of N and p. This is clearly visible in the maximal-trace case, see (6.15).

The individual averages computed in section 4 do not seem to exhibit any particular
pattern, beyond their rationality and some uniformity in the large N limit. On the
other hand, the ensemble averages 〈G(N)

p 〉 of correlators of SPO’s do exhibit nice
patterns, leading us to conjecture their general form

〈G(N)
p 〉 = Qp(N) (N − p+ 1)p−1 , (for SPO’s) , (7.5)

for some rational function Qp(N).42 The Pochhammer factor ensures the vanishing
of 〈G(N)

p 〉 for N = 1, 2, . . . , p − 1. By considering the large N expansion of (7.5), we
can further constrain the function Qp(N):

42The fact that Qp(N) is rational essentially follows from the rational N -dependence of the coefficients
which appear in the weak-coupling expansion obtained from the matrix model integrals. See appendix B.
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(i) At leading order in large N , the SPO’s reduce to single-trace operators and
hence we should recover the large N limit of 〈G(N |1,1)

p 〉 given in (4.6). Therefore,
we have

Qp(N) N→∞−−−−−→ p− 1
2p N + . . . . (7.6)

(ii) To be consistent with the general large N expansion of the ensemble average,
cf. (F.1), Qp(N) must admit an expansion containing only integer powers of
1/N , i.e.

Qp(N) = p− 1
2p N +

∞∑
k=0

αk(p)N−k , (7.7)

with coefficients αk(p) which we expect to be rational functions of p.

• All recursion relations derived herein determine f (N |i,j)
p (s) for all N in terms of lower

p spectral overlaps, together with the trivial initial condition f
(N=1|i,j)
p (s) = 0. Ul-

timately, everything is recursively determined from the p = 2 spectral overlap at
N = 2, given by f (2)

2 (s) = (2s− 1)2. As such, the p = 2 integrated correlator in the
SU(2) theory (together with the knowledge of the recursion relations themselves!) de-
termines the higher-charge correlators. We expect that this determinism will extend
to all p.

• The functional form of the recursion relations themselves is less clear. For p = 4, 5,
the recursion had the general structure

f (N+1|i,j)
p (s)− f (N |i,j)

p (s) =
[
W (0)
p (N)−W (1)

p (N) s(1− s)
]
f

(N+1)
2 (s)

+
p−1∑
q=2

W (q)
p (N) f (N |i,j)

q (s) +W (p)
p (N) f (N−1)

2 (s) ,
(7.8)

for some functions W (n)
p (N), rational in N , which also depend on the precise trace-

structure (i, j).43 However, in light of the growing degree with p of the overlaps
f

(N |i,j)
p (s) — see equation (7.3) — the above structure cannot hold for p ≥ 6. To
account for the higher degree polynomials requires some additional terms on the r.h.s.
of (7.8). This could potentially include terms with higher powers of s(1−s), or higher
integer shifts of N of the form f

(N+n)
2 (s). As such, it would be necessary to consider

further explicit examples with p ≥ 6 to determine the most general structure of these
powerful recursion relations.

43As we have pointed out a few times by now, in cases where f (N|i,j)
p (s) vanishes forN = 2, the consistency

of such a recursion relation requires the functions W (0)
p (N) and W (1)

p (N) to vanish at N = 1.
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8 Future directions

The integrated correlators G(N |i,j)
p (τ) are remarkable observables: they are non-trivial func-

tions of the complexified gauge coupling τ , and yet tractable enough not only to be exactly
determined, but to be determined simply as polynomials in an appropriate functional basis.
This basis is, moreover, one in which S-duality invariance is manifest. This link suggests
that there may be lessons in the offing for how to better understand τ -dependence of N = 4
SYM observables at large.

These properties raise many conceptual and fundamental questions. We close by dis-
cussing some of these, but we first describe some more concrete open problems. There are
several computations that are ripe for completion, which include the following:

• Our formulas allow the explicit determination of non-perturbative corrections, both
in 1/λ and 1/N , to G(N |i,j)

p (τ) in the large N limit. This was analyzed previously
for the p = 2 case, where corrections in powers of the two scales (5.22) — identified
with fundamental and D-string worldsheet instantons in AdS5× S5, respectively —
are easily identified from the SL(2,Z) spectral integral, the two being related by S-
duality. It would be interesting to understand the p-dependence of these corrections.
We also note that the analysis of [8] did not compute all non-perturbative corrections
in N , in particular leaving the sum over genera to future study; this is an interesting
problem because the genus sum can in principle generate higher-order (e.g. “doubly”)
non-perturbative effects.

• Another set of computations pertains to the genus-one correlators 〈O2O2OpOp〉,
both integrated and unintegrated. On the integrated side, we have made a pre-
diction in (5.15) for a bulk computation of the finite one-loop correction to G(N)

p (τ)
in AdS5× S5 supergravity. This would be satisfying to see verified in the bulk. More-
over, as noted in footnote 28, this prediction (in combination with the flat space limit)
can be used to fix the undetermined ambiguities in the unintegrated 〈O2O2OpOp〉 cor-
relator at one-loop level from [34, 35], another worthwhile computation.

• The ensemble averages of the (SPO|SPO) correlators through p = 5 were seen
in (4.9)–(4.10) to obey an intriguing pattern. Can a closed-form expression be de-
rived, or perhaps inferred from more data points, for generic p?

• The SL(2,Z) spectral decomposition faciliates the study of the ensemble statistics of
observables over the N = 4 conformal manifold M. The variance of the integrated
correlators over M follows immediately from their explicit spectral overlaps and a
formula derived in [8]:

V
(
G(N |i,j)
p

)
= vol−1(F)

(
1

4πi

∫
Re s= 1

2

ds

∣∣∣∣ π

sin πss(1− s)Λ(s)f (N |i,j)
p (s)

∣∣∣∣2
)

(8.1)

This was studied at both finite and large N in [8] for the p = 2 case. It would be
interesting to ask how the general p integrated correlator statistics behave as well.
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There are various generalizations of our work — e.g. extension to N = 4 SYM with
other gauge groups, analysis of other families of integrated correlators G(N |i,j)

p (τ) that ex-
ist for all p, integration of 〈O2O2O2O2〉 against other measures [60, 85] — which may
be worth pursuing. Slightly further afield, it remains unknown whether there is an anal-
ogous supersymmetric construction of integrated 〈OpOpOpOp〉, or for that matter even
〈OpOqOrOs〉, correlators. If so, new ideas are needed to determine the supersymmetric
integration measure and to relate it to some as-yet-unknown generalization of the localiza-
tion methods based on N = 2∗ partition functions. It should also be possible to extend the
integrated correlator construction to SCFTs in two spacetime dimensions using localisation
techniques.

Most fascinating are various foundational questions about these observables, centered
around the question of why they exhibit such simplicity, and the relation to manifest S-
duality invariance.

Our results for G(N |i,j)
p (τ) are characterized by strong uniformity in the half-BPS charge

p. This calls for a deeper explanation. At large N , an obvious possible touchstone is
the 10-dimensional “hidden conformal symmetry” that is known to govern at least some
aspects of planar correlators at weak and strong coupling [23, 86]. The origin and regime
of applicability of the hidden conformal symmetry itself are still unknown. It is tempting
to ask whether, and how, the integrated correlators G(N |i,j)

p (τ) are organized in some way
by this symmetry, perhaps at large N only. If so, one may wonder whether the integrated
correlators are subject to stronger constraints than the unintegrated ones.

Is there a natural bulk description of these objects besides as integrals over boundary
points? That point of view is rather clumsy from the bulk spacetime perspective. The
integrated correlators have an alternative formulation as derivatives of the free energy
deformed by sources, but that quantity breaks the N = 4 superconformal symmetry.
Perhaps there is a nicer picture which preserves the full symmetries without using the
unintegrated correlator or free energy as an intermediary.

Of course, since the G(N |i,j)
p (τ) are soluble for all N and τ , we are really after their bulk

string theory description. The formulas herein for G(N |i,j)
p (τ) may be regarded as the exact

AdS5× S5 quantum string theory answers. As emphasized in the introduction, the inte-
grated correlators seem to be picking out some privileged subsector of the AdS5× S5 four-
point string amplitude. Whether this is a useful perspective that can be leveraged to teach
us something more general about string theory, either in AdS5× S5 or in 10-dimensional
flat space, is an open question. It would obviously be very interesting to make this more
explicit from the worldsheet point of view, perhaps first in various simplifying limits.

