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TOPOLOGICAL SINGULARITIES IN PERIODIC MEDIA:

GINZBURG-LANDAU AND CORE-RADIUS APPROACHES

R. ALICANDRO, A. BRAIDES, M. CICALESE, L. DE LUCA, AND A. PIATNITSKI

Abstract. We describe the emergence of topological singularities in periodic media within the

Ginzburg-Landau model and the core-radius approach. The energy functionals of both models
are denoted by Eε,δ, where ε represent the coherence length (in the Ginzburg-Landau model) or

the core-radius size (in the core-radius approach) and δ denotes the periodicity scale. We carry

out the Γ-convergence analysis of Eε,δ as ε → 0 and δ = δε → 0 in the | log ε| scaling regime,
showing that the Γ-limit consists in the energy cost of finitely many vortex-like point singularities

of integer degree. After introducing the scale parameter (upon extraction of subsequences)

λ = min
{

1, lim
ε→0

| log δε|
| log ε|

}
,

we show that in a sense we always have a separation-of-scale effect: at scales less than ελ we first

have a concentration process around some vortices whose location is subsequently optimized,
while for scales larger than ελ the concentration process takes place “after” homogenization.

Keywords: Ginzburg-Landau Model; Core-Radius Approach; Topological Singularities; Ho-

mogenization; Γ-convergence.
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Introduction

Phase transitions mediated by the formation of topological defects characterize several physical
phenomena such as superfluidity, superconductivity and plasticity (see [39, 40, 41, 31, 37, 32]). The
study of such topological defects has become an extremely active research field in mathematics after
the progresses achieved in the analysis of the Ginzburg Landau (GL) energy functional in the last
decades (see e.g. [13, 45]). In [3] it has been proved that the GL functional, originally introduced to
model the phenomenology of phase transitions in Type-II superconductors through the formation
of vortex singularities of a complex order parameter, provides a good variational description for the
emergence of vortices in XY spin systems and of screw dislocations in crystal plasticity (see also
[2, 42, 4, 24, 9]). The results obtained in [3] suggest to exploit the GL theory for a phenomenological
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alternative description of several material-dependent variational models, opening the way to a
number of new mathematical problems involving the analysis of this functional. For instance,
in the modeling of materials, one needs to suitably modify it to include the usual kinematic
constraints and material constants which are specific of crystal structures. As a first step in this
direction, here we study a variant of the GL energy functional to include heterogeneities of the
medium.

Before describing the case of heterogeneous media, we briefly recall the analysis in the homo-
geneous case. Let Ω ⊂ R2 be an open bounded set and let ε denote the coherence length of the
GL energy (proportional to the length scale of the core of a screw dislocation in a plastic crystal
or to the lattice spacing in a XY spin system). Let a > 0 and let GLε : H1(Ω;R2) → R be the
Ginzburg-Laundau functional defined as

(0.1) GLε(v) := a

∫
Ω

|∇v(x)|2 dx+
1

ε2

∫
Ω

(1− |v(x)|2)2 dx .

The asymptotic behavior of GLε as ε→ 0 has been studied in order to give an energetic description
of the onset of vortices (see for instance [13, 45]). A prototypical vortex of degree z ∈ Z \ {0} at a
point x0 ∈ Ω can be thought of as the point singularity of a vectorial order parameter v̄ε : Ω→ R2

which, outside the ball of radius ε centered at x0, winds around the center as ( x−x0

|x−x0| )
z. The energy

of v̄ε diverges at order | log ε| as ε → 0. As a consequence, to detect the effective energy cost of
finitely many vortex singularities, one needs to study the GLε energy at a logarithmic scaling; that

is, to consider the asymptotic behavior of functionals GLε(v)
| log ε| . It has been proved in [34, 1] that a

sequence {vε}, along which these energy functionals are equi-bounded, has Jacobians Jvε that, up
to a subsequence, converge in the flat sense (see Section 1) to an atomic measure µ =

∑n
i=1 ziδxi

whose support represents the position of the limiting vortices. The Γ-limit of GLε
| log ε| with respect

to this convergence at µ is then given by 2πa
∑n
i=1 |zi| (supposing xi 6= xj if i 6= j). This value can

be rewritten as 2πa|µ|(Ω) and thought of as a functional depending on the total variation |µ|(Ω)
of µ in Ω.

Now, if more in general Ω is regarded as a reference configuration of a heterogeneous material,
described by periodic heterogeneities at a length scale δε, we may consider the energies GLε :
H1(Ω;R2)→ R defined as

(0.2) GLε(v) :=

∫
Ω

a
( x
δε

)
|∇v(x)|2 dx+

1

ε2

∫
Ω

(1− |v(x)|2)2 dx ,

where a : R2 → [α, β] (0 < α < β) is a (0, 1)2-periodic function describing the material properties
of the media. Note that the energy GLε is controlled from (above and) below by a multiple of the
GL energy GLε above. Therefore, setting

X(Ω) :=
{
µ ∈M(Ω) : µ =

n∑
i=1

ziδxi , n ∈ N , zi ∈ Z \ {0} , xi ∈ Ω
}
,

the following compactness result holds true.

Theorem 0.1. Let {vε}ε ⊂ H1(Ω;R2) be such that GLε(vε) ≤ C| log ε|. Then, there exists

µ ∈ X(Ω) such that, up to subsequences, Jvε
flat→ πµ .

Assuming δε → 0 as ε→ 0 we expect the effective limiting energy at the vortex scaling to be a
homogeneous energy combining both homogenization and concentration effects. As these effects
depend on the mutual rate of convergence of the vanishing parameters ε and δε, different regimes
are possible. Heuristically, at some extreme regimes we will have “separation of scales”. Namely,
if ε tends to 0 sufficiently fast with respect to δ = δε then we expect that δ can be thought of as
an independent variable, the dependence on which separately dealt with after letting ε→ 0 with
fixed δ. In this case, the limit as ε→ 0 with δ fixed gives an energy of the form 2π

∑n
i=1 |zi|a

(
xi
δ

)
,

and the optimization of the location of vortices at minimum points for a (we may assume here
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that a be continuous), which tend to be dense as δ → 0, finally provides a limit of the form

2πmin a

n∑
i=1

|zi|.

Note that in order that this argument may work, the energy of a recovery sequence should be
concentrated on a o(δ)-neighborhood of a minimum point of a. This gives a condition

(0.3)
| log δ|
| log ε|

� 1

by testing with functions winding as x−xi
|x−xi| around a vortex xi.

Conversely, if δ = δε tends to 0 sufficiently fast with respect to ε, we expect that the variable ε
be considered as fixed and a homogenization process may be first performed with δ → 0. In this
case, moreover, since the potential term in (0.2) forces vε to have modulus equal to one as ε→ 0,
(neglecting for a moment the effect of singularities) we may regard the homogenization process to
be restricted to the first part of the energy in (0.2), which can be written as

Gδ(u) :=

∫
Ω

a
(x
δ

)
|∇u|2 dx ,

where u is the lifting of v, i.e., v = eıu . The homogenization of functionals of this form has been

extensively studied in terms of Γ-convergence (see [19]) and it has been shown that Gδ
Γ−→ G0 as

δ → 0 , where

G0(u) :=

∫
Ω

〈Ahom∇u,∇u〉 dx,

and Ahom is the two-by-two symmetric matrix defined by

(0.4) 〈Ahomξ, ξ〉 := inf

{∫
(0,1)2

a(y)|ξ +∇ϕ(y)|2 dy : ϕ ∈W 1,∞
per ((0, 1)2)

}
.

At this point, the subsequent analysis involves the study of the Γ-limit as ε→ 0 of a homogeneous
but anisotropic energy functional related to G0 at scale | log ε|. The validity of this separation
of scales can be formalized by using a coarea formula-type argument, which shows that the Γ-
convergence of GLε can be obtained working within another well-known framework in the analysis
of topological singularities; i.e., the so-called core-radius approach. That approach consists in com-
puting the gradient term in the energy outside small regions – the cores – around the singularities,
and allows to directly work with S1-valued order parameters (see e.g. [13, 5]). In this framework,
we may describe the energy around a vortex of degree z by an asymptotic formula of the type

(0.5) ψ(z) = lim
R
r→+∞

1

log R
r

min
{∫

BR\Br
〈Ahom∇u,∇u〉 dx : u ∈ H1(BR \Br), deg (eıu;Br) = z

}
,

from which the Γ-limit is obtained by locally optimizing the degree (possibly approximating a
vortex by more vortices). A computation eventually allows to conclude that the limit energy has
the form

2π
√

detAhom

n∑
i=1

|zi|.

In order that this argument work, minimum problems in (0.5) should be seen as limits of minimum
problems

(0.6) min
{∫

BR\Br
a
(x
η

)
|∇u|2 dx : u ∈ H1(BR \Br), deg (eıu;Br) = z

}
,

for some choice of r and R with R/r → +∞, and η → 0. This can be done by a scaling argument
if δ � ε. An approximation argument, more in general, allows to extend this result to

(0.7) | log δ| ≥ | log ε|

using the scaling properties of the energies.
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It is interesting to note that there is a scale gap between the two separation-of-scale regimes
given by (0.3) and (0.7); i.e., when

(0.8) lim
ε→0

| log δ|
| log ε|

= λ ∈ (0, 1)

(the existence of the limit is not restrictive up to extraction of subsequences). In this case the
behavior of the Γ-limit is a convex combination of the extreme ones. Recovery sequences are
constructed with vortices concentrating close to minimum points for a, while they optimize oscil-
lations at scales between ε and 1 so as to obtain a homogenized overall behavior at those scales.
The final form of the Γ-limit is then

2π
(

(1− λ) min a+ λ
√

detAhom
) n∑
i=1

|zi|,

which comprises also the extreme cases, upon setting

(0.9) λ = lim
ε→0

| log δ|
| log ε|

∧ 1.

Note that, since in the logarithmic regime, the GLε energies concentrate at any scale between
ε and 1, their behavior is very different from that of the corresponding scalar version, the inho-
mogeneous Cahn-Hilliard functionals given (after scaling) by

CHε(u) := ε

∫
Ω

a
( x
δε

)
|∇u(x)|2 dx+

1

ε

∫
Ω

(1− |u(x)|2)2 dx u ∈ H1(Ω),

which concentrate at scale ε producing sharp-interface models. In that case separation of scale
occurs for ε � δε and δε � ε, while in the critical regime δε ∼ ε the effective surface tension
is described by an optimal-profile problem depending on K := limε→0 δε/ε (see [6]). In a sense,
in the GL case we do not have a critical behavior and we always have separation of scales. The
parameter λ above can be seen as describing a threshold scale above and below which the two
types of separation of scales take place.

Although suggested by the heuristics, the computation of the Γ-limits described above is highly
non-trivial and needs several new ideas in order to combine techniques from GL and homogeniza-
tion theories. We briefly outline some of the most relevant technical issues, and state the main
results of the paper formalizing the heuristic description given above, subdividing the analysis in
the cases δε . ε and δε � ε

The following result is proven in Section 6.2.

Theorem 0.2. If lim sup
ε→0

δε
ε < +∞, then the following Γ-convergence result holds true.

(i) ( Γ-liminf inequality) Let {vε}ε ⊂ H1(Ω;R2) be such that Jvε
flat→ πµ for some µ ∈ X(Ω) .

Then

lim inf
ε→0

GLε(vε)

| log ε|
≥ 2π

√
detAhom|µ|(Ω).

(ii) ( Γ-limsup inequality) For every µ ∈ X(Ω), there exists a sequence {vε}ε ⊂ H1(Ω;R2)

such that Jvε
flat→ πµ and

lim sup
ε→0

GLε(vε)

| log ε|
≤ 2π

√
detAhom|µ|(Ω) .

Within the core-radius approach, we carry out the Γ-convergence analysis for more general
quadratic functionals than the one in the leading term of (0.2). Specifically, let f : R2 × R2×2 →
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[0,+∞) be a Carathéodory function satisfying the following assumptions:

f(·,M) is (0, 1)2-periodic for every M ∈ R2×2;(P)

there exist two constants α, β with 0 < α ≤ β such that(G)

α|M |2 ≤ f(y,M) ≤ β|M |2 , for every M ∈ R2×2 and for almost every y ∈ R2 ;

f(y, ·) is homogeneous of degree 2 for almost every y ∈ R2.(H)

We describe the asymptotic behavior in the logarithmic regime of the functionals

Fε,δε(µ,w) :=

∫
Ωε(µ)

f
( x
δε
,∇w(x)

)
dx ,

defined for µ =
∑n
i=1 ziδxi ∈ X(Ω) and w ∈ AFε(µ) , with

(0.10) AFε(µ) := {w ∈ H1(Ωε(µ);S1) : deg(w, ∂Bε(xi)) = zi for every i = 1, . . . , n} ,

where Ωε(µ) := Ω\
⋃n
i=1Bε(xi) . Like the Jacobians in the GL theory, µ is the relevant parameter

to keep track of energy concentration. Therefore, we let the functional depend only on µ by setting

Fε(µ) := inf
w∈AFε(µ)

Fε,δε(µ;w) .

We prove that, for δε . ε, the functional Fε asymptotically behaves as GLε, namely, the ho-
mogenization process takes place “before” the concentration effect. This implies that the effective
cost of a singularity depends on the homogenized energy associated to the functionals Fδ(·;E)
defined for any open set E as

(0.11) Fδ(w;E) :=

∫
E

f
(x
δ
,∇w(x)

)
dx , w ∈ H1(E;S1) .

Notice indeed that

(0.12) Fε(µ) = inf
w∈AFε(µ)

Fδε(w; Ωε(µ)) .

In [8] it has been proved that, as δ → 0, the functionals Fδ Γ-converge to the homogenized
functional Fhom(·;E) : H1(E;S1)→ [0,+∞) defined as

Fhom(w;E) :=

∫
E

Tfhom(w(x),∇w(x)) dx .

In the formula above the energy density Tfhom is the tangential homogenization of the function f
(see formula (1.6)).

In order to make the core-radius functionals non-trivial, we define Fε only on the set

(0.13) Xε(Ω) :=
{
µ =

n∑
i=1

ziδxi ∈ X(Ω) : min
i 6=j

{1

2
|xi − xj | ,dist(xi, ∂Ω)

}
≥ 2ε

}
.

In view of assumption (G) and of the classical results on the core-radius approach functional (see
for instance [5, Theorem 3.2]), we have that the functionals Fε satisfy compactness properties
analogous to the ones established in Theorem 0.1.

Theorem 0.3. Let {µε}ε ⊂ X(Ω) be such that µε ∈ Xε(Ω) for every ε > 0 and that Fε(µε) ≤
C| log ε|. Then, there exists µ ∈ X(Ω) such that, up to subsequences, µε

flat→ µ.

The following theorem on the asymptotic limit of the functionals Fε is proved in Section 6.1.

Theorem 0.4. If lim supε→0
δε
ε < +∞, then the following Γ-convergence result holds true.

(i) ( Γ-liminf inequality) For any family {µε}ε ⊂ X(Ω) such that µε ∈ Xε(Ω) for every ε > 0

and µε
flat→ µ with µ ∈ X(Ω) we have

lim inf
ε→0

Fε(µε)

| log ε|
≥ F0(µ).
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(ii) ( Γ-limsup inequality) For every µ ∈ X(Ω), there exists a sequence {µε}ε ⊂ X(Ω) with

µε ∈ Xε(Ω) for every ε > 0 such that µε
flat→ µ and

lim sup
ε→0

Fε(µε)

| log ε|
≤ F0(µ) .

In the statement above F0 : X(Ω)→ [0,+∞) is the functional defined as

(0.14) F0(µ) :=

n∑
i=1

Ψ(zi;Tfhom) for every µ =

n∑
i=1

ziδxi ∈ X(Ω) ,

where Ψ(z ;Tfhom), introduced in (2.9), is the asymptotic energy cost of a singularity of degree
z in a homogeneous medium whose energy is Fhom. The function Ψ(z ;Tfhom) is obtained via an
asymptotic cell-problem formula and a relaxation procedure. Loosely speaking, we first introduce
the minimal Fhom energy in an annulus around a singularity with degree z and we show that such
a quantity admits a finite limit, denoted by ψ(z;Tfhom), when the quotient of the radii goes to
+∞ . Then Ψ(·;Tfhom) is obtained as the relaxation of the function ψ(· ;Tfhom) on Z (see formula
(2.9)), accounting for the fact that a singularity of degree z can be approximated by a family
of singularities of degree zj with

∑
j zj = z . In the simple case that f(x,M) = a(x)|M |2 with

a ∈ [α, β], we actually prove that Ψ(z ;Tfhom) = 2π
√

detAhom|z| (see Proposition 2.3).
Using a scaling argument, in Proposition 3.2 we show that ψ(·;Tfhom) is also the asymptotically

minimal Fε energy on “fat” annuli around a vortex of degree z. Here, “fat” stays for thick enough
to contain infinitely many δε-periodicity cells. Such a property allows to apply the homogenization
result in [8] that we show to hold even if the functionals are subject to a degree constraint (see
Theorem 1.5 & Corollary 1.6).

