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Abstract

Derived categories are deeply explored invariants of algebraic varieties, often studied on
their own merit. In this thesis we focus on two categorical analogues of classical algebro-
geometric constructions, in the spirit of homological projective geometry ([KP21a, §1.5]).
We present two results obtained in this theoretical framework.

In Chapter § 1, based on the preprint [Cat23b], we consider two odd isotropic Grass-
mannians as examples of horospherical varieties of Picard rank one. We construct a full
rectangular Lefschetz collection on IGr(3, 9), confirming in this case a version of Dubrovin’s
conjecture.

In § 1.6, we study a generalization of this approach to IGr(3, 11). We construct a
rectangular Lefschetz collection and propose an element to complete it to a full exceptional
collection. To do so, we partially rely on code developed with SageMath and available online
at [Cat23a]. Despite not being able to prove yet that the final collection is exceptional, we
have several partial results (e.g. Proposition 1.6.18, Theorem 1.6.24, Theorem 1.6.25).

We hope that the construction of these exceptional collections will be useful to find a
general categorical construction for horospherical varieties of Picard rank one. We prove a
statement of this kind for Grothendieck groups of horospherical varieties in Appendix § A.

Chapter § 2 is based on the joint work [Cat+23]. In this work we propose a generalization
of the notion of nodal singularity to triangulated categories. With some technical caveats,
we prove that the derived category of a variety admitting a simple double point is given
by the Verdier localization of its categorical resolution by a 2 or 3-spherical object. We
propose this notion as a starting point to define "nodal categories".
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Introduction

In this dissertation we present two contributions to the study of derived categories of alge-
braic varieties in the framework of homological projective geometry and non-commutative
algebraic geometry in the sense of Kontsevich and Rosenberg. We provide an overview of
these topics and a motivation for the study of these objects.

Triangulated categories as non-commutative algebraic varieties

Vector bundles on manifolds are very classical objects of study. The category of vector
bundles on a variety is an exact category in the sense of Quillen [Qui10]. It is an additive
category with a natural notion of exact sequences, but it is not abelian, preventing its study
with algebraic techniques. Specifically, in the case of algebraic varieties, the category of
vector bundles is replaced with the category of coherent sheaves. If X is a smooth algebraic
variety, we denote the category of coherent sheaves as Coh(X ). The category of vector
bundles is a full subcategory of Coh(X ), but additionally, Coh(X ) is abelian.

A classical result of Gabriel and Rosenberg (see for instance the survey [Ros98]) shows
that if X and Y are two smooth projective varieties with equivalent categories of coherent
sheaves, then X and Y are isomorphic themselves. This shows that the category of coherent
sheaves on a variety is a complete invariant.

The derived category of an abelian category (cf. [Huy06, Chapter 2]) is a general cat-
egorical construction. The definition of its morphisms is quite technical, but otherwise,
its objects are simply complexes of objects in the original abelian category. As Coh(X )
is abelian, we can construct its derived category. The complexes with a finite number of
nonzero cohomologies form the bounded derived category of X, which we denote as Db(X ).

First of all, Db(X ) is not a complete invariant, i.e. there are varieties with equivalent
derived categories which are not isomorphic. There are many examples, see for instance
the pioneering work [Muk81], which proved that an abelian variety and its dual are derived
equivalent. Nonetheless, the derived category captures a lot of the starting geometry: Bon-
dal and Orlov proved in [BO01, Theorem 2.5] that if X has ample canonical or anticanonical
sheaf and Db(X ) ∼= Db(Y ), then X ∼= Y . Notice that this result includes Fano varieties.

The derived category of a smooth projective variety is a triangulated category endowed
with an auto-equivalence induced by Serre duality, called a Serre functor (cf. [Huy06, Chap-
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Introduction iv

ter 1]). The results mentioned before (and many others) encouraged the study of trian-
gulated categories as a generalization of algebraic varieties, the so-called non-commutative
algebraic varieties, in opposition to the derived categories of algebraic varieties which could
be referred to as commutative algebraic varieties (see for instance [Kon95], [Ros98], [Gin05]).

Homological projective geometry (see [KP21a, §1.5]) aims to study generalizations of
classical algebraic geometry constructions in categorical terms. There are two souls to this
topic, often interconnected.

The first and most classical part consists in the study of projective geometry construc-
tions and determining how they reflect on the derived category, see for instance [Orl92],
[BO02, §4] and related work.

The second part is the study of generalizations of projective geometry constructions in
a non-commutative sense, with the hope that the categorical analogue has nicer properties.
To better illustrate this idea, we give two examples, relevant to this dissertation.

The first example is given by categorical resolutions of singularities (see for instance
[Van04], [BO02, §5], [Kuz08b], [KL15]). It is known that for algebraic varieties in dimension
3 or higher there is no minimal resolution of singularities, as there are birational maps
(non-morphisms!) between resolutions. In the Minimal Model Program, this problem is
addressed by allowing models with mild singularities to find a minimal representative in
a class of birational varieties. In the same way, in the derived category setting, we allow
non-commutative varieties as possible resolutions of singularities. It is conjectured that
varieties with mild singularities have minimal categorical resolutions.

Another example can be found in [KP21a], which improves on the theory of projec-
tive joins. The projective join of two varieties living in two different projective spaces is
constructed in the following way. We first embed the two ambient projective spaces in a
common projective space, then we consider the union of all the lines with a point on the
first variety and another on the second. The resulting variety is the classical projective
join. The projective join is singular unless the two varieties are linear subspaces. To solve
this issue, the categorical join is a nonsingular non-commutative variety instead, which is
actually a categorical resolution of the projective join.

We mention here some techniques and approaches common to both topics of the disser-
tation.

Lefschetz collections on Fano varieties and residual categories

The derived category Db(X ) can often be split in smaller subcategories. A semiorthogonal
collection is a sequence of triangulated subcategories A1,A2, . . . ,Ap ⊆ Db(X ), such that
there are no morphisms (in Db(X )) from a category to one on their left. A semiorthogonal
collection is full (or a decomposition) if the smallest triangulated category containing it
is Db(X ). Ideally, the subcategories in a collection are generated by a single object with
the easiest possible structure: an exceptional object. A set of semiorthogonal exceptional
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objects is called an exceptional collection.
Recall that the index w ≥ 0 of a Fano variety X is the maximal positive integer such

that the canonical class KX is divisible by w in PicX. In this case, we write ωX = O(−w),
where ωX is the canonical bundle and O(1) is a primitive ample line bundle on X.

Lefschetz collections are the bread and butter of homological projective geometry and
the study of derived categories. A rectangular Lefschetz collection is an exceptional collec-
tion formed by a smaller exceptional collection E1, . . . , Ep, the first block, and its twists by
a line bundle O(1), that is:

Db(X ) ⊇ ⟨E1, . . . , Ep, E1(1), . . . , Ep(1), . . . , E1(w − 1), . . . , Ep(w − 1)⟩.

For a more detailed discussion, we refer to § 1.2. In Chapter § 2, we need Lefschetz
collections as a key ingredient to cook up a categorical resolution of a nodal variety.

We define the residual category of a rectangular Lefschetz collection, A ⊆ Db(X ), from
the semiorthogonal decomposition:

Db(X ) = ⟨A , E1, . . . , Ep, E1(1), . . . , Ep(1), . . . , E1(w − 1), . . . , Ep(w − 1) ⟩,

i.e. A is the right orthogonal to the Lefschetz collection (cf. § 1.4).
The qualitative Dubrovin’s conjecture claims that a Fano variety admits a full exceptional

collection if and only if its quantum cohomology is semisimple. In [KS21, Conjecture 1.3],
it is proposed an enhancement of Dubrovin’s conjecture that keeps track of the Lefschetz
part of the decomposition and the residual category. That is, if the quantum cohomology
is semisimple, the conjecture claims that the residual category to a maximal rectangular
Lefschetz collection is generated by a fully orthogonal exceptional sequence. According
to this claim, in Chapter § 1, we find a full Lefschetz collection of Db(IGr(3, 9)), as the
residual category vanishes. In the study of IGr(3, 11) (in § 1.6), we find the basis of a
maximal rectangular Lefschetz collection and construct an object that we conjecture to
belong to the residual category (see Theorem 1.6.24).

Homogeneous varieties of simple algebraic groups

The study of derived categories of homogeneous varieties was started by the results of
Beilinson [Bei78] on Pn and Kapranov [Kap88] on Grassmannians and quadrics. After the
work of Kapranov, it was conjectured that every homogeneous space G/P, for semisimple
G and a parabolic subgroup P, admits an exceptional collection of Db(G/P). We refer to
[KP16, § 1.1-§ 1.2] and [Bel20] for a survey on this conjecture. A strong reason for the
study of derived categories of homogeneous varieties can be found in the abundance of
G-equivariant bundles.

Simple algebraic groups are classified in four infinite series An,Bn,Cn,Dn and some spo-
radic groups. If G is a simple simply connected algebraic group, then there is an equivalence
between the category of P-representations and the category of G-equivariant vector bundles
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on G/P. Since the subgroup P is not reductive, the structure of RepP is not straight-
forward. Restricting our attention to semisimple representations of P, which naturally
restrict to representations of the Levi quotient L, we obtain a full exceptional collection in
the derived category of equivariant sheaves (see [KP16, Theorem 3.4]), although it is not
exceptional in the category of coherent sheaves.

The main tool to handle the cohomology of homogeneous bundles is the Borel–Bott–Weil
Theorem, which relates the weights of the irreducible representations of L with the coho-
mology of their associated bundles. In Theorem 1.3.1, Theorem 1.3.10 and Theorem 2.2.29
we provide the detailed statements necessary for our applications.

The theory of homogeneous spaces is crucial to both chapters. In Chapter § 1, even
though odd isotropic Grassmannians are not homogeneous themselves, they are subvari-
eties of homogeneous spaces of type An and Cn (respectively standard and even isotropic
Grassmannians). As a consequence, we can use these embedding and the Borel–Bott–Weil
Theorem to obtain some vanishing results, e.g. Corollary 1.3.14 and some ad-hoc compu-
tations, e.g. § 1.4, § 1.6. In Chapter § 2, several computations are possible because the
exceptional locus of the resolution of a nodal point is a quadric, which is a homogeneous
space for groups of type Bn or Dn, depending on dimension.

Overview of the dissertation

In this dissertation we present two independent contributions to homological projective
geometry.

In Chapter § 1 (based on the preprint [Cat23b]) we were motivated to find a categorical
analogue of the construction that associates a horospherical variety of Picard rank one to a
pair of homogeneous varieties following the spirit of [KP21a]. We obtain a full exceptional
collection on IGr(3, 9). We generalize this approach to IGr(3, 11) in § 1.6. In the latter
section, we construct the basis of a rectangular collection and propose a object to complete it
to a full (non rectangular) Lefschetz collection. To do so, we partially rely on code developed
with SageMath and available online at [Cat23a]. Despite not being able to prove yet that
the final collection is exceptional, we have several partial results (e.g. Proposition 1.6.18,
Theorem 1.6.24, Theorem 1.6.25).

We expect that the study of exceptional collections in IGr(3, 9) and IGr(3, 11) can clarify
how to construct an exceptional collection on general odd isotropic Grassmannians and on
other horospherical varieties, starting from exceptional collections on their homogeneous
orbits.

In Chapter § 2 (based on the joint work [Cat+23]) we present a result on the categorical
resolution of a nodal variety. The existence of a categorical resolution in this case is provided
by [Kuz08b]. In this work, we characterize the derived category of a quasi-projective nodal
variety as the Verdier localization of its categorical resolution by a 2 or 3-spherical object,
depending on the parity of the dimension of the starting variety.



Chapter 1

The derived category of some odd
isotropic Grassmannians

1.1 Introduction

The bounded derived category of coherent sheaves of a smooth projective variety X is one of
its most remarkable invariants. The derived category (from now on, denoted as Db(X )) can
often be split in smaller triangulated subcategories. In the best case, these subcategories
are generated by a single object with the easiest possible structure, an exceptional object.
The work of Kapranov [Kap88] sparked the interest in the study of the derived category of
homogeneous spaces by finding full exceptional collections on Grassmannians and quadrics.
This led to the following conjecture. As in the rest of the work, we fix C as base field.

Conjecture 1.1.1. If G is a semisimple algebraic group over C and P ⊂ G is a parabolic
subgroup, then there is a full exceptional collection in Db(G/P).

We refer to [KP16, § 1.1-§ 1.2] and [Bel20] for a survey on this conjecture. In addition,
it was proved in [KP16, Theorem 1.2] that any G/P for G classical admits an exceptional
collection of maximal possible length r = rankK0(G/P) = dimH•(G/P,C), even though its
fullness is not known.

Dubrovin’s conjecture [Dub98, Conjecture 4.2.2] claims that the existence of a full excep-
tional collection is equivalent to the generic semisimplicity of the big quantum cohomology
ring. We consider the following version of the conjecture, which additionally involves Lef-
schetz collections. For a more detailed discussion, we refer to [KS21, § 1]. Recall that a
rectangular Lefschetz collection with respect to a line bundle L is given by an exceptional
collection and its twists by powers of L (cf. Definition 1.2.4). Recall that the index w ≥ 0 of
a Fano variety X is the maximal positive integer such that the canonical class KX is divis-
ible by w in PicX. In that case, we write ωX = O(−w), where ωX is the canonical bundle
and O(1) is a primitive ample line bundle on X. We denote the big and small quantum
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Chapter 1. The derived category of some odd isotropic Grassmannians 2

cohomology of X by BQH(X) and QH(X). Recall that QH(X) is an algebra over the quan-
tum parameters Q[q1, . . . , qs] corresponding to the functions on the affine space PicX ⊗Q.
Consider the algebra QH(X)can = QH(X)⊗Q[q1,...,qs]C, where Q[q1, . . . , qs]→ C is induced
by KX ∈ PicX⊗Q. Notice that QH(X)can ∼= H•(X,C) as a vector space, but it is endowed
with a different (quantum) multiplication.

Conjecture 1.1.2 ([KS21, Conjecture 1.3.(i)]). Let X be a Fano variety with index w and
assume that BQH(X) is generically semisimple. If the class [KX ] ∈ H2(X,C) ⊂ QH(X)can
is invertible (with respect to the quantum multiplication), then there is an exceptional col-
lection E1, . . . , Ep extending to a full rectangular Lefschetz collection of Db(X ), where
p = 1

w dimH•(X,C).

A good testing ground for this conjecture is the class of horospherical varieties, intro-
duced by [Pas08]. These are normal algebraic varieties on which a reductive group acts
with an open orbit isomorphic to a torus bundle over a homogeneous variety. Naturally,
this includes homogeneous spaces and toric varieties. Therefore, we believe that studying
exceptional collections on horospherical varieties can shed light on exceptional collections
in homogeneous spaces.

Let G be a semisimple algebraic group over C. Pasquier proved that except for homoge-
neous varieties, any smooth G-horospherical variety of Picard rank one is a G-variety which
has exactly two disjoint closed orbits Y,Z under the action of G. The stabilizers of Y and
Z are maximal parabolic subgroups PY ,PZ ⊂ G. The following Theorem 1.1.3 provides a
classification of horospherical varieties. We write Type(G) for the Dynkin type of G and Pk
for the maximal parabolic subgroup of G associated to the k-th fundamental weight with
respect to Bourbaki notation.

Theorem 1.1.3 ([Pas09, Theorem 0.1]). Let X be a smooth projective G-horospherical
variety of Picard rank one. Then either X is homogeneous, or X can be constructed from
a triple (Type(G),PY ,PZ) belonging to the following list:

1. (Bn,Pn,Pn−1) with n ≥ 3;

2. (B3,P3,P1);

3. (Cn,Pk,Pk−1) with n ≥ 2 and k ∈ {2, . . . , n};
4. (F4,P3,P2);

5. (G2,P2,P1).

An explicit construction of X out of (Type(G),PY ,PZ) can be found in [Pas09] and it is
summarized in [Gon+22, Proposition 1.6]. As the homogeneous pieces Y and Z are enough
to identify the horospherical variety X, it would be interesting to describe Db(X ) in terms
of the homogeneous varieties Y , Z. As a first step towards such a description, we prove in
Proposition A.0.3 that

K0(X) ∼= K0(Y )⊕K0(Z).
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Following the computations of [Gon+22], we expect that if X is a horospherical variety
of Picard rank one, then Db(X ) admits a full exceptional collection and the big quantum
cohomology ring BQH(X) is generically semisimple.

We summarize here the cases of horospherical varieties for which full exceptional col-
lections are already known, grouped as in the classification of Theorem 1.1.3:

2. (B3,P3,P1) by [Kuz06, §6.2];

3. (Cn,P2,P1) by [Pec13], [Kuz08a]; (C3,P3,P2) by [Fon22];

5. (G2,P2,P1) by [Gon+22].

The most interesting case in the list of Theorem 1.1.3 is (Cn,Pk,Pk−1). The corre-
sponding horospherical variety X is the odd isotropic Grassmannian IGr(k, 2n + 1) of k-
dimensional subspaces in a (2n + 1)-dimensional space endowed with a skew-symmetric
form ψ of maximal possible rank 2n. We refer to [Mih07] for a survey on the properties
of these varieties. In [Gon+22, Theorem 5.17], the authors provide a presentation of the
small quantum cohomology ring and show its semisimplicity for IGr(2, 2n+1) and IGr(3, 7).
Based on this description, Belmans could verify computationally (cf. [Bel21]) that the small
quantum cohomology of IGr(k, 2n+ 1) for 1 ≤ k ≤ n ≤ 7 is generically semisimple. Conse-
quently, the extended Dubrovin conjecture (Conjecture 1.1.2) predicts that in all these cases
IGr(k, 2n+1) has a full exceptional collection. The main result of this paper, Theorem 1.1.4
stated below, proves this on IGr(3, 9), the first case not covered by previous results. The
prediction of Conjecture 1.1.2 in this case claims there should be an exceptional collection
of 8 elements that extends to a rectangular Lefschetz collection generating Db(X ).

To state our result we need to introduce some notation. Let V be a 9-dimensional vector
space endowed with a skew-symmetric form ψ of maximal rank 8. Let us fix X = IGr(3, 9),
the isotropic Grassmannian of 3-subspaces in V with respect to ψ. Let U be the tautological
subbundle on X, recall that

O(1) = ∧3U∗

is the ample generator of PicX. In this work, we construct a full rectangular Lefschetz
collection of Db(X ) with respect to O(1).

Given a GL3-dominant weight λ, we denote by Uλ the bundle associated to the irre-
ducible representation of GL3 of highest weight λ and the frame bundle of U∗, so that

Um,0,0 = SmU∗, U0,0,−m = SmU , U l,l,l = O(l).

In other words, Uλ is obtained by an application of the Schur functor associated to λ to
the vector bundle U∗

Consider the following collections of vector bundles on IGr(3, 9):

B1 = { U0,0,−2, U0,0,−1, U1,0,−1, U2,0,−1, U0,0,0, U1,0,0, U2,0,0 },
B2 = { U0,0,−1, U1,0,−1, U2,0,−1, U0,0,0, U1,0,0, U2,0,0, U3,0,0 }.
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Notice that B1 and B2 have 6 elements in common, while their union has length 8. We
check in Corollary 1.4.10 that both B1 and B2 induce non full Lefschetz collections of length
7. One could hope that B1 ∪ B2 is an exceptional collection, but this is not the case. In
fact, by Lemma 1.4.7, we have

Hom•(U3,0,0,U0,0,−2) = C[−4], Hom•(U0,0,−2,U3,0,0) ̸= 0,

so we cannot have both U3,0,0 and U0,0,−2 in the same exceptional collection.
To solve this problem, we will replace the bundle U3,0,0 ∈ B2 \B1 by another object H,

using a procedure analogous to the one used in [Gus20] and [Nov20]. More precisely, we
consider the following bicomplex:

∧3V ∗ ⊗O ∧2V ∗ ⊗ U1,0,0 V ∗ ⊗ U2,0,0 U3,0,0

∧2V ∗ ⊗ U0,0,−1 V ∗ ⊗ U1,0,−1 U2,0,−1,

(1.1)

where the rows are given by the stupid truncations of the staircase complexes associated to
U3,0,0 and U2,0,−1 (cf. Theorem 1.3.6) and the vertical arrows are induced by the form ψ.
The object H is the totalization of this bicomplex. See (1.38) and Proposition 1.4.13 for
an alternative description of the object H. Denote by B the following collection of bundles
on X:

B = {H, U0,0,−2, U0,0,−1, U1,0,−1, U2,0,−1, U0,0,0, U1,0,0, U2,0,0} = {H} ∪B1. (1.2)

Our main result is the following.

Theorem 1.1.4. Let X = IGr(3, 9). Then B is an exceptional collection of Sp9-equivariant
objects and it extends to a full rectangular Lefschetz collection given by:

Db(X ) = ⟨B, B(1), B(2), B(3), B(4), B(5), B(6) ⟩.

The proof proceeds as follows. We prove that B1 and B2 defined before both induce
Lefschetz bases of length 7. Additionally, they satisfy Hom•(B2(l),B1) = 0 for l = 1, . . . , 6.
Let B be the triangulated category generated by the objects in B1 and B2. Then, the
collection of triangulated subcategories B,B(1), . . . ,B(6) is semiorthogonal.

Using the staircase complexes associated to U3,0,0 and U2,0,−1, we prove that H is the
left mutation of U3,0,0 through B1, hence B = {H} ∪B1 is a full exceptional collection of
B (actually, they are all vector bundles, cf. Remark 1.4.16), proving that B is a Lefschetz
basis.

To prove semiorthogonality we mainly rely on the embedding of X in IGr(3, 10), using
the fact that IGr(3, 10) is homogeneous under the action of Sp10. We prove a vanishing
criterion for bundles on odd isotropic Grassmannians (Corollary 1.3.14) as application of
Borel–Bott–Weil Theorem. To prove that B induces a full Lefschetz collection, we follow
the algorithmic method developed in [Nov20].
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Overview of the work. In §§ 1.2 and 1.3 we cover the preliminaries and prove more
general versions (Proposition 1.3.11 and Corollary 1.3.14) of cohomology vanishing lemmas
previously established in [Fon22]. In § 1.4.1, we prove that B1 and B2 are exceptional
collections extending to (non full) rectangular Lefschetz collections. In § 1.4.2, we show
that the object H is the left mutation of U3,0,0 through B1 and that B is an exceptional
collection. In § 1.5, we show the fullness of the rectangular Lefschetz collection induced by
B.

Notation. We fix C as base field. Unless otherwise noted, X = IGr(3, 9) with Db(X )
its bounded derived category of coherent sheaves. We define the graded vector space
Hom•(−,−) as ⊕iHomDb(X )(−,−[i])[−i].

1.2 Exceptional collections

In this section X is an arbitrary smooth projective variety. A standard reference for this
foundational material, except where otherwise noted, is [BK89]. Let A ⊆ Db(X ) be a full
triangulated subcategory. We define the right and left orthogonal of A as:

A ⊥ = {E ∈ Db(X ) |Hom(A , E) = 0}, ⊥A = {E ∈ Db(X ) |Hom(E,A ) = 0}.

Definition 1.2.1. Let A ⊆ Db(X ) be a full triangulated subcategory. Then A is called
admissible if the embedding functor admits left and right adjoints.

Definition 1.2.2. A sequence of full triangulated subcategories A1, . . . ,Ap ⊆ Db(X ) is
called a semiorthogonal collection if Ai ⊆ A ⊥

j for 1 ≤ i < j ≤ p. In that case, we denote
the smallest triangulated subcategory containing all the Ai by ⟨A1, . . . ,Ap⟩ ⊆ Db(X ). We
say that a semiorthogonal collection A1, . . . ,Ap is a decomposition of Db(X ) if Db(X ) =
⟨A1, . . . ,Ap⟩ and every Ai is admissible.

If A ⊆ Db(X ) is admissible, then the following:

Db(X ) = ⟨A ⊥,A ⟩, Db(X ) = ⟨A ,⊥A ⟩,

are semiorthogonal decompositions.

Definition 1.2.3. An object E ∈ Db(X ) is exceptional if Hom•(E,E) = C.
An exceptional collection is a sequence of exceptional objects E1, . . . , Ep ∈ Db(X ) with

Ei ∈ E⊥
j for 1 ≤ i < j ≤ p. An exceptional collection is said to be full if Db(X ) =

⟨E1, . . . , Ep⟩.

Recall that every subcategory A ⊆ Db(X ) generated by an exceptional collection is
admissible, cf. [BK89, Theorem 2.10].
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The notion of rectangular Lefschetz decomposition is a natural way of studying decom-
positions of Db(X ) knowing a line bundle on X. Recall that the index w ≥ 0 of a Fano
variety X is the maximal positive integer such that ωX = O(−w), where ωX is the canonical
bundle and O(1) is a primitive ample line bundle on X.

Definition 1.2.4 ([Kuz07, Definition 4.1]). A rectangular Lefschetz exceptional collection
of Db(X ) with respect to O(1) is an exceptional collection of the form:

⟨E1, . . . , Ep, E1(1), . . . , Ep(1), . . . , E1(w − 1), . . . , Ep(w − 1) ⟩ ⊆ Db(X ) .

We say that E1, . . . , Ep is the basis of the rectangular Lefschetz collection and p is its length.

Recall that for any 0 ̸= F ∈ Db(X ), we have by Serre duality

Hom•(F (w), F ) = Hom•(F, F )∗[− dimX] ̸= 0;

therefore, w is the maximal number of twists of E1, . . . , Ep which can be semiorthogonal.
We state here for completeness a criterion to verify that an exceptional collection extends

to a rectangular Lefschetz collection.

Lemma 1.2.5 ([Fon22, Lemma 2.18]). A collection of objects E1, . . . , Ep ∈ Db(X ) is a
basis of a rectangular Lefschetz collection if and only if

• E1, . . . , Ep is an exceptional collection, and

• Hom•(Ej(t), Ei) = 0 for 1 ≤ i ≤ j ≤ p and all 1 ≤ t ≤ w − 1,

where w is the index of X. Let A ⊆ Db(X ) be the smallest full triangulated subcategory
containing E1, . . . , Ep. If only the second condition holds, then A ,A (1), . . . ,A (w − 1) is
only a semiorthogonal collection.

Proof. The second hypothesis proves one half of the required semiorthogonality conditions;
that is Hom•(Ej(t), Ei) = 0 for j ≥ i. The other half follows by Serre duality. This proves
the second claim.

Taking the first hypothesis into account, we also obtain the first claim.

We now introduce the mutation functors with respect to an admissible subcategory A .
For any object F ∈ Db(X ) there are unique and functorial triangles:

RA F → F → F ′ and F ′′ → F → LA F,

where F ′, F ′′ ∈ A while RA F ∈ ⊥A and LA F ∈ A ⊥. Both RA and LA vanish on A and
induce mutually inverse equivalences between ⊥A and A ⊥.

The mutation functors RA and LA take a more explicit form when A = ⟨E1, . . . , Ep ⟩,
where E1, . . . , Ep is an exceptional collection. It is immediate to verify:

R⟨E1,...,Ep ⟩ = REp ◦ · · · ◦ RE1 and L⟨E1,...,Ep ⟩ = LE1 ◦ · · · ◦ LEp .
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Moreover, for any exceptional object E we can write:

REF = Cone(F → Hom•(F,E)∗ ⊗ E)[−1] and LEF = Cone(Hom•(E,F )⊗ E → F ),

where the morphisms are the canonical coevaluation and evaluation maps.

1.3 Cohomology on isotropic Grassmannians

1.3.1 Grassmannians

Let V be an m-dimensional vector space and let GL(V ) be the corresponding linear group.
For 1 ≤ k ≤ m − 1, we denote the Grassmannian of k-planes in V by Gr(k, V ). We recall
the tautological exact sequence of bundles on Gr(k, V ):

0→ U → V ⊗O → Q→ 0, (1.3)

where U is the tautological subbundle of rank k and Q is the tautological quotient bundle
of rank m− k . Note that the canonical sheaf satisfies:

ωGr(k,V ) = O(−m),

where O(1) = detU∗ is the ample generator of the Picard group. We use the following
notation:

U⊥ = Q∗. (1.4)

In the coming sections, we discuss the preliminaries that will be needed in the computations
on Db(Gr(k,m)): Schur functors, Borel–Bott-Weil Theorem, the Littlewood–Richardson
rule and Koszul and staircase complexes. The only new result in this section is Proposi-
tion 1.3.8, where we describe the restriction of a staircase complex to a smaller Grassman-
nian.

Schur functors, Borel–Bott-Weil Theorem and Littlewood–Richardson rule

We summarize here some basic facts about the representation theory of GLk and the asso-
ciated Schur functors. The weight lattice of GLk is isomorphic to Zk, and its subset

P+
k = {λ ∈ Zk | λ1 ≥ λ2 ≥ · · · ≥ λk}

is the cone of dominant weights. Given λ ∈ P+
k , we denote by V λ

GL the GL(V )-representation
with highest weight λ. In particular, the symmetric and wedge powers are:

V p,0,...,0
GL = SpV ∗, V 1,...,1,0...,0

GL = ∧pV ∗.

If λ ∈ P+
k , we denote:

−λ = (−λk,−λk−1, . . . ,−λ1) and |λ| =
∑

λi.
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We recall that:
V −λ
GL = (V λ

GL)
∗ = (V ∗

GL)
λ.

There is a natural partial ordering on P+
k given by

µ ⊆ λ⇔ µi ≤ λi for all i = 1, . . . , k. (1.5)

The Weyl group of GLk is isomorphic to the symmetric group Sk, acting on Zk by permu-
tation. Let ℓ : Sk → Z be the length function. We recall that the length of an element
σ of the Weyl group is computed in the following way: the Weyl group is generated by
reflections by simple roots, thus ℓ(σ) is the smallest number of reflection by simple roots
necessary to decompose σ. In the case of GLk, reflections by simple roots act on Zk as
inversions of the basis vectors. The sum of the fundamental weights of GLk is

ρGL = (k, k − 1, . . . , 1).