The central role of SL(2,Z) in our results underscores not only the power, but also
the practical utility, of S-duality. That the integrated correlators are so streamlined in
the SL(2,Z) eigenbasis suggests that the SL(2,Z) spectral decomposition may be generally
useful in studying unprotected observables of N = 4 SYM such as operator dimensions or
OPE coefficents. This deserves further investigation in the context of the superconformal
bootstrap and integrability (and their combination [29, 87, 88]). In the present case, that
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the G(N |i,j)
p (τ) can be written down in such simple form for finite N and τ is partly44 due

to the absence of Maass cusp forms in their SL(2,Z) spectral decomposition. Why do the
cusp form overlaps vanish? What is the physical principle that tells us when an SL(2,Z)-
invariant observable in N = 4 SYM has vanishing cusp form overlap? Observables with
this property are “non-chaotic” in a precise mathematical, if not (yet) physical, sense. It
seems important to bridge this gap. This may help understand whether the mathematical
notion of arithmeticity is a useful physical criterion in characterizing CFT observables.45

Indeed, the radical simplicity of the integrated correlators — exact for all N and τ ,
with ingredients no more complicated than rational functions of N and p — deserves to be
understood in the deepest terms possible. The fundamental origin of the recursion relations
derived herein, generalizing the G(N)

2 (τ) recursion relation of [7], is a major open question.
We made some suggestions about their provenance in section 6.1. Can they be derived
from a 6d (2,0) theory point of view? Can we bootstrap them directly without the input
of localization? And finally, what are these equations telling us about unintegrated CFT
data at finite N and τ , and can we somehow extract these data by cleverly combining the
whole family of integrated correlators indexed by p?

The integrated correlators seem to be beautiful and rich observables, standing out even
in the wonderful world of N = 4 SYM. They are, in our view, well-deserving of intensive
further study.
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A Colour factors

Here we list the colour factors R(i,j)
p (N) used in the main text. For the cases p = 2, 3, these

are just given by the general formula (2.7). For p = 4, 5 we have

R
(1,1)
4 (N) = (N2−1)(N4−6N2+18)

4N2 , R
(1,1)
5 (N) = (N2−1)(N2−4)(N4+24)

5N3 ,

R
(1,2)
4 (N) = (N2−1)(2N2−3)

2N , R
(1,2)
5 (N) = 6(N2−1)(N2−4)(N2−2)

5N2 , (A.1)

R
(2,2)
4 (N) = (N4−1)

2 , R
(2,2)
5 (N) = 6(N2−1)(N2−4)(N2+5)

25N .

44Note that there do exist non-perturbative physical observables that have computable nonzero cusp form
overlaps. An example is the torus partition function of two free bosons on a Narain lattice, for all values of
the moduli [89].

45We point out the recent work [90, 91] as another, possibly related, arena for this question. For earlier
work in a slightly different context, see [92].
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The colour-factor of the two-point function of maximal-trace operators O(max)
p = T2,...,2 has

been derived in [50]. In our conventions, for even p it reads

R(max)
p (N) =

2p
(p

2
)
!

p2

(
N2 − 1

2

)
p
2

. (A.2)

At large N , the counting simplifies. In particular, computation of colour factors may
be computed by large N factorization. Single-trace colour factors become

R(1,1)
p (N) ≈ Np

p
. (A.3)

This is especially useful for computation of colour factors involving multi-trace operators
Tp1,··· ,pn , defined in (2.2). The large N colour factor of Tp1,...,pn with n distinct indices is(

p1 · · · pn
p

)2
Rp1(N) . . . Rpn(N)

∣∣∣
N→∞

≈ p1 · · · pn
p2 Np (for p1 6= p2 6= · · · 6= pn) , (A.4)

where p = p1 + · · ·+ pn = p. For example, taking p1 = 2 and p2 = 3 reproduces the large
N asymptotic of R(2,2)

5 (N). For coincident indices, extra combinatoric factors emerge. For
example, the large N colour factor of Tq,...,q with n identical indices is(

qn

nq

)2
n! (Rq(N))n

∣∣∣
N→∞

≈ qn

(nq)2n!Nnq . (A.5)

Taking q = 2 and n = p/2 reproduces the large N asymptotic of R(max)
p (N).

B Localization details

B.1 Solving operator mixing on S4 and integrated two-point functions

In this section we focus on computing the denominator of (2.14) for p = 2, 3, 4, 5. Let us
define

D(N |i,j)
p ≡

∑
µ,ν

vi,µp v̄j,νp ∂τ ′µ∂τ̄ ′ν logZN (τ, τ ′A,m)
∣∣∣∣
τ ′A=m=0

, (B.1)

where we recall that µ belongs to the index set (2.21). One of the main problems is to
determine the vectors vi,µp which encode the mixing of weight-p chiral operators of species
i, denoted by O(i)

p , with lower-weight chiral operators. This is done through the algorithm
devised in [50]. On S4, a chiral operator of weight p will generically mix with all other
chiral operators of weight p − 2, p − 4, . . . through the non-trivial background fields. For
a given p, we begin by listing all such operators of dimension ≥ 2.46 The operators O2
and O3 do not mix with any other operator on the sphere. The two chiral operators O(i)

4

46On S4, operators of even conformal dimension also mix with the identity operator. However, there is
no need for us to consider this in the unmixing problem because the final results differ only by one-point
functions on R4, which vanish.
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mix with O2 and likewise the two chiral operators O(i)
5 mix with O3 (recall the operator

definitions in (2.3)).
Next, we construct the matrix of connected two-point functions on S4 for a given

chiral operator of weight p with every other chiral operator of weight p − 2, p − 4, . . .
with which it mixes. We will list below all such matrices for operators up to p = 5.
First, we introduce some short-hand notation which will be convenient. In what follows
we restrict our treatment and notation to single- and double-trace operators only, but
everything can be straightforwardly generalized to arbitrary multi-trace insertions following
the prescription of [50].

Let us introduce the notation Op and Op,q for single- and double-trace chiral operators,
respectively, which couple to respective sources τ ′p and τ ′p,q. Two-point functions on S4 are
constructed via

〈OpŌq〉 :=
∂τ ′p∂τ ′qZN
ZN

∣∣∣∣
τ ′A=m=0

, 〈Op,qŌr〉 :=
∂τ ′p,q∂τ ′rZN
ZN

∣∣∣∣
τ ′A=m=0

,

〈Op,qŌr,s〉 :=
∂τ ′p,q∂τ ′r,sZN
ZN

∣∣∣∣
τ ′A=m=0

. (B.2)

Note that Op = O(1)
p is the weight-p single-trace chiral operator introduced in the main text,

while Op,q is a single representative of the set of weight-(p+q) double-trace chiral operators
O(j)
p+q indexed by j. Let us also introduce a standard notation for the connected two-point

functions on S4 (one-point functions do not vanish on S4), obtained by differentiation with
respect to the free energy:

〈OpŌq〉c := ∂τ ′p∂τ̄ ′q logZN
∣∣
τ ′A=m=0

= 〈OpŌq〉 − 〈Op〉〈Ōq〉 ,
(B.3)

and likewise for the other two-point functions in (B.2).
Through p = 5, we thus have the following mixing matrices:

• p = 2: There is just one single-trace operator which does not mix with any other
operator. So there is nothing to unmix here and we have M2 = 〈O2Ō2〉c.

• p = 3: Again there is nothing to unmix, and we have M3 = 〈O3Ō3〉c.