A further technical aspect of our analysis is the use, in the proof of the lower bound, of a
refinement of the celebrated ball construction introduced in [43, 33]. This method allows to find a
one-parameter family Bε(t) of growing and merging balls, that in turn identify a family of annuli
where the energy concentrates. In our case, using a strategy similar to [25], we stop the process at
an appropriate “time” tε at which the constructed family of annuli is “fat” enough to apply the
analysis described above and to obtain the desired lower bound.

Using the same strategy exploited for δε . ε we are able to study the asymptotic behavior of
the core-radius approach and of the Ginzburg-Landau functionals also for δε � ε (see also [30] for
an example in this case). More precisely, we assume that δε → 0 as ε→ 0 and that

(0.15) λ := lim
ε→0

| log δε|
| log ε|

∈ [0, 1) ,

which implies that limε→0
δε
ε = +∞ . Furthermore, we assume that

(0.16) Fδ(w;E) :=

∫
E

a
(x
δ

)
|∇w|2 dx , w ∈ H1(E;S1) ,

for some measurable (0, 1)2-periodic function a with a(y) ∈ [α, β] ⊂ (0,+∞) for a.e. y ∈ R2. The
main results in this scaling regime are the following two theorems proven in Section 7.

Theorem 0.5. If (0.15) is satisfied, then the following statements hold true.

(i) ( Γ-liminf inequality) For any family {µε}ε ⊂ X(Ω) such that µε ∈ Xε(Ω) for every ε > 0

and µε
flat→ µ with µ ∈ X(Ω) we have

lim inf
ε→0

Fε(µε)

| log ε|
≥ 2π

((
1− λ)ess inf a+ λ

√
detAhom

)
|µ|(Ω) .

(ii) ( Γ-limsup inequality) For every µ ∈ X(Ω), there exists a sequence {µε}ε ⊂ X(Ω) with

µε ∈ Xε(Ω) for every ε > 0 such that µε
flat→ µ and

lim sup
ε→0

Fε(µε)

| log ε|
≤ 2π

((
1− λ)ess inf a+ λ

√
detAhom

)
|µ|(Ω) .

Theorem 0.6. If (0.15) is satisfied, then the following Γ-convergence result holds true.
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(i) ( Γ-liminf inequality) Let {vε}ε ⊂ H1(Ω;R2) be such that Jvε
flat→ πµ for some µ ∈ X(Ω) .

Then

lim inf
ε→0

GLε(vε)

| log ε|
≥ 2π

((
1− λ)ess inf a+ λ

√
detAhom

)
|µ|(Ω).

(ii) ( Γ-limsup inequality) For every µ ∈ X(Ω), there exists a sequence {vε}ε ⊂ H1(Ω;R2)

such that Jvε
flat→ πµ and

lim sup
ε→0

GLε(vε)

| log ε|
≤ 2π

((
1− λ)ess inf a+ λ

√
detAhom

)
|µ|(Ω) .

We conclude the introduction with a few comments and remarks about perspectives. A natural
follow-up of our results is the extension of our analysis to GL energies with more general integrands
in the leading term as those considered in the core-radius approach. A necessary first step in this
direction is the proof of a homogenization result for energies defined on maps taking values in a
tubular neighborhood of S1. More specifically, one could relax the S1-constraint in the functionals
Fδ(·;E) in (0.11), assuming the latter to be defined on H1(E;B1+τ \B1−τ ) for some τ ∈ (0, 1), and
then study their asymptotic behavior when both δ and τ tend to 0 . Another possible extension
of our model is the analysis of the case of energy density f satisfying mild coercivity assumptions.
This would allow to analyze for instance the problem of topological singularities in presence of soft
inclusions of the inhomogeneous material. In this respect, an analysis on the behavior of minimizers
of GL functionals in perforated domains has been carried out in [12]. Another challenging issue
is to look at a higher-order description of the functionals GLε and Fε, that in the homogeneous
case leads to the so-called renormalized energy governing the dynamics of the singularities (see for
instance [44] for the GL theory and [4] for discrete models exhibiting topological singularities).
In our case of vanishing inhomogeneities we expect the corresponding renormalized energy to
depend on the functional Tfhom. Furthermore, we believe that some of the techniques developed
in this paper can also be used to make progress in studying stochastic homogenization problems in
concentration theory, as for instance those in which the energy density f is replaced by a stationary
random potential.

We finally note that inhomogeneities in the GL theory can also be introduced in the potential
term; e.g., considering energies of the form

(0.17) GLε(v) :=

∫
Ω

|∇v(x)|2 dx+
1

ε2

∫
Ω

(
a
( x
δε

)
− |v(x)|2

)2

dx .

For some homogenization results for energies (0.17) see [10, 11, 28, 29] and the references therein.
The results obtained in those papers differ from ours, since the energy in (0.17) describes a different
physical system, namely Type II superconductors in presence of small impurities. Note that a
complete study of energies of the form (0.17) may require a very complex multi-scale analysis even
in the scalar case (see e.g. [27, 20, 22]).
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1. Notation and preliminary results

Basic notation. Given two vectors x, y ∈ R2, x · y denotes their scalar product. As usual, the
norm of x is denoted by |x| =

√
x · x. For every r > 0 and x ∈ R2, Br(x) denotes the open

ball of radius r centered at x. For x = 0 we also write Br in place of Br(0). S1 denotes the
boundary of B1, namely the unit circle in R2. Given a ∈ R, bac := max{z ∈ Z : z ≤ a} and
dae := min{z ∈ Z : z ≥ a} denote the integer parts of a from below and from above, respectively.
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The imaginary unit is denoted by ι ∈ C and the complex number eιa = cos a+ ι sin a ∈ C is identi-
fied with the Euclidean vector (cos a, sin a) ∈ R2. The identification extends to all S1-valued maps
that can be intended as complex functions as well, if needed. In particular, for every z ∈ Z, by
(x/|x|)z we mean the complex function obtained by taking the z-th complex power of the function
x/|x|. We say that a family {gη}η converges to g0 as η → 0 in the topology T , and we write

gη
T−→ g0 whenever gηn

T−→ g0 for any null sequence {ηn}n∈N. With a little abuse of terminology
the family {gη}η is still called a sequence. The letter C denotes a positive constant whose value
may change each time we write it.

Weak star and flat convergence. Let Ω ⊂ R2 be an open and bounded set with Lipschitz
boundary. Cc(Ω) denotes the space of continuous functions compactly supported in Ω endowed
with the supremum norm. We say that a sequence {µn}n∈N of measures converges weakly star in

Ω to a measure µ, and we write µn
∗
⇀ µ if for any ϕ ∈ Cc(Ω)

〈µn, ϕ〉 → 〈µ, ϕ〉 as n→ +∞ .

C0,1(Ω) denotes the space of Lipschitz continuous functions on Ω endowed with the following norm

‖ψ‖C0,1 := sup
x∈Ω
|ψ(x)|+ sup

x,y∈Ω
x 6=y

|ψ(x)− ψ(y)|
|x− y|

,

and we let C0,1
c (Ω) be its subspace of functions with compact support. The norm in the dual of

C0,1
c (Ω) will be denoted by ‖ · ‖flat and referred to as flat norm, while

flat→ denotes the convergence
with respect to this norm.

Jacobian, current, degree. Given v = (v1, v2) ∈ H1(Ω;R2), the Jacobian Jv of v is the L1

function defined as follows

Jv := det∇v.
For every v ∈ H1(Ω;R2), we can interpret Jv as an element of the dual of C0,1

c (Ω) by setting

〈Jv, ψ〉 :=

∫
Ω

Jv ψ dx , for any ψ ∈ C0,1
c (Ω).

Notice that Jv can be written in a divergence form as Jv = div (v1v2
x2
,−v1v2

x1
), i.e., for any

ψ ∈ C0,1
c (Ω),

(1.1) 〈Jv, ψ〉 = −
∫

Ω

v1v2
x2
ψx1
− v1v2

x1
ψx2

dx.

Equivalently, we have Jv = curl (v1∇v2) and Jv = 1
2curl j(v), where

j(v) := v1∇v2 − v2∇v1

is the so-called current associated to v.
Let A ⊂ Ω be an open set with Lipschitz boundary, and let h ∈ H 1

2 (∂A;R2) with |h| ≥ c > 0.
The degree of h is defined as

deg(h, ∂A) :=
1

2π

∫
∂A

h

|h|
· ∂
∂τ

( h2

|h|
,− h1

|h|

)
dH1 ,

where τ is the tangent field to ∂A and the product in the above formula is understood in the
sense of the duality between H

1
2 and H−

1
2 . In [16, 21] it is proven that the definition above

is well-posed, it is stable with respect to the strong convergence in H
1
2 (∂A;R2 \ Bc) and that

deg(h, ∂A) ∈ Z. Moreover, if v ∈ H1(A;R2 \ Bc) then deg(v, ∂A) = 0 (here and in what follows
we identify v with its trace). Finally, if v ∈ H1(A;R2) and |v| = 1 on ∂A, by Stokes’ theorem
(and by approximating v with smooth functions) one has that

(1.2)

∫
A

Jv dx =
1

2

∫
A

curl j(v) dx :=
1

2

∫
∂A

j(v) · τ dH1 = π deg(v, ∂A).
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Note that any v ∈ H1(A;R2 \ Bc) can be written in polar coordinates as v(x) = ρ(x)eιu(x) on
∂A with |ρ| ≥ c. The function u is said to be a lifting of v. By [14] (see also [15, Theorem 3 and

Remark 3]), if A is simply connected, then deg(v, ∂A) = 0 and the lifting can be selected inH
1
2 (∂A)

with the map v 7→ u being continuous. For A not necessarily simply connected, if Γ is a connected
component of ∂A and the degree of v on Γ is equal to z ∈ Z, then the lifting jumps on Γ by 2πz, but
it can be locally selected to belong to H

1
2 . For 0 < r < R and ξ ∈ R2, let Ar,R(ξ) := BR(ξ)\Br(ξ)

be the annulus of radii r and R centered at ξ, and let v ∈ H1(Ar,R(ξ);S1). Then for every cut
L such that Ar,R(ξ) \ L is a simply connected set, there exists a lifting u ∈ H1(Ar,R(ξ) \ L) of v.
Hence, j(v) = ∇u and from (1.2) it follows that

deg(v, ∂Br(ξ)) =
1

2π

∫
∂Br(ξ)

∇u · τ dH1 .

We introduce a notion of modified Jacobian (a variant of the notion introduced in [1]), which
we will use in our Γ-convergence results. Given 0 < ζ < 1 we define for ρ ∈ [0,+∞) the function

Tζ(ρ) := min
{
ρ
ζ , 1
}

. If v ∈ H1(Ω;R2) we set

(1.3) vζ := Tζ(|v|)
v

|v|
and Jζv := Jvζ .

Note that, for every v := (v1, v2) and w := (w1, w2) belonging to H1(Ω;R2) it holds

(1.4) Jv − Jw =
1

2

(
J(v1 − w1, v2 + w2)− J(v2 − w2, v1 + w1)

)
.

Gathering together (1.1) and (1.4) one deduces the following lemma.

Lemma 1.1. There exists a universal constant C > 0 such that for any v, w ∈ H1(Ω;R2) it holds

‖Jv − Jw‖flat ≤ C ‖v − w‖2(‖∇v‖2 + ‖∇w‖2) .

As a corollary of Lemma 1.1 we obtain the following proposition.

Proposition 1.2. Let {vε}ε be a sequence in H1(Ω;R2) such that GLε(vε) ≤ C| log ε|, and let
η ∈ (0, 1

2 ). Then there exists Cη > 0 such that

sup
ζ∈(η,1−η)

‖Jvε − Jζvε‖flat ≤ Cη ε| log ε|, sup
ζ∈(η,1−η)

|Jζvε|(Ω) ≤ Cη| log ε| .

Periodic homogenization of energies defined on S1-valued maps. In the following para-
graph we state some useful propositions regarding the periodic homogenization of energy func-
tionals defined on maps from R2 to S1. The propositions below have been proven in [8] in the
more general case of manifold-valued maps defined on Rd with d ∈ N. We specialize them here in
the S1-version that we exploit in the following sections.

Let f : R2 × R2×2 → [0,+∞) be a Carathéodory function satisfying assumptions (P) and
(G). For every δ > 0 and for every open bounded set E ⊂ R2 we define the functional Fδ(·, E) :
L2(E;R2)→ [0,+∞] as

(1.5) Fδ(v;E) =


∫
E

f
(x
δ
,∇v

)
dx if v ∈ H1(E;S1) ,

+∞ otherwise.

For every s = (s1, s2) ∈ S1 we set s⊥ = (−s2, s1) and Ts(S1) = Rs⊥ = {λs⊥ : λ ∈ R} denotes
the tangent space of S1 at the point s. We also introduce the set

T S1 := {(s,M) : s ∈ S1, M = s⊥ ⊗ ξ, ξ ∈ R2}
and for every (s,M) = (s, s⊥ ⊗ ξ) ∈ T S1 we define

(1.6)

Tfhom(s,M) := lim
t→+∞

inf
{ 1

t2

∫
tQ

f(y,M +∇φ(y)) dy : φ ∈W 1,∞
0 (tQ; Ts(S1))

}
= lim
t→+∞

inf
{ 1

t2

∫
tQ

f(y, s⊥ ⊗ (ξ +∇ϕ(y))) dy : ϕ ∈W 1,∞
0 (tQ)

}
,
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where Q := (0, 1)2 . The function Tfhom is called the tangential homogenization of the function f .
The function Tfhom is a tangentially quasi-convex function according to the following definition.

We say that a Borel function h : T S1 → [0,+∞) is tangentially quasi-convex if for all (s,M) ∈ T S1

and all ϕ ∈W 1,∞
0 (Q; TsS1) it holds

(1.7) h(s,M) ≤
∫
Q

h(s,M +∇φ(y)) dy.

We note that the function Tfhom satisfies the following property:

α|M |2 ≤ Tfhom(s,M) ≤ β|M |2 for every (s,M) ∈ T S1 .(1.8)

Moreover, if f(x, ·) is 2-homogeneous for almost every x ∈ R2, i.e., if f(x, λM) = λ2f(x,M) for
almost every x ∈ R2 and every M ∈ R2×2, λ ∈ R, then also Tfhom satisfies that

Tfhom(s, λM) = λ2 Tfhom(s,M) for every (s,M) ∈ T S1, λ ∈ R.
We define the functional Fhom(·;E) : L2(E;R2)→ [0,+∞] as

(1.9) Fhom(v;E) =


∫
E

Tfhom(v(x),∇v(x)) dx if v ∈ H1(E;S1) ,

+∞ otherwise.

The following theorem has been proven in [8, Theorem 1.1].

Theorem 1.3. Let {Fδ(·;E)}δ be the sequence of functionals defined in (1.5). Then, as δ → 0,
{Fδ(·;E)}δ Γ-converge with respect to the strong L2-convergence to the functional Fhom(·;E) in
(1.9).

Remark 1.4. Note that if f is of the form

(1.10) f(y,M) = a(y)|M |2 for some Q-periodic Borel function a : R2 → [α, β],

then for every (s,M) = (s, s⊥ ⊗ ξ) ∈ T S1 we have that f(y,M) = a(y)|ξ|2. Therefore, by (1.6)
and by standard homogenization results of quadratic forms (see [19, Theorem 14.7]),

Tfhom(s,M) = 〈Ahomξ, ξ〉,
where Ahom is the symmetric matrix defined in (0.4).

