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ON THE REGULARITY OF HARMONIC MAPS FROM RCD(K,N) TO

CAT(0) SPACES AND RELATED RESULTS

NICOLA GIGLI

Abstract. For an harmonic map u from a domain U ⊂ X in an RCD(K,N) space X to a
CAT(0) space Y we prove the Lipschitz estimate

Lip(u|B) ≤
C(K−R2, N)

r
inf
o∈Y

√ 
2B

d2Y(u(·), o) dm, ∀2B ⊂ U,

where r ∈ (0, R) is the radius of B. This is obtained by combining classical Moser’s iteration,
a Bochner-type inequality that we derive (guided by recent works of Zhang-Zhu) together
with a reverse Poincaré inequality that is also established here. A direct consequence of our
estimate is a Lioville-Yau type theorem in the case K = 0.

Among the ingredients we develop for the proof, a variational principle valid in general
RCD spaces is particularly relevant. It can be roughly stated as: if (X, d,m) is RCD(K,∞)
and f ∈ Cb(X) is so that ∆f ≤ C for some constant C > 0, then for every t > 0 and m-a.e.

x ∈ X there is a unique minimizer Ft(x) for y 7→ f(y) + d2(x,y)
2t

and the map Ft satisfies

(Ft)∗m ≤ et(C+2K−Osc(f))m, where Osc(f) := sup f − inf f.

Here existence is in place without any sort of compactness assumption and uniqueness should
be intended in a sense analogue to that in place for Regular Lagrangian Flows and Optimal
Maps (and is related to both these concepts).

Finally, we also obtain a Rademacher-type result for Lipschitz maps between spaces as
above.
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2 NICOLA GIGLI

1. Introduction

The study of harmonic maps and their regularity is a central topic in Geometric Analysis,
with several ramifications depending on the kind of structure assumed on the domains in
considerations. In this paper, we are concerned with Lipschitz regularity in relation with
lower Ricci curvature bounds on the source space and upper sectional curvature bounds on
the target. The inspiring work is the celebrated result [38] by Eells-Sampson where among
other things the authors noticed that in the smooth category a negative curvature on the
target domain plays ‘in favour’ of Bochner inequality. Specifically, if the Ricci curvature
of M is bounded from below by K ∈ R, the sectional curvature of N is non-positive and
u : U ⊂ M → N is sufficiently smooth and harmonic, they established what is now-called
Bochner-Eells-Sampson inequality, namely:

(BES) 1
2∆|du|2HS ≥ K|du|2HS,

where |du|HS is the Hilbert-Schmidt (also called Euclidean) norm of the differential du. Start-
ing from this, it is not hard to derive quantitative Lipschitz regularity: from De Giorgi-Nash-
Moser elliptic regularity theory (see e.g. [65], [5] for an overview) we see that the estimate

(1.1) Lip(u|B) ≤ C(K−R2, N)

√ 
2B

|du|2HS d vol

holds if B = Br(x) is such that 2B = B2r(x) is contained in U and r ∈ (0, R). Here N is
an upper bound on the dimension of M and the dependence of the constant on K−R2 and
N only can be seen by a scaling argument, recalling that the constants in Moser’s iteration
only depend on those in the local doubling and Sobolev inequalities, and that these can be
bounded in terms of a lower Ricci and upper dimension bounds (see e.g. [106] for a modern
presentation of the topic, very related to the kind of discussion made in this paper).

At least in the scalar case N = R, one can then use the reverse Poincaré/Cacciopoli
inequality

(1.2) ∥du∥L2(B) ≤
C(N)

r
∥u∥L2(2B)

to deduce from (1.1) that

(1.3) Lip(u|B) ≤
C(K−R2, N)

r

√ 
4B

|u|2 d vol

provided 4B ⊂ U . We notice that this last inequality provides a similar scaling, in terms of
r and the size of u, given by the celebrated Cheng-Yau’s gradient estimate

sup
B

|∇ log f | ≤ C(N)
(√

K +
1

r

)
if f > 0 on 2B ⊂ U

and, much like this one, it implies for K = 0 that a bounded harmonic function on a manifold
with non-negative Ricci curvature must be constant. For the case of maps with values on
a simply connected manifold N with non-positive sectional curvature, a suitable gradient
estimate and a consequent Lioville-Yau type of theorem has been obtained by Cheng in [30].

Let us underline that one of the many advantages of dealing with target spaces that are
simply connected and with non-positive curvature is that the relevant energy is convex in a
very natural sense. In particular a map is a critical point of such functional if and only if it is
a minimizer: this basic fact allows to avoid more complicated taxonomies that are otherwise
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present (see e.g. [76, Chapter 7]) and suggests a variational way of defining harmonic maps
in more singular settings.

Given the nature of the estimates and the kind of assumptions present, it is natural to
wonder whether results like the above hold in the context of synthetic geometry: this sort of
question has been raised several times in the literature, see e.g. [82], [74]. Here the counterpart
for ‘lower Ricci and upper dimension bounds’ on the source manifold is the RCD(K,N)
condition (introduced in [48], after [83], [104, 105], [9] - see the survey [43] for more about the
history of the topic), while that for ‘simply connected and non-positive sectional curvature
bounds’ on the target manifold is the CAT(0) notion (see e.g. [18] for an overview on the
topic).

In the last thirty years, studies in this kind of direction have attracted the interest of a
number of mathematicians; without pretending to be complete, we mention [69], [79], [74],
[82], [102], [75], [103], [67], [80], [81], [32], [70], [111], [40], [110], see also the celebrated series of
papers [95], [97], [96], [98] for partial regularity results available without prescribed curvature
bounds. These papers contain key geometric/analytic insights but none of them cover the
case of the - often more recent - theory of RCD spaces, to the point that even the existence of
a suitable energy is a priori unclear. Notice in particular that the key ‘subpartition lemma’
from [79] may fail in this framework.

This motivated us to develop a research program [63, 62, 36, 57, 54], in collaboration with
a diverse set of coauthors, aimed at generalizing the above to its natural framework of RCD
spaces. In particular, in [63], suitably adapting Korevaar-Schoen’s approach, we showed that
the Dirichlet problem is well posed in this framework, so that at least the concept of ‘harmonic
map from a domain in an RCD(K,N) space to a CAT(0) one’ is well defined. The findings in
[63] have been used in an updated version [71] of [70] to show that such harmonic maps are
Hölder continuous (inspired by ideas in [74], [82] - in [70] such regularity was obtained under
a certain technical assumption, shown in [71] to be satisfied by RCD spaces using the results
in [63]). However, given that the arguments presented here would only be marginally affected
by such continuity, in order to provide a more self-contained exposition we will not rely on
such result.

With all this said, our main theorem is:

Theorem 1.1 (See Theorem 6.18). Let (X, d,m) be RCD(K,N), (Y, dY) be CAT(0), U ⊂ X
open with m(X \ U) > 0 and u : U → Y harmonic. Then the Zhang-Zhong-Zhu inequality

(ZZZ) ∆
|du|2

2
≥ K|du|2 on U

holds in the sense of distributions and the map u has a representative, still denoted by u, with

(1.4) Lip(u|B) ≤
C(K−R2, N)

r
inf
o∈Y

√ 
2B

d2Y(u(·), o) dm,

for any ball B = Br(x) such that 2B = B2r(x) ⊂ U and r ∈ (0, R).

Some comments are in order:

- The first appearance of an inequality like (ZZZ) is in the recent paper [110] (but see also
[111]), where it has been established for smooth domains and general CAT(κ), κ > 0, target
spaces under the - usual in this context - proviso that the image of u is contained in a ball
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of radius π
2
√
κ
(to be more precise, in [110] also the non-negative term |∇lipu|2 appears at

the right hand side).
Notice that, even in the smooth category and for smooth maps, inequality (ZZZ) is

different from (BES) as in the latter the Hilbert-Schmidt norm |du|HS of the differential du
appears, while in the former |du| is the operator norm (see also [110, Remark 1.5 - (1)]).
It is unclear to us whether there is any direct link between the two. Let us just mention

that they both reduce to the standard Bochner inequality ∆ |df |2
2 ≥ K|df |2 for harmonic

functions in the case Y = R and that at least for Y = Rd they both can be deduced from
this formula: (BES) follows adding up Bochner inequality for the (harmonic) components
of u, while for (ZZZ) we apply the Bochner inequality to the harmonic functions u · v for
v ∈ Sd−1 ⊂ Rd, notice that |du| = supv∈Sd−1 |d(u · v)| and use the stability of lower bounds
on the Laplacian under ‘sup’ and the locality of the Laplacian to conclude (these technical
arguments are valid even in the current context - see Lemmas 4.7, 4.8 - and will be used in
a somehow similar spirit).

- Starting from (ZZZ) and via Moser’s iteration it is immediate to deduce an inequality like
(1.1). To achieve (1.4) we combine such argument with a reverse Poincaré/Cacciopoli type
inequality, that to the best of our understanding has gone unnoticed even in the smooth
category. It can be stated as: with the same notation of Theorem 1.1 we have

ˆ
B
|du|2 dm ≤ C(N)

r2
inf
o∈Y

ˆ
2B

d2Y(u(x), o) dm.

To prove this we follow ideas that are classical in the real-valued context. We recall that
by the CAT(0) condition, for any o ∈ Y the function do := dY(·, o) is convex, thus the
harmonicity of u implies |du|2 ≤ C(N)∆(d2o ◦ u) (by [54] - see also [76, Corollary 7.2,5],
[74, Lemma 5]). Multiplying this bound by φ2, where φ is a 2

r -Lipschitz map with support
in 2B and identically 1 on B, integrating, integrating by parts and then using Young’s
inequality we conclude. See Proposition 6.10 for the details.

- In [110] inequality (ZZZ) is written with the (geo)metric quantity ‘local Lipschitz constant
lip(u)’ in place of the analytically oriented ‘minimal weak upper gradient |du|’. We can
state (ZZZ) the way we did thanks to the Rademacher-like result:

(1.5) for X,Y, U as above and v : U → Y locally Lipschitz we have lip(v) = |dv| m− a.e.,

see Proposition 6.11 and Remark 6.12. This result should be compared to the analogous
one obtained by Cheeger in [26] for real valued maps on PI spaces: here we trade more
generality in the target space for more regularity on the source one. Property (1.5) is a
quite direct consequence of the studies in [63] and is related to both Kirchheim’s notion of
metric differential [78] and to the concept of differential of metric-valued maps introduced
in [57].

Because of (1.5), choosing whether to state (ZZZ) with lip(u) or |du| is mainly a matter
of taste: we chose the latter because we believe it better fits the distributional nature of the
inequality, but let us remark that the proof of such bound actually produces the quantity
lip(u), and we use (1.5) only at the very end of the proof to formulate (1.4) the way we did.

- Estimate (1.4) immediately implies the following Liouville-Yau type of result:

Theorem 1.2. Let X be RCD(0, N) with supp(m) unbounded, Y be CAT(0) and u : X → Y
be harmonic with sublinear growth. Then u is constant.
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Here ‘harmonic’ means that u|U is harmonic for any U ⊂ X open bounded with m(X\U) >

0 and the growth condition means that for some x̄ ∈ X, o ∈ Y and function f : R+ → R+

with limr↑∞ f(r) = 0 we have supBr(x̄) dY(u(x), o) < rf(r) for every r > 0.

Proof. By the assumptions we can pick B = Br(x̄) with r = R arbitrarily large in (1.4).
We then conclude from the fact that the right hand side is bounded by C(0, N)f(2r). □

The proof of (ZZZ) builds on top of the geometric backbone coming from [111], [110], in
turn inspired by [89], (we refer to Section 6.3 for both an outline and the actual argument),
analytic machinery previously built and tools that we develop here. Among the latter ones
are:

- a variational principle,
- a study of the relation between Laplacian upper bounds and Hopf-Lax formula,
- a clearer picture of the interplay between ‘pointwise’ and ‘distributional’ Laplacian
bounds.

These results are related one to the other and will be studied on general RCD(K,∞) spaces.
Let us give some details.

The variational principle we prove (see Theorem 5.9) can be roughly formulated as follows:
let (X, d,m) be an RCD(K,∞) space, f ∈ Cb(X) be with ∆f ≤ C and T > 0. Then for m-a.e.

x ∈ X there is a unique minimizer F (x) for f(·) + d2(x,·)
2T and the map F satisfies

(1.6) (FT )∗m ≤ eT (C+2K−Osc(f)m where Osc(f) := sup f − inf f.

The relevance of this statement for our purposes is in this latter estimate, that allows to
perform a perturbation argument very much in the spirit of the classical Jensen’s maximum
principle (adapted to the Alexandrov setting in [89], [111]). Indeed, at some point in the proof
we will have a set E ⊂ X of ‘nice points’, where some relevant quantity is controlled, of full
measure and a function f with Laplacian bounded from above. We would like f to attain a
minimum in E, but this is a priori not granted. We thus apply the above with t≫ 1 to ensure

that for m-a.e. x (and thus for at least 1) the perturbed function f(·) + d2(x,·)
2t has minimum

in E. Notice that by the Laplacian comparison estimates for the squared distance, when
performed on finite dimensional spaces this procedure does not really disrupt the assumption
on the Laplacian upper bound.

We point out that on Riemannian manifolds, estimates like (1.6) - typically stated as
lower bound for appropriate integrals over the ‘contact set’ - have been investigated by the
community working on elliptic PDEs and viscosity solutions: the idea of perturbing with the
squared distance (as opposed to the affine perturbations used in Rd that are unavailable in
the curved setting) goes back to the seminal paper [23], and the role of Ricci curvature has
already been realized, see [109]. In comparison with existing literature, our result seems the
first to be derived in a genuine infinite dimensional setting and we are not aware of works
indicating the link between the variational problem above and the optimal transport problem
that we discuss below, see (1.9). One of the things one learns from such link is that the
minimum is m-a.e. unique (but, admittedly, this seems to be of little use in general).

The idea for proving the above variation principle is the following. Say T = 1, put

Qtf(x) := inf
y
f(y) +

d2(x, y)

2t
,
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assume for a moment to be in the smooth category and for x ∈ X let γ be solving γ′t =
−∇Q1−tf(γt) and starting from x. Then the standard theory for Hamilton-Jacobi equation
(and a simple computation if everything is smooth) ensures that γ1 is a minimizer for Q1f(x),
hence

(1.7) the map F1 can obtained as flow of the vector fields (−∇Q1−tf)

and thus the bound (1.6) will follow if we show that

(1.8) ∆Qtf ≤ ∥(∆f)+∥L∞ + 2K−Osc(f) ∀t > 0.

Also, the general theory of Optimal Transportation ensures that

(1.9) the resulting map F1 is optimal and Q1f is a Kantorovich potential relative to it.

With this in mind, we point out that in the recent [61], by passing to the limit in the viscous
approximation of the Hamilton Jacobi equation (see also [60]) it has been proved that

(1.10) ∆Qtf ≤ ∥(∆f)+∥L∞ + tK−Lip(f)2 ∀t > 0,

at least for sufficiently good functions, see Lemma 5.7. For K ≥ 0 this bound is equivalent to
(1.8) and is therefore an indication that the strategy outlined above might work. Here it is
natural to take inspiration from the theory of Regular Lagrangian Flows (see [13] after [37],
[3]) that, very shortly and roughly said, is satisfactory provided two conditions are met. The
first is the presence of a lower bound on the divergence of the vector fields, that provides an
upper bound on the compression constant of the flow, the second is a uniqueness statement for
the associated continuity equation, typically obtained under some Sobolev-type assumption
on the vector fields.

In our setting and at least if K ≥ 0 we have the first ingredient (estimate (1.10), that leads
to (1.6)), but we cannot really hope for any sort of Sobolev regularity. Still, the particular
features of our minimization problem permit to rely on a different, more geometric, sort of
uniqueness result without the need of PDE considerations. Indeed, the link between our
problem and Optimal Transport noticed in (1.9) remains valid also on RCD(K,∞) spaces
and allows us to use the known results about optimal maps in this framework ([46], [92]).

Notice that in particular we produce minimizers without really minimizing a functional,
but rather following the flow of some vector fields: this partially explains why we do not need
any compactness. Still, inspecting our proof one sees that the tightness encoded in estimate
(1.6), and thus ultimately in the upper Laplacian bound, plays a crucial role - similar to
the role that tightness has in producing Regular Lagrangian Flows or Optimal Maps in this
setting.

For K < 0 the bound (1.10) is not sufficient for our purposes, as we do not have Lipschitz
estimates for our function f . To overcome this issue we borrow an idea from the recent [86];
there it was used in the finite dimensional setting, but the principle remains valid even in

infinite dimension. Putting ∆̃f(x) := limt↓0
htf(x)−f(x)

t , where ht is the heat flow, we have

(1.11) Qtf(x) = f(y) +
d2(x, y)

2t
⇒ ∆̃Qtf(x) ≤ ∆̃f(y)−K

d2(x, y)

t
.

This is proved starting from the known (see [10, Lemma 3.4] and its proof) bound

hsQtf(x) ≤ hsf(y) + e−2Ks d
2(x, y)

2t
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valid for any couple of x, y ∈ X and t, s ≥ 0, and differentiating it in s = 0 at points as in
(1.11), i.e. for which equality holds for s = 0. We remark that a bound analogue to (1.11)
was obtained in [111] (see also [89]) and was crucial in their proof of Lipschitz regularity.
Since we follow the strategy in [111], the estimate (1.11) is important for us, regardless of its
application to the variational principle we are discussing: see the proof of Proposition 6.17
and notice that the K appearing in (ZZZ) is ‘the same’ K that appears in (1.11).

Now observe that for x, y as in (1.11) we must have d2(x,y)
2t ≤ Osc(f), hence the bound

(1.11) hints toward (1.8). Still, the natures of these inequalities are different: the former is
a pointwise bound, while the latter should be intended in the weak sense of integration by
parts (as in [48]). Therefore part of the job we shall do here is to put in communication these
a priori different notions. A result in this direction that we shall use frequently can roughly
be stated as:

coupling a ‘bad’ distributional bound with a ‘good’ pointwise bound valid
m-a.e. yields a ‘good’ distributional bound,

see Lemmas 4.2, 4.8 for the precise formulation. Using this principle we can combine
the distributional bound (1.10) with the pointwise bound (1.11) and deduce the distribu-
tional bound (1.8), as desired. We remark that this sort of analysis also permits to de-
duce the (ZZZ) inequality from purely distributional-type consideration, avoiding the vis-
cous/comparison arguments used in [111], [110]. Let us also point out that links between
distrubutional/pointwise/viscous notions of Laplacian - well understood in the smooth cat-
egory - have been investigated in the RCD framework in [86], with results mostly in the
setting of non-collapsed RCD(K,N) spaces ([50]), see e.g. [86, Theorems 1.3, 1.5]; the analy-
sis performed here strongly suggests that neither non-collapsing nor finite dimensionality are
actually needed, see e.g. Lemma 4.2 and Remark 5.10.

We conclude noticing that Theorem 1.1 leaves open some important questions, beside the
expected generalization to harmonic maps in CAT(κ) spaces, κ > 0. For instance: can one
establish the Bochner-Eells-Sampson formula (BES) in this setting? See e.g. [40], [41] for
partial results. More importantly: can one prove a version of this formula for non-harmonic
maps? Notice that this would require in particular to give a meaning to the ‘gradient of the
Laplacian’ of any such map. A positive answer to this latter question seems necessary if one
wants to develop a regularity theory for the harmonic map heat flow in this setting.

I wish to thank Prof. Hui-Chun Zhang for interesting comments on a preliminary version
of this work and the referee for a very careful review and detailed comments.

When the work on this paper was nearly completed I got knowledge of the related independent
work [85] containing partially overlapping results.

2. Preliminaries

In this paper we study harmonic maps from RCD(K,N) spaces to CAT(0) spaces. Here
we recall their definition and some basic calculus tool. More refined notions/results will be
collected along the text.

2.1. RCD spaces and calculus on them. RCD(K,N) spaces are a non-smooth counterpart
of the notion of Riemannian manifold with Ricci curvature ≥ K and dimension ≤ N . A
key advantage of dealing with possibly non-smooth spaces, pointed out by Gromov in [68],
is that one gains natural compactness properties, the archetypical result being Gromov’s
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(pre)compactness theorem. Starting from this, Colding and Cheeger-Colding studied in the
nineties limits of smooth Riemannian manifolds with uniform lower Ricci and upper dimension
bounds ([31], [27], [28], [29], [28]).