• p = 4: There are two mixing matrices to consider here since operators of weight four
have degeneracy two. For the single-trace weight-four operator O(1)

4 we denote the
mixing matrix by M (1)

4 whereas for the double-trace weight-four operator O(2)
4 , we

denote the corresponding mixing matrix by M (2)
4 . These are

M
(1)
4 =

 〈O2Ō2〉c 〈O2Ō4〉c
〈O4Ō2〉c 〈O4Ō4〉c

 , M
(2)
4 =

 〈O2Ō2〉c 〈O2Ō2,2〉c
〈O2,2Ō2〉c 〈O2,2Ō2,2〉c

 . (B.4)

• p = 5: Again, there are two mixing matrices to consider here since operators of weight
five have degeneracy two. For the single-trace weight-five operator O(1)

5 we denote
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the mixing matrix by M (1)
5 whereas for the double-trace weight-five operator O(2)

5 ,
we denote the corresponding mixing matrix by M (2)

5 . These are

M
(1)
5 =

 〈O3Ō3〉c 〈O3Ō5〉c
〈O5Ō3〉c 〈O5Ō5〉c

 , M
(2)
5 =

 〈O3Ō3〉c 〈O3Ō2,3〉c
〈O2,3Ō3〉c 〈O2,3Ō2,3〉c

 . (B.5)

We explictly compute M2,M3,M
(1)
4 ,M

(2)
4 ,M

(1)
5 ,M

(2)
5 as a function of N and τ by evalu-

ating the matrix integrals using methods outlined in section B.3.
The next step is Gram-Schmidt orthogonalization of the matrices M (i)

p . As mentioned
above there is nothing to unmix in the p = 2, 3 cases. In particular this gives ∂τ3 = ∂τ ′3 .
For p = 4, 5, the Gram-Schmidt process gives the new orthogonal vectors ∂/∂τ4(j) , ∂/∂τ5(j)

(which brings insertions of chiral operators O(j)
4 and O(j)

5 , respectively, in correlation func-
tions on R4):

∂

∂τ4(j)
= ∂

∂τ ′4(j)
+ vj,24

∂

∂τ
,

∂

∂τ5(j)
= ∂

∂τ ′5(j)
+ vj,35

∂

∂τ3
, (B.6)

where j = 1, 2 corresponds to single- and double-trace operators, respectively. We find the
following results for the v-vectors:

v1,2
4 = −〈O4Ō2〉c

〈O2Ō2〉c
= −

(
2N2 − 3

)
2yN , v1,3

5 = −〈O5Ō3〉c
〈O3Ō3〉c

= −5
(
N2 − 2

)
4yN , (B.7)

v2,2
4 = −〈O2,2Ō2〉c

〈O2Ō2〉c
= −i

(
N2 + 1

)
2y , v2,3

5 = −〈O2,3Ō3〉c
〈O3Ō3〉c

= −iN
2 + 5
4y .

This data is sufficient to solve the sphere mixing problem for p = 2, 3, 4, 5 and therefore
allows to compute both the numerator and denominator of (2.14).

As for the denominator, assembling everything, we find the following results for the
matrix of integrated two-point functions D(N |i,j)

p on R4 as defined in (B.1):

D
(N)
2 = N2 − 1

23y2 , D
(N)
3 = 3(N2 − 4)(N2 − 1)

26y3N
,

D
(N)
4 =


(N2−1)(N4−6N2+18)

26y4N2 −i(N
2−1)(2N2−3)

25y4N

i
(N2−1)(2N2−3)

25y4N
N4−1
25y4

 ,

D
(N)
5 =


5(N2−4)(N2−1)(N4+24)

210y5N3 −i15(N2−4)(N2−2)(N2−1)
29y5N2

i
15(N2−4)(N2−2)(N2−1)

29y5N2
3(N2−4)(N2−1)(N2+5)

29y5N

 .
(B.8)

Note that the matrices D(N |i,j)
p are all positive definite for physical values of N , as they

should be for two-point functions. We can further diagonalize D(N |i,j)
4 and D

(N |i,j)
5 in a

τ, τ̄ independent single-particle operator basis (discussed in section 2.1) but for our current
purpose we do not need such an expression. It is straightforward to check that the N -
dependence of these results are precisely those given by computing the flat space two-point
function using Wick contractions in the free N = 4 SYM with gauge group SU(N).
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B.2 Integrated four-point functions

In this section, we compute the numerator of (2.14) for p = 2, 3, 4, 5 in the zero instanton
sector.

C(N |i,j)
p ≡

∑
µ,ν

vi,µp v̄j,νp ∂τ ′µ∂τ̄ ′ν∂
2
m logZN (τ, τ ′A,m)

∣∣∣
τ ′A=m=0

, (B.9)

where we recall that µ belongs to the index set (2.21). We first note that ∂τ ′µ∂τ̄ ′ν∂
2
m logZN

gives the following five terms that compute the connected integrated correlator

∂τ ′µ∂τ̄ ′ν∂
2
m logZ =

∂τ ′µ∂τ̄ ′ν∂
2
mZ

Z
−
(
∂τ ′µ∂τ̄ ′νZ
Z

∂2
mZ
Z

+
∂τ ′µZ
Z

∂τ̄ ′ν∂
2
mZ
Z

+
∂τ̄ ′νZ
Z

∂τ ′µ∂
2
mZ
Z

)
+ 2

∂τ ′µZ
Z

∂τ̄ ′νZ
Z

∂2
mZ
Z
(B.10)

Single mass derivatives of the N = 2∗ partition function do not appear above since those
terms vanish for vanishing mass. At vanishing sources and with µ, ν refering to single-trace
species p1, q1 respectively, the above derivatives give the following insertions in the matrix
model integral:

∂τ ′p → iπp/2
N∑
i=1

api , ∂τ̄ ′q → −iπ
q/2

N∑
i=1

aqi

∂2
m → −4

∑
i<j

∞∑
`=1

(−1)`(2`+ 1) (aij)2` ζ(2`+ 1)
(B.11)

For µ, ν refering to multi-trace species, as explained in section 2.2, the precise insertion
depends upon the species under consideration. The first line in (B.11) is easy to see
from (2.15). On the other hand, insertions from mass derivatives resulting from (2.15) are
complicated. A pragmatic approach to evaluate them is in the large y expansion. One way
to do this is to expand the quantity

∂2
m

 1
H(m)N

∏
i<j

H2(aij)
H(aij +m)H(aij −m)


m=0

(B.12)

in small ai. This expansion is represented by the ` sum in (B.11). Performing the ma-
trix integrals term-by-term in the ` sum gives an asymptotic expansion for the integrated
correlators at large y. So computing ∂τ ′µ∂τ̄ ′ν∂

2
m logZ boils down to computing the ma-

trix integral (2.20) with insertions dictated by the derivatives in (B.11) and their multi-
trace generalization. For p ≤ 5, the most general such insertion involves computing the
following47 〈(∑

i<j

(ai − aj)2`
)(

N∑
i=1

api

)(
N∑
i=1

aqi

)〉
(B.13)

47For correlators involving just single-trace operators, (B.13) is still the most general insertion for generic
p, but when multi-trace operators are involved, there can be several more insertions of the type

∑N

i=1 a
q
i .
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where the expectation value is computed in the Gaussian ensemble (2.20) whose details we
present in section B.3. Putting together various ingredients we find the following results
for C(N |i,j)

p (in the expressions below the matrix elements D(N |1,1)
p were computed in (B.8))

• p = 2:

C
(N)
2 = D

(N)
2

(12Nζ(3)
yπ

− 75N2ζ(5)
y2π2 + 735N3ζ(7)

2y3π3 − 945N2 (7N2 + 2
)
ζ(9)

4y4π4 (B.14a)

+ 114345N3 (N2 + 1
)
ζ(11)

16y5π5 − 351351N2 (11N4 + 25N2 + 4
)
ζ(13)

128y6π6 + · · ·
)

• p = 3:

C
(N)
3 = D

(N)
3

(18Nζ(3)
yπ

− 90N2ζ(5)
y2π2 + 735N3ζ(7)

2y3π3 − 2835N2 (2N2 + 1
)
ζ(9)

4y4π4 (B.14b)

+ 114345N3 (3N2 + 5
)
ζ(11)

64y5π5 − 117117N2 (11N4 + 40N2 + 9
)
ζ(13)

64y6π6 + · · ·
)

• p = 4:

C
(N |1,1)
4 = D

(N |1,1)
4

(24Nζ(3)
yπ

− 60N2 (2N4 − 6N2 + 27
)
ζ(5)

(N4 − 6N2 + 18) y2π2 (B.14c)

+ 105N3 (10N4 + 3N2 + 108
)
ζ(7)