For every 0 < r < R and for every x ∈ R2 we set Ar,R(x) := BR(x)\Br(x) and Ar,R := Ar,R(0).
Moreover, for every z ∈ Z \ {0} we define

A r,R(z) := {w ∈ H1(Ar,R;S1) : deg(w, ∂Br) = z} .
Given z ∈ Z\{0}, for every δ > 0 we define the functionals F zδ (·;Ar,R) : H1(Ar,R;R2)→ [0,+∞]

as

F zδ (v;Ar,R) :=

{
Fδ(v;Ar,R) if v ∈ A r,R(z) ,

+∞ otherwise,

and F zhom : H1(Ar,R;R2)→ [0,+∞] as

(1.11) F zhom(v;Ar,R) :=

{
Fhom(v;Ar,R) if v ∈ A r,R(z) .

+∞ otherwise,

The next result is a consequence of Theorem 1.3.

Theorem 1.5. Let z ∈ Z \ {0} and let F zδ (·;Ar,R) be the functional defined in (1.11). Then,
as δ → 0, F zδ (·;Ar,R) Γ-converge with respect to the strong L2-convergence to the functional
F zhom(·;Ar,R).

Proof. It is enough to prove that the constraint deg(v, ∂Br) = z is closed with respect to the
weak convergence in H1(Ar,R;R2) . Let {wδ}δ ⊂ A r,R(z) be such that wδ ⇀ w0 in H1(Ar,R;R2)
for some w0 ∈ H1(Ar,R;S1) . By standard Fubini arguments, for almost every r < ρ < R, we
have that the trace of wδ on ∂Bρ is bounded in H1(∂Bρ;S1) and hence (up to a not relabeled
subsequence) it weakly converges to a function gρ . Since ‖wδ − w0‖L2(Ar,R;R2) → 0 , we get that
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gρ = w0 for a.e. ρ ∈ (r,R). By the very definition of degree in (1.2), deg(w0, ∂Br) = z and hence
w0 ∈ A r,R(z). �

The following corollary holds true as a consequence of (G), (1.8), Theorem 1.5 and thanks to
the well-known property of convergence of minima in Γ-convergence (see [17, 18, 23]).

Corollary 1.6. Let z ∈ Z \ {0}. Then, for every 0 < r < R, it holds

lim
δ→0

inf
w∈A r,R(z)

Fδ(w;Ar,R) = min
w∈A r,R(z)

Fhom(w;Ar,R) .

2. The effective energy of a singularity

In this section we introduce and discuss the properties of the minimal energy cost Ψ(z;h) of
a vortex like singularity of degree z for a homogeneous quadratic functional of energy density h
defined on S1-valued maps. The function Ψ(·;h) is crucial in order to determine the Γ-limits for
both the cases δε . ε and δε � ε , choosing h = Tfhom , with Tfhom defined in (1.6). On the
one hand (see Section 6) for δε . ε , Ψ(z;Tfhom) turns out to be the effective energy cost of a
singularity of degree z (see Theorems 6.1 and 6.2). On the other hand (see Section 7) for δε � ε ,
recalling the definition of λ in (0.15), we have that λΨ(z;Tfhom) is the effective energy cost of a
singularity of degree z on scales of order between δε and 1 (see Theorems 7.1 and 7.2) .

Let h : T S1 → [0,+∞) be a continuous function, tangentially quasi-convex according to (1.7),
and such that

(2.1) h(s, λM) = λ2 h(s,M) , for every (s,M) ∈ T S1 and ∀λ ∈ R .
Assume moreover that there exist α, β such that 0 < α ≤ β and

(2.2) α|M |2 ≤ h(s,M) ≤ β|M |2 , for every (s,M) ∈ T S1 .

For every open bounded set E ⊂ R2 we define the functional H(·;E) : H1(E;S1)→ [0,+∞) as

H(w;E) :=

∫
E

h(w(x),∇w(x)) dx .

Given z ∈ Z \ {0} and 0 < r < R we set

(2.3) ψr,R(z;h) :=
1

log R
r

min
w∈A r,R(z)

H(w;Ar,R) .

Making the change of variable y = x
r and considering the 2-homogeneity (2.1) of the function h

we conclude that, for every w ∈ H1(Ar,R;S1), the following relation holds:

(2.4) H(w;Ar,R) =

∫
Ar,R

h(w(x),∇w(x)) dx =

∫
A

1, R
r

h(ŵ(y),∇ŵ(y)) dy = H(ŵ;A1,Rr
) ,

where ŵ(y) := w(ry). Gathering together (2.4) and (2.3) we deduce that

(2.5) ψr,R(z;h) = ψ1,Rr
(z;h) .

Proposition 2.1. Let h : T S1 → [0,+∞) be a Carathéodory function satisfying (2.2) and (2.1).
For z ∈ Z \ {0} and 0 < r < R let ψr,R(z, h) be the function defined in (2.3). Then there exists
the limit

(2.6) ψ(z;h) := lim
R
r→+∞

ψr,R(z;h).

Proof. In view of (2.5), it is enough to prove the inequality

(2.7) lim sup
R→+∞

ψ1,R(z;h) ≤ lim inf
R→+∞

ψ1,R(z;h) .

For ρ ∈ R with 1 < ρ < R we define KR,ρ := b logR
log ρ c and note that

A1,R ⊃
KR,ρ⋃
k=1

Aρk−1,ρk(ρ) .
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Denoting by wR a minimizer of (2.3), letting k̄ = k̄R,ρ ∈ {1, . . . ,KR,ρ} be such that

H(wR;Aρk̄−1,ρk̄) ≤ H(wR;Aρk−1,ρk) for all k = 1, . . . ,KR,ρ̄ ,

and setting ŵρ,k̄(y) := wR(ρk̄−1y), we obtain

min
w∈A 1,R(z)

H(w;A1,R) ≥
KR,ρ∑
k=1

H(wR;Aρk−1,ρk) ≥ KR,ρH(wR;Aρk̄−1,ρk̄)

= KR,ρH(ŵρ,k̄;A1,ρ) ,

where the last equality follows by (2.1). By the very definition of KR,ρ we conclude that

ψ1,R(z;h) ≥ KR,ρ
log ρ

logR
ψ1,ρ(z;h) ≥

(
1− log ρ

logR

)
ψ1,ρ(z;h).

The inequality above yields (2.7) on taking first the limit as R→ +∞ and then as ρ→ +∞. �

Notice that

(2.8) 2πα|z|2 ≤ ψ(z;h) ≤ 2πβ|z|2 for every z ∈ Z ,

where α and β are the constants appearing in (2.2). We define the function Ψ(·;h) : Z→ [0,+∞)
as

(2.9) Ψ(z;h) := inf

{ J∑
j=1

ψ(zj ;h) :

J∑
j=1

zj = z , J ∈ N, zj ∈ Z
}
.

Remark 2.2. It follows from (2.8) that the infimum in problem (2.9) is actually a minimum and

(2.10) 2πα|z| ≤ Ψ(z;h) ≤ 2πβ|z| for every z ∈ Z .

Moreover, by definition, the function Ψ(·;h) is sub-additive, i.e.,

Ψ(z1 + z2;h) ≤ Ψ(z1;h) + Ψ(z2;h) for every z1, z2 ∈ Z .

Such a property implies that the functional F (·;h) : X(Ω)→ [0,+∞) defined by

F (µ;h) :=

n∑
i=1

Ψ(zi;h) for every µ =

n∑
i=1

ziδxi

is lower semi-continuous with respect to the flat convergence, while (2.10) yields

2πα|µ|(Ω) ≤ F (µ;h) ≤ 2πβ|µ|(Ω) .

In the next proposition we show that if f is of the form in (1.10), then Ψ(z;Tfhom) equals |z|
up to a constant pre-factor.

Proposition 2.3. Let f : R2 × R2×2 → [0,+∞) satisfy (1.10). Then

(2.11) Ψ(z;Tfhom) = 2π
√

detAhom|z| for every z ∈ Z,

where Ahom is defined in (0.4).

Proof. For r, R ∈ R, 0 < r < R, let L := {(0, x2) : −R ≤ x2 ≤ −r} be a cut of the annulus Ar,R.
Then the domain Ar,R \ L is simply connected. We set

A L
r,R(z) := {u ∈ SBV 2(Ar,R) ∩H1(Ar,R \ L) : eιu ∈ A r,R(z)}.

By Remark 1.4 and by (2.3) we have

(2.12)

ψr,R(z;Tfhom) =
1

log R
r

min
u∈A L

r,R(z)

∫
Ar,R

〈Ahom∇u(x),∇u(x)〉 dx

=
1

log R
r

min
u∈A L

r,R(z)

∫
Ar,R

|
√
Ahom∇u(x)|2 dx ,
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where the last equality follows from the fact that Ahom is symmetric and hence
√
Ahom is. Setting

û(y) := u(
√
Ahomy), we have that ∇û(y) :=

√
Ahom∇u(

√
Ahomy). Thus the change of variables

x =
√
Ahomy in (2.12) yields

(2.13) ψr,R(z;Tfhom) =

√
detAhom

log R
r

min
u∈Â

L

r,R(z)

∫
(
√
Ahom)−1(Ar,R)

|∇û(y)|2 dy ,

where we have set

Â
L

r,R(z) := {û ∈ SBV 2((
√
Ahom)−1(Ar,R)) ∩H1((

√
Ahom)−1(Ar,R \ L)) :

û = u ◦
√
Ahom , u ∈ A L

r,R(z)}.

For sufficiently large R/r there exist 0 < λ < Λ that depend only on Ahom and do not depend on

r and R such that Aλr,ΛR ⊂ (
√
Ahom)−1(Ar,R) so that, by (2.13),

ψr,R(z;Tfhom) =

√
detAhom

log R
r

min
u∈A L

λr,ΛR(z)

∫
Aλr,ΛR

|∇û(y)|2 dy +O
( 1

log R
r

)
= 2π

√
detAhom|z|2 +O

( 1

log R
r

)
.

It follows that ψ(z) = 2π
√

detAhom|z|2, whence (2.11) follows using the very definition of Ψ in
(2.9). �

3. Asymptotic analysis on annuli

In this section we prove some auxiliary results on the asymptotic behavior of the minimal energy
on an annulus when its inner and outer radii are powers of ε. Such results will be crucial in the
proofs of the Γ-convergence theorems in Section 6 and in Section 7. The next lemma states that
the minimum in (2.3) for H = Fδ changes by at most a multiple of z2 if the competitors are
chosen with fixed trace (x/|x|)z instead of fixed degree z, thus belonging to a new appropriate set
of admissible functions defined as

(3.1) Ã r,R(z) :=

{
w ∈ A r,R(z) : w(x) =

( x
|x|

)z
on ∂Br ∪ ∂BR

}
.

Lemma 3.1. Let 0 < 2r ≤ R and let Fδ(·, Ar,R) be the functional defined in (1.5) for E = Ar,R
and with f satisfying condition (G). Then, there exists a constant C̄ = C̄(α, β) > 0 such that, for
every z ∈ Z \ {0},

(3.2) inf
w∈A r,R(z)

Fδ(w;Ar,R) ≤ inf
w∈Ã r,R(z)

Fδ(w;Ar,R) ≤ inf
w∈A r,R(z)

Fδ(w;Ar,R) + C̄z2 .

Proof. The first inequality in (3.2) follows from the inclusion Ã r,R(z) ⊂ A r,R(z). Hence, it is

enough to show that for every w ∈ A r,R(z) there exists ŵ ∈ Ã r,R(z) such that

(3.3) Fδ(ŵ;Ar,R) ≤ Fδ(w;Ar,R) + C̄z2,

for some constant C̄ depending only on the constants α and β in (G). Set K := b logR−log r
log 2 c and

Ak := A2k−1r,2kr for k = 1, 2, . . . ,K. We have that

Ar,R =

K⋃
k=1

Ak ∪A2Kr,R .

Since K ≥ logR−log r
log 2 − 1 , in view of (G), we notice that

(3.4) Fδ

(( x
|x|

)z
;A2Kr,R

)
≤ βz2

∫
A2Kr,R

1

|x|2
dx = 2πβz2 log

R

2Kr
≤ 2πβz2 log 2 .
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We first consider the case that there is at most one annulus Ak such that

(3.5) Fδ

(( x
|x|

)z
;Ak

)
≥ Fδ(w;Ak) .

Then, in view of (G), we have

Fδ

(( x
|x|

)z
;Ak

)
≤ βz2

∫
Ak

1

|x|2
dx = 2πβz2 log 2,

whence, using also (3.4), we deduce Fδ
((

x
|x|
)z

;Ar,R
)
≤ Fδ(w;Ar,R) + C̄z2 , which proves (3.3) for

ŵ(x) = (x/|x|)z.
From now on, we can assume that (3.5) is satisfied by at least two of the annuli Ak. We

let k1 and k2 denote the smallest and the largest k ∈ {1, . . . ,K} satisfying (3.5). Let moreover
L := {(0, x2) : −R ≤ x2 ≤ −r} be a cut of the annulus Ar,R such that the domain Ar,R \ L is
simply connected. By [14], there exists a lifting u ∈ H1(Ar,R \ L;R) of w in Ar,R \ L. Moreover,
since deg(w, ∂Bρ) = z for every ρ ∈ [r,R], we have that the function u jumps by 2πz across L.
By the properties of the lifting,

(3.6) ‖∇u‖L2(E;R2) = ‖∇w‖L2(E,;R2×2) for every open set E ⊂ Ar,R.

Furthermore, setting

(3.7) θ(x) :=


arctan x2

x1
if x1 > 0 ,

π
2 if x1 = 0, x2 > 0 ,

π + arctan x2

x1
if x1 < 0 ,

3
2π if x1 = 0, x2 < 0 ,

for every x ∈ R2 \ {0} , the function zθ ∈ SBV 2(Ar,R) is a lifting of ( x
|x| )

z. Using the complex

notation we set ŵ := eιû, where the lifting û is defined as

(3.8) û(x) :=


zθ(x) if r ≤ |x| ≤ 2k1−1r ,
(1− σ1(|x|))zθ(x) + σ1(|x|)u(x) if 2k1−1r ≤ |x| ≤ 2k1r ,
u(x) if 2k1r ≤ |x| ≤ 2k2−1r ,
σ2(|x|)zθ(x) + (1− σ2(|x|))u(x) if 2k2−1r ≤ |x| ≤ 2k2r ,
zθ(x) if 2k2r ≤ |x| ≤ R .

In the formula above, for i = 1, 2 the function σi : [2ki−1r, 2kir]→ [0, 1] is defined by

σi(ρ) :=
1

2ki−1r
(ρ− 2ki−1r)

and satisfies σ′i(ρ) = 1
2ki−1r

and ‖σi‖L∞ ≤ 1.

Note that ŵ ∈ Ã r,R(z). By construction and by (3.4), we have that

Fδ(ŵ;Ar,2k1−1r ∪A2k2r,R) = Fδ

(( x
|x|

)z
;Ar,2k1−1r ∪A2k2r,R

)
≤ Fδ(w;Ar,2k1−1r ∪A2k2r,R) + Cz2 .

Therefore, in view of (3.8) it is enough to prove that the energy of ŵ on Ak1 and Ak2 is bounded
from above by C̄|z|2 for some constant C̄ > 0 depending only on α and β. We prove this fact only
for the annulus Ak1

, being the proof for Ak2
similar. To this end, we notice that in Ak1

one has
that

(3.9)

|∇ŵ|2 = |∇û|2 ≤ 3|σ′1|2|u− zθ|2 + 3|σ1|2|∇u− z∇θ|2 + 3z2|∇θ|2

≤ C

22(k1−1)r2
(|u|2 + z2|θ|2) + C(|∇u|2 + z2|∇θ|2) .
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Set lk1
:= −
∫
Ak1

u dx . Up to adding an integer multiple of 2π, we can always assume that |lk1 | ≤ 2π

and estimate ‖lk1
‖2L2(Ak1

) ≤ (2π(|z|+ 1)2)22k1r2. Hence

(3.10)

‖u‖2L2(Ak1
) ≤ 2‖u− lk1

‖2L2(Ak1
) + 2‖lk1

‖2L2(Ak1
)

≤ C22k1r2‖∇u‖2L2(Ak1
;R2) + Cz222k1r2

≤ C22k1r2z2‖∇θ‖2L2(Ak1
;R2) + Cz222k1r2 ≤ Cz222k1r2,

where the second inequality is a consequence of the Poincaré-Wirtinger inequality applied to the
domain Ak1 \L, and the third inequality follows on gathering together (3.5), (3.6), and (G). Note
that all the constants appearing in (3.10) depend only on α and β. By integrating (3.9) and using
(3.10), (3.5), (3.6) and (G), we deduce that

Fδ(ŵ;Ak1
) ≤ C‖∇ŵ‖2L2(Ak1;R2×2 )

≤ C

22(k1−1)r2
(‖u‖2L2(Ak1

) + z2‖θ‖2L2(Ak1
)) + C(‖∇u‖2L2(Ak1

;R2) + z2‖∇θ‖2L2(Ak1
;R2))

≤ C 22k1z2

22(k1−1)
+ Cz2‖∇θ‖2L2(Ak1

;R2) =: C̄z2 ,

thus concluding the proof of (3.3). �

In the next proposition we show that in the | log ε| regime, to some extent, the homogenization
process commutes with the minimization process defining ψ(d;Tfhom).