Let E be a vector bundle of rank k on an algebraic variety and consider the principal
GLk-bundle of its frames. Let Eλ be the vector bundle associated to the representation V λ

GL.
Once we fixed λ ∈ P+

k , the functor VBk(X) → VB(X), E 7→ Eλ defined as above is the
Schur functor associated to λ. In particular, the symmetric and wedge powers of a vector
bundle are Schur functors:

Ep,0,...,0 = SpE∗, E1,...,1,0...,0 = ∧pE∗. (1.6)

It also follows that:
E−λ = (Eλ)∗ = (E∗)λ. (1.7)

We are now ready to state the classical Borel–Bott–Weil theorem.

Theorem 1.3.1 (Borel–Bott–Weil for GL, [Dem76]). Let α ∈ P+
k and β ∈ P+

n−k. Consider

(γ1, . . . , γn) := (α1, . . . , αk, β1, . . . , βn−k) ∈ Zn,

the concatenation of α and β. Assume that all entries of γ + ρ are distinct integers. Let
σ ∈ Sn be the unique element of the Weyl group such that γ′ = σ(γ+ρ)−ρ is GLn-dominant,
then we have:

H•(Gr(k, V ),Uα ⊗Qβ) = Σγ
′
V ∗[−ℓ(σ)].

Otherwise:
H•(Gr(k, V ),Uα ⊗Qβ) = 0.

The Littlewood–Richardson rule allows one to decompose the representation V α
GL ⊗ V

β
GL

as a direct sum of representations V γ
GL, possibly with multiplicities. Considering their

associated Schur functors, we obtain an induced GL-equivariant decomposition of Eα ⊗ Eβ
in Eγ . We will often use the notation

Eγ A Eα ⊗ Eβ
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to say that Eγ is a direct summand of the right hand side. A statement of the Littlewood–
Richardson rule is out of the scope of this work, for that we refer to [Wey03, Theorem 2.3.4].
Instead, we describe some simple special cases.

Proposition 1.3.2 (Pieri’s Formulas, [Wey03, Corollary 2.3.5]). Let λ ∈ P+
k and let j be

a positive integer. Then, there are direct sum decompositions

Eλ ⊗ SjE∗ =
⊕
γ∈HSjλ

Eγ and Eλ ⊗ ∧jE∗ =
⊕
γ∈VSjλ

Eγ

where

HSjλ = {γ ∈ P+
k with |γ| − |λ| = j and γ1 ≥ λ1 ≥ γ2 ≥ λ2 ≥ · · · ≥ λk ≥ γk},

VSjλ = {γ ∈ P+
k with |γ| − |λ| = j and λi + 1 ≥ γi ≥ λi for all i = 1, . . . , k}.

In Proposition 1.3.2 above, the notation HS and VS comes from the representation of
weights as Young diagrams. Indeed, if γ ∈ HSjλ, then γ \λ is a horizontal strip (j boxes, at
most one box per column), while if γ ∈ VSjλ, then γ \ λ is a vertical strip (j boxes, at most
one box per row). The following corollary is an immediate application of Pieri’s formulas.

Corollary 1.3.3. Let V be a vector space of rank k. Alternatively, let E be a vector bundle
of rank k. Let λ ∈ P+

k and let l be an integer. Then:

V λ
GL ⊗ V

(l,l,...,l)
GL = V

λ+(l,l,...,l)
GL , Eλ ⊗ E(l,l,...,l) = Eλ+(l,l,...,l),

where (l, l, . . . , l) denotes the vector of P+
k with k entries equal to l.

During the course of the work, we will have to study tensor products of representations
where neither weights are elementary enough to apply Pieri’s formulas. In those cases, we
will use the following lemmas.

Lemma 1.3.4 ([Wey03, Proposition 2.3.1], [Gus20, Lemma 3.3]). Let α, β ∈ P+
k . Suppose

Eγ A E−α ⊗ Eβ.

Then
βk − αk+1−i ≤ γi ≤ βi − αk for all 1 ≤ i ≤ k and |γ| = |β| − |α|.

As a straightforward consequence:

γi − γi+1 ≤ (βi − βk) + (αk−i − αk) for all 1 ≤ i < k. (1.8)

Lemma 1.3.5. Let α, β ∈ P+
k , and let l ∈ Z. Let

E−α ⊗ Eβ =
⊕
γ

Eγ

be the Littlewood–Richardson decomposition. Then the following statements are equivalent:
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1. β − α = (l, . . . , l),

2. the weight (l, . . . , l) appears once and only once among γ.

3. the weight (l, . . . , l) appears among γ.

Proof. By Schur’s Lemma, E(l,...,l) is a direct summand of the Littlewood–Richardson de-
composition of E−α ⊗ Eβ if and only if

Hom(V
(l,...,l)
GL , V −α

GL ⊗ V
β
GL) ̸= 0.

On the other hand:

Hom(V
(l,...,l)
GL , V −α

GL ⊗ V
β
GL) = Hom(V

(l,...,l)
GL ⊗ V α

GL, V
β
GL) = Hom(V

α+(l,...,l)
GL , V β

GL),

where the first equality holds by (1.7) and the second is an application of Corollary 1.3.3.
The last Hom-space being nonzero is equivalent to α + (l, . . . , l) = β. As we have that
dimHom(V

α+(l,...,l)
GL , V β

GL) equals the multiplicity of V β
GL in V

α+(l,...,l)
GL , if it is nonzero, it

must be 1.

Koszul and staircase complexes

We recall here some exact sequences on Gr(k,m). For each p, the tautological sequence
(1.3) induces the following exact sequence, which is called the Koszul complex :

0→ ∧pU⊥ → ∧pV ∗ ⊗O → · · · → V ∗ ⊗ Sp−1U∗ → SpU∗ → 0. (1.9)

Applying Borel–Bott–Weil Theorem (see [Dem76]), it is immediate to see that the differ-
entials in (1.9) are the unique nonzero GL(V )-equivariant maps between the terms in the
complex.

We will now introduce the second and most important family of exact sequences for this
work, staircase complexes, introduced in [Fon13]. First we recall the general theory. Let
λ = (λ1, λ2, . . . , λk) ∈ P+

k , with λ1 = m− k and λk ≥ 0. We define

λ′ = (λ2, . . . , λk, 0) ∈ P+
k .

Theorem 1.3.6 (Staircase complex, [Fon13, Proposition 5.3]). Let λ = (λ1, λ2, . . . , λk) ∈
P+
k with λ1 = m− k and λk ≥ 0. Then there exist a sequence of weights {µi}i∈{1,...,m−k} ∈
P+
k and an exact sequence:

0→ Uλ′(−1) γm−k+1−−−−−→ ∧νm−kV ∗ ⊗ Uµm−k
γm−k−−−→ . . .

γ2−→ ∧ν1V ∗ ⊗ Uµ1 γ1−→ Uλ → 0, (1.10)

where νi = |λ| − |µi| and the morphisms {γi}i∈{1,...,m−k+1} are the unique nonzero GL(V )-
equivariant maps between the terms of the complex. The sequence {µi}i∈{1,...,m−k} is totally
ordered by inclusion; moreover, the weights µi are all positive and are contained in λ.
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We do not report the construction of the weights µi, except in the case k = 3 (see (1.16)
below), which is the only case used in the body of the paper. Note however that if λ1 > λ2,
then µ1 = (λ1 − 1, λ2, . . . , λk).

Remark 1.3.7. Notice that the conditions λ1 = m−k and λk ≥ 0 can be achieved for any
λ ∈ P+

k with λ1− λk ≤ m− k by twisting appropriately. We will still refer to this complex
as the staircase complex associated to Uλ. With the notation of Theorem 1.3.6, we denote
both the acyclic complex defined above and the one obtained in Remark 1.3.7 as Stair(Uλ).

We now consider the problem of the restriction of a staircase complex on Gr(k,m+1) to
Gr(k,m). Let V be a m-dimensional vector space. Fix a (m+ 1)-dimensional vector space
Ṽ such that V ⊂ Ṽ is a hyperplane, then we obtain an induced embedding j : Gr(k, V )→
Gr(k, Ṽ ). Let Ũ be the tautological bundle on Gr(k, Ṽ ). Recall that:

j∗(Ṽ ⊗O) ∼= (V ⊗O)⊕O, j∗Ũλ ∼= Uλ. (1.11)

for every λ ∈ P+
k . We prove our result.

Proposition 1.3.8. Let λ ∈ P+
k with λ1 = m + 1 − k > λ2 and λk ≥ 1. Let Stair(Ũλ)

be the associated staircase complex on Gr(k,m+ 1). Then the restriction of the complex to
Gr(k,m) splits:

j∗ Stair(Ũλ) ∼= Stair(Uλ)⊕ Stair(Uµ1)[1].

Proof. By [Fon13, Lemma 5.1], Stair(Ũλ) can be characterized in the following way:

ε ∈ Homm+1−k(Ũλ, Ũλ′(−1)) ∼= Hm+1−k(Gr(k,m+ 1), Ũ−1,...,−1,−(m+1−k)−1) = C, (1.12)

where ε is the unique nonzero extension. By Theorem 1.3.6, the central part of Stair(Ũλ)
is obtained by decomposing the complex

Cone(Ũλ ε−→ Ũλ′(−1)[m+ 1− k]). (1.13)

with respect to the exceptional collection on Gr(k,m+1) given by ⟨ Ũγ | 0 ⊆ γ ⊆ µ1 ⊂ λ ⟩
(see [Fon13, Theorem 2.1]). Since λ1 > λ2, we have µ1 = (m − k, λ2, . . . , λk); hence, the
restriction of this collection to Gr(k,m):

⟨ Uγ | 0 ⊆ γ ⊆ µ1 ⟩ = ⟨ j∗Ũγ | 0 ⊆ γ ⊆ µ1 ⟩, (1.14)

is an exceptional collection as well, by [Fon13, Theorem 2.1].
We now prove that j∗ε = 0 on Gr(k,m). Similarly to the proof of [Fon13, Lemma 5.1],

we apply Borel–Bott–Weil Theorem on Gr(k,m) (see [Dem76]) obtaining:

Hp(Gr(k,m), U−1,...,−1,−(m+1−k)−1) =

{
V ⊗ ∧mV if p = m− k,
0 otherwise.

(1.15)
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As j∗ε ∈ Hm+1−k(Gr(k,m), j∗Ũ−1,...,−1,−(m+1−k)−1) = 0 by (1.12) and (1.15), we obtain:

j∗Cone(ε) = Cone(j∗ε) = Cone(0) = Uλ[1]⊕ Uλ′(−1)[m− k].

Now, consider the left resolution of j∗Ũλ = Uλ given by the staircase complex on
Gr(k,m) (cf. Remark 1.3.7). We introduce the following weights:

λ = (λ1 − 1, . . . , λk − 1) ∈ P+
k and λ

′
= (λ2 − 1, . . . , λk − 1, 0) ∈ P+

k .

Notice that λ satisfies the conditions in Theorem 1.3.6. As a consequence, we find that

Uλ = Uλ(1) ∈ ⟨Uλ
′
, Uγ | (1, . . . , 1) ⊆ γ ⊆ µ1 ⟩ ⊆ ⟨Uγ | 0 ⊆ γ ⊆ µ1 ⟩,

where the rightmost term is the exceptional collection in (1.14).
On the other hand, Uλ′(−1) belongs to (1.14) because it is the leftmost term of Stair(Uµ1)

in Gr(k,m), as µ1 = (m−k, λ2, . . . , λk). As a consequence, we can recover Stair(Uµ1) as the
decomposition of Uλ′(−1) with respect to (1.14). Taking the direct sum of these resolutions
finally provides a decomposition of Uλ[1]⊕ Uλ′(−1)[m− k] in terms of (1.14).

By construction, the central truncation of j∗ Stair(Ũλ) gives a resolution of j∗Cone(ε)
with respect to (1.14). By uniqueness of the decomposition, it must agree with the de-
composition given by the direct sum of the truncated staircase complexes. This proves the
claim.

We restate here the description of a staircase complex on Gr(3,m). In Theorem 1.3.6,
fix any GL3-dominant weight λ = (a, 0,−b) such that a + b ≤ m − 3. Then the following
collection of m− 1 weights {µi}i∈{0,...,m−2} of GL3

µi :=


(a− i, 0,−b), if 0 ≤ i ≤ a;
(−1, a− i,−b), if a < i ≤ a+ b;

(−1,−b− 1, a− i), if a+ b < i ≤ m− 2.
(1.16)

are the weights appearing in the statement; note that µ0 = λ.

1.3.2 Even isotropic Grassmannian

LetW be a 2n-dimensional vector space endowed with a symplectic form ψ and let Sp(W ) be
the corresponding symplectic group. Note that ψ induces a Sp(W )-equivariant isomorphism
W ∼=W ∗, which we will use quite often.

For 1 ≤ k ≤ n, we denote the isotropic Grassmannian of k-planes in W by IGr(k,W ).
We often refer to IGr(k,W ) as the even isotropic Grassmannian to emphasize the difference
with the odd isotropic Grassmannian defined in § 1.3.3.

The variety IGr(k,W ) is isomorphic to the zero locus of

ψ ∈ ∧2W ∗ = H0(Gr(k,W ),∧2U∗).
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The tautological sequence on IGr(k,W ) is the restriction of the one in Gr(k,W ), i.e.:

0→ U →W ⊗O → Q→ 0. (1.17)

The symplectic form induces a canonical embedding U ↪→ U⊥ (cf. (1.4)), so that we can
define the quotient bundle S:

0→ U → U⊥ → S → 0. (1.18)

Additionally, S is also the cohomology sheaf in the middle term of the complex:

0→ U →W ⊗O ψ−→ U∗ → 0. (1.19)

Notice that S is a bundle of rankS = 2(n − k), endowed with a symplectic isomorphism
S ∼= S∗ induced by ψ. The following result is well known, cf. [KP16, Lemma 2.19, Propo-
sition 9.7].

Lemma 1.3.9. The dimension d and the index w of IGr(k, 2n) are respectively:

d =
k(4n− 3k + 1)

2
, w = 2n+ 1− k.

Moreover, the Grothendieck group is a free abelian group and its rank r is:

r =

(
n

k

)
· 2k.

In the rest of the section, we state Borel–Bott–Weil Theorem on the even isotropic
Grassmannian and we apply it to obtain a cohomology vanishing result.

Borel–Bott–Weil Theorem

The weight lattice of Sp2n is isomorphic to Zn, and its subset

T+
n = {λ ∈ Zn | λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0}

is the cone of dominant weights. Given λ ∈ T+
n , we denote byW λ

Sp the Sp(W )-representation
of highest weight λ. Our convention is such that:

Wm,0,...,0
Sp = SmW ∗ ∼= SmW.

The Weyl group of Sp2n is the semidirect product Sn ⋉ (Z/2Z)n acting on Zn, where Sn
acts by permutation and (Z/2Z)n acts by changing signs of the coordinates. Let ℓ : Sn ⋉
(Z/2Z)n → Z be the length function. Thus, ℓ(σ) is the smallest number of simple reflections
required to decompose σ. In this case, simple reflections are of two types: transposition of
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adjacent terms and the change of sign (λ1, . . . , λn−1, λn) 7→ (λ1, . . . , λn−1,−λn). We recall
that the sum of fundamental weights of Sp2n is

ρSp2n = (n, n− 1, . . . , 1).

We recall here an immediate application of the more general Borel–Bott–Weil theorem,
which will cover most of the computations in this work.

Theorem 1.3.10 (Borel–Bott–Weil Theorem, [Dem76]). Let λ ∈ P+
k . Let

γ = (γ1, . . . , γn) := (λ1, . . . , λk, 0, . . . , 0) ∈ Zn,

be the extension of λ by n− k zeros. Suppose that γ+ ρSp2n has a zero entry or two entries
with same absolute value, then:

H•(IGr(k,W ),Uλ) = 0.

Otherwise, let σ ∈ Sn ⋉ (Z/2Z)n be the unique element of the Weyl group such that

γ′ = σ(γ + ρSp2n)− ρSp2n ∈ T+
n

is Sp2n-dominant, then we have:

H•(IGr(k,W ),Uλ) =W γ′

Sp[−ℓ(σ)].

Vanishing

The next result and the following Corollary 1.3.14 are a straightforward generalization of
the ideas presented in [Fon22, § 4.1], where they were proved only in the case k = n. For
further convenience, we state the following result for IGr(k, 2n+ 2) instead of IGr(k, 2n).

Proposition 1.3.11. Let λ = (λ1, . . . , λk) ∈ P+
k be a dominant weight of the group GLk

such that

1. λk < 0,

2. λ1 ≥ −2(n+ 1) + k,

3. λi − λi+1 ≤ 2(n+ 2− k)− 1 for i = 1, . . . , k − 1.

Then we have:
H•(IGr(k, 2n+ 2),Uλ) = 0,

that is, the bundle Uλ on IGr(k, 2n+ 2) is acyclic.



Chapter 1. The derived category of some odd isotropic Grassmannians 15

Proof. Suppose that Uλ is not acyclic. Then, according to Theorem 1.3.10, the absolute
values of the entries in the sequence

γ = (n+ 1 + λ1, n+ λ2, . . . , n+ 2− k + λk, n+ 1− k, . . . , 1)

have distinct nonzero absolute values. In particular, the entries γi, 1 ≤ i ≤ k, satisfy

γi ≥ n+ 2− k or γi ≤ −(n− k + 2). (1.20)

Using conditions 1 and 2 we have:

γ1 = n+ 1 + λ1 ≥ −(n+ 1− k) and γk = n+ 2− k + λk ≤ n+ 1− k,

which, together with (1.20) imply

γ1 ≥ n+ 2− k and γk ≤ −(n+ 2− k).

As λ is dominant, the first k entries of γ are strictly decreasing, hence there must be some
j ∈ {1, . . . , k − 1} such that

γj ≥ n+ 2− k and γj+1 ≤ −(n+ 2− k).

On the other hand, from condition 3 we obtain:

γj − γj+1 = n+ 2− j + λj − (n+ 2− (j + 1) + λj+1) ≤ 1 + λj − λj+1 ≤ 2(n+ 2− k).

Finally, we obtain:
γj = n+ 2− k and γj+1 = −(n+ 2− k),

so we have |γj | = |γj+1|, contradicting the assumption that the absolute values of the entries
of γ are distinct.

1.3.3 Odd isotropic Grassmannian

Let V be a (2n+ 1)-dimensional vector space endowed with ψ ∈ ∧2V ∗, a skew-symmetric
form of maximal possible rank 2n. Fix a (2n + 2)-dimensional symplectic vector space
(Ṽ , ψ̃) such that V ⊂ Ṽ is a hyperplane and ψ̃|V = ψ.

The odd isotropic Grassmannian X = IGr(k, V ) is the variety parametrising isotropic
k-subspaces of V , that is,

IGr(k, V ) = Gr(k, V ) ∩ IGr(k, Ṽ )

where the intersection is considered in Gr(k, Ṽ ).
We denote the stabilizer of ψ in GL(V ) by Sp(V ) = Sp2n+1 (cf. [Mih07, §3.3], [Pro88])

in analogy with the classical symplectic group. We refer to Sp2n+1 as the odd symplectic
group, it is connected and nonreductive. The natural action of Sp2n+1 on IGr(k, V ) is
quasi-homogeneous.
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Realization

We can define X as the zero locus of a global section of a vector bundle on IGr(k, Ṽ ). We
denote by Ũ the tautological bundle of IGr(k, Ṽ ). Consider any nonzero section:

ṽ ∈ Ṽ ∗ = H0(IGr(k, Ṽ ), Ũ∗),

i.e. a nonzero linear form on Ṽ , with V = Ker ṽ. Then IGr(k, V ) is the zero locus of ṽ. As
IGr(k, V ) is a smooth variety of expected codimension by [Mih07, Proposition 4.1], ṽ is a
regular section. We denote the embedding as j : IGr(k, V )→ IGr(k, Ṽ ).

We have the following Koszul resolution in IGr(k, Ṽ ):

0→ ∧kŨ → ∧k−1Ũ → · · · → Ũ → OIGr(k,Ṽ )
→ j∗OIGr(k,V ) → 0. (1.21)

The following proposition provides an odd-dimensional analogue to Lemma 1.3.9.

Proposition 1.3.12. The dimension d and the index w of IGr(k, 2n+ 1) are respectively:

d =
k(4n− 3k + 3)

2
, w = 2n+ 2− k.

Moreover, the Grothendieck group is a free abelian group and its rank r is:

r =

(
n

k − 1

)
· 2

k−1(2n+ 2− k)
k

.

Proof. The first two formulas are well known and can be obtained from the the embedding
of IGr(k, V ) in IGr(k, Ṽ ), cf. [Mih07, Proposition 4.1]. The formula for the rank of the
Grothendieck group is an immediate consequence of Lemma 1.3.9 and Proposition A.0.3.
We give a detailed proof of Proposition A.0.3 in Appendix § A.

Remark 1.3.13. A full exceptional collection induces a basis of the Grothendieck group.
If a variety X of index w admits a full rectangular Lefschetz collection with a basis of p
elements, this induces a basis of K0(X) with r = wp elements. In particular, the index
divides the rank of the Grothendieck group. By Proposition 1.3.12, in the case of the odd
isotropic Grassmannians IGr(3, 2n + 1) it is possible to have a full rectangular Lefschetz
collection only if

2n− 1 divides

(
n

2

)
· 4(2n− 1)

3
⇔ 3 divides 4 ·

(
n

2

)
= 2n(n− 1),

this is equivalent to n ≡ 0 or 1 mod 3. In this case, p = 2
3n(n− 1).

For IGr(3, 9) we have d = 15, w = 7, r = 56; therefore p = 8.
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Vanishing

We give here an acyclicity criterion similar to Proposition 1.3.11, which will cover most
bundles on the odd Grassmannian X = IGr(k, 2n+ 1) studied in this work.

Corollary 1.3.14. Let λ = (λ1, . . . , λk) ∈ P+
k be a dominant weight of the group GLk such

that

1. λk < 0,

2. λ1 ≥ −2n+ k − 1,

3. λi − λi+1 ≤ 2(n+ 1− k) for i = 1, . . . , k − 1.

Then the bundle Uλ on X = IGr(k, 2n+ 1) is acyclic.

Proof. Fix an embedding j : X → IGr(k, 2n+ 2) = X̃. Recall the notation fixed in § 1.3.3.
By the projection formula, we have an isomorphism:

H•(X,Uλ) = H•(X̃, j∗Uλ) = H•(X̃, Ũλ ⊗ j∗OX).

Replacing j∗OX by its Koszul resolution (1.21), we obtain the following spectral sequence:

E−p,q
1 = Hq(X̃, Ũλ ⊗ ∧pŨ)⇒ Hq−p(X,Uλ) (1.22)

for q ≥ 0 and p = 0, . . . , k. Hence, it is enough to compute the cohomology of the direct
summands

Ũγ A Ũλ ⊗ ∧pŨ = Ũλ ⊗ ∧kŨ ⊗ (∧k−pŨ)∗ = Ũλ−(1,...,1) ⊗ (∧k−pŨ)∗.

By Proposition 1.3.2 and Corollary 1.3.3, it is enough to verify that the bundles Ũγ are
acyclic for any

γ ∈
⋃

p∈{0,...,k}

VSpλ−(1,...,1) .

Let us verify the conditions of Proposition 1.3.11 for Ũγ . First of all, we have

λi − 1 ≤ γi ≤ λi for i = 1, . . . , k. (1.23)

As γk ≤ λk < 0, by (1.23) and the hypothesis, the first condition is satisfied. Using the
second hypothesis, we obtain:

(−2n+ k − 1)− 1 ≤ λ1 − 1 ≤ γ1,

so the second condition of Proposition 1.3.11 is satisfied. Finally,

γi − γi+1 ≤ λi − λi+1 + 1 ≤ 2(n+ 1− k) + 1,

so that the last condition is verified and Ũγ is acyclic by Proposition 1.3.11. Therefore, the
spectral sequence (1.22) vanishes at the first page, proving that Uλ is acyclic.
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1.4 Exceptionality

Let us fix X = IGr(3, 9), the odd isotropic Grassmannian of 3-dimensional subspaces in V ,
where V is a 9-dimensional vector space endowed with a skew-symmetric form of maximal
rank 8, ψ. By Proposition 1.3.12, X has index w = 7. Recall that in our notation we have:

Um,0,0 = SmU∗, U0,0,−m = SmU , U l,l,l = O(l).

We will often need to consider the embedding j : IGr(3, 9)→ IGr(3, 10). We will denote
the tautological bundle of IGr(3, 10) as Ũ . We restate here Proposition 1.3.11 and Corol-
lary 1.3.14 for IGr(3, 10) and IGr(3, 9), they will be used as key tools to show semiorthogo-
nality in § 1.4.1.

Corollary 1.4.1. Let (λ1, λ2, λ3) ∈ P+
3 be a dominant weight of the group GL3 such that

1. λ3 < 0,

2. λ1 ≥ −7,

3. λ1 − λ2 ≤ 5 and λ2 − λ3 ≤ 5.

Then, H•(IGr(3, 10), Ũλ) = 0. If λ1 ≥ −1 instead, H•(IGr(3, 10), Ũλ(−l)) = 0 for l =
0, . . . , 6.

Corollary 1.4.2. Let (λ1, λ2, λ3) ∈ P+
3 be a dominant weight of the group GL3 such that

1. λ3 < 0,

2. λ1 ≥ −6,

3. λ1 − λ2 ≤ 4 and λ2 − λ3 ≤ 4.

Then, H•(IGr(3, 9),Uλ) = 0. If λ1 ≥ 0 instead, H•(IGr(3, 9),Uλ(−l)) = 0 for l = 0, . . . , 6.

1.4.1 Two collections

Recall that in the § 1.1 we defined two collections in Db(X ) of length 7:

B1 = { U0,0,−2, U0,0,−1, U1,0,−1, U2,0,−1, U0,0,0, U1,0,0, U2,0,0 },
B2 = { U0,0,−1, U1,0,−1, U2,0,−1, U0,0,0, U1,0,0, U2,0,0, U3,0,0 }.

We remark that all the weights λ = (λ1, λ2, λ3) such that Uλ ∈ B1 ∪ B2 satisfy λ2 = 0.
Notice that

B1 = {U0,0,−2} ∪ (B1 ∩B2), B2 = (B1 ∩B2) ∪ {U3,0,0}.
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Moreover, B1 and B2 are ordered lexicographically with entries read from right to left, i.e.:

(β1, β2, β3) < (α1, α2, α3)⇔


β3 < α3 or
β3 = α3 and β2 < α2 or
β3 = α3 and β2 = α2 and β1 < α1

(1.24)

which refines the partial order ⊆ on P+
3 presented in (1.5). Recall that an additional object

H ∈ Db(X ) was introduced as the totalization of the bicomplex (1.1) and that the collection

B = {H} ∪B1

was defined in (1.2).
In this section, we prove that B1 and B2 are bases of two (non full) rectangular Lef-

schetz exceptional collections (cf. Corollary 1.4.10). In addition, we prove the following
intermediate statement.

Proposition 1.4.3. Let B ⊆ Db(X ) be the subcategory generated by B. Then the collection
of subcategories B, B(1), B(2), B(3), B(4), B(5), B(6) is semiorthogonal.

Notice that this proposition does not claim that B is generated by an exceptional
collection or that B is admissible. These properties are indeed true, but they will only be
proved in Theorem 1.4.15, after a more detailed study of H.

To prove Proposition 1.4.3, the starting point is to observe that H lies in the category
⟨B2 ⟩ ⊂ B, so that B1 ∪ B2 is an alternative set of generators of B. Therefore, we need
to compute Hom•-groups between various twists of the generators of B1 and B2. We will
need some ad hoc computations of cohomology, which we group here at the beginning of
the section.

We start with some computations on IGr(3, 10). Recall the notation introduced in
§ 1.3.3.

Lemma 1.4.4. We have the following isomorphisms:

H•(IGr(3, 10), Ũ0,0,−6(−l)) =
{
C[−5] if l = 0,
0 if l = 1, . . . , 7,

H•(IGr(3, 10), Ũ0,−1,−7(−l)) =
{
C[−6] if l = 0,
0 if l = 1, . . . , 7.

Proof. To prove both results, we apply Theorem 1.3.10. We focus on the first isomorphism.
To do so, take λ = (−l,−l,−l − 6), and consider γ = (−l,−l,−(l + 6), 0, 0) its trivial
extension, so that:

γ + ρSp10 = (5− l, 4− l,−l − 3, 2, 1).
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If l = 0 we have γ+ρSp10 = (5, 4,−3, 2, 1), so all the entries are distinct in absolute value and
nonzero. Let σ be the element of the Weil group such that σ(5, 4,−3, 2, 1) = (5, 4, 3, 2, 1) ∈
T+
5 , hence:

γ′ = σ(5, 4,−3, 2, 1)− ρSp10 = (0, 0, 0, 0, 0).

We observe that ℓ(σ) = 5, obtaining the result for l = 0. On the other hand, for l = 1, . . . , 7,
there is always a repetition of absolute values. The vanishing for these l follows.

In the second case, γ = (−l,−1− l,−7− l, 0, 0), obtaining

γ + ρSp10 = (5− l, 3− l,−4− l, 2, 1),

and the same argument applies.

We continue with simple cohomology computations on IGr(3, 9).

