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Abstract
We explain how to use the probabilistic method to prove the existence of real poly-
nomial singularities with rich topology, i.e., with total Betti number of the maximal
possible order. We show how similar ideas can be used to produce real algebraic
projective hypersurfaces with a rich structure of umbilical points.

Keywords Singularity theory · Random polynomials · Real algebraic geometry

1 Introduction

The probabilistic method is a nonconstructive method for proving the existence of
a prescribed kind of mathematical object. It works by showing that if one randomly
chooses objects from a specified class, the probability that the result is of the prescribed
kind is strictly greater than zero, and in particular it guarantees the existence of one
object with the desired property.

In the context of real algebraic geometry, this method has been implicitly used first
in Ref. [18] and then in Refs. [9, 14] for computing a lower bound for the expectation
(with respect to an appropriate probability measure) of the Betti numbers of random
real hypersurfaces (a probabilistic result), and explicitly used in a similar framework in
Ref. [8], for proving that complex hypersurfaces contain topologically rich Lagrangian
submanifolds, and in Ref. [1] (using a different probability measure), for proving the
existence of real algebraic hypersurfaces with rich topology in real algebraic varieties
(two deterministic results, see Sect. 3.1 below).

In this short note, we briefly explain how to apply the method from Ref. [1] (which
is based on the techniques that we have developed in Refs. [15, 16]) more generally
for the construction of real algebraic singularities with rich topology. More precisely,
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consider a polynomial map

p : Sn → R
k

all of whose components are homogeneous polynomials p1, . . . , pk of degree d. For
r ≥ 0 let also Jr (Sn,Rk) be the r -th jet bundle and W ⊆ Jr (Sn,Rk) be a semialge-
braic subset invariant under diffeomorphisms of Sn (we call sets of this type “intrinsic”,
see Sect. 2). We denote by

jr p : Sn → Jr (Sn,Rk)

the r -th jet extension of p and we consider the set

�W (p) := jr p−1(W ) ⊆ Sn .

We call such a set the W -type singularity of p. Examples of singularities falling in
this class are: zero sets of polynomial functions, their critical points, Thom–Boardman
singularities.

Using a variation on Thom–Milnor bound, it is not difficult to prove (see Ref. [16,
Theorem 1]) that for every W ⊆ Jr (Sn,Rk), there exists c1(W ) > 0 such that for the
generic polynomial map p : Sn → R

k of degree d, the sum of the Betti numbers of
its W -type singularity is controlled by

b(�W (p)) ≤ c1(W )dn . (1)

The aim of the current paper is to prove the following result.

Theorem 1 For every nonempty intrinsic semialgebraic set W ⊆ Jr (Sn,Rk) with
0 < codim(W ) ≤ n, there exist d(W ) ∈ N and c2(W ) > 0 such that for every
d ≥ d(W ) there is a nonempty open set U W

d in the space of polynomial maps of
degree d with the property that for every p = (p1, . . . , pk) ∈ U W

d

b(�W (p)) ≥ c2(W )dn . (2)

In this general case of maps singularities, we are not aware of any other method,
other than the one proposed in the current paper, for producing maps with rich singu-
larities (of the maximal possible order).

Remark 2 We will actually prove the stronger statement that one can find an open set
U W

d in the space of polynomials such that for every 0 ≤ i ≤ n − codim(W ) the
inequality (2) holds for each single Betti number bi (�

W (p)) for all p ∈ U W
i,d . In other

words, in Eq. (2), we can replace b(�W (p)) with bs(�
W (p)), where

bs(�) := min
0≤i≤s

bi (�), s = n − codim(W ),

and the theorem remains true, with a possibly different constant c2(W ).
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The assumption codim(W ) ≤ n is necessary for our method of proof: in fact, the
r -th jet of a generic polynomial map p : Sn → R

k of large enough degree misses
W if codim(W ) > n (by the Parametric Transversality Theorem, see Ref. [7, Section
1.7]).

The proof of Theorem 1 uses a combination of results and ideas from Refs. [1, 15,
16] and goes along the steps described in Sect. 2. In Sect. 3.5, we will actually show
that the same strategy of proof can be used to produce rich “hybrid” singularities, such
as the structure of the umbilics of a hypersurface (which depends on the Riemannian
metric also), see Theorem 12.