Proposition 3.2. Let Fδε be defined in (0.11) with f satisfying assumptions (P), (G), (H), and
let Tfhom be defined in (1.6). Then for any s1 and s2 such that 0 ≤ s1 < s2 < 1 and limε→0

δε
εs2 = 0

we have

(3.11) lim
ε→0

1

| log ε|
inf

w∈A εs2 ,εs1 (z)
Fδε(w;Aεs2 ,εs1 ) = (s2 − s1)ψ(z;Tfhom) ,

where ψ(z;Tfhom) is the function defined in (2.6) with h = Tfhom .

Proof. We first show that

(3.12) lim inf
ε→0

1

| log ε|
inf

w∈A εs2 ,εs1 (z)
Fδε(w;Aεs2 ,εs1 ) ≥ (s2 − s1)ψ(z;Tfhom) .

To this purpose, we fixR > 1, setKε,R = b(s2−s1) | log ε|
logR c, and note thatAεs2 ,εs1 ⊃

Kε,R⋃
k=1

ARk−1εs2 ,Rkεs2 .

Let moreover wε ∈ A εs2 ,εs1 (z) be such that

(3.13) Fδε(wε;Aεs2 ,εs1 ) ≤ inf
w∈A εs2 ,εs1 (z)

Fδε(w;Aεs2 ,εs1 ) + C,

for some constant C (independent of ε) and let k̄ = k̄ε,R ∈ {1, . . . ,Kε,R} be such that

Fδε(wε;ARk̄−1εs2 ,Rk̄εs2 ) ≤ Fδε(wε;ARk−1εs2 ,Rkεs2 ) , for all k = 1, . . . ,Kε,R .

Therefore

(3.14) Fδε(wε;Aεs2 ,εs1 ) ≥
Kε,R∑
k=1

Fδε(wε;ARk−1εs2 ,Rkεs2 ) ≥ Kε,R Fδε(wε;ARk̄−1εs2 ,Rk̄εs2 ) .

By the change of variable y = x
Rk̄−1εs2

, w′
ε,k̄

(y) := wε(R
k̄−1εs2y) and by property (H), we have

(3.15) Fδε(wε;ARk̄−1εs2 ,Rkεs2 ) = F δε

Rk̄−1εs2

(w′ε,k̄;A1,R) .
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Therefore, since by assumption lim supε→0
δε

Rkεs2
= 0 for every k = 1, . . . ,Kε,R, by using (3.13),

(3.14), (3.15), and Corollary 1.6, we deduce that

lim inf
ε→0

1

| log ε|
inf

w∈A εs2 ,εs1 (z)
Fδε(w;Aεs2 ,εs1 )

≥ lim inf
ε→0

1

| log ε|
Fδε(wε;Aεs2 ,εs1 )

≥ lim inf
ε→0

Kε,R

| log ε|
inf

w∈A 1,R(z)
F δε

Rk̄−1εs2

(w;A1,R)

≥ lim
ε→0

(s2 − s1

logR
− 1

| log ε|

)
lim inf
ε→0

inf
w∈A 1,R(z)

F δε

Rk̄−1εs2

(w;A1,R)

=
s2 − s1

logR
min

w∈A 1,R(z)
Fhom(w;A1,R) = (s2 − s1)ψ1,R(z;Tfhom) .

Formula (3.12) follows from the estimate above as R→ +∞ thanks to Proposition 2.1 applied to
h = Tfhom. To conclude the proof of (3.11) we are left to show that

(3.16) lim sup
ε→0

1

| log ε|
inf

w∈A εs2 ,εs1 (z)
Fδε(w;Aεs2 ,εs1 ) ≤ (s2 − s1)ψ(z;Tfhom) .

To this purpose, we take R > 1 and set Jε,R := d(s2 − s1) | log ε|
logR e . We observe that

(3.17) inf
w∈A εs2 ,εs1 (z)

Fδε(w;Aεs2 ,εs1 ) ≤
Jε,R∑
j=1

inf
w∈Ã Rj−1εs2 ,Rjεs2 (z)

Fδε(w;ARj−1εs2 ,Rjεs2 ) .

We also note that for every R > 1, thanks to Corollary 1.6, there exists a modulus of continuity
ω such that

inf Fδ(w;A1,R) ≤ minFhom(w;A1,R) + ω(δ).

Letting δε,j := δε
Rj−1εs2 for every j = 1, . . . , Jε,R and taking into account the fact that {δε,j}j

is decreasing yields δε,j ≤ δε,1 = δε
εs2 → 0 as ε → 0 for all j = 1, . . . , Jε,R. We set ω(δε,̄) :=

maxj=1,...,Jε,R ω(δε,j). Note that ω(δε,̄) depends only on ε and R, moreover, since δε,̄ → 0 as
ε → 0, ω(δε,̄) vanishes as ε → 0. For every j = 1, . . . , Jε,R, using the change of variable
y = x

Rj−1εs2 , applying Lemma 3.1 with δ = δε,j (see formula (3.2)) and Corollary 1.6, we have
that

(3.18)

inf
w∈Ã Rj−1εs2 ,Rjεs2 (z)

Fδε(w;ARj−1εs2 ,Rjεs2 ) = inf
w∈Ã 1,R(z)

Fδε,j (w;A1,R)

≤ inf
w∈A 1,R(z)

Fδε,j (w;A1,R) + C̄z2

≤ min
w∈A 1,R(z)

Fhom(w;A1,R) + ω(δε,̄) + C̄z2 ,

where the constant C̄ > 0 is given in Lemma 3.1. By combining (3.18) with (3.17) we get that

lim sup
ε→0

1

| log ε|
inf

w∈A εs2 ,εs1 (z)
Fδε(w;Aεs2 ,εs1 )

≤ s2 − s1

logR
min

w∈A 1,R(z)
Fhom(w;A1,R) +

s2 − s1

logR
C̄z2

= (s2 − s1)ψ1,R(z;Tfhom) +
s2 − s1

logR
C̄z2 ,

whence (3.16) follows by taking the limit as R→ +∞ and using Proposition 2.1 with h = Tfhom.
This concludes the proof of (3.11). �

Remark 3.3. Note that (3.11) holds true also if the center of the annulus is a point ξε depending
on ε , since all the estimates in the previous proof do not depend on the center of the annulus.
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4. The ball construction

In this section we present the so-called ball construction introduced in [33, 43], which provides
lower bounds of the Dirichlet energy in the presence of topological singularities. We slightly revisit
it, following the approach by Sandier [43] and adopting the notation in [26] (see also [5]).

Let B = {Br1(x1), . . . , Brn(xn)} be a finite family of open balls in R2 with disjoint closure
B̄ri(xi) ∩ B̄rj (xj) = ∅ for i 6= j and let µ =

∑n
i=1 ziδxi with zi ∈ Z \ {0} .

Let moreover E(B, µ, ·) be an increasing set-function defined on open subsets of R2 satisfying
the following properties:

(i) E(B, µ, E1 ∪ E2) ≥ E(B, µ, E1) + E(B, µ, E2) for all E1, E2 open disjoint subsets of R2;
(ii) for any annulus Ar,R(x) = BR(x) \ B̄r(x) with Ar,R(x) ∩

⋃
i B̄ri(xi) = ∅, it holds

(4.1) E(B, µ,Ar,R(x)) ≥ 2πα|µ(Br(x))| log
R

r
,

for some constant α > 0 .

Remark 4.1. Let w ∈ H1
loc(R2 \

⋃
B∈B B;S1) be such that µ =

∑
B∈B deg(w, ∂B)δxB , where xB

is the center of B. Then, an explicit example of admissible functional E(B, µ, ·) is given by

E(B, µ,A) := α

∫
A\

⋃
B∈B B

|∇w|2 dx,

for every open set A ⊂ R2 . For further details see Remark 5.1.

For every ball B ⊂ R2, let r(B) denote the radius of the ball B; moreover, for every family B
of balls in R2 we set

Rad(B) :=
∑
B∈B

r(B).

Proposition 4.2. There exists a one-parameter family of open balls B(t) with t ≥ 0 such that,
setting U(t) :=

⋃
B∈B(t)B, the following conditions are fulfilled:

(1) B(0) = B ;
(2) U(t1) ⊂ U(t2) for any 0 ≤ t1 < t2 ;
(3) the balls in B(t) are pairwise disjoint;
(4) for any 0 ≤ t1 < t2 and for any open set U ⊂ R2 ,

(4.2) E(B, µ, U ∩ (U(t2) \ U(t1))) ≥ 2πα
∑

B∈B(t2)
B⊂U

|µ(B)| log
1 + t2
1 + t1

;

(5) Rad(B(t)) ≤ (1 + t)Rad(B).

Proof. In order to construct the family B(t), we closely follow the strategy of Sandier and Jerrard
in [33, 43]. It consists in letting the balls alternatively expand and merge into each other as follows.
In the expansion phase the balls expand, without changing their centers, in such a way that, at
each (artificial) time t the radius ri(t) of the ball centered at xi satisfies

(4.3)
ri(t)

ri
= 1 + t for all i.

The first expansion phase stops at the first time T1 when two balls bump into each other. Then
the merging phase begins. It consists in identifying a suitable partition {S1

j }j=1,...,Nn of the family{
Bri(T1)(xi)

}
, and, for each subclass S1

j , in finding a ball Br1
j
(x1
j ) which contains all the balls in

S1
j such that the following properties hold:

P1) Br1
j
(x1
j ) ∩Br1

l
(x1
l ) = ∅ for all j 6= l;

P2) r1
j ≤

∑
B∈S1

j
r(B).
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After the merging phase another expansion phase begins: we let the balls
{
Br1

j
(x1
j )
}

expand in

such a way that, for t ≥ T1, for every j we have that

(4.4)
r1
j (t)

r1
j

=
1 + t

1 + T1
.

Again note that r1
j (T1) = r1

j . We iterate this procedure thus obtaining a discrete set of merging
times {T1, . . . , TK} with K ≤ n and a family B(t) for all t ≥ 0. More precisely, B(t) is given
by {Brj(t)(xj)}j for t ∈ [0, T1); for t ∈ [Tk, Tk+1), B(t) can be written as {Brkj (t)(x

k
j )}j for all

k = 1, . . . ,K − 1, while it consists of a single expanding ball for t ≥ TK . By construction, we
clearly have properties (1), (2) and (3). Moreover, (5) is an easy consequence of (4.3), (4.4) and
property P2).

It remains to show property (4). We preliminarily note that, by (2), for every open set U ⊂ R2

(4.5)
∑

B∈B(τ1)
B⊂U

|µ(B)| ≥
∑

B∈B(τ2)
B⊂U

|µ(B)| for any 0 < τ1 < τ2.

Let t1 < t̄ < t2. In view of (4.5) and since E is an increasing set-function satisfying property (i),
if we show that (4) holds true for the pairs (t1, t̄) and (t̄, t2), then (4) follows also for t1 and t2.
Therefore, we can assume without loss of generality that Tk /∈]t1, t2[ for any k = 1, . . . ,K.

Let t1 < τ < t2 and let B ∈ B(τ). Then there exists a unique ball B′ ∈ B(t1) such that B′ ⊂ B.
By construction, µ(B) = µ(B′) and by (4.1) we have that

E(B, µ,B \ B̄′) ≥ 2πα|µ(B)| log
1 + τ

1 + t1
,

which, summing up over all B ∈ B(τ) with B ⊂ U , and using (4.5), yields

E(B, µ, U ∩ (U(t2) \ U(t1))) ≥ 2πα
∑

B∈B(τ)
B⊂U

|µ(B)| log
1 + τ

1 + t1
≥ 2πα

∑
B∈B(t2)
B⊂U

|µ(B)| log
1 + τ

1 + t1
.

Property (4) follows by letting τ → t2. �

We recall the following well-known lemma (see e.g., [26, Lemma 2.2]) for the reader’s conve-
nience.

Lemma 4.3. Let B be a family of pairwise disjoint balls in R2 and let C be the family of balls
in B which are contained in Ω. Let moreover ν1, ν2 be two Radon measures supported in Ω with

supp ν1 ⊂
⋃
B∈C

B, supp ν2 ⊂
⋃

B∈B

B and ν1(B) = ν2(B) for any B ∈ C .

Then, there exists a constant C > 0 such that

‖ν1 − ν2‖flat ≤ CRad(B)(|ν1|+ |ν2|)(Ω) .

5. General Γ-liminf inequality

In this section we state and prove an asymptotic lower-bound estimate for general core-radius
approach functionals (see Propositions 5.2 and 5.4); such results will be instrumental for the proofs
of the Γ-liminf inequalities in Theorems 0.2, 0.4, 0.5 and 0.6.

We introduce the increasing set-function E satisfying the assumptions (i) and (ii) in Section 4
as follows. Let B = {Br1(x1), . . . , BrN (xn)} be a finite family of open balls in R2 with B̄ri(xi) ∩
B̄rj (xj) = ∅ for i 6= j, and let µ =

∑n
i=1 ziδxi with zi ∈ Z \ {0} .

If Ar,R(x) is an annulus that does not intersect any Bri(xi), we set

(5.1) G(B, µ,Ar,R(x)) := 2πα|µ(Br(x))| log
(R
r

)
,

with α as in assumption (G). For every open set A ⊂ R2 we set

(5.2) E(B, µ,A) := sup
∑
j

G(B, µ,Aj),
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where the supremum is taken over all finite families of disjoint annuli Aj ⊂ A that do not intersect
any Bri(xi). Note that, if A is an annulus that does not intersect any Bri(xi), then E(B, µ,A) =
G(B,µ,A).

Remark 5.1. The convenience of introducing E in (5.2) to prove a lower-bound inequality for (an
appropriate scaling of) the functional Fδε in (0.11) will be clear in the following sections. However,
the following simple observation already points in the right direction. Let Ω(B) = Ω \

⋃
B∈B B,

w ∈ H1(Ω(B);S1) and µ :=
∑
B∈C deg(w, ∂B)δxB where C denotes the family of balls in B that

are contained in Ω, and xB is the center of B. Then, by Jensen’s inequality and by the lower
bound in (G), we deduce that

(5.3) E(B, µ, U) ≤
∫
U∩Ω̃

α|∇w|2 dx ≤ Fδε(w;U ∩ Ω(B))

for every open set U ⊂ Ω .

For every µ ∈ X(Ω) and for every family of pairwise disjoint balls B such that suppµ ⊂
⋃
B∈B B,

we set
AF(µ,B) := {w ∈ H1(Ω(B);S1) : deg(w, ∂B) = µ(B) for every B ∈ B}.

In addition we set

(5.4) Fε(µ,B) := inf
w∈AF(µ,B)

Fδε(w; Ω(B)) ,

where Fδε is defined in (0.11) and f satisfies (P), (G), (H) .
Note that if µ =

∑n
i=1 ziδxi ∈ Xε(Ω) for some ε > 0, setting Bε = {Bε(xi)}i=1,...,n, we have

that AF(µ,Bε) coincides with the set AFε(µ) defined in (0.10) and that Fε(µ,Bε) = Fε(µ) . We
are now in a position to state the first main result of this section, concerning the case δε . ε .

Proposition 5.2. Let {µε}ε ⊂ X(Ω) be such that

(5.5) |µε|(Ω) ≤ C| log ε|

and µε
flat→ µ for some µ ∈ X(Ω) . For every ε > 0 let Bε be a finite family of pairwise disjoint

open balls such that suppµε ⊂
⋃
B∈Bε B and

(5.6) Rad(Bε) ≤ Cε| log ε|.
If lim supε→0

δε
ε < +∞, then

lim inf
ε→0

1

| log ε|
Fε(µε,Bε) ≥ F0(µ) ,

where F0 is defined in (0.14) and Ψ(·;Tfhom) is defined in (2.9) for h = Tfhom.