Lemma 1.4.5. We have the following isomorphism:

H•(IGr(3, 9),U0,0,−5(−l)) =
{
C[−4] if l = 0,
0 if l = 1, . . . , 6,

H•(IGr(3, 9),U0,−1,−6(−l)) =
{
C[−5] if l = 0,
0 if l = 1, . . . , 6.

Proof. Let us fix an embedding j : IGr(3, 9)→ IGr(3, 10) and consider the spectral sequence
(1.22), which we rewrite here for convenience:

E−p,q
1 = Hq(IGr(3, 10), Ũλ ⊗ ∧pŨ(−l))⇒ Hq−p(IGr(3, 9),Uλ(−l)),

where Ũ is the tautological bundle on IGr(3, 10). We prove that the spectral sequence for
λ = (0, 0,−5) and λ = (0,−1,−6) either vanishes or, if l = 0, it has only one nonzero term.
By Proposition 1.3.2 and Corollary 1.3.3 (compare with the proof of Corollary 1.3.14), the
terms in the spectral sequence are the cohomologies on IGr(3, 10) of the bundles Ũγ(−l) for

γ ∈
⋃

p∈{0,...,k}

VSpλ−(1,...,1) = {(γ1, γ2, γ3) | γ1 ≥ γ2 ≥ γ3, λi ≥ γi ≥ λi − 1}.

In particular, for both λ, we have γ1 ≥ λ1− 1 ≥ −1 and −5 ≥ λ3 ≥ γ3. Moreover, we have:

γ1 − γ2 ≤ (λ1 − λ2) + 1 ≤ 2, γ2 − γ3 ≤ (λ2 − λ3) + 1 ≤ 6.

If γ2 − γ3 ≤ 5, Ũγ(−l) is acyclic for l = 0, . . . , 6 by Corollary 1.4.1. It is immediate to
determine the bundles appearing in both spectral sequences which satisfy γ2 − γ3 = 6:

• Ũ0,0,−6(−l) A Ũ0,0,−6 ⊗ Ũ(−l) if λ = (0, 0,−5);
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• Ũ0,0,−6(−l−1) A Ũ0,−1,−6⊗∧2Ũ(−l) and Ũ0,−1,−7(−l) A Ũ0,−1,−6⊗Ũ(−l) in the case
λ = (0,−1,−6).

By Lemma 1.4.4, the spectral sequence vanishes identically for both λ if l = 1, . . . , 6. If
l = 0, there is one nonzero entry in both spectral sequences by Lemma 1.4.4, proving the
result.

We need some extra computations of cohomology for § 1.4.2.

Lemma 1.4.6. We have the following isomorphisms:

H•(IGr(3, 9), U1,0,−2 ⊗ U0,0,−3(−1)) = C[−5],
H•(IGr(3, 9), U1,0,−3 ⊗ Uλ(−2)) = 0,

with λ ∈ {(1, 0,−1), (1, 0, 0), (2, 0, 0)} ⊂ P+
3 .

Proof. We prove the first equality. Applying Pieri’s formula (Proposition 1.3.2), we obtain:

U1,0,−2 ⊗ U0,0,−3(−1) = U0,−1,−6 ⊕ U0,−2,−5 ⊕ U−1,−1,−5⊕
⊕ U0,−3,−4 ⊕ U−1,−2,−4 ⊕ U−1,−3,−3.

By Corollary 1.4.2, all the bundles in the decomposition are acyclic except possibly U0,−1,−6.
Applying Lemma 1.4.5, we deduce the first equality.

We now prove the last three vanishings. Let γ = (γ1, γ2, γ3) ∈ P+
3 such that:

Uγ A U1,0,−3 ⊗ Uλ(−2),

for λ ∈ {(1, 0,−1), (1, 0, 0), (2, 0, 0)}. We can deduce the following facts from Lemma 1.3.4,
fixing α = (5, 2, 1) = (3, 0,−1) + (2, 2, 2) and β = λ as above:

β1 − 1 ≥ γ1 ≥ β3 − 1, β2 − 1 ≥ γ2 ≥ β3 − 2, β3 − 1 ≥ γ3 ≥ β3 − 5, |γ| = |β| − 8.

It is immediate to see that any possible Uγ is acyclic by Corollary 1.4.2, unless γ =
(−1,−1,−6) and β = (1, 0,−1). The bundle U−1,−1,−6 is acyclic by Lemma 1.4.5, proving
the claim.

The next lemma shows that B1 ∪B2 is not an exceptional collection; that is the only
reason preventing B1 ∪B2 from extending to a Lefschetz collection.

Lemma 1.4.7. There is the following isomorphism:

Hom•(U3,0,0(l),U0,0,−2) =

{
C[−4] if l = 0,
0 if l = 1, . . . , 6.
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Proof. We have (U3,0,0)∗ ∼= U0,0,−3 and by Pieri’s formula:

U0,0,−3 ⊗ U0,0,−2 = U0,0,−5 ⊕ U0,−1,−4 ⊕ U0,−2,−3.

Using Corollary 1.4.2, we verify that for all bundles Uγ A U0,0,−3 ⊗ U0,0,−2, the bundle
Uγ(−l) is acyclic for l = 0, . . . , 6, except for γ = (0, 0,−5). For γ = (0, 0,−5), we apply
Lemma 1.4.5 and we deduce the claim.

In light of the vanishing criterion given by Corollary 1.4.2, we state the main property
of the collections B1 and B2.

Lemma 1.4.8. Let α, β ∈ P+
3 such that Uα,Uβ ∈ Bj for the same j = 1, 2. Suppose that

Uγ A U−α ⊗ Uβ.

Then, γ satisfies:
γ1 − γ2 ≤ 4 and γ2 − γ3 ≤ 4.

Proof. Let λ be such that Uλ ∈ B1 ∪B2, then it satisfies

λ1 − λ3 ≤ 3 and λ2 − λ3 ≤ 2,

where the first equality is attained for λ = (2, 0,−1) ∈ B1∩B2 and λ = (3, 0, 0) ∈ B2 \B1,
while the second only for λ = (0, 0,−2) ∈ B1 \B2. By (1.8), we have:

γ1 − γ2 ≤ 4 and γ2 − γ3 ≤ 4,

except possibly for α = (0, 0,−2) and β = (2, 0,−1) or (3, 0, 0) or vice versa. This finishes
the proof for Uα,Uβ ∈ B2. Finally, if α = (0, 0,−2) and β = (2, 0,−1), we have by Pieri’s
formula:

U2,0,0 ⊗ U2,0,−1 = U4,0,−1 ⊕ U3,1,−1 ⊕ U3,0,0 ⊕ U2,2,−1 ⊕ U2,1,0,

so that we can verify the claim.

Now we finished preparations and we can prove the Lefschetz property for B1 and B2.

Proposition 1.4.9. Let α, β ∈ P+
3 , with β ≤ α with respect to (1.24), such that Uα,Uβ ∈

Bj for the same j = 1, 2. Then

Hom•(Uα(l),Uβ) = 0 for l = 0, . . . 6,

unless l = 0 and α = β. In that case, we have:

Hom•(Uα,Uα) = C.
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Proof. With the notation presented above, consider the decomposition:

Uγ A U−α ⊗ Uβ.

We claim that either:

• γ1 ≥ 0 and γ3 < 0; or

• γ = (0, 0, 0) and α = β, and it appears with multiplicity one.

Applying Lemma 1.3.4 and recalling β ≤ α, we obtain:

γ1 ≥ β3 − α3, 0 ≥ β3 − α3 ≥ γ3, γ1 + γ2 + γ3 = |γ| = |β| − |α|. (1.25)

We first prove that every γ satisfies γ1 ≥ 0. If α3 = β3, we obtain γ1 ≥ 0. Otherwise,
at least one between α3, β3 ̸= −1, so we obtain that either U−α = Sα1U if α3 = 0 or
Uβ = S−β3U if β3 = −2, while the other factor is some Uλ ∈ B1 ∪ B2, with λ2 = 0.
Applying Pieri’s formula, we conclude that γ1 ≥ λ2 = 0. This proves that all γ satisfy
γ1 ≥ 0.

We now focus on γ3. If γ3 = 0, then β3 = α3 by (1.25) and β1 ≤ α1 by (1.24), obtaining
|γ| ≤ 0. This shows γ = (0, 0, 0). By Lemma 1.3.5, we obtain α = β and γ has multiplicity
one. Alternatively, by (1.25), we have γ3 < 0, hence γ falls in the first case of the initial
claim.

By Lemma 1.4.8 we already know γ1−γ2 ≤ 4 and γ2−γ3 ≤ 4, applying Corollary 1.4.2,
this is enough to conclude.

The following corollary is an immediate consequence of Proposition 1.4.9 and Lemma 1.2.5.

Corollary 1.4.10. The collections

B1 = { U0,0,−2, U0,0,−1, U1,0,−1, U2,0,−1, U0,0,0, U1,0,0, U2,0,0 },
B2 = { U0,0,−1, U1,0,−1, U2,0,−1, U0,0,0, U1,0,0, U2,0,0, U3,0,0 }.

are bases of rectangular Lefschetz exceptional collections of length 7.

We conclude the section proving Proposition 1.4.3.

Proof of Proposition 1.4.3. As H is the totalization of the bicomplex (1.1), H ∈ ⟨B2 ⟩
because it admits a resolution where all terms belong to B2. On the other hand, the same
resolution of H shows that U3,0,0 ∈ B, the category generated by B (which is possibly not
an exceptional sequence, cf. Theorem 1.4.15). Hence, the subcategory B can be generated
by B1 ∪B2 (which is not an exceptional sequence).

By Lemma 1.2.5, to prove semiorthogonality it is enough to verify

Hom•(Uα(l),Uβ) = 0 for β ≤ α and 1 ≤ l ≤ 6, (1.26)
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with Uα,Uβ ∈ B1 ∪B2. By Corollary 1.4.10, the equation (1.26) holds if both α, β ∈ B1

or both α, β ∈ B2. On the other hand, if α = (3, 0, 0) and β = (0, 0,−2), we have

Hom•(U3,0,0(l),U0,0,−2) = 0 for 1 ≤ l ≤ 6

by Lemma 1.4.7, proving the initial statement.

1.4.2 Properties of H
Recall the definition of the object H as convolution of the bicomplex (1.1). The purpose of
this section is to show that H is an exceptional object (cf. Proposition 1.4.13) completing
B1 to a Lefschetz basis (cf. Theorem 1.4.15), hence we need to show that H is exceptional
and H ∈ B⊥

1 .
We first outline the properties of the lines of the bicomplex. Let us consider the (acyclic!)

staircase complex on IGr(3, 9) (cf. Theorem 1.3.6) associated to U3,0,0:

0→ U0,0,−3(−1)→ ∧8V ∗ ⊗ U0,0,−2(−1)→ ∧7V ∗ ⊗ U0,0,−1(−1)→ ∧6V ∗ ⊗O(−1)→
→ ∧3V ∗ ⊗O → ∧2V ∗ ⊗ U1,0,0 → V ∗ ⊗ U2,0,0 → U3,0,0 → 0. (1.27)

The complex (1.27) is self-dual, as it is the unique complex with nonzero GL-equivariant
differentials and these terms (see Theorem 1.3.6). We define the object E as the stupid
truncation of the complex between the lines. As the complex is exact, this induces two
resolutions of E by Sp9-equivariant bundles (cf. § 1.3.3). More explicitly, there are two
exact sequences:

0→ U0,0,−3(−1)→ ∧8V ∗ ⊗ U0,0,−2(−1)→
→ ∧7V ∗ ⊗ U0,0,−1(−1)→ ∧6V ∗ ⊗O(−1)→ E → 0 (1.28)

and
0→ E → ∧3V ∗ ⊗O → ∧2V ∗ ⊗ U1,0,0 → V ∗ ⊗ U2,0,0 → U3,0,0 → 0. (1.29)

As we can deduce from the self-duality of (1.27),

E ∼= E∗(−1). (1.30)

We now consider the (acyclic!) staircase complex on IGr(3, 9) induced by U2,0,−1:

0→ U1,0,−3(−2)→ ∧8V ∗ ⊗ U1,0,−2(−2)→
→ ∧7V ∗ ⊗ U1,0,−1(−2)→ ∧6V ∗ ⊗ U1,0,0(−2)→ ∧4V ∗ ⊗O(−1)

→ ∧2V ∗ ⊗ U0,0,−1 → V ∗ ⊗ U1,0,−1 → U2,0,−1 → 0. (1.31)
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The object F is the stupid truncation of the complex above between the middle and the
lowest line. We obtain two resolutions of F . More explicitly, there are two exact sequences:

0→ U1,0,−3(−2)→ ∧8V ∗ ⊗ U1,0,−2(−2)→ ∧7V ∗ ⊗ U1,0,−1(−2)→
→ ∧6V ∗ ⊗ U1,0,0(−2)→ ∧4V ∗ ⊗O(−1)→ F → 0 (1.32)

and
0→ F → ∧2V ∗ ⊗ U0,0,−1 → V ∗ ⊗ U1,0,−1 → U2,0,−1 → 0. (1.33)

We observe that
E ,F ∈ B (1.34)

because all the terms in their right resolutions (1.29) and (1.33) belong to B. Notice that
E and F are vector bundles by [EH16, Theorem 19.2].

We first compute the Hom•-groups between E and F and show that the sequences (1.29)
and (1.33) induce mutation triangles. To do so, we introduce the following subsets of B1:

S1 = {U0,0,0,U1,0,0,U2,0,0},
S2 = {U0,0,−2,U0,0,−1,U1,0,−1},
S = B1 \ {U2,0,−1} = S1 ∪ S2.

(1.35)

An observation that simplifies many computations in this section is that:

S∗ = S ⊂ B, (1.36)

where by S∗ we denote all the duals of the elements in S.

Proposition 1.4.11. The bundle E is right orthogonal to F :

Hom•(E ,F) = 0.

Moreover, E and F are right orthogonal to S, that is:

Hom•(S, E) = Hom•(S,F) = 0.

Finally, the following isomorphisms hold:

E [3] = LS1∩B2 U3,0,0 = LS U3,0,0, F [2] = LS2∩B2 U2,0,−1 = LS U2,0,−1.

Proof. As E ∼= E∗(−1) by (1.30), we have:

Hom•(S, E) = Hom•(S, E∗(−1)) = Hom•(E(1),S∗) = Hom•(E(1),S),

where the last equality holds by the symmetry of S, cf. (1.36). As E(1) ∈ B(1) by (1.34)
and S ⊂ B, the last Hom•-group vanishes by Proposition 1.4.3, proving that E ∈ S⊥.
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We now focus on F . We observe that:

Hom•(S1,F) = 0, Hom•(U3,0,0,F) = 0,

because B2 is an exceptional collection by Corollary 1.4.10 and all the terms in the right
resolution (1.33) of F belong to ⟨ U0,0,−1, U1,0,−1, U2,0,−1 ⟩, as a consequence, we obtain
that

F ∈ ⟨ U0,0,0, U1,0,0, U2,0,0, U3,0,0 ⟩⊥ = S⊥
1 ∩ (U3,0,0)⊥.

Finally, E ∈ ⟨ U0,0,0, U1,0,0, U2,0,0, U3,0,0 ⟩ by (1.29), hence we obtain F ∈ E⊥.
Notice that we have:

Hom•(S2,F) ∼= Hom•(F∗,S∗
2). (1.37)

By (1.32), we have that F∗ belongs to the category generated by B2(1), B2(2) and U3,0,−1(2),
while S∗

2 ⊂ ⟨B2 ⟩. As a consequence, if Hom•(U3,0,−1(2),S∗
2) = 0, the right side of (1.37)

vanishes by Proposition 1.4.3. But this follows from Lemma 1.4.6, proving that F ∈ S⊥.
Finally, by (1.29) and (1.33), we have:

Cone(U3,0,0 → E [3]) ∈ ⟨S1 ∩B2 ⟩, Cone(U2,0,−1 → F [2]) ∈ ⟨S2 ∩B2 ⟩.
As we proved that E ,F ∈ S⊥, the sequences (1.29) and (1.33) induce mutation triangles.

Proposition 1.4.12. We have the following isomorphisms of Hom•-groups:

Hom•(F , E) = C.

Proof. By (1.28) and (1.33), we have

Cone(U2,0,−1[−2]→ F) ∈⟨U0,0,−1, U1,0,−1 ⟩ ⊂ B ∩B∗,

Cone(E → U0,0,−3(−1)[3]) ∈⟨U0,0,−2(−1), U0,0,−1(−1), O(−1) ⟩ ⊂ B(−1).
Applying Proposition 1.4.3 and recalling that Hom•(B∗,U0,0,−3(−1)) ∼= Hom•(U3,0,0(1),B) =
0, because U3,0,0(1) ∈ B(1). Hence we have:

Hom•(F , E) = Hom•(U2,0,−1[−2], U0,0,−3(−1)[3]) = Hom•(U2,0,−1, U0,0,−3(−1))[5].
Finally,

Hom•(U2,0,−1, U0,0,−3(−1)) ∼= H•(X,U1,0,−2 ⊗ U0,0,−3(−1)) ∼= C[−5]
by Lemma 1.4.6.

Let ϕ ∈ Hom•(F , E) = C be the nonzero morphism, which is unique up to scalar. Then,
we can define H as

H = Cone(F ϕ−→ E). (1.38)

By [Gus20, Lemma 5.1], the morphism ϕ : F → E lifts uniquely to a morphism of the right
resolutions of F and E ((1.33) and (1.29)), finally defining the maps in the bicomplex (1.1);
hence H defined by (1.38) is isomorphic to the totalization of (1.1).

As an immediate consequence, we obtain the following.
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Proposition 1.4.13. The objects E ,F and H are exceptional. Moreover, H = LFE.

Proof. We recall from § 1.2 that given an admissible subcategory A , the mutation functor
LA induces an equivalence between ⊥A and A ⊥. In particular, if G ∈ ⊥A is excep-
tional, then LAG is exceptional as well. As B1 and B2 are exceptional collections by
Corollary 1.4.10, the objects U3,0,0 and U2,0,−1 are exceptional and we have

U3,0,0 ∈ ⊥(S1 ∩B2) and U2,0,−1 ∈ ⊥(S2 ∩B2),

hence the objects E and F are exceptional by Proposition 1.4.11. Finally, as E ∈ ⊥F by
Proposition 1.4.11 and Hom•(F , E) ∼= C by Proposition 1.4.12, we conclude that

H = Cone(F ϕ−→ E) = LFE (1.39)

is exceptional.

Proposition 1.4.14. The object H is right orthogonal to B1, that is:

Hom•(B1,H) = 0.

Hence, H = LB1U3,0,0[3].

Proof. We have H ∈ S⊥, because E ,F ∈ S⊥ by Proposition 1.4.11. By Proposition 1.4.13,
we have H ∈ F⊥ . But U2,0,−1 ∈ ⟨F ,S ⟩ by (1.33), hence H ∈ (U2,0,−1)⊥. Finally, as
we have B1 = S ∪ {U2,0,−1}, we deduce that H ∈ B⊥

1 . This also proves H = LB1E . By
Proposition 1.4.11 we obtain the second claim.

Finally we can state the main result of the section. Recall that B = {H} ∪B1.

Theorem 1.4.15. The bounded derived category of coherent sheaves on IGr(3, 9) admits a
rectangular Lefschetz exceptional collection of length 8 composed by Sp9-equivariant objects
given by:

⟨B, B(1), B(2), B(3), B(4), B(5), B(6) ⟩.

Proof. Since {H} ∪ B1 ⊂ B, the blocks are semiorthogonal by Proposition 1.4.3. On the
other hand, semiorthogonality within a block follows from Corollary 1.4.10 and Proposi-
tion 1.4.14. The objectH itself is exceptional by Proposition 1.4.13. Applying Lemma 1.2.5,
we deduce the exceptionality claim.

It is immediate to see that all the elements in B1 admit an Sp9-equivariant structure.
To show that H admits one as well, we recall [Pol11, Lemma 2.2.(1)], which proves that
any exceptional object in IGr(k, 2n+ 1) is Sp2n+1-equivariant.

Recall that Sp2n+1 = (C∗ × Sp2n) ⋊ U , by [Mih07, §3], where C∗ × Sp2n is the Levi
subgroup, and U ∼= C2n is the unipotent radical. As the Levi subgroup is reductive, we can
apply [Pol11, Lemma 2.2.(2)] to C∗ × Sp2n. Since U ∼= C2n, we see that the hypothesis of
[Pol11, Lemma 2.2.(1)] hold for Sp2n+1 as well. In particular, H is Sp9-equivariant.
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Remark 1.4.16. It is possible to show that H is a vector bundle. To do so, we need to
prove that the morphism ϕ defined by Proposition 1.4.12 is surjective. Approaching the
problem in IGr(3, 9) is hard, as IGr(3, 9) is not homogeneous and Sp9 is not semisimple.

A lighter solution is to consider the embedding of X in IGr(3, 10). The staircase com-
plexes of Ũ3,0,0 and Ũ2,0,−1 on IGr(3, 10), appropriately truncated, provide lifts of E and F .
We can prove that the corresponding map is surjective, similarly to [Gus20, Lemma 5.3],
then we can obtain the result on the original morphism applying Proposition 1.3.8.

1.5 Fullness

In [Nov20, § 4-§ 5], a procedure to show the fullness of an exceptional collection on the
even isotropic Grassmannian was developed. We adapt it to the case of an odd isotropic
Grassmannian and we summarize it in § 1.5.2. This reduces the question of fullness to a
combinatorial statement (cf. Proposition 1.5.6).

The procedure consists of consequent applications of steps of two different kinds to
produce more and more objects in the category D generated by the exceptional collection:

1. using staircase complexes, already discussed in Theorem 1.3.6;

2. using so-called "symplectic bundle relations", see § 1.5.1.

When we have produced sufficiently many objects, we can conclude that D = Db(X ) by
Proposition 1.5.6. We give more details on this strategy in § 1.5.2 below and implement it
to prove the fullness in § 1.5.3 in nine steps. From now on, we represent U i,0,...,0,−j with
the shorthand notation

U i,−j .

1.5.1 Symplectic bundle relations

In this section we work with any odd isotropic Grassmannian IGr(k, V ), with dimV = 2n+1.
Consider the embedding j : IGr(k, V ) → IGr(k, Ṽ ) where Ṽ is a symplectic vector

space with dim Ṽ = 2n + 2. Recall the notation fixed in § 1.3.3. On the even isotropic
Grassmannian IGr(k, Ṽ ), the symplectic bundle S̃ = Ũ⊥/ Ũ is the bundle of rank 2(n+1−k)
defined as the cohomology in degree 0 of the complex (1.19). We consider the restriction
to IGr(k, V ) of the sequence (1.19), that is:

0→ U → Ṽ ⊗O → U∗ → 0, (1.40)

which has only cohomology in degree 0, which is isomorphic to j∗S̃.

Proposition 1.5.1. For any p ≥ 0, the object ∧pj∗S̃ ∈ Db(IGr(k, V )) is quasi-isomorphic
to a complex with entries given by direct sums, possibly with multiplicities, of U i,−j for
i, j ≥ 0 and i+ j ≤ p. Moreover, if i+ j = p, the bundle U i,−j appears exactly once among
the direct summands of the terms of this complex.
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Proof. The complex obtained from the sequence (1.40), which we will denote as C• is quasi-
isomorphic to j∗S̃. The cohomology of the complex ∧pC• is isomorphic to the cohomology
of ∧pj∗S̃ (see for instance [Dol58, § 6.6]). As ∧pj∗S̃ is concentrated in degree 0, we have
∧pC• ∼= ∧pj∗S̃ in Db(IGr(k, V )). Recall that the monoidal structure of Db(IGr(k, V )) is
defined in such a way that ∧p(F [±1]) ∼= (SpF)[±p] for every vector bundle F .

The terms of the complex ∧pC• are given by direct sums of:

∧p1(U∗[−1])⊗ ∧p2(Ṽ ⊗O)⊗ ∧p3(U [1]) = Up1,0[−p1]⊗ ∧p2(Ṽ ⊗O)⊗ U0,−p3 [p3] (1.41)

with
p1 + p2 + p3 = p, p1, p2, p3 ≥ 0

By Pieri’s formula, we can decompose the factors above as:

Up1,0 ⊗ U0,−p3 =
⊕

0≤t≤min(p1,p3)

Up1−t,t−p3 .

We now determine the multiplicity of U i,−j with i+j = p. If U i,−j comes from Up1,0⊗U0,−p3 ,
then i+ j = (p1 − t) + (p3 − t) ≤ p1 + p3. Then we obtain p2 = 0, i = p1, j = p3 and t = 0.
This shows that U i,−j appears as a direct summand of a single term of ∧pC•. Moreover, its
multiplicity is ∧p2 Ṽ ∼= C, proving the claim.

Restricting the symplectic isomorphism on IGr(k, Ṽ ) we obtain j∗S̃ ∼= j∗S̃∗, which
induces:

∧pj∗S̃ ∼= ∧2(n+1−k)−pj∗S̃∗ ∼= ∧2(n+1−k)−pj∗S̃. (1.42)

Applying Proposition 1.5.1 to ∧pj∗S̃ and ∧2(n+1−k)−pj∗S̃, we obtain the following key
proposition.

Proposition 1.5.2. Let D ⊆ Db(IGr(k, V )) be a triangulated subcategory and let l ∈ Z.
Let i+ j = p with p > n+ 1− k. If U i′,−j′(l) ∈ D for every i′, j′ ≥ 0, with i′ + j′ ≤ p and
(i, j) ̸= (i′, j′), then U i,−j(l) ∈ D .

Proof. Assume l = 0. By hypothesis, we have 2(n + 1 − k) − p < n + 1 − k. We first
apply Proposition 1.5.1 to show that ∧2(n+1−k)−pj∗S̃ ∈ D . By (1.42), that is equivalent to
∧pj∗S̃ ∈ D . Applying again Proposition 1.5.1, ∧pj∗S̃ admits a filtration with factors given
by direct sums of U i,−j and U i′,−j′ as above.

By hypothesis, all the factors in the filtration belong to D except possibly U i,−j , which
appears exactly once as a factor, hence U i,−j ∈ D as well. This proves the claim.

If l ̸= 0, we apply the proven result to a twist of D .
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1.5.2 Strategy

We show here how to reduce the proof of the fullness of the Lefschetz collection B to an
algorithmic question. Let us consider the case of X = IGr(3, 2n + 1). Consider the set of
bundles

T = {U i,−j | 0 ≤ i, j; i+ j ≤ 2n− 2} (1.43)

Proposition 1.5.3. Let D ⊆ Db(X) be an admissible subcategory. If the set T(−l) is
contained in D for every l ≥ 0 then D = Db(X).

Proof. Since D is admissible, consider the decomposition Db(X ) = ⟨D⊥,D⟩. Recall that
O(−l) for l ≥ 0 is a spanning class (cf. [Huy06, Corollary 3.19]). This implies D⊥ = 0 as
O(−l) ∈ T(−l) ⊂ D , proving D = Db(X).

We rephrase here in a more compact form how to apply Theorem 1.3.6. For each triple
of integers (a, b, c), with a, c ≥ −1, b ≥ 0 and a + b + c ≤ 2n − 2, we introduce a set of
a+ b+ c+ 2 bundles named Sa,cb and defined as:

Sa,cb :=


U i,−b for 0 ≤ i ≤ a,
U i,i−b+1(−i− 1) for 0 ≤ i ≤ b− 1,

Ub,−i(−b− 1) for 0 ≤ i ≤ c.

It is immediate to verify that
(Sa,cb )∗ = Sc,ab (b+ 1). (1.44)

We also remark that

Sa+1,c
b = {Ua+1,−b} ⊔ Sa,cb , Sa,c+1

b = Sa,cb ⊔ {Ub,−c−1(−b− 1)}. (1.45)

We now explain the relationship of Sa,cb with staircase complexes.
If a, b ≥ 0 and max{a, b, a+ b} ≤ 2n− 2, then we can apply Theorem 1.3.6 to compute

the staircase complex of Ua,−b on IGr(3, 2n+ 1). As a+ b+ c+ 2 ≤ 2n, the collection Sa,cb
is the set of the rightmost a+ b+ c+ 2 vector bundles appearing in this staircase complex
(cf. (1.16)). If a+ b+ c = 2n− 2, then Sa,cb corresponds to the whole staircase complex.

We now consider the case where a or c is −1. Let us fix a+ b+ c = 2n− 3, which corre-
sponds to one term fewer than the amount of entries of a staircase complex on IGr(3, 2n+1).
From the previous consideration and the identities stated in (1.45), we obtain that if a, b ≥ 0
and c = −1, then Sa,−1

b = Sa,0b \ {Ub,0(−b− 1)}. That is, Sa,−1
b is the set of entries of the

staircase complex associated to Ua,−b except Ub,0(−b− 1).
Similarly, if a = −1, 2n − 2 ≥ b ≥ 0 and c ≥ 0, then S−1,c

b = S0,c
b \ {U0,−b}, which

corresponds to all the entries of the staircase complex associated to U0,−b, except U0,−b

itself.
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Proposition 1.5.4. Let D ⊆ Db(IGr(3, 2n + 1)) be a full triangulated subcategory and
l ∈ Z. Let (a, b, c) be a triple with a+ b+ c = 2n− 3 and a, c ≥ −1 and 2n− 2 ≥ b ≥ 0. If
Sa,cb (l) ⊂ D , then we have the following cases:

• if a ≥ −1 and b, c ≥ 0, then Ua+1,−b(l) ∈ D ;

• if a, b ≥ 0 and c ≥ −1, then Ub,−c−1(l − b− 1) ∈ D .

Proof. In the first case, we consider the staircase complex of Ua+1,−b(l) as the left resolution
of its rightmost term. The terms in the resolution are multiples of the bundles in Sa,cb (l) ⊂
D , we conclude that Ua+1,−b(l) ∈ D .