2 Proof of Theorem 1

2.1 Realize the Given Singularity with a SmoothMap

First, recall from Ref. [16] that W ⊆ Jr (Sn,Rk) is called intrinsic if there is W0 ⊆
Jr (n, k), called the model, such that for any embedding ϕ : Rn ↪→ Sn , one has that
jrϕ∗(W ) = W0.
Given W intrinsic, with model W0, we claim that there exists f ∈ C∞(D,Rk) such

that (i) jr f is transversal to W0, (ii) �W0( f ) is entirely contained in the interior of D
and (iii) bi (�

W0( f )) ≥ 1 for every 0 ≤ i ≤ n − codim(W ).
This guarantees that the singularity W is smoothly realizable in a stable way with

nontrivial cycles in all dimensions. The existence of such f is nontrivial and follows
from Ref. [16, Corollary 20].

In fact, it is easy to construct a section σ of the jet bundle Jr (n, k) → R
n which

is transversal to W0, with σ−1(W ) ⊂ int(D) and with bi (σ
−1(W0)) ≥ 1 for every

0 ≤ i ≤ n − codim(W0), using the hypothesis on the codimension of W0. However,
this section does not need to be holonomic. Using the Holonomic Approximation
Theorem [7], one can find a C0 small homeomorphism h : D → D, and a new
section σ̃ holonomic, i.e., such that σ̃ = jr f , which is C0 close to σ ◦ h, so that
jr f −1(W ) ⊂ int(D), and which is transversal to W0. Finally, Ref. [16, Theorem 18]
guarantees that bi ( jr f −1(W0)) ≥ bi (σ

−1(W0)) for every 0 ≤ i ≤ n − codim(W0).

Remark 3 This step is not needed in the case r = 0, since in this case sections are
already holonomic.

2.2 Identify a Nice Open Set in the Space of Functions

Let f0 : D → R
k be the function constructed above, and denote by �0 := �W ( f0).

Since jr f0 is transversal toW , then there is aCr+1 neighborhoodU0 of f0 such that for
any g : D → R

k in U0 (i.e for any g sufficiently close to f0 in the Cr+1-topology) the
pairs (D, �0) and (D, �W (g)) are diffeomorphic. This follows from Thom’s Isotopy
Lemma.
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2.3 Choose an Appropriate Measure on the Space of Polynomials

We choose an appropriate probability measure μd on the vector space

Pk
n,d := R[x0, . . . , xn]k

(d)

of polynomialmaps of degree d. Thismeasurewill be theGaussianmeasure associated
to the L2(Sn)-scalar product. More precisely, for p = (p1, . . . , pk) ∈ Pk

n,d we define

‖p‖2 := ∫

Sn

∑k
i=1 |pi (x)|2dx, where “dx” denotes the integration on the sphere with

respect to its standard volume form. Then, we define a Gaussian probability measure
μd on Pk

n,d by setting, for every Borel set A ⊆ Pk
n,d :

μd

{

p ∈ A

}

:= 1

(2π)N/2

∫

A
e− ‖p‖2

2 dp, (3)

where N = dim(Pk
n,d) and “dp” denotes the integration with respect to the Lebesgue

measure1.

Remark 4 In the context of real algebraic geometry, the measure μd was first used in
Ref. [14]. This measure is invariant under the action on the space of polynomials of the
orthogonal group by change of variables, but there are other natural invariant measures
one can consider Ref. [12]. These measures, however, might not have the properties
we need: for instance, the Bombieri–Weyl measure would not produce rich objects,
see Sect. 3.4. The key idea of Ref. [1] is to use a version of the above probability
measure μd on sections of real line bundles.

2.4 Compute the LimitingMeasure of the Nice Open Set at the Local Scale

Let z ∈ Sn be a point and denote by D := D(0, 1) ⊂ Tz Sn � R
n the unit disk in

the tangent space and by expz : D → Sn the Riemannian exponential map. For every
polynomial map p : Sn → R

k , we consider the smooth map fz,d : D → R
k defined

by

fz,d(v) := d− n
2 p

(

expz(d
−1v)

)

. (4)

Since we have defined a probability measure μd on the space of polynomials, the map
fz,d : D → R

k (which depends on p) can be thought as a random variable with values
in C∞(D,Rk).