2 (N4 − 6N2 + 18) y3π3

− 945N2 (19N6 + 83N4 + 168N2 + 144
)
ζ(9)

8 (N4 − 6N2 + 18) y4π4 + · · ·
)

C
(N |1,2)
4 = D

(N |1,2)
4

(24Nζ(3)
yπ

− 30N2 (11N2 − 9
)
ζ(5)

(2N2 − 3) y2π2 + 3675N5ζ(7)
2 (2N2 − 3) y3π3 (B.14d)

− 945N2 (40N4 + 53N2 − 12
)
ζ(9)

4 (2N2 − 3) y4π4 + 114345N5 (13N2 + 43
)
ζ(11)

32 (2N2 − 3) y5π5 + · · ·
)

C
(N |2,2)
4 = D

(N |2,2)
4

(24Nζ(3)
yπ

− 150N2 (N2 + 3
)
ζ(5)

(N2 + 1) y2π2 + 735N3 (N2 + 6
)
ζ(7)

(N2 + 1) y3π3 (B.14e)

− 945N2 (7N4 + 72N2 + 20
)
ζ(9)

2 (N2 + 1) y4π4 + 114345N3 (N2 + 15
)
ζ(11)

8y5π5 + · · ·
)

• p = 5:

C
(N |1,1)
5 = D

(N |1,1)
5

(30Nζ(3)
yπ

− 150N2 (N4 + 6N2 + 12
)
ζ(5)

(N4 + 24) y2π2 (B.14f)

+ 525N3 (5N4 + 57N2 + 48
)
ζ(7)

4 (N4 + 24) y3π3

− 1575N2 (7N6 + 122N4 + 126N2 + 72
)
ζ(9)

4 (N4 + 24) y4π4 + · · ·
)
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C
(N |1,2)
5 = D

(N |1,2)
5

(30Nζ(3)
yπ

− 30N2 (6N2 − 5
)
ζ(5)

(N2 − 2) y2π2 + 105N3 (17N2 + 8
)
ζ(7)

2 (N2 − 2) y3π3 (B.14g)

− 945N2 (35N4 + 87N2 − 20
)
ζ(9)

8 (N2 − 2) y4π4

+ 38115N3 (31N4 + 167N2 + 18
)
ζ(11)

64 (N2 − 2) y5π5 + · · ·
)

C
(N |2,2)
5 = D

(N |2,2)
5

(30Nζ(3)
yπ

− 15N2 (11N2 + 97
)
ζ(5)

(N2 + 5) y2π2 + 735N3 (N2 + 14
)
ζ(7)

(N2 + 5) y3π3 (B.14h)

− 945N2 (13N4 + 268N2 + 133
)
ζ(9)

4 (N2 + 5) y4π4

+ 114345N3 (7N4 + 200N2 + 321
)
ζ(11)

64 (N2 + 5) y5π5 + · · ·
)

Having computed these results, we remark that while for p = 2 and 3, where the non-
planar corrections start at four-loop order, for higher p, non-planarity sets in at lower loop
orders. Specifically, for the matrix of p = 4, 5 correlators, we see that the non-planar
corrections already appear at two loops which is in agreement with known results in the
literature [9, 12].

With these results, we now have all the ingredients to assemble the full matrix of
integrated correlators G(N |i,j)

p (τ) defined in (2.14) for p = 2, 3, 4, 5 at finite N in the zero-
instanton sector in a weak-coupling expansion.

B.3 Expectation values in the Gaussian (special) unitary ensemble

Here we demonstrate how we evaluate expectation values of the type (B.13) in the Gaussian
special unitary ensemble (2.20). We found [93–96] as useful references for the material
presented in this section.

One of the technical complications in evaluating such expectation values is to properly
deal with the delta function constraint on the eigenvalues in (2.20). When the insertions
are just differences of eigenvalues then such a constraint simply gives an N -dependent pref-
actor with the expectation values to be evaluated in the usual Gaussian unitary ensemble.
However, when the insertions are not differences of eigenvalues (like in (B.13)), a system-
atic way to handle the constraint is to use the integral representation of the delta function,
δ(∑ ai) =

∫ dµ
2πe

iµ
∑

i
ai .48 After doing a linear change of variables

ai −
iµ

2α = zi (B.16)

48Alternatively, one can use the physical Coulomb branch parameters ai

ai = ai −
1
N

N∑
j=1

aj , (B.15)

which makes all insertions into functions of differences aij that can then be evaluated in the U(N) ensemble.
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and completing the squares in the exponent, we get that (B.13) evaluates to (where for
convenience we defined α := 2πy)

(B.13) =
∫
dNz e−α

∑N

i=1 z
2
i

∏
i<j

(zij)2∑
i<j

(zij)2`
∫
dµ

2πe
−µ

2N
4α

N∑
k=1

[ak(zk)]p
N∑
k′=1

[ak′(zk′)]q

≡
〈∑
i<j

(zij)2`
∫
dµ

2πe
−µ

2N
4α

N∑
k=1

[ak(zk)]p
N∑
k′=1

[ak′(zk′)]q
〉

(B.17)

The expectation value in the second line is now understood to be in the usual Gaussian
unitary ensemble where the eigenvalues zi are unconstrained. The sums appearing above
can be opened up and simplified to the sum of following five expectation values

(B.17) = N(N − 1)
〈
z2`

12

∫
dµ

2πe
−µ

2N
4α ap+q1

〉
+N(N − 1)

〈
z2`

12

∫
dµ

2πe
−µ

2N
4α ap1a

q
2

〉
+ 1

2N(N − 1)(N − 2)
〈
z2`

12

∫
dµ

2πe
−µ

2N
4α ap+q3

〉
+N(N − 1)(N − 2)

〈
z2`

12

∫
dµ

2πe
−µ

2N
4α (ap1a

q
3 + aq1a

p
3)
〉

+ 1
2N(N − 1)(N − 2)(N − 3)

〈
z2`

12

∫
dµ

2πe
−µ

2N
4α ap3a

q
4

〉
(B.18)

The relation (B.16) between the old (ai) and the new (zi) eigenvalues is left implicit to avoid
clutter in the expression above. Because of the µ integral and the fact that ai depends on
µ through (B.16), it is easiest to handle these expectation values by first providing sources
to them and performing the µ integral, i.e., we first do the following replacement above

ak → ∂kγe
γa
∣∣∣
γ=0

, z2`
12 → ∂2`

β e
βz12

∣∣∣
β=0

(B.19)

and then do the µ integrals to get

(B.18) =
√

α

πN
∂2`
β

[
N(N − 1)∂p+qγ1

〈
e(γ1+β)z1−βz2

〉
e−

γ2
1

4αN

+N(N − 1)∂pγ1∂
q
γ2

〈
e(γ1+β)z1+(γ2−β)z2

〉
e−

(γ1+γ2)2
4αN

+ 1
2N(N − 1)(N − 2)∂p+qγ3

〈
eβ(z1−z2)+γ3z3

〉
e−

γ2
3

4αN (B.20)

+N(N − 1)(N − 2)∂pγ∂
q
δ

〈(
e(γ+β)z1−βz2+δz3 + e(δ+β)z1−βz2+γz3

)〉
e−

(γ1+γ3)2
4αN

+ 1
2N(N − 1)(N − 2)(N − 3)∂pγ3∂

q
γ4

〈
eβz1−βz2+γ3z3+γ4z4

〉
e−

(γ3+γ4)2
4αN

]
β=γi=0

.

We see that the problem now boils down to computing expectation values of the type〈
e
∑k

i=1 γizi
〉

(B.21)

in the Gaussian unitary ensemble.
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A practical way to evaluate these expectation values is as follows. Using the orthogonal
Hermite polynomials [97], it is straightforward to show that (B.21) can be written as the
following sum over a certain determinant〈

e
∑k

i=1 γizi

〉
= (N − k)!