For the second statement, we apply (1.44). From the hypotheses, we have that (Sa,cb (l))∗ =
Sc,ab (b+1− l) ⊂ D∗. Applying the first statement, we obtain Uc+1,−b(b+1− l) ∈ D∗, hence
Ub,−c−1(l − b− 1) ∈ D , proving the second claim.

The following Proposition 1.5.5 formalizes the idea of applying the staircase complex
several times in a row. Consider the following partitions of the set T defined in (1.43):

T =
⊔

0≤b≤2n−2

Pb =
⊔

0≤a≤2n−2

Na. (1.46)

where

Pb = {U i,−b | 0 ≤ i ≤ 2n− 2− b}, Na = {Ua,−i | 0 ≤ i ≤ 2n− 2− a}.

Let D be a triangulated subcategory. Fixing b, we observe that the staircase complexes
associated to U i,−b contains the left resolution of U i+1,−b. This allows us to generate U i+1,−b

starting from the staircase complex of U i,−b. Proceeding inductively, this allows to generate
all the bundles U j,b with j ≥ i, which are all contained in Pb. The same works with the
right ends of the staircase complexes and Na.

This fact is shown in the following picture (fig. 1.1), where we represent the weights
in T for n = 4. In this picture, the sets Pi are given by the ascending diagonals with
second coordinate equal to i, while the sets Ni are given by descending diagonals with first
coordinate i.

We circle the elements of S5,0
1 , S4,1

1 and S3,2
1 , which correspond to the bundles belonging

to three staircase complexes; notice that they have several elements in common. This shows
that once we proved that S2,2

1 ⊂ D , then S3,2
1 ⊂ D by Proposition 1.5.4, but then, the left

part of the staircase complex of U4,−1 is contained in S3,2
1 , so we can apply repeatedly

Proposition 1.5.4.
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(0,0)

(0,-1)

(0,-2)

(0,-3)

(0,-4)

(0,-5)

(0,-6)

(1,0)

(1,-1)

(1,-2)

(1,-3)

(1,-4)

(1,-5)

(2,0)

(2,-1)

(2,-2)

(2,-3)

(2,-4)

(3,0)

(3,-1)

(3,-2)

(3,-3)

(4,0)

(4,-1)

(4,-2)

(5,0)

(5,-1)

(6,0)

Figure 1.1: The weights in T for n = 4. The
sets S5,0

1 , S4,2
1 , S3,3

1 are in green, blue, red,
respectively.

Using this observation, we prove the following.

Proposition 1.5.5. Let D ⊆ Db(IGr(3, 2n + 1)) be a triangulated subcategory and l ∈ Z.
Let (a, b, c) be a triple with a + b + c = 2n − 3 and a, c ≥ −1 and 2n − 2 ≥ b ≥ 0. If
Sa,cb (l) ⊂ D , then:

Pb(l) ⊂ D and Nb(l − b− 1) ⊂ D .

Proof. Assume l = 0. We prove the statement for any triple (a, b, c) with the properties
stated above, in particular, a = 2n− 3− c− b. We prove Pb ⊂ D , proceeding by induction
on c. If c = −1, we have a = 2n− 2− b. By definition:

Sa,−1
b = {U i,−b | 0 ≤ i ≤ a} ⊔ {Ub,−i(−i− 1) | 0 ≤ i ≤ b− 1} ⊇ Pb,

proving the base of induction. Suppose c ≥ 0, then by Proposition 1.5.4 we have Ua+1,−b ∈
D . Applying (1.45), we have Sa+1,c

b ⊂ D . Finally with (1.45), Sa+1,c−1
b ⊂ Sa+1,c

b ⊂ D . By
the induction hypothesis, Pb ⊂ D , proving the first part of the statement. When l ̸= 0, we
apply the result to a twist of D .

From the statement on Pb we deduce the result for Nb by dualizing and applying (1.44)
(as in the final part of Proposition 1.5.4).

Proposition 1.5.6. Let D ⊆ Db(X ) be a full admissible subcategory. If T(l) ⊂ D for
l = 0, . . . , 2n− 2, then D = Db(X ).

Proof. Let us consider the set

S2n−2−b,−1
b = {U i,−b | 0 ≤ i ≤ 2n− 2− b} ⊔ {Ub,−i(−i− 1) | 0 ≤ i ≤ b− 1} ⊆

⊆ T ⊔
⊔

0≤i≤b−1

T(−i− 1).
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In particular, twisting the previous inclusion by O(b), for 0 ≤ b ≤ 2n− 2, we obtain:

S2n−2−b,−1
b (b) ⊆ T(b) ⊔

⊔
0≤i≤b−1

T(b− i− 1) ⊂ D .

By Proposition 1.5.5, we have Nb(−1) ⊂ D for any 0 ≤ b ≤ 2n − 2. As T(−1) can
be partitioned as the disjoint union of Nb(−1) for 0 ≤ b ≤ 2n − 2 by (1.46), we obtain
T(−1) ⊂ D . Inductively, we obtain T(−l) ⊂ D for every l ≥ 0, concluding the proof with
Proposition 1.5.3.

Finally, we are able to show the fullness of the Lefschetz collection with basis B on
IGr(3, 9).

1.5.3 Proof of fullness

We go back to the case X = IGr(3, 9). Let

D := ⟨B, B(1), B(2), B(3), B(4), B(5), B(6) ⟩ ⊆ Db(X ) .

By Theorem 1.4.15, D is generated by an exceptional collection, hence it is admissible (cf.
§ 1.2). We want to prove that D = Db(X ). Recall that

B1 ∪B2 = {U0,0,−2, U0,0,−1, U1,0,−1, U2,0,−1, U0,0,0, U1,0,0, U2,0,0, U3,0,0} ⊂ ⟨B ⟩, (1.47)

hence (B1∪B2)(l) ⊂ D for l = 0, . . . , 6. To prove that D is full, we go through the following
algorithm, which consists in the iteration of these two steps:

• determine all the Sa,cb (l) ⊂ D with a+ b+ c = 6 and apply Proposition 1.5.5;

• apply Proposition 1.5.2 where possible.

The procedure terminates if we prove that the following set of bundles

T, T(1), . . . , T(6),

where T was defined in (1.43), is contained in D . Then we can apply Proposition 1.5.6 and
prove fullness. Notice that it is not certain that the presented algorithm terminates, even
if the starting collection is full. In our specific case, we are able to show in nine steps that
the condition in Proposition 1.5.6 holds.

Theorem 1.5.7. The condition in Proposition 1.5.6 holds for X = IGr(3, 9) and the fol-
lowing admissible subcategory

D := ⟨B, B(1), B(2), B(3), B(4), B(5), B(6) ⟩.
Hence, D = Db(X ).

For clarity of exposition we present the steps in this procedure next to diagrams to
illustrate the progress in the proof. We apply a label l1 ÷ l2 next to every colored area to
denote for which twists we know already that the bundles in the area belong to D .
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Step 1.

(0,0)

(0,-1)

(0,-2)

(0,-3)

(0,-4)

(0,-5)

(0,-6)

(1,0)

(1,-1)

(1,-2)

(1,-3)

(1,-4)

(1,-5)

(2,0)

(2,-1)

(2,-2)

(2,-3)

(2,-4)

(3,0)

(3,-1)

(3,-2)

(3,-3)

(4,0)

(4,-1)

(4,-2)

(5,0)

(5,-1)

(6,0)

0÷ 6

1÷ 6

0÷ 5

−1

Figure 1.2: The set S3,2
0 and the bundle U1,−2.

As S3,2
0 (l) ⊂ D for l = 1, . . . , 6, using Proposition 1.5.5 we obtain:

P0(l) ⊂ D , for l = 1, . . . , 6,

N0(l) ⊂ D , for l = 0, . . . , 5.

Moreover, we notice that:

U i,−j(l) ∈ D for l = 0, . . . , 5

and i+ j ≤ 3,

except for U1,−2(l). Applying Proposition 1.5.2, we conclude

U1,−2(l) ∈ D for l = 0, . . . , 5.
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Step 2.

(0,0)

(0,-1)

(0,-2)

(0,-3)

(0,-4)

(0,-5)

(0,-6)

(1,0)

(1,-1)

(1,-2)

(1,-3)

(1,-4)

(1,-5)

(2,0)

(2,-1)

(2,-2)

(2,-3)

(2,-4)

(3,0)

(3,-1)

(3,-2)

(3,-3)

(4,0)

(4,-1)

(4,-2)

(5,0)

(5,-1)

(6,0)

0÷ 6

1÷ 6

0÷ 5

2÷ 6

0÷ 4

−1

−1

Figure 1.3: The set S2,2
1 and U2,−2.

Given that S2,2
1 (l) ⊂ D for l = 2, . . . , 6, we show:

P1(l) ⊂ D , for l = 2, . . . , 6,

N1(l) ⊂ D , for l = 0, . . . , 4.

Applying Proposition 1.5.2 to U2,−2, we obtain that

U2,−2(l) ∈ D for l = 2, . . . , 4.
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Step 3.

(0,0)

(0,-1)

(0,-2)

(0,-3)

(0,-4)

(0,-5)

(0,-6)

(1,0)

(1,-1)

(1,-2)

(1,-3)

(1,-4)

(1,-5)

(2,0)

(2,-1)

(2,-2)

(2,-3)

(2,-4)

(3,0)

(3,-1)

(3,-2)

(3,-3)

(4,0)

(4,-1)

(4,-2)

(5,0)

(5,-1)

(6,0)

0÷ 6

1÷ 6

0÷ 5

2÷ 6

0÷ 4

3÷ 5

0÷ 2

2÷ 4

−1

−1

−1

Figure 1.4: In solid black arrows, S1,2
2 ∩ S2,1

2 . Inside the circles, the bundles obtained
applying Proposition 1.5.2.

As S1,2
2 (l) ⊂ D for l = 5 and S2,1

2 (l) ⊂ D for l = 3, 4, we have:

P2(l) ⊂ D , for l = 3, . . . , 5,

N2(l) ⊂ D , for l = 0, . . . , 2.

Applying Proposition 1.5.2, we obtain:

U3,−1(1) ∈ D ,

U1,−3(5) ∈ D ,

U3,−2(2) ∈ D ,

U2,−3(3), U2,−3(4) ∈ D .
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Step 4.

(0,0)

(0,-1)

(0,-2)

(0,-3)

(0,-4)

(0,-5)

(0,-6)

(1,0)

(1,-1)

(1,-2)

(1,-3)

(1,-4)

(1,-5)

(2,0)

(2,-1)

(2,-2)

(2,-3)

(2,-4)

(3,0)

(3,-1)

(3,-2)

(3,-3)

(4,0)

(4,-1)

(4,-2)

(5,0)

(5,-1)

(6,0)

0÷ 6

1÷ 6

0÷ 5

2÷ 6

0÷ 4

3÷ 5

0÷ 2

2÷ 5

0÷ 1

4÷ 5

−1

−1

−1

−1

Figure 1.5: In continuous black arrows, S2,0
3 ∩S1,1

3 . Inside the circles, the bundles obtained
applying Proposition 1.5.2.

As S2,0
3 (4) ⊂ D and S1,1

3 (5) ⊂ D , we have:

P3(l) ⊂ D , for l = 4, 5,

N3(l) ⊂ D , for l = 0, 1.

Applying Proposition 1.5.2, we obtain the following bundles:

U4,0 ∈ D ,

U4,−1(1) ∈ D ,

U1,−4(5) ∈ D ,

U2,−4(4) ∈ D .
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Step 5.

(0,0)

(0,-1)

(0,-2)

(0,-3)

(0,-4)

(0,-5)

(0,-6)

(1,0)

(1,-1)

(1,-2)

(1,-3)

(1,-4)

(1,-5)

(2,0)

(2,-1)

(2,-2)

(2,-3)

(2,-4)

(3,0)

(3,-1)

(3,-2)

(3,-3)

(4,0)

(4,-1)

(4,-2)

(5,0)

(5,-1)

(6,0)

0÷ 6

1÷ 6

0÷ 5

2÷ 6

0÷ 4

3÷ 5

0÷ 2, 4

0

5

0, 1, 4, 5

−1

−1

−1

−1

−1

Figure 1.6: The set S1,0
4 and the bundles obtained by applying Proposition 1.5.2.

As S1,0
4 (5) ⊂ D , we obtain:

P4(5) ⊂ D ,

N4(0) ⊂ D .

Applying Proposition 1.5.2, we obtain:

U5,0 ∈ D ,

U1,−5(5) ∈ D .
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Step 6.

(0,0)

(0,-1)

(0,-2)

(0,-3)

(0,-4)

(0,-5)

(0,-6)

(1,0)

(1,-1)

(1,-2)

(1,-3)

(1,-4)

(1,-5)

(2,0)

(2,-1)

(2,-2)

(2,-3)

(2,-4)

(3,0)

(3,-1)

(3,-2)

(3,-3)

(4,0)

(4,-1)

(4,-2)

(5,0)

(5,-1)

(6,0)

0÷ 6

1÷ 6

0÷ 5

2÷ 6

0, 3, 4, 5

0, 1, 2, 4, 5

0÷ 3

3÷ 6

0, 1, 4, 5

−1

−1

−1

Figure 1.7: The set S0,3
2 and the bundles obtained by applying Proposition 1.5.2.

As S0,3
2 (6) ⊂ D , we have:

P2(6) ⊂ D ,

N2(3) ⊂ D .

Applying Proposition 1.5.2 for i+ j = 3 and l = 6, we obtain

U0,−3(6) ∈ D ;

while using i+ j = 6 and l = 3, we obtain

U3,−3(3) ∈ D .
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Step 7.

(0,0)

(0,-1)

(0,-2)

(0,-3)

(0,-4)

(0,-5)

(0,-6)

(1,0)

(1,-1)

(1,-2)

(1,-3)

(1,-4)

(1,-5)

(2,0)

(2,-1)

(2,-2)

(2,-3)

(2,-4)

(3,0)

(3,-1)

(3,-2)

(3,-3)

(4,0)

(4,-1)

(4,-2)

(5,0)

(5,-1)

(6,0)

0÷ 6

1÷ 6

0÷ 5

2÷ 6

0, 3, 4, 5, 6

2

6

0, 1, 3, 4, 5

−1

−1

−1

−1

Figure 1.8: The set S0,2
3 and the bundles obtained by applying Proposition 1.5.2.

As S0,2
3 (6) ⊂ D , we have:

P3(6) ⊂ D ,

N3(2) ⊂ D .

Applying Proposition 1.5.2, we obtain:

U0,−4(6) ∈ D ,

U4,−2(2) ∈ D .
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Step 8.

(0,0)

(0,-1)

(0,-2)

(0,-3)

(0,-4)

(0,-5)

(0,-6)

(1,0)

(1,-1)

(1,-2)

(1,-3)

(1,-4)

(1,-5)

(2,0)

(2,-1)

(2,-2)

(2,-3)

(2,-4)

(3,0)

(3,-1)

(3,-2)

(3,-3)

(4,0)

(4,-1)

(4,-2)

(5,0)

(5,-1)

(6,0)

0÷ 6

1÷ 6

0÷ 5

2÷ 6

0, 2, 3, 4, 5, 6

1

6

−1

−1

−1

−1

−1

Figure 1.9: The set S0,1
4 and the bundles obtained by applying Proposition 1.5.2.

As S0,1
4 (6) ⊂ D , we have:

P4(6) ⊂ D ,

N4(1) ⊂ D .

As all bundles U i,−j(6) ∈ D for i+ j ≤ 5, applying Proposition 1.5.2, we obtain:

U0,−5(6) ∈ D ;

analogously, for U i,−j(1) ∈ D for i+ j ≤ 6, we obtain:

U1,−5(1) ∈ D .
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Step 9.

(0,0)

(0,-1)

(0,-2)

(0,-3)

(0,-4)

(0,-5)

(0,-6)

(1,0)

(1,-1)

(1,-2)

(1,-3)

(1,-4)

(1,-5)

(2,0)

(2,-1)

(2,-2)

(2,-3)

(2,-4)

(3,0)

(3,-1)

(3,-2)

(3,-3)

(4,0)

(4,-1)

(4,-2)

(5,0)

(5,-1)

(6,0)

0÷ 6

1÷ 6

0÷ 5

1

6

−1

−1

−1

−1

−1

−1

Figure 1.10: The set S0,0
5 and the remaining bundles.

As S0,0
5 (6) ⊂ D , we have:

P5(6) ⊂ D ,

N5(0) ⊂ D .

Applying Proposition 1.5.2, we finally generate the remaining bundles.

Conclusion

After these nine iterations, we have shown that

T, T(1), . . . ,T(6) ⊂ D .

Applying Proposition 1.5.6 to D , we show that the Lefschetz collection induced by B is
full, finally proving Theorem 1.5.7.
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1.6 On the derived category of IGr(3, 11)

We now focus our attention on the odd isotropic Grassmannian IGr(3, 11). Let V be a
11-dimensional vector space endowed with a skew-symmetric form ψ of maximal rank 10.
Let us fix X = IGr(3, 11), the isotropic Grassmannian of 3-subspaces in V with respect to
ψ. By Proposition 1.3.12, we know that the index of IGr(3, 11) and rankK0(IGr(3, 11)) are,
respectively:

w = 9, r = 120.

Accordingly to [KS21, Conjecture 1.3.(ii)], we do not expect to find a full rectangular
Lefschetz collection. As

120 = 13 · 9 + 3,

a minimal full (non rectangular) Lefschetz collection of Db(X ) would have 3 blocks of length
14 and the remaining blocks of length 13. We start focusing our efforts in the construction
of the rectangular part of the collection, which is expected to be induced by a Lefschetz
basis of length 13.

In this section, we construct B, a basis of a rectangular Lefschetz collection of length 13
and propose an object to complete the rectangular collection induced by B to a full Lefschetz
decomposition, namely G (cf. § 1.6.4). The construction of B is very similar to the IGr(3, 9)
case, hence we simply outline it in § 1.6.1, giving more details in the construction of the non-
rectangular completion of the Lefschetz collection. We summarize some of the properties
of G in Proposition 1.6.16 and Proposition 1.6.18 and conjecture a relation that implies
semiorthogonality (cf. Conjecture 1.6.21). We show in Theorem 1.6.23 how assuming the
remaining vanishings would also prove the fullness of the collection induced by {G} ⊔ B,
following the method we presented in § 1.5.

Remark 1.6.1. In most proofs of this section, we used some computations obtained
through computer algebra implemented in Sage [Ste+21].

In particular, to compute Hom•(Uα, Uβ), we compute the Littlewood–Richardson coef-
ficients of the tensor product U−α ⊗ Uβ with the package [Buc11].

We provide an implementation of this functions in a notebook available at [Cat23a]
Recall that j : IGr(3, 11)→ Gr(3, 11) is the zero locus of the skew symmetric form:

ψ ∈ ∧2V ∗ = H0(Gr(3, 11),U1,1,0).

Using the Koszul resolution of IGr(3, 11) in Gr(3, 11):

0→ O(−1)→ U0,0,−1(−1)→ U0,−1,−1 → OGr(3,11) → OIGr(3,11) → 0, (1.48)

or the Koszul resolution of the structure sheaf in IGr(3, 12) (1.21), we obtain a spectral
sequence (cf. Corollary 1.3.14) to compute the cohomology of a bundle Uλ.

To compute H•(X,Uλ) , we verify that one of the spectral sequences induced by (1.21)
or possibly (1.48) has at most one non vanishing entry (this fact can be easily verified
implementing the combinatorial conditions in Theorem 1.3.1 and Theorem 1.3.10). In that
case, we can determine the cohomology (see for instance Lemma 1.4.5 and Lemma 1.4.6).
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1.6.1 The rectangular part

Similarly to the case IGr(3, 9), we have two collections of 12 elements each:

B1 = {U0,0,−3,

U0,0,−2, U1,0,−2, U2,0,−2,

U0,0,−1,U1,0,−1, U2,0,−1, U3,0,−1,

U0,0,0, U1,0,0, U2,0,0, U3,0,0}
B2 = {U0,0,−2, U1,0,−2, U2,0,−2,

U0,0,−1, U1,0,−1, U2,0,−1, U3,0,−1,

U0,0,0, U1,0,0, U2,0,0, U3,0,0, U4,0,0}.

Notice that B1 and B2 have 11 elements in common and their union has 13 elements.

Lemma 1.6.2. The collections B1 are B2 are bases of (non full) Lefschetz collections.

Proof. The proof that B1 and B2 are Lefschetz collections is similar to Proposition 1.4.3.
Otherwise, it can be verified with Sage.

Similarly to the case IGr(3, 9), B1 ∪B2 is not an exceptional collection, as we have:

Hom•(U4,0,0,U0,0,−3) = C[−6], Hom•(U0,0,−3,U4,0,0) ̸= 0.

Similarly to Lemma 1.4.7, we can easily verify:

Hom•(U4,0,0(l),U0,0,−3) = 0 for l = 1, . . . , 8. (1.49)

We define:

B = {H} ∪B1 = {H,
U0,0,−3,

U0,0,−2, U1,0,−2, U2,0,−2,

U0,0,−1,U1,0,−1, U2,0,−1, U3,0,−1,

U0,0,0, U1,0,0, U2,0,0, U3,0,0},

where the object H is isomorphic to the totalization of this bicomplex:

∧4V ∗ ⊗O ∧3V ∗ ⊗ U1,0,0 ∧2V ∗ ⊗ U2,0,0 V ∗ ⊗ U3,0,0 U4,0,0

∧3V ∗ ⊗ U0,0,−1 ∧2V ∗ ⊗ U1,0,−1 V ∗ ⊗ U2,0,−1 U3,0,−1

∧2V ∗ ⊗ U0,0,−2 V ∗ ⊗ U1,0,−2 U2,0,−2,

(1.50)
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where the vertical maps are induced by the skew symmetric form ψ (cf. [Gus20, Lemma
5.1.(a), Proposition 5.2]), while the rows are truncations of the staircase complexes associ-
ated to the bundles U4,0,0,U3,0,−1 and U2,0,−2. We recall them here:

0→ U0,0,−4(−1)→ ∧10V ∗ ⊗ U0,0,−3(−1)→ ∧9V ∗ ⊗ U0,0,−2(−1)→
→ ∧8V ∗ ⊗ U0,0,−1(−1)→ ∧7V ∗ ⊗O(−1)→

→ ∧4V ∗ ⊗O → ∧3V ∗ ⊗ U1,0,0 → ∧2V ∗ ⊗ U2,0,0 → V ∗ ⊗ U3,0,0 → U4,0,0 → 0,

0→ U1,0,−4(−2)→ ∧10V ∗ ⊗ U1,0,−3(−2)→ ∧9V ∗ ⊗ U1,0,−2(−2)→
→ ∧8V ∗ ⊗ U1,0,−1(−2)→ ∧7V ∗ ⊗ U1,0,0(−2)→ ∧5V ∗ ⊗O(−1)→

→ ∧3V ∗ ⊗ U0,0,−1 → ∧2V ∗ ⊗ U1,0,−1 → V ∗ ⊗ U2,0,−1 → U3,0,−1 → 0,

and finally

0→ U2,0,−4(−3)→ ∧10V ∗⊗U2,0,−3(−3)→ ∧9V ∗⊗U2,0,−2(−3)→ ∧8V ∗⊗U2,0,−1(−3)→
→ ∧7V ∗ ⊗ U2,0,0(−3)→ ∧5V ∗ ⊗ U1,0,0(−2)→ ∧4V ∗ ⊗ U0,0,−1(−1)→

→ ∧2V ∗ ⊗ U0,0,−2 → V ∗ ⊗ U1,0,−2 → U2,0,−2 → 0.

The stupid truncation between the second-to-lowest and the lowest line of each complex
presented above induces the lines in complex (1.50).

As in Proposition 1.4.13, we can characterize H as a mutation to prove that B is an
exceptional collection.

Proposition 1.6.3. The object H is exceptional. Moreover, we have the following isomor-
phisms:

H[6] = LB1U4,0,0 = LB1∩B2U4,0,0.

Proof. From the totalization of the bicomplex in (1.50) we can extract the following:

Cone(U4,0,0 → H[6]) ∈ ⟨B1 ∩B2 ⟩ ⊂ ⟨B1 ⟩.
We need to verify H ∈ B⊥

1 . First of all, by construction, similarly to Proposition 1.4.14,
we verify that

H ∈ ⟨U2,0,−2, U3,0,−1 ⟩⊥.
Considering the left resolution of the complex defining H we can prove the remaining
vanishings with Sage, obtaining:

H[6] = LB1U4,0,0.

As H ∈ (B1 ∩B2)
⊥ as well, we have that H[6] = LB1∩B2U4,0,0. Since U4,0,0 ∈ ⊥(B1 ∩B2)

because B2 is an exceptional collection, the mutation is an equivalence on U4,0,0, hence H
is exceptional.
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Corollary 1.6.4. The collection B is the basis of a (non full!) Lefschetz collection.

Proof. Since {H} ∪ B1 ⊂ ⟨B1 ∪ {U4,0,0} ⟩, the blocks are semiorthogonal by Lemma 1.6.2
and (1.49). On the other hand, exceptionality within a block follows from Lemma 1.6.2
and Proposition 1.6.3. Applying Lemma 1.2.5, we deduce that B is a Lefschetz basis.

Remark 1.6.5. We notice that to study the odd isotropic Grassmannian IGr(3, 2n + 1)
with n ≥ 6, it will be necessary to involve more ideas than what was done so far, as there
is a behaviour similar to what was observed for homogeneous varieties in [KP16]. It was
proved in [Fon22] that the set of exceptional bundles:

{U0,0,−1, O, U1,0,0, U2,0,0}
is a set of generators of a full Lefschetz collection of IGr(3, 7). Compare this collection with
the Lefschetz basis constructed for IGr(3, 9) in [Cat23b], which is obtained mutating U3,0,0

in the following sequence:

{U0,0,−2, U0,0,−1, U1,0,−1, U2,0,−1, U0,0,0, U1,0,0, U2,0,0, U3,0,0}
and the set of bundles we presented for IGr(3, 11):

{U0,0,−3,

U0,0,−2, U1,0,−2, U2,0,−2,

U0,0,−1,U1,0,−1, U2,0,−1, U3,0,−1,

O, U1,0,0, U2,0,0, U3,0,0, U4,0,0}.
The emerging pattern would suggest that the (non exceptional) set of bundles

{Ua,0,−b | a+ b ≤ n− 1} \ {U0,0,−(n−1), U1,0,−(n−2)}
would be the set of generators of a rectangular Lefschetz basis of expected length. This
cannot be, because this set asymptotically has 1

2n
2 elements, while the expected length of

the rectangular part is asymptotically 2
3n

2 by Remark 1.3.13. This lack of elements is first
observed in IGr(3, 2n+ 1) if n = 6.

Hoping to complete B to a basis of a full collection, we try to apply the method presented
in § 1.5 to prove the fullness of the collection B (we replace H by U4,0,0). Clearly, the
Lefschetz collection induced by B is not full as it has the wrong number of elements. We
notice that the algorithmic procedure is able to generate the majority of the twists of

Ua,0,−b for a+ b ≤ 4.

Following this method, we are not able to generate the bundles U3,0,−2, U2,0,−3 and their
twists. We now construct a bundle G starting from the bundle U3,0,−2 to complete the
exceptional collection B. The construction of this object is done in 2 steps, along the
coming sections.

We denote the first step of the mutation as G2 (cf. (1.52)) and we study some of its
properties.



Chapter 1. The derived category of some odd isotropic Grassmannians 47

1.6.2 Properties of G2
Consider the bundle U3,0,−2. The first obstacle to be part of a non-rectangular Lefschetz
block is that:

Hom•(U3,0,−2(2),U3,0,−2) = H•(IGr(3, 11),U1,0,−7) = C[−6].

We now present some properties of U3,0,−2.

Lemma 1.6.6. The bundle U3,0,−2 is exceptional. We have the following vanishings:

Hom•(U3,0,−2(l), U2,0,−3) =

{
0 for l = 0, 4, 5, 7, 8,

C[−8] for l = 3.

The representative of Hom•(U3,0,−2(3), U2,0,−3) = C[−8], which is unique up to scalar, is
the staircase complex Stair(U3,0,−2).

Proof. Both results have been obtained with Sage, following the method presented in Re-
mark 1.6.1. The second result is obtained analogously, using Sage:

U−1,−1,−9 A U2,0,−3 ⊗ (U3,0,−2(3))∗

is the only acyclic term. Applying the associate spectral sequence as in Remark 1.6.1, we
have:

H•(IGr(3, 11),U−1,−1,−9) = C[−8].
We verify that the last term in Stair(U3,0,−2(3)) is U2,0,−3 (see (1.51))

Proposition 1.6.7. We have the following vanishings:

Hom•(B(l), U3,0,−2) = 0 for l = 1, . . . , 6,

Hom•(B(l), U2,0,−3) = 0 for l = 3, . . . , 8.

Proof. We can replace B with B1 ∪B2, then both results can be verified with Sage.