Proof. For every ε > 0, let wε ∈ AF(µε,Bε) be such that

(5.7) Fδε(wε; Ω(Bε)) ≤ Fε(µε,Bε) + C

for some constant C independent of ε. We can assume without loss of generality that

(5.8) Fδε(wε; Ω(Bε)) ≤ Fε(µε,Bε) + C ≤ C| log ε| .
Moreover, by a standard localization argument in Γ-convergence, we can assume that µ = z0δx0

for some z0 ∈ Z\{0} and x0 ∈ Ω . In view of (5.8), by exploiting assumption (G) and by applying
(5.3) with U = Ω, we have that

(5.9) E(Bε, µε,Ω) ≤ α
∫

Ω(Bε)
|∇wε|2 dx ≤ C| log ε| ,

where E is defined in (5.1)-(5.2) . For every ε > 0, let Bε(t) be a time-parametrized family
of balls introduced as in Proposition 4.2, starting from Bε =: Bε(0) . For every t ≥ 0, we set
Rε(t) := Rad(Bε(t)) , Cε(t) := {B ∈ Bε(t) : B ⊂ Ω} and Uε(t) :=

⋃
B∈Bε(t)B . Moreover, for any

0 < p < 1 we set

tε(p) :=
1

R1−p
ε (0)

− 1 and µε(p) :=
∑

B∈Cε(tε(p))

µε(B)δxB .
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By (5.9), applying (4.2) with U = Ω, t1 = 0 and t2 = tε(p) , and using (5.6), we obtain

C| log ε| ≥ E(Bε, µε,Ω ∩ (Uε(tε(p)) \ Uε(0))) ≥ 2πα
∑

B∈Cε(tε(p))

|µε(B)|(1− p)| logRε(0)|

= 2πα(1− p)|µε(p)|(Ω)| logRε(0)| ≥ C(1− p)|µε(p)|(Ω)| log ε|

for sufficiently small ε. Therefore

(5.10) |µε(p)|(Ω) ≤ Cp,

for some constant Cp > 0 depending on p (and independent of ε). By Proposition 4.2(5) and (5.6),
we have that

Rε(tε(p)) ≤ Rpε(0) ≤ Cεp| log ε|p ,
whence, by applying Lemma 4.3 with ν1 = µ(p)ε and ν2 = µε, we deduce that

‖µε − µε(p)‖flat ≤ CRε(tε(p))(|µε|+ |µε(p)|)(Ω) ≤ Cεp| log ε|1+p → 0 as ε→ 0 .

Combining this relation with (5.10) and the fact that µε
flat→ µ yields

(5.11) µε(p)
∗
⇀ µ = z0δx0 , for every 0 < p < 1 .

Let c > 1 be such that log c < p
2
| logRε(0)|
|µε|(Ω)+1 . Note that, since | logRε(0)| ≥ C| log ε| and |µε|(Ω) ≤

C| log ε|, we are allowed to take the constant c in the previous inequality independent of ε. By
Lemma 5.3 below (applied with p1 = p and p2 = p

2 ) there exist tε(p) ≤ t̂ε,1 < t̂ε,2 ≤ tε(
p
2 ) with

(1 + t̂ε,2) = c(1 + t̂ε,1) such that no merging occurs in the interval [t̂ε,1, t̂ε,2) and

(5.12)

∫
Ω∩(U(t̂ε,2)\U(t̂ε,1))

|∇wε|2 dx ≤
log c

∫
Ωε(µ′ε)

|∇wε|2 dx
p
2 | logRε(0)| − log c(|µε|(Ω) + 1)

≤
log c
α Fδε(wε; Ω(Bε))

p
2 (| log ε| − log | log ε|+ C)− log c (C| log ε|+ 1)

≤ C ,

where the last but one inequality follows from (5.6) and (5.5), whereas the last inequality is a
consequence of (5.8). We classify the balls in Cε(t̂ε,1) into two subclasses, namely

(5.13) C=0
ε (t̂ε,1) :=

{
B ∈ Cε(t̂ε,1) : µε(B) = 0

}
and C 6=0

ε (t̂ε,1) :=
{
B ∈ Cε(t̂ε,1) : µε(B) 6= 0

}
.

We first consider the balls in C=0
ε (t̂ε,1) . For every such ball B we let B̂ denote the only ball in

Cε(t̂ε,2) containing B . Note that, the center xB of B is the same as the center of B̂ . By (5.12),
we have that ∑

B∈C=0
ε (t̂ε,1)

∫
B̂\B
|∇wε|2 dx ≤ C .

Now we extend the function wε to a function ŵε ∈ H1(Ωε(µε)∪
⋃
B∈C=0

ε (t̂ε,1)B;S1) in such a way

that for every B and B̂ as above

(5.14) ‖∇ŵε‖L2(B̂;R2×2) ≤ Ĉ ‖∇wε‖L2(B̂\B;R2×2) ,

for some universal constant Ĉ. We consider B = BR(ξ) and B̂ = BcR(ξ) two balls as above. Since
deg(wε, ∂BR(ξ)) = deg(wε, ∂BcR(ξ)) = 0, by arguing as in [14] (see also [15]), one can show that

there exists a lifting u
AR,cR(ξ)
ε ∈ H1(AR,cR(ξ)) of wε in AR,cR(ξ). Let Uε : AR

c ,R
(ξ) → R be the

extension by reflection of the function u
AR,cR(ξ)
ε to the annulus AR

c ,R
(ξ), i.e., Uε(x) := u

AR,cR(ξ)
ε (ξ−

c(x− ξ) + (1 + c)R x−ξ
|x−ξ| ). We let Ūε denote the average of Uε on AR

c ,R
(ξ). Let η : [Rc , R]→ R be

the cut-off function defined by η(ρ) = cρ−R
R(c−1) . We define the function ûB̂ε : BcR(ξ)→ R as

ûB̂ε (x) :=


u
AR,cR(ξ)
ε if x ∈ AR,cR(ξ),
η(|x|)Uε(x) + (1− η(|x|))Ūε if x ∈ AR

c ,R
(ξ),

Ūε if x ∈ BR
c

(ξ).
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By the Poincaré-Wirtinger inequality and by the very definition of Uε we have that there exists a
constant Ĉ (independent of ε) such that∫

AR
c
,R

(ξ)

|∇ûB̂ε |2 dx =

∫
AR
c
,R

(ξ)

|∇(η(|x|)(Uε(x)− Ūε))|2 dx

≤ 2
c2

R2(c− 1)2

∫
AR
c
,R

(ξ)

|Uε(x)− Ūε(x)|2 dx+ 2

∫
AR
c
,R

(ξ)

|∇Uε|2 dx

≤C
∫
AR
c
,R

(ξ)

|∇Uε|2 dx ≤ Ĉ
∫
AR
c
,R

(ξ)

|∇uAR,cR(ξ)
ε |2 dx .

Therefore, setting

ŵε(x) :=

{
eιû

B̂
ε (x) if x ∈ B̂ for some B̂ ∈ C=0

ε (t̂ε,1) ,
wε(x) elsewhere in Ω(Bε) ,

we have that ŵε ∈ H1(Ω(Bε) ∪
⋃
B∈C=0

ε (t̂ε,1)B;S1) and satisfies (5.14). Then from (5.12) and

(5.14) we deduce that

(5.15)
∑

B∈C=0
ε (t̂ε,1)

∫
B

|∇ŵε|2 dx ≤ C .

We now focus on the balls in C 6=0
ε (t̂ε,1) . We set µ(t̂ε,1) :=

∑
B∈C 6=0

ε (t̂ε,1) µε(B)δxB . In view

of the ball construction in Section 4 and of (5.10), we have that ]C 6=0
ε (t̂ε,1) ≤ Cp. Therefore, up

to extracting a subsequence we may assume that ]C 6=0
ε (t̂ε,1) = L for every ε > 0 and for some

L ∈ N . For every l = 1, . . . , L, let xlε be the center of the l-th ball Blε in C 6=0
ε (t̂ε,1) . Up to

a further subsequence, we can assume that the points xlε converge to some points in the finite
set {ξ0 = x0, ξ1, . . . , ξL′} ⊂ Ω̄, where L′ ≤ L . Let ρ > 0 be such that B2ρ(x

0) ⊂⊂ Ω and
B2ρ(ξj) ∩ B2ρ(ξk) = ∅ for all j 6= k . Then xlε ∈ Bρ(ξj) for some j = 1, . . . , L′ and for ε small
enough. We set

µ̃ε :=
∑

xlε∈Bρ(x0)

µε(B
l
ε)δxlε .

By construction, we have that

(5.16) |µ̃ε|(Ω) ≤ |µε(p)|(Ω) and ‖µ̃ε − µε(p)‖flat → 0 ,

which, in view of (5.10) and (5.11), implies that, up to a subsequence, µ̃ε
∗
⇀ µ = z0δx0 . Therefore,

for sufficiently small ε,

(5.17) µ̃ε(B2ρ(x0)) =
∑

xlε∈Bρ(x0)

µε(B
l
ε) = z0 .

Thanks to (5.15) and the assumption (G), we have that

(5.18)

Fδε(wε; Ω(Bε)) ≥
∫

Ω(Bε)\∪B∈C=0
ε (t̂ε,1)B

f
( x
δε
,∇wε

)
dx

≥
∫

Ω(Bε)∩B2ρ(x0)

f
( x
δε
,∇ŵε

)
dx− C .

It remains to prove the lower bound for the right-hand side of (5.18) . To this end, we take

0 < p′ < p such that Rε(t̂ε,1) ≤ εp
′

(note that such p′ always exists since, by Lemma 5.3,

Rε(t̂ε,1) < R
p
2
ε (0) ≤ Cε

p
2 | log ε|

p
2 ), choose 0 < p̄ < p′ and let gε : [p̄, p′] → {1, . . . , L} denote the

function which associates to any q ∈ [p̄, p′] the number gε(q) of connected components of the set⋃L
l=1Bεq (x

l
ε) . For every ε > 0 , the function gε is monotonically non decreasing so that it can

have at most L̂ ≤ L discontinuities. Let qjε, for j = 1, . . . , L̂, denote the discontinuity points of gε
and assume that

p̄ ≤ q1
ε < . . . < qL̂ε ≤ p′ .
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There exists a finite set 4 = {q1, q2, . . . , qL̃} with qi < qi+1 and L̃ ≤ L̂ such that, up to a

subsequence, {qjε}ε converges to some point in 4 , as ε → 0 for every j = 1, . . . , L̂ . Without

loss of generality we may assume that q1 = p̄ , and that qL̃ = p′ . Let λ > 0 be such that
4λ < min{qi+1 − qi : i ∈ {1, 2, . . . , L̃}} and let ε be so small that for every j = 1, . . . , L̂ ,
|qjε − qi| < λ for some qi ∈ 4. Then the function gε is constant in the interval [qi + λ, qi+1 − λ] ,

its value being denoted by M i
ε. For every i = 1, . . . , L̃ − 1 we construct a family of M i

ε ≤ L̃ − 1
annuli that we let Ci,mε := Bεqi+λ(ymε ) \Bεqi+1−λ(ymε ) with ymε ∈ Bρ(x0) and m = 1, . . . ,M i

ε. The

annuli Ci,mε can be taken pairwise disjoint for all i and m and such that

⋃
xlε∈Bρ(x0)

Blε ⊂
Mi
ε⋃

m=1

Bεqi+1−λ(ymε )

for all i = 1, . . . , L̃ − 1 . Note that, for ε small enough, Ci,mε ⊂ B2ρ(x0) for all i and m . By

(5.16) we have that |µε(Bεqi+1−λ(ymε ))| ≤ C for every i = 1, . . . , L̃ − 1 and m = 1, . . . ,M i
ε .

Therefore, up to passing to a further subsequence, we can assume that M i
ε = M i and that

µε(Bεqi+1−λ(ymε )) = zi,m ∈ Z\{0} , with M i and zi,m independent of ε . Finally, in view of (5.17),
we have that

(5.19)

Mi∑
m=1

zi,m = z0 .

Observe that the assumption lim supε→0
δε
ε < +∞ implies the inequality limε→0

δε
εqi+1−λ = 0 for

every i. Hence, we can apply Proposition 3.2 with s1 = qi + λ < qi+1 − λ = s2 (see also Remark
3.3) to get that for every i and m there exists a modulus of continuity ω such that

1

| log ε|

∫
Ci,mε

f
( x
δε
,∇ŵε

)
dx ≥ (qi+1 − qi − 2λ)ψ(zi,m;Tfhom)− ω(ε) .

Summing the previous inequality over m and i and using (5.18) yields

(5.20)

1

| log ε|
Fδε(wε; Ω(Bε)) ≥

L̃−1∑
i=1

Mi∑
m=1

(qi+1 − qi − 2λ)ψ(zi,m;Tfhom)− ω(ε)

≥
L̃−1∑
i=1

(qi+1 − qi − 2λ)Ψ(z0;Tfhom)− ω(ε)

= (p′ − p̄− 2(L̃− 1)λ)Ψ(z0;Tfhom)− ω(ε) ,

where the second inequality follows from (5.19) and from the very definition of Ψ in (2.9). Then,
the claim follows by (5.20) taking the limits as ε → 0 , λ → 0 , p̄ → 0 , and p, p′ → 1 and using
(5.7). �

We turn to the technical lemma that has been exploited in the proof of Proposition 5.2 above
(see formula (5.12)). For every p ∈ (0, 1) let t(p) := 1

Rad1−p(B) − 1 .

Lemma 5.3. Let µ ∈ X(Ω) and let B be a finite family of pairwise disjoint open balls such
that suppµ ⊂

⋃
B∈B B and Rad(B) < 1. Assume that 0 < p2 < p1 < 1, and c > 1 be such

that log c < (p1 − p2) | logRad(B)|
|µ|(Ω)+1 . Assume also that B(t) is a time parametrized family of balls

constructed as in Proposition 4.2, starting from B =: B(0), and U(t) :=
⋃
B∈B(t)B for every

t ≥ 0 . Then, there exist t̂1, t̂2 ∈ [t(p1), t(p2)) with 1 + t̂2 = c(1 + t̂1) such that no merging occurs
in the interval [t̂1, t̂2) and∫

Ω∩(U(t̂2)\U(t̂1))

|∇w|2 dx ≤
log c

∫
Ω(B)
|∇w|2 dx

(p1 − p2)| logRad(B)| − log c(|µ|(Ω) + 1)
,

for every w ∈ AF(µ,B).
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Proof. We set J := b(p1−p2) | logRad(B)|
log c c and t̂j := cj(1+ t(p1))−1 for every j = 0, 1, . . . , J . Note

that 1+t̂j+1

1+t̂j
= c for every j = 0, 1, . . . , J−1 . We let J denote the set of indices in {0, 1, . . . , J−1}

for which no merging occurs in the interval [t̂j , t̂j+1) . Since the number of merging times is

bounded from above by |µ|(Ω), we have ]J ≥ J − |µ|(Ω) ≥ (p1 − p2) | logRad(B)|
log c − |µ|(Ω)− 1 . For

every j ∈ J and for every ball B(t̂j) ∈ B(t̂j), B(t̂j+1) denotes the unique ball in B(t̂j+1) such that
B(t̂j) ⊂ B(t̂j+1). By the mean-value theorem, there exists k ∈ J such that∫

Ω(B)

|∇w|2 dx ≥
∑
j∈J

∑
B(t̂j)∈B(t̂j)

∫
Ω∩(B(t̂j+1)\B̄(t̂j))

|∇w|2 dx

≥ ]J
∫

Ω∩(U(t̂k+1)\Ū(t̂k))

|∇wε|2 dx

≥
(

(p1 − p2)
| logRad(B)|

log c
− |µ|(Ω)− 1

)∫
Ω∩(U(t̂k+1)\Ū(t̂k))

|∇w|2 dx ,

from which the claim follows setting t̂1 := t̂k and t̂2 := t̂k+1 . �

As for the case δε � ε , we restrict our analysis to functionals of the form (0.16). In such a case
the main result is the following.