Later, inspired by the results in [33], [87], [108], Lott-Villani [83] and Sturm [104], [105]
independently introduced the class of CD(K,N) spaces, these being metric measure spaces
where the lower Ricci and the upper dimension bounds are interpreted via suitable convexity
properties of entropy functionals defined on the Wasserstein space. This class of spaces
contains Finsler manifolds, that are known to be not Ricci limit spaces thanks to Cheeger-
Colding’s almost splitting theorem.

The need of finding a stable notion ruling out Finsler geometries was one of the motivations
for which, under the influence of [73] and conversations with Sturm, I started studying the
heat flow on CD spaces. The resulting series of papers [44], [51], [8], [9] culminated in [48]
where I proposed to focus on CD spaces that are also infinitesimally Hilbertian, i.e. such that
the Sobolev space W 1,2(X) of real valued functions is Hilbert (see also below). Proofs of
concept of the geometric significance of this proposal came first in [53] with the proof of the
Abresch-Gromoll inequality (answering to an open criticism raised in [90] about CD spaces)
and then in [47] with the proof of the splitting theorem. See also [6] for the reconciliation of
this approach to the RCD definition with the original one made in [9] in the infinite dimensional
case, and [52] for stability results about the heat flow that, among other things, generalize
those obtained in [44] in the compact setting.

In a different direction, and much earlier, Bakry-Émery studied in the eighties Ricci cur-
vature bounds for diffusion operators, in particular introducing the concept of Curvature-
Dimension condition, see [16] and the survey [17]. Their approach was tailored to Dirichlet
forms, but after [51] and [9] it became viable in the metric-measure setting and was taken
in [10] as possible alternative ‘Eulerian’ definition of lower Ricci curvature bounds, called

BE(K,N) condition after Bakry-Émery. In [10] it has been also proved that BE(K,∞) =
RCD(K,∞). This result has been extended to the finite dimensional case in [39] (and later
in [12]). In studying the interplay between W2-convexity of entropies and Bochner inequality
it is also useful to consider the so-called ‘reduced’ curvature dimension condition CD∗(K,N)
introduced in [15] and that in a large class of spaces, including RCD ones, this notion has
been proved to be equivalent to the CD(K,N) one in [25] (at least for normalized spaces).

For an overview of the theory of RCD spaces see the surveys [107], [4], [43].

We shall work with real-valued and metric-valued Sobolev maps defined on such space X.
Here I recall the concept of real-valued Sobolev function, see Section 6.1 for the metric case.
Notions of higher order calculus (e.g. Laplacian, Hessian) will be recalled in the body of the
work when needed. There are various possible equivalent approaches one can take to define
first-order Sobolev functions in our setting (developed originally in [26] then in [99] and later
in [8]), here I shall recall one introduced in [8] as it works better with the arguments in this
manuscript.

Let (X, d,m) be a complete and separable metric space equipped with a non-negative Borel
measure finite on bounded sets. With C([0, 1],X) I shall denote the complete and separable
space of continuous curves on [0, 1] with values in X, equipped with the ‘sup’ distance. For
t ∈ [0, 1], et : C([0, 1],X) → X denotes the evaluation map sending γ to γt.
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Definition 2.1 (Test plans). A test plan is a Borel probability measure π on C([0, 1],X) such
that

(et)∗π ≤ Cm ∀t ∈ [0, 1],¨ 1

0
|γ̇t|2 dtdπ(γ) <∞,

for some C > 0.

In the above, the object |γ̇t| is the so-called metric speed of the absolutely continuous curve
γ (see [2]), and it is part of the requirements that π is concentrated on absolutely continuous
curves.

The concept of Sobolev function is given in duality with that of test plan:

Definition 2.2 (Sobolev functions). A Borel function f : X → R belongs to the Sobolev class
S2(X) provided there is G ∈ L2(X), G ≥ 0 such that

(2.1)

ˆ
|f(γ1)− f(γ1)| dπ(γ) ≤

¨ 1

0
G(γt)|γ̇t|dtdπ(γ) ∀π test plan.

It can be proved that there is a minimal G in the m-a.e. sense: it will be denoted |df | and
called minimal weak upper gradient of f . It satisfies natural calculus rules, mimicking those
valid for the ‘modulus of the distributional differential of a Sobolev function’ in the smooth
world can be developed. These are better seen via the properties of the differential of Sobolev
functions that we are now going to describe (still, notice that from a conceptual standpoint in
order to prove the calculus rules for the differential, at least some knowledge of the calculus
rules for the minimal weak upper gradient are needed).

The Sobolev space W 1,2(X) is defined as L2(X) ∩ S2(X) and equipped with the norm

(2.2) ∥f∥2W 1,2 := ∥f∥2L2 + ∥|df |∥2L2 .

It is always a Banach space and (X, d,m) is called infinitesimally Hilbertian providedW 1,2(X)
is Hilbert (see [48]).

We introduce the following concept (see [49]):

Definition 2.3 (L2-normed L∞-module). An L2-normed L∞-module on X is a Banach space
(M, ∥ · ∥M) that is also a module over the commutative ring with unity L∞(X,m) and which
possesses a pointwise L2 norm, i.e. a map | · | : M → L2(X,m) such that

|v| ≥ 0,

|fv| = |f | |v|,

∥v∥2M =

ˆ
|v|2 dm,

for every v ∈ M and f ∈ L∞(X,m), the first two identities being intended m-a.e.. We say
that M is Hilbertian if, when seens as Banach space, is an Hilbert space.

It is not hard to check that M is Hilbertian if and only if

2(|v|2 + |w|2) = |v + w|2 + |v − w|2 m− a.e.,

holds for any v, w ∈ M and in this case the natural polarization identity ⟨v, w⟩ :=
1
2(|v + w|2 − |v|2 − |w|2) defines a pointwise scalar product, i.e. an L∞-bilinear map from

M to L1(X,m) satisfying the expected (pointwise a.e.) calculus rules.
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Modules defined this way possess a natural dual M∗, defined as the collection of L∞-linear
and continuous maps L : M → L1(X,m), equipped with the natural multiplication with
functions in L∞ and with the pointwise norm

|L|∗ := ess-sup
|v|≤1 m−a.e.

|L(v)|.

Hilbertian modules are canonically isomorphic to their duals via a Riesz’ isomorphism: for
any L ∈ M∗ there is a unique v ∈ M such that L(w) = ⟨v, w⟩ m-a.e. for any w ∈ M and it
holds |v| = |L|∗.

These structures are linked to Sobolev calculus via the following theorem:

Theorem 2.4. Let (X, d,m) be a complete and separable metric space equipped with a non-
negative and non-zero Borel measure giving finite mass to bounded sets. Then there is a
unique, up to unique isomorphism, couple (L2(T ∗X),d) with L2(T ∗X) module in the sense
above and d : S2(X) → L2(T ∗X) linear and such that

• the pointwise norm of df equals the minimal w.u.g. of f for any f ∈ S2(X),
• L∞-linear combinations of elements in {df : f ∈ S2(X)} are dense in L2(T ∗X).

The module L2(T ∗X) is called cotangent module and the operator d differential. The
differential satisfies

df = dg m− a.e. on {f = g}, ∀f, g ∈ S2(X),

d(φ ◦ f) = φ′ ◦ fdf, ∀f ∈ S2(X), φ ∈ Lip(R),
d(fg) = fdg + gdf ∀f, g ∈ S2 ∩ L∞(X).

The dual of L2(T ∗X) is called tangent module and denoted L2(TX). It turns out that (X, d,m)
is infinitesimally hilbertian if and only if L2(T ∗X) is Hilbertian. In this case, for f ∈ S2(X)
we denote by ∇f ∈ L2(TX) the element corresponding to df via the Riesz isomorphism.
Elements of L2(TX) are called vector fields on X. The (opposite of the) adjoint of the
differential is called divergence, in other words a vector field v belongs to the domain of the
divergence provided there is h ∈ L2(X) such thatˆ

fhdm = −
ˆ

df(v) dm ∀f ∈W 1,2(X).

In this case it is easily seen that h is uniquely defined: we shall denote it div(v). Then on
infinitesimally Hilbertian spaces we define D(∆) ⊂W 1,2(X) as the space of functions f such
that ∇f ∈ D(div) and put ∆f := div(∇f).

We also recall the definition of W 1,2(U) for U ⊂ X open with m(U) > 0:

Definition 2.5 (The spaces W 1,2(U) and W 1,2
0 (U)). The space W 1,2(U) consists of those

functions f ∈ L2(U) for which there is G ≥ 0, G ∈ L2(U) such that for any Lipschitz
function φ : X → R with support bounded and contained in U we have φf ∈ W 1,2(X) with
|d(φf)| ≤ G m-a.e. on {φ = 1}. The least, in the m-a.e. sense, such function G is denoted
|df | and then the W 1,2(U)-norm is defined as in (2.2).

The space W 1,2
0 (U) is the W 1,2(U)-completion of the space of functions f ∈ W 1,2(U) with

support at positive distance from ∂U (i.e. infx∈supp(f),y∈∂U d(x, y) > 0).

Here the fact that |df | is well defined and that W 1,2(U), W 1,2
0 (U) are Banach spaces can

easily be proved starting from the analogous properties of globally defined Sobolev functions.
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We conclude this introduction recalling the ‘Eulerian’ approach to RCD spaces (see the
already mentioned [51], [9], [10], [39], [12]):

Definition 2.6. Let K ∈ R, N ∈ [1,∞] and (X, d,m) a complete and separable metric space
equipped with a non-negative, and non-zero, Borel measure finite on bounded sets. We say
that X is an RCD(K,N) space provided:

i) For some C > 0 and x̄ ∈ X we have m(Br(x̄)) ≤ CeCr2 for any r ≥ 0.
ii) Any f ∈W 1,2(X) with |df | ≤ 1 m-a.e. admits a 1-Lipschitz representative.
iii) The space is infinitesimally Hilbertian.
iv) For any f, g ∈ D(∆) with ∆f ∈W 1,2(X), g,∆g ∈ L∞(X), g ≥ 0 we have

1
2

ˆ
|df |2∆g dm ≥

ˆ
g
(
1
N (∆f)2 + ⟨df, d∆f⟩+K|df |2

)
dm.

2.2. CAT(0) spaces. CAT(0) spaces are the non-smooth analogue of Riemannian manifolds
with non-positive Sectional curvature.

Recall that a metric space (Y, dY) is said geodesic provided for any x, y ∈ Y there is a
curve γ, called constant speed geodesic from x to y, which satisfies

dY(γt, γs) = |s− t|dY(γ0, γ1), ∀t, s ∈ [0, 1], γ0 = x, γ1 = y.

Definition 2.7. A CAT(0) space is a complete geodesic space (Y, dY) such that for any
geodesic γ and any z ∈ Y we have

d2Y(z, γt) ≤ (1− t)d2Y(z, γ0) + td2Y(z, γ1)− t(1− t)d2Y(γ0, γ1) ∀t ∈ [0, 1].

The geometric structure of CAT(0) spaces is crucial for the development of a (Lipschitz)
regularity theory for harmonic maps. This will be evident from the discussion in Chapter 6
and from the references collected therein. For an introduction to the geometric and analytic
properties of CAT(0) spaces we refer to [18].

3. A variant of the Hopf-Lax formula

The content of this section is strongly inspired by the discussions in [8], [66], [111] and
constitutes a simple variant of the results therein.

Here we shall always assume that (X, d) is a complete length (i.e. the distance is realized as
infimum of length of curves) metric space and f : X×X → R∪{+∞} is a lower semicontinuous
function bounded from below satisfying the reverse triangle inequality

(3.1) f(x, z) ≥ f(x, y) + f(y, z) ∀x, y, z ∈ X.

In our application f will (almost) be of the form f(x, y) = −dY(u(x), u(y)), where u is a map
from X to some other metric space Y, see (6.23), (6.15). For x, y ∈ X and t > 0 we define
F (t, x; y) ∈ R as

(3.2) F (t, x; y) := f(x, y) +
d2(x, y)

2t
and then ft(x) := inf

y∈X
F (t, x; y).

We also put f0(x) := f(x, x) for every x ∈ X. In other words, if for given x ∈ X we denote by
fx : X → R ∪ {+∞} the function defined as fx(y) := f(x, y) and we recall the usual metric
Hopf-Lax formula

Qtg(x) := inf
y∈X

g(y) +
d2(x, y)

2t
, Q0g(x) = g(x),
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the above definition reads as

(3.3) ft(x) = (Qtf
x)(x).

Our aim in this section is to study the map (t, x) 7→ ft(x). To this aim, let us introduce the
functions D± : X× (0,∞) → [0,∞) as

D+
t (x) := max

(yn)
lim
n→∞

d(x, yn),

D−
t (x) := min

(yn)
lim
n→∞

d(x, yn),
(3.4)

where in both cases (yn) varies among minimizing sequences of F (t, x; ·). Standard diago-
nal arguments show that the max and min in the definitions of D± are achieved while the
boundedness from below of f grants that D±

t (x) <∞ for any t, x.
Identity (3.3) and the know result concerning the metric Hopf-Lax formula immediately

give the following:

Proposition 3.1. With the above notation and assumptions, for every x ∈ X the following
holds:

i) The function t 7→ ft(x) is continuous on [0,∞), locally Lipschitz and locally semicon-
cave on (0,∞) and satisfies

(3.5)
d−

dt
ft(x) = −(D−

t (x))
2

2t2
d+

dt
ft(x) = −(D+

t (x))
2

2t2
.

ii) The function t 7→ D+
t (x) (resp. D−

t (x)) is upper (resp. lower) semicontinuous, con-
verge to 0 as t ↓ 0 and satisfy

(3.6) D−
t (x) ≤ D+

t (x) ≤ D−
s (x) ∀0 ≤ t < s.

Moreover, the identity D+(t) = D−(x) holds for every t except at most a countable
number.

Proof. Considering the function g(·) := f(x, ·), all the stated results follow from the analysis
carried out in [8, Section 3]. Specifically, the monotonicity (3.6) and the last claim in item
(ii) are proved in [8, Proposition 3.1], the semicontinuity in [8, Proposition 3.2] and the
convergence to 0 is obvious from the fact that f is bounded from below (see also the explicit
bound (5.3). □

We now want to estimate
D+

t (x)
t from above and to this aim we recall that the ascend-

ing/descending slopes |∂±g|(x) of the function g : X → R at the point x ∈ X are defined
as

|∂+g|(x) := lim
y→x

(g(y)− g(x))+

d(x, y)
and |∂−g|(x) := lim

y→x

(g(y)− g(x))−

d(x, y)
,

where z+ := z ∨ 0, z− := (−z) ∨ 0 are the positive and negative parts of the real number z,
respectively. We shall also define the ‘tilt’ tilt(f)(x) of f at x as

(3.7) tilt(f)(x) := lim
y→x

(f(x, y))−

d(x, y)

Rephrasing [111, Sublemma 6.16] we then have (notice that here the assumption (3.1) plays
a role):
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Lemma 3.2. We have

D+
t (x)

t
≤ |∂−ft|(x) + tilt(f)(x) ∀t > 0, x ∈ X.

Proof. If D+
t (x) = 0 there is nothing to prove, thus we assume D+

t (x) > 0. Let x ∈ X, t > 0
and (yn) ⊂ X a minimizing sequence for F (t, x; ·) such that d(x, yn) → D+

t (x). For every
n ∈ N, let γn : [0, 1] → X be with constant speed equal to d(x, yn)(1+

1
n) such that γn(0) = x,

γn(1) = yn. Then d(γn(s), yn) ≤ (1− s)(1 + 1
n)d(x, yn) for every s, n and thus

lim
n
ft(x)− ft(γn(s)) ≥ lim

n

(
F (t, x; yn)− F (t, γn(s); yn)

)
= lim

n

(
f(x, yn)− f(γn(s), yn) +

1

2t

(
d2(x, yn)− d2(γn(s), yn)

))
(by (3.1)) ≥ lim

n
f(x, γn(s)) +

d2(x, yn)

t

(
s− s2

2

)
≥ lim

n
f(x, γn(s)) +

D+
t (x)

2

t

(
s− s2

2

)
≥ − lim

n
f(x, γn(s))

− +
D+

t (x)
2

t

(
s− s2

2

)
Rearranging, dividing by sD+

t (x) > 0 and recalling that d(x, γn(s)) ≤ sd(x, yn)(1 + 1
n) →

sD+
t (x) we get

D+
t (x)

t
≤ lim

n

ft(x)− ft(γn(s))

d(x, γn(s))
+ lim

n

f(x, γn(s))
−

d(x, γn(s))
+
s

2

D+
t (x)

t
∀s ∈ (0, 1).

By diagonalization we can find sequences nj ,mj ↑ +∞ such that

D+
t (x)

t
≤ lim

j

ft(x)− ft(γnj (
1
j ))

d(x, γnj (
1
j ))

+ lim
j

f(x, γmj (
1
j ))

−

d(x, γmj (
1
j ))

≤ |∂−ft|(x) + tilt(f)(x),

as desired. □

Collecting what proved so far we obtain (recall that f0(x) := f(x, x)):

Theorem 3.3. For any x ∈ X and t ≥ 0 we have:

|f0(x)− ft(x)| ≤
1

2

ˆ t

0

(
|∂−fs|(x) + tilt(f)(x)

)2
ds

Proof. The inequality f0(x) ≥ ft(x) is obvious by the definitions, while from the regularity
established in item (i) of Proposition 3.1 we know that

f0(x)− ft(x) =

ˆ t

0
−d+

ds
fs(x) ds =

ˆ t

0

D+
s (x)

2

2s2
ds.

The conclusion follows from Lemma 3.2. □

We conclude with the following ‘duality formula’ for tilt(f), analogue of [7, Lemma 3.1.5]:

Proposition 3.4. For any x ∈ X we have

(3.8)
1

2
tilt(f)2(x) = lim

t↓0
−ft(x)

t
= lim

t↓0

D±(t, x)2

2t2

and a sequence tn ↓ 0 realizes the lim of −ft(x)
t if and only if it does so for D±(t,x)2

2t2
.
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Proof. Letting yt be (almost) minimizers for ft(x) we get

0 ≤ lim
t↓0

−ft(x)
t

= lim
t↓0

(
− f(x, yt)

t
− d2(x, yt)

2t2

)
≤ lim

t↓0

(
tilt(f)(x)

d(x, yt)

t
− d2(x, yt)

2t2

)
︸ ︷︷ ︸

=at

∗
≤ tilt(f)2(x)

2
,

(3.9)

where the last inequality comes from Young’s inequality (and we shall use at the end of the
proof that ∗ is actually an equality). Similarly with the lim. If tilt(f)(x) = 0 this gives the

first equality in (3.8), that at = −d2(x,yt)
2t2

and that all the lim must be limits. Thus by (3.6)
we get the second inequality in (3.8).

We thus we assume tilt(f)(x) > 0 and notice that for a, c ≥ 0 the quantity supb>c ab − b2

2

is equal to a2

2 if a ≥ c and to ac− c2

2 if a ≤ c. It follows that for any x, y ∈ X and ε > 0 we
have

sup
τ∈(0,ε)

(f(x, y)−
d(x, y)

d(x, y)

τ
− 1

2

d2(x, y)

τ2

)
=


1
2
(f(x,y)−)2

d2(x,y)
, if f(x,y)−

d(x,y) ≥ d(x,y)
ε

f(x,y)−

ε − d2(x,y)
2ε2

, if f(x,y)−

d(x,y) ≤ d(x,y)
ε

Taking limy→x and noticing that by tilt(f)(x) > 0 we are eventually in the first case we obtain

1

2
tilt(f)2(x) = lim

y→x
sup

τ∈(0,ε)

(f(x, y)−
τ

− d2(x, y)

2τ2

)
≤ sup

τ∈(0,ε)

supy ̸=x

(
f(x, y)− − 1

2
d2(x,y)

τ

)
τ

= sup
τ∈(0,ε)

−
infy∈X

(
f(x, y) + 1

2
d2(x,y)

τ

)
τ

= sup
τ∈(0,ε)

−ft(x)
t

and the arbitrariness of ε > 0 gives 1
2 tilt(f)

2(x) ≤ limt↓0−ft(x)
t . Hence the inequalities in

(3.9) must all be equalities: then the first in (3.8) follows, while the second is a consequence
of the equality in the starred inequality in (3.9) and of (3.6). The last claim also follows from
these arguments. □

4. Laplacian bounds on RCD spaces

4.1. The infinite dimensional case. We shall assume the reader familiar with calculus
on RCD spaces as developed in [9], [48], [49]. Here we collect some useful properties about
Laplacian bounds, in particular concerning how they are affected by operations/limiting pro-
cedures and the relation between distributional bounds in the sense of [48] and pointwise
upper bounds in terms of short time asymptotic of the heat flow considered in [86] (see also
[48, Definition 4.33] for measure-valued upper bounds given in the same spirit). Symmetric
statements for lower bounds are also trivially valid and will not be discussed.