We introduce the bundle G2 obtained as the stupid truncation of the staircase complexes
associated to U3,0,−2(2) between the second and the third line from the bottom:

0→ U2,0,−3(−1)→ ∧10V ∗ ⊗ U2,0,−2(−1)→ ∧9V ∗ ⊗ U2,0,−1(−1)→
→ ∧8V ∗ ⊗ U2,0,0(−1)→ ∧6V ∗ ⊗ U1,0,0 → ∧5V ∗ ⊗ U0,0,−1(1)→

→ ∧3V ∗ ⊗ U0,0,−2(2)→ ∧2V ∗ ⊗ U1,0,−2(2)→
→ V ∗ ⊗ U2,0,−2(2)→ U3,0,−2(2)→ 0. (1.51)
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More explicitly, there are two acyclic complexes. The right resolution of G2:

0→ G2 → ∧6V ∗ ⊗ U1,0,0 → ∧5V ∗ ⊗ U0,0,−1(1)→
→ ∧3V ∗ ⊗ U0,0,−2(2)→ ∧2V ∗ ⊗ U1,0,−2(2)→

→ V ∗ ⊗ U2,0,−2(2)→ U3,0,−2(2)→ 0, (1.52)

and the left resolution of G2:

0→ U2,0,−3(−1)→ ∧10V ∗ ⊗ U2,0,−2(−1)→ ∧9V ∗ ⊗ U2,0,−1(−1)→
→ ∧8V ∗ ⊗ U2,0,0(−1)→ G2 → 0. (1.53)

We outline some properties of G2.
Proposition 1.6.8. We have the following vanishings:

Hom(Uλ(l), G2) = 0 for Uλ ∈ B1 ∪B2 and l = 0, . . . , 8,

unless, l = 1 and Uλ ∈ {U2,0,−2, U3,0,−1} or l = 0 and Uλ ∈ {U3,0,−1, U4,0,0}.
Proof. This result can be obtained with Sage or possibly combining the vanishings in
Lemma 1.6.2, Lemma 1.6.6 and Proposition 1.6.7. If l = 0, . . . , 7, we can prove the vanish-
ings using the left resolution of G2 (1.53), the vanishings for l = 8 can be obtained with the
right resolution (1.52).

Proposition 1.6.9. The collection G2, G2(1), G2(2) is exceptional.

Proof. Consider the morphism induced by (1.52):

Cone(U3,0,−2(2)→ G2[5]) ∈ ⟨U1,0,0, U0,0,−1(1), U0,0,−2(2), U1,0,−2(2), U2,0,−2(2)⟩.

We now show that G2[5] is actually the left mutation of U3,0,−2(2) through the category on
the right. Using the result in Proposition 1.6.8, we easily obtain that:

G2 ∈ ⟨U1,0,0, U0,0,−1(1), U0,0,−2(2), U1,0,−2(2), U2,0,−2(2)⟩⊥.

Since
U3,0,−2(2) ∈ ⊥⟨ U1,0,0, U0,0,−1(1), U0,0,−2(2), U1,0,−2(2), U2,0,−2(2)⟩

by Serre duality and Proposition 1.6.7, the mutation is an equivalence on U3,0,−2(2), which
is an exceptional bundle by Lemma 1.6.6, hence G2 is exceptional as well.

We can now verify that G2, G2(1), G2(2) is an exceptional sequence by computing

Hom•(G2(l), G2) = 0 for l = 1, 2.

To do so, we replace the left term with the resolution of G2 given by (1.52) and on the right
term we use the resolution (1.53), then apply Lemma 1.6.2 and Lemma 1.6.6. Alternatively,
this can be verified explicitly using Sage. This settles the claim.
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1.6.3 Construction of G
In this section we prepare the ground to define an explicit object G. We expect that:

• G = LB,B(1) G2,

• {G} ⊔B is a basis of a full Lefschetz collection.

We summarize in Proposition 1.6.16 and Proposition 1.6.18 the properties of G that we are
able to prove. Consider the following set of bundles:

A = {O, U1,0,0, U2,0,0, U3,0,0, U0,0,−1(1), U1,0,−1(1), U2,0,−1(1), U3,0,−1(1)} ⊂ B ∪B(1)

and
A′ = A \ {U3,0,0, U3,0,−1(1)} ⊂ B ∪B(1).

We summarize some properties of A.

Lemma 1.6.10. The collection A is a basis of a (non full) Lefschetz collection.

Proof. Consider the following exceptional collection:

{U0,0,−1, U1,0,−1, U2,0,−1,U3,0,−1, O, U1,0,0, U2,0,0, U3,0,0} ⊂ B,

this is clearly a Lefschetz basis by Corollary 1.6.4. A standard way to construct a second
Lefschetz basis is to consider a partial twist by O(−1):

{O(−1), U1,0,0(−1), U2,0,0(−1), U3,0,0(−1), U0,0,−1, U1,0,−1, U2,0,−1,U3,0,−1}.

To verify that this collection is still a Lefschetz basis, use Lemma 1.2.5 and Serre Duality.
Since the collection A is given by twisting the latter collection by O(1), A is a Lefschetz
basis.

Lemma 1.6.11. For Uλ ∈ A and l = 0, . . . , 8, we have:

Hom•(Uλ(l),G2) =
{
C[−4] if Uλ = U3,0,−1(1) and l = 0,
0 otherwise.

Proof. Most vanishings were already computed in Proposition 1.6.8, we can obtain the
remaining vanishings for l = 8 with Sage using the right resolution of G2 (1.52).

If Uλ = U3,0,−1(1) and l = 0, we consider the left resolution of G2, (1.53). Since B is a
Lefschetz basis, we have:

Hom•(U3,0,−1(1),G2) = Hom•(U3,0,−1(1),U2,0,−3(−1)[3]) =
= H•(IGr(3, 11),U0,−1,−8))[3] = C[−4] ̸= 0,

proving the last isomorphism in the claim.
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We now provide explicit descriptions of LA′U3,0,−1(1) and LA′U3,0,0. The bundle G1
is obtained as the stupid truncation of the staircase complexes associated to U3,0,−1(1)
between the second and the third line from the bottom, that is:

0→ U1,0,−4(−1)→ ∧10V ∗ ⊗ U1,0,−3(−1)→ ∧9V ∗ ⊗ U1,0,−2(−1)→
→ ∧8V ∗ ⊗ U1,0,−1(−1)→ ∧7V ∗ ⊗ U1,0,0(−1)→

→ ∧5V ∗ ⊗O → ∧3V ∗ ⊗ U0,0,−1(1)→ ∧2V ∗ ⊗ U1,0,−1(1)→
→ V ∗ ⊗ U2,0,−1(1)→ U3,0,−1(1)→ 0. (1.54)

More explicitly, we have two exact sequences:

0→ G1 → ∧5V ∗ ⊗O → ∧3V ∗ ⊗ U0,0,−1(1)→ ∧2V ∗ ⊗ U1,0,−1(1)→
→ V ∗ ⊗ U2,0,−1(1)→ U3,0,−1(1)→ 0 (1.55)

and

0→ U1,0,−4(−1)→ ∧10V ∗ ⊗ U1,0,−3(−1)→ ∧9V ∗ ⊗ U1,0,−2(−1)→
→ ∧8V ∗ ⊗ U1,0,−1(−1)→ ∧7V ∗ ⊗ U1,0,0(−1)→ G1 → 0. (1.56)

We introduce the bundle G0 obtained as the stupid truncation of the staircase complexes
associated to U3,0,0 between the second and the third line from the bottom:

0→ U0,0,−5(−1)→ ∧10V ∗ ⊗ U0,0,−4(−1)→ ∧9V ∗ ⊗ U0,0,−3(−1)→
→ ∧8V ∗ ⊗ U0,0,−2(−1)→ ∧7V ∗ ⊗ U0,0,−1(−1)→ ∧6V ∗ ⊗O(−1)→

→ ∧3V ∗ ⊗O → ∧2V ∗ ⊗ U1,0,0 → V ∗ ⊗ U2,0,0 → U3,0,0 → 0.

We have the two exact sequences:

0 → G0 → ∧3V ∗ ⊗ O → ∧2V ∗ ⊗ U1,0,0 → V ∗ ⊗ U2,0,0 → U3,0,0 → 0 (1.57)

and

0→ U0,0,−5(−1)→ ∧10V ∗ ⊗ U0,0,−4(−1)→ ∧9V ∗ ⊗ U0,0,−3(−1)→
→ ∧8V ∗ ⊗ U0,0,−2(−1)→ ∧7V ∗ ⊗ U0,0,−1(−1)→ ∧6V ∗ ⊗O(−1)→ G0 → 0. (1.58)

As a starting point, we prove the following immediate properties.

Lemma 1.6.12. The objects G0 and G1 are exceptional. Moreover, G0[3] = LA′U3,0,0 and
G1[4] = LA′U3,0,−1(1). Finally, we have:

Hom•(G0,G1) = C, Hom•(G1,G0) = 0.
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Proof. First of all, considering the left resolutions of G0 and G1 ((1.58) and (1.56)), we can
compute with Sage:

Hom•(A′, G0) = 0, Hom•(A′, G1) = 0, (1.59)

hence we obtain the following isomorphisms:

G0[3] = LA′U3,0,0 G1[4] = LA′U3,0,−1(1).

Moreover, considering the right resolutions ((1.57) and (1.55)), the left mutation LA′ on
U3,0,0 and U3,0,−1(1) coincides with the mutation by

⟨O, U1,0,0, U2,0,0 ⟩, ⟨O, U0,0,−1(1), U1,0,−1(1), U2,0,−1(1) ⟩,

respectively. As A is an exceptional collection, we have:

U3,0,0 ∈ ⊥⟨O, U1,0,0, U2,0,0 ⟩, U3,0,−1(1) ∈ ⊥⟨O, U0,0,−1(1), U1,0,−1(1), U2,0,−1(1) ⟩.

As a consequence, the mutation is an equivalence on U3,0,0 and U3,0,−1(1) (cf. Proposi-
tion 1.4.13), hence G0 and G1 are exceptional.

We now prove the last two isomorphisms. Considering the resolutions (1.57) and (1.56),
recalling that B1 is a Lefschetz basis by Lemma 1.6.2, we have:

Hom•(G0, G1) = Hom•(G∗1 , G∗0) =
= Hom•(U4,0,−1(1)[−4], G∗0) =
= Hom•(U4,0,−1(1), U0,0,−3)[7] = C,

where the equality between second and third line is verified with Sage.
Considering the resolution (1.55) for G1 and (1.57) for G0, recalling that B1 is a Lefschetz

basis and all entries of G1 belong to B1(1) except for ∧5V ∗⊗O and G0 ∈ ⟨B1 ⟩, we obtain:

Hom•(G1, G0) = Hom•(∧5V ∗ ⊗O, G0) = 0,

where the final vanishing can be verified considering the left resolution of G0 (1.57). This
concludes the proof.

Proposition 1.6.13. The object G0,1 = LG0G1 is exceptional. Moreover, we have the
following isomorphisms:

G0,1 = LG0G1 = Cone(G0 → G1) = LA\{U3,0,−1(1)} G1.

Proof. From the last couple of vanishings in Lemma 1.6.12, we have that G0,1 is exceptional
and

G0,1 = Cone(G0 → G1).
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We have that:
G0 ∈ A′⊥, G1 ∈ A′⊥,

by Lemma 1.6.12, hence
G0,1 ∈ A′⊥.

Since:
U3,0,0 ∈ ⟨G0, A′ ⟩,

and we have G0,1 ∈ G⊥0 by construction, we finally have that G0,1 ∈ (A \ {U3,0,−1(1)})⊥,
proving the last isomorphism in the statement.

Consider the nonzero map ϕ : G0 → G1 which is unique up to scalar by Lemma 1.6.12.
Verifying the appropriate vanishings, we can apply [Gus20, Lemma 5.1.(a)] and prove that
ϕ : G0 → G1 lifts uniquely to a nonzero morphism of complexes:

∧5V ∗ ⊗O ∧3V ∗ ⊗ U0,0,−1(1) ∧2V ∗ ⊗ U1,0,−1(1) V ∗ ⊗ U2,0,−1(1) U3,0,−1(1)

∧3V ∗ ⊗O ∧2V ∗ ⊗ U1,0,0 V ∗ ⊗ U2,0,0 U3,0,0.
(1.60)

Thus, G0,1 is isomorphic to the totalization of the bicomplex (1.60). We now aim to mutate
the bundle G2 by G0,1 to construct G = LAG2. We compute some preliminary results.

Lemma 1.6.14. We have the following isomorphisms:

Hom•(G0, G2) = 0, Hom•(G1, G2) = C

and
Hom•(G2, G0) = 0, Hom•(G2, G1) = 0.

As a consequence we have:

Hom•(G0,1, G2) = C, Hom•(G2, G0,1) = 0.

Proof. To compute the first pair of isomorphisms, we proceed in the usual way. We can
easily see, considering the right resolution of G0 (1.58) and Proposition 1.6.8 that

Hom•(G0, G2) = 0.

Considering the sequences (1.56) and (1.53), we get:

Hom•(G1, G2) = Hom•(U3,0,−1(1)[−4],U2,0,−3(−1)[3]) =
= H•(X,U0,−1,−8)[7] = C.

Finally, we can prove the following vanishings with Sage:

Hom•(G2, G0) = 0, Hom•(G2, G1) = 0,
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replacing G2 by its resolution (1.52) and the terms G0,G1 by (1.57) and (1.55).
The last pair of isomorphisms is obtained applying the computations of Hom•(Gi,Gj)

to the description of G0,1 given by Proposition 1.6.13.

We define
G = LG0,1G2, (1.61)

where the object G0,1 = LA\{U3,0,−1(1)} G1 was defined in Proposition 1.6.13.

1.6.4 Work in progress: properties of G
We now prove some properties of G (cf. (1.61)).

Proposition 1.6.15. The object G is exceptional. Moreover we have the following isomor-
phisms:

G = LG0,1G2 = Cone(G0,1 → G2) = Cone(Cone(G0 → G1)→ G2) = LAG2.

Proof. The outline of the proof is very similar to Proposition 1.6.13. From the last couple
of vanishings in Lemma 1.6.14, we have that G is exceptional and

G = Cone(G0,1 → G2).

We have that:

G0,1 ∈ (A \ {U3,0,−1(1)})⊥, G2 ∈ (A \ {U3,0,−1(1)})⊥,

by Proposition 1.6.13 and by Lemma 1.6.11, hence

G ∈ (A \ {U3,0,−1(1)})⊥.

Since:
U3,0,−1(1) ∈ ⟨G0,1, A \ {U3,0,−1(1)} ⟩,

and we have G ∈ G⊥0,1 by construction, we finally have that G ∈ A⊥, proving the last
isomorphism in the statement.

First of all, we determine a representation of Cone(G1 → G2) similar to the one we
obtained for Cone(G0 → G1). Verifying the appropriate vanishings, we can apply [Gus20,
Lemma 5.1.(a)], hence τ : G1 → G2 lifts uniquely to a nonzero morphism of complexes:

∧6V ∗ ⊗ U1,0,0 · · · ∧2V ∗ ⊗ U1,0,−2(2) V ∗ ⊗ U2,0,−2(2) U3,0,−2(2)

∧5V ∗ ⊗O · · · V ∗ ⊗ U2,0,−1(1) U3,0,−1(1).

(1.62)
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Finally, the object G is isomorphic to the totalization of the following bicomplex with lines
given from bottom to top by (1.58), (1.56) and (1.52), where the vertical morphisms are ϕ
(1.60) and τ (1.62):

∧6V ∗ ⊗ U1,0,0 · · · ∧2V ∗ ⊗ U1,0,−2(2) V ∗ ⊗ U2,0,−2(2) U3,0,−2(2)

∧5V ∗ ⊗O · · · V ∗ ⊗ U2,0,−1(1) U3,0,−1(1)

∧3V ∗ ⊗O · · · U3,0,0.

(1.63)

Proposition 1.6.16. The collection G,G(1),G(2) is exceptional.

Proof. In Proposition 1.6.15 we showed that G is an exceptional object. To prove that the
collection in the statement is exceptional, we need to show:

Hom•(G(l),G) = 0 for l = 1, 2.

To do so, as G = LAG2, we can verify the following vanishings for l = 1, 2:

Hom•(G2(l),G2) = 0 (by Proposition 1.6.9),
Hom•(A(l),G2) = 0 (by Lemma 1.6.11),
Hom•(G2(l),A) = 0 (by Serre duality and Lemma 1.6.11),
Hom•(A(l),A) = 0 (by Lemma 1.6.10),

proving the claim.

Proposition 1.6.17. We have the following vanishings:

Hom•(B(l),G) = 0 for l = 2, . . . , 8.

Proof. By Proposition 1.6.15, it is enough to prove the respective vanishings for G0,G1 and
G2. As G0,G1 ∈ ⟨B, B(1) ⟩ by (1.58) and (1.56), the vanishings hold since B is a Lefschetz
basis. The vanishings with respect to G2 were proved in Proposition 1.6.8. This settles the
claim.

If now we were able to show the following series of vanishings:

Hom•(B(l),G) = 0 for l = 0, 1,

we would be able to conclude that {G} ⊔ B is the basis of a non rectangular Lefschetz
collection of expected length (cf. Theorem 1.6.24). Actually, we show in Theorem 1.6.23
that if {G} ⊔B is a Lefschetz basis, we could apply the machinery of § 1.5 and we would
actually obtain that the collection is full.

We are able to prove some additional vanishings to reach the following result.



Chapter 1. The derived category of some odd isotropic Grassmannians 55

Proposition 1.6.18. For Uλ ∈ B1 ∪B2 and l = 0, . . . , 8, we have:

Hom•(Uλ(l),G) = 0,

except possibly for l = 1 and Uλ = U2,0,−2 and l = 0 and Uλ ∈ {U2,0,−2,U2,0,−1,U3,0,−1}.

At this point, we start conjecturing on how to prove the remaining vanishings. We
provide some partial insights that could be useful for a future proof.

The most promising idea is to show explicitly the following:

G(3) ∈ ⟨ {G} ⊔B,B(1),B(2) ⟩, (1.64)

that is, G(3) can be generated by the (a priori) non-exceptional sequence of objects of the
right. As a matter of fact, if {G} ⊔ B were a Lefschetz basis, we should be able to find a
decomposition as (1.64).

We cannot follow the approach of § 1.5, as multiple terms of the complexes describing
G(3) do not belong to ⟨ {G} ⊔ B,B(1),B(2) ⟩, but we conjecture that G(3) should (cf.
Conjecture 1.6.21). In the rest of the section, we show that excluding the information related
to morphisms and looking at K0(X), the statement in (1.64) holds (cf. Proposition 1.6.20).

We start by considering the right resolution of G(3) as the totalization of the following
bicomplex (the left resolution of (1.63)):

U2,0,−3(2) · · · ∧3V ⊗ U2,0,0(2)

U1,0,−4(2) V ⊗ U1,0,−3(2) · · · ∧4V ⊗ U1,0,0(2)

U0,0,−5(2) V ⊗ U0,0,−4(2) ∧2V ⊗ U0,0,−3(2) · · · ∧5V ⊗O(2)

(1.65)

Consider the following morphism of (non-exact) complexes, where the lower line is the
restriction of (1.19) on IGr(3, 12) to IGr(3, 11):

U0,0,−1 V U1,0,0

j∗Ũ0,0,−1 j∗Ṽ j∗Ũ1,0,0,

∼= ∼= (1.66)

where both the morphisms on the right are induced by the composition of the map induced
by the skew symmetric form (ψ and ψ̃ respectively) and the canonical projection.

We denote the upper line of (1.66) as C• and the lower as C̃•, then we have the following
short exact sequence of complexes:

0→ C• → C̃• → O[0]→ 0. (1.67)
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Recall that C̃• ∼= j∗S̃, where S̃ is the symplectic vector bundle on IGr(3, 12) and rank S̃ = 6.
Thus

C• = Cone(j∗S̃ → O)[−1],
hence it is a complex concentrated in degree 0, 1, with cohomology:

H0(C•) = S, H1(C•) = OZ ,

where Z = IGr(2, 10) ⊂ IGr(3, 11) is the orbit of 3-spaces containing the isotropic vector of
V and S = Ker(j∗S̃ → O). In a way, we can think of S as an odd dimensional analogue
of the symplectic bundle: the "odd symplectic sheaf". As C• is a complex concentrated in
two degrees, we have:

C• → OZ [−1]→ S[1].
We now prove a result similar to Proposition 1.5.2. The idea is that ∧iC• and ∧iC̃• are

very similar, except for the multiplicity of most factors in the complexes.

Lemma 1.6.19. We have for every i:

∧iC• ∈ ⟨B ⟩.

Proof. Computing ∧iC• with i ≤ 3, the claim holds because every term in ∧iC• belongs to
⟨B ⟩ as

Up1,0,−p3 ∈ ⟨B ⟩ for p1 + p3 ≤ 3;

we refer to Proposition 1.5.1 for an explicit description of the complex ∧iC•.
We proceed by induction on i ≥ 4. From (1.67), we obtain an exact triangle of com-

plexes:
∧iC• → ∧iC̃• → ∧i−1C•,

and
∧iC̃• ∼= ∧iS̃ ∼= ∧6−iS̃.

As i ≥ 4, we have ∧6−iS̃ ∈ ⟨B ⟩ (cf. Proposition 1.5.1), ∧i−1C• ∈ ⟨B ⟩ by the inductive
hypothesis, hence ∧iC• ∈ ⟨B ⟩. This proves the claim.

We now prove a weaker version of (1.64) at the level of K0(IGr(3, 11)).

Proposition 1.6.20. The following result holds in the Grothendieck group:

[G(3)]− [G] ∈ ⟨ [B, B(1), B(2) ] ⟩.

That is, [G(3)]− [G] is in the span of the classes of the elements of B,B(1),B(2).
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Proof. Consider the left resolution of G(3) given by the totalization of the bicomplex (1.65).
We can easily represent its class in K0(IGr(3, 11)) as

[G(3)] =
∑

p1,p2,p3≥0,
p1+p2+p3=5,

p1≤2

(−1)p1−p3+1

(
11

p2

)[
Up1,0,−p3(2)

]
; (1.68)

notice that all bundles with p2 = 0 appear with multiplicity 1 and all bundles with p2 = 1
appear with multiplicity 11.

Consider the class of ∧5C•(2) ∈ ⟨B ⟩, recall from Proposition 1.5.1 the explicit descrip-
tion of its terms (rearranged in terms of their Littlewood-Richardson factors):[

∧5C•(2)
]
=

∑
p1,p2,p3≥0,
p1+p2+p3=5

(−1)p1−p3+1
∑

p2≥2k≥0

(
11

p2 − 2k

)[
Up1,0,−p3(2)

]
∈ ⟨ [B(2) ] ⟩;

notice that all the terms with p2 = 0, 1 appear with multiplicity 1 or 11 respectively,
similarly to (1.68). We obtain:[
∧5C•(2)

]
= [G(3)] +

∑
p1,p2,p3≥0,
p1+p2+p3=5,

p1≥3

(−1)p1−p3+1
∑

p2≥2k≥0

(
11

p2 − 2k

)[
Up1,0,−p3(2)

]
+

+
∑

p1,p2,p3≥0,
p1+p2+p3=5,

p1≤2

(−1)p1−p3+1
∑

p2≥2k>0

(
11

p2 − 2k

)[
Up1,0,−p3(2)

]
∈ ⟨ [B(2) ] ⟩

Notice that all the terms on the right side of the equality belong to ⟨ [B(2) ] ⟩, except for
[G(3)] and possibly the following:

[U3,0,−2(2)], [U4,0,−1(2)], [U5,0,0(2)].

Using the description of G(3) as the totalization of the bicomplex (1.63) and the staircase
complexes associated to U5,0,0(2) and U4,0,−1(2), we obtain:

[G] + [U3,0,−2(2)] ∈ ⟨ [B, B(1), B(2) ] ⟩,
[U5,0,0(2)] ∈ ⟨ [B(1), B(2) ] ⟩,

[U4,0,−1(2)]− [U1,0,−3] ∈ ⟨ [B, B(1), B(2) ] ⟩.

Considering the right resolution of U0,0,−4 given by the staircase complex of U4,0,0(1) and
symplectic relations, we obtain the following:

[U0,0,−4] ∈ ⟨ [B, B(1) ] ⟩, [U1,0,−3] ∈ ⟨ [B, B(1) ] ⟩.
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Substituting in the previous equations, we obtain:

[G(3)]− [G] ∈ ⟨ [B, B(1), B(2) ] ⟩,

proving the claim.

Categorifying the result in Proposition 1.6.20, we conjecture the following key fact.

Conjecture 1.6.21. The following inclusion holds:

Cone(G(3)→ G) ∈ ⟨B, B(1), B(2) ⟩.

As immediate consequence, we would have the following results.

Proposition 1.6.22. If Conjecture 1.6.21 holds, then {G} ⊔B is a (non-rectangular) Lef-
schetz basis.

Proof. Recalling Proposition 1.6.16 and Proposition 1.6.18, it is sufficient to verify that

Hom•(B(l),G) = 0,

for l = 0, 1, knowing that it holds for l = 2, . . . , 8, by Proposition 1.6.17. This is immediate,
fix l = 0, 1:

Hom•(B(l),G) = Hom•(B(l + 3),G(3)) = Hom•(B(l + 3),G),

where the equality is an immediate consequence of Conjecture 1.6.21 and Corollary 1.6.4.
Finally, we obtain:

Hom•(B(l + 3),G) = 0,

by Proposition 1.6.17, proving the claim.

As a further clue that G is the right candidate to complete the basis B, we have the
following result.

Theorem 1.6.23. If Conjecture 1.6.21 holds, then the induced (non-rectangular) Lefschetz
collection is full.

Proof. Let D ⊂ Db(X ) be the subcategory generated by

G, B, G(1), B(1), G(2), B(2), . . . , B(3), . . . ,B(8).

If the hypothesis holds, D is an admissible subcategory of Db(X ). Using (1.63), we notice
that

U3,0,−2(2), U3,0,−2(3), U3,0,−2(4), (B1 ∪B2), (B1 ∪B2)(1), . . . , (B1 ∪B2)(8) ⊂ D .

Following the procedure presented in § 1.5, we can determine that the condition in Propo-
sition 1.5.6 holds in 9 steps. This verification is completely algorithmic. We provide the
associated code in [Cat23a].
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We now show that on IGr(3, 11), Conjecture 1.6.21 implies [KS21, Conjecture 1.3].

Theorem 1.6.24. If Conjecture 1.6.21 holds, then the bounded derived category of coherent
sheaves on IGr(3, 11) admits a full (non-rectangular!) Lefschetz collection with the first 3
blocks given by {G} ⊔B and its twists and the remaining blocks are given by B, that is:

Db(IGr(3, 11)) = ⟨ G, B, G(1), B(1), G(2), B(2), B(3), . . . , B(8) ⟩.

To state the last conjecture, we recall the notion of induced polarization in the specific
case of IGr(3, 11) (for more context, see [BKS23, § 2], [KS21, § 1]). Given the rectangular
Lefschetz collection with basis B with respect to the bundle O(1), we denote by R the
residual category of the Lefschetz collection:

Db(IGr(3, 11)) = ⟨R, B, B(1), B(2), B(3), . . . , B(8) ⟩.

We define the induced polarization τR (also known as the rotation functor) as:

τR : R → R

F 7→ LB(F(1)).

Notice that the induced polarization τR is an autoequivalence of R.
According to [KS21, Conjecture 1.3], the residual category R admits a totally orthogonal

decomposition and the action of the induced polarization permutes the components of this
decomposition of R.

Theorem 1.6.25. If Conjecture 1.6.21 holds, then the residual category R to the rectan-
gular Lefschetz collection B admits a totally orthogonal exceptional collection and τR acts
transitively on any set of completely orthogonal triples of generators.

Proof. Assuming that Theorem 1.6.24 holds, applying the result [BKS23, Proposition 2.4],
we obtain the following exceptional collection:

R = ⟨ G, τR(G), τ2R(G) ⟩ = ⟨ G, LBG(1), LB,B(1)G(2) ⟩.

Using Conjecture 1.6.21, we furthermore obtain that τ3R(⟨ G ⟩) = ⟨ G ⟩, verifying that τR
permutes the exceptional collection. As τR is an autoequivalence on R, we obtain that

R = ⟨ τR(G), τ2R(G), G ⟩ = ⟨ τ2R(G), G, τR(G) ⟩

are exceptional collections as well, proving that they are all completely orthogonal.
Finally, the triples of completely exceptional collections of R are simply given by shifts

and permutations of
G, τR(G), τ2R(G),

proving the claim.



Chapter 2

Nodal categorical singularities

2.1 Introduction

The resolution of singularities is a central topic studied in algebraic geometry. Since Hiron-
aka [Hir64] proved that singularities of varieties in characteristic 0 can be resolved, there
has been much progress in studying singularities, their resolutions, and their applications
in birational geometry. On the other hand, derived categories provide a strong technique
for understanding algebraic varieties, for example two smooth Fano (or general type) vari-
eties with equivalent derived categories are isomorphic [BO01]. For other varieties, derived
categories can yield information about their birational geometry, for example flops of three
dimensional varieties induce derived equivalences of their derived categories [Bri02].

One can often study a singularity by considering the properties of a resolution of it,
and for relatively simple varieties and singularities, this might be done concretely. From
the categorical viewpoint, let Y be a singular variety and let σ : Ỹ → Y be a resolution of
singularities, then we have derived functors between their derived categories

σ∗ : Dperf(Y )→ Dperf(Ỹ ), σ∗ : Db(Ỹ )→ Db(Y ).

Since Ỹ is a smooth variety, we have Db(Ỹ ) = Dperf(Ỹ ). The two functors are related by
the projection formula

σ∗σ
∗(F) = F ⊗ σ∗OỸ .

Inspired by the geometric picture, Kuznetsov introduced in [Kuz08b] the definition
of “abstract” categorical resolution of singularities (see Definition 2.2.20). In the case of
Db(Y ), it consists of a triple (D̃, σ∗, σ∗), where D̃ is a geometric triangulated category,
σ∗ : D̃ → Db(Y ) and σ∗ : Dperf(Y )→ D̃ are functors such that σ∗ is left adjoint to σ∗, and
the natural morphism of functors idDperf → σ∗σ

∗ is an isomorphism.
Now an interesting question is whether or not this categorical viewpoint allows one to

characterize the singularity geometrically. To shed some light on this, we investigate in

60



Chapter 2. Nodal categorical singularities 61

this paper one special kind of singularities and their categorical resolutions, namely nodal
singularities.