The key property of this construction is the following: for every nonempty open set
U ⊆ C∞(D,Rk) there exists c(U ) > 0 such that for every z ∈ Sn ,

lim inf
d→∞ μd

{

fz,d ∈ U

}

≥ c(U ). (5)

1 This is the Lebesgue measure of the Euclidean space (Pk
n,d , 〈·, ·〉L2(Sn )).
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Proof of (5) We denote by Kd(x, y) : D × D → R
k×k the covariance function of

fd := fz,d (which does not depend on z ∈ Sn , since the measure μd is orthogonally
invariant):

Kd(u, v) := E

(

fd(u) fd(v)T
)

∈ R
k×k,

where the expectation is taken with respect to the probability measure μd . It is a
classical fact (see Ref. [10]) that as d → ∞ the function Kd converges in the C∞-
topology to

K∞(u, v) =
∫

D
ei〈u−v,ξ〉dξ · 1k . (6)

Now, by Ref. [15, Theorem 5], the convergence in the C∞-topology of Kd implies
the existence of a random variable f∞ ∈ C∞(D,Rk) with the property that for every
nonempty open set U ⊆ C∞(D,Rk)

lim inf
d→∞ μd

{

fd ∈ U

}

≥ P

{

f∞ ∈ U

}

=: c(U ). (7)

It remains to prove that c(U ) > 0. To this end we use Ref. [15, Theorem 6] which
tells that the support of the random variable f∞ can be computed as the closure, in
the C∞ topology, of the set of all the functions of the form u �→ K∞(u, v)λ, where
v ranges over D and λ ranges in R

k . Using the explicit description of K∞, one can
show that this space contains all the monomials uα1

1 · · · uαn
n (see Ref. [1, Lemma 3.2])

and, since polynomials are dense in the C∞-topology, the support of f∞ is the whole
C∞(D,Rk). This means that for every open setU ⊆ C∞(D,Rk) the probability c(U )

is strictly positive. ��

2.5 Compute an Expectation at the Global Scale

Given �0 from Sect. 2.2, consider the function ν : Pk
n,d → N defined by

ν(p) := number of connected components of �W (p)which are homeomorphic to�0.

Using the conclusions fromSect. 2.4,we show that there exist c̃(W ) > 0 andd(W ) > 0
such that for all d ≥ d(W )

∫

Pn,d

ν(p) μd(dp) ≥ c̃(W )dn . (8)

(Notice that the integrand is bounded a.e. by (1), since ν(p) ≤ b0(�W (p)).) In order
to prove (8) we introduce first some preliminary objects.
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First, by a doubling argument, for every d ∈ Nwe can find points z1, . . . , zmd ∈ Sn

with md ≥ c3dn , c3 > 0, such that for every i �= j the spherical Riemannian balls
B(zi , d−1) and B(z j , d−1) do not intersect.

Then, for every z ∈ Sn , we define the following set Ez,d ⊂ Pd
n,k :

Ez,d :=
{

p

∣

∣

∣

∣

(B(z, d−1),�W (p)) is diffeomorphic to (D, �0)

}

.

Notice that Ez,d contains the set of polynomials p such that fz,d ∈ U0 where U0
comes from Sect. 2.2.

For every z ∈ Sn we also consider the following function νz,d : Pk
n,d → N

νz,d(p) := number of connected components of �W (p) which are entirely contained in

B(z, d−1)and which are diffeomorphic to�0.

Notice that νz,d |Ez,d ≥ 1.

Proof of (8) Using the above notation, we have

∫

Pn,d

ν(p) μd(dp) ≥
∫

Pn,d

md
∑

j=1

νz j ,d(p) μd(dp) =
md
∑

j=1

∫

Pn,d

νz j ,d(p) μd(dp)

≥
md
∑

j=1

∫

Ez j ,d

νz j ,d(p) μd(dp)

≥
md
∑

j=1

∫

Ez j ,d

1μd(dp) =
md
∑

j=1

μd(Ez j ,d)

≥
md
∑

j=1

μd

{

fz j ,d ∈ U W
}

= md · μd

{

fz1,d ∈ U W
}

≥ c3dnμd

{

fz1,d ∈ U W
}

.