Proposition 5.4. Let Fδε , Fε be defined in (0.16), (5.4), respectively, where a is a measurable
(0, 1)2-periodic function satisfying a(x) ∈ [α, β] ⊂ (0,+∞) for a.e. x ∈ R2 . Let {µε}ε ⊂ X(Ω) be
such that

(5.21) |µε|(Ω) ≤ C| log ε|

and µε
flat→ µ for some µ ∈ X(Ω) . For every ε > 0 let Bε be a finite family of pairwise disjoint

open balls such that suppµε ⊂
⋃
B∈Bε B and

(5.22) Rad(Bε) ≤ Cε| log ε|.

If (0.15) is satisfied, then

lim inf
ε→0

1

| log ε|
Fε(µε,Bε) ≥ 2π

((
1− λ)ess inf a+ λ

√
detAhom

)
|µ|(Ω) ,

where Ahom is defined in (0.4).

Proof. The proof closely resembles the one of Proposition 5.2; here we only highlight the main
changes that are needed to prove the different lower bound in the regime (7.1).

Let wε ∈ AFε(µε,Ω(Bε)) be such that

(5.23) Fδε(wε; Ω(Bε)) ≤ Fε(µε,Bε) + C

for some constant C independent of ε. By a standard localization argument in Γ-convergence, we
can assume that µ = z0δx0

for some z0 ∈ Z \ {0} and x0 ∈ Ω .
For every ε > 0, let Bε(t) be a time-parametrized family of balls introduced as in Proposition

4.2, starting from Bε =: Bε(0) . For every t ≥ 0, we set Rε(t) := Rad(Bε(t)) , Cε(t) := {B ∈
Bε(t) : B ⊂ Ω} and Uε(t) :=

⋃
B∈Bε(t)B . For every 0 < p < 1 we set

tε(p) :=
1

R1−p
ε (0)

− 1 and µε(p) :=
∑

B∈Cε(tε(p))

µε(B)δxB .

Fix λ < p < 1 . By arguing as in the proof of (5.10) and (5.11), we have that

(5.24) |µε(p)|(Ω) ≤ Cp and µε(p)
∗
⇀ µ = z0δx0

as ε→ 0 .

Following the reasoning in the proof of Proposition 5.2 we have that for every 0 < η < p−λ there
exists tε(p) ≤ t̂ε,1 ≤ tε(p − η) and a a map ŵε ∈ H1(Ω(Bε) ∪

⋃
B∈C=0

ε (t̂ε,1);S1) (with C=0
ε (t̂ε,1)

defined in (5.13)) satisfying (5.15).
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Recalling the definition of C 6=0
ε (t̂ε,1) in (5.13), we set µ(t̂ε,1) :=

∑
B∈C 6=0

ε (t̂ε,1) µε(B)δxB . In view

of the ball construction in Section 4 and of (5.24), we have that ]C 6=0
ε (t̂ε,1) ≤ Cp. Therefore, up

to extracting a subsequence we may assume that ]C 6=0
ε (t̂ε,1) = L for every ε > 0 and for some

L ∈ N . For every l = 1, . . . , L, let xlε be the center of the l-th ball Blε in C 6=0
ε (t̂ε,1) . Up to

a further subsequence, we can assume that the points xlε converge to some points in the finite
set {x0 = ξ0, ξ1, . . . , ξL′} ⊂ Ω̄, where L′ ≤ L . Let ρ > 0 be such that B2ρ(x

0) ⊂⊂ Ω and
B2ρ(ξj) ∩ B2ρ(ξk) = ∅ for all j 6= k . Then xlε ∈ Bρ(ξj) for some j = 1, . . . , L′ and for ε small
enough. Setting

µ̃ε :=
∑

xlε∈Bρ(x0)

µε(B
l
ε)δxlε ,

by construction, we have that

(5.25) |µ̃ε|(Ω) ≤ |µε(p)|(Ω) and ‖µ̃ε − µε(p)‖flat → 0 ,

which, in view of (5.24), implies that, up to a subsequence,

µ̃ε
∗
⇀ µ = z0δx0

.

Therefore, for sufficiently small ε,

(5.26) µ̃ε(B2ρ(x0)) =
∑

xlε∈Bρ(x0)

µε(B
l
ε) = z0 ,

and, by arguing as in the proof of (5.18), we obtain

(5.27) Fδε(wε; Ω(Bε)) ≥
∫

Ω(Bε)∩B2ρ(x0)

a
( x
δε

)
|∇ŵε|2 dx− C .

It remains to prove the lower bound for the right-hand side of (5.27) . To this end, we take

λ < p′ < p such that Rad(t̂ε,1) ≤ εp′ (note that such p′ always exists since Rε(t̂ε,1) < Rp−ηε (0) ≤
Cεp−η| log ε|p−η for every η < p − λ), choose 0 < p̄ < λ < p′ and let gε : [p̄, p′] → {1, . . . , L}
denote the function which associates to any q ∈ [p̄, p′] the number gε(q) of connected components

of the set
⋃L
l=1Bεq (x

l
ε) . For every ε > 0 , the function gε is monotonically non decreasing so that

it can have at most L̂ ≤ L discontinuities. Let qjε for j = 1, . . . , L̂1 and κjε for j = 1, . . . , L̂2 denote
the discontinuity points of gε in [p̄, λ] and in in [λ, p′], respectively. Assume that

p̄ ≤ q1
ε < . . . < qL̂1

ε ≤ λ ≤ κ1
ε ≤ . . . ≤ κL̂2

ε ≤ p′ .

There exists a finite set 41 = {q1, . . . , qL̃1} (resp., 42 = {κ1, . . . , κL̃2}) with qi < qi+1 (resp.,

κi < κi+1), and L̃1 ≤ L̂1 (resp., L̃2 ≤ L̂2) such that, up to a subsequence, {qjε}ε converges to

some point in 41 , as ε → 0 for every j = 1, . . . , L̂1 (resp., {κjε}ε converges to some point in

42 , as ε → 0 for every j = 1, . . . , L̂2). Without loss of generality we may assume that q1 = p̄ ,

qL̃1 = λ = κ1 , and κL̃2 = p′ . Let η > 0 be such that 4η < min{qi+1 − qi : i ∈ {1, . . . , L̃1}}
and 4η < min{κi+1 − κi : i ∈ {1, . . . , L̃2}} and let ε be so small that for every j = 1, . . . , L̂1 ,

|qjε − qi| < η for some qi ∈ 41 and for every j = 1, . . . , L̂2 , |κjε − κi| < η for some si ∈ 42 . Then
the function gε is constant in the intervals [qi + η, qi+1 − η] and in the intervals [κi + η, κi+1 − η]

, and in both cases we let its value be denoted by M i
ε. For every i = 1, . . . , L̃1 − 1 (resp.,

i = 1, . . . , L̃2 − 1) we construct a family of M i
ε ≤ L̃1 − 1 (resp., M i

ε ≤ L̃2 − 1) annuli that are
denoted by Ci,mε := Bεqi+η (ymε ) \ Bεqi+1−η (ymε ) (resp., Ci,mε := Bεκi+η (ymε ) \ Bεκi+1−η (ymε )) with

ymε ∈ Bρ(x0) and m = 1, . . . ,M i
ε. The annuli Ci,mε can be taken pairwise disjoint for all i and m

and such that⋃
xlε∈Bρ(x0)

Blε ⊂
Mi
ε⋃

m=1

Bεqi+1−η (ymε ) and
⋃

xlε∈Bρ(x0)

Blε ⊂
Mi
ε⋃

m=1

Bεκi+1−η (ymε ) .

Note that, for ε small enough, Ci,mε ⊂ B2ρ(x0) for all i and m and, by (5.25) , we get

|µε(Bεqi+1−η (ymε ))| ≤ C and |µε(Bεκi+1−η (ymε ))| ≤ C .
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Therefore, up to passing to a further subsequence, we can assume that M i
ε = M i and that

µε(Bεqi+1−η (ymε )) = zi,m ∈ Z \ {0} and µε(Bεκi+1−η (ymε )) = zi,m ∈ Z \ {0} , with M i and zi,m
independent of ε . Finally, in view of (5.26), we have that

(5.28)

Mi∑
m=1

zi,m = z0 .

For every i = 1, . . . , L̃2 − 1 and for every m = 1, . . . ,M i we have that∫
Ci,mε

a
( x
δε

)
|∇ŵε|2 dx ≥ ess inf a

∫
Ci,mε

1

|x− ymε |2
dx

≥ 2πess inf a (κi+1 − κi − 2η)| log ε||zi,m|2

≥ 2πess inf a (κi+1 − κi − 2η)| log ε||zi,m|

which, summing over m and over i, dividing by | log ε| and using (5.28), yields

(5.29)

1

| log ε|

L̃2−1∑
i=1

Mi∑
m=1

∫
Ci,mε

a
( x
δε

)
|∇ŵε|2 dx ≥ 2π ess inf a

L̃2−1∑
i=1

(κi+1 − κi − 2η)|z0|

≥ 2π ess inf a (κL̃2 − κ1 − 2ηL̃2)|z0|

= 2π ess inf a (p′ − λ− 2ηL̃2)|z0| .

Moreover, since qi + η < qL̃1−1 + η < λ for every i = 1, . . . , L̃0 − 1 , by (7.1), we have that

limε→0
δε

εqi+η
= 0 for every i = 1, . . . , L̃1 − 1 . Therefore, we can apply Proposition 3.2 with

s1 = qi + η < qi+1 − η = s2 (see also Remark 3.3) and Proposition 2.3 to get that for every i and
m there exists a modulus of continuity ω such that

1

| log ε|

∫
Ci,mε

a
( x
δε

)
|∇ŵε|2 dx ≥ 2π(qi+1 − qi − 2η)

√
detAhom|zi,m|2 − ω(ε)

≥ 2π(qi+1 − qi − 2η)
√

detAhom|zi,m|2 − ω(ε) .

Summing the previous inequality over m and i and using (5.28) yields

(5.30)

1

| log ε|

L̃1−1∑
i=1

Mi∑
m=1

∫
Ci,mε

a
( x
δε

)
|∇ŵε|2 dx ≥ 2π

√
detAhom(qL̃1 − p̄− 2ηL̃1)|z0| − ω(ε)

= 2π
√

detAhom(λ− p̄− 2ηL̃1)|z0| − ω(ε) .

By (5.27), summing (5.29) and (5.30), the claim follows taking the limits as ε→ 0 , η → 0, p̄→ 0
and p, p′ → 1 and using (5.23). �

6. The case δε . ε

This section is devoted to the proofs of Theorems 0.4 and 0.2.

6.1. The core-radius approach. For the reader’s convenience, we re-state Theorem 0.4 and
recall that Xε(Ω) is defined in (0.13).

Theorem 6.1. Let Fδε , Fε be defined in (0.11), (0.12), respectively, with f satisfying (P), (G),
(H). Let moreover F0 be defined by formula (0.14) with Ψ(·;Tfhom) given by (2.9) and, in the
latter formula, h = Tfhom. If lim supε→0

δε
ε < +∞, then the following statements hold true.

(i) ( Γ-liminf inequality) For any {µε}ε ⊂ X(Ω) such that µε ∈ Xε(Ω) for each ε > 0 and

µε
flat→ µ with µ ∈ X(Ω) the following inequality holds:

lim inf
ε→0

Fε(µε)

| log ε|
≥ F0(µ).
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(ii) ( Γ-limsup inequality) For every µ ∈ X(Ω), there exists a sequence {µε}ε ⊂ X(Ω) with

µε ∈ Xε(Ω) for every ε > 0 such that µε
flat→ µ and

lim sup
ε→0

Fε(µε)

| log ε|
≤ F0(µ) .

Proof of (i). For every ε > 0 we set Bε := {Bε(x) : x ∈ supp (µε)} and choose wε ∈ AFε(µε)
in such a way that

Fδε(wε; Ωε(µε)) ≤ Fε(µε) + C

for some constant C independent of ε. We can assume without loss of generality that

(6.1) α

∫
Ωε(µε)

|∇wε|2 dx ≤ Fδε(wε; Ωε(µε)) ≤ Fε(µε) + C ≤ C| log ε| ,

where the first inequality is a consequence of assumption (G) .

In view of (6.1), by applying (5.3) with U = Ω, we have that

(6.2) E(Bε, µε,Ω) ≤ C| log ε| ,

where E is defined in (5.1)-(5.2) . By (6.2) and the Jensen inequality, considering the definition of
Xε(Ω), we get

(6.3) C| log ε| ≥ E(Bε, µε,Ω) ≥ 2πα log 2
∑
B∈Bε

|µε|(B) = 2πα log 2 |µε|(Ω) ,

whence we deduce that

(6.4) Rad(Bε) ≤ ε|µε|(Ω) ≤ Cε| log ε| → 0 as ε→ 0 .

The claim follows by Proposition 5.2 whose assumptions are fulfilled in view of (6.3) and (6.4).

Proof of (ii). Let F̃0 : X(Ω)→ [0,+∞) be the functional defined by

F̃0(µ) :=

n∑
i=1

ψ(zi;Tfhom) for every µ =

n∑
i=1

ziδzi ∈ X(Ω)

and note that the functional F0 in (0.14) is the lower semicontinuous envelope of F̃0 with respect to
the flat convergence. Hence, given µ =

∑n
i=1 ziδxi ∈ X(Ω), it is enough to construct wε ∈ AFε(µ)

such that

(6.5) lim sup
ε→0

1

| log ε|
Fδε(wε; Ωε(µ)) ≤ F̃0(µ) =

n∑
i=1

ψ(zi;Tfhom) .

For this purpose, we take ρ > 0 such thatB2ρ(xi) ⊂ Ω for every i = 1, . . . , n, andB2ρ(xi) ∩B2ρ(xj) = ∅
for every i, j = 1, . . . , n with i 6= j . Since by assumption lim supε→0

δε
ε is finite, then for any s

with 0 < s < 1 it holds true that

lim
ε→0

δε
εs

= 0 .

We set ρ̄ := min{ρ, 1
2} and for every i = 1, . . . , n, we let wiε,s ∈ Ã εs,2ρ̄(zi) (where Ã εs,2ρ̄(zi) is

defined in (3.1)) be such that

(6.6) Fδε(w
i
ε,s;Aεs,2ρ̄) ≤ inf

w∈Ã εs,2ρ̄(zi)

Fδε(w;Aεs,2ρ̄) + C ,

for some constant C independent of ε. By arguing as in the proof of Lemma 3.1, we can write

wiε,s = eιu
i
ε,s for some function uiε,s ∈ SBV 2(Aεs,2ρ̄(xi)) with uiε,s(·) = ziθ(·) on ∂Bεs ∪ ∂B2ρ̄

(where θ is defined in (3.7)). Let furthermore σ : [ρ̄, 2ρ̄] → [0, 1] be the function defined by
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σ(r) := 1
ρ̄ (r − ρ̄) and set Θ(·) :=

∑n
k=1 zkθ(· − xk) . We define the function wε,s : Ωε(µ)→ S1 as

wε,s := eιuε,s where

(6.7) uε,s(x) =


ziθ(x− xi) if x ∈ Aε,εs(xi) for some i ,

uiε,s(x) if x ∈ Aεs,ρ̄(xi) for some i ,

(1− σ(|x− xi|)ziθ(x− xi) + σ(|x− xi|)Θ(x) if x ∈ Aρ̄,2ρ̄(xi) for some i ,

Θ(x) elsewhere .

The function wε,s belongs to AFε(µ) . By property (G), for every i = 1, . . . , n there exists a
constant C = C(β, ρ̄,Ω, {zi}i) > 0 such that

(6.8) Fδε(wε,s;Aε,εs(xi)) ≤ β
∫
Aε,εs (xi)

|∇wε,s|2 dx = 2πβ|zi|2(1− s)| log ε|,

(6.9) Fδε(wε,s; Ω2ρ̄(µ)) ≤ β
∫

Ω2ρ̄(µ)

|∇wε,s|2 dx ≤ C ,

and

(6.10)

Fδε(wε,s;Aρ̄,2ρ̄(xi)) ≤ β
∫
Aρ̄,2ρ̄(xi)

|∇wε,s|2 dx

≤ C
n∑
k=1
k 6=i

|zk|2
∫
Aρ̄,2ρ̄(xi)

|σ′(|x|)|2|θ(x− xk)|2 dx

+ C

n∑
k=1

|zk|2
∫
Aρ̄,2ρ̄(xi)

|∇θ(x− xk)|2 dx ≤ C .