Before stating our main result, we briefly recall a few notions. A resolution of singular-
ities is crepant if its relative canonical class is trivial. Crepant resolutions are interesting
since they are considered minimal resolutions in the case of Gorenstein varieties, but they
are also rare. On the other hand, a categorical resolution of singularities σ∗ : D̃ → Db(Y ) is
weakly crepant if the left adjoint σ∗ of σ∗ is also its right adjoint (see Definition 2.2.20). An
object T ∈ D̃ is called k-spherical if Hom•(T , T ) = C⊕C[−k] and there is an isomorphism
of functors Hom(T ,−) = Hom(−, T [k])∨; and E ∈ D̃ is exceptional if Hom•(E , E) = C.

Theorem 2.1.1. Let Y be a quasiprojective variety with an isolated nodal singularity, and
assume dim(Y ) ≥ 2. Then there exists a weakly crepant categorical resolution σ∗ : D̃ →
Db(Y ) such that:

1. The kernel Ker(σ∗) of σ∗ is classically generated by a single object T which is 2-
spherical if dim(Y ) is even, and 3-spherical otherwise.

2. The resolution σ∗ is a localization functor up to direct summands, cf. Definition 2.2.23.

Note that the existence of a weakly crepant categorical resolution is a direct application
of [Kuz08b]. We remark that the constructed categorical resolution has the advantage of
being weakly crepant in any dimension, while the geometric resolution Db(Ỹ ) is not. In
[Kuz08b] another notion of crepancy, called strong crepancy, was introduced. The resolution
D̃ in Theorem 2.1.1 is not strongly crepant, as computed in Proposition 2.3.10, if the
dimension of Y is bigger than 3.

Our contribution is the explicit description of the kernel of the categorical resolution.
We will define the resolution D̃ as an admissible component of Db(Ỹ ), where Ỹ is the blow-
up at the isolated nodal singularity. Here, the object T has a clear geometric meaning: if
dim(Y ) is even, the object T is the pushforward to Ỹ of the spinor bundle on the quadric
exceptional divisor; and if dim(Y ) is odd, the object T is described as the right mutation
of the pushforward of one of the spinor bundles through the other, see Proposition 2.3.6.

Remark 2.1.2. Theorem 2.1.1 has been recently proven independently by Kuznetsov and
Shinder in [KS23a, Theorem 5.8] with a similar strategy. Furthermore, [KS23a, Theo-
rem 5.2] explains that one can drop “classically” and “up to direct summands” in Theo-
rem 2.1.1; see also [MS23] for a discussion about this. Finally, note that the case when Y
is 1-dimensional has been recently studied in [Sun22].

Based on Theorem 2.1.1, we propose the following definitions of categorical nodal sin-
gularities.

Definition 2.1.3 ((Abstract) nodal category). A triangulated category T is called (ab-
stract) nodal if there is a categorical resolution σ∗ : D̃ → T which is weakly crepant and
whose kernel is (classically) generated by a single spherical object.
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Definition 2.1.4 (Geometric nodal category). A triangulated category T is called geo-
metric nodal if it is an admissible subcategory of the derived category Db(Y ) of a normal
quasiprojective variety Y which has only an isolated nodal singularity, such that T perf is
not smooth1.

Using Theorem 2.1.1 we show the following relation between the above definitions.

Theorem 2.1.5 (Theorem 2.3.11). If T is a geometric nodal category, then T is an
abstract nodal category. Furthermore, the constructed categorical resolution σ∗ : D̃ → T as
in the definition of an abstract nodal category is a localization up to direct summands.

However, there are some questions around the definition of abstract nodal category.

Question 2.1.6.

1. The sphericalness property depends on the dimension of the variety. What should be
a suitable definition of dimension of an abstract triangulated category?

2. It is not clear to us whether the definition characterizes nodal singularities in the
geometric picture. In other words, if Y is a variety such that Db(Y ) is abstract
nodal, is then Db(Y ) a geometric nodal category?

3. Does the sphericalness property of the kernel generator already imply that the reso-
lution is weakly crepant?

4. Suppose that there is a 2 or 3-spherical object T in Db(X) where X is a smooth
projective variety, and let T ⊂ Db(X) be the triangulated subcategory classically
generated by T . Is the quotient Db(X)/T a geometric nodal category?

Remark 2.1.7. A positive answer to question 2.1.6.(c) has been recently given in [KS23b,
Lemma 5.8].

To address the last problem above, we study a concrete example: Let Y ⊂ P5 be a
nodal cubic fourfold, with hyperplane section class H. By [Kuz10] there is a semiorthogonal
decomposition of Db(Y ) given by

Db(Y ) = ⟨AY ,OY ,OY (H),OY (2H)⟩,

where AY := ⟨OY ,OY (H),OY (2H)⟩⊥ and OY ,OY (H),OY (2H) form an exceptional col-
lection of line bundles. Then a categorical resolution of AY is provided by Db(S), where
S is a K3 surface of degree 6 obtained as the intersection in P4 of a smooth quadric hyper-
surface Q with a cubic hypersurface. In this situation, we have the following application of
Theorem 2.1.1, which provides an answer to [Kuz10, Remark 5.9].

1When T is a triangulated category, we say in this article that T perf is smooth if T can be realized as
an admissible subcategory of the bounded derived category Db(X) of a smooth variety X. This means in
particular that T perf = T by [Orl06, Proposition 1.10] and the fact that Dperf(X) = Db(X).
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Theorem 2.1.8. If Y is a nodal cubic fourfold, then the kernel of the categorical resolution
Db(S) → AY is classically generated by t∗S, where t : S → Q is the inclusion map of the
K3 surface into the defining quadric Q of S, and S denotes the spinor bundle on Q.

Remark 2.1.9. Note that the object t∗S ∈ Db(S) is 2-spherical. This is similar to the
situation of a nodal K3 surface, in which the spherical objects OEi(−1) appear in the kernel,
where Ei are the exceptional curves in the resolution, cf. [Kuz21, Lemma 2.3] and [Bri02,
Lemma 3.1].

Overview of the work In § 2.2, we recall the definitions and theorems that we use
in the following sections. In particular, we review the definitions and properties of nodal
singularities, the construction of their categorical resolution via a Lefschetz decomposition
following [Kuz08b], and some results in [Efi20] which we use to compute the kernel of these
categorical resolutions.

§ 2.3 is about the proof of Theorem 2.1.1. We first use a Lefschetz decomposition of
quadrics to construct a categorical resolution of varieties with an isolated nodal singularity
as in [Kuz08b]. Then by results of [Efi20], we find the kernel generator and check the
sphericalness property.

In § 2.4, we focus on the case of nodal cubic fourfolds, proving Theorem 2.1.8 as a
consequence of Theorem 2.1.1.

Notations and Conventions By variety we mean an integral scheme that is separated
and of finite type over C. If not otherwise mentioned, all functors between derived categories
are implicitly derived. We use RA and LA to denote the right and left mutation with respect
to an admissible subcategory A , and use TB to denote the twist functor −⊗B. We define
Hom•(−,−) = ⊕

iHom(−,−[i])[−i]. If T is a triangulated category, a classical generator
of T is an object T ∈ T such that the smallest strictly full triangulated subcategory of
T which is closed under direct summands and containing T is equal to T , in symbols
T = ⟨T ⟩⊕. We take the liberty to write most isomorphisms as equalities.

2.2 Preliminaries

In this section, we briefly recall the notation and tools that we will use in subsequent
sections. In particular, we discuss nodal singularities, semiorthogonal decompositions, cat-
egorical resolutions arising from Lefschetz decompositions and some results from [Efi20]
that allow to compute the kernel of certain categorical resolutions. Finally we review some
properties of spinor bundles on quadrics, and perform some cohomology computations we
need in later sections.
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2.2.1 Nodal singularities

Let X be a variety of dimension n. We recall the definition of a nodal singularity, which is
the simplest kind of hypersurface singularity.

Definition 2.2.1. An isolated singular point x ∈ X is a nodal point (or ordinary dou-
ble point) if the variety X is formally locally around x isomorphic to the singularity de-
fined by the origin of the zero locus of x20 + x21 + x22 + · · · + x2n inside An+1

C , i.e. ÔX,x ≃
C[[x0, . . . , xn]]/(x20 + · · ·+ x2n).

Remark 2.2.2. Since we are working over C, we can replace “formally locally” with “analyt-
ically locally” and obtain an equivalent definition. Indeed, the completions of the algebraic
and the analytic local rings coincide, cf. [Ser56, Proposition 3], and two analytic germs are
equivalent if and only if the completions of their analytic local rings are isomorphic, cf.
[Ish18, Theorem 4.2.3].

Assume that X has only one nodal singularity x ∈ X and is smooth elsewhere. Since
hypersurface singularities are Gorenstein, so is X (recall that being Gorenstein can be
checked after completion of local rings, cf. [BH93, Proposition 3.1.19.(c)]). Now let σ : X̃ →
X be the blow-up of X at x. Then σ is a resolution of singularities whose exceptional locus
j : Q→ X̃ is the smooth projective quadric hypersurface defined by x20 + x21 + x22 + ...+ x2n.
The conormal bundle of Q ⊂ X̃ is OQ(1) = N∨

Q/X̃
= j∗O

X̃
(−Q), since Q is the exceptional

Cartier divisor of a blow-up.

2.2.2 Semiorthogonal decompositions

We recall the definitions of admissible subcategories and exceptional collections, which are
the main source of semiorthogonal decompositions. Denote by T a triangulated category.

Definition 2.2.3. Let A1, . . . ,Am be a sequence of admissible subcategories of T (cf. Defi-
nition 1.2.1). Then we say that A1, . . . ,Am is a semiorthogonal collection if Hom(Ai,Aj) =
0 for all i > j. If in addition this collection generates T , we say that it forms a semiorthog-
onal decomposition of T , which we denote by

T = ⟨A1, . . . ,Am⟩.

Any admissible subcategory A induces a semiorthogonal decomposition: Set

A ⊥ = {F ∈ T | Hom(A ,F) = 0},
⊥A = {F ∈ T | Hom(F ,A ) = 0},

then there are two semiorthogonal decompositions

T = ⟨A ⊥,A ⟩, T = ⟨A ,⊥A ⟩.
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We define the left mutation functor LA and the right mutation functor RA to fit into the
following exact triangles, respectively,

αα! → id→ LA , RA → id→ αα∗,

where α : A → T is the embedding functor and α! and α∗ are its right and left adjoints,
respectively. Note that the semiorthogonality ensures that the cones in the triangles above
are functorial. Indeed, use that the decomposition of an object of T into semiorthogonal
components is functorial to deduce that im(RA ) ⊂ ⊥A , and then consider the long exact
sequences arising from applying, for example, Hom(RA (F),−) to the triangles above. The
following lemmata describe the interaction between mutation functors and semiorthogonal
decompositions.

Lemma 2.2.4 ([Kuz10, Corollary 2.9]). Assume that T = ⟨A1, . . . ,Am⟩ is a semiorthog-
onal decomposition. Then for each 1 ≤ i ≤ m− 1 there is a semiorthogonal decomposition

T = ⟨A1, . . . ,Ai−1,LAi
(Ai+1),Ai,Ai+2, . . . ,Am⟩

and for each 2 ≤ i ≤ m there is a semiorthogonal decomposition

T = ⟨A1, . . . ,Ai−2,Ai,RAi
(Ai−1),Ai+1, . . . ,Am⟩.

Lemma 2.2.5 ([Kuz19, Lemma 2.2]). Let A be an admissible subcategory of T . Assume
that A admits a semiorthogonal decomposition A = ⟨A1, . . . ,Am⟩. Then

LA = LA1 ◦ · · · ◦ LAm and RA = RAm ◦ · · · ◦ RA1 .

Examples of admissible subcategories are given by exceptional objects.

Definition 2.2.6. An object E ∈ T is exceptional if Hom•(E , E) = C.2

Definition 2.2.7. A set of objects {E1, . . . , Em} in T is an exceptional collection if each
Ei is exceptional, and Hom•(Ei, Ej) = 0 when i > j.

If E is an exceptional object in a triangulated category T , then the full triangulated
subcategory A = ⟨E⟩ generated by E is admissible, cf. [BK89]; the mutations of an object
F ∈ T can be described explicitly as

LE(F) = Cone(Hom•(E ,F)⊗ E → F), RE(F) = Cone(F → Hom•(F , E)∨ ⊗ E)[−1].

Similarly, an exceptional collection gives rise to a semiorthogonal collection.
In this paper, we consider a special kind of semiorthogonal decomposition.

2If the category T is not proper, one also requires that the functors Hom•(E ,−) and Hom•(−, E) on T
take values in the category of finite-dimensional graded vector spaces.
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Definition 2.2.8 ([Kuz08b, Definition 2.16]). Let X be a variety with a (not necessar-
ily ample) line bundle O(1). A Lefschetz decomposition of Db(X) is a semiorthogonal
decomposition of the form

Db(X) = ⟨B0,B1(1), . . . ,Bm−1(m− 1)⟩ where 0 ⊂ Bm−1 ⊂ · · · ⊂ B1 ⊂ B0 ⊂ Db(X).

A Lefschetz decomposition is rectangular if B0 = B1 = · · · = Bm−1. Similarly, a dual
Lefschetz decomposition is a semiorthogonal decomposition of the form

Db(X) = ⟨Bm−1(1−m), . . . ,B1(−1),B0⟩ where 0 ⊂ Bm−1 ⊂ · · · ⊂ B1 ⊂ B0 ⊂ Db(X).

2.2.3 Spherical objects and Serre functors

Let T be a triangulated category. We recall the definition of spherical objects, which play
an important role in this paper.

Definition 2.2.9 ([ST01, Definition 2.14, Lemma 2.15]). Let k ∈ N be a natural number.
An object T ∈ T is called k-spherical if

1. the functors Hom•(T ,−) and Hom•(−, T ) on T take values in the category of finite-
dimensional graded vector spaces;

2. Hom•(T , T ) = C⊕ C[−k];

3. for any F ∈ T there is an isomorphism Hom(T ,F) = Hom(F , T [k])∨, which is
functorial in F .

Condition (c) in Definition 2.2.9 can be simplified in some situations, for instance when
T has a Serre functor.

Definition 2.2.10. Let T be a triangulated category. An equivalence S : T → T is called
Serre functor if for any two objects F ,G ∈ T there is a bifunctorial isomorphism

Hom(F ,G) = Hom(G, S(F))∨.

For instance, by Grothendieck–Verdier duality [Huy06, Theorem 3.34] the Serre functor
of the derived category Db(X) of a smooth projective variety X of dimension n is given
by TωX ◦ [n], where ωX is the canonical bundle of X. The Serre functor is unique up to
isomorphisms of exact functors. The following lemma describes the relation between Serre
functors and semiorthogonal decompositions with two components.

Lemma 2.2.11 ([Kuz10, Lemma 2.11],[Kuz19, Lemma 2.6]). Let T = ⟨A ,B⟩ be a
semiorthogonal decomposition of a triangulated category. Assume that T has Serre functor
ST . Then

1. there are semiorthogonal decompositions T = ⟨ST (B),A ⟩ = ⟨B,S−1
T (A )⟩, and
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2. A and B have Serre functors SA and SB, respectively, satisfying the relations

SB = RA ◦ ST , S−1
A = LB ◦ S−1

T .

Remark 2.2.12. Assume that T admits a Serre functor S. By the Yoneda lemma, in
the Definition 2.2.9 of a k-spherical object T ∈ T we can replace condition (c) with
S(T ) = T [k].

This chapter is about varieties with an isolated nodal singularity. By the local nature
of such singularities, it seems unnatural to focus just on projective varieties; we prefer
instead to work with quasiprojective varieties. The smooth varieties arising from resolution
of singularities will again be quasiprojective; in particular, their derived category will not
have a Serre functor, but they will admit the following weaker version.

Definition 2.2.13 (Serre functor for a pair (R,T ), [Ber04, Section 6.4]). Let T be a
triangulated category. Let R ⊂ T be a full triangulated subcategory such that for any
F ∈ R the functors Hom•(F ,−) and Hom•(−,F) on T take values in the category of
finite-dimensional graded vector spaces. An equivalence S : T → T is called Serre functor
for the pair (R,T ) if

1. S leaves R stable and

2. for any two objects F ∈ R,G ∈ T there is a bifunctorial isomorphism

Hom(F ,G) = Hom(G, S(F))∨.

In particular, the restriction of S to R is a Serre functor for R.

Example 2.2.14. Let X be a smooth quasiprojective variety of dimension n. Let j : E →
X be the embedding of a smooth projective divisor; denote by ωj := ωE ⊗ j∗ω∨

X its relative
dualizing bundle. Define the category Db

E(X) as the full subcategory of Db(X) consist-
ing of complexes topologically supported on E. As a triangulated category, Db

E(X) is
generated by j∗D

b(E), a remark that is very useful in practice. For any F ∈ Db
E(X),

the functors Hom•(F ,−) and Hom•(−,F) take values in the category of finite-dimensional
graded vector spaces: indeed, this holds true for an object of the form j∗F ,F ∈ Db(E),
because Hom•(−, j∗F) = Hom•(j∗(−),F) and Hom•(j∗F ,−) = Hom•(F , j∗(−)⊗ ωj [−1]).
We claim that TωX ◦ [n] is a Serre functor for the pair (Db

E(X),Db(X)). Condition
(a) in Definition 2.2.13 is clearly satisfied; as for condition (b), for any F ∈ Db(E) and
G ∈ Db(X), by Grothendieck-Verdier duality we have

HomX(j∗F ,G) =HomE(F , j∗G ⊗ ωj [−1])
=HomE(F , j∗G ⊗ ωE ⊗ j∗ω∨

X [−1])
=HomE(j

∗(G ⊗ ω∨
X)[−n],F)∨

=HomX(G, j∗F ⊗ ωX [n])∨.
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The following result is analogous to Lemma 2.2.11, and can be proven in the same way.

Lemma 2.2.15. Let T be a triangulated category, and R ⊂ T a full triangulated sub-
category. Suppose that we have a full triangulated subcategory A of R that is admissible
in both R and T ; in particular, we have semiorthogonal decompositions R = ⟨A ,B⟩ and
T = ⟨A , C⟩. Assume that the pair (R,T ) has a Serre functor SR,T . Then the pair (B, C)
has a Serre functor, which is given by

SB,C = RA ◦ SR,T .

Remark 2.2.16. Assume that an object T ∈ T belongs to a full triangulated subcategory
R ⊂ T such that the pair (R,T ) has a Serre functor S. To check that T is k-spherical,
condition (c) in Definition 2.2.9 can be replaced (again by the Yoneda lemma) with S(T ) =
T [k].

2.2.4 Categorical resolutions

We recall the material from [Kuz08b, §3].

Definition 2.2.17 (Geometric category). A triangulated category D is geometric if it is
equivalent to an admissible subcategory of Db(X), where X is a smooth variety.

Definition 2.2.18 ([Orl06, Definition 1.6]). Let D be a triangulated category. An object
F ∈ D is homologically finite if for any G ∈ D there exists only a finite number of n ∈ Z
such that HomD (F ,G[n]) ̸= 0. The category Dperf is defined as the full subcategory of D
whose objects are the homologically finite objects.

Remark 2.2.19. The notation Dperf is justified since the homologically finite objects in the
bounded derived category of coherent sheaves on a quasiprojective variety X are nothing
else than the perfect complexes, i.e. Db(X)perf = Dperf(X), cf. [Orl06, Proposition 1.11].

Definition 2.2.20 (Categorical resolution). A categorical resolution of a triangulated cat-
egory D is a geometric triangulated category D̃ and a pair of functors

σ∗ : D̃ → D, σ∗ : Dperf → D̃,

such that σ∗ is left adjoint to σ∗ on Dperf , i.e.

HomD̃ (σ∗F ,G) = HomD (F , σ∗G) for any F ∈ Dperf , G ∈ D̃,

and the natural morphism of functors idDperf → σ∗σ
∗ is an isomorphism.

A categorical resolution (D̃, σ∗, σ∗) is weakly crepant if σ∗ is also right adjoint to σ∗ on
Dperf , i.e.

HomD̃ (G, σ∗F) = HomD (σ∗G,F) for any F ∈ Dperf , G ∈ D̃.
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We now focus on a particular construction of a (weakly crepant) categorical resolution
starting from a classical resolution of singularities. Consider a resolution of rational singu-
larities σ : Ỹ → Y whose exceptional locus E is an irreducible divisor. Let Z = σ(E) and
ρ : E → Z be the restriction of σ to E. Denote by j : E → Ỹ the inclusion morphism. Let

Db(E) = ⟨Bm−1(1−m), . . . ,B1(−1),B0⟩ (2.1)

be a dual Lefschetz decomposition with respect to OE(1) := N∨
E/Ỹ

. Define D̃ as the
subcategory

D̃ := {F ∈ Db(Ỹ ) | j∗F ∈ B0}.

Proposition 2.2.21 ([Kuz08b, Proposition 4.1]). Consider the notation fixed in (2.1).
The pushforward functor j∗ is fully faithful on Bi(−i) for 1 ≤ i ≤ m − 1 and we have a
semiorthogonal decomposition

Db(Ỹ ) = ⟨j∗Bm−1(1−m), . . . , j∗B1(−1), D̃⟩.

Theorem 2.2.22 ([Kuz08b, Theorem 4.4, Proposition 4.5]). Consider the notation fixed
in (2.1). Suppose that B0 ⊂ Db(E) contains ρ∗(Dperf(Z)). Then the functor σ∗ factors
through D̃ and (D̃, σ∗, σ∗) is a categorical resolution of Db(Y ) where

σ∗ : D̃ → Db(Y ), σ∗ : Dperf(Y )→ D̃.

If in addition Y is Gorenstein, and ω
Ỹ
= σ∗ωY ⊗O((m−1)E), and ρ∗(Dperf(Z)) ⊂ Bm−1,

then the categorical resolution (D̃, σ∗, σ∗) is weakly crepant.

2.2.5 Localization functors and their kernels

In this section we review results from [KL15; Efi20] which will allow us to compute the
kernels of certain categorical resolutions.

Definition 2.2.23. Let T and T ′ be triangulated categories.

1. An exact functor F : T → T ′ is a localization if the induced functor F : T /Ker(F )→
T ′ is an equivalence.

2. An exact functor F : T → T ′ is a localization up to direct summands if F : T →
im(F ) is a localization onto a dense subcategory of T ′, in symbols im(F )⊕ = T ′.3

3The terminology “categorical contraction” is preferred for this notion in [KS23a, Definition 1.10].
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Definition 2.2.24 (Nonrational locus, [KL15, Definition 6.1]). Let σ : X → Y be a proper
birational morphism. A closed subscheme Z ⊂ Y is called a nonrational locus of Y with
respect to σ if the natural morphism

IZ → σ∗Iσ−1(Z)

is an isomorphism in Db(Y ). Here IZ ⊂ OY denotes the ideal sheaf of Z ⊂ Y , and σ−1(Z)
is the scheme-theoretic pre-image of Z, so that Iσ−1(Z) = σ−1IZ · OX .

Theorem 2.2.25 ([Efi20, Theorem 8.22] ). Let σ : X → Y be a proper morphism such
that σ∗OX = OY . Assume that there is a subscheme Z ⊂ Y , such that all its infinitesimal
neighborhoods Zk, for k ≥ 1, are nonrational loci of Y with respect to σ. Consider the
cartesian diagram

E X

Z Y.

ρ

j

σ

Assume that the functor ρ∗ : Db(E) → Db(Z) is a localization up to direct summands. If
σ is an isomorphism outside Z, then σ∗ : Db(X) → Db(Y ) is a localization up to direct
summands with kernel classically generated by j∗(Ker(ρ∗)).

We verify the hypotheses of Theorem 2.2.25 for blow-ups of certain affine cones. The
following corollary is remarked in passing after [Efi20, Theorem 1.10]; we provide a proof
for the sake of completeness.

Corollary 2.2.26. Let Y ⊂ An+1 be the cone over a projectively normal smooth Fano
variety W ⊂ Pn. Let Z = {0} be the singular point of Y . Let σ : Ỹ → Y be the blow-up
at the singular point Z and E = W its exceptional divisor. Then, σ∗ : Db(Ỹ )→ Db(Y ) is
a localization up to direct summands with kernel classically generated by j∗(⟨OE⟩⊥), where
the orthogonal ⟨OE⟩⊥ is taken in Db(E).

Proof. We verify that the hypotheses of Theorem 2.2.25 hold. First note that σ : Ỹ → Y is
a resolution of singularities for Y ; in particular, it is an isomorphism outside Z. Moreover,
the exceptional locus E is isomorphic to the Fano variety W . As Y is an affine cone over
W , its coordinate ring is isomorphic to the homogeneous coordinate ring of W , which is
integrally closed as W is projectively normal, hence Y is normal.

Recall that a cone over a Fano variety has rational singularities by [Kol13, Corollary 3.4],
hence, σ∗OỸ = OY . Let ρ : E → Z be the restriction of σ to E. As E is a Fano variety, we
have that OE is exceptional by Kodaira’s vanishing theorem. As a consequence, we have
ρ∗OE = H•(E,OE) = C = OZ . We now prove that ρ∗ is a localization. Since the functor
ρ∗ has a left adjoint ρ∗, by [Efi20, Remark 3.3] it is a localization if and only if ρ∗ is fully
faithful. This is indeed the case by the projection formula applied to ρ∗ using ρ∗OE = OZ
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(see [Kuz08b, Lemma 2.4] for details). Finally, considering the decomposition induced on
Db(E) = ⟨Ker(ρ∗), ρ

∗Db(Z)⟩, cf. [Kuz16, Lemma 2.3], we have

Ker(ρ∗) = (ρ∗Db(Z))⊥ = ⟨OE⟩⊥.

The last thing to check in order to apply Theorem 2.2.25 is that the canonical map

IkZ → σ∗(σ
−1(IkZ) · OỸ ) = σ∗Iσ−1(Zk)

is an isomorphism for k ≥ 1, where Zk is the k-th formal neighbourhood of Z. By the
construction of blow-ups, the variety Ỹ is defined as Proj(

⊕∞
i=0 IiZ). On the other hand,

the graded sheaf of modules corresponding to σ−1(IkZ) · OỸ is
⊕∞

i=0 Ik+iZ , which is equal to
O
Ỹ /Y

(k), where O
Ỹ /Y

(1) is the twisting sheaf on the blow-up Ỹ . We recall that O
Ỹ /Y

(1) =

O
Ỹ
(−E) and OE(1) = OE(−E). Consider for k ≥ 0 the short exact sequence of sheaves

on Y
0→ Ik+1

Z → IkZ → IkZ/Ik+1
Z → 0, (2.2)

and the short exact sequence of sheaves on Ỹ

0→ O
Ỹ
(−(k + 1)E)→ O

Ỹ
(−kE)→ OE(−kE)→ 0, (2.3)

as well as the morphism of exact triangles

Ik+1
Z IkZ IkZ/Ik+1

Z

σ∗OỸ (−(k + 1)E) σ∗OỸ (−kE) σ∗OE(−kE),

(2.4)

where the upper row is the triangle (2.2) and the lower row comes from the application of
σ∗ to (2.3). We claim that the induced map IkZ/Ik+1

Z → σ∗OE(−kE) is an isomorphism for
k ≥ 0. As Z is a point, it is enough to study the stalk of the morphism at Z. Let R(E) be the
homogeneous coordinate ring of E = W ⊂ Pn. By definition, the affine coordinate ring of
Y , namely K[Y ], is just R(E) without its grading. Identifying IZ ⊂ K[Y ] with (x0, . . . , xn),
we obtain that IkZ/Ik+1

Z corresponds to the space of homogeneous polynomials of degree
k in K[Y ]. On the other hand, by Kodaira vanishing, we have that Hi(E,OE(k)) = 0
for any i > 0, so we obtain σ∗OE(−kE) = H0(E,OE(k)), which is isomorphic to the
space of homogeneous polynomials of degree k in R(E). By projective normality, we have
that the composition H0(Pn,OPn(k))→ IkZ/Ik+1

Z → H0(E,OE(k)) is surjective, cf. [Har77,
Exercise II.5.14(d)], hence the map IkZ/Ik+1

Z → H0(E,OE(k)) is surjective. As both source
and target of the latter are vector spaces of the same dimension, the map is an isomorphism.

To conclude the proof, we prove inductively that the canonical maps IkZ → σ∗OỸ (−kE)
are isomorphisms. The base case k = 0 of the induction is given by the isomorphism σ∗OỸ =
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OY . Then by the induction hypothesis the map IkZ → σ∗OỸ (−kE) is an isomorphism, hence
the canonical morphism on the left in (2.4) is an isomorphism, concluding the inductive step.
As we showed that Zk is a nonrational locus of Y for k ≥ 1, we can apply Theorem 2.2.25
and obtain the statement.

Remark 2.2.27. Note that Corollary 2.2.26 remains valid for varieties Y with an isolated
singular point y which look, upon restriction to a formal neighborhood of y in Y , like
the cone singularity in the corollary. Indeed, the crucial part of the proof is the check
that the infinitesimal neighborhoods of the singularity are nonrational loci. Now use that
Spec(ÔY,y)→ Spec(OY,y) is faithfully-flat, cf. [Stacks, Tag 00MC], and Spec(OY,y)→ Y is
flat, so the nonrational locus condition can be checked after base-change to Spec(ÔY,y).

2.2.6 Derived base-change

The last ingredient we need in the derived categories setting is the following base-change
result.