Taking the lim infd→∞ on both sides and using the limit from (5), then (8) follows
(here c̃(W ) := c3 · c(U W ) > 0). ��

Remark 5 Notice in particular that, since for every p ∈ Pk
n,d we have the inequality

b(�W (p)) ≥ b(�0)ν(p), then

∫

Pk
n,d

b(�W (p)) μd(dp) ≥ c(W )dn . (9)
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2.6 Conclude the Argument

Since the integral in (8) is upper bounded by the maximum of ν(p), taken over the set
of p with jr p transversal to W (this set is a full measure semialgebraic set in Pk

n,d ),
then for every d large enough there exists p with jr p transversal to W and such that
ν(p) ≥ c0dn . For such a p and for every 0 ≤ i ≤ n − codim(W ) one has

bi (�
W (p)) ≥ ν(p)bi (�0) ≥ c2,i (W )dn,

where c2,i (W ) := bi (�0)̃c(W ). Since the jet of p is transversal to W , the same
property holds for all p̃ in a neighborhood Ud of p.

This concludes the proof of Theorem 1, in its stronger form. (The statement as in
Theorem 1 follows already from the case i = 0.)

3 Remarks and Examples

3.1 Hypersurfaces with Rich Topology

The total Betti numbers of a real hypersurface � in a real algebraic variety X is con-
strained by the totalBetti number of its complex part�(C) bySmith–Thom inequality:

b(�;Z2) ≤ b(�(C);Z2) = O(dn).

The hypersurface is said maximal it if attains the above inequality. Asymptotically,
maximal hypersurfaces (those with maximum possible total Betti number at leading
order in the degree) exist in projective spaces [11] and in toric varieties [3]. From these
results, one can deduce similar results on the sphere; therefore, there is no need to use
the method from this paper to prove the existence of spherical hypersurfaces with rich
topology. In general algebraic varieties, however, results of this type are not known. To
our knowledge, in this context, the first deterministic result using probabilistic ideas
is Ref. [1], where M. Ancona used the method outlined here to show that every real
algebraic variety contains real algebraic hypersurfaces whose Betti numbers grow as
the maximal possible order.

3.2 Complex Bounds That Cannot be Attained

One should be careful about expecting in general that real maximal objects are those
whose sum of the Betti numbers equals the sum of the Betti numbers of their complex
part. This is true, for example, for projective hypersurfaces (see Sect. 3.1) and for
the critical points of a polynomial function on the sphere (see Ref. [13]). However,
in general, this is not true. For instance, as noticed in Ref. [19], Klein’s formula
combined with Plücker’s formula imply that a real algebraic projective plane curve of
degree d has at most d(d − 2) real inflection points, whereas the number of complex
inflection points is 3d(d − 2). In other words, only a fraction (one third) of the total
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number of inflection points can be real. In view of this, since the proof of the bound
(1) ultimately uses Bézout’s Theorem (after reducing the problem to a stratifiedMorse
Theory problem), Theorem 1 is in some sense the best that one can hope for.

3.3 Maximizing the Constants

We believe that the constant c2(W ) > 0 from Theorem 1 is far from optimal. For
instance, if this method is applied for constructing curves in the sphere S2 with many
ovals, i.e., with the choice r = 0, W = S2 × {0} ⊂ J 0(S2,R), the constant is quite
small: M. Nastasescu [17] has done numerical simulations for the expected number
of ovals of a random curve with respect to our measure (3), showing that

1

d2

∫

P2,d
b0(�

{S2×{0}}(p))μd(dp) ≈ 0.0195,

but the maximal curves have (d−1)(d−2)
2 + 1 = d2

2 + O(d) ovals. A possibility for
increasing the constant is changing the probability measure. We suspect that choosing
the L2-measure concentrated on top spherical harmonics should maximize (or at least
increase) this constant, but still we do not think that this method can produce maximal
objects. (The exception to this statement is the case of zeroes of polynomials of one
variable: spherical harmonics of the top degree in this case are linear combinations of
cos(dθ) and sin(dθ) and therefore have the maximal possible number of zeroes.)