In addition, since 2ρ̄ ≤ 1, by (6.6), Lemma 3.1 and Proposition 3.2, there exists a modulus of
continuity ω such that for every i = 1, . . . , n we have

(6.11)

1

| log ε|
Fδε(wε,s;Aεs,ρ̄(xi)) ≤

1

| log ε|
Fδε(wε,s;Aεs,2ρ̄(xi))

≤ 1

| log ε|
inf

w∈A εs,2ρ̄(xi)
Fδε(w;Aεs,2ρ̄(xi)) + ω(ε)

=
(
s− | log(2ρ̄)|

| log ε|

)
ψ(zi;Tfhom) + ω(ε) .

Finally, due to (6.8), (6.9), (6.10) and (6.11) we can choose ω in such a way that

(6.12)
1

| log ε|
Fδε(wε,s; Ωε(µ)) ≤ s

n∑
i=1

ψ(zi;Tfhom) + 2πβ(1− s)
n∑
i=1

|zi|2 + ω(ε) .

Suitably choosing sε → 1 as ε→ 0, we have that wε = wε,sε satisfies the relations in (6.5). �

6.2. The Ginzburg-Landau model. This subsection is devoted to the proof of Theorem 0.2,
which we prove here under slightly more general assumptions on the potential term. More specif-
ically, we consider W ∈ C0([0,+∞)) such that W (τ) ≥ 0, W−1(0) = {1} and

lim inf
τ→1

W (τ)

(1− τ2)
> 0, lim inf

τ→+∞
W (τ) > 0 .

and, we define GLWε : H1(Ω;R2)→ R as

(6.13) GLWε (v) :=

∫
Ω

a
( x
δε

)
|∇v(x)|2 dx+

1

ε2

∫
Ω

W (|v(x)|) dx .

We can re-state Theorem 0.2 as follows.

Theorem 6.2. Let GLWε be defined in (6.13) where a is a measurable (0, 1)2-periodic function
satisfying a(x) ∈ [α, β] for a.e. x ∈ R2. Let moreover Ahom be the symmetric matrix defined in
(0.4). If lim supε→0

δε
ε < +∞, then the following Γ-convergence result holds true.
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(i) (Compactness) Let {vε}ε ⊂ H1(Ω;R2) be such that GLWε (vε) ≤ C| log ε|. Then, there

exists µ ∈ X(Ω) such that, up to subsequences, Jvε
flat→ πµ.

(ii) ( Γ-liminf inequality) Let {vε}ε ⊂ H1(Ω;R2) be such that Jvε
flat→ πµ for some µ ∈ X(Ω) .

Then

lim inf
ε→0

GLWε (vε)

| log ε|
≥ 2π

√
detAhom|µ|(Ω).

(iii) ( Γ-limsup inequality) For every µ ∈ X(Ω), there exists a sequence {vε}ε ⊂ H1(Ω;R2)

such that Jvε
flat→ πµ and

(6.14) lim sup
ε→0

GLWε (vε)

| log ε|
≤ 2π

√
detAhom|µ|(Ω) .

Proof. Since a ≤ β a.e., the compactness property (i) is a corollary of classical results in the
variational analysis of the classical GL functional (see for instance [5, Theorem 4.1]).

Proof of (ii). The strategy of the proof is to bound from below GLWε (vε) with Fε(µε,Bε) defined
in (5.4) for a suitable choice of µε and Bε satisfying the assumptions of Proposition 5.2. Without
loss of generality we can assume that

(6.15) GLWε (vε) ≤ C| log ε|
and by the standard density arguments we can also assume that {vε}ε ⊂ H1(Ω;R2) ∩ C1(Ω;R2).
For every 0 < γ1, γ2 <

1
2 and for every ε > 0 we set

Kε,γ1,γ2
:= {|vε| ≤ 1− γ1} ∪ {|vε| ≥ 1 + γ2} and Λε,γ1,γ2

:= ∂Kε,γ1,γ2
\ ∂Ω.

By (1.10) and by the Young inequality we have that

(6.16) C| log ε| ≥
∫

Ω

α|∇|vε||2 +
1

ε2
W (vε) dx ≥ 2

√
α

ε

∫
Ω

√
W (|vε|)|∇|vε|| dx.

For every t ∈ R we set

h(t) =

∫ 1

t

√
W (s) ds

and we define the function v̂ε : Ω → R+ as v̂ε(x) = |h(|vε(x)|)|. Note that v̂ε ∈ H1(Ω) and that

|∇v̂ε| =
√
W (|vε|)|∇|vε||, so that by (6.16), the coarea formula and the mean-value theorem, for

every τ̄ ∈ (0, 1) there exists τ̄ε ∈ (0, τ̄) such that

(6.17) Cε| log ε| ≥
∫ τ̄

τ̄
2

H1({v̂ε = τ}) dτ ≥ τ̄

2
H1({v̂ε = τ̄ε}).

We set γε1 := 1 − h−1(τ̄ε) and γε2 := h−1(−τ̄ε) − 1 and note that, by construction, there exists
γ τ̄ ∈ (0, 1) such that γ τ̄ → 0 as τ̄ → 0 and there exists a constant 0 < c < 1 (independent of τ̄)
such that γε1 , γ

ε
2 ∈ (cγ τ̄ , γτ̄ ). Moreover, we have that

{v̂ε < τ̄ε} = {h−1(τ̄ε) < |vε| < h−1(−τ̄ε)} = {1− γε1 < |vε| < 1 + γε2} = Ω \Kε,γε1 ,γ
ε
2

and from the regularity of the function vε it follows that

{v̂ε = τ̄ε} = ∂{v̂ε < τ̄ε} \ ∂Ω = ∂(Ω \Kε,γε1 ,γ
ε
2
) \ ∂Ω = ∂Kε,γε1 ,γ

ε
2
\ ∂Ω = Λε,γε1 ,γε2 .

Therefore, by (6.17), we obtain that

(6.18) H1(Λε,γε1 ,γε2 ) ≤ Cτ̄ε| log ε|.
By (6.15), we have that

(6.19) Cε2| log ε| ≥
∫
Kε,γε1 ,γ

ε
2

W (|vε|) dx ≥ Cτ̄ |Kε,γε1 ,γ
ε
2
|.

As a result, thanks to the Lipschitz regularity of ∂Ω and to (6.18), we have that

(6.20) H1(∂Kε,γε1 ,γ
ε
2
) ≤ Cτ̄H1(Λε,γε1 ,γε2 ) ≤ Cτ̄ε| log ε|.

Note that, by definition of Hausdorff measure, since ∂Kε,γε1 ,γ
ε
2

is compact, it is always contained

in a finite union of balls Bri(yi) such that
∑
i ri ≤ H1(∂Kε,γε1 ,γ

ε
2
) . Moreover, after a merging
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procedure, we can always assume that such balls are disjoint. In view of (6.19), for ε small
enough, we have that Kε,γε1 ,γ

ε
2

is contained in the union of such balls. Therefore thanks to the
previous argument, by (6.20), we have proved that there exists a family of balls, that are denoted
by B′ε , whose union contains Kε,γε1 ,γ

ε
2

and such that

(6.21) Rad(B′ε) ≤ Cτ̄H1(∂Kε,γε1 ,γ
ε
2
) ≤ Cτ̄ε| log ε|.

For every ε > 0, let B′ε(t) be a time parametrized family of balls constructed as in Propo-
sition 4.2 starting from B′ε(0) := B′ε. Set Bε := B′ε(1), Cε := {B ∈ Bε : B ⊂ Ω} and
µε :=

∑
B∈Cε deg(vε, ∂B)δxB , where xB denotes the center of the ball B. Note that

(6.22) 1− γ τ̄ < |vε| < 1 + γ τ̄ in Ω(B′ε) ⊃ Ω(Bε).

Now we consider the function wε : Ω(B′ε)→ R2 defined as wε(x) := vε(x)
|vε(x)| , and we note that wε ∈

H1(Ω(B′ε);S1). Moreover, considering (1.10), (6.22), using the relation |∇vε|2 = |vε|2
∣∣∣∇ vε
|vε|

∣∣∣2 +

|∇|vε||2 and applying Proposition 4.2(4) with t1 = 0, t2 = 1, and U = Ω, we obtain that

C| log ε| ≥
∫

Ω(B′ε)
α|∇vε|2 dx ≥

∫
Ω(B′ε)

α|vε|2
∣∣∣∇ vε
|vε|

∣∣∣2 dx ≥ α(1− γ τ̄ )2

∫
Ω(B′ε)

|∇wε|2 dx

≥ 2πα(1− γ τ̄ )2|µε|(Ω) log 2 ,

from which we deduce that

(6.23) |µε|(Ω) ≤ Cτ̄ | log ε|.
Furthermore, by Proposition 4.2(5) and by (6.21) it follows that

(6.24) Rad(Bε) ≤ 2Rad(B′ε) ≤ Cτ̄ε| log ε|.
Now we show that

(6.25) µε
flat→ µ.

By (1.2) deg(vε, ∂B) = deg(wε, ∂B) for every B ∈ Cε. Hence, recalling the notion of modified
Jacobian introduced in (1.3), we have that

(6.26) (J1−γε1vε − πµε)(B) = 0 for every B ∈ Cε .

Using the triangle inequality, Proposition 1.2, (6.23), (6.24) and (6.26) we also have that

(6.27)

‖Jvε − πµ′ε‖flat ≤ ‖Jvε − J1−γε1vε‖flat + ‖J1−γε1vε − πµ
′
ε‖flat

≤ Cτ̄ε| log ε|+ 2 sup
‖ϕ‖

C
0,1
c (Ω)

≤1

∑
B∈Bε

|µε|(B)oscB(ϕ)

≤ Cτ̄ε| log ε|+ 2Rad(Bε)|µε|(Ω)

≤ Cτ̄ε| log ε|+ 2Cτ̄ε| log ε|2.

Eventually, (6.25) follows from (6.27) and from the assumption Jvε
flat→ πµ applying the triangle

inequality.
Thanks to (1.10) and (6.22), we get that

(6.28)

GLWε (vε) ≥
∫

Ω(Bε)
a
( x
δε

)
|∇vε|2 dx ≥

∫
Ω(Bε)

a
( x
δε

)
|vε|2

∣∣∣∇ vε
|vε|

∣∣∣2 dx

≥ (1− γ τ̄ )2

∫
Ω(Bε)

a
( x
δε

)
|∇wε|2 dx ≥ (1− γ τ̄ )2Fε(µε,Bε),

where Fε is defined in (5.4) with f( xδε ,∇w(x)) = a( xδε )|∇w(x)|2. Thanks to (6.23), (6.24), (6.25)

and (6.28) we are in a position to apply Proposition 5.2, obtaining

lim inf
ε→0

GLWε (vε)

| log ε|
≥ (1− γ τ̄ )2F0(µ) =

√
detAhom|µ|(Ω) ,

where the last equality follows by Proposition 2.3. The claim follows letting τ̄ → 0.
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Proof of (iii). We prove the claim under more general assumptions on the functional GLWε .
Specifically, let f be a function satisfying (P), (G), (H) and define the energy functional GLW,fε :
H1(Ω;R2)→ [0,+∞) as

GLW,fε (v) :=

∫
Ω

f
( x
δε
,∇v(x)

)
dx+

1

ε2

∫
Ω

W (|v(x)|) dx .

We prove that for every µ =
∑n
i=1 ziδxi ∈ X(Ω) there exists a sequence {vε}ε ⊂ H1(Ω;R2) such

that Jvε
flat→ πµ and

(6.29) lim sup
ε→0

GLW,fε (vε)

| log ε|
≤ F0(µ) ,

where F0 is defined in (0.14). In view of Proposition 2.3 we have that (6.14) is a consequence of
(6.29).

By arguing as in the proof of Theorem 6.1 (iii), we may reduce to the case Ψ(zi;Tfhom) =
ψ(zi;Tfhom) for every i = 1, . . . , n . Let ρ > 0 be such that B2ρ(xi) ⊂ Ω for every i = 1, . . . , n and

B2ρ(xi)∩B2ρ(xj) = ∅ for every i, j = 1, . . . , n with i 6= j. For every 0 < s < 1, since by assumption

lim supε→0
δε
ε is finite, we have that limε→0

δε
εs = 0. Finally, we set Ωε(µ) := Ω \

⋃n
i=1Bε(xi) and

we let usε be the function defined in (6.7). For every ε > 0 we set

vε,s(x) :=

{
eιu

s
ε(x) if x ∈ Ωε(µ) ,

|x−xi|
ε

(
x−xi
|x−xi|

)zi
if x ∈ Bε(xi) for some i ,

and we note that vε,s ∈ H1(Ω;R2) and that Jvε,s = πµ for every ε > 0. In addition, for almost
every x ∈ Ωε(µ) we have that |vε,s(x)| = 1, hence W (|vε,s(x)|) = 0. The latter yields

(6.30)

∫
Ω

W (|vε,s|) dx =

n∑
i=1

∫
Bε(xi)

W (|vε,s|) dx ≤ nCπε2

by the continuity of W . Furthermore, by the very definition of vε,s, we have that

(6.31)

n∑
i=1

∫
Bε(xi)

f
( x
δε
, vε,s

)
dx ≤

n∑
i=1

∫
Bε(xi)

|∇vε,s|2 dx ≤ 2

n∑
i=1

π(1 + |zi|2) .

Gathering together (6.30), (6.31) and (6.12), we eventually obtain that

1

| log ε|
GLW,fε (vε) ≤

1

| log ε|

∫
Ωε(µ)

f
( x
δε
, vε,s

)
dx+ o(1)

≤ s
n∑
i=1

ψ(zi;Tfhom) + 2πβ(1− s)
n∑
i=1

|zi|2 + o(1) ,

which, suitably choosing sε → 1 as ε→ 0 and setting vε := vε,sε , gives (6.29). �

7. The case δε � ε

This section is devoted to the proofs of Theorems 0.5 and of 0.6. We will prove the above
Γ-convergence results under the assumption that

(7.1) lim
ε→0

δε = 0 , λ := lim
ε→0

| log δε|
| log ε|

∈ [0, 1) .

7.1. The core-radius approach. For the reader’s convenience, we re-state Theorem 0.5 and we
recall that Xε(Ω) is defined in (0.13).

Theorem 7.1. Let Fδε , Fε be defined in (0.16), (0.12), respectively, with f of the form (1.10),
where a is a measurable (0, 1)2-periodic function satisfying a(x) ∈ [α, β] ⊂ (0,+∞) for a.e. x ∈
R2 . Let moreover Ahom be the matrix defined in (0.4). If (7.1) is satisfied, then the following
statements hold true.
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(i) ( Γ-liminf inequality) For any family {µε}ε ⊂ X(Ω) such that µε ∈ Xε(Ω) for every ε > 0

and µε
flat→ µ with µ ∈ X(Ω) we have

lim inf
ε→0

Fε(µε)

| log ε|
≥ 2π

((
1− λ)ess inf a+ λ

√
detAhom

)
|µ|(Ω) .

(ii) ( Γ-limsup inequality) For every µ ∈ X(Ω), there exists a sequence {µε}ε ⊂ X(Ω) with

µε ∈ Xε(Ω) for every ε > 0 such that µε
flat→ µ and

lim sup
ε→0

Fε(µε)

| log ε|
≤ 2π

((
1− λ)ess inf a+ λ

√
detAhom

)
|µ|(Ω) .

Proof of (i). For every ε > 0 we set Bε := {Bε(x) : x ∈ supp (µε)} and choose wε ∈ AFε(µε) in
such a way that

(7.2) Fδε(wε; Ωε(µε)) ≤ Fε(µε) + C

for some constant C independent of ε. We can assume without loss of generality that

(7.3) α

∫
Ωε(µε)

|∇wε|2 dx ≤ Fδε(wε; Ωε(µε)) ≤ Fε(µε) + C ≤ C| log ε| .

By arguing as in the first part of the proof of Theorem 6.1(ii) we get that |µε|(Ω) ≤ C| log ε| and
hence Rad(Bε) ≤ Cε| log ε| . Therefore, Proposition 5.4 yields the claim.

Proof of (ii). By standard density arguments in the Ginzburg-Landau theory, we can reduce to
the case that µ =

∑n
i=1 ziδxi with |zi| = 1 . We set m := ess inf a and for every η ∈ (0, 1) let

Eη := {y ∈ [0, 1)2 : a(y) ≤ m+ η} .
By the very definition of ess inf we have that |Eη| > 0 for every η and there exists yη ∈ Eη having
density 1 in Eη , i.e.,

(7.4) lim
r→0

|Eη ∩Br(yη)|
r2

= 1 .