Proposition 2.2.28. Consider a cartesian square of varieties

X ×S Y Y

X S.

q

p g

f

Suppose that g is a closed immersion and local complete intersection morphism, X is Cohen–
Macaulay, and codimX(X ×S Y ) = codimS(Y ). Then

q∗p
∗ = g∗f∗.

Proof. The proposition is a corollary of Tor-independent base-change, cf. [Stacks, Tag 08IB].
In slightly more detail: Since local complete intersection immersions are Koszul-regular
immersions, cf. [Stacks, Tag 09CC], one can use the Koszul complex to compute higher
Tor groups. The regular sequences that define Y ⊂ S locally stay regular on X because of
the codimension assumption and the unmixedness theorem, cf. [Stacks, Tag 02JN]. So the
Koszul complex stays exact after tensoring with OX , and we see that higher Tor groups
vanish, as required to apply Tor-independent base-change.

A proof can also be found in [Kuz06, Corollary 2.27].

2.2.7 Spinor bundles on quadric hypersurfaces

In this subsection we summarize some properties of spinor bundles on quadric hypersurfaces.
Let Q ⊂ Pn+1 be the (unique up to isomorphism) smooth quadric hypersurface of dimension
n. The definition of spinor bundles on Q, given in [Ott88], depends on the parity of n.
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Assume first that n = 2m+1 is odd; in this case, the maximal dimension of a (projective)
linear subspace contained in Q is m. The parameter space for the m-planes contained in
Q is an irreducible smooth projective variety S. Let OS(1) be the ample generator of
Pic(S) ≃ Z; it can be shown that dimH0(S,OS(1)) = 2m+1. Now, for any x ∈ Q, consider
the embedding

ix : Sx := {Pm ⊂ Q | x ∈ Pm} → S = {Pm ⊂ Q}.
The induced restriction map H0(S,OS(1)) → H0(Sx, i

∗
xOS(1)) turns out to be surjective,

so its dual yields an inclusion

H0(Sx, i
∗
xOS(1))∨ → H0(S,OS(1))∨.

Since dimH0(Sx, i
∗
xOS(1)) = 2m for any x ∈ Q, we obtain a morphism

s : Q→ Gr(2m, 2m+1).

The spinor bundle S on Q is defined as the pullback by s of the tautological subbundle on
Gr(2m, 2m+1).

Let us move on to the case of a quadric of even dimension n = 2m. The maximal
dimension of a linear subspace contained in Q is m. The parameter space for the m-
planes contained in Q has two connected components S′ and S′′. Both S′ and S′′ are
smooth irreducible projective varieties. Let OS′(1) and OS′′(1) be the ample generators
of Pic(S′) ≃ Z and Pic(S′′) ≃ Z, respectively; it can be shown that dimH0(S′,OS′(1)) =
dimH0(S′′,OS′′(1)) = 2m. Now, for any x ∈ Q, consider the embeddings

i′x : S
′
x = {Pm ∈ S′ | x ∈ Pm} → S′ and i′′x : S

′′
x = {Pm ∈ S′′ | x ∈ Pm} → S′′.

The induced restriction maps H0(S′,OS′(1))→ H0(S′
x, (i

′
x)

∗OS′(1)) and H0(S′′,OS′′(1))→
H0(S′′

x , (i
′′
x)

∗OS′′(1)) turn out to be surjective. By passing to the duals we obtain the
inclusions

H0(S′
x, (i

′
x)

∗OS′(1))∨ → H0(S′,OS′(1))∨ and H0(S′′
x , (i

′′
x)

∗OS′′(1))∨ → H0(S′′,OS′′(1))∨.

Since dimH0(S′
x, (i

′
x)

∗OS′(1)) = dimH0(S′′
x , (i

′′
x)

∗OS′′(1)) = 2m−1 for any x ∈ Q, we obtain
two morphisms

s′ : Q→ Gr(2m−1, 2m) and s′′ : Q→ Gr(2m−1, 2m).

The spinor bundle S ′ (resp. S ′′) on Q is defined as the pullback by s′ (resp. s′′) of the
tautological subbundle on Gr(2m−1, 2m). We write S, respectively S ′, S ′′, for the spinor
bundle(s) on the odd, respectively even, dimensional quadric Q. These bundles enjoy the
following properties.

Theorem 2.2.29.
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1. The spinor bundles are stable, cf. [Ott88, Theorem 2.1].

2. Suppose Q is an even dimensional quadric and let S ′, S ′′ be the two spinor bundles.
Let i : Q′ → Q be the closed immersion of a smooth hyperplane section, with spinor
bundle S. Then i∗S ′ = i∗S ′′ = S, cf. [Ott88, Theorem 1.4(i)].

3. If S is either the spinor bundle on the odd dimensional quadric or any of the two
spinor bundles on the even dimensional quadric, then Hi(Q,S(k)) = 0 for 0 < i < n
and arbitrary k ∈ Z. Furthermore H0(Q,S(k)) = 0 for k ≤ 0, and dimH0(Q,S(1)) =
2[(n+1)/2], where n is the dimension of Q, cf. [Ott88, Theorem 2.3].

4. Suppose the quadric Q has odd dimension n = 2m+1. We have a short exact sequence

0→ S → O⊕2m+1

Q → S(1)→ 0, (2.5)

and S∨ = S(1), cf. [Ott88, Theorem 2.8(i)].

5. Suppose the quadric Q has even dimension n = 2m. We have short exact sequences

0→ S ′ → O⊕2m

Q → S ′′(1)→ 0,

0→ S ′′ → O⊕2m

Q → S ′(1)→ 0.
(2.6)

Furthermore, if n ≡ 0 (mod 4), then S ′∨ = S ′(1) and S ′′∨ = S ′′(1), and if n ≡ 2
(mod 4), then S ′∨ = S ′′(1) and S ′′∨ = S ′(1), cf. [Ott88, Theorem 2.8(ii)].

6. Spinor bundles are exceptional. If Q is even dimensional, S ′ and S ′′ are orthogonal
to each other, cf. [Kap88].

We summarize here some cohomology computations.

Lemma 2.2.30. Let Q ⊂ Pn+1 be the smooth quadric of dimension n. Then

ωQ = OQ(−n) (2.7)

and the following cohomology groups vanish:

H•(Q,OQ(−k)) = 0 for k = 1, . . . , n− 1. (2.8)

Proof. As Q is a smooth hypersurface of degree 2 in Pn+1, by the adjunction formula
we have ωQ = OQ(−n − 2 + 2) = OQ(−n). The vanishing statement (2.8) follows from
Kodaira’s vanishing theorem.

Remark 2.2.31. Let S be any spinor bundle on the smooth quadric Q of dimension n.
Using Serre duality and Theorem 2.2.29(c)-(e), we have Hn(Q,S(k)) = 0 for k ≥ 1− n. In
particular, H•(Q,S(k)) = 0 for 1− n ≤ k ≤ 0.
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Lemma 2.2.32. Let Q ⊂ Pn+1 be the smooth quadric of odd dimension n = 2m + 1. We
have

Hom•(S(k),S) =
{
C if k = 0

C[−1] if k = 1.
(2.9)

Proof. The isomorphism for k = 0 follows from the exceptionality of S, see Theorem 2.2.29(f).
For the proof of the second isomorphism, we use sequence (2.5). Consider the long exact
sequence induced by applying Hom•(−,S). This provides the exact triangle

Hom•(S,S)← Hom•(O⊕2m+1

Q ,S)← Hom•(S(1),S).

As the central term vanishes by Remark 2.2.31, we obtain

Hom•(S(1),S) = Hom•(S,S)[−1] = C[−1].

Lemma 2.2.33. Let Q ⊂ Pn+1 be the smooth quadric of even dimension n = 2m ≥ 2. Let
S ′ and S ′′ be its spinor bundles. We have

Hom•(S ′(k),S ′) = Hom•(S ′′(k),S ′′) =
{
C if k = 0

0 if k = 1,
(2.10)

and

Hom•(S ′′(k),S ′) = Hom•(S ′(k),S ′′) =
{
0 if k = 0

C[−1] if k = 1.
(2.11)

Proof. If k = 0, the isomorphism (2.10) holds because S ′ is exceptional by Theorem 2.2.29(f).
To prove the vanishing of Hom•(S ′(1),S ′), consider the defining sequence of a smooth hy-
perplane section i : Q′ → Q tensored with S ′

0→ S ′(−1)→ S ′ → i∗i
∗S ′ → 0.

Applying Hom•(S ′,−) and using adjunction we get

Hom•(S ′,S ′(−1))→ Hom•(S ′,S ′)→ Hom•(S ′, i∗i∗S ′) = Hom•(i∗S ′, i∗S ′).

Recall that by Theorem 2.2.29(b) we have i∗S ′ = S, where S is the spinor bundle on Q′.
As spinor bundles are exceptional, we have Hom•(S ′,S ′) = C = Hom•(S,S). Moreover,
the map Hom0(S ′,S ′)→ Hom0(S ′, i∗i∗S ′) is injective, hence an isomorphism. We conclude
that Hom•(S ′(1),S ′) = Hom•(S ′,S ′(−1)) = 0.

We proceed with the proof of (2.11). The vanishing for k = 0 holds by Theorem 2.2.29(f).
We calculate Hom•(S ′′(1),S ′). Applying Hom•(−,S ′) to the sequence (2.6)

0→ S ′ → O⊕2m

Q → S ′′(1)→ 0,
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we get
Hom•(S ′,S ′)← Hom•(O⊕2m

Q ,S ′)← Hom•(S ′′(1),S ′).
As the central term vanishes by Remark 2.2.31, we obtain

Hom•(S ′′(1),S ′) = Hom•(S ′,S ′)[−1] = C[−1].

We end this section by recalling Kapranov’s Lefschetz decomposition for quadrics.

Theorem 2.2.34 ([KP21b, Lemma 2.4]). Let Q ⊂ Pn+1 be the smooth quadric of dimension
n. Then we have the dual Lefschetz decomposition

Db(Q) = ⟨Bn−1(1− n), . . . ,B1(−1),B0⟩. (2.12)

Here, if n is odd, we have

B0 = ⟨S,OQ⟩ and B1 = · · · = Bn−1 = ⟨OQ⟩,

where the bundle S is the unique spinor bundle on Q. If n is even, we have

B0 = B1 = ⟨S ′,OQ⟩ and B2 = · · · = Bn−1 = ⟨OQ⟩,

where S ′ is any of the two spinor bundles on Q.

Proof. For an odd dimensional quadric we have by [Kap88] the semiorthogonal decompo-
sition

Db(Q) = ⟨S,OQ,OQ(1), . . . ,OQ(n− 1)⟩.
It suffices to suitably group its components and apply Lemma 2.2.11(a) to get the desired
dual Lefschetz decomposition.

For a quadric of dimension n = 2m we have by [Kap88] the semiorthogonal decompo-
sition

Db(Q) = ⟨S ′,S ′′,OQ,OQ(1), . . . ,OQ(n− 1)⟩.
We claim that ROQ

S ′′ = S ′(1)[−1]. First, we have

Hom•(S ′′,OQ) = Hom•(OQ,S ′′∨) = H•(Q,S ′′′(1))

where S ′′′ is one of the spinor bundles depending on the parity of m, see Theorem 2.2.29(e).
By Theorem 2.2.29(c), we have the isomorphism

H•(Q,S ′′′(1)) = C⊕2m .

Then, using the exact sequence (2.6), we obtain that Cone(S ′′ → C⊕2m ⊗ OQ) = S ′(1),
which shows that ROQ

S ′′ = S ′(1)[−1]. By Lemma 2.2.4 we deduce the semiorthogonal
decomposition

Db(Q) = ⟨S ′,OQ,S ′(1),OQ(1), . . . ,OQ(n− 1)⟩.
Tensoring by OQ(−1) and applying Lemma 2.2.11(a) as before, we get the desired dual
Lefschetz decomposition.
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2.3 Categorical resolutions of nodal varieties

In this section we prove Theorem 2.1.1, which is obtained from Proposition 2.3.6, Proposi-
tion 2.3.7 and Proposition 2.3.8. Let Y be a quasiprojective variety with an isolated nodal
singularity y. Let σ : Ỹ → Y be the resolution of singularities provided by the blow-up
at the singular point. Recall that the exceptional divisor j : Q → Ỹ is isomorphic to the
smooth quadric of dimension dim(Y ) − 1. Let S be the spinor bundle on Q if dim(Y ) is
even, and denote by S ′,S ′′ the spinor bundles if dim(Y ) is odd. Recall from § 2.2.1 that
OQ(1) = j∗O

Ỹ
(−Q).

For the sake of simplicity, let us assume first that Y is projective: we shall explain
how to adjust the proofs when Y is quasiprojective in Remark 2.3.9. We start with some
observations on the properties of certain objects in Db(Ỹ ).

Lemma 2.3.1. If dim(Y ) ≥ 3, then j∗OQ(k) is exceptional. Moreover, if dim(Y ) is odd,
then j∗S ′ and j∗S ′′ are exceptional as well, and we have

Hom•(j∗S ′, j∗S ′′) = C[−2]. (2.13)

If dim(Y ) is even, then we have that

Hom•(j∗S, j∗S) = C⊕ C[−2]. (2.14)

Proof. By Proposition 2.2.21, the functor j∗ is fully faithful on the subcategory generated
by the exceptional object OQ. It follows that j∗OQ(k) = j∗OQ ⊗OỸ (−kQ) is exceptional
too.

Now let us assume that dim(Y ) is odd. Note that the role of the spinor bundles S ′ and
S ′′ is interchangeable. Applying Proposition 2.2.21 to the Lefschetz decomposition (2.12),
we get that j∗S ′ and j∗S ′′ are exceptional. Next, we compute Hom•(j∗S ′, j∗S ′′), which is
isomorphic to Hom•(j∗j∗S ′,S ′′) by adjunction. Consider the exact triangle on Q

j∗j∗S ′ → S ′ → S ′(−Q)[2] = S ′(1)[2], (2.15)

and the associated long exact sequence obtained by applying Hom•(−,S ′′). By Theo-
rem 2.2.29(f) and Lemma 2.2.33 we know

Hom•(S ′,S ′′) = 0, Hom•(S ′(1),S ′′) = C[−1].

Substituting these equalities, we obtain

Hom•(j∗S ′, j∗S ′′) = Hom•(S ′(1),S ′′)[−1] = C[−2],

proving the equality (2.13).
Following the same strategy, we compute Hom•(j∗S, j∗S) when dim(Y ) is even. By

applying Hom•(−,S) to the exact triangle (2.15), we obtain

Hom•(j∗j∗S,S)← Hom•(S,S)← Hom•(S(1)[2],S).
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Recalling that
Hom•(S,S) = C, Hom•(S(1),S) = C[−1],

by Lemma 2.2.32, we obtain Homi(j∗j∗S,S) = 0 except for i = 0, 2, for which it is equal
to C.

Remark 2.3.2. Note that by Lemma 2.3.1 the objects j∗OQ(k) are exceptional, so the
mutation functor Rj∗OQ(k) is well defined. The same remark holds for j∗S ′′ when dim(Y )
is odd.

Lemma 2.3.3. If dim(Y ) is even, we have the isomorphisms

Rj∗OQ(k)(j∗S) = j∗S

for 2− dim(Y ) ≤ k ≤ −1. Moreover, for all k ∈ Z, we have

Rj∗OQ(k)(j∗S(k)) = j∗S(k + 1)[−1].

Proof. Again, we use the exact triangle on Q

j∗j∗S → S → S(1)[2]. (2.16)

We prove the first isomorphism. By adjunction, Hom•(j∗S, j∗OQ(k)) = Hom•(j∗j∗S,OQ(k)).
Applying Hom•(−,OQ(k)) to (2.16) we get the exact triangle

Hom•(j∗j∗S,OQ(k))← Hom•(S,OQ(k))← Hom•(S(1)[2],OQ(k)).

Now we have by Theorem 2.2.29(d) that

Hom•(S,OQ(k)) = H•(Q,S∨(k)) = H•(Q,S(k + 1)) and
Hom•(S(1),OQ(k)) = H•(Q,S∨(k − 1)) = H•(Q,S(k)).

Since 2− dim(Y ) ≤ k ≤ −1, both these terms vanish by Remark 2.2.31, thus

Hom•(j∗j∗S,OQ(k)) = 0 for 2− dim(Y ) ≤ k ≤ −1. (2.17)

We conclude that
Rj∗OQ(k)(j∗S) = j∗S.

We prove now the second isomorphism. Let 2m+ 1 = dim(Y )− 1. Twisting the exact
sequence (2.5) by OQ(k) and taking the pushforward along j, we get the exact triangle

j∗S(k + 1)[−1]→ j∗S(k)→ j∗OQ(k)⊕2m+1
. (2.18)

Since Hom•(j∗S(k + 1), j∗OQ(k)) = Hom•(j∗j∗S(1),OQ) = 0 by (2.17), this is a mutation
triangle. This immediately implies the statement.
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Lemma 2.3.4. If dim(Y ) is odd, we have the isomorphisms

Rj∗OQ(k)(j∗S ′) = j∗S ′

for 2− dim(Y ) ≤ k ≤ −1. Moreover, for all k ∈ Z, we have

Rj∗OQ(k)(j∗S ′(k)) = j∗S ′′(k + 1)[−1],
Rj∗OQ(k)(j∗S ′′(k)) = j∗S ′(k + 1)[−1].

Finally, we have that

Rj∗S′′(j∗S ′) = Cone(j∗S ′ → j∗S ′′[2])[−1].
Proof. The first three isomorphisms are proven in the same way as the previous lemma.
The last one follows immediately from (2.13).

We can now come to the study of the categorical resolution of Db(Y ), where Y is the
nodal variety from the beginning of this section.

Proposition 2.3.5. With the notation introduced at the beginning of this section and in
Theorem 2.2.34, set

D̃ := {F ∈ Db(Ỹ ) | j∗F ∈ B0}.
Let σ∗ : D̃ → Db(Y ) denote the restriction of the pushforward functor. Then the pullback
functor σ∗ : Dperf(Y ) → Db(Ỹ ) factors as σ∗ : Dperf(Y ) → D̃, and (D̃, σ∗, σ∗) is a weakly
crepant categorical resolution of Db(Y ).

Proof. Set n := dim(Y )− 1. Recall the dual Lefschetz decomposition of Db(Q) introduced
in Theorem 2.2.34

Db(Q) = ⟨Bn−1(1− n), . . . ,B1(−1),B0⟩,
where

1. B0 = ⟨S,OQ⟩ and Bi = ⟨OQ⟩ for 1 ≤ i ≤ n− 1, if Y is even dimensional,

2. B0 = B1 = ⟨S ′,OQ⟩ and Bi = ⟨OQ⟩ for 2 ≤ i ≤ n− 1, if Y is odd dimensional.

Denote by ρ the restriction of σ to Q; the image of ρ consists of the singular point y of Y .
Since Dperf(y) = ⟨Oy⟩, we have ρ∗Dperf(y) = ⟨ρ∗Oy⟩ = ⟨OQ⟩ ⊂ B0. In fact, ρ∗Dperf(y) =
⟨OQ⟩ ⊂ Bi for all i. Recall that a variety with nodal singularities is Gorenstein, as discussed
in § 2.2.1. We now compute the discrepancy of the exceptional divisor Q. As σ is an
isomorphism outside of Q, we have ω

Ỹ
= σ∗ωY ⊗O(kQ) for some k ∈ Z. By the adjunction

formula and Lemma 2.2.30 we have that

OQ(−n) = ωQ = (ω
Ỹ
⊗O(Q))|Q = (σ∗ωY ⊗O((k + 1)Q))|Q = OQ(−k − 1).

As Pic(Q) is torsion free, cf. [Har77, Exercise II.6.5c], this implies k = n − 1. Then the
triple (D̃, σ∗, σ∗) defined in the proposition is a weakly crepant categorical resolution by
Theorem 2.2.22.
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Next, we compute the kernel of the categorical resolution from Proposition 2.3.5. For
the rest of this section, we will use σ∗ to denote the pushforward functor Db(Ỹ )→ Db(Y ),
and not its restriction to D̃.

Proposition 2.3.6. The kernel Ker(σ∗)∩ D̃ of the weakly crepant categorical resolution D̃
of Db(Y ) is classically generated by a single object T , where T = j∗S if dim(Y ) is even,
and T = Rj∗S′′(j∗S ′[1]) = Cone(j∗S ′ → j∗S ′′[2]) if dim(Y ) is odd.

Proof. Set n := dim(Y )−1. Note that the conditions of Theorem 2.2.25 are satisfied in our
situation as explained in Corollary 2.2.26 and Remark 2.2.27. This gives that σ∗ : Db(Ỹ )→
Db(Y ) is a localization functor up to direct summands, and its kernel is classically generated
by K := ⟨j∗(⟨OQ⟩⊥)⟩, that is, Ker(σ∗) = K ⊕ is the idempotent completion of K . We
now determine Ker(σ∗) ∩ D̃.

On the one hand, ⟨OQ⟩⊥ admits by Theorem 2.2.34 a semiorthogonal decomposition of
the form

1. ⟨OQ⟩⊥ = ⟨OQ(1− n), . . . ,OQ(−1),S⟩ if Y is even dimensional,

2. ⟨OQ⟩⊥ = ⟨OQ(1− n), . . . ,S ′(−1),OQ(−1),S ′⟩ if Y is odd dimensional,

thus the pushforwards of the components along j are a set of generators of K .
On the other hand, the semiorthogonal decomposition

Db(Ỹ ) = ⟨j∗Bn−1(1− n), . . . , j∗B1(−1), D̃⟩ (2.19)

induced by (2.12) and the fully faithfulness of j∗ on Bi(−i) for 1 ≤ i ≤ n− 1 show that

1. {j∗OQ(1− n), . . . , j∗OQ(−1)} if Y is even dimensional,

2. {j∗OQ(1− n), . . . , j∗S ′(−1), j∗OQ(−1)} if Y is odd dimensional

are full exceptional collections of D̃⊥.
Now, looking at the generators of D̃⊥ and K , we obtain D̃⊥ ⊂ K ⊂ Ker(σ∗), which

implies that
Ker(σ∗) ∩ D̃ = RD̃⊥ Ker(σ∗).

We first assume that Y is even dimensional. Notice that all the generators of K belong
to D̃⊥ except the pushforward of the spinor bundle, so that RD̃⊥K = ⟨RD̃⊥(j∗S)⟩. Since
RD̃⊥(K

⊕) ⊂ (RD̃⊥K )⊕, we have the inclusions

RD̃⊥(j∗S) ⊂ RD̃⊥(Ker(σ∗)) ⊂ ⟨RD̃⊥(j∗S)⟩⊕.

Now, as both Ker(σ∗) and D̃ are idempotent complete, so is their intersection RD̃⊥(Ker(σ∗)).
Thus RD̃⊥ Ker(σ∗) = ⟨RD̃⊥(j∗S)⟩⊕. The same argument shows that RD̃⊥ Ker(σ∗) =
⟨RD̃⊥(j∗S ′)⟩⊕ when Y is odd dimensional.
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To conclude, it suffices to compute the mutations of the spinor bundles through D̃⊥.
When Y is even dimensional, we have by Lemma 2.2.5 and Lemma 2.3.3

RD̃⊥(j∗S) = (Rj∗OQ(−1) ◦ · · · ◦ Rj∗OQ(1−n))(j∗S) = j∗S.

When Y is odd dimensional, we consider the exceptional collection of D̃⊥ obtained by
mutating j∗S ′(−1) through j∗OQ(−1). Since Rj∗OQ(−1)(j∗S ′(−1)) = j∗S ′′[−1] by Lemma 2.3.4,
we have

D̃⊥ = ⟨j∗OQ(1− n), . . . , j∗OQ(−1), j∗S ′′⟩. (2.20)

Using Lemma 2.2.5 and Lemma 2.3.4 we obtain

RD̃⊥(j∗S ′) = (Rj∗S′′ ◦ Rj∗OQ(−1) ◦ · · · ◦ Rj∗OQ(1−n))(j∗S ′) = Rj∗S′′(j∗S ′),
and also Rj∗S′′(j∗S ′) = Cone(j∗S ′ → j∗S ′′[2])[−1].

These computations yield the desired classical generator of Ker(σ∗)∩D̃ in the even and
odd dimensional case.

Now let T = j∗S or T = Cone(j∗S ′ → j∗S ′′[2]), depending on the parity of the
dimension of Y .

Proposition 2.3.7. If Y is even dimensional, then T is a 2-spherical object in D̃.

Proof. Set n := dim(Y ) − 1. Let us prove that T = j∗S satisfies the three conditions of
Definition 2.2.9. Condition (a) is automatic, since Ỹ is projective and D̃ is a semiorthogonal
component of Db(Ỹ ) in the decomposition (2.19). By Lemma 2.3.1, we have that

Hom•(T , T ) = C⊕ C[−2],
so condition (b) holds true. It remains to check condition (c). Recall that D̃ has a Serre
functor, given by Lemma 2.2.11(b); thus, by Remark 2.2.12, it is enough to show that
SD̃(T ) = T [2]. We have that

SD̃(j∗S) = RD̃⊥(SDb(Ỹ )
(j∗S)) = (Rj∗OQ(−1) ◦ · · · ◦ Rj∗OQ(1−n) ◦ SDb(Ỹ )

)(j∗S),

where S
Db(Ỹ )

= Tω
Ỹ
◦ [n+ 1]. Since, by the adjunction formula, we have the equality

j∗ω
Ỹ
= ωQ ⊗ j∗OỸ (−Q) = OQ(−dim(Q) + 1) = OQ(1− n),

we obtain
S
Db(Ỹ )

(j∗S) = j∗(S ⊗ j∗ωỸ )[n+ 1] = j∗S(1− n)[n+ 1].

Now, using Lemma 2.3.3, we have

Rj∗OQ(k)(j∗S(k)[2− k]) = j∗S(k + 1)[2− k − 1].

Proceeding inductively, we obtain

SD̃(j∗S) = j∗S[2],
proving the statement.



Chapter 2. Nodal categorical singularities 82

Proposition 2.3.8. If Y is odd dimensional, then T is a 3-spherical object in D̃.

Proof. Again, since the category D̃ is proper, condition (a) in Definition 2.2.9 is automati-
cally satisfied. To check condition (b), recall that T sits in the exact triangle

j∗S ′ → j∗S ′′[2]→ T . (2.21)

By definition we have Hom•(T , j∗S ′′) = 0. Hence by applying Hom•(T ,−) to (2.21) we
obtain that

Hom•(T , T ) = Hom•(T , j∗S ′[1]),
and by applying Hom•(−, j∗S ′) to (2.21) we obtain

Hom•(j∗S ′, j∗S ′)← Hom•(j∗S ′′[2], j∗S ′)← Hom•(T , j∗S ′).

We have by previous computations (cf. Lemma 2.3.1 and (2.13)) that

Hom•(j∗S ′, j∗S ′) = C, and Hom•(j∗S ′′, j∗S ′) = C[−2].

We get from the long exact sequence that

Hom•(T , T ) = C⊕ C[−3].

To complete the proof we need to show that SD̃(T ) = T [3]. Using Lemma 2.2.11(b)
with respect to the decomposition in (2.20), we have the factorization

SD̃(T ) = RD̃⊥(SDb(Ỹ )
(T )) = (Rj∗S′′ ◦ Rj∗OQ(−1) ◦ · · · ◦ Rj∗OQ(2−dim(Y )) ◦ SDb(Ỹ )

)(T ).

For the sake of keeping a lighter presentation, we write, by abuse of notation, T (k) in
place of T ⊗ O

Ỹ
(−kQ), even though the object T does not belong to Db(Q). As in

Proposition 2.3.7, we have

S
Db(Ỹ )

(T ) = T (2− dim(Y ))[dim(Y )].

As Rj∗OQ(k) is an exact functor, by Lemma 2.3.4 we have

Rj∗OQ
(T ) = Cone(Rj∗OQ

(j∗S ′)→ Rj∗OQ
(j∗S ′′[2]))

= Cone(j∗S ′′(1)[−1]→ j∗S ′(1)[1])
= T ′(1)[−1],

where T ′ = Cone(j∗S ′′ → j∗S ′[2]). The arrow j∗S ′′(1)[−1] → j∗S ′(1)[1] is nonzero (also
similar for the arrows below), otherwise the object SD̃(T ) would become a direct sum of two
objects, but this would contradict Hom0(T , T ) = C as the Serre functor is an equivalence.
Analogously, we obtain

(Rj∗OQ(1) ◦ Rj∗OQ
)(T ) = T (2)[−2],
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and more generally

(Rj∗OQ(k+1) ◦ Rj∗OQ(k))(T (k)) = T (k + 2)[−2].

It follows that

(Rj∗OQ(−2) ◦ · · · ◦ Rj∗OQ(2−dim(Y )))(T (2− dim(Y ))[dim(Y )]) = T (−1)[3]. (2.22)

Finally, we compute
Rj∗OQ(−1)(T (−1)[3]) = T ′[2],

and the last mutation

Rj∗S′′(T ′[2]) = Rj∗S′′(Cone(j∗S ′′ → j∗S ′[2])[2])
= Cone(Rj∗S′′(j∗S ′′)→ Rj∗S′′(j∗S ′[2]))[2]
= Cone(0→ Rj∗S′′(j∗S ′[2]))[2]
= Cone(0→ T [1])[2]
= T [3].