3.4 How Constructive Is This Method?

In the case of projective hypersurfaces, the construction of maximal objects typically
uses (variations of) Viro’s patchwork. If one tries to write a maximal hypersurface by
putting random Gaussian coefficients in front of the (rescaled) monomial basis, the
probability that she will get a hypersurface with rich topology decays exponentially
as d → ∞. More precisely, if we sample p ∈ Pn,d according to the law2

p(x) =
∑

|α|=d

ξα

(

d!
α0! · αn !

)1/2

xα0
0 · · · xαn

n ,

where {ξα} is a family of independent standard Gaussians, then Ref. [6] implies that
for every c > 0 there exist a1, a2 > 0 such that

P

{

b(Z(p)) ≥ cdn
}

≤ a1e−c2d .

Similar statements hold for polynomial singularities [5].
In the general case ofmaps singularities,we are not aware of any othermethod, other

than the one proposed in the current paper, for producingmaps with singularities of the

2 This is called a random Bombieri–Weyl polynomial, or Kostlan polynomial.
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maximal possible order.Moreover, the construction of the probabilitymeasureμd from
the current paper gives away to build polynomialmapswith rich singularitieswith high
probability, as follows. First, recall that an equivalent way to define the probability
distribution μd is by defining the random polynomial (i.e., a random variable with
values in the space of polynomials)

p(x) :=
∑

d−�∈2N

∑

j∈J�

ξ�, j‖x‖d−�h�, j

(

x

‖x‖
)

,

where for every � such that d −� is even, {h j,�} j∈J�
is an L2(Sn)-orthonormal basis for

the space of harmonic polynomials of degree �, and {ξ�, j }�, j is a family of independent
standard Gaussian variables (see Ref. [14]). Then, the integral (9) equals

∫

Pn,d

bi (�
W (p)) = Ebi (�

W (p)).

Therefore, by putting random coefficients in front of the spherical harmonics basis,
the probability of getting a map with rich singularities can be bounded from below.
More precisely, letting 0 < c2(W ) ≤ c1(W ) be the constants from (1) and Theorem
1, respectively, then for every 0 ≤ c ≤ c1(W ),

P

{

b(�W (p)) ≥ cdn
}

≥ 1 − c1(W ) − c2(W )

c1(W ) − c
, (10)

(which, of course, is interesting when c is far from c1(W )).

Proof of (10) Recall Markov’s inequality: for a non-negative random variable ζ ≥ 0
and for every t > 0,

P {ζ ≥ t} ≤ Eζ

t
. (11)

Let now ζ : Pk
n,d → [0,∞) be the non-negative random variable ζ := c1(W )dn −

b(�W (·)) (non-negativity a.e. follows from (1)). Then,

P

{

b(�W (p)) ≥ cdn
}

= 1 − P

{

b(�W (p)) ≤ cdn
}

= 1 − P

{

ζ ≥ (c1(W ) − c)dn
}

≥ 1 − Eζ

(c1(W ) − c)dn
(by (11))

≥ 1 − c1(W )dn − c2(W )dn

(c1(W ) − c)dn
(by Theorem 1)

= 1 − c1(W ) − c2(W )

c1(W ) − c
.

��
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Remark 6 The price that one needs to pay to get rich singularities in the spherical
harmonics basis (compared to themonomial one) is having an expression for the spher-
ical harmonics themselves. There is an interesting inductive construction for building
spherical harmonics of degree � on Sn once one knows all the spherical harmonics
of degree up to � on the sphere Sn−1 (see Ref. [14, Section 7.2]). In principle one
can therefore start from the trigonometric functions (the harmonics on S1) and build
up all the n-dimensional harmonics, but she will need to know also the Gegenbauer
polynomials.

3.5 AVariation on the Argument: Hypersurfaces with Many Umbilics

The same scheme from Sect. 2 can be used to prove the existence of other type of
rich singularities. We discuss in this section the example the existence of algebraic
hypersurfaces with many umbilics, as suggested by B. Shapiro. To explain the result,
let us fix some notation first.