Throughout this section, (X, d,m) is an RCD(K,∞) space, K ∈ R, with supp(m) = X.

We shall denote by Lipb(X) and Lipbs(X) the spaces of real valued functions on X that are
Lipschitz and bounded and, respectively, Lipschitz, bounded and with bounded support.

Start recalling ([9], [6]) that on RCD(K,∞) spaces there is a well defined notion of heat flow
(ht) that is a strongly continuous semigroup of contractions in Lp for every p ∈ [1,∞) and is
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weakly∗-continuous in L∞. The heat flow admits an heat kernel htδx = ρt[x]m with symmetric
transition probabilities, i.e ρt[x](y) = ρt[y](x) for m×m-a.e. x, y. The representation formula

(4.1) htf(x) =

ˆ
f dhtδx

holds for every f ∈ Lp, p ∈ [1,∞], and provides a canonical precise representative for the
function htf . In what follows, we shall always use this representative and notice that formula
(4.1) can be used to define htf for any f ∈ L1 +L∞(X) (this is the space of functions f that
can be written as f1 + f2 for some f1 ∈ L1(X) and f2 ∈ L∞(X) - notice that it is a Banach
space when equipped with the norm ∥f∥ := inf ∥f1∥L1 + ∥f2∥L∞ , the infimum being taken
among all such writings). A consequence of (4.1) is the weak maximum principle for the
heat flow, i.e. htf ≤ C m-a.e. provided f ≤ C m-a.e. and similarly for lower bounds. Formula
(4.1) and the symmetry of the transition probabilities immediately imply

(4.2)

ˆ
fhtg dm =

ˆ
ghtf dm ∀f ∈ Lp(X), g ∈ Lq(X), p, q ∈ [1,∞], 1

p + 1
q = 1.

Properties of the heat flow that we shall frequently use are the Bakry-Émery estimate [94]

(4.3) |dhtf | ≤ e−Ktht(|df |) m− a.e. ∀f ∈ Lipb(X), t > 0,

and the L∞ − Lip regularization:

(4.4) Lip(htf) ≤ C(K, t)∥f∥L∞ , ∀f ∈ L∞(X), t > 0.

These estimates are typically written for f ∈ W 1,2(X) and f ∈ L2 ∩ L∞(X) respectively (see
[9], [6]), but the extension we wrote follows rather trivially via multiplication with a sequence
of uniformly Lipschitz cut-off functions with bounded support taking into account, for (4.3),
the lower semicontinuity of weak upper gradients [26], [8] (or, which is more or less the same,
the closure of the differential [49]). Notice that (4.3) also provides the metric information (see
[9])

(4.5) Lip(htf) ≤ e−KtLip(f) ∀t ≥ 0.

We recall that D(∆) ⊂ W 1,2(X) is the space of functions f for which there is g ∈ L2 such
that

´
ghdm = −

´
df ·dhdm for every h ∈W 1,2(X). The density of W 1,2 in L2 ensures that

the function g is unique: we will denote it ∆f . Notice that this definition coincides with the
one given in Section 2.1.

We shall also work with a regularization procedure that works better than the bare heat

flow: fix once and for all κ ∈ C1
c (0, 1) non-negative, with

´ 1
0 κ = 1 and define

(4.6) h̃nf := n

ˆ +∞

0
κ(nt)htf dt =

ˆ 1

0
κ(t)ht/nf dt, ∀n ∈ N, n > 0, f ∈ L1 + L∞(X).

The closure of ∆ justifies the computation

(4.7) ∆h̃nf = n

ˆ +∞

0
κ(nt)∆htf dt = n

ˆ +∞

0
κ(nt)∂thtf dt = −n2

ˆ +∞

0
κ′(nt)htf dt

for any f ∈ L2(X), n ∈ N, n > 0, where the integrals are intended in the Bochner sense. This
bound, together with the weak maximum principle and the L∞ − Lip regularization imply

(4.8) Osc(h̃nf) + Lip(h̃nf) + ∥∆(h̃nf)∥L∞ ≤ C(n,K)Osc(f) ∀n ∈ N
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for every f ∈ L2(X), where the oscillation Osc(f) of f : X → R is defined as

(4.9) Osc(f) := sup f − inf f.

Another useful property that we shall occasionally use is (here and below convergence in
L1
loc(X) means convergence in L1(X,m|B) for every bounded Borel set B ⊂ X):

(4.10) f ∈ L∞(X) ⇒ sup
n

∥h̃nf∥L∞ <∞ and h̃nf → f in L1
loc(X).

Indeed, the uniform L∞-bound is obvious, and for L1
loc convergence we notice that

(4.11)

ˆ
B
|h̃nf − f |dm ≤ ∥h̃n(χBf)−χBf∥L1 +

ˆ
B
|h̃n(χBcf)| dm ∀B ⊂ X Borel bounded.

Now observe that (4.1) yields |h̃n(χBcf)| ≤ h̃n(|χBcf |), thus taking also (4.2) into account

we see that
´
B |h̃n(χBcf)|dm ≤

´
h̃n(χB)|χBcf | dm ≤ ∥f∥L∞

´
h̃n(χB)χBc dm and the claim

follows by the strong continuity of (ht) in L
1(X).

We want extend the domain of the Laplacian and propose two definitions of Laplacian
bounds. To this aim we first introduce a suitable class of ‘test functions’ where to ‘throw’
derivatives. Recall that in [94], [49] it has been defined the space Test∞(X) as

Test∞(X) :=
{
f ∈ Lipb(X) ∩D(∆) : ∆f ∈ L∞ ∩W 1,2(X)

}
.

In what follows we shall mainly work with bounded functions, thus it is better to deal with

test functions that are in L1 and to this aim we define the space T̃est(X) ⊂ Test∞(X) as

T̃est(X) :=
{
f ∈ L1 ∩ Test∞(X) : |df |,∆f ∈ L1

}
.

Notice that since Test∞(X) is an algebra (see [94]) the same can easily be proved for T̃est(X).

Observe that the classical identity ht∆f = ∆htf valid for f ∈ D(∆) ⊃ T̃est(X) and the
continuity of ht as a map from Lp into itself for any t ≥ 0 and p ∈ [1,∞] give

(4.12) φ ∈ T̃est(X) ⇒ htφ, h̃nφ ∈ T̃est(X) ∀t, n > 0,

whereas from identity (4.7), the bound (4.3) and arguing as for (4.8) we easily obtain that

(4.13) φ ∈ Lipbs(X) ⇒ h̃nφ ∈ T̃est(X) ∀n ∈ N, n > 0.

In particular, letting T̃est
+
(X) ⊂ T̃est(X) be the cone of non-negative functions, we see that

(4.14)

φ ∈ L1 ∩ L∞(X), φ ≥ 0 ⇒ ∃(φn) ⊂ T̃est
+
(X) with

{
φn → φ in L1(X),
supn ∥φn∥L∞ <∞.

We are now ready to propose the following:

Definition 4.1 (Laplacian and Laplacian bounds). Let (X, d,m) be an RCD(K,∞) space.
The space D(∆loc) is the collection of functions f ∈ L1 + L∞(X) for which there is g ∈

L1 + L∞(X) such that

(4.15)

ˆ
f∆φdm =

ˆ
g φ dm ∀φ ∈ T̃est(X).

In this case the function g (that is clearly unique by (4.14)) will be denoted ∆f .
For f, g ∈ L1 + L∞(X) we say that the Laplacian of f is bounded above by g if

(4.16)

ˆ
f ∆φdm ≤

ˆ
g φdm, ∀φ ∈ T̃est

+
(X).
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In this case we write ∆f ≤ gm. Finally, for f : X → R bounded and Borel we define

(4.17) ∆̃f(x) := lim
t↓0

htf(x)− f(x)

t
∀x ∈ X.

Let us collect some properties of these notions. We start remarking that in writing ∆f ≤
gm we are not really defining who ∆f is. In many relevant circumstances, ∆f can be
interpreted as a suitable polar measure (see [88, Proposition 2.16, Chapter 2], [84, III, 2.1],
[48], [94]) but for the discussion we are doing here this is not relevant.

A direct consequence of the definition is the following stability result:

(4.18)

f, fn, g, gn, F ∈ L1 + L∞(X),
∆fn ≤ gnm, ∀n ∈ N,
fn → f m− a.e.,
gn → g m− a.e.,
|fn|, |gn| ≤ F m− a.e.

 ⇒ ∆f ≤ gm

proved by passing to the limit in (4.16): this is possible by dominate convergence thanks to
the dominations for fn, gn and the assumption φ,∆φ ∈ L1∩L∞(X). Also, from (4.12) we get

(4.19) ∆f ≤ gm ⇒ ∆h̃nf ≤ h̃ngm

There is a quite natural link between upper bounds on the Laplacian in the ‘distributional’
sense ∆f ≤ Cm and in the pointwise sense ∆̃f ≤ C.

For technical reasons that will be clear later on, part of the result is stated for almost
continuous functions, i.e. those functions f : X → R such that

there is A ⊂ X Borel with m(X \A) = 0 so that f |A is continuous and bounded,(4.20a)

f(x) = lim
y→x

f(y) holds for every x ∈ X.(4.20b)

The collection of such functions (that are clearly Borel) will be denoted AC−(X).

Lemma 4.2. Let (X, d,m) be RCD(K,∞) and assume that ∆f ≤ gm with g ∈ L∞(X). Then:

i) For every t ≥ 0 the bound htf − f ≤
´ t
0 hsg ds holds m-a.e..

ii) It holds ∆f ≤ ∆̃fm.

iii) If f ∈ AC−(X) and g is upper semicontinuous, then ∆̃f ≤ g everywhere on X.

Proof. For (i) let φ ∈ T̃est
+
(X) and recall (4.12) to getˆ

(htf − f)φ =

ˆ
f(htφ− φ) =

¨ t

0
f∆hsφ ≤

¨ t

0
ghsφ =

ˆ
φ
( ˆ t

0
hsg ds

)
dm,

so the claim follows from the density result (4.14). For (ii) we pick φ ∈ T̃est
+
(X) and notice

that ˆ
f∆φdm = lim

t↓0

ˆ
f
htφ− φ

t
dm = lim

t↓0

ˆ
htf − f

t
φdm,

thus (i), the weak maximum principle, the fact that φ ∈ L1(X) and (reverse) Fatou’s lemma
give ˆ

f∆φdm ≤
ˆ

lim
t↓0

htf − f

t
φdm =

ˆ
∆̃f φ dm,

as desired. For (iii), letA ⊂ X be as in (4.20a). Then (i) and the continuity of htf (recall (4.4))

and
´ t
0 hsg ds (that follows from the representation formula (4.1) and dominated convergence)
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ensure that htf(x) ≤ f(x)+(
´ t
0 hsg ds)(x) for every x ∈ A. Then (4.20b), again the continuity

of htf and limt

ffl t
0 hsg ds ≤ g (from (4.1) and upper semicontinuity) yield the claim. □

We pass to study some properties of D(∆loc) and notice that since ht∆φ = ∆htφ = ∂thtφ

holds for any φ ∈ D(∆) ⊃ T̃est(X), it is easy to see that formula (4.7) holds even for

functions f ∈ L1 + L∞(X), meaning that for any φ ∈ T̃est(X) we have
´
h̃nf∆φdm =

−n2
˜ +∞

0 κ′(nt)htfφdt dm. In particular, arguing as for (4.8) we see that

(4.21) the estimate (4.8) is valid even for f ∈ L∞(X).

In defining D(∆loc) we used T̃est(X) as class of test functions. If we have additional regularity
on f , an equivalent approach (more convenient in deriving calculus rules) is possible:

for f ∈ Lipb(X) and g ∈ L1 + L∞(X) we have:

f ∈ D(∆loc) with ∆f = g ⇔
ˆ

∇f · ∇ψ dm = −
ˆ
gψ dm ∀ψ ∈ Lipbs(X).

(4.22)

The key observation to prove such result is that for f ∈ Lipb(X) and φ ∈ T̃est(X) we have

(4.23)

ˆ
f∆φdm = −

ˆ
∇f · ∇φdm.

This can be established recalling that the integration by parts formula [48, Chapter 4] ensures
that for any η ∈ Lipbs(X) we have

´
ηf∆φdm =

´
−η∇f · ∇φ − f∇η · ∇φdm, thus picking

η = ηn := (1 − d(·, Bn(x̄)))
+ for some x̄ ∈ X and letting n → ∞ we conclude that (4.23)

holds (here the assumption |dφ| ∈ L1(X) matters). The the implication ⇐ in (4.22) follows
by a similar cut-off procedure, while for ⇒, thanks to (4.13) it is enough to prove that

|dh̃nψ − dψ| → 0 in L1(X). This will follow if we show that

lim
n→∞

ˆ
η|dh̃nψ − dψ| dm = 0 ∀η ∈ Lipbs(X), and lim

j→∞
lim
n∈N

ˆ
Bj(x̄)c

|dh̃nψ|dm = 0.

The first of these is a consequence of
´
η|dh̃nψ − dψ| dm ≤ C

√´
|dh̃nψ − dψ|2 dm and the

continuity of [0,∞) ∋ t 7→ htψ ∈ W 1,2(X). For the second we recall (4.3) and argue as after
(4.11)

A consequence of (4.22) are the following calculus rules:

f, g ∈ Lipb(X) ∩D(∆loc) ⇒ ∆(fg) = f∆g + g∆f + 2∇f · ∇g,
f ∈ Lipb(X) ∩D(∆loc) ⇒ ∆(u ◦ f) = u′ ◦ f∆f + u′′ ◦ f |df |2,

(4.24)

where in the second formula u is a smooth function defined on a neighborhood of the image
of f and it is part of the claim that fg, u ◦ f ∈ D(∆loc). To check the first, by (4.22) we need
to prove that for any ψ ∈ Lipbs(X) we have

−
ˆ

∇(fg) · ∇ψ dm =

ˆ (
f∆g + g∆f + 2∇f · ∇g

)
ψ dm.

In turn, this follows from the Leibniz rule for the gradient [48, Equation (4.16)], the fact that
fψ, gψ ∈ Lipbs(X) and again (4.22). The formula for ∆(u ◦ f) is proved analogously.

An interesting consequence of the calculus rules (4.24) is the following result about stability
of upper bounds for the Laplacian under the ‘inf’ operation:
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Lemma 4.3. Let (X, d,m) be RCD(K,∞), K ∈ R, I is a set of indexes, not necessarily
countable, and g ∈ L1 + L∞(X). Assume that supi∈I ∥fi∥L∞ < ∞, that ∆fi ≤ gm for every
i ∈ I and let f̄ := ess-infi∈I fi. Then ∆f̄ ≤ gm.

Assume also that for some E ⊂ X Borel with m(X \ E) = 0 we have that fi|E is upper

semicontinuous for every i ∈ I. Then the infimum f := infi fi coincides m-a.e. with f̄ .

Proof. Since the essential infimum can be realized as infimum of a suitably chosen countable
subfamily, recalling the stability result (4.18) it is sufficient to prove the claim for I = {1, 2}.
Thus let f1, f2 ∈ L∞(X) be with ∆f1,∆f2 ≤ Cm and recall (4.10) to see that h̃nf1 ∧ h̃nf2 →
f1 ∧ f2 and h̃ng → g in L1

loc(X). Thus from (4.19) and (4.18) (possibly after passing to a

suitable m-a.e. converging sequences) we see that we can replace fi with h̃nfi, i = 1, 2, in our
claim.

By (4.21) we thus reduced to proving that for f1, f2 ∈ Lipb(X)∩D(∆loc) with ∆f1,∆f2 ≤ g
m-a.e. we have∆(f1∧f2) ≤ gm. Since the functions hn := − 1

n log(e−nf1+e−nf2) are uniformly
bounded and pointwise converge to f1∧f2, by (4.18) again it is sufficient to show that ∆hn ≤ g
m-a.e. for every n ∈ N. This follows by direct computation, as (4.24) gives

∆hn = −n
(e−nf1 |df1|2 + e−nf2 |df2|2

e−nf1 + e−nf2
− |e−nf1df1 + e−nf2df2|2

|e−nf1 + e−nf2 |2
)

︸ ︷︷ ︸
≥0 m−a.e.

+
e−nf1∆f1 + e−nf2∆f2

e−nf1 + e−nf2
,

so that ∆f1,∆f2 ≤ g implies ∆hn ≤ g as well, as desired.
For the second claim notice that the inequality f ≤ f̄ is trivial. For the other start

defining, for ε > 0, the function fε(x) := ε + supBε(x) f and notice that since f |E is upper

semicontinuous (as infimum of upper semicontinuous functions) we have that fε ↓ f as ε ↓ 0
on E.

Now fix ε > 0 and for every x ∈ E use the upper semicontinuity of the fi’s to find ix ∈ I
and rx ∈ (0, ε) such that fix(y) < f(x)+ε for every y ∈ Brx(x)∩E. Thus we have fix ≤ fε on
Brx(x). By the Lindelof property of E (that is a separable, though not complete in general,
metric space when equipped with the restricted distance - see [77, Chapter I, Thm. 15]) there
is a countable collection (xn) ⊂ E such that ∪nBrxn (xn) ⊃ E. Since f̄ ≤ fixn ≤ fε m-a.e.

on Brxn (xn) for every n ∈ N, we deduce that f̄ ≤ fε m-a.e.. The conclusion follows from the
arbitrariness of ε > 0. □

4.2. The finite dimensional case. Here we study Laplacian bounds for functions defined

on some open subset U ⊂ X of X. In this case we certainly cannot use T̃est(X) as space of test

functions, we therefore introduce the space T̃est(U) ⊂ T̃est(X) made of those test functions φ
with supp(φ) ⊂⊂ U (here and below we write A ⊂⊂ B to say that the closure of A is compact

and contained in B). Notice that in general RCD(K,∞) spaces it is unclear whether T̃est(U)
contains anything beside the 0 function. On the other hand, an approximation argument
based on the mollified heat flow h̃n, the Bakry-Émery estimate (4.3) and post-composition
shows that

suppose that X is proper and let K ⊂ U ⊂ X be with K compact and U open,

then there is φ ∈ T̃est(X) with values in [0, 1], support in U identically 1 on K,
(4.25)

see e.g. the arguments in [11, Lemma 6.7]. With this said, we can give the following definition:
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Definition 4.4 (Local Laplacian and Laplacian bounds). Let (X, d,m) be a proper
RCD(K,∞) space and U ⊂ X open.

The space D(∆loc, U) is the collection of functions f ∈ L1 + L∞(U) for which there is
g ∈ L1 + L∞(U) such that

(4.26)

ˆ
f∆φdm =

ˆ
g φ dm ∀φ ∈ T̃est(U).

In this case the function g (that is clearly unique by (4.14), (4.25)) will be denoted ∆f .
For f, g ∈ L1 + L∞(U) we say that the Laplacian of f is bounded above by g on U , and

write ∆f |U ≤ gm or ∆f ≤ gm on U , provided

(4.27)

ˆ
f ∆φdm ≤

ˆ
φg dm, ∀φ ∈ T̃est

+
(U).

Finally, for f : U → R bounded and Borel we define ∆̃f : U → R ∪ {±∞} as

(4.28) ∆̃f(x) := lim
t↓0

htf(x)− f(x)

t
,

where in defining htf we are extending f outside U by setting it to 0.

Let us collect some comments. We start noticing that in defining ∆̃f(x) for f defined only
on U , we chose to extend f by 0 outside U , but in fact the constant value chosen to extend it
is not really relevant. This is a consequence of the limiting property limt↓0 t

−1htδx(B
c
r(x)) = 0

valid for any x ∈ X and r > 0. Such limiting property is in turn a direct consequence of the
Large Deviations upper bound for the heat kernel

(4.29) lim
t↓0

t log
(
htδx(B

c
r(x))

)
≤ −r

2

4
,

established in the recent [61]. Also, a direct consequence of the definitions is that

(4.30) the stability property (4.18) holds even for local Laplacian bounds

and that Laplacian bounds are local, as expected, in the sense that

(4.31)
Ui ⊂ X, open,
∆f |Ui

≤ gm, ∀i ∈ I,

}
⇒ ∆f |U ≤ gm where U := ∪iUi.