N !
G(N + 2)πN/2

2N(N−1)/2αN2/2

N−1∑
a1,··· ,ak=0

det i,j Qai,aj (γi) (B.22)

where

Qm,n(β) := e
β2
4α

(
β

2α

)n−m
Ln−mm

(
−β

2

2α

)
. (B.23)

Here Lnm(x) are the associated Laguerre polynomials. We record here the following orthog-
onality relation for Hermite polynomials Hn(x) = (−1)nex2 (dn/dxn) e−x2

Pi(x) := 1
(4α)i/2

Hi(
√
αx) ,

∫ ∞
−∞

dx e−αx
2
Pj(x)Pk(x) = δjk

Γ(k + 1)
√
π

2kαk+ 1
2

(B.24)

and the identity∫
dae−αa

2+βaPm(a)Pn(a) =
√
π

2n m!e
β2
4αα−n−

1
2βn−mLn−mm

(
−β

2

2α

)
. (B.25)

which are necessary to show the equality in (B.22). We note that Q enjoys a summation
identity

N−1∑
m=0

Qm,m(β) = e
β2
4α

N−1∑
m=0

Lm

(
−β

2

2α

)
= e

β2
4αL1

N−1

(
−β

2

2α

)
= 2α

β
QN−1,N (β) (B.26)

which allows us to compute (B.21) for k = 1 in closed form as

〈
eγz1

〉
= 2α
γN

QN−1,N (γ) G(N + 2)πN/2
2N(N−1)/2αN2/2 . (B.27)

A convenient way to represent the sum over the determinant in (B.22) is to think of it as
sum over products of traces of products of matrices Qai,aj . Working out the traces one
finds that the result takes the form of an exponential times an even polynomial in γi:

N−1∑
a1,··· ,ak=0

det i,j Qai,aj (γi) = e
∑k

i=1
γ2
i

4α

∞∑
i1,i2···ik=0

C
(k)
i1,i2···ik(N)

(
γ1√
2α

)i1( γ2√
2α

)i2
· · ·
(
γk√
2α

)ik
(B.28)

where the coefficients C(k)
i1,i2···ik(N) are functions of N and completely symmetric in the

indices i1, i2 · · · ik. We do not know them in closed form as a function of N for generic
indices but nevertheless can determine for a specific set of indices, which is all that we
really need for calculations.

The relation (B.28) formally determines (B.22) and therefore (B.20). Working out the
relevant derivatives in (B.20) and with the knowledge of C(k)

i1,i2···ik(N) we can straightfor-
wardly determine (B.13) for given `, p, q.
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C Recursion relations for spectral overlaps involving SPO’s

One possible representation of the recursion relation for the spectral overlaps of the p = 4
correlator with SPO’s can be written in the form

f
(N+1)
4 (s) = N − 1

4(N + 1)2(N2 + 2N + 2)2

[
P1(N)− (N − 1)(N2 − 4)2s(1− s)

]
f

(N+1)
2 (s)

+ f
(N |1,1)
4 (s)− 2

(
2N2 + 4N − 1

)
(N + 1) (N2 + 2N + 2) f

(N |1,2)
4 (s)

+ 3
(
2N2 + 2N + 3

)
N(N + 1) f

(N)
3 (s)− P2(N)

2N2(N + 1) (N2 + 2N + 2) f
(N)
2 (s)

− N
(
N3 + 11N2 + 20N − 2

)
4 (N2 + 2N + 2) f

(N−1)
2 (s) ,

(C.1)

where the polynomials Pi(N) are given by

P1(N) = 3N7 + 10N6 + 37N5 + 70N4 + 8N3 − 216N2 − 316N − 96 ,
P2(N) = N7 +N6 − 16N5 + 72N3 − 16N2 − 120N − 72 .

(C.2)

Note that one can further manipulate the r.h.s. of (C.1) to repackage the terms f (N |1,1)
4 (s)

and f
(N |1,2)
4 (s) into the SPO overlap f

(N)
4 (s) by using the various relations given in the

main text. However, the result of this rearrangement results in even more complicated
N -dependent rational coefficients.

Similarly, putting together the recursion relations for f (N |i,j)
5 (s) from the main text to

obtain the p = 5 recursion of SPO’s yields

f
(N+1)
5 (s) = 2(N − 1)

(N + 1)3(N2 + 2N + 6)2

[
P3(N)− (N − 3)2(N2 − 4)2s(1− s)

]
f

(N+1)
2 (s)

+ f
(N |1,1)
5 (s)− 10(N2 + 2N − 1)

(N + 1)(N2 + 2N + 6) f
(N |1,2)
5 (s)

+ 8(N2 +N + 2)
N(N + 1) f

(N |1,1)
4 (s)− 48(N + 2)(N2 + 2N − 1)

N(N + 1)(N2 + 2N + 6) f
(N |1,2)
4 (s)

− 3P4(N)
N2(N + 1)2(N2 + 2N + 6)2 f

(N)
3 (s)− 2P5(N)

N3(N + 1)2(N2 + 2N + 6)2 f
(N)
2 (s)

+ 4N f
(N−1)
2 (s) ,

(C.3)

with polynomials

P3(N) = 3N8−2N7 + 90N6 + 376N5 + 447N4−86N3 + 180N2 + 1152N + 432 ,

P4(N) = 2N9−N8 + 16N7−123N6−504N5−950N4−1356N3−1296N2−1584N−864 ,

P5(N) = N11−12N10−54N9 + 158N8 + 439N7−566N6

−1838N5−1632N4−312N3−576N2−3168N−1728 . (C.4)
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D One-instanton results

Here we provide results for the one-instanton contribution to the integrated correlators
G(i,j)
p (N ; τ) for p = 2, 4, 5 in a weak-coupling expansion. The result for p = 3 was already

presented in the main text in section 3.3.
For p = 2 the results were previously computed in [7, 76] which in our conventions are

G(N)
2 (τ)

∣∣∣
1-inst

= e2πiτ R2
4

−6NΓ
(
N− 1

2

)
√
πΓ(N+2) −

9(N−4)NΓ
(
N− 3

2

)
8
√
πyπΓ(N+2) +

45NΓ
(
N− 5

2

)
256
√
πy2π2Γ(N) + · · ·


(D.1)

For p = 4, the one-instanton weak-coupling expansion of the (1, 1) component has the
following form:

G(N |1,1)
4 (τ)

∣∣∣
1-inst

= e2πiτ R
(1,1)
4
4

1
N4 − 6N2 + 18

∞∑
n=0

Γ
(
N − 3

2 − n
)

√
πΓ(N + 2)(πy)nh

(1,1)
4,n (N) (D.2)

where h(1,1)
4,n (N) are polynomials in N of degree 6 + n. For first few values of n these are

h
(1,1)
4,0 (N) = −3N

4
(
80N5 − 360N4 + 243N3 + 648N2 − 432N − 432

)
h

(1,1)
4,1 (N) = −9N

64
(
80N6 − 1720N5 + 8803N4 − 14157N3 − 1392N2 + 12528N + 2880

)
h

(1,1)
4,2 (N) = 45

211N
2(N − 2)

(
80N5 + 1640N4 − 32037N3 + 138231N2 − 150228N − 80136

)
h

(1,1)
4,3 (N) = −315

215 N
2
(
80N7 − 40N6 + 4923N5 − 144186N4 + 936765N3 − 2308230N2

+ 1935792N + 7776
)

(D.3)

Similarly for p = 4 and the (1, 2) component of the correlator, we have

G(N |1,2)
4 (τ)

∣∣∣
1-inst

=G(N |2,1)
4 (τ)

∣∣∣
1-inst

= e2πiτ R
(1,2)
4
4

1
2N2 − 3

∞∑
n=0

Γ
(
N − 3

2 − n
)

√
πΓ(N + 2)(πy)nh

(1,2)
4,n (N)

(D.4)

where h(1,2)
4,n (N) are polynomials in N of degree 4+n. For the first few values of n these are

h
(1,2)
4,0 (N) = −3N

4
(
52N3 − 153N2 + 72N + 72

)
h

(1,2)
4,1 (N) = −9N

64
(
52N4 − 713N3 + 2387N2 − 2088N − 480

)
h

(1,2)
4,2 (N) = 45

211 (N − 2)N2
(
52N3 + 499N2 − 6357N + 13356

)
h

(1,2)
4,3 (N) = −315

215 N
2(N + 1)

(
52N4 − 321N3 + 411N2 + 594N − 1296

)
(D.5)
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Finally, the (2, 2) component of the integrated correlator for p = 4 was presented in (3.30).
Consistently, we note that

4G(2|1,1)
4 (τ)

∣∣∣
1-inst

= 2G(2|1,2)
4 (τ)

∣∣∣
1-inst

= G(2|2,2)
4 (τ)

∣∣∣
1-inst

4G(3|1,1)
4 (τ)

∣∣∣
1-inst

= 2G(3|1,2)
4 (τ)

∣∣∣
1-inst

= G(3|2,2)
4 (τ)

∣∣∣
1-inst

(D.6)

which should be the case since (as observed for the correlator in the zero instanton sector
in section 3.2) 2T4 = T2,2 for N = 2, 3.