Following Ref. [4], for every n ∈ N and for every w = (w1, . . . , wn) ∈ N
n such

that

μ(w) :=
n

∑

i=1

iwi = n,

we denote by C w
n ⊂ Sym(n,R) the set of real symmetric matrices with exactly wi

eigenvalues of multiplicity i , for every i = 1, . . . , n. In this way, the set of symmetric
matrices with multiple eigenvalues equals

�n :=
⊔

{w | w1<n}
C w

n (12)

(its complement is Sym(n,R)\�n = C (n,0,...,0)
n ). The decomposition (12) gives a

semialgebraic stratification of �n [20] whose strata have codimension [2]:

k(w) := codimSym(n,R)

(

C w
n

) =
n

∑

i=1

(i − 1)(i + 2)

2
wi , (13)

Notice in particular that �n has codimension 2.
Let now (M, g) be a smooth Riemannian manifold of dimension n and � ⊂ M

be a smooth hypersurface. For every z ∈ � let νz ∈ Tz M be a unit normal to � (the
unit normal is defined up to a sign). The second fundamental form of � at z in the
direction of νz is the quadratic form h�

z : Tz� → R defined by

h�
z (v) := gz(νz,∇vv), v ∈ Tz�, (14)

where ∇ is the Levi–Civita connection of (M, g). For every w = (w1, . . . , wn−1) ∈
N

n such that μ(w) = n − 1 we denote now by �w the set of points in � such that the
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symmetric matrix representing h�
z in some (and hence all) orthonormal basis for Tz�

belongs to C w
n−1 (this definition does not depend on the choice of the unit normal).

Notice that, if the second fundamental form of � has the appropriate transversality
property, the codimension of the set�w in� is given by k(w), as in (13) with the sum
only up to n − 1. For a given w = (w1, . . . , wn−1) ∈ N

n such that μ(w) = n − 1 we
will call the set �w the set of w--umbilics of �. (For example, when n = 3, � is a
surface and the set �(0,1) consists of the standard umbilics of �.)

We will be interested in umbilics of hypersurfaces defined by smooth functions
p : M → R, this is why we introduce the following definition.

Definition 7 Let (M, g) be a smooth Riemannian manifold. For a smooth function
p : M → R such that the equation p = 0 is regular on M and for every w ∈ N

n−1

we define �w(p) ⊂ M as the set of w-umbilics of the zero set of p.

In this case, it is useful to observe the following fact.

Lemma 8 Let (M, g) be a smooth Riemannian manifold and let p : M → R be a
smooth function such that the equation p = 0 is regular on M and define � := {p = 0}
(a smooth hypersurface of M). Then, for every z ∈ �, we have an identity of quadratic
forms:

‖gradz(p)‖h�
z = −he(p)z |Tz�,

where he(p) denotes the covariant Hessian and grad(p) the Riemannian gradient.

Proof Recall first the definition of the covariant Hessian of p:

he(p)(v) := v(vp) − (∇vv)p.

When restricted to u ∈ Tz� = ker(Dz p), we have

he(p)z(u) = −((∇uu)p)z = −Dz p(∇uu).

On the other hand, by definition (14), we have

h�
z (u) = gz(∇uu, ν(z)) = gz

(

∇uu,
gradz(p)

‖gradz(p)‖
)

= 1

‖gradz(p)‖ Dz p(∇uu).

From this, the conclusion follows. ��
Clearly, the definition of w-umbilics of � depends on the ambient Riemannian

metric, but it is actually a conformal invariant. The following proposition is probably
well-known to expert, but we were unable to locate it in the literature.

Proposition 9 Let (M, g) be a smooth n-dimensional Riemannian manifold and � ⊂
M be a smooth hypersurface. For every w = (w1, . . . , wn−1) ∈ N

n such that μ(w) =
n − 1 the set of w-umbilics of � depends only on the conformal class of g.
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Proof Let ϕ ∈ C∞(M,R) and let us consider the conformally equivalent metric
g̃ := e2ϕg on M . For any metric quantity X associated with g, we will denote by ˜X ,
the analogous quantity relative to g̃. The relation between the Levi-Civita connections
of the two metrics is given by

˜∇V W = ∇V W + V (ϕ)W + W (ϕ)V − g(V , W )grad(ϕ).