To see this latter property pick φ ∈ T̃est
+
(U) and use (4.25) to find a partition of unit (ηi)

of supp(φ) subordinate to the cover made by (a finite subcover of) the Ui’s and made of

functions in T̃est
+
(∪iUi). Since clearly ∆φ =

∑
i∆(ηiφ) and ηiφ ∈ T̃est

+
(Ui), the claim

follows.
Another trivial observation is that if f ∈W 1,2

loc (U) (see e.g. [19, Section 2.5] for the definition
- alternatively, see [63, Section 5.1] for a presentation oriented towards the results presented
here), then the integration by parts

ˆ
f∆φdm = −

ˆ
∇f · ∇φdm ∀φ ∈ T̃est(U)
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is justified by the very definition of ∆ and the fact that φ has compact support. Hence
arguing as for (4.22) it is easy to see that

∆f |U ≤ gm ⇔ −
ˆ

∇f · ∇ψ dm ≤
ˆ
g ψ dm ∀ψ ∈ Lipbs(X) s.t. ψ ≥ 0, supp(ψ) ⊂ U,

(4.32)

and similarly for (4.26). Indeed the fact that functions in T̃est(U) are in Lipbs(X) and with
support in U provides one implication. For the other we mollify a given ψ ∈ Lipbs(X) with

support in U by considering ηh̃nψ, where η is as in (4.25) with K := supp(ψ).
In what follows we will need to extend a function defined on some open set with a local

bound on the Laplacian to a function defined on the whole space having a global bound on
the Laplacian. This will be done via the following lemma. Here the assumption f ∈W 1,2

loc (U)
is often redundant (by a Cacciopoli-type inequality) but for simplicity we keep it.

Lemma 4.5 (Extension lemma). Let (X, d,m) be a proper RCD(K,∞) space, K ∈ R, U ⊂ X

open, f ∈ W 1,2
loc (U) be with ∆f |U ≤ gm for some g ∈ L1(X), g ≥ 0, and so that for some

c ∈ R the set V := {f ≤ c} is relatively compact in U .
Then ∆(f ∧ c) ≤ gm as well, where the function f ∧ c is intended to be equal to c on X \U .

Proof. Replacing f with f − c we can assume that c = 0. Then let η be as in (4.25) with

K ⊂⊂ U being a compact neighbourhood of V̄ and let f̃ := ηf . Then starting from (4.32)
and arguing as for (4.24) taking into account that supp(η) ⊂⊂ U it is easy to prove that
∆(ηf) ≤ g′m on U for g′ := gη+ f∆η+2∇f · ∇η. Then letting ηf be 0 outside U and using
the locality property (4.31) with U1 := U and U2 = X \K we see that ∆(ηf) ≤ g′m holds
on X and thus from Lemma 4.3 that ∆(f+) ≤ (g′)+m. To replace (g′)+ with g+ = g we use
again (4.31), this time with U1 := {interior of {η = 1}} and U2 := X \ V̄ . □

The equivalence (4.32) shows that the notion of Laplacian bound given in Definition 4.4 is
compatible with the analogue given in [48]. In particular, we get (see [48, Theorem 5.14]):

Theorem 4.6 (Laplacian comparison for the squared distance). Let (X, d,m) be an
RCD(K,N) space with K ∈ R and N < ∞. Let R > 0 and φ : X → R of the form

φ(x) = infy∈X ψ(y) +
d2(x,y)

2 for some ψ : X → R̄, so that for any x ∈ X there is a minimizer
y for φ(x) in BR(x). Then

∆φ ≤ C(K−R2, N)m.

In particular ∆1
2d

2(·, x̄) ≤ C(K−R2, N)m on BR(x̄) for every x̄ ∈ X.

These bounds and the extension Lemma 4.5 allow to deduce appropriate ‘local’ versions of
‘global’ results previously obtained. An example is the following local variant of Lemma 4.3:

Lemma 4.7. Let (X, d,m) be RCD(K,N), K ∈ R, N < ∞, U ⊂ X open, I is a set of
indexes, not necessarily countable, and g ∈ L1+L∞(X). Assume that supi∈I ∥fi∥L∞(U) <∞,

that fi ∈W 1,2
loc (U) with ∆fi|U ≤ gm for every i ∈ I and let f̄ := ess-infi∈I fi. Then ∆f̄ ≤ gm.

Assume also that for some E ⊂ U Borel with m(U \ E) = 0 we have that fi|U is upper

semicontinuous for every i ∈ I. Then the infimum f := infi fi coincides m-a.e. with the
m-essential infimum f̄ .

Proof. The second statement follows as in Lemma 4.3. For the first we notice that by the
locality property (4.31) we can assume that U is bounded. Then fix V ⊂⊂ U open and notice
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that for C > 0 sufficiently big we have: for the functions f̃i := fi + Cd2(·, V ) there is c > 0

independent on i such that V ⊂ {f̃i ≤ c} ⊂⊂ U . Then Theorem 4.6, Lemma 4.5 and the

locality of the Laplacian ensure that ∆(f̃i ∧ c) ≤ (χV g + (χV c(g + C ′))m for some C ′ > 0.

Hence from Lemma 4.3 we deduce that ∆(ess-inf(f̃i ∧ c)) ≤ (χV g + (χV c(g + C ′))m as well

and since f̃i ∧ c = fi on V and V ⊂⊂ U was arbitrary, the conclusion follows. □

RCD(K,N) spaces, N <∞, also admit Gaussian estimates for the heat kernel

(4.33) ρt[x](y) ≤
C(K,N)

m(B√
t(y))

exp
(
−d2(x, y)

5t
+ C(K,N)t

)
,

for every x, y ∈ X where ρt[x] :=
dhtδx
dm (see [100] - these follow from the fact that these are

doubling spaces supporting a Poincaré inequality [105], [91]) and growth estimates for the
volume of balls

(4.34) m(BR(x)) ≤ C(K,N)m(B1(x))e
C(K,N)R ∀x ∈ X, R > 1

(from Bishop-Gromov-Sturm inequality, see [105]). Combining these it is possible to prove
that:

(4.35) for g : X → R integrable we have htg(x) → g(x) for any Lebesgue point x of g,

see [86, Lemma 2.40]. This and Lemma 4.5 give the following variant of Lemma 4.2:

Lemma 4.8. Let (X, d,m) be an RCD(K,N) space with K ∈ R, N < ∞, U ⊂ X open
bounded and f : X → R be Borel, bounded, in W 1,2(U) and so that ∆f |U ≤ gm for some

Borel integrable function g : U → R. Assume also that A ⊂ X is Borel with m(U \A) = 0 so
that f |A is continuous.

Then for any x ∈ A Lebesgue point of g we have

(4.36) ∆̃f(x) ≤ g(x).

Conversely, if g is bounded we have ∆f ≤ ∆̃fm on U . Finally, if f1, f2 ∈ AC−(X)∩W 1,2(X)
are so that ∆fi|U ≤ gim for some gi ∈ L∞(U), then ∆(f1∧f2)|U ≤ (χ{f1≤f2}g1+χ{f2<f1}g2)m.

Proof. Let x ∈ A, B ⊂⊂ U be an open neighbourhood of x and notice that for C > 0 big
enough we have: for the function f ′ := f + Cd2(·, B) there is c > 0 such that B ⊂ {f ′ ≤
c} ⊂⊂ U . Then as in the proof of Lemma 4.7 above we have that ∆f̃ ≤ g̃m, where f̃ := f ′∧c
and g̃ := χBg+χBc(g+C ′) for some C ′. Up to subtract a constant to f we can assume that

c = 0, so that f̃ has bounded support and thus is in L2(X). Then htf ∈ D(∆) for every t > 0

and, quite obviously, ∆htf̃ ≤ htg̃ m-a.e. for every t > 0, hence for ε ∈ (0, t) we have

(4.37) htf̃ − hεf̃ =

ˆ t

ε
∆hsf̃ ds ≤

ˆ t

ε
hsg̃ ds

holds m-a.e.. Then notice that by the Gaussian and volume growth estimates (4.33), (4.34),
the L∞ − Lip-regularization (4.4) and the fact that g̃ is constant outside a bounded set it

follows that hsg̃ is continuous uniformly on s ∈ [ε, t]. Since so are htf̃ , hεf̃ , we see that (4.37)

holds everywhere on X. Now observe that the construction ensures that f̃ |A is continuous

and the fact that m(X\A) = 0, the absolute continuity htδy ≪ m and the fact that htδy ⇀ δy
easily imply that hεf̃(y) → f̃(y) for every y ∈ A. Thus we can pass to the limit in (4.37)
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evaluated at x ∈ A as ε ↓ 0, noticing that the right hand side is continuous in ε, to deduce
that

htf̃(x)− f̃(x)

t
≤
 t

0
hsg̃(x) ds.

We then recall (4.35) and notice that (4.29) and the fact that f, f̃ coincide on B and are both

bounded grant that ∆̃f(x) = ∆̃f̃(x): the inequality (4.36) follows.
The second claim follows from the extension argument just used and item (ii) in Lemma

4.2 while for the last claim we notice that by the arguments just used and the locality of
the Laplacian we can reduce to the case ∆fi ≤ gi on X for gi ∈ L∞(X). Then by Lemma

4.2 it is sufficient to show that ∆̃(f1 ∧ f2) ≤ g m-a.e.. Thus let x ∈ X be so that f1(x) ≤
f2(x) and notice that the monotonicity of the heat flow (or equivalently (4.1)) tells that
hs(f1 ∧ f2)(x) ≤ hsf1(x). Subtracting the equality that holds for s = 0 and dividing by s we

get ∆̃(f1 ∧ f2)(x) ≤ ∆̃f1(x). Recalling (4.36) and with an analogous argument for points x
such that f2(x) < f1(x) we conclude. □

5. A variational principle on RCD(K,∞) spaces

5.1. Reminders: Hopf-Lax formula and Regular Lagrangian Flows. We start recall-
ing some facts about the Hopf-Lax formula, valid on general length spaces. For f : X → R
lower semicontinuous and bounded from below and t > 0 we put

Qtf(x) := inf
y∈X

f(y) +
d2(x, y)

2t
, ∀x ∈ X

We shall also put Q0f = f . Notice that trivially

(5.1) inf f ≤ Qtf ≤ sup f and thus Osc(Qtf) ≤ Osc(f),

where the oscillation is defined in (4.9). We recall that

(5.2) (t, x) 7→ Qtf(x) is continuous on (0,∞)×X and lower semicontinuous on [0,∞)×X,

see [7, Lemma 3.1.2] for the continuity. For lower semicontinuity in 0 let tn ↓ 0, xn → x and

(yn) ⊂ X so that limnQtnf(xn) = limn f(yn)+
d2(xn,yn)

2tn
<∞. Since f is bounded from below

we get limn d(xn, yn) = 0. Hence limn d(x, yn) = 0 and the lower semicontinuity of f gives

limn f(yn) +
d2(xn,yn)

2tn
≥ limn f(yn) ≥ f(x).

Now using the fact that x can be chosen as competitor for Qtf(x) we easily get that
(5.3)

(yn) minimizing for f(·) + d2(·, x)
2t

⇒ lim
n

d2(x, yn)

2t
≤ lim

n
f(x)− f(yn) ≤ Osc(f).

We also claim that

(5.4) Lip(Qtf) ≤
√
2tOsc(f) ∀t > 0.

To see why, let x̄ ∈ X, x ∈ Bε(x̄) and use (5.3) to get that any minimizing sequence for

Qtf(x) must eventually belong to Br+ε(x) ⊂ Br+2ε(x̄) for r :=
√
2tOsc(f). It follows that

Qtf = inf
y∈Br+2ε(x̄)

d2(·, y)
2t

+ f(y) on Bε(x̄)
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and recalling the trivial bound Lip(d2(·, y)|Br(y)
) ≤ 2r, we conclude that Lip(Qtf |Bε(x̄)

) ≤
r+2ε. Then the arbitrariness of ε in conjunction with the length property of X give the claim
(5.4).

The Hopf-Lax semigroup produces solutions of the Hamilton-Jacobi equation in the sense
that:

for every x ∈ X the map [0,∞) ∋ t 7→ Qtf(x) is continuous and

locally absolutely continuous on (0,∞) with d
dtQtf(x) +

1
2 lip

2(Qtf)(x) = 0 a.e. t,

(5.5)

see [8, Theorem 3.5, Proposition 3.3], where the local Lipschitz constant lipf : X → [0,∞] of
the function f is defined as

lipf(x) := lim
y→x

|f(y)− f(x)|
d(x, y)

∀x ∈ X.

In connection with Sobolev calculus we recall that

(5.6) for f : X → R locally Lipschitz we have |df | ≤ lip(f) m-a.e.,

see e.g. [26] or [8] for the proof.

The evolution via Hopf-Lax semigroup will be used in conjunction with the concept of
Regular Lagrangian Flow. The definition below as well as Theorem 5.2 come from [13] (see
also [14]), that in turn is the generalization of the analogous concept introduced by Ambrosio
[3] in the study of the DiPerna-Lions theory [37].

In the forthcoming discussion, by |γ̇t| := limh→0
d(γt+h,γt)

|h| we denote the metric speed of the

absolutely continuous curve γ : [0, 1] → X (see e.g. [7, Theorem 1.1.2]) and by 1
2

´ 1
0 |γ̇t|2 dt the

kinetic energy of γ ∈ C([0, 1],X), that is intended to be +∞ if γ is not absolutely continuous.

It is easy to see that γ 7→ 1
2

´ 1
0 |γ̇t|2 dt is lower semicontinuous (see e.g. [55, Proposition 1.2.7]).

Definition 5.1 (Regular Lagrangian Flow). Let (X, d,m) be an RCD(K,∞) space, K ∈ R
and (vt) ∈ L1([0, 1], L∞(TX)). Then Fl : [0, 1] × X → X is said to be a Regular Lagrangian
Flow for (vt) provided it is Borel and the following properties are verified:

i) For some C > 0 we have (Flt)∗m ≤ Cm for any t ∈ [0, 1].
ii) For every x ∈ X the curve [0, 1] ∋ t 7→ Flt(x) ∈ X is continuous and starts from x.
iii) Given f ∈ W 1,2(X) and t ∈ [0, 1], one has that for m-a.e. x ∈ X the map [0, 1] ∋ t 7→

(f ◦ Flt)(x) ∈ R belongs to W 1,1(0, 1) and satisfies

(5.7)
d

dt
(f ◦ Flt)(x) = df(vt)

(
Flt(x)

)
for L1-a.e. t ∈ [0, 1].

We shall typically write (Flt) in place of Fl for Regular Lagrangian Flows (RLF in short).
We notice that if (Flt) is a RLF of (vt), choosing a suitable countable family of 1-Lipschitz
functions in (iii) above we deduce that: For m-a.e. x ∈ X the curve t 7→ Flt(x) is absolutely
continuous and

(5.8) the metric speed of t 7→ Flt(x) coincides with |vt|(Flt(x)) for m× L1 − a.e. (x, t)

as can be proved closely following the arguments in [49, Section 2.3.5].
The following crucial result establishes existence and uniqueness of RLFs:
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Theorem 5.2. Let (X, d,m) be a RCD(K,∞) space, K ∈ R. Let (vt) ∈ L1([0, 1], L∞(TX))
be such that |vt| ∈ L∞([0, 1] × X). Assume that for any φ ∈ Lipbs(X) we have φvt ∈ D(div)

for a.e. t ∈ [0, 1] with div(φvt) ∈ L∞([0, 1]×X) and (φvt) ∈ L1([0, 1],W 1,2
C (TX)).

Then:

- Existence There exists a Regular Lagrangian Flow (RLF, in short) (Flt) of (vt).

- Uniqueness Such flow is unique in the following sense: if (F̃lt) is another Regular

Lagrangian Flow, then for m-a.e. point x ∈ X it holds F̃lt(x) = Flt(x) for every
t ∈ [0, 1].

- Regularity The flow (Flt) satisfies the bound

(5.9) (Flt)∗m ≤ eCtm with Ct :=

ˆ t

0
∥(div(vs))−∥L∞ ds.

Let us notice that if v ∈ L2(TX) is a vector field such that φv ∈ D(div) for every φ ∈
Lipbs(X) (see [49, Definition 2.3.11]), then by the locality of the divergence [49, Equations
(3.5.13), (3.5.14)] the function div(v) : X → R is m-a.e. well-defined by

(5.10) div(v) = div(φv) m− a.e. on the interior of {φ = 1}, ∀φ ∈ Lipbs(X).

This is the function appearing in (5.9). We remark that in the literature Theorem 5.2 is

presented under the assumptions div(vt) ∈ L1([0, 1], L∞(X)) and (vt) ∈ L1([0, 1],W 1,2
C (TX))

in place of the weaker div(φvt) ∈ L1([0, 1], L∞(X)) and (φvt) ∈ L1([0, 1],W 1,2
C (TX)) for every

φ ∈ Lipbs(X) (as for what concerns W 1,2
C (TX), to be more precise in [13] the authors speak

about (r, s)-inequalities satisfied by the symmetric part of some sort of covariant derivative,
but as is clear from [49, Definition 3.4.1] this condition is satisfied for r = s = 4 if (vt) ∈
L1([0, 1],W 1,2

C (TX))). We chose the version above because it better fits our purposes: it can
be derived from the one with global integrability assumptions on div(vt),∇vt using the locality
of both divergence and covariant derivative and the finite speed of propagation coming from
(5.8) and assumption (vt) ∈ L1([0, 1], L∞(TX)).

We shall typically apply Theorem 5.2 for vector fields as in the next statement:

Lemma 5.3. Let (X, d,m) be an RCD(K,∞) space and (ft) ⊂ Lipbs(X) ∩ D(∆loc) be such
that

(5.11) sup
t∈[0,1]

Lip(ft) + ∥∆ft∥L∞ <∞.

Then the vector fields vt := ∇ft satisfy the assumptions of Theorem 5.2 and div(vt) = ∆ft.

Proof. Clearly we have supt ∥|vt|∥L∞ < ∞. Then notice that the definitions (5.10), [49,
Definition 2.3.11] and the characterization (4.22) trivially give div(vt) = ∆ft. Also, from the
Leibniz rule [49, 2.3.13] we see that

(5.12) div(φvt) = φ∆ft + dφ · dft ∈ L∞([0, 1]×X) ∀φ ∈ Lipbs(X).

Now recall that the identity d(g1dg2) = dg1 ∧ dg2 holds for g1, g2 ∈ Test∞(X) (see [49,
Theorem 3.5.2 (iv)]) and use the closure of the exterior differential (see [49, Theorem 3.5.2
(ii)]) to conclude that d(φdft) = dφ ∧ dft and thus that ∥|d(φdft)|∥L2 ≤ ∥|dft|∥L∞∥|dφ∥L2 .
By [49, Corollary 3.6.4], this (5.12) and assumption (5.11) are sufficient to conclude that
supt ∥φ∇ft∥W 1,2

C
<∞. □

We now turn to a characterization of RLFs that we shall often use in what comes next:
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Proposition 5.4. Let (X, d,m) be RCD(K,∞), (vt) a Borel family of uniformly bounded
vector fields and Fl : X× [0, 1] → X a Borel map satisfying (i), (ii) in Definition 5.1.

Then the following are equivalent:

a) Fl is a RLF of (vt),
b) For any probability measure µ on X such that µ ≤ Cm for some C > 0 and any

(ft) ∈ AC([0, 1], L2(X)) ∩ L∞([0, 1],W 1,2(X)), putting µt := (Flt)∗µ we have that the
map t 7→

´
ft dµt is absolutely continuous with

(5.13)
d

ds

(ˆ
fs dµs

)
|s=t

=

ˆ ( d

ds
fs|s=t

)
dµt +

ˆ
dft(vt) dµt a.e. t.

c) Same as (b) above, but with the regularity assumption and derivation formula for
t 7→

´
ft dµt just for the case ft ≡ f ∈W 1,2(X) for every t ∈ [0, 1].

