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To the memory of Antonio Ambrosetti

Abstract: We prove an analyticity result for the Dirichlet-Neumann operator under space peri-
odic boundary conditions in any dimension in an unbounded domain with infinite depth. We de-
rive an analytic bifurcation result of analytic Stokes waves —i.e. space periodic traveling solutions—

of the water waves equations in deep water.
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1 Introduction and main results

The Dirichlet-Neumann operator plays an important role in fluid mechanics, for example in
the Craig-Sulem-Zhakarov [19] 42] formulation of the water waves equations (cfr. Section [[.2]),
and in several other branches of analysis, as in the theory of inverse problems. Roughly speaking

it is defined as the linear operator which maps the Dirichlet datum of a harmonic function in
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a given domain into the normal derivative at its boundary (Neumann datum). The Dirichlet-
Neumann operator is nonlinear with respect to the boundary of the domain. In view of many
applications it is important to determine its regularity in different function spaces.

Several results about the analyticity of the Dirichlet-Neumann operator acting between
Sobolev spaces, with respect to the variation of the boundary, have been proved, starting with
the pioneering works of Coifmann-Meyer [16], Craig-Schanz-Sulem [I§], Craig-Nicholls [I7] and
Lannes [26] where we refer for an extended bibliography. We also mention the deep analysis of

the Dirichlet-Neumann operator in [5] [4] [3] [40], on which we will comment later.

The major aim of this paper is to prove a further analyticity result for the Dirichlet-Neumann
operator G(n) defined in (I3)) on the unbounded domain T x {y < n(z)}, where T¢ := (R/27Z)¢
is the standard d-dimensional flat torus, in any space dimension d > 1. Assuming that n(z) is
analytic, we prove in Theorem the analyticity of the map n — G(7) acting between suitable
spaces of analytic periodic functions. The delicate point of this result is that 1 and v are assumed
to have the same regularity (if 7 is more regular than ¢ the result is simpler). Following Lannes
[25] 26] and Alazard-Burg-Zuily [I] we make use of a regularizing diffeomorphism to flatten the
domain to the half cylinder, in which the transformed harmonic function solves a perturbed
elliptic equation. Then the proof relies on a perturbative approach to invert the transformed
Laplacian over suitable spaces of functions u(z,y) which are analytic in z, with Sobolev regularity
in y and decay to zero as y - —oo, cfr. (Z1). The key step is obtain linear elliptic regularity
estimates for the Poisson equation in these spaces, see Lemma 2.0l Then the elliptic estimates

for the modified problem are obtained by a perturbative argument differently from [I].

As a consequence of Theorem [[L2] we derive an analytic bifurcation result of analytic Stokes
waves —i.e. space periodic traveling solutions, which look stationary in a moving frame with
constant speed— of the pure gravity water waves equations in infinite depth, see Theorem [L3l
Existence of traveling waves which are constant in one space dimension, i.e. are 1-dimensional
waves, dates back to classical works of Levi-Civita [27], Nekrasov [3I] and Struik [37], in the
twenties of the last century. Then Lewy [28] proved that a traveling wave which is at least C*
is actually analytic. Theorem proves in addition that small amplitude Stokes waves depend
analytically on the amplitude taking values in a space of analytic functions. In finite depth and
with surface tension, a result of this kind is proved in Nicholls-Reitich [33] by a power series
expansion approach.

In this paper we deduce Theorem[[3] by the analytic Crandall-Rabinowitz bifurcation theorem
from a simple eigenvalue, as presented in the book of Ambrosetti-Prodi [6], thanks to the analytic
estimates of the Dirichlet-Neumann operator obtained in Theorem

In addition to their interests per se —traveling waves have fundamental importance in fluid
mechanics—, these results have been used in the study of the Benjiamin-Feir instability of the
Stokes waves in [13].

We now state precisely our results. Along this paper we use the following notation. We
denote the spatial variables by (z,7) € T? x R, d > 1, where T := (R/27Z)? is the standard flat



torus. The symbol V denotes the gradient

V= (0z;) =1

yenn

d
a and  A=307 A,=A+0).
j=1
A dot will denote the standard scalar product in R%. Moreover N:= {1,2,...} and Ny = {0} UN.