Likewise at p = 5 we have the following results. For the (1, 1) component, we have the
following form for the one-instanton weak-coupling expansion

G(N |1,1)
5 (τ)

∣∣∣
1-inst

= e2πiτ R
(1,1)
5
4

1
N4 + 24

∞∑
n=0

Γ
(
N − 3

2 − n
)

√
πΓ(N + 3)(πy)nh

(1,1)
5,n (N) (D.7)

where h(1,1)
5,n (N) are polynomials in N of degree 7+n. For the first few values of n these are

h
(1,1)
5,0 (N) = −15N

2
(
16N6 − 76N5 + 42N4 + 243N3 − 48N2 − 336N − 144

)
h

(1,1)
5,1 (N) = −45N

32
(
16N7− 492N6+ 3094N5− 5549N4−3333N3+9744N2+7056N+ 960

)
h

(1,1)
5,2 (N) = 225

210 N
2
(
16N7 + 580N6 − 17098N5 + 121349N4 − 299895N3 + 96582N2

+ 338592N + 80304
)

h
(1,1)
5,3 (N) = −1575

214 N2(N − 3)
(
16N7 + 180N6 + 5462N5 − 145329N4 + 824655N3

− 1221822N2 − 645648N − 864
)

(D.8)

For the (1, 2) component, the form of the correlator is

G(N |1,2)
5 (τ)

∣∣∣
1-inst

= G(N |2,1)
5 (τ)

∣∣∣
1-inst

= e2πiτ R
(1,2)
5
4

1
N2 − 2

∞∑
n=0

Γ
(
N − 3

2 − n
)

√
πΓ(N + 3)(πy)nh

(1,2)
5,n (N)

(D.9)

where h(1,2)
5,n (N) are polynomials in N of degree 5+n. For the first few values of n these are

h
(1,2)
5,0 (N) = −3N

2
(
32N4 − 84N3 − 31N2 + 140N + 60

)
h

(1,2)
5,1 (N) = −9N

32
(
32N5 − 644N4 + 2589N3 − 1865N2 − 2940N − 400

)
h

(1,2)
5,2 (N) = 45

210N
2
(
32N5 + 684N4 − 14427N3 + 66091N2 − 78290N − 33460

)
h

(1,2)
5,3 (N) = −315

214 N
2(N − 3)

(
32N5 + 156N4 + 3213N3 − 57321N2 + 161710N + 360

)
.

(D.10)
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And finally for the (2, 2) component, the form of the correlator is

G(N |2,2)
5 (τ)

∣∣∣
1-inst

= e2πiτ R
(2,2)
5
4

1
N2 + 5

∞∑
n=0

Γ
(
N − 3

2 − n
)

√
πΓ(N + 3)(πy)nh

(2,2)
5,n (N) (D.11)

where h(2,2)
5,n (N) are polynomials in N of degree 5+n. For the first few values of n these are

h
(2,2)
5,0 (N) = −15N(2N + 1)

(
N3 −N2 + 4N − 15

)
h

(2,2)
5,1 (N) = −45N

16
(
2N5 − 19N4 + 37N3 − 180N2 + 492N + 100

)
h

(2,2)
5,2 (N) = 225

29 N
2
(
2N5 + 13N4 − 154N3 + 541N2 − 2647N + 5719

)
h

(2,2)
5,3 (N) = −1575

213 N2(N − 3)(N + 1)(N + 2)
(
2N3 − 9N2 + 10N + 18

)
(D.12)

Again, we note that the one-instanton results for the different components of the correlators
are consistent with each other for low values of N(6

5

)2
G(3|1,1)

5 (τ)
∣∣∣
1-inst

=
(6

5

)
G(3|1,2)

5 (τ)
∣∣∣
1-inst

= G(3|2,2)
5 (τ)

∣∣∣
1-inst(6

5

)2
G(4|1,1)

5 (τ)
∣∣∣
1-inst

=
(6

5

)
G(4|1,2)

5 (τ)
∣∣∣
1-inst

= G(4|2,2)
5 (τ)

∣∣∣
1-inst

(D.13)

which should be the case since 6T5 = 5T2,3 for N = 3, 4.

E Matching to two-loop perturbation theory

In this appendix we demonstrate that the weak-coupling expansion of the integrated cor-
relators G(N |i,j)

p (τ) obtained from the localisation computations matches the explicit in-
tegration of 〈O2O2O(i)

p O(j)
p 〉 up to two-loop order in perturbation theory. For the p = 2

case this has already been established in [7],49 and here we extend this analysis to higher
values of p.

In [9], the family of (unintegrated) 〈O2O2O(i)
p O(j)

p 〉 correlators has been computed
using traditional Feynman diagram methods to order g4

YM, with explicit data for the colour
factors of different trace structures of the external operators O(i)

p given up to p = 6. To
make use of the wealth of data contained in reference [9], we first need to make contact
with our conventions and recast their results into a manifestly SO(6) covariant formulation.
After applying a crossing transformation to bring the correlator into the ‘22pp’ orientation,
its full y-dependence is easily restored by simply uplifting the bosonic propagator factors
x2
ij to superpropagators, i.e. by mapping 1/x2

ij 7→ gij . We then pull out the prefactor g2
12g

p
34

and restore the factor of I to bring their results into the SO(6) covariant form (2.10), where
the interacting part H(i,j)

p of the correlator admits the weak-coupling expansion

H(i,j)
p (u, v; τ) = g2

YMH
(i,j)
p, one-loop(u, v) + g4

YMH
(i,j)
p, two-loop(u, v) +O(g6

YM) . (E.1)
49See also the recent work [41] for a comparison up to four-loop order and interesting connections to

periods of Feynman graphs.
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The one- and two-loop contributions read

H(i,j)
p, one-loop(u, v) = −2C(i,j)

1,p (N) · u
v

Φ(1)(u, v) ,

H(i,j)
p, two-loop(u, v) = N

u

v
·
(

1
4

[
(1 + v − u)C(i,j)

1,p (N) + 2u
N
C

(i,j)
2,p (N)

](
Φ(1)(u, v)

)2
+ C

(i,j)
1,p (N)

[
Φ(2)(u, v) + 1

v
Φ(2)

(1
v
,
u

v

)]

+ 1
u

Φ(2)
(1
u
,
v

u

)[
C

(i,j)
1,p (N) + p− 2

N
C

(i,j)
3,p (N)

])
,

(E.2)

where Φ(l)(u, v) = − 1
x−x̄φ

(l)(x′, x̄′) with φ(l)(x, x̄) being the well-known l-loop ladder inte-
grals. The C(i,j)

n,p (N) with n = 1, 2, 3 are certain colour-factors encoding the N -dependence
of the one- and two-loop correlators. Their precise form depends on the trace structure
of the external operators O(i)

p and O(j)
p and is given on a case-by-case basis in [9] (for

p = 3 see their eqs. (44)-(46), for p = 4 see table 2, and for p = 5, 6 see tables 6 and 7,
respectively).50

As a final step, we need to perform the integration over Euclidean space given by

I2[f(u, v)] = − 2
π

∫ ∞
0

dr

∫ π

0
dθ
r3 sin2 θ

u2 f(u, v)|u=1+r2−2r cos θ, v=r2 , (E.3)

which defines the integrated correlator, recall (2.13). This amounts to integrating the
various orientations of the one- and two-loop ladder integrals Φ(l)(u, v) present in (E.2).
As shown in [7], one has51

I2

[
u

v
Φ(l)(u, v)

]
= I2

[
u

v
Φ(l1)(u, v)Φ(l2)(u, v)

]
= −1

2

(
2l + 2
l + 1

)
ζ(2l + 1), for l1 + l2 = l .