Proof.
(a) ⇒ (b) By (5.9), (5.8) and the assumption |vt| ∈ L∞

t,x we see that π := (Fl·)∗µ is a test plan
(see [8]). Then the conclusion follows from [60, Lemma 5.3] combined with formula (5.7).
(b) ⇒ (c) Obvious.
(c) ⇒ (a) Pick ft ≡ f ∈W 1,2(X) and then apply [59, Proposition 2.7]. □

5.2. The variational principle. The proof of our variational principle will come by com-
bining suitable existence and uniqueness statements. We start with the former:

Proposition 5.5 (“Existence”). Let (X, d,m) be an RCD(K,∞) space and f : X → R bounded
and lower semicontinuous. Assume that for some C > 0 we have

∆Qtf ≤ Cm, ∀t ∈ [0, 1],(5.14a)

|dQtf |(x) = lip(Qtf)(x) m× L1 − a.e. (x, t) ∈ X× [0, 1].(5.14b)

Then for every bounded probability density ρ with bounded support there is π ∈
P(C([0, 1],X)) with (e0)∗π = ρm such that

(et)∗π ≤ etC∥ρ∥L∞m, ∀t ∈ [0, 1](5.15a) ˆ
f d(e1)∗π +

1

2

¨ 1

0
|γ̇t|2 dtdπ(γ) ≤

ˆ
Q1f d(e0)∗π.(5.15b)

Proof. For n ∈ N, n > 0 and t ∈ [0, 1] we define fnt := h̃nQtf (recall (4.6)) and then
vnt := −∇fn1−t. It is clear from (5.1), (4.21) and Lemma 5.3 that for every n ∈ N the vectors
(vnt ) satisfy the assumptions of Theorem 5.2 and (using also (5.14a), (4.19)) that div(vnt ) ≥ −C
for any t, n. It follows that for every n ∈ N the vector fields (vnt ) admit a (unique) RLF (Flnt )
satisfying

(5.16) (Flnt )∗m ≤ etCm ∀t ∈ [0, 1], n ∈ N, n > 0.

Let ρ be as in the statement, put µ := ρm and πn := (Fln· )∗µ ∈ P(C([0, 1],X)): the desired
plan π will be found as weak limit of these. Start noticing that (5.16) gives

(5.17) (et)∗πn ≤ etC∥ρ∥L∞m ∀t ∈ [0, 1], n ∈ N, n > 0

and that for δ ∈ (0, 1) from (5.4) and (4.5) we see that

(5.18) Lip(Q1−tf),Lip(f
n
1−t), ∥|vnt |∥L∞ ≤ C(δ) ∀t ∈ [0, 1− δ], n ∈ N, n > 0.
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For later use we also observe that
(5.19)

lim
n→∞

χBv
n
t = −χB∇Q1−tf in L2(TX), ∀t ∈ [0, 1) and B ⊂ X Borel and bounded.

Indeed, for t ∋ [0, 1), and η ∈ Lipbs(X) identically 1 on B the functions ηfn1−t are uniformly
Lipschitz (by (5.18)), have uniformly bounded supports and converge pointwise to ηQ1−tf
as n → ∞. Thus the reflexivity of L2(T ∗X) and the closure of the differential ensure that
d(ηfn1−t)⇀ d(ηQ1−tf) in the weak topology of L2(T ∗X). By locality we deduce that χBv

n
t ⇀

−χB∇Q1−tf and since (4.3) implies limn

´
B |vnt |2 dm ≤

´
B |dQ1−tf |2 dm the claim (5.19)

follows.
Thus denoting by πn

δ the restriction of πn to [0, 1 − δ] (more precisely: the image of πn

under the restriction map that takes γ ∈ C([0, 1],X) and returns γ|[0,1−δ]
∈ C([0, 1 − δ],X))

we see from (5.8) and (5.18) that the plans πn
δ are concentrated on equiLipschitz curves. In

particular, from (5.17) and the boundedness of supp(ρ) we see that supp(µnt ) ⊂ B(δ) for some
bounded Borel set B(δ) ⊂ X and every n ∈ N, n > 0, t ∈ [0, 1 − δ]. This is enough to prove
that (πn

δ )n is tight, indeed from the tightness of m|B(δ)
there is a function φ : X → [0,∞]

with compact sublevels such that
´
B(δ) φdm <∞, then the function

Φ(γ) :=

ˆ 1−δ

0

(
φ(γt) + |γ̇t|2

)
dt

also has compact sublevels in C([0, 1 − δ],X) (see [52, Lemma 5.8]) and (5.18),(5.17),(5.8)
give

ˆ
Φdπn

δ =

ˆ 1−δ

0

ˆ
φd(et)∗π

n dt+

¨ 1−δ

0
|γ̇t|2 dtdπn(γ) ≤ eC∥ρ∥∞

ˆ
B(δ)

φdm+ C(δ)2

for every n. By Prokhorov’s theorem this proves the tightness of (πn
δ ) so that up to

pass to a non-relabeled subsequence we can assume that it weakly converges to some
πδ ∈ C([0, 1− δ],X).

Now observe that (5.5) and (5.18) tell that for any η ∈ Lipbs(X) the curve t 7→ ηfn1−t is

in AC([0, 1− δ], L2(X)) ∩ L∞([0, 1− δ],W 1,2(X)) and d
dt(ηf

n
1−t) =

1
2η h̃n(lip

2(Q1−tf)). Then
Proposition 5.4 (applied in [0, 1−δ] rather than [0, 1]) gives that [0, 1−δ] ∋ t 7→

´
ηfn1−t◦et dπn

is absolutely continuous and formula (5.13) yieldsˆ
ηfnδ dµn1−δ −

ˆ
ηfn1 dµn0

=

ˆ 1−δ

0

( ˆ
η
(
1
2 h̃n(lip

2(Q1−tf))− |dfn1−t|2
)
− fn1−tdη · dfn1−t dµ

n
t

)
dt,

where µnt := (et)∗π
n. Picking η ≡ 1 on B(δ) we get

ˆ
fn1 dµn0 −

ˆ
fnδ dµn1−δ =

ˆ 1−δ

0

ˆ
|dfn1−t|2 − 1

2 h̃n(lip
2(Q1−tf)) dµ

n
t dt

(by (5.8)) = 1
2

¨ 1−δ

0
|γ̇t|2 dtdπn(γ) + 1

2

ˆ 1−δ

0

ˆ
|vnt |2 − h̃n(lip

2(Q1−tf)) dµ
n
t dt︸ ︷︷ ︸

=:An

.

(5.20)
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We wish to pass to the limit in this identity and notice that by (5.4) and (4.10) we get that the

functions (h̃n(lip
2(Q1−tf)))n∈N are uniformly bounded and converge in L1

loc to lip2(Q1−tf)
as n → ∞. This, the convergence (5.19), the uniform bound (5.18), the assumption (5.14b)
together with the weak convergence of µnt to µt := (et)∗πδ and the fact that these measures
have uniformly bounded supports and densities (by (5.17)) give An → 0 as n→ ∞.

Similarly, we have
´
fn1−t dµ

n
t →

´
Q1−tf dµt for every t ∈ [0, 1], so that passing to the

limit in the above taking into account the lower semicontinuity of the kinetic energy gives

(5.21)

ˆ
Q1f dµ0 −

ˆ
Qδf dµ1−δ ≥

1

2

¨ 1−δ

0
|γ̇t|2 dt dπδ(γ).

We now wish to send δ ↓ 0 and to this aim we apply the construction above to δ = δj ↓ 0
and proceed by diagonalization to find plans πδj ∈ P(C([0, 1 − δj ],X)) so that πδj is the
‘restriction’ - in the sense previously made rigorous - of πδk for k > j. From (5.21) and (5.1)
we also deduce the uniform bound

(5.22)

¨ 1−δ

0
|γ̇t|2 dt dπδ(γ) ≤ 2

ˆ
Q1f(γ0)−Qδf(γ1−δ) dπδ(γ) ≤ 2Osc(f)

and from this we infer that there is π ∈ C([0, 1],X) whose ‘restriction’ to [0, 1− δi] is πδj for
every j ∈ N: just ‘extend’ each πδj to a probability measure on C([0, 1],X) imposing that
curves in the support are constant on [1 − δj , 1] and notice that the resulting sequence has
uniformly bounded kinetic energy and tight marginals (by (5.17) and the uniform bound on
second moments that follows from (5.22)). Then weak compactness follows from the same
arguments previously used.

Finally, we recall the lower semicontinuity property in (5.2) and Fatou’s lemma for weakly
converging sequences of measures (see e.g. [50, Lemma 2.5]) to see that limj

´
Qδjf dµ1−δj ≥´

f dµ0. Therefore we can pass to the limit in (5.21) and conclude. □

We turn to uniqueness:

Proposition 5.6 (“Uniqueness”). Let (X, d,m) be an RCD(K,∞) space, K ∈ R, f : X → R
be bounded and lower semicontinuous and µ ∈ P(X) be with µ ≪ m.. Then there is at most
one plan π ∈ P(C([0, 1],X)) such that (e0)∗π = µ, (e1)∗π ≪ m and

(5.23)

ˆ
f d(e1)∗π +

1

2

¨ 1

0
|γ̇t|2 dt dπ(γ) ≤

ˆ
Q1f d(e0)∗π.

Moreover, such plan (if it exists) satisfies the following:

i) It is induced by a map, namely there is F : X → C([0, 1],X) Borel such that e0 ◦ F =
IdX m-a.e. and π = F∗µ.

ii) It is concentrated on geodesics of length bounded above by
√

2Osc(f).
iii) For any γ ∈ supp(π) we have

Q1f(γ0) = f(γ1) +
1

2

ˆ 1

0
|γ̇t|2 dt = f(γ1) +

d2(γ1, γ0)

2
.

iv) π is an optimal geodesic plan from (e0)∗π to (e1)∗π for the cost c(x, y) := d2(x,y)
2 .

v) Q1f is a Kantorovich potential for (e0, e1)∗π.
vi) For any t ∈ (0, 1) we have

(5.24) lip(Qtf) = |dQtf | (e1−t)∗π − a.e..
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vii) If (et)∗π ≤ Cm for some C > 0 and every t ∈ [0, 1], then π represents the gradient of
−Q1f (in the sense of [48, Definition 3.7] with q = 2).

If the space (X, d,m) is RCD(K,N) for some N <∞, then the same conclusions hold without

the need of assuming (e1)∗π ≪ m and for µ-a.e. x there is only one minimizer for f(·)+ d2(·,x)
2 .

Proof. For arbitrary γ ∈ C([0, 1],X) the definition of Q1f gives

Q1f(γ0)− f(γ1)
(∗)
≤ d2(γ0, γ1)

2
.

On the other hand, the assumption (5.23) tells

(5.25)

ˆ
Q1f ◦ e0 − f ◦ e1 dπ ≥ 1

2

¨ 1

0
|γ̇t|2 dt dπ(γ)

(∗∗)
≥

ˆ
d2(γ0, γ1)

2
dπ(γ)

thus forcing (∗∗) to be an equality and (∗) to be an equality for π-a.e. γ. Equality in (∗∗)
holds iff π-a.e. γ is a (constant speed) geodesic, and since the collection of geodesics is a
closed subset of C([0, 1],X), property (ii) follows (the estimate on the length also comes from
(5.25)). A similar argument by continuity based on the continuity of Q1f (recall (5.2)), on
the lower semicontinuity of f and on π-a.e. equality on (∗) tells that equality in (∗) holds for
every γ ∈ supp(π). It is now clear that item (iii) holds.

Now observe that for the cost function c(x, y) := d2(x,y)
2 we have Q1f = (−f)c and since

the identity gcc ≥ g holds for arbitrary functions g (see e.g. [45, Proposition 2.2.9 (ii)]), from
the fact that (∗) is an equality we deduce

(5.26) Q1f(γ0) + (−f)cc(γ1) ≥ Q1f(γ0)− f(γ1) =
d2(γ0, γ1)

2
∀γ ∈ supp(π).

This is sufficient to ensure that (e0, e1)∗π is c-optimal and since we already estab-
lished that π is concentrated on geodesics, (iv) follows. Item (v) is equivalent to
(5.26). For (vi) we notice that considering the (normalized) restriction of π to {γ :
d(e0)∗π

dm (γ0)+
d(e1)∗π

dm (γ1)+d(γ0, x̄)+d(γ1, x̄) ≤ n} for n≫ 1 and keeping in mind the estimate
in [6, Theorem 4.2] we can assume that (et)∗π ≤ Cm for every t ∈ [0, 1]. Now keeping in
mind item (ii), by [48, Proposition 3.11] we need to prove that

lim
t↓0

Q1f(γ0)−Q1f(γt)

d(γ0, γt)
= d(γ0, γ1) = |dQ1f |(γ0) in L2(π)

and these follow from the metric Brenier theorem [8, Theorems 10.3, 10.4]. For (vi − b) we
notice that from (v) and the general theory of interpolation of Kantorovich potentials (see [45,
Theorem 2.2.10] or [106, Theorem 7.36] paying attention to the different sign convention) we
have that Qtf,Q1−t(−Q1f) are Kantorovich potentials for (et, e0)∗π, (et, e1)∗π respectively
and - recalling that these are continuous function - that

(5.27) Qtf +Q1−t(−Q1f) ≥ 0 on X with equality at γt for any γ ∈ supp(π)

Then again the metric Brenier theorem [8, Theorems 10.3] and a simple scaling show that

(5.28) |dQtf |(γ1−t) = |∂+Qtf |(γ1−t) = d(γ0, γ1) = |∂+Q1−t(−Q1f)|(γt) π − a.e. γ,

while (5.27) gives Qtf(γ1−t)−Qtf(x) ≤ Q1−t(−Q1f)(x)−Q1−t(−Q1f)(γ1−t) for any x ∈ X
and γ ∈ supp(π). Taking positive parts this implies |∂−Qtf |(γt) ≤ |∂+Q1−t(−Q1f)|(γt) that
together with (5.28) and the trivial identity lip g = |∂+g| ∨ |∂−g| gives (5.24).
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The fact that π is induced by a map now follows from [92, Corollary 1.3]. The uniqueness
of π is then a consequence of standard arguments in Optimal Transport: if π′ ̸= π also
satisfies the assumptions, the plan 1

2(π + π′) would also do so, without being induced by a
map.

For the last claims we use uniqueness of optimal maps as stated in [58, Theorem 1.1] in
place of [92, Corollary 1.3] and notice that if we pick, via a Borel selection argument, for

µ-a.e. x a geodesic F (x) with F0(x) = x and F1(x) minimizer for f(·)+ d2(·,x)
2 , then what said

above show that π := (F·)∗µ satisfies (5.23). Hence it is unique and a fortiori so is F1(x) for
µ-a.e. x ∈ X. □

Our proof of the variational principle Theorem 5.9 will be ‘fuelled’ by the following result,
proved in the recent [61]:

Lemma 5.7. Let (X, d,m) be an RCD(K,∞) space, K ∈ R, and let f ∈ Test∞(X). Then

∆Qtf ≤
(
∥(∆f)+∥∞ + tK−Lip(f)2

)
m ∀t ≥ 0

lipQtf(x) = |dQtf |(x), m× L1 − a.e. (x, t) ∈ X× [0,∞).

In the case K < 0 we will want to improve the above Laplacian upper bound to avoid
dependance on the Lipschitz constant of f . To do so we shall use Lemma 4.2 in conjunction
with the following result, that as said in the introduction basically comes from [86]:

Lemma 5.8. Let (X, d,m) be a RCD(K,∞) space, K ∈ R, and f : X → R be Borel and

bounded. Assume that for some x, y ∈ X and t > 0 we have Qtf(x) = f(y) + d2(x,y)
2t . Then

∆̃Qtf(x) ≤ ∆̃f(y)−K
d2(x, y)

t

Proof. From [10, Lemma 3.4] and its proof we know that for any s > 0 it holds

hsQtf(x) ≤ hsf(y) + e−2Ks d
2(x, y)

2t
.

Subtracting the identity Qtf(x) = f(y) + d2(x,y)
2t , dividing by s and letting s ↓ 0 we conclude.

□

We are now ready to state and prove our variational principle. Recall that the space
AC−(X) was defined in (4.20).

Theorem 5.9 (A variational principle on RCD(K,∞) spaces). Let (X, d,m) be an RCD(K,∞)
space and let f ∈ AC−(X) be such that ∆f ≤ Cm for some C > 0.

Then for every t > 0 we have

∆Qtf ≤ (C + 2K−Osc(f))m(5.30a)

|dQtf | = lip(Qtf) m− a.e..(5.30b)

Moreover, for every T > 0 the following holds. For given x ∈ X consider the problem of
minimizing

γ 7→ f(γT ) +
1

2

ˆ T

0
|γ̇t|2 dt(5.31)

among continuous curves γ on [0, T ] starting from x. Then:
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- Existence For m-a.e. x ∈ X a minimizer F (x) exists. Also, the point FT (x) minimizes

(5.32) X ∋ y 7→ f(y) +
d2(x, y)

2T
.

- Uniqueness If X is RCD(K,N) for some N <∞, then for m-a.e. x ∈ X the minimizer
F (x) is unique and so is the minimizer of (5.32).

In the general case, F : X → C([0, T ],X) is unique up to m-a.e. equality in the class

of maps F̃ : X → C([0, T ],X) such that F̃0 = Id m-a.e., (F̃T )∗m ≪ m and so that for

m-a.e. x ∈ X the curve F̃·(x) is a minimizer for the above problem.
- Regularity It holds

(5.33) (Ft)∗m ≤ et(C+2K−Osc(f))m, ∀t ∈ [0, T ].

- F as Regular Lagrangian Flow F is the only RLF for the vectors vt := −∇QT−tf .
- Minimal value For m-a.e. x ∈ X we have

(5.34) QT f(x) = f(FT (x)) +
1

2

ˆ T

0
| ˙Ft(x)|2 dt = f(FT (x)) +

d2(x, FT (x))

2T
.

- Range in geodesics For m-a.e. x ∈ X the curve [0, T ] ∋ t 7→ Ft(x) is a constant speed

geodesic of length bounded above by
√
2TOsc(f).

Proof. We shall prove (5.30) for t = 1 only and the statements about minimizers for T = 1
only. The general cases follow by the same arguments, or by replacing the distance d with√
td, noticing that both Laplacian and Ricci bounds are affected by a factor 1

t and taking
also into account the natural rescaling properties for RLFs.
Step 1: the core argument We claim that all the stated conclusions follow if f ∈ AC−(X)
is such that ∆f ≤ Cm and

∆Qtf ≤ C ′m, ∀t ∈ [0, 1] for some C ′ > 0(5.35a)

|dQtf |(x) = lip(Qtf)(x), m× L1 − a.e. (x, t) ∈ X× [0, 1],(5.35b)

(in particular, even if a priori we only have some ‘bad’ upper bound on the Laplacian, we can
improve it to the ‘correct’ estimate (5.30a)).

Let us prove (5.30b). Put At := {|dQtf | = lip(Qtf)} (this is a Borel set defined up to m-
negligible sets), let x̄ ∈ X and 0 < R1 < R2. Put ρ := m(BR1)

−1χBR1
and apply Proposition

5.5 with C ′ in place of C to find a plan π satisfying (5.15a) and (5.15b). We can thus apply
Proposition 5.6 and deduce, by item (ii) of such statement, that supp((et)∗π) ⊂ BR2(x) for
t≪ 1. Thus letting ρt be the density of (et)∗π, we have

m(A1−t ∩BR2)
(5.24)

≥ m({ρt > 0}) ≥ ∥ρt∥−1
∞

(5.15a)

≥ m(BR1)e
−tC′

for t≪ 1.

We apply this estimate to the scaled space (X, d√
1−t

,m) for t≪ 1 noticing that the Laplacian

and Ricci bounds are only slightly affected and that Qd
1−tf = Q

d√
1−t

1 f (equivalently: in the
above argument we apply Propositions 5.5, 5.6 to slightly different time intervals) . We
conclude that

m(A1 ∩B R2√
1−t

) ≥ m(B R1√
1−t

)e−tC′′
for t≪ 1,

thus letting first t ↓ 0 and then R1 ↑ R2 we deduce that m(A1 ∩ BR2) = m(BR2). By the
arbitrariness of R2, this proves (5.30b) for t = 1. The general case follows by scaling.
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We turn to the rest of the proof and observe that for π = πR1 built as above the plan π′ :=∑
n 2

−nπR1,n for some R1,n ↑ ∞ satisfies (e0)∗π, (e1)∗π ≪ m and (5.23), thus Proposition
5.6 ensures that is induced by a map F . The fact that F takes values on geodesics of
length ≤

√
2Osc(f) and satisfies (5.34) (for T = 1) follows from the analogue statements

in Proposition 5.6. Now observe that from Lemma 4.2 and the assumptions f ∈ AC−(X),

∆f ≤ Cm we have that ∆̃f(y) ≤ C for every y ∈ X. Hence by (5.34) we are in position to
apply Lemma 5.8 above in conjunction with the trivial bound (5.3) to deduce that

∆̃Q1f(x) ≤ C + 2K−Osc(f) m− a.e. x ∈ X.