For every i = 1, . . . , n we set

(7.5) xδε,ηi := δε

⌊xi
δε

⌋
+ δεyη .

Since δε → 0 as ε→ 0 we have that xδε,ηi → xi as ε→ 0 for every i = 1, . . . , n. Therefore, setting

(7.6) µε,η :=
n∑
i=1

ziδxδε,ηi
,

we have that

(7.7) µε,η
flat→ µ as ε→ 0 .

Now we prove that for every 0 < s < 1 there exists a function wε,η,s ∈ AFε(µε,η) such that

(7.8)
lim sup
ε→0

1

| log ε|
Fδε(wε,η,s,Ωε(µε,η)) ≤2π

(
(1− sλ)(m+ η) + λs

√
detAhom

)
|µ|(Ω)

+
(

2πβ(1− s)λ+ 2π(1− s)λ
)
|µ|(Ω).

We fix ρ > 0 such that B2ρ(x
δε,η
i ) ⊂ Ω for every i = 1, . . . , n and B̄2ρ(x

δε,η
i ) ∩ B̄2ρ(x

δε,η
j ) 6= ∅ for

every i, j = 1, . . . , n with i 6= j . Let ρ̄ := min{ρ, 1
2} .

Furthermore, for every 0 < s < 1, we let wiδε,s ∈ Ã δsε ,2ρ̄
(zi) be such that

(7.9) Fδε(w
i
δε,s;Aδsε ,2ρ̄) ≤ inf

w∈Ã δsε,2ρ̄

Fδε(w;Aδsε ,2ρ̄) + C .

By arguing as in the proof of Lemma 3.1, we can write wiδε,s = eιu
i
δε,s for some function

uiδε,s ∈ SBV
2(Aδsε ,2ρ̄(xi)) with uiδε,s(·) = ziθ(·) on ∂Bδsε ∪ ∂B2ρ̄ (where θ is defined in (3.7)).
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Let θ be the function defined in (3.7) and let Θ(·) :=
∑n
k=1 zkθ(· − xk) . Let furthermore

σ : [ρ̄, 2ρ̄]→ [0, 1] be the function defined by σ(r) := 1
ρ̄ (r − ρ̄) . For every i = 1, . . . , n we set

uiε,η,s(x) :=


ziθ(x− xδε,ηi ) if x ∈ Aε,δsε (x

δε,η
i ) ,

uiδε,s(x) if x ∈ Aδsε ,ρ̄(x
δε,η
i ) ,

(1− σ(|x− xδε,ηi |)ziθ(x− xδε,ηi ) + σ(|x− xδε,ηi |)Θ(x) if x ∈ Aρ̄,2ρ̄(xδε,ηi ) ,

and we define the function wε,η,s : Ωε(µε,η)→ S1 as wε,η,s := eιuε,η,s where

(7.10) uε,η,s(x) =

{
uiε,η,s(x) if x ∈ Aε,2ρ̄(xδε,ηi ) for some i

Θ(x) elsewhere .

Note that wε,η,s ∈ AFε(µε,η) .
Let i = 1, . . . , n . By (1.10), using the change of variable x = δεy+δεbxiδε c and the 1-homogeneity

of the function a, we have

Fδε(wε,η,s, Aε,δsε (x
δε,η
i )) =

∫
A ε
δε
,δ
s−1
ε

(yη)

a(y)

|y − yη|2
dy

=

∫
A ε
δε
,δ
s−1
ε

(yη)∩Eη

a(y)

|y − yη|2
dy +

∫
A ε
δε
,δ
s−1
ε

(yη)\Eη

a(y)

|y − yη|2
dy(7.11)

≤ 2π(m+ η)
(
| log ε| − s| log δε|

)
+ β

∫
A ε
δε
,δ
s−1
ε

(yη)\Eη

1

|y − yη|2
dy .

We now estimate the last integral in (7.11). To this end, let γ ∈ (0, 1) . We note that

(7.12)

∫
A
γ,δ

s−1
ε

(yη)\Eη

1

|y − yη|2
dy ≤ 2π log

δs−1
ε

γ
= 2π(1− s)| log δε|+ 2π| log γ| .

Let moreover I := d | log ε|−| log δε|−| log γ|
log 2 e and for every i = 0, 1, . . . , I we set ri := 2i εδε ; then, using

(7.4), we get

(7.13)

∫
A ε
δε
,γ(yη)\Eη

1

|y − yη|2
dy ≤

I∑
i=1

∫
Ari−1,ri

(yη)\Eη

1

|y − yη|2
dy ≤

I∑
i=1

4
|Bri(yη) \ Eη|

r2
i

≤
( | log ε| − | log δε| − | log γ|

log 2
+ 1
)
Cη(γ) ,

where limγ→0 Cη(γ) = 0 for every η .
By (7.11), (7.12) and (7.13), using (7.1), we deduce that

(7.14)

lim sup
ε→0

1

| log ε|
Fδε(wε,δε,s, Aε,δsε (x

δε,η
i ) ≤ 2π(1− sλ)(m+ η) + 2πβ(1− s)λ+ β

1− λ
log 2

Cη(γ) .

In addition, since 2ρ̄ ≤ 1, by (7.9), Lemma 3.1, Proposition 3.2 (applied with ε = δε and s2 = s)
and (7.1), there exist moduli of continuity ω1, ω2 such that for every i = 1, . . . , n we have

(7.15)

1

| log ε|
Fδε(wε,η,s, Aδεs,ρ̄(x

δε,η
i )) =

| log δε|
| log ε|

1

| log δε|
Fδε(w

i
δε,s, Aδεs,ρ̄(x

δε,η
i ))

≤(λ+ ω1(ε))
1

| log δε|
inf

w∈A δsε,2ρ̄
(xi)

Fδε(w;Aδsε ,2ρ̄(xi)) + ω2(ε)

=(λ+ ω1(ε))
(
s− | log(2ρ̄)|

| log δε|

)
2π
√

detAhom + ω2(ε) ,
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where the last equality follows by (1.10) and (2.11). By (7.14), (7.15), recalling (6.9) and (6.10)
we have that

lim sup
ε→0

1

| log ε|
Fδε(wε,η,s,Ωε(µε,η)) ≤2π

(
(1− sλ)(m+ η) + λs

√
detAhom

)
|µ|(Ω)

+
(

2πβ(1− s)λ+ 2π(1− s)λ+ β
1− λ
log 2

Cη(γ)
)
|µ|(Ω) ,

whence, suitably choosing γ = γε → 0 as ε→ 0 , we get (7.8). Therefore, suitably choosing sε → 1

and ηε → 0 as ε→ 0, by (7.8) we get that µε = µε,ηε
flat→ µ and wε = wε,ηε,sε satisfies

lim sup
ε→0

1

| log ε|
Fδε(wε; Ωε(µε)) ≤ lim sup

ε→0

Fε(µε)

| log ε|
≤ 2π

((
1− λ)ess inf a+ λ

√
detAhom

)
|µ|(Ω) .

�

7.2. The Ginzburg-Landau model. Finally, we prove Theorem 0.6 in the more general setting
introduced in Subsection 6.2.

Theorem 7.2. Let GLWε be defined in (6.13) where a is a measurable (0, 1)2-periodic function
satisfying a(x) ∈ [α, β] ⊂ (0,+∞) for a.e. x ∈ R2. Let moreover Ahom be the symmetric matrix
defined in (0.4). If (7.1) is satisfied, then the following Γ-convergence result holds true.

(i) ( Γ-liminf inequality) Let {vε}ε ⊂ H1(Ω;R2) be such that Jvε
flat→ πµ for some µ ∈ X(Ω) .

Then

lim inf
ε→0

GLWε (vε)

| log ε|
≥ 2π

((
1− λ)ess inf a+ λ

√
detAhom

)
|µ|(Ω).

(ii) ( Γ-limsup inequality) For every µ ∈ X(Ω), there exists a sequence {vε}ε ⊂ H1(Ω;R2)

such that Jvε
flat→ πµ and

(7.16) lim sup
ε→0

GLWε (vε)

| log ε|
≤ 2π

((
1− λ)ess inf a+ λ

√
detAhom

)
|µ|(Ω) .

Proof of (i). Without loss of generality we can assume that GLWε (wε) ≤ C| log ε| and by standard
density arguments we can also assume that {vε}ε ⊂ H1(Ω;R2) ∩ C1(Ω;R2) .

Let τ̄ ∈ (0, 1) . By arguing verbatim as in the proof of Theorem 6.2(ii), one can prove that
for every ε > 0 , there exist γ τ̄ > 0 with γ τ̄ → 0 as τ̄ → 0 , a family Bε of balls such that
Rad(Bε) ≤ Cτ̄ε| log ε| and

(7.17) 1− γ τ̄ < |vε| < 1 + γ τ̄ in Ω(Bε) ,

and a measure µε with suppµε ⊂
⋃
B∈Bε B such that µε

flat→ µ as ε → 0 . For every ε > 0 we

defined the function wε ∈ H1(Ω(Bε);S1) as wε(x) := vε(x)
|vε(x)| . By (7.17) we get

(7.18)
GLWε (vε) ≥

∫
Ω(Bε)

a
( x
δε

)
|∇vε|2 dx ≥ (1− γ τ̄ )

∫
Ω(Bε)

a
( x
δε

)
|∇wε|2

≥(1− γ τ̄ )Fε(µε,Ω(Bε)) ,

where Fε is defined in (5.4) with Fδ defined in (0.16). Since the assumptions of Proposition 5.4
are satisfied, by (7.18) we have that

lim inf
ε→0

GLWε (vε)

| log ε|
≥ (1− γ τ̄ )2π

((
1− λ)ess inf a+ λ

√
detAhom

)
|µ|(Ω) ,

whence the claim follows letting τ̄ → 0 .

Proof of (ii). By arguing as in the proof of Theorem 7.1 (iii), we may reduce to the case |zi| = 1
for every i = 1, . . . , n . For every 0 < η, s < 1 , let µε,η be defined as in (7.6) and let uε,η,s be the
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function provided by (7.10) . Setting Ωε(µε,η) := Ω \
⋃n
i=1Bε(x

δε,η
i ) with xδε,ηi defined in (7.5) ,

for every ε > 0 we define

vε,η,s(x) :=

{
eιuε,η,s(x) if x ∈ Ωε(µε,η) ,
|x−xi|
ε

(
x−xi
|x−xi|

)zi
if x ∈ Bε(xδε,ηi ) for some i .

We note that vε,η,s ∈ H1(Ω;R2) and that Jvε,η,s = πµε,η for every ε > 0. In addition, for almost
every x ∈ Ωε(µε,η) we have that |vε,η,s(x)| = 1, hence W (|vε,η,s(x)|) = 0. By arguing as in (6.30)
and (6.31), and using (7.8), we thus obtain that

lim sup
ε→0

1

| log ε|
GLWε (vε,η,s) ≤2π

(
(1− sλ)(m+ η) + λs

√
detAhom

)
|µ|(Ω)

+
(

2πβ(1− s)λ+ 2π(1− s)λ
)
|µ|(Ω) .

Therefore, suitably choosing sε → 1 and ηε → 0 as ε → 0 and setting vε = vε,ηε,sε , by (7.7) we

have that Jvε
flat→ µ as ε→ 0 and that {vε}ε satisfies (7.16). �

Remark 7.3. Note that if δε tends to zero much slower than ε in such a way that λ = 0 in
(7.1) , then, within the | log ε|, scaling the homogenization process is not detected by the Γ-limit in

Theorems 7.1 and 7.2, which in turns reduces to 2π ess inf a|µ|(Ω) . This is the case if limε→0
εp

δε
= 0

for all p ∈ (0, 1] ; for example, if δε = 1
| log ε| .

Example 7.1. We can give an explicit example, choosing a piecewise constant on a checkerboard
taking alternatively the values α and β. We have that Ahom =

√
αβ I (see e.g. [36] Section 1.5),

so that the corresponding Γ-limit is

2π
(

(1− λ)α+ λ
√
αβ
)
|µ|(Ω),

with λ given by (7.1). The limit has the same form if we choose a as a laminate taking only the
values α and β with volume fraction 1/2, whose homogenized matrix Ahom has the eigenvalues
α+β

2 and 2αβ
α+β (see e.g. [17, Section 12.2.2]).
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Applications, vol. 8, Birkhäuser Boston, Boston (MA), 1993.

[24] De Luca, L.: Γ-convergence analysis for discrete topological singularities: The anisotropic triangular lattice
and the long range interaction energy, Asymptot. Anal. 96 (2016), no. 3-4, 185–221.

[25] De Luca, L., Garroni, A., Ponsiglione, M.: Γ-convergence analysis of systems of edge dislocations: the self

energy regime, Arch. Ration. Mech. Anal. 206 (2012), no. 3, 885–910.
[26] De Luca, L., Ponsiglione, M.: Low energy configurations of topological singularities in two dimensions: a

Γ-convergence analysis of dipoles, Comm. Contemp. Math. 22 (2020), no. 3, 1950019.

[27] Dirr, N., Lucia, M., Novaga, M.: Gradient theory of phase transitions with a rapidly oscillating forcing term,
Asymptot. Anal. 60 (2008), 29–59.

[28] Dos Santos, M., Mironescu, P., Misiats, O.: The Ginzburg-Landau functional with a discontinuous and rapidly
oscillating pinning term. Part I: The zero degree case, Comm. Contemp. Math. 13 (2011), 885–914.

[29] Dos Santos, M.: The Ginzburg-Landau functional with a discontinuous and rapidly oscillating pinning term.

Part II: the non-zero degree case. Indiana Univ. Math. J. 62 (2013), no. 2, 551–641.
[30] D’Onofrio, C.: Homogenization of Composite Materials with Topological Singularities, Master Thesis (2018).

[31] Hirth J.P., Lothe J.: Theory of Dislocations, Krieger Publishing Company, Malabar, Florida, 1982.

[32] Hull, D., Bacon, D.J.: Introduction to dislocations, Butterworth-Heinemann, 2011.
[33] Jerrard, R.L.: Lower bounds for generalized Ginzburg-Landau functionals, SIAM J. Math. Anal. 30 (1999),

no. 4, 721–746.

[34] Jerrard R.L., Soner H. M.: The Jacobian and the Ginzburg-Landau energy, Calc. Var. Partial Differ. Equ. 14
(2002),151–191.

[35] Jerrard, R. L., Soner, H. M.: Limiting behavior of the Ginzburg-Landau functional, J. Funct. Anal. 192

(2002), no. 2, 524–561.
[36] Jikov, V.V., Kozlov, S.M., Oleinik, O.A.: Homogenization of Differential Operators and Integral Functionals,

Springer-Vergag, Berlin, 1994.
[37] Kleman, M., Lavrentovich, O.D.: Soft Matter Physics: An Introduction. Springer Verlag, New York, 2003.

[38] Lin, F. H.: Some dynamical properties of Ginzburg-Landau vortices, Comm. Pure Appl. Math. 49 (1996), no.

4, 323–359.
[39] London, F.: Superfluids. Macroscopic Theory of Superconductivity. Vol. I, Wiley, New York, 1950. Revised

2nd Ed., Dover, New York, 1961.
[40] London, F.: Superfluids. Macroscopic Theory of Superfluid Helium. Vol. II, Wiiley, New York, 1954. Revised

2nd Ed., Dover, New York, 1964.
[41] Mermin, N.D.: The topological theory of defects in ordered media, Rev. Mod. Phys. 51 (1979), 591–648.

[42] Ponsiglione, M.: Elastic energy stored in a crystal induced by screw dislocations: from discrete to continuous,
SIAM J. Math. Anal. 39 (2007), no. 2, 449–469.

[43] Sandier, E.: Lower bounds for the energy of unit vector fields and applications, J. Funct. Anal. 152 (1998),
no. 2, 379–403.

[44] Sandier, E., Serfaty, S.: Gamma-Convergence of Gradient Flows with Applications to Ginzburg-Landau,
Comm. Pure Appl. Math. LVII (2004), 1627–1672.

[45] Sandier, E., Serfaty, S.: Vortices in the Magnetic Ginzburg-Landau Model, Progress in Nonlinear Differential
Equations and Their Applications, vol. 70, Birkhäuser Boston, Boston (MA), 2007.
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