(This follows from the Koszul identity.) From this we deduce the relation between the
two second fundamental forms of the hypersurface �. Let V be a smooth vector field
V on M with the property that V (z) ∈ Tz� for all z ∈ �. Then, for any such z ∈ �

and v = V (z) ∈ Tz�, we have

˜h�
z (v) = g̃z (̃νz, ˜∇V V |z)

= e2ϕ(z)gz

(

1

eϕ(z)
νz, (∇V V + 2V (ϕ)V − g(V , V )grad(ϕ)) |z

)

= eϕ(z)gz
(

νz,∇vV − gz(v, v)gradz(ϕ)
)

= eϕ(z) (

h�
z (v) − gz(v, v)Dzϕ(νz).

)

Let v1, . . . , vn−1 be a basis of Tz� that is orthonormal for themetric g and let H be the
matrix that represents the bilinear symmetric form associated to h�

z , with respect to the
chosen basis. Then, the vectors ṽi := e−ϕ(z)vi form an orthonormal basis for g̃ and,
by the above computation, the matrix ˜H that represents˜h�

z in the basis ṽ1, . . . , ṽn−1
is

˜H = e−ϕ(z) (H − Dzϕ(νz) · 1n−1) .

The eigenspaces of ˜H coincide with those of H , thus H ∈ C w
n if and only if ˜H ∈ C w

n .
This yields that z is a w-umbilic of � in (M, g) if and only if it is in (M, g̃). ��

Let now z ∈ Sn ⊂ R
n+1 and denote by φz : R

n → Sn\{z} the inverse of the
stereographic projection from z, divided by two. If z = −e0 = (−1, 0, . . . , 0) this
map can be explicitly written as

φ−e0(y) = 1

2

1

(1 + ‖y‖2)
(

1 − ‖y‖2
2y

)

. (15)

The general case z �= −e0 can be obtained by composing (15) with an orthogonal
transformation. It is a well-known fact (and immediate to check) that for every z ∈ Sn

the map

φz : (Rn, gRn ) → (Sn \ {z}, gSn ),

where gRn denotes the standard Riemannian structure on R
n and gSn = gRn+1 |Sn is

the standard Riemannian structure on Sn induced by the ambient Euclidean space, is
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a conformal map.3 In fact

φ∗
z gSn = 1

(1 + ‖y‖2)2 · gRn . (16)

It follows from (16) and Proposition 9, that for every z ∈ Sn , if p : Sn → R is
smooth with p = 0 regular,

φ−1
z

(

�w(p)
) = �w(p ◦ φz),

i.e., the structure of thew-umbilics of {p = 0} (with respect to the Riemannian metric
of the sphere) is the same as the structure of the w-umbilics of {φz ◦ p = 0} (with
respect to the metric of Rn).

Let now p = (p1, . . . , pk) ∈ Pk
n,d . (Wewill need to work just in the case k = 1, but

we state the next property in greater generality.) We modify now the above definition
(4) in order to study umbilical properties. For every z ∈ Sn we consider the smooth
map ̂fz,d : D → R defined by

̂fz,d(v) := d− n
2 p

(

φz(d
−1v)

)

. (17)

As above, sincewe have defined a probabilitymeasureμd on the space of polynomials,
the map ̂fz,d : D → R

k (which depends on p) can be thought as a random variable
with values in C∞(D,Rk). The following proposition substitutes (5).

Proposition 10 For every nonempty open set U ⊆ C∞(D,Rk) there exists c(U ) > 0
such that for every z ∈ Sn,

lim inf
d→∞ μd

{

̂fz,d ∈ U

}

≥ c(U ).

Remark 11 In fact, from the proof, it will follow that the number c(U ) > 0 is the same
as in (7).

Proof We rehearse the proof of (5). The only difference is that this time we have to
study the covariance function of ̂fd := ̂fz,d , which we denote by ̂Kd(x, y) : D× D →
R

k×k . It follows that we have the following relation between the two random fields:

̂fd(u) = fd

(

d · exp−1
z (φz(d

−1u))
)

= fd

(

d · τ(d−1u)
)

,

where we denote by τ : Rn → D(0, π) ⊂ R
n the (deterministic) function defined as

τ := exp−1
z ◦φz . It is easy to check that this function is smooth, that τ(0) = 0 and that

d0τ = idRn . From this, we conclude that as d → ∞, the function u �→ d · τ(d−1u)

converges in the C∞(Rn,Rn)-topology to the identity function d0τ . This, together
with Ref. [10], implies that the covariance function ̂Kd converges in the C∞-topology
to the function ̂K∞, defined as in (6). ��
3 Note that the stereographic projection from the center of the sphere to its tangent space is not conformal
(unless n = 1).
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We are now in the position of proving the following result.