(E.4)

The one-loop contribution is thus straightforwardly integrated by specialising the above
formula to l = 1, which yields

I2

[
u

v
Φ(1)(u, v)

]
= −3ζ(3) . (E.5)

On the other hand, upon closer inspection of the two-loop correlator in (E.2) we note
that six different position space structures are present, given by

(
Φ(1)(u, v)

)2 with different
prefactors as well as the three orientations of Φ(2)(u, v). Importantly, we find that all of
the six different structures individually integrate to the same constant obtained by setting

50In order to account for some differences in operator normalisations and conventions for Wick contrac-
tions, we simply compare their colour-factors of the free correlator and rescale their C(i,j)

n,p (N) such that the
free theory answer matches ours, amounting to some factors of 4π2 and p.

51Note that we have a relative factor of 4 difference in the definition of the integral I2 compared to
reference [7], namely I2[f(u, v)]|here = 1

4I2[f(u, v)]|there.
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l = 2 in (E.4), and one has

I2
[u
v

(
Φ(1)(u, v)

)2] = I2
[
u
(
Φ(1)(u, v)

)2] = I2

[
u2

v

(
Φ(1)(u, v)

)2]
= I2

[
u

v
Φ(2)(u, v)

]
= I2

[
u

v2 Φ(2)
(1
v
,
u

v

)]
= I2

[1
v

Φ(2)
(1
u
,
v

u

)]
= −10ζ(5) ,

(E.6)

which essentially follows from the fact that these structures are related by crossing trans-
formations and thus become indistinguishable from each other after performing the inte-
gration.

With the integrals (E.5) and (E.6) in place, one can easily assemble the one- and two-
loop contributions to the integrated correlator (as mentioned above, to account for different
conventions we have rescaled the colour-factors C(i,j)

n,p (N) from [9] so that the free theory
correlators match, see also footnote 50). We have then compared this with the first two
orders of the 1/y expansion obtained from the localisation integral (2.14), finding perfect
agreement for the cases p = 3, 4, 5 for all trace configurations (i, j), as well as for the p = 6
maximal-trace correlator!

The agreement we find provides further evidence that the localisation relation (2.14)
derived in [6] not only computes integrated correlators of single-trace operators, but can be
extended to multi-trace operators and thus allows us to access the entire set of integrated
correlators G(N |i,j)

p (τ). In particular, it shows that our prescription to incorporate such
higher-trace insertions in the matrix model as explained around (2.21) is indeed correct.

Furthermore, this matching also indicates that we have correctly solved the operator
mixing problem on S4, which we performed explicitly up to p = 5 in appendix B.1 and for
the maximal-trace correlators for all even p in section 6, thus extending the results of [6]
beyond the single-trace sector and to finite N .

F Consistency check: ensemble average vs. genus expansion

One may perform a consistency check of our results by demonstrating equality between the
large N expansion of the ensemble averages 〈G(N)

p 〉 and the genus expansion of the spectral
overlaps fp(s). This is instructive because the match involves not just the leading large N
limit of 〈G(N)

p 〉 at every genus, but the subleading terms as well.
It follows from [8], eq. (10.3), that the large N expansion of 〈G(N)

p 〉 may be recon-
structed from the genus expansion of the spectral overlaps as

〈G(N)
p 〉 = 1

2

∞∑
g=0

Np−2g
[
f (g)
p (1) +N−1f (g)

p (0)
]
, (F.1)

Note that, in terms of the quantity 〈〈G(g)
p 〉〉 defined earlier, 〈〈G(g)

p 〉〉 = 1
2f

(g)
p (1). Equa-

tion (F.1) implies in turn that the 1/N expansion truncates at genus-g∗ if f (g)
p (1) =

f
(g)
p (0) = 0 for all g > g∗.

As one can see from the polynomials n(g)
p (s) given in the previous section, this trun-

cation holds for p = 2 and p = 3 with thresholds g∗ = 0 and g∗ = 1, respectively. For
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example, specialising (F.1) to the p = 2 case and recalling the genus-zero overlap from (5.2),
one has

〈G(N)
2 〉 = 1

2
(
N2f

(0)
2 (1) +Nf

(0)
2 (0)

)
= N(N − 1)

4 , (F.2)

which indeed reproduces the correct p = 2 ensemble average using only the genus-zero
contribution f (0)

2 (s). A similar check exists for 〈G(N)
3 〉 given in (4.2).

On the other hand, 〈G(N)
4 〉 and 〈G(N)

5 〉 in (4.8) have polynomial N -dependent denom-
inators, giving rise to a 1/N expansion which does not truncate. This is consistent with
the higher-genus spectral overlaps given in the previous section (cf. (5.6)), which do not
vanish at s = 0, 1. Nevertheless, one can still verify that (F.1) correctly reproduces the
finite N averages (4.8) term by term in a 1/N expansion, which we have checked up to
genus four.52

G More on the ’t Hooft limit

In this appendix we give several details on the ’t Hooft limit and its interplay with the
SL(2,Z) spectral decomposition which were skipped in the main text.

G.1 Genus-zero spectral overlap for general p

First we derive the genus-zero, generic p spectral overlap (5.3). The idea is to make use of
the known genus-zero correlator for generic p, recast it into the spectral form and read off
the overlap. The genus-zero correlator is given by

G(g=0)
p (λ) =

∫ ∞
0

dω ω
J1
(√

λ
π ω

)2 − Jp(√λπ ω)2
sinh2(ω)

. (G.1)

which was first obtained in [6] through large N matrix model techniques. We want to write
the above expression into the spectral form in (5.20), which we rewrite more compactly
below

G(g=0)
p,0 (λ) = 1

2πi

∫
Re s=1+ε

ds
π

sin(πs) s(1− s) Λ(1− s)
(
λ

4π

)s−1
f (0)
p (s) . (G.2)

Note that the integration contour is now anchored just beyond the s = 1 pole that comes
from Λ(1 − s). This form absorbs the first term in (5.20) into the s integral. Next, we
make use of the following Mellin-Barnes representation for the Bessel function:

Jm(x)Jn(x) = 1
2πi

∫ t0+i∞

t0−i∞
dt

Γ(−t)Γ(m+ n+ 2t+ 1)
Γ(m+ t+ 1)Γ(n+ t+ 1)Γ(m+ n+ t+ 1)

(
x

2

)m+n+2t
, (G.3)

which holds for x > 0. The contour running parallel to the imaginary axis is anchored at a
point t0 such that the all poles of Γ(−t) and all poles of Γ(m+ n+ 2t+ 1) are on opposite
sides of t0. Making use of the identity∫ ∞

0
dx

xα

sinh2 x
=
(1

2

)α−1
Γ(α+ 1)ζ(α) , (G.4)

52We note that the averaged correlators 〈G(N|i,j)
p 〉, i.e. those not projected onto the SPO basis, do admit

such a truncation, as seen in equations (4.3)–(4.4). Why these truncations exist is not clear to us.
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we have∫ ∞
0

dx
xαyα−1

sinh2 x
Jm(xy)Jn(xy) =

− 1
2πi

∫ t0+i∞

t0−i∞
dt

( Γ(m+ n+ 2t+ 1)
Γ(t+ 1)Γ(m+ t+ 1)Γ(n+ t+ 1)Γ(m+ n+ t+ 1)

)
ym+n+2t+α−1 π

sin(πt)

(1
2

)2m+2n+4t+α−1
Γ(m+ n+ 2t+ α+ 1)ζ(m+ n+ 2t+ α) . (G.5)

Plugging this representation into (G.1), combining the two Mellin-Barnes integrals in the
resulting expression into one by a change of variables and making use of the functional
equation for the Riemann zeta function,

ζ(s) = 2sπs−1ζ(1− s) sin
(
πs

2

)
Γ(1− s) , (G.6)

we find the spectral form (G.2) from which the spectral overlap f (0)
p (s) is extracted.

G.2 Genus-one correlators for various values of p

Following the same strategy as in the previous subsection, we record Bessel representations
for genus-one SPO correlators G(g=1)

p (λ) for p ≤ 5, and for the maximal trace family
Ĝ(g=1|max)
p (λ) for all p.