This bound and the distributional inequality (5.35a) give, via Lemma 4.2, estimate (5.30a).
Now that we have (5.30a) we can apply once again Proposition 5.5, this time with

C + 2K−Osc(f) in place of C to conclude, by (5.15a) and the construction, that (5.33)
holds.

The validity of (5.34), the very definition of Q1f and the fact that
´ 1
0 |γ̇t|2 dt ≥ d2(γ0, γ1)

with equality iff γ is a constant speed geodesic, ensure that F·(x) is a minimizer for (5.31).

Thus existence is proved. Uniqueness follows from Proposition 5.6: if F̃ : X → C([0, 1],X) is

also a selection of minimizers with (F̃1)∗m ≪ m, then for µ ∈ P(X) with m ≪ µ≪ m the plan

π := 1
2((F·)∗µ+ (F̃·)∗µ) satisfies (5.23) with (e0)∗π = µ and (e1)∗π ≪ m. By Proposition 5.6

this is enough to ensure that π is induced by a map, i.e. that F = F̃ m-a.e.. The last claim
in Proposition 5.6 also gives m-a.e. uniqueness of minimizers of (5.32) if X is RCD(K,N).

It remains to prove that (Ft) is the only Regular Lagrangian Flow of vt := −∇Q1−tf . To
see that it is a RLF, since F takes values in continuous curves, it is sufficient to show that
for any δ ∈ (0, 1) it is the RLF of (vt) on [0, 1− δ]. In this direction notice that (5.4) tells

(5.36) |vt| ≤ C(δ) m− a.e. ∀t ∈ [0, 1− δ], ∀δ ∈ (0, 1).

Then let ρ be a bounded probability density with bounded support, put π := (F·)∗(ρm) as
above and use (5.36) to apply Proposition 5.4 on [0, 1− δ] and deduce that it is sufficient to
prove that for any φ ∈ W 1,2(X) the map [0, 1− δ] ∋ t 7→

´
φ ◦ et dπ is absolutely continuous

with derivative equal to −
´
dφ(∇Q1−tf) ◦ et dπ for a.e. t. Absolute continuity follows from

the Sobolev regularity of φ and the fact that π is a test plan (see e.g. [55, Theorem 2.1.21]).
Then recalling that π is an optimal geodesic test plan and by a simple scaling argument we
see that it is sufficient to prove the formula for the derivative for t = 0, i.e. to prove that

lim
t↓0

ˆ
φ(γt)− φ(γ0)

t
dπ(γ) = −

ˆ
dφ(∇Q1f) ◦ e0 dπ.

This follows recalling that π represents the gradient of −Q1f in the sense of [48, Definition 3.7]
(recall item (vii) in Proposition 5.6) and the lemma about ‘horizontal and vertical derivatives’,
see [48, Theorem 3.10] (and [9, Lemma 4.5]).

We pass to uniqueness, thus let ρ as before, F̃l be a RLF of the vt’s, put π̃ := (F̃l·)∗µ, let
ft := Qtf and notice that - by (5.5) and the assumption (5.30b) - the identity ∂tft = −1

2 |dft|
2

holds m-a.e. for a.e. t ∈ [0, 1]. Then from (5.36) and (5.8) and arguing as for (5.20) we obtain
ˆ
Q1f dµ−

ˆ
Qδf d(e1−δ)∗π̃ =

¨ 1−δ

0

(
|dft|2 − 1

2 |dft|
2) ◦ F̃lt dtdµ

(5.8)
=

1

2

¨ 1−δ

0
|γ̇t|2 dt dπ̃(γ).

Now notice that the continuity of t 7→ F̃lt(x) for m-a.e. x ∈ X implies the weak convergence
of (e1−δ)∗π̃ to (e1)∗π̃, hence the lower semicontinuity stated in (5.2) and Fatou’s lemma
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for weakly converging measures (see e.g. [50, Lemma 2.5]) imply limδ↓0
´
Qδf d(F̃l1−δ)∗µ ≥´

f d(e1)∗π̃.
We can therefore pass to the limit in the above and conclude that π̃ satisfies (5.23), so that

the uniqueness claim follows again by Proposition 5.6.
Step 2: the approximation argument Let f ∈ AC−(X) be such that ∆f ≤ Cm and
assume that (fn) ⊂ AC−(X) is a sequence that is Γ-converging to f (see [34], [21]), i.e. so
that

for every xn → x we have lim
n
fn(xn) ≥ f(x),(5.37a)

for every x ∈ X there is xn → x such that lim
n
fn(xn) ≤ f(x).(5.37b)

Assume also that for some C ′′ > 0 the uniform bounds

∆fn ≤ C ′′m(5.38a)

Osc(fn) ≤ C ′′(5.38b)

hold for every n ∈ N and that the conclusions of the theorem are true for the fn’s (with the
estimate (5.33) depending on C ′′). We claim that in this case the conclusions of the statement
hold for f (with the correct estimate (5.33) depending on C,Osc(f) only). According to the
previous step to this aim it is sufficient to show that the properties (5.35) hold. In proving
this we shall frequently use the fact that (5.37) and (5.38b) give that the fn’s - and thus also
the Qtfn’s - are equibounded.

We start claiming that

(5.39) lim
n
Qtfn(x) ≤ Qtf(x) ∀t > 0.

Indeed, for x, y ∈ X we use (5.37b) to find yn → y with limn fn(yn) ≤ f(y) and observe that

lim
n
Qtfn(x) ≤ lim

n

(
fn(yn) +

d2(x, yn)

2t

)
≤ f(y) +

d2(x, y)

2t
,

so that the arbitrariness of y ∈ X gives (5.39).
To get (a sort of) the Γ − lim inequality analogue to (5.39) we need to overcome the lack

of compactness by using the uniform estimates (5.38).
We assumed that for the fn’s the conclusions are true, thus let F

n : X → C([0, 1],X) be the
corresponding maps as in the statement, fix a bounded probability density ρ with bounded
support, define πn := (Fn)∗(ρm) ∈ P(C([0, 1],X)) and notice that by (5.38b) and the last
claim in the statement the πn’s are concentrated on a bounded set of geodesics. Also, by
(5.38) and (5.33), they satisfy

(5.40) (et)∗πn ≤ et(C
′′+2K−C′′)m, ∀n ∈ N, t ∈ [0, 1].

Arguing as in the proof of Proposition 5.5, this is enough to conclude that the family (πn)
is tight, so that passing to a non-relabeled subsequence we can assume that it converges to a
limit plan π. Now observe that integrating (5.34) we getˆ

Q1fn d(e0)∗πn =

ˆ
fn d(e1)∗πn +

1

2

¨ 1

0
|γ̇t|2 dt dπn(γ) ∀n ∈ N.

The bound (5.39), identity (e0)∗πn = (e0)∗π = ρm and (reverse) Fatou’s lemma give
limn

´
Q1fn d(e0)∗πn ≤

´
Q1f d(e0)∗π, while (5.37a) and Fatou’s lemma for weakly converg-

ing sequences of measures (see e.g. [50, Lemma 2.5]) give limn

´
fn d(e1)∗πn ≥

´
f d(e1)∗π.
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Thus by the lower semicontinuity of the kinetic energy we can pass to the limit in the above
and obtainˆ

Q1f d(e0)∗π ≥ lim
n→∞

ˆ
Q1fn d(e0)∗πn ≥

ˆ
f d(e1)∗π +

1

2

¨ 1

0
|γ̇t|2 dtdπ(γ).(5.41)

Since (5.40) implies (e1)∗π ≪ m, we can apply Proposition 5.6 and deduce that

|dQtf | = lip(Qtf) (e1−t)∗π − a.e..

Then the arbitrariness of ρ and the very same arguments used at the beginning of the previous
step (based on the fact that the estimate (5.40) passes to the limit in place of (5.15a)) show
that (5.30b), and in particular (5.35b), holds.

Also, since the inequality f(γ1) +
1
2

´ 1
0 |γ̇t|2 dt ≥ f(γ1) +

d2(γ0,γ1)
2 ≥ Q1f(γ0) is true for

any γ ∈ C([0, 1],X), the bound (5.41) gives limn

´
Q1fn d(ρm) ≥

´
Q1f d(ρm). Now put

gn := supk≥nQ1fk, g := infn gn = limnQ1fn and observe that by dominated convergence it

holds gn → g in L1(X, ρm). On the other hand

lim
n

∥gn −Q1fn∥L1(ρm) = lim
n

ˆ
gn −Q1fn d(ρm) ≤

ˆ
g −Q1f︸ ︷︷ ︸

≤0 by (5.39)

d(ρm) ≤ 0.

This forces at once Q1fn → g in L1(ρm) and g = Q1f ρm-a.e., hence the arbitrariness of ρ
tells that (Q1fn) converges to Q1f in L1

loc(X). Now from (5.38) and the validity of (5.30a) for
fn we get ∆Q1fn ≤ (C ′′ + 2K−C ′′)m and according to the stability property (4.18) we can
conclude that ∆Q1f ≤ (C ′′ + 2K−C ′′)m. Since by a scaling argument the same inequality is
true for Qtf , (5.35a) holds. We thus established (5.35), as desired.
Step 3: wrapping everything up
The case of test functions Let f ∈ Test∞(X). Then clearly f ∈ AC−(X). Also, the properties
(5.35) are granted by Lemma 5.7, hence in this case the conclusion follows from the first step.
Intermediate regularity Assume that f is in Lipb(X) ∩ D(∆loc) with ∆f ∈ Lipb(X). Pick

x̄ ∈ X, let ϕn := (1 − d(·, Bn(x̄)))
+, define ηn := h̃1ϕn ∈ T̃est(X) and then fn := ηnf . It is

clear from (4.24) that fn ∈ Test∞(X) for every n ∈ N, so by the previous step the conclusions
of the theorem are true for it. We claim that the bounds (5.38) and the Γ−convergence (5.37)
are in place.

The bound (5.38b) is trivial and since (4.8) gives

sup
n

Osc(ηn) + Lip(ηn) + ∥∆ηn∥∞ <∞,

the bound (5.38a) follows from the Leibniz rule for the Laplacian (4.24). We pass to (5.37) and
notice that the monotonicity of the heat flow grants that (ηn(x)) is a bounded non-decreasing

sequence for every x ∈ X, hence it converges to a limit η(x). In particular for φ ∈ T̃est(X) by
dominated convergence we have

´
ηnφdm →

´
ηφdm. On the other hand we haveˆ

φηn dm =

ˆ
φh̃1ϕn dm =

ˆ
h̃1φϕn dm →

ˆ
h̃1φdm =

ˆ
φdm

and by the density property (4.14) we conclude that η = 1 m-a.e., and thus everywhere
because it is a Lipschitz function (being limit of equiLipschitz functions). It follows that for
xn → x we have

|ηn(xn)− η(x)| ≤ d(xn, x) sup
n

Lip(ηn) + |ηn(x)− η(x)| → 0 as n→ ∞
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and thus, since f ∈ Lipb(X), that fn(xn) → f(x). This property is clearly stronger than
(5.37), which therefore is proved. Hence the desired conclusion for f follows from Step 2.

The general case Let f : X → R be as in the assumptions, put fn := h̃nf and notice that by
(4.21) and (4.4) we have fn ∈ Lipb(X) ∩D(∆loc) with ∆fn ∈ Lipb(X). Then by the previous
set the conclusions of the theorem are true for fn, whereas by (4.19) and the weak maximum
principle we see that the uniform bounds (5.38) are in place.

According to Step 2 to conclude it is therefore sufficient to show that the Γ-convergence
(5.37) is in place. To prove (5.37a) we let g ∈ Lipb(X), gn := h̃ng and notice that (4.5) implies
L := supn Lip(gn) < ∞. Thus if g ∈ Lipb(X), for any xn → x the monotonicity of the heat
flow gives

(5.42) lim
n→∞

fn(xn) ≥ lim
n→∞

gn(xn) ≥ lim
n→∞

(gn(x)− Ld(x, xn)) = lim
n→∞

gn(x) = g(x),

where in the last equality we used the continuity of g, the representation htg(x) =
´
g dhtδx

and the fact that htδx ⇀ δx as t ↓ 0. From the lower semicontinuity of f it is easy to establish
that f = sup{g : g ∈ Lipb(X), g ≤ f} (see e.g. [7, Section 5.1]), thus (5.37a) follows from
(5.42).

To prove (5.37b) we recall that for some Borel set E ⊂ X with m-negligible complement
we have that f |E is continuous. Also, using (4.20b) and a diagunalization argument it is

clear that it suffices to prove (5.37b) for x ∈ E. Fix such x, let ε > 0, find r > 0 such that
f ≤ f(x) + ε on Br(x) ∩ E and notice that since htδx ≪ m for every t > 0 and htδx(B

c
r) → 0

as t ↓ 0 we have

lim
t↓0

htf(x) = lim
t↓0

ˆ
f dhtδx = lim

t↓0

ˆ
Br(x)∩E

f dhtδx ≤ f(x) + ε.

Since ε > 0 was arbitrary, the claim (5.37b) follows by picking xn ≡ x. □

Remark 5.10. Let X, f be as in the previous statement, T > 0 and U,U ′ ⊂ X be open sets
such that FT (x) ∈ U ′ for m-a.e. x ∈ U . Assume also that for some c ∈ R, in addition to the
assumption ∆f ≤ Cm we also have ∆f |U ≤ cm. Then from Theorem 5.9 and Lemmas 5.8,

4.2 we get

(5.43) ∆QT f ≤ (cχU + CχX\U −KD(U,U ′))m.

Comparing this bound with [85, Theorem 1.5] we see that a similar result, stated for p = 2
in place of p = 1, holds without assuming non-collapsing or finite dimensionality.

We notice also that variants of (5.43) and Theorem 5.9 for other values of p are quite
easy to obtain following the above strategy, at least on RCD(K,N) spaces where existence of
optimal maps for the Lp-cost is known ([24], [35], see also [1]). The key ingredients are the
‘p-versions’ of Lemma 5.8 - whose validity has already been noticed in [86] - and of Lemma
5.7 - that can be obtained following the arguments in [61] using the Lp-version of Bochner
inequality in [94]. ■

6. Harmonic maps from RCD(K,N) to CAT(0) spaces

6.1. Reminders: basic definitions and results. From now on we shall work under the
following assumptions:

- (X, d,m) is an RCD(K,N) space of essential dimension d ∈ N ∩ [1, N ] ([9], [48], [22]).
- U ⊂ X is open, bounded and such that m(X \ U) > 0.
- (Y, dY) is a CAT(0) space (see e.g. [18] for an introduction to the topic).
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Recall that the space L2(U ; Y) is the collection of Borel maps u (defined up to m-a.e. equality)
from U to Y that are essentially separably valued (i.e. m(U \u−1(Y′)) = 0 for some separable
subset Y′ ⊂ Y) and with

´
U d2Y(u(x), o) dm(x) < ∞ for some o ∈ Y, and thus any by

m(U) <∞.
We start recalling two notions of metric-valued Sobolev functions, referring to [72] for more

details on the first and to [79], [63] for the second.

Definition 6.1 (Sobolev space via post-composition). W 1,2(U ; Y) ⊂ L2(U ; Y) is the collec-
tion of those maps u : U → Y such that φ ◦ u ∈ W 1,2(U) for every φ : Y → R Lipschitz and
so that the function |du| : U → [0,∞] defined up to m-a.e. equality as

(6.1) |du| := ess-sup
φ:Y→R

Lip(φ)≤1

|d(φ ◦ u)|

is in L2(U).

Definition 6.2 (Sobolev space à la Korevaar-Schoen). For every r > 0 define the local energy
ks[u, U ] : U → R+ of u at scale r as

(6.2) ks2,r[u, U ](x) :=


∣∣∣ fflBr(x)

d2Y(u(x),u(y))

r2
dm(y)

∣∣∣1/2 if Br(x) ⊂ U,

0 otherwise.

Then KS2(U ; Y) ⊂ L2(U,Y) is the collection of those u’s such that

(6.3) EKS(u) := lim
r↓0

ˆ
U
ks2,r[u, U ]2 dm <∞.

We now collect those properties of metric-valued Sobolev functions that are relevant for
our discussion, referring to [63, Theorem 3.13, Proposition 3.9, Theorem 6.4] for the proof:

Proposition 6.3. With the same assumptions and notations as above we have:

i) For every u ∈ KS2(U ; Y) there is a function e2[u] ∈ L2(U), called energy density,
such that

(6.4) ks2,r[u, U ] → e2[u] in L2(U) and m-a.e. as r ↓ 0.

In particular, the lim in (6.3) is a limit.
ii) We have W 1,2(U ; Y) = KS2(U ; Y) with

(6.5) e2[u] ≤ |du| ≤ c(d)e2[u] m− a.e. on U,

for some constant c(d) depending only on the essential dimension d, and thus only on
N .

iii) For any u ∈ KS2(U ; Y) there is a unique minimizer ū ∈ KS2(U ; Y) of the
Korevaar-Schoen energy EKS in the class of functions v ∈ KS2(U ; Y) such that

x 7→ dY(u(x), v(x)) is in W 1,2
0 (U). Such minimizer is called harmonic map.

In what follows we will need to know that the energy density e2[u] is not only the limit of
ks2,r[u, U ], but also of an appropriate average of dY(u(x), u(·)) via heat kernel:

Proposition 6.4. With the same assumptions and notations as in the beginning of the sec-
tion, the following holds. Let u ∈ KS2(U ; Y). Then there is E ⊂ U Borel with m(U \ E) = 0
such that

(6.6) lim
t↓0

1

t

ˆ
dY(u(x), u(y)) dhtδx(y) = 2(d+ 2)e2[u]

2(x) ∀x ∈ E.
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The proof of this proposition follows very closely that of [63, Theorem 3.13] from which the
result (6.4) recalled above is extracted. Since the arguments for proving [63, Theorem 3.13]
are rather lengthy (and based on few additional concepts such as that of mGH-convergence
of spaces, approximate metric differentiability, Hajlasz-Sobolev functions...) and since the
modifications needed to obtain (6.6) are straightforward, we limit ourselves to pointing out
what follows. The basic idea behind the proof of (6.4) is that for m-a.e. x ∈ U there is a semi-
norm mdu(x) on Rd that acts as a sort of ‘metric differential’ by describing the infinitesimal
variation of u around x (see [63, Definition 3.3]). The energy density e2[u](x) is then defined
by the formula

e22[u](x) :=

 
BRd

1 (0)
mdu(x)(v)

2 dLd(v)

=
1

|BRd

1 |

ˆ 1

0
rd+1

ˆ
Sd−1

mdu(x)(v)
2 dHd−1(v)︸ ︷︷ ︸

=:|||mdu(x)|||

dr =
|||mdu(x)|||
(d+ 2)|BRd

1 |
(6.7)

and (6.4) follows by the ‘first order expansion of u given by mdu’ by noticing that the mea-
sures m(Br(x))

−1m|Br(x)
appearing in the definition of ks2,r[u, U ] converge, after scaling, to

1

|BRd
1 |

Ld|
BRd

1 (0)

1. Similarly, (6.6) is proved recalling that the heat kernels htδx converge, after

scaling, to the Gaussian measure hR
d

1 δ0 = (4π)−
d
2 e−

|·|2
4 Ld (this follows from the stability of

the heat flow under lower Ricci curvature bounds first noticed in [44] - here we use [52, The-
orem 7.7]). Using such convergence and arguing as for (6.4) we see that the limit in (6.6) is
equal to ˆ

mdu(x)(v)
2 dhR

d

1 δ0(v) =
|||mdu(x)|||

(4π)
d
2

ˆ +∞

0
rd+1e−

r2

4 dr,

thus from (6.7) we conclude that (6.6) is ultimately reduced to the verification of the identity

1

(4π)
d
2

ˆ +∞

0
rd+1e−

r2

4 dr =
2

|BRd

1 |

that in turn is well known (and easy to establish by direct computation, e.g. by induction).
In all this, the fact that the set E can be chosen to be Borel follows from the construction
or, alternatively, noticing that the right hand side of (6.6) is a Borel function, that the set of
points for which the limit in the left hand side exists is Borel and that so is the associated
limit function.