Remark 2.3.9. This concludes the proof of Theorem 2.1.1 in the case of a projective
variety Y with an isolated nodal singularity y. We point out how to adjust the proofs
when Y is only supposed quasiprojective. Let Y ′ be a projective compactification of Y ;
by resolution of singularities, we can assume that Y ′ is smooth outside y. We continue to
denote by σ : Ỹ → Y the blow-up at the singular point, by j : Q → Ỹ the embedding of
the exceptional divisor and by n the dimension of Q. The variety Ỹ is quasiprojective, and
can be regarded as an open subset of the blow-up Ỹ ′ of Y ′ at y; we denote by i : Ỹ → Ỹ ′

the corresponding open immersion.
Let us focus on the categorical aspects. We will denote as Db

Q(Ỹ ) the full subcategory
of Db(Ỹ ) consisting of complexes topologically supported on Q; the functor i∗ embeds
it as a full subcategory of Db(Ỹ ′). Now, Lemma 2.3.1 holds true even if Db(Ỹ ) is not
proper, because the functor j∗ has both left and right adjoints. From Lemma 2.3.3 to
Proposition 2.3.6, all results hold without any change. In fact, by going through the proofs,
from the Lefschetz decomposition

Db(Q) = ⟨Bn−1(1− n), . . . ,B1(−1),B0⟩

of Theorem 2.2.34 we deduce semiorthogonal decompositions not only for Db(Ỹ ′) and
Db(Ỹ ), but also for Db

Q(Ỹ ): explicitly, we have

Db(Ỹ ′) = ⟨(i ◦ j)∗Bn−1(1− n), . . . , (i ◦ j)∗B1(−1), D̃′⟩
Db(Ỹ ) = ⟨j∗Bn−1(1− n), . . . , j∗B1(−1), D̃⟩

Db
Q(Ỹ ) = ⟨j∗Bn−1(1− n), . . . , j∗B1(−1), D̃Q⟩,
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where D̃′ is defined as the left orthogonal of ⟨(i ◦ j)∗Bn−1(1 − n), . . . , (i ◦ j)∗B1(−1)⟩
in Db(Ỹ ′), and D̃ and D̃Q as the left orthogonal of ⟨j∗Bn−1(1 − n), . . . , j∗B1(−1)⟩ in
Db(Ỹ ) and Db

Q(Ỹ ), respectively. The categories D̃′ and D̃ provide categorical resolutions
of Y ′ and Y , respectively. Clearly D̃Q = D̃ ∩ Db

Q(Ỹ ), and we can easily verify that
R
D̃′⊥ ◦ i∗ = i∗ ◦ RD̃Q

⊥ on Db
Q(Ỹ ), so that i∗D̃Q = D̃′ ∩ i∗Db

Q(Ỹ ).

Consider now the classical generator T of Ker(σ∗) given by Proposition 2.3.6. We
need to prove that it is spherical in the category D̃. Since T belongs to D̃Q, the functors
Hom•(T ,−) and Hom•(−, T ) on D̃ take values in the category of finite-dimensional graded
vector spaces, because so do they on Db(Ỹ ) (see example 2.2.14); this shows that T satisfies
condition (a) in Definition 2.2.9. For the other two conditions, we can reason as follows.
By example 2.2.14 and Lemma 2.2.15, the pair (D̃Q, D̃) has a Serre functor S; moreover,
we have

i∗ S(T ) = i∗RD̃Q
⊥(T ⊗ ωỸ [dim(Y )]) = R

D̃′⊥i∗(T ⊗ i∗ωỸ ′ [dim(Y )])

= R
D̃′⊥(i∗T ⊗ ωỸ ′ [dim(Y )]) = R

D̃′⊥ ◦ SDb(Ỹ ′)(i∗T ) = SD̃′(i∗T ).

From the isomorphism i∗ S(T ) = SD̃′(i∗T ) and the full faithfulness of i∗ on D̃Q we deduce
that conditions (c) and (b) in Definition 2.2.9 are satisfied by T in D̃ if and only if they
are satisfied by i∗T in D̃′. Hence, the k-sphericalness of T in D̃ is equivalent to the k-
sphericalness of i∗T in D̃′, which was proven in Proposition 2.3.7 and Proposition 2.3.8.

This concludes the proof of Theorem 2.1.1. In [Kuz08b, Definition 3.5] another notion
of crepancy was introduced in the categorical setting. A categorical resolution D̃ of D is
strongly crepant if the relative Serre functor SD̃/D is isomorphic to the identity functor. We
refer to [Kuz08b, Section 3] for the definition of relative Serre functor. We only recall this
notion in the case we consider, namelyD = Db(Y ) with a categorical resolution D̃ ⊂ Db(Ỹ ),
where π : Ỹ → Y is a geometrical resolution of singularities: a functor SD̃/Y : D̃ → D̃ is a

relative Serre functor if for every F ,G ∈ D̃ there is a bifunctorial isomorphism

RHom(π∗RHom(F ,G),OY ) ∼= π∗RHom(G,SD̃/Y (F)).

In the next proposition, we show that the weakly crepant categorical resolution D̃ provided
by Proposition 2.3.5 is not strongly crepant when the quasiprojective variety Y with isolated
nodal singularity has dimension at least 4. We stick with the notations of Remark 2.3.9:
σ : Ỹ → Y denotes the blow-up at the singular point, Q its exceptional divisor, Db

Q(Ỹ )

the full triangulated subcategory of Db(Ỹ ) consisting of complexes topologically supported
on Q, and D̃Q = D̃ ∩Db

Q(Ỹ ). Recall that Tω
Ỹ
◦ [dim(Y )] is a Serre functor for the pair

(Db
Q(Ỹ ),Db(Ỹ )), and induces a Serre functor S for the pair (D̃Q, D̃).

Proposition 2.3.10. The categorical resolution D̃ admits a relative Serre functor SD̃/Y ,
given by SD̃/Y = RD̃⊥ ◦ TO((n−1)Q).



Chapter 2. Nodal categorical singularities 85

1. For any F ∈ D̃ such that j∗F ∈ ⟨OQ⟩ we have SD̃/Y (F) = F .

2. For any F ∈ D̃Q we have SD̃/Y (F) = S(F)[−dim(Y )].

Therefore, if T is the classical generator of the kernel computed in Proposition 2.3.6, we have
SD̃/Y (T ) = T [2−dim(Y )] if dim(Y ) is even and SD̃/Y (T ) = T [3−dim(Y )] if dim(Y ) is odd.

In particular, the categorical resolution (D̃, σ∗, σ∗) is not strongly crepant if dim(Y ) > 3.

Proof. The relative canonical bundle of σ is given by ω
Ỹ /Y

= O
Ỹ
((n− 1)Q). By [Kuz08b,

Proposition 4.7], the relative Serre functor S
Ỹ /Y

= Tω
Ỹ /Y

of Db(Ỹ ) induces a relative Serre

functor SD̃/Y on D̃; its explicit expression, as well as and part (a), can be found in loc. cit.
We prove part (b). Since j∗ω

Ỹ /Y
= j∗ω

Ỹ
, for any G ∈ Db(Q) we have

S
Ỹ /Y

(j∗G) = j∗G ⊗ ωỸ /Y = j∗(G ⊗ j∗ωỸ /Y ) = j∗(G ⊗ j∗ωỸ ) = j∗G ⊗ ωỸ = Tω
Ỹ
(j∗G).

Hence, for any F ∈ D̃Q, we have

SD̃/Y (F) = (RD̃⊥ ◦ SỸ /Y )(F) = (RD̃⊥ ◦ TωỸ
)(F) = S(F)[−dim(Y )].

Therefore, as soon as dim(Y ) > 3, the relative Serre functor SD̃/Y is not the identity on

the spherical object T ∈ D̃Q, so the categorical resolution D̃ is not strongly crepant.

We now deduce Theorem 2.1.5 from Theorem 2.1.1.

Theorem 2.3.11. If T is a geometric nodal category, then T is an abstract nodal category,
i.e. there exists a categorical resolution σ∗ : D̃ → T which is weakly crepant and whose
kernel is classically generated by a single spherical object. Furthermore, σ∗ : D̃ → T is a
localization up to direct summands.

Proof. By hypothesis, there exists a quasiprojective variety Y which has only an isolated
nodal singularity, and a semiorthogonal decomposition Db(Y ) = ⟨T ,T ′⟩ with T perf not
smooth. We claim that this forces T ′perf to be smooth. For this, we look at the categories
of singularities Dsg(Y ) := Db(Y )/Dperf(Y ) and T sg := T /T perf . By [Orl04, §2, §3.3]
and [Orl11, Thm. 2.10] we know that Dsg(Y )⊕ ≃ Dsg(C[z]/(z2)) if dim(Y ) is even, and
Dsg(Y )⊕ ≃ Dsg(C[x, y]/(xy)) if dim(Y ) is odd. In the even dimensional case, following
[Orl04, §3.3], one sees that there exist non-zero morphisms between any pair of non-zero
objects in Dsg(C[z]/(z2)). Hence the full subcategory Dsg(Y ) ⊂ Dsg(C[z]/(z2)) admits no
non-trivial semiorthogonal decomposition. But we have the semiorthogonal decomposition
Dsg(Y ) = ⟨T sg,T ′sg⟩ by [Orl06, Prop. 1.10], so either T sg = 0 or T ′sg = 0, as desired.
In the odd dimensional case, the category Dsg(C[x, y]/(xy)) is equivalent to the category
of Z/2Z-graded finite-dimensional vector spaces, where the shift functor swaps the graded
pieces cf. [KPS21, Ex. 2.18], so we can conclude as before.
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Let us assume that the dimension dim(Y ) ≥ 2 is even, the proof of the odd dimensional
case is similar. Then, by Theorem 2.1.1, we know that there is a weakly crepant categorical
resolution σ∗ : D̃ → Db(Y ) whose kernel Ker(σ∗) is classically generated by a 2-spherical
object S.

Let us denote by ı : T ′ → Db(Y ) the embedding functor. As T ′ is admissible, it has
a left adjoint functor ı∗ and a right adjoint functor ı!. We know that ı(T ′) ⊂ Dperf(Y )
since T ′perf = T ′ by hypothesis. Then we see that the functor σ∗ ◦ ı : T ′ → D̃ is fully-
faithful. Moreover, this functor has the right adjoint ı! ◦ σ∗, thus making T ′ an admissible
subcategory of D̃. So we can consider the semiorthogonal decomposition D̃ = ⟨T̃ ,T ′⟩,
where T̃ := T ′⊥.

Now we claim that the restriction of σ∗ to T̃ provides a categorical resolution that
satisfies the conditions in Definition 2.1.3. First, if F ∈ T ∩Dperf(Y ) and G ∈ T ′ ⊂ D̃,
then Hom•(G, σ∗F) = Hom•(σ∗G,F) = 0, which implies that σ∗ maps T perf to T̃ . Second,
if F ∈ T̃ and G ∈ T ′, then Hom•(G, σ∗F) = Hom•(σ∗G,F) = 0, which implies that σ∗
maps T̃ to T . Regarding adjointness and weak crepancy, let F ∈ T perf and G ∈ T̃ , and
considering them as objects of Db(Y ) and D̃, respectively, we see that Hom(σ∗F ,G) =
Hom(F , σ∗G) and Hom(G, σ∗F) = Hom(σ∗G,F). In the same vein we have that idT perf →
σ∗σ

∗ is an isomorphism.
By Theorem 2.1.1 we know that

D̃/⟨S⟩⊕ → Db(Y )

is an equivalence onto its dense image. Since σ∗(S) = 0 and for G ∈ T ′ we have
Hom(σ∗G,S) = Hom(G, σ∗S) = 0, we see that S ∈ T̃ . So, by the universal property
of Verdier quotients, we can factor σ∗|T̃ : T̃ → T via

σ∗ : T̃ /⟨S⟩⊕ → T .

Furthermore, by [Orl06, Lemma 1.1] we have that the embedding T̃ ⊂ D̃ descends to a
fully-faithful functor T̃ /⟨S⟩⊕ → D̃/⟨S⟩⊕, which implies that σ∗ is fully-faithful.

Using that σ∗(T ′) ⊂ T ′, we see that im(σ∗) = T ∩ im(σ∗). We need to check that
the idempotent completion of the latter is T . Since σ∗σ∗ = idDperf(Y ), we see that ⊥T =
T ′ ⊂ im(σ∗), which implies that

im(σ∗) ∩T = LT ′(im(σ∗)).

Since we know that im(σ∗)
⊕ = Db(Y ), we get

T = T ′⊥ = LT ′(Db(Y )) = LT ′(im(σ∗)
⊕)

⊂ (LT ′(im(σ∗)))
⊕ = (im(σ∗) ∩ T )⊕.

Hence, since T is idempotent complete, we conclude T = (im(σ∗) ∩ T )⊕, as desired.
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2.4 Categorical resolutions of nodal cubic fourfolds

In this section we focus on the special case of a cubic fourfold Y ⊂ P5 with a single isolated
nodal singularity P ∈ Y . Our goal is to prove Theorem 2.1.8 by applying Theorem 2.1.1.

2.4.1 Geometric setting

We first recall the geometric setting following [Kuz10, Section 5], which can be summarized
in the diagram

Q Ỹ D

P Y P4 S.

j

σ π

i

p (2.23)

On the left hand side, the point P is the nodal singular point and the morphism σ : Ỹ → Y
is the blow-up of Y at P ; this yields the resolution of singularities Ỹ , whose exceptional
divisor Q is a smooth quadric of dimension 3. On the right hand side, the linear projection
from P induces a regular map π : Ỹ → P4, which can be shown to be the blow-up of P4

along a smooth K3 surface S that is a (2, 3)-complete intersection, cf. [Kuz10, Lemma 5.1].
We denote by D the exceptional divisor of the map π, and write j : Q ↪→ Ỹ and i : D ↪→ Ỹ
for the inclusions, as well as p for the restriction π|D.

Moreover, the restriction π|Q identifies the divisor Q with the defining quadric of S in
P4. Also, the description of the map π shows that the surface S parametrizes the lines
contained in Y passing through P . Such lines are contracted by the linear projection from
P , and the divisor D is the union of their strict transforms in Ỹ .

The following result clarifies the relation between Q, D, and S.

Lemma 2.4.1. The restriction p|Q = π|Q∩D of the projection map π identifies Q∩D ⊂ Ỹ
with the K3 surface S. In other words, S is a retract of D and the diagram

Q S

Ỹ D

j

t

s

i

p

is cartesian, where t denotes the inclusion of S into Q, and s : S ∼−→ Q ∩D ↪→ D denotes
the inclusion into D.

Proof. Recall that π|Q is an isomorphism between Q and the defining quadric of S in P4,
and that π(D) = S. Therefore the intersection Q∩D is a closed subscheme of the pre-image
(π|Q)−1(S) in Q, which is a smooth K3 surface. Note that Q ∩D is non-empty since each
line in Y passing through P provides a point contained in Q∩D. Then, by Krull’s principal
ideal theorem, the dimension of Q ∩D is at least 2 everywhere. We conclude that Q ∩D
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coincides with the surface (π|Q)−1(S). In other words, π|Q∩D identifies Q∩D with the K3
surface S.

2.4.2 Computation of the kernel

We work in the geometric situation summarized in diagram (2.23). Let h be the class of
a hyperplane in P4, and H be the class of a hyperplane section of Y ⊂ P5. By abuse of
notation, we use the same notation for their pullbacks to Ỹ .

Recall that ⟨OY ,OY (H),OY (2H)⟩ is an exceptional sequence, so we have the semiorthog-
onal decomposition

Db(Y ) = ⟨AY ,OY ,OY (H),OY (2H)⟩, (2.24)

where AY := ⟨OY ,OY (H),OY (2H)⟩⊥. Now we consider two semiorthogonal decomposi-
tions of Db(Ỹ ) arising from the two geometric interpretations of the variety Ỹ , cf. [Kuz10,
(16), (17)]. First, we apply Proposition 2.2.21 using the Lefschetz decomposition of Db(Q)
from Theorem 2.2.34 to write

Db(Ỹ ) = ⟨j∗OQ(−2h), j∗OQ(−h), D̃⟩,

where D̃ := ⊥⟨j∗OQ(−2h), j∗OQ(−h)⟩ is a weakly crepant resolution of Db(Y ). Then we
consider the decomposition of D̃ induced by that of Db(Y ) in (2.24). As Y has rational
singularities, σ∗ : Db(Y ) → D̃ is fully faithful, cf. [Kuz08b, Lemma 2.4], so the pullbacks
of OY , OY (H) and OY (2H) along σ are an exceptional sequence in D̃, and we obtain

D̃ = ⟨ÃY ,OỸ ,OỸ (H),O
Ỹ
(2H)⟩.

Substituting this in the decomposition above, we get

Db(Ỹ ) = ⟨j∗OQ(−2h), j∗OQ(−h), ÃY ,OỸ ,OỸ (H),O
Ỹ
(2H)⟩. (2.25)

Note that the residual category ÃY is a weakly crepant resolution of AY by [Kuz10,
Lemma 5.8]. On the other hand, since Ỹ is the blow-up of P4 along the K3 surface S,
we have by Orlov’s blow-up formula [Orl92] that

Db(Ỹ ) = ⟨Φ(Db(S)),O
Ỹ
(−3h),O

Ỹ
(−2h),O

Ỹ
(−h),O

Ỹ
,O

Ỹ
(h)⟩, (2.26)

where Φ: Db(S) → Db(Ỹ ) is given by Φ = TO
Ỹ
(D) ◦ i∗ ◦ p∗. Recall that TO

Ỹ
(D) denotes

the functor which twists by O
Ỹ
(D).

Using a series of mutations, one may relate these two decompositions and show that
there is an equivalence Φ′′ : Db(S) ∼−→ ÃY , cf. [Kuz10, Corollary 5.7], so Db(S) is also a
weakly crepant categorical resolution of AY . The equivalence is explicitly given by

Φ′′ = RO
Ỹ
(−h) ◦ RO

Ỹ
(−2h) ◦ TO

Ỹ
(D−2h) ◦ i∗ ◦ p∗.
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Now, applying Proposition 2.3.6, the weakly crepant categorical resolution of Db(Y )
given by D̃ together with the restrictions of σ∗ and σ∗ has kernel classically generated by
j∗S. We show that the latter is also a classical generator of the kernel of ÃY → AY . Since
ÃY is an admissible subcategory, it is in particular thick, so it suffices to prove the following
lemma.

Lemma 2.4.2. The object j∗S lies in ÃY .

Proof. By Proposition 2.3.6, we have that j∗S lies in D̃ = ⊥ ⟨j∗OQ(−2h), j∗OQ(−h)⟩. It
now suffices to verify that j∗S ∈

〈
O
Ỹ
,O

Ỹ
(H),O

Ỹ
(2H)

〉⊥.
Note that for all k ∈ Z we have

Hom•
Ỹ
(O

Ỹ
(kH), j∗S) = Hom•

Q(OQ,S) = 0,

since Q is the exceptional divisor of σ and the line bundle O
Ỹ
(kH) pulls back to the trivial

line bundle on Q.

Next we describe j∗S as an object in Db(S) using the left adjoint of Φ′′. The latter has
been computed in [Kuz10, Remark 5.9], but beware of a misprint in loc. cit., so we provide
here its correct expression.

Proposition 2.4.3. The left adjoint of Φ′′ is

Ψ = p∗ ◦ i∗ ◦TO
Ỹ
(−3h+D)[1] ◦ LO

Ỹ
(3h−D) ◦ LO

Ỹ
(4h−D).

Proof. Recall that if E is an exceptional object in Db(X), where X is a smooth projective
variety, then the functor RSX(E) is right adjoint to LE , where SX is the Serre functor of
Db(X). Using this fact and that the canonical class of Ỹ is −5h+D, we obtain

Hom
Ỹ
(A ,Φ′′(B)) =Hom

Ỹ
(A , (RO

Ỹ
(−h) ◦ RO

Ỹ
(−2h) ◦TO

Ỹ
(D−2h) ◦ i∗ ◦ p∗)(B))

=HomD((i
∗ ◦TO

Ỹ
(2h−D) ◦ LO

Ỹ
(3h−D) ◦ LO

Ỹ
(4h−D))(A ), p∗B).

Now we need to compute the left adjoint of p∗. The canonical bundle of D is by adjunction

ωD = (ω
Ỹ
⊗O(D))|D =

(
O(−5h+D)⊗O(D)

)
|D.

So we have ωD = i∗O
Ỹ
(−5h+2D). We compute the left adjoint of p∗ using Grothendieck–

Verdier duality

HomD(F , p∗B) = HomD(p
∗B,F ⊗ ωD[3])∨

= HomD(p
∗B,F(−5h+ 2D)[3])∨

= HomS(B, p∗F(−5h+ 2D)[3])∨

= HomS(p∗F(−5h+ 2D)[3],B ⊗ ωS [2])
= HomS(p∗F(−5h+ 2D)[1],B).
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This shows that the left adjoint of p∗ is p∗ ◦Ti∗O
Ỹ
(−5h+2D)[1]. Putting everything together,

we obtain

HomD((i
∗ ◦TO

Ỹ
(2h−D) ◦ LO

Ỹ
(3h−D) ◦ LO

Ỹ
(4h−D))(A ), p∗B)

=HomS((p∗ ◦Ti∗O
Ỹ
(−5h+2D)[1] ◦ i∗ ◦TO

Ỹ
(2h−D) ◦ LO

Ỹ
(3h−D) ◦ LO

Ỹ
(4h−D))(A ),B)

=HomS((p∗ ◦ i∗ ◦TO
Ỹ
(−5h+2D)[1] ◦TO

Ỹ
(2h−D) ◦ LO

Ỹ
(3h−D) ◦ LO

Ỹ
(4h−D))(A ),B)

=HomS((p∗ ◦ i∗ ◦TO
Ỹ
(−3h+D)[1] ◦ LO

Ỹ
(3h−D) ◦ LO

Ỹ
(4h−D))(A ),B),

and thus
Ψ = p∗ ◦ i∗ ◦TO

Ỹ
(−3h+D)[1] ◦ LO

Ỹ
(3h−D) ◦ LO

Ỹ
(4h−D),

proving the statement.

We now identify Ψ(j∗S) as the restriction of the spinor bundle on Q to S.

Proposition 2.4.4. We have that Ψ(j∗S) = t∗S, where t : S → Q is the inclusion of S
into the quadric Q which is embedded in P4 via π ◦ j.

Proof. Note that the first two mutations in the formula of Ψ have no effect, since we have,
using the relation D = 3h−H,

Hom•
Ỹ
(O

Ỹ
(4h−D), j∗S) = Hom•

Q(j
∗O

Ỹ
(4h−D),S)

= Hom•
Q(j

∗O
Ỹ
(h+H),S)

= Hom•
Q(j

∗O
Ỹ
(h),S)

= Hom•
Q(OQ(h),S) = 0,

and similarly for the second mutation. Applying TO
Ỹ
(−3h+D), we get

j∗S ⊗OỸ (D − 3h) = j∗S ⊗OỸ (−H) = j∗(S ⊗ j∗OỸ (−H)) = j∗(S ⊗OQ) = j∗S.

The last step is to calculate p∗i∗j∗S. We consider the diagram

Q S

Ỹ D

P4 S

j

t

s

id

π

i

p

(2.27)

where the upper square is cartesian by Lemma 2.4.1. We prove i∗j∗ = s∗t
∗ by checking the

conditions of the base-change result Proposition 2.2.28. Indeed, as Q and Ỹ are smooth,
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they are Cohen–Macaulay. The closed immersion i of the exceptional divisor of the blow-
up is by its very nature a local complete intersection in Ỹ . Finally, we have codim

Ỹ
(D) =

codimD(S) = 1. Thus we obtain

p∗i
∗j∗S = p∗s∗t

∗S = t∗S.

We conclude this section with the proof of Theorem 2.1.8.

Proof of Theorem 2.1.8. By Theorem 2.1.1 and Lemma 2.4.2 we have that the kernel of
Db(S) → AY is classically generated by j∗S. Then the statement follows from Proposi-
tion 2.4.4.



Appendix A

Grothendieck group of horospherical
varieties of Picard rank one

Recall the notation introduced in Theorem 1.1.3. The following Proposition A.0.3 shows
that the Grothendieck group K0(X) of a horospherical variety X is determined by the
Grothendieck groups of its homogeneous pieces Y, Z. In particular, this addresses the case
of odd isotropic Grassmannians. A similar results has been proved previously in singular
cohomology (cf. [Gon+22, Fact 1.8]), with similar ideas, but the details of the proof were
left to the reader. We provide a complete proof here.

For additional details on the following construction, we refer to [Pas09] and to [Gon+22,
§ 1.5]. We remark that there is an asymmetry in the choice of Z and Y , as one of the closed
orbits is stable under the action of the non-reductive group Aut(X), while the other is not.
This difference does not impact the proof and we can fix Y and Z in both ways.

Consider the following diagrams induced by the blowup of Z:

E X Y

Z X

ϵ

ρ

π

σ

ι

(A.1)

where X ∼= BlZX and the exceptional divisor E is isomorphic to the partial flag variety
G/(PY ∩ PZ). The horizontal arrow π : X → Y is a Pc-bundle, which restricts to an
Ac-bundle π : X \ E → Y , where c = dimX − dimY . Notice that the diagram (A.1) is
G-equivariant with respect to the natural actions.

To prove Proposition A.0.3, we need to recall some facts.

Definition A.0.1 ([EH16, § 1.3.5]). A smooth variety X admits a finite affine stratification
if the following holds:

1. X =
⊔
i
Ui, where {Ui}i is a finite collection of irreducible locally closed subschemes,

92
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2. U i =
⊔

Uj⊆U i

Uj, where U i denotes the closure of Ui,

3. Ui ∼= Ani .

We refer to Ui as the open strata.

Similarly to the analogous statement about Chow rings (cf. [EH16, Theorem 1.1.8]),
we recall the following well known fact, which is a consequence of Quillen’s localisation
sequence.

Theorem A.0.2. Let X be a smooth variety admitting a finite affine stratification {Ui}i.
Let {Fi}i be a finite collection of objects in Db(X ) such that:

• suppFi ⊆ U i,

• rank (Fi|Ui ) = 1.

Then, K0(X) is a free abelian group and {[Fi]}i is a basis of K0(X).

We are ready for the main result of this appendix.

Proposition A.0.3. Let X be a G-horospherical variety of Picard rank one, with closed
G-invariant subvarieties Y, Z ⊂ X, then the canonical map induced by (A.1):

K0(Z)⊕K0(Y )
(ı∗,σ∗π∗)−−−−−−→ K0(X). (A.2)

is an isomorphism. In particular, K0(X) is a free abelian group and we have:

rankK0(X) = rankK0(Y ) + rankK0(Z).

Proof. We prove that the morphism (A.2) is an isomorphism. Notice that the morphisms in
(A.1) are equivariant with respect to the action of G. Since E, Y and Z are G-homogeneous
varieties, fixing a Borel subgroup B ⊂ G, we obtain compatible finite affine stratifications
by Schubert cells on E, Y and Z. Denote their open strata respectively as {Ei}i, {Yj}j
and {Zk}k. Notably, the Schubert cells are exactly the orbits of B. As E ∼= G/(PY ∩ PZ),
the Schubert cells are compatible with the morphisms in (A.1), i.e. for every i, there exist
j, k such that:

(π ◦ ϵ) (Ei) = Yj and ρ (Ei) = Zk. (A.3)

We now define an affine stratification of X. Consider the following collection of locally
closed subsets:

U1
j = {π−1(Yj) \ E}j and U2

i = {ϵ (Ei)}i.
We claim that the collection defined by {U1

j }j ⊔ {U2
i }i is a finite affine stratification of

X. Indeed, it is immediate to see that the proposed collection is a partition of X, so
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that Definition A.0.1.(1) holds. The verification of the conditions Definition A.0.1.(2) and
Definition A.0.1.(3) is straightforward for {U2

i }i, hence we point out the less intuitive steps
for the subcollection {U1

j }j . Condition Definition A.0.1.(3) holds because U1
j
∼= Anj , as

π : X \ E → Y is an Ac-bundle, which is trivial on every Schubert cell of Y . We focus on
Definition A.0.1.(2). From (A.3), we have:

(π ◦ ϵ)−1(Yj) =
⊔

(π◦ϵ)(Es)⊆Yj

Es

As a consequence, we obtain:

U
1
j = π−1(Y j) =

=
⊔

Yt⊆Y j

(
(π−1(Yt) \ E) ⊔ (π ◦ ϵ)−1(Yt)

)
=

=
⊔

Yt⊆Y j

(
(π−1(Yt) \ E) ⊔

( ⊔
(π◦ϵ)(Es)⊆Yt

ϵ(Es)

)) (A.4)

proving Definition A.0.1.(2).
We now show that the collection given by {σ(U1

j )}j ⊔ {ı(Zk)}k is a finite affine stratifi-
cation of X. Again, the verification of the conditions in Definition A.0.1(2, 3) is straight-
forward for {ı(Zk)}k. We point out the less intuitive steps for the strata {σ(U1

j )}j . Notice
that σ is an isomorphism outside of the exceptional locus, hence Definition A.0.1.(3) holds
by definition of U1

j . To show Definition A.0.1.(2), we have:

σ(U1
j ) = σ(U

1
j ) =

=
⊔

Yt⊆Y j

(
σ(π−1(Yt) \ E) ⊔

( ⊔
(π◦ϵ)(Es)⊆Yt

(σ ◦ ϵ)(Es)
))

,

where the first equality holds by properness of σ and the second is a consequence of (A.4).
As σ◦ϵ = ı◦ρ, we conclude by (A.3) that {σ(U1

j )}j⊔{ı(Zk)}k is a finite affine stratification
of X.

The collection {σ∗π∗OY j
}j ⊔ {ı∗OZk

}k induces a basis of K0(X) by Theorem A.0.2.
Indeed, the support property is immediate, moreover, we have

(σ∗π
∗OY j

)|σ(U1
j )

= Oσ(U1
j )
, (ı∗OZk

)|Zk
= OZk

.

Finally, this shows that the morphism defined in (A.2) carries a basis of K0(Z)⊕K0(Y )
to a basis of K0(X), proving that (ı∗, σ∗π

∗) is an isomorphism.
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