We start with the SPOs. The result for p = 3 was presented in (5.26). Upon performing
the k sum in (5.24) by making use of (5.25) we find

G(g=1)
2 (λ) =

∫ ∞
0

dω
−λω3

48π3 sinh2 ω

[
12πJ0

(√
λ

π
ω

)
2

+ 2
√
λωJ1

(√
λ

π
ω

)
J0

(√
λ

π
ω

)
+ 5πJ1

(√
λ

π
ω

)
2
]

(G.7)

G(g=1)
4 (λ) =−

∫ ∞
0

dω

48π3λ2ω3 sinh2 ω

[
6πλω2

(
7λ2ω4 + 152π2λω2 − 2688π4

)
J0

(√
λ

π
ω

)
2

+ 2
√
λω
(
λ3ω6 + 156π2λ2ω4 − 5856π4λω2 + 32256π6

)
J0

(√
λ

π
ω

)
J1

(√
λ

π
ω

)
+ π

(
47λ3ω6 − 1080π2λ2ω4 + 19776π4λω2 − 64512π6

)
J1

(√
λ

π
ω

)
2
]

(G.8)

G(g=1)
5 (λ) =−

∫ ∞
0

dω

4π2λ3ω5 sinh2 ω

×
[
λω2

(
5λ3ω6 − 416π2λ2ω4 + 16512π4λω2 − 147456π6

)
J0

(√
λ

π
ω

)
2

+ 4π
√
λω
(
−5λ3ω6 + 1712π2λ2ω4 − 34944π4λω2 + 147456π6

)
× J0

(√
λ

π
ω

)
J1

(√
λ

π
ω

)
+
(
7λ4ω8 + 424π2λ3ω6 − 21248π4λ2ω4 + 213504π6λω2 − 589824π8

)
× J1

(√
λ

π
ω

)
2
]

(G.9)

Correlators at higher-genus for all p can be obtained in principle in a similar way.
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Likewise, the result for the normalised genus-one maximal trace correlator
Ĝ(g=1|max)
p (λ) is

Ĝ(g=1|max)
p (λ) =

∫ ∞
0

dω
p

48π3λω sinh2 ω

[
12πλω2((p− 3)λw2 − 4π2)J0

(√
λ

π
ω

)2

− 2
√
λw
(
18π2(p− 2)λω2 + λ2w4 − 96π4)J0

(√
λ

π
ω

)
J1

(√
λ

π
ω

)

− π
(
(12p− 19)λ2ω4 − 24π2pλω2 + 192π4)J1

(√
λ

π
ω

)2]
.

(G.10)

This is equivalent to (6.24).

G.3 Proof of (5.23)

Here we give the proof of (5.23).
Plugging (F.1) for the average in (5.19), the spectral decomposition of integrated cor-

relators in a genus expansion is given by

G(N)
p (λ) = 1

2

∞∑
g=0

Np−2g
[
f (g)
p (1) +N−1f (g)

p (0)
]

(G.11)

+ 1
2πi

∫
Re s= 1

2

ds
π

sin(πs)s(1−s)
∞∑
g=0

Np−2g
[
Λ(1−s)λ̃s−1+Λ(s)N2s−1λ̃−s

]
f (g)
p (s) ,

We can absorb the first line into the second at the cost of introducing two shifted contour
integrals as follows:

G(N)
p (λ) = 1

2πi

∫
Re s=1+ε

ds
π

sin(πs)s(1− s)
∞∑
g=0

Np−2gΛ(1− s)λ̃s−1f (g)
p (s) (G.12)

+ 1
2πi

∫
Re s=0−ε

ds
π

sin(πs)s(1− s)
∞∑
m=0

Np−2m+2s−1Λ(s)λ̃−sf (m)
p (s) ,

where ε > 0 but infinitesimal. Noting that f (m)
p (s) has simple poles at s = −1

2 − n for
n ∈ Z≥0 and for all m ≥ 0, commuting the s integral with the genus expansion, the second
line above simplifies to the following sum over residues

∞∑
m=0

∞∑
n=0

Np−2−2(m+n)λ̃n+ 1
2 Res
s=− 1

2−n

[
π

sin πss(1− s)Λ(s)f (m)
p (s)

]
(G.13)

We now introduce the g variable,

g := m+ n+ 1 . (G.14)

Note that g > n. Rewriting the previous sum in terms of g and n we get

∞∑
g=1

Np−2g
g−1∑
n=0

λ̃n+ 1
2 Res
s=− 1

2−n

[
π

sin πss(1− s)Λ(s)f (g−n−1)
p (s)

]
(G.15)
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Note that we can extend the above sum to g = 0, which vanishes because of the n sum.
Therefore G(N)

p (λ) now becomes

G(N)
p (λ) =

∞∑
g=0

Np−2g
( 1

2πi

∫
Re s=1+ε

ds
π

sin(πs)s(1− s)Λ(1− s)λ̃s−1f (g)
p (s) (G.16)

+
g−1∑
n=0

λ̃n+ 1
2 Res
s=− 1

2−n

[
π

sin πss(1− s)Λ(s)f (g−n−1)
p (s)

])
,

where we commuted the s integral with the genus expansion and changed the dummy
summation index from g to g in the first line. Comparing with (the perturbative part
of) (5.16) we have

G(g)
p (λ) = 1

2πi

∫
Re s=1+ε

ds
π

sin(πs)s(1− s)Λ(1− s)λ̃s−1f (g)
p (s)

+
g−1∑
n=0

λ̃n+ 1
2 Res
s=− 1

2−n

[
π

sin πss(1− s)Λ(s)f (g−n−1)
p (s)

]
(G.17)

The above equation says that a genus-g correlator includes such renormalization terms
from all genera g < g.

Next we ask, can we absorb the second line into the first by shifting the integration
contour? The answer is yes, but under certain conditions on the overlaps.

First note that f (g)
p (s) has a finite number of poles at positive half integers,

s = 3
2 + n , n = 0, 1, 2, ..., g− 1 , (G.18)

as follows from (5.6). For g = 0 there are no such poles. Therefore we can shift the
integration contour in the first line of (G.17) towards the right over all the positive poles
of f (g)

p (s) mentioned above. In doing so we encounter the positive integer poles of sin(πs).
Therefore we need to subtract the residue of these integer sin poles. When all is said and
done we land at the following expression for g > 0:

G(g>0)
p (λ) = 1

2πi

∫
Re s=g+ 1

2 +ε
ds

π

sin(πs)s(1− s)Λ(1− s)λ̃s−1f (g)
p (s)

+
g−1∑
n=0

λ̃n+ 1
2 Res
s=− 1

2−n

[
π

sin πss(1− s)Λ(s)f (g−n−1)
p (s)

]

−
g−1∑
n=0

λ̃n+ 1
2 Res
s= 3

2 +n

[
π

sin πss(1− s)Λ(1− s)f (g)
p (s)

]

−
g∑

k=2
(−1)k+1λ̃k−1k(k − 1)Λ(1− k)f (g)

p (k) (G.19)

Here we note the condition for consistency of the weak-coupling expansion, which must
not have half-integer powers of λ. This implies

Res
s=− 1

2−n

[
π

sin πss(1− s)Λ(s)f (g−n−1)
p (s)

]
= Res

s= 3
2 +n

[
π

sin πss(1− s)Λ(1− s)f (g)
p (s)

]
(G.20)
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which is precisely eq. (7.9) of [8]. Hence, this consistency condition implies our final result,
a spectral representation of the genus-g correlator purely in terms of the genus-g spectral
overlap:

G(g>0)
p (λ) = 1

2πi

∫
Re s=g+ 1

2 +ε
ds

π

sin(πs)s(1− s)Λ(1− s)λ̃s−1f (g)
p (s)

−
g∑

k=2
(−1)k+1λ̃k−1k(k − 1)Λ(1− k)f (g)

p (k) (G.21)

This is (5.23). At genus one, the second line is not present! However, for higher genera,
f

(g)
p (k) need not vanish for integer k ≥ 2. This is the penalty we pay for having a form
like (G.21) for the correlator G(g)

p (λ). Note that the above expression is valid for g > 0.
For g = 0, we instead have

G(0)
p (λ) = 1

2πi

∫
Re s=1+ε

ds
π

sin(πs)s(1− s)Λ(1− s)λ̃s−1f (0)
p (s) (G.22)
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