We shall also need the following result, see [54, Theorem 4.18]:

1Such convergence of measures is in place, by definition, at all points with Euclidean tangent by the very
definition of mGH-convergence of pointed spaces. To get the desired (6.4) one uses also that RCD spaces are
doubling and support a Poincaré inequality to call into play maximal estimates that are useful to control the

term dY(u(x),u(y))
r

appearing in the definition of ks2,r[u, U ]. Such control is necessary due to the nature of the
concept of approximate metric differentiability, that only speaks about y belonging to suitabl charts for which
the point x is assumed to be a Lebesgue point, while in the definition of ks2,r[u, U ] all the points y in Br(x)
apear in the integral. See the proof of [63, Theorem 3.13] for more details
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Theorem 6.5. With the same assumptions and notations as in the beginning of the section,
the following holds. Let u ∈ KS2(U ; Y) be harmonic, f : Y → R be λ-convex and Y′ ⊂ Y be a
CAT(0) subspace with m(U \ u−1(Y′)) = 0 and so that f |Y′ is Lipschitz. Then

(6.8) ∆(f ◦ u)|U ≥ λ(d+ 2)e2[u]
2m.

Remark 6.6. There are few differences between the statement as given above and that of
[54, Theorem 4.18], let us comment on them.

One concerns the fact that in [54, Theorem 4.18] we assumed f to be globally Lipschitz,
rather than only on an essential image of u as above. The modification we did is inessential
in the proof (just replace Y with Y′ and notice that u remains harmonic) and useful later on,
when, after proving that u is locally bounded, we will choose as f the squared distance from
a point.

Another is about the use of e2[u] in place of |du|HS that appeared in [54, Theorem
4.18]. There is a strict relation between these two: in [63, Proposition 6.7] we proved that
(d+ 2)e2[u]

2 = |du|2HS so that (6.8) is equivalent to

(6.9) ∆(f ◦ u)|U ≥ λ|du|2HSm.

We preferred to state the bound as in (6.8) because in order to give a meaning to the pointwise
Hilbert-Schmidt norm |du|HS one needs to rely on the universally infinitesimally Hilbertian
of CAT(κ) spaces proved in [36]. Since, perhaps surprisingly, such result plays no role in this
paper (nor in [54]), we decided to stick to the notation e2[u] to emphasize this fact.

The last difference is made more evident by the writing in (6.9), as in [54, Theorem 4.18]
the right hand side is multiplied by an additional factor 1

d+2 . This is due to a computational

mistake done in [54] that made it all the way up to publication: namely, in deriving the bound
[54, (4.12)] from [54, (4.11)] we forgot to multiply one of the terms in the right hand side by
1

d+2 . This results in an incorrect formula, the correct version being

lim
t↓0

EKS(ut)− EKS(u)

t
≤ − 1

d+ 2

ˆ
Ω
λg|du|2HS + ⟨d(f ◦ u), dg⟩ dm.

Using this bound in place of the original [54, (4.12)] in the proof of [54, Theorem 4.18] we
obtain the correct result reported above. ■

We conclude recalling the following key regularity statement about subharmonic functions.

Theorem 6.7. Let (X, d,m) be an RCD(K,N) space, K ∈ R, N <∞, U ⊂ X open, BR(x̄) ⊂
U , α, β ∈ R with β ≥ 0 and f ∈W 1,2

loc (U) be with

(6.10) ∆f ≥ −R−2(αf + β)m on U.

Then for every λ ∈ (0, 1) and r ∈ (0, R] we have

(6.11) ∥f+∥L∞(Bλr(x̄)) ≤ C1(α
+, 1

1−λ ,K
−R2, N)

 
Br(x̄)

f+ dm+ β
r2

R2
C2(

1
1−λ ,K

−R2, N).

Moreover, f admits an upper semicontinuous representative. More precisely, it coin-
cides m-a.e. with its essential upper semicontinuous envelope f∗ defined as f∗(x) :=
infr>0 ess-supBr(x)⊂U f .

This result is folklore in the field and its proof can be achieved via Moser’s iteration. In
this direction let us point out what follows.
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- The constants appearing in Moser’s technique depend only on the local doubling constant
and on the constant in the Poincaré inequality. This has been realized in the smooth cate-
gory in [93], where it has been proved that doubling & Poincaré imply a Sobolev inequality
(needed in Moser’s iteration) with an argument that carries over to the present setting
without modifications, much like it does so in the setting of Dirichlet forms, as noticed in
[101]. Notice that the settings of Dirichlet forms and RCD spaces are fully compatible by
[9, Theorem 6.10] (whose proof requires the chain and Leibniz rules established in [9] and
[48]).

- Chain rule and integration by parts formula in general metric measure spaces have been
provided in [48] and can be used to follow the proof, e.g., of [65, Theorem 8.17] without
any relevant modification, even in non-Hilbertian spaces. These tools are not-necessary if
α = β = 0 as in this case the inequality ∆f ≥ 0 can be read in purely variational terms
and, notably, this is sufficient to develop a satisfactory theory, see e.g. [19] and references
therein. In the ‘dual’ setting of Dirichlet forms, in place of the calculus as in [48] one can
use that based on the ‘Carré du champ’ operator, see e.g. [84], [42] and references therein.

- The dependance of C1, C2 on the given parameters can be seen e.g. inspecting the proof
of [65, Theorem 8.17]. The dependance on K−R2 can also be proved via a scaling ar-
gument: replacing d with 1

rd the original RCD(K,N) space becomes RCD(Kr2, N), hence

RCD(−K−R2, N), inequality (6.10) becomes ∆f ≥ − r2

R2 (αf+β)m and everything happens
in a ball of radius 1.

- From (6.11) it is clear that f(x) = f∗(x) for x Lebesgue point of f such that f(x) > 0. For
the general case we notice that f + k, k ≫ 1, satisfies a similar differential inequality.

- In [65, Theorem 8.17] there is an Lp norm, p > 1, at the right hand side. Still, once
such bound is proved, as customary one can use the L∞ control it provides and the trivial

inequality ∥f∥Lp ≤ ∥f∥
p−1
p

L∞ ∥f∥
1
p

1 to get (6.11).

6.2. First regularity results. In this section we shall work under the following assumptions:

- (X, d,m) is an RCD(K,N) space of essential dimension d ∈ N.
- U ⊂ X is open, bounded and such that m(X \ U) > 0.
- (Y, dY) is a CAT(0) space.
- u ∈ KS(U ; Y) ⊂ L2(U,Y) is harmonic. For convenience, we shall also fix Borel
representatives of u and e2[u].

We recall that the CAT(0) condition implies (see e.g. [18]):

(6.12) for every p ∈ Y the map dY(·, p) is convex and the map d2Y(·, p) is 2-convex.

This and Theorem 6.7 give the following important result about the ‘continuity set’ of u:

Proposition 6.8. With the above notation and assumptions, the following holds.
There exists Cont(u) ⊂ U Borel with

(6.13) m(U \ Cont(u)) = 0

such that the restriction of u to Cont(u) is continuous and locally bounded. More precisely,
for any o ∈ Y, ball BR(x) ⊂ U , λ ∈ (0, 1) and r ∈ (0, R] we have

(6.14) sup
x∈Cont(u)∩Bλr(x)

dY(u(x), o) ≤ C( 1
1−λ ,K

−R2, N)

√ 
Br(x)

d2Y(u(x), o) dm(x).
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Proof. By (6.12) and Theorem 6.5 we know that for any p ∈ Y we have ∆dY(u(·), p) ≥ 0 on
U , thus by the second part of Theorem 6.7 we know that there is a Borel m-negligible set
Np ⊂ U such that dY(u(·), p) is upper semicontinuous. Now recall that since u is essentially
separable valued there is Y′ ⊂ Y separable such that m(U \ u−1(Y′)) = 0, then let (pn) ⊂ Y′

be countable and dense and put

Cont(u) := u−1(Y′) \ (∪nNpn).

Then Cont(u) is Borel with m(U \ Cont(u)) = 0 and

lim
y→x

y∈Cont(u)

dY(u(x), u(y)) ≤ dY(u(x), pn) + lim
y→x

y∈Cont(u)

dY(pn, u(y)) ≤ 2dY(u(x), pn)

for every x ∈ Cont(u) and n ∈ N. Taking the inf in n we obtain the desired continuity, while
estimate (6.14) follows directly from (6.11) with C = C1(0,

1
1−λ ,K

−R2, N). □

We now define the upper semicontinuous function du : U × U → R as

(6.15) du(x, y) := lim
(x′,y′)→(x,y)

(x′,y′)∈Cont(u)×Cont(u)

dY(u(x
′), u(y′))

and notice that trivially from the definition it satisfies

du(x, y) = dY(u(x), u(y)) ∀x, y ∈ Cont(u),(6.16a)

du(x, y) ≤ du(x, z) + du(z, y) ∀x, y, z ∈ U.(6.16b)

Another direct consequence of the definition and (6.16a) is that

(6.17) lip(u)(x) = lim
y→x

dY(u(y), u(x))

d(y, x)
= tilt(−du)(x) ∀x ∈ Cont(u),

where the definition of tilt was given in (3.7). We shall also need the following properties:

Proposition 6.9. With the above notation and assumptions, the following holds:

i) For every x ∈ U we have du(x, ·) ∈W 1,2(U) and ∆du(x, ·)|U ≥ 0.

ii) We have

(6.18) lip(u) ≤ C(N) e2[u] m− a.e. on U.

Proof.
(i) For x ∈ Cont(u) we have du(x, y) = dY(u(x), u(y)) for m-a.e. y ∈ U by (6.16a) and (6.13).
Thus in this case the claims follow from item (ii) in Proposition 6.3 and Theorem 6.5 in
conjunction with property (6.12). For the general case we fix x ∈ U and for r > 0 put
gr(y) := supx′∈Br(x)∩Cont(u) du(x

′, y). Then (6.15) and (6.16a) ensure that

(6.19) du(x, ·) = inf
r>0

gr(·) on Cont(u) and thus m-a.e. on U.

Now notice that dY(u(x
′), ·) is 1-Lipschitz for every x′ ∈ U , thus the uniform estimate (6.5) -

recall also (6.1) -, the lattice property of Sobolev functions (that in turn follows from the chain
rule and the locality of minimal weak upper gradients) and the lower semicontinuity of minimal
weak upper gradients easily give that gr ∈ W 1,2(U) with |dgr| ≤ c(d)e2[u]. Then (6.19) and
again the lower semicontinuity of minimal weak upper gradients tell that du(x, ·) ∈W 1,2(U).

For the Laplacian estimate we apply Lemma 4.7 (with inverted signs) to deduce that
∆gr|U ≥ 0, so that by (6.19) and the stability property (4.30) we conclude.
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(ii) Let x ∈ Cont(u) and r > 0 be so that B := Br(x) and 2B = B2r(x) are contained in U .
Then

sup
y∈B

du(x, y)
(6.15),(6.13)

= ∥d(u(x), u(·))∥L∞(B)

(6.14)

≤ C(K−r2, N)

√ 
2B

d2Y(u(y), u(x)) dm(y),

hence dividing by r and letting r ↓ 0 we conclude recalling (6.4). □

Another direct consequence of (6.12) and Theorem 6.5 is:

Proposition 6.10 (Reverse Poincaré inequality). With the above notation and assumptions,
the following holds. Let B := Br(x) ⊂ U and λ ∈ (0, 1). Then

(6.20)

ˆ
Bλr(x)

e2[u]
2 + |du|2 dm ≤ c(d)

r2(1− λ)2
inf
o∈Y

ˆ
Br(x)

d2Y(u(x), o) dm,

for some constant c(d) depending only on the essential dimension d of X (and thus only on
N).

Proof. With an approximation argument we can assume that B ⊂⊂ U . Hence u|B is (es-

sentially) bounded by Proposition 6.8 and clearly harmonic. In particular u(B) is essentially
contained in a closed ball Y′ of Y. As it is well-known, and trivial consequence of (6.12),
closed balls in CAT(0) spaces are convex, and thus CAT(0) as well. Then for o ∈ Y let
do : Y

′ → R be given by do(q) := dY(q, o) and notice that by (6.12) d2o is 2-convex on Y′, thus
Theorem 6.5 (with B in place of U) gives e22[u]m ≤ c(d)∆(d2o ◦ u) on B. Therefore (6.5) gives
|du|2m ≤ c(d)∆(d2o ◦ u) on B and for φ := (1− 2

r(1−λ)d(·, Bλr(x)))
+ and α > 0 we have

ˆ
X
φ2|du|2 dm

(4.32)

≤ −c(d)
ˆ
X
d(φ2) · d(d2o ◦ u) dm

= −c(d)
ˆ
X
φ do ◦ udφ · d(do ◦ u) dm

(6.1)

≤ c(d)

ˆ
X
αφ2|du|2 + α−1d2o ◦ u |dφ|2 dm.

Picking α < 1
2c(d) , using the trivial bound |dφ| ≤ 2

r(λ−1)
χB and (6.5) we get the conclusion. □

We conclude the section with the following general result:

Proposition 6.11 (A Rademacher-type result). With the above notation and assumptions,
the following holds. Let v ∈W 1,2(U,Y) = KS2(U,Y) be locally Lipschitz. Then

(6.21) lip(v) = |dv| m− a.e. on U.

Proof. By [63, Prop. 2.5, Lemma 3.4] and with the terminology therein we have lip(v)(x) =
|||mdx(v)||| for m-a.e. x ∈ U , thus taking into account [63, Thm 4.12] we need only to verify
that

(6.22) |||md·(v)||| = ess-supmd·(v)(I (v)) and |dv| = ess-sup |dv(v)|,
where in both cases the m-essential supremum is taken among v ∈ L0(TX) with |v| ≤ 1
m-a.e.. The first in (6.22) is obvious (see also [63, Thm 4.9] and [56] for the definition of the
isomorphism I between the ‘abstract’ L0(TX) and ‘concrete’ L0(TGHX) tangent modules),
while the second comes from the properties of the abstract differential dv (see [57, Prop.
3.5]). □
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Remark 6.12. This last statement has little to do with the specific geometry of RCD and
CAT spaces and the choice p = 2. The same proof works for any p ∈ (1,∞) and Y complete
as soon as X is strongly rectifiable in the sense of [63, Definition 2.18] (see also the original
definition [56, Definition 3.1]), uniformly locally doubling and supporting a (weak, local 1-1)
Poincaré inequality.

This line of thought and [63, Proposition 2.5] and its proof also show that, in this case, for
v Lipschitz the conclusions of [63, Proposition 3.6] hold in a stronger form: one can replace
the approximate lim in [63, Definition 3.3] with a lim. Compare with [110, Definition 2.7].

■

6.3. Lipschitz continuity and Zhang-Zhong-Zhu inequality. In this section we shall
work under the following assumptions:

- (X, d,m) is an RCD(K,N) space of essential dimension d ∈ N.
- U ⊂ X is open, bounded and such that m(X \ U) > 0.
- (Y, dY) is a CAT(0) space.
- u ∈ KS(U ; Y) ⊂ L2(U,Y) is harmonic and Cont(u) ⊂ U is given by Proposition 6.8.
For convenience, we shall also fix Borel representatives of u and e2[u].

- R > 0 is a fixed parameter, that we shall think of as ‘maximal radius’.
- x̂ ∈ U and r ∈ (0, R) are fixed so that the balls B := Br(x̂), 2B := B2r(x̂) are
contained in U . Also, we define B′ ⊃ B′′ ⊃ B as B′ := B3r/2(x̂) and B

′′ := B4r/3(x̂).

Start noticing that from the bound (6.14) and the definition (6.15) we get

du(x, y) ≤ C̄ Norm ∀x, y ∈ B′ where Norm := inf
o∈Y

√ 
2B

d2Y(u(·), o) dm

for some C̄ = C̄(K−R2, N) that shall be kept fixed from here on. We then define f : X2 → R
as

(6.23) f(x, y) :=

{
−du(x, y), if x, y ∈ B′,
−C̄ Norm, otherwise

and notice that

(6.24) −C̄ Norm ≤ f(x, y) ≤ 0 ∀x, y ∈ X.

The properties of du (in particular upper semicontinuity and (6.16b)) ensure that f has the
properties stated at the beginning of Section 3. We then define ft as in formula (3.2), i.e. we
put

ft(x) := inf
y∈X

f(x, y) +
d2(x, y)

2t
.

Observe that (6.24) gives

(6.25) −C̄ Norm ≤ ft ≤ 0 on X, ∀t > 0.

Recall also that the functions D±
t (x) : X → R+ have been defined in (3.4) and put

(6.26) Dt(x) :=

{
D−

t (x), if K ≥ 0,
D+

t (x), if K < 0.

Strongly inspired by the ideas in [111], [110], we see that recalling the limiting property (3.8)
and (6.17), we will be in a good position to prove the Zhang-Zhong-Zhu inequality if we show
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that

(6.27) ∆ft|B′′ ≤ −KD2
t

t
m ∀0 < t≪ 1.

The Laplacian comparison estimate for the distance and the stability of upper Laplacian
bounds under ‘inf’ easily gives that ∆ft|B′′ ≤ Ct for some ‘bad’ constant Ct, hence by

Lemma 4.8 we see that (6.27) will follow if we prove that

∆̃ft ≤ −KD2
t

t
m− a.e. on B′′ ∀0 < t≪ 1.

We are actually able to prove this only at points x for which a minimizer for ft(x) is in some
a priori given full-measure set of ‘nice’ points (those for which the conclusion of Lemma 6.16
holds) but it is not clear a priori whether this occurs for m-a.e. x. Here is where the variational
principle enters into play, in line with the use of Jensen’s lemma in the theory of viscosity

solutions. We perturb our functions by adding d2(·,z)
n for some well chosen point z ∈ X and

n ≫ 1 (this does not affect upper Laplacian bounds too much), to be sure that minimizers
belong to the given set:

Lemma 6.13 (Perturbation lemma). With the same assumptions and notations introduced

above, the following holds. Put T̄ := r2

72(2+4r2+C̄ Norm)
and let E ⊂ B′ be Borel such that

m(B′ \ E) = 0.
Then for every t ∈ (0, T̄ ) there is z̄t ∈ B such that: for m-a.e. x ∈ B′′ and every n ∈ N,

n > 0

there is a minimizer Tt(x) of X ∋ y 7→ gt,n(x, y, z̄t) := f(x, y) +
d2(x, y)

2t
+

d2(y, z̄t)

n

and such minimizer belongs to E ∩B′.

Proof. Let x ∈ B′′ and notice that, by the choice of T̄ and direct computation, for t ∈ (0, T̄ )

we have f(x, ·) + d2(x,·)
2t > c outside B′ for c := 4r2 + 1. Thus by item (i) in Proposition

6.9, Theorem 4.6 and Lemma 4.5 we know that f̃(x, ·) := (f(x, ·) + d2(x,·)
2t ) ∧ c satisfies

∆f̃(x, ·) ≤ C(K−R2,N)
t m and, picking A := Cont(u) ∪ (X \ U), that f̃(x, ·) ∈ AC−(X).

Now for any z ∈ B define g̃t,n(x, y, z) := f̃(x, y) + d2(y,z)
n . We claim that

∀n ∈ N, n > 0, x ∈ B′′, z ∈ B, t ∈ (0, T̄ ) we have:

if y minimizes g̃t,n(x, ·, z) then it minimizes gt,n(x, ·, z) and it belongs to B′.
(6.28)

To see this, let y be a minimizer for g̃t,n(x, ·, z) and notice that

(−C̄ Norm+ d2(x,y)
2t )∧ c ≤ g̃t,n(x, y, z) ≤ g̃t,n(x, x, z) ≤ f(x, x)+ 1

nd
2(x, z) ≤ diam(B′′)2 ≤ 4r2.

In particular, f̃(x, y) ≤ 4r2 < c, hence f̃(x, y) = f(x, y) + d2(x,y)
2t and thus g̃t,n(x, y, z) =

gt,n(x, y, z). Since g̃t,n ≤ gt,n, we see that y minimizes gt,n(x, ·, z). The above also implies

d2(x, y) ≤ 2t(4r2 + C̄ Norm) ≤ r2

36 . Since x ∈ B′′ this implies y ∈ B′, so that (6.28) is proved.