Theorem 12 For every w = (w1, . . . , wn−1) ∈ N
n−1 such that μ(w) = n − 1 and

such that k(w) ≤ n − 1, there exists d(w) ∈ N and ĉ2(w) > 0 such that for every
d ≥ d(w) there exists an open set Uw

d ⊂ R[x0, . . . , xn](d) such that for every p ∈ Uw
d

and for every j = 0, . . . , n − 1 − k(w)

b j (�
w(p)) ≥ ĉ2(w)dn .

Proof The proof proceeds following the same steps as in Sect. 2, with some small
modifications.

Given w = (w1, . . . , wn−1) ∈ N
n−1 such that μ(w) = n − 1 and such that

k(w) ≤ n − 1, denote by W w
0 ⊂ J 2(n, 1) the semialgebraic set

W w
0 :=

{

(x, a, u, q) ∈ R
n × R × R

n × sym2(Rn)

∣

∣

∣

∣

a = 0, q|u⊥ ∈ C w

}

. (18)

(The notation “q|u⊥ ∈ C w” means that the symmetric matrix representing q|u⊥ in
some orthonormal basis for u⊥ is in C w.) Then, because of Lemma 8, for a smooth
function f : D → R with f = 0 a regular equation, we have

�w( f ) = j2 f −1(W w
0 ).

Then, as in Sect. 2.1, we can find a smooth function f : D → R such that (i) j2 f
is transversal to W w

0 , (ii) �0 := j2 f −1(W w
0 ) ⊂ int(D) and (iii) bi ( j2 f −1(W w

0 )) ≥ 1
for every 0 ≤ i ≤ n − 1 − k(w). As in Sect. 2.2, this defines an open set U0 in the
C∞-topology such that every g ∈ U0 also has these properties. We choose on the
space of polynomials the same measure as in Sect. 2.3.

Instead of (4), we consider now the function ̂fz,d defined in (17). To compute the
limit probability of the open set U0, instead of (5), we use now Proposition 10 and
obtain for every z ∈ Sn :

lim inf
d→∞ μd

{

̂fz,d ∈ U0

}

≥ c(U0) > 0.

Observe now that, since the map φz
(

d−1·) : D → B(z, d−1) is conformal, Propo-
sition 9 implies that the pairs

(

D, �w( ̂fz,d)
)

and

(

B(z, d−1),�w(p) ∩ B(z, d−1)

)

are diffeomorphic.

(The fact that �w is a conformal invariant substitutes the requirement that the singu-
larity is diffeomorphism invariant.)

The proof can proceed now as in Sect. 2.5: we denote by ν : Pn,d → N the function
counting the number of connected components of �w(p) which are homeomorphic
to �0, and we show that

∫

Pn,d
ν(p) μd(dp) ≥ c̃(w)dn for d ≥ d(w) and for some

c̃(w) > 0. Then, reasoning exactly as in Sect. 2.6 concludes the argument. ��
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Remark 13 Since the double cover Sn → RPn is a local isometry, the same result
holds true for the w-umbilical points of the projective zero set of p.

Remark 14 Let p ∈ Pn,d and pick z ∈ Sn such that p(z) �= 0. Let also ϕ := φ−1
z : Sn \

{−z} → R
n be the stereographic projection. For every w = (w1, . . . , wn−1) ∈ N

n−1

such that μ(w) = n − 1 and such that k(w) ≤ n − 1, let W w ⊂ J 2(Sn,R) be the
subset W w := ϕ−1(W w

0 ), where W w
0 is defined in (18). Since ϕ is semialgebraic, then

so is W w. Moreover, j2 p is transversal to W if and only if j2(p ◦ ϕ) is transversal
to W w and, by Proposition 9, j2 p−1(W w) equals the set of w-umbilics of {p = 0}.
Therefore, we can use Ref. [16, Theorem 1] and conclude that there exists ĉ1(w) > 0
such that for the generic polynomial p : Sn → R of degree d, the sum of the Betti
numbers of the w-umbilics of {p = 0} is bounded by

b(�w(p)) ≤ ĉ1(w)dn .
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