Now for every x ∈ B′′ we apply Theorem 5.9 to f̃(x, ·) to find a Borel map T (x, ·) : X → X
so that for m-a.e. z ∈ X the point T (x, z) is the only minimizer of g̃t,n(x, ·, z) and

(6.29) T (x, ·)∗m ≪ m ∀x ∈ X.
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By compactness we see that the multivalued map (x, z) 7→ K(x, z) :=
{minimizers of g̃t,n(x, ·, z)} satisfies the assumption of the Borel selection theorem [20,

Theorem 6.9.3], thus there is T̃ : X2 → X Borel so that T̃ (x, z) ∈ K(x, z) for any

x, z. The uniqueness part of Theorem 5.9 for RCD(K,N) spaces forces T (x, ·) = T̃ (x, ·)
m-a.e., hence (6.29) gives T̃∗(m × m) ≪ m. Since m(B′ \ E) = 0 by assumption, we have

(m × m)
(
(B′′ × B) ∩ T̃−1(B′ \ E)

)
= 0, thus from Fubini’s theorem and (6.28) we see that

for m-a.e. z ∈ B we have: for m-a.e. x ∈ B′′ the point T̃ (x, z) is in E ⊂ B′ and minimizes
gt,n(x, ·, z). Since n ranges over N, this suffices to conclude. □

For T̄ > 0, t ∈ (0, T̄ ) and z̄t ∈ B as in Lemma 6.13 above, we define ft,n : X → R as

(6.30) ft,n(x) := inf
y∈X

f(x, y) +
d2(x, y)

2t
+

1

n
d2(y, z̄t).

A first, simple but useful, property of the ft,n’s is:

Proposition 6.14. With the same assumptions and notations introduced above the following
holds. For ft,n defined as in (6.30) we have

(6.31) ∆ft,n|B′′ ≤
C(K−R2, N)

t
m ∀t ∈ (0, T̄ ).

Proof. By Lemma 6.13 and Definitions (6.15), (6.23) we know that for m-a.e. x ∈ B′′ we have

ft,n(x) = inf
y∈B′∩Cont(u)

f(x, y) +
d2(x, y)

2t
+

1

n
d2(y, z̄).

On the other hand, by Theorem 4.6 and Proposition 6.9 we know that

∆
(
f(·, y) + d2(·, y)

2t
+

1

n
d2(y, z̄)

)
|B′′ ≤

C(K−R2, N)

t
m for every y ∈ B′,

so that the conclusion follows from Lemma 4.7 (using the second part with E := Cont(u)). □

To achieve (6.27) we now want to find suitable upper bounds for ∆̃ft,n. To this aim we
follow [111] and introduce, for fixed x̄, ȳ ∈ B′, the auxiliary function Fx̄,ȳ : X → R defined as

Fx̄,ȳ(z) :=

{
1

du(x̄,ȳ)

(
d2u(z, x̄)− d2u,p(z) +

1
4d

2
u(x̄, ȳ)

)
, if du(x̄, ȳ) > 0 and z ∈ B′,

0, otherwise,

where p ∈ Y is the midpoint of u(x̄), u(ȳ) and du,p : B
′ → R is defined as

du,p(x) := lim
x′→x

x′∈Cont(u)

dY(u(x
′), p) ∀x ∈ B′.

The relevance of these functions is due to the next two results (analogue of [111, Proof of
Lemma 6.7, Lemma 6.4]). Notice that the geometry of the target space here enters in a crucial
way: in the first of these lemmas we use the kind of ‘parallelogram inequality’

(6.32) (|ps| − |qr|)|qr| ≥
(
|pmqr|2 − |pq|2 − |mqrq|2

)
+
(
|smqr|2 − |sr|2 − |mqrs|2

)
,

valid for any p, q, r, s ∈ Y, where mqr is the midpoint of q, r and for brevity we wrote |pq| in
place of dY(p, q) (see [111, Lemma 5.2] for the proof), while in the second we use property
(6.12).
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Lemma 6.15. With the same assumptions and notations introduced above, we have

(6.33) f(x, y) ≤ f(x̄, ȳ) + Fx̄,ȳ(x) + Fȳ,x̄(y), ∀x̄, ȳ ∈ Cont(u), ∀x, y ∈ X,

with equality for x = x̄ and y = ȳ.

Proof. If du(x̄, ȳ) = 0 or both x and y are not in B′ the claim is obvious. Then we observe
that rearranging the terms in (6.32) we easily get that (6.33) holds for any x, y, x̄, ȳ ∈ Cont(u)
with du(x̄, ȳ) > 0 and x, y ∈ B′. The conclusion for x, y ∈ B′ arbitrary follows from the
definition of du(x, y) and du,p(x). It remains to deal with the case du(x̄, ȳ) > 0 and x ∈ B′,
y /∈ B′: if this happens (6.33) reads as

(6.34) −C̄ Norm ≤ f(x̄, ȳ) + Fx̄,ȳ(x).

To prove this notice that we know the validity of (6.33) for x, x̄, ȳ as in (6.34) and the choice
y := ȳ. With this choice we have Fȳ,x̄(y) = 0 and thus (6.34) follows from (6.24). □

Lemma 6.16. With the same assumptions and notations introduced above, the following
holds.

There is E ⊂ B′ Borel with m(B′ \ E) = 0 such that

∆̃Fx,y(x) ≤ 0, ∀x ∈ E, y ∈ B′.

Proof. For any p ∈ Y the identity du,p(·) = dY(u(·), p)) holds on Cont(u), hence m-a.e. on
B′. Then (6.12) and Theorem 6.5 give ∆(−d2u,p)|B′ ≤ −2(d+ 2)e2[u]

2m and thus Lemma 4.8

implies

∆̃(−d2u,p)(x) ≤ −2(d+2)e2[u]
2(x) ∀x ∈ B′∩Cont(u) Lebesgue point of e2[u]

2 and ∀p ∈ Y.

Similarly, for x ∈ Cont(u) the identity du(x, y) = dY(u(x), u(y)) holds for m-a.e. y ∈ U , thus
for any such x for which the limiting property (6.6) holds, since du(x, x) = 0 we have

∆̃d2u(x, ·)(x) = lim
t↓0

ht(d
2
u(x, ·))(x)
t

= lim
t↓0

1

t

ˆ
dY(u(x), u(y)) dhtδx(y)

(6.6)
= 2(d+ 2)e2[u]

2(x).

The conclusion follows from the subadditivity of ∆̃ (which is obvious by definition). □

We then have the following crucial estimate (recall also the definition (6.26)):

Proposition 6.17 (Laplacian bound for the ft’s). With the same assumptions and notations
introduced above and for T̄ as given by Lemma 6.13, we have

∆ft|B′′ ≤ −KD2
t

t
m ∀t ∈ (0, T̄ ).

Proof. We apply Lemma 6.13 with E ⊂ B′ chosen as the set of points for which the conclusions
of Lemma 6.16 hold and then define the functions ft,n accordingly. By the very definitions
of ft and ft,n and keeping also in mind that for x ∈ B′′ a minimizer for ft,n exists in B′ (by
Lemma 6.13), we have that ft,n → ft uniformly on B′′ as n→ ∞.

Hence taking into account the ‘bad’ distributional bound (6.31), Lemma 4.8 and the sta-
bility property (4.30), to conclude it is sufficient to find C(K−R2, N) > 0 such that

(6.35) ∆̃ft,n ≤ C(K−R2, N)

n
−K

D2
t

t
m− a.e. on B′′ ∀t ∈ (0, T̄ ), n ∈ N.
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By Lemma 6.13 we know that for m-a.e. x̄ ∈ B′′ ∩ E there is ȳ ∈ E minimizer for ft,n(x̄)
(recall the definition 6.30). Fix such x̄, ȳ and notice that for every x ∈ B′′ we have

ft,n(x) = inf
y∈Y

(
f(x, y) +

d2(x, y)

2t
+

d2(y, z̄)

n

)
,

(by (6.33)) ≤ f(x̄, ȳ) + Fx̄,ȳ(x) + inf
y∈Y

(
Fȳ,x̄(y) +

d2(x, y)

2t
+

d2(y, z̄)

n

)
= f(x̄, ȳ) + Fx̄,ȳ(x) +Qt

(
Fȳ,x̄(·) + d2(·,z̄)

n

)
(x)

(6.36)

with equality for x = x̄. By the monotonicity of the heat flow (or the representation formula
(4.1)) it follows that for every s > 0 we have

hsft,n(x̄) ≤ f(x̄, ȳ) + hsFx̄,ȳ(x̄) + hs
(
Qt

(
Fȳ,x̄(·) + d2(·,z̄)

n

))
(x̄)

hence subtracting (6.36) written for the equality case x = x̄, after passing to the limit we
obtain:

∆̃ft,n(x̄) ≤ ∆̃Fx̄,ȳ(x̄) + ∆̃
(
Qt

(
Fȳ,x̄(·) + d2(·,z̄)

n

))
(x̄).

Now observe that Lemma 6.16 and the fact that x̄ ∈ E give ∆̃Fx̄,ȳ(x̄) ≤ 0. Also, by inspecting

the equality case x = x̄ in (6.36) we see that the inf in the definition of Qt

(
Fȳ,x̄(·)+ d2(·,z̄)

n

)
(x̄)

is realized in ȳ, therefore Lemma 5.8, the subadditivity of ∆̃ and the definition (6.26) give

∆̃
(
Qt

(
Fȳ,x̄(·) + d2(·,z̄)

n

))
(x̄) ≤ ∆̃Fȳ,x̄(ȳ) +

1
n∆̃d2(·, z̄t)(ȳ)−K

D2
t (x̄)

t
.

Now observe that since ȳ ∈ E we have ∆̃Fȳ,x̄(ȳ) ≤ 0 by Lemma 6.16. To bound the second
term we apply Lemma 4.8 with g ≡ C and C = C(K−R2, N) given by Theorem 4.6 (recall that

x̄.ȳ, z̄t ∈ B′ ⊂ BR(x̂)): we obtain ∆̃d2(·, z̄t) ≤ C on B′. The conclusion (6.35) follows. □

We are now ready to prove the main result of the paper:

Theorem 6.18 (Zhang-Zhong-Zhu inequality and Lipschitz continuity of harmonic maps).
With the same assumptions and notations introduced above, the following holds.

The map u : U → Y satisfies the Zhang-Zhong-Zhu inequality

(6.37) ∆
|du|2

2
≥ K|du|2m on U

and has a representative, still denoted by u, that is locally Lipschitz continuous and satisfies

(6.38) Lip(u|B) ≤
C(K−R2, N)

r
inf
o∈Y

√ 
2B

d2Y(u(·), o) dm.

Proof.
Rough estimates Let 1

2B := B r
2
(x̂), 1

4B := B r
4
(x̂). We claim that for some C, T > 0 we

have

(6.39)
∥∥ft

t

∥∥
L∞( 1

2
B)

+
∥∥D2

t
t2

∥∥
L∞( 1

4
B)

≤ C ∀t ∈ (0, T ).

To see this, start noticing that |∂−ft| ≤ lip(ft) holds everywhere, so by (6.21) for Y = R (or
the analogous result in [26]) we get |∂−ft| ≤ |dft| m-a.e.. Then Theorem 3.3 and (6.18) give

(6.40) ∥ft∥L1(B) = ∥ft − f0∥L1(B) ≤
ˆ t

0

ˆ
B
|dft|2 + C e22[u] dmdt ≤ tC +

ˆ t

0

ˆ
B
|dft|2 dmdt
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for every t ∈ (0, T̄ ). Now let φ := (1− 1
3rd(·, B))+ and notice that

(6.41)

ˆ
φ2|dft|2 dm =

ˆ
dft ·d(ftφ2)−ftφdft ·dφdm ≤

ˆ
dft ·d(ftφ2)+ 1

2φ
2|dft|2 dm+C,

where in the last inequality we used (6.25) and the trivial bound |dφ| ≤ 1
3r
χ2B. Now observe

that Proposition 6.17 and the bounds (5.3), (6.24) give

(6.42) ∆(−ft)|B′′ ≥ −(K−C̄ Norm)m ∀t ∈ (0, T̄ )

and since φ = 0 outside B′′ and ftφ
2 ≤ 0, by (6.25) and (6.41) we get the uniform bound´

B |dft|2 dm ≤ C for any t ∈ (0, T̄ ). We use this estimate in (6.40) to deduce ∥ft∥L1(B) ≤ tC
and then apply Theorem 6.7 using again (6.42) to get the first in (6.39).

For the second, we notice that arguing as for (6.28) using the uniform bound (6.25) we see
that, possibly picking T̄ smaller, for x ∈ 1

4B any minimizer yt for ft(x) belongs to
1
2B. Then

the claim follows from what already proved and the estimate (5.3).
Core argument By the continuity in t of ft(x) (item (i) of Proposition 3.1) we see that

limt↓0
−ft
t = infn∈N supt∈Q∩(0, 1

n
)
−ft
t pointwise on X. Thus letting, for every n ∈ N, {tn,i}i∈N be

an enumeration of Q∩(0, 1n), by Proposition 3.4 we have that supi
−ftn,i

tn,i
converges to 1

2 tilt(f)
2

pointwise. Then by the first estimate in (6.39) we see that the convergence is also in L1(12B),

hence by a diagonalization argument we can find Nn ∈ N so that f̃n :=
ftn,1

tn,1
∧ · · · ∧

ftn,Nn
tn,Nn

converge to −1
2 tilt(f)

2 in L1(12B), and then up to pass to a non-relabeled subsequence also
pointwise m-a.e..

Let An,i := {ftn,i

tn,i
= f̃n} \ ∪j<iAn,j ⊂ X, notice that for every n ∈ N the sets (An,i)i=1,...,Nn

form a Borel partition of X and then put g̃n :=
∑

i
χAi,n

D2
tn,i

t2n,i
. By the last claim in Proposition

3.4 and the construction we see that g̃n → tilt(f)2 m-a.e. on B, so that by the second estimate
in (6.39) the convergence is also in L1(14B).

Now notice that Proposition 6.17 and the last claim in Lemma 4.8 (and induction) give

(6.43) ∆f̃n ≤ −Kg̃nm, ∀n ∈ N, on 1
4B,

so that the L1 convergences, the uniform bounds (6.39) and the stability property (4.30)
imply

(6.44) 1
2∆lip2(u) ≥ Klip2(u)m

on 1
4B, having also used (6.17). By the arbitrariness of B and the locality property (4.31)

we infer that (6.44) holds on U . We now claim that lip2(u) ∈ W 1,2
loc (U) and to this aim,

by the arbitrariness of B it is sufficient to prove that for any V ⊂⊂ 1
4B open we have

lip2(u) ∈W 1,2(V̄ , d,m|V ) (this is a direct consequence of the locality of the concepts of ‘being

Sobolev’ and ‘minimal weak upper gradients’, see for instance [9, Theorem 4.19]). Thus let
φ ∈ Lipbs(X) be identically 1 on V with support in 1

4B and notice that (6.43) and the same
computations in (6.41) give

ˆ
φ2|df̃n|2 dm ≤

ˆ
−Kg̃nφ2f̃n + 1

2φ
2|df̃n|2 + 2f̃2n|dφ|2 dm.
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Since supn ∥f̃n∥L∞( 1
4
B), ∥g̃n∥L∞( 1

4
B) <∞ by (6.39), this is sufficient to derive a uniform bound

on
´
φ2|df̃n|2 dm and thus on

´
V |df̃n|2 dm so that the lower semicontinuity of the Cheeger

energy on the space (V̄ , d,m|V ) gives our claim.

We can thus apply Theorem 6.7 to f := lip2(u) ∈W 1,2
loc (U) using (6.44) and conclude that

(6.45) ∥lip(u)∥L∞(B′′) ≤ C

√ 
B′

lip2(u) dm
(6.18)

≤ C

√ 
B′

e22[u] dm
(6.20)

≤ C

r
Norm,

for some C = C(K−R2, N). Now let (pn) be a countable set dense in the essential image of u,
put un := dY(u(·), pn) and notice that - trivially - we have lip(un) ≤ lip(u) everywhere and by
item (ii) in Proposition 6.3 we know that un ∈W 1,2(U). Hence (6.45) and the simple Lemma
6.19 below ensure that |dun| ≤ C

r Norm m-a.e. on B′′. We can then apply the local Sobolev-
to-Lipschitz property (see [64, Proposition 1.10]) and deduce that un has a representative ũn
that is locally Lipschitz on B′′ with local Lipschitz constant uniformly bounded by C

r Norm.
Since any two points x, y ∈ B can be joined by a curve lying on B′′ with length bounded by
3d(x, y) (if a geodesic γ from x to y is so that γt /∈ B′′ for some t, its length, and thus d(x, y),
must be at least 2r

3 , while a curve passing through the center has length ≤ 2r), we conclude

that Lip(ũn|B) ≤
C
r Norm.

Since this is true for any n ∈ N, it follows that for some N ⊂ B Borel negligible we have

|dY(u(x), pn)− dY(u(y), pn)| ≤
C

r
d(x, y)Norm ∀x, y ∈ B \N.

Taking the supremum in n we conclude that the restriction of u to B \N is C
r Norm-Lipschitz,

so that u : U → Y has a locally Lipschitz representative satisfying (6.38), as desired.
Finally, (6.37) follows from (6.44) taking into account the identity (6.21). □

Lemma 6.19. Let (X′, d′,m′) be a complete separable metric space equipped with a non-
negative and non-zero Radon measure finite on bounded sets. Let U ⊂ X′ be open, f ∈
W 1,2(U) and assume that lip(f) ∈ L2(U). Then |df | ≤ lip(f) m-a.e. on U .

Proof. Multiplying f by a sequence of Lipschitz cut-off functions with support in U we can,
and will, reduce to the case U = X′. Observe that for any curve γ and t ∈ [0, 1] for which the

metric speed |γ̇t| of γ exists and lipf(γt) is finite we have limh→0
|f(γt+h)−f(γt)|

|h| ≤ lipf(γt)|γ̇t|.
Now let π be a test plan and notice that (by [55, Theorem 2.1.21]) for π-a.e. γ we have
f ◦ γ ∈W 1,1(0, 1), thus by what just proved it is easy to see that its distributional derivative
is bounded in modulus by lipf(γt)|γ̇t|. By [55, Theorem 2.1.21] again this is sufficient to
conclude. □
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[7] L. Ambrosio, N. Gigli, and G. Savaré, Gradient flows in metric spaces and in the space of probability
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and their Applications, Birkhäuser Boston, Inc., Boston, MA, 1993.

[35] Q. Deng, Holder Continuity of Tangent Cones and Non-Branching in RCD(K,N) Spaces, ProQuest
LLC, Ann Arbor, MI, 2021. Thesis (Ph.D.)–University of Toronto (Canada).

[36] S. Di Marino, N. Gigli, E. Pasqualetto, and E. Soultanis, Infinitesimal Hilbertianity of locally
CAT(κ)-spaces, J. Geom. Anal., 31 (2021), pp. 7621–7685.

[37] R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces,
Invent. Math., 98 (1989), pp. 511–547.

[38] J. Eells, Jr. and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86
(1964), pp. 109–160.

[39] M. Erbar, K. Kuwada, and K.-T. Sturm, On the equivalence of the entropic curvature-dimension
condition and Bochner’s inequality on metric measure spaces, Invent. Math., 201 (2014), pp. 1–79.

[40] B. Freidin, A Bochner formula for harmonic maps into non-positively curved metric spaces, Calc. Var.
Partial Differential Equations, 58 (2019), pp. Paper No. 121, 28.

[41] B. Freidin and Y. Zhang, A Liouville-type theorem and Bochner formula for harmonic maps into
metric spaces, Comm. Anal. Geom., 28 (2020), pp. 1847–1862.

[42] M. Fukushima, Y. Oshima, and M. Takeda, Dirichlet forms and symmetric Markov processes, vol. 19
of De Gruyter Studies in Mathematics, Walter de Gruyter & Co., Berlin, extended ed., 2011.

[43] N. Gigli, De Giorgi and Gromov working together. Preprint, arXiv:2306.14604.
[44] , On the heat flow on metric measure spaces: existence, uniqueness and stability, Calc. Var. PDE,

39 (2010), pp. 101–120.
[45] , Introduction to optimal transport: theory and applications, Publicações Matemáticas do IMPA.
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polytech. Math., 5 (2018), pp. 613–650.

[51] N. Gigli, K. Kuwada, and S.-i. Ohta, Heat flow on Alexandrov spaces, Communications on Pure and
Applied Mathematics, 66 (2013), pp. 307–331.
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[93] L. Saloff-Coste, A note on Poincaré, Sobolev, and Harnack inequalities, Internat. Math. Res. Notices,

(1992), pp. 27–38.
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