1.1 Dirichlet-Neumann operator

We consider the cylindrical domain
'D,]::{(x,y)e']I‘de : y<n(m)}, d>1, (1.1)

delimited by the graph 9D, = {y = n(x)} of a periodic function 7n(z), and, given a periodic
Dirichlet datum (), we consider the unique harmonic function ®(x,y) solving the system
Ay y®=0 in D,
O(z,y) =v(x) aty=n(z) (1.2)
0,®(z,y) >0 asy—>-oo.
The Dirichlet-Neumann operator G(7) is then defined as the linear operator
[GMY](x) = V1 + [V 0n@lymy(a)
= (9y®)(z,n(x)) - Vn(z) - (VO)(z,n(x))

where n denotes the exterior normal

1 |:—V77:| 1
ni=—— , Opi= —=(0y, - Vn-V).
ViR L1 \/1+|an2( ! )

The reason of the name “Dirichlet-Neumann” is that the operator G(n) maps the Dirichlet
datum 9 (z) of the harmonic function ®(z,y) into the (normalized) normal derivative 9, P at
the boundary 0D,, = {y = n(z)} (Neumann datum).

Remark 1.1. In ([L2)) it is equivalent to require the boundary condition V®(z,y) - 0 as y - —oo,
see Remark Actually V®(z,y) decays to zero exponentially fast as y - —oo.

Simple algebraic properties of the Dirichlet-Neumann operator are recalled in Appendix [Al
Since Calderon it is known that the Dirichlet-Neumann operator G(n) is, if n is a C*° function,
a classical pseudo-differential operator, elliptic of order 1, with an asymptotic expansion in
classical decreasing symbols. For the flat surface n(x) = 0, the Dirichlet-Neumann operator is
the Fourier multiplier
G(0) = |D| = (-A)*

as follows by the elementary calculus (Z25]). In space dimension d = 1 the Dirichlet-Neumann

operator is equal to |D| up to infinitely many times regularizing operators, see e.g. [14, [§]. If



n(x) has a finite smoothness, Lannes [25] [26] proved an analogous expansion in symbols with
finite smothness.

The Dirichlet-Neumann operator is a nonlinear map with respect to the boundary of the
domain 9D,,. The analytic dependence with respect to 7 of the Dirichlet-Neumann operator
1~ G(n) has been first established in the two dimensional setting by Coifman-Meyer [16], and
in the three dimensional setting by Craig, Schanz and Sulem [I8], showing that, if n e C¥*1,
e H*1 ke N, then G(n)[+] € H* is analytic in C*¥*1 n {|n|c1 <7} for r sufficiently small.

In view of of application to water waves Craig-Nicholls [I7], Wu [40} 4], and Lannes [25]
26] proved, with different approaches, that if 1,7 have the same Sobolev regularity H® then
G(n)[+] € H*™L. In particular Lannes proved tame estimates using regularizing diffeomorphisms
to straighten the domain.

The paralinearization of G(n), which enables to prove optimal estimates for the action of
the Dirichlet-Neumann operator, has been obtained in Alazard-Metivier [5], Alazard-Delort [4],
and Alazard-Burg-Zuily [2], B] in rough domains, using a variational analysis to construct the
solution and applying elliptic regularity theory. The paralinearization of the Dirichlet-Neumann
operator in d = 1 with a multilinear expansion in 7 is proved in Berti-Delort [I0], by using a
paradifferential parametrix a la Boutet de Monvel.

Finally we mention the work of Alazard-Burq-Zuily [I] for the study of the Dirichlet-Neumann
operator acting in analytic function spaces, making use of a regularizing diffeomorphism as in

[25], variational methods and elliptic regularity analysis.

In this paper we prove an analyticity result (Theorem [[2]) for the Dirichlet-Neumann map
n = G(n)y in the cylindrical domain D, defined in (LIl), acting between spaces of periodic
analytic functions defined in (L4 below. We suppose that the functions 1 and ¢ belong to the

spaces of periodic functions

H* := H*(T%) := {u(m) = 3 wpe s ul e = Y 2ok ()28 | 2 < oo} (1.4)
keZd keZd
where, for any k = (kq,...,kq) € Z%, we set

d\1/2
|k|1 = |k1|+"'+|kd|a (k) = maX(1,|k/’|)a |k| ::(ij) ’
j=1

Clearly, if the dimension d = 1 then |k| = |k|;.

If o = 0 the space H%* is the usual Sobolev space H®. If o > 0, a periodic function u(z) belongs
to H%*(T?), if and only if it admits an analytic extension in the strip |y|eo := max{|y1), ..., |yal} <
o and the traces at the boundaries u(- +i%), |yl = o, belong to the Sobolev space H® := H*(T¢).
In Appendix [BI] we prove this characterization, together with the property that the spaces H*
form, for s > d/2, an algebra with respect to the product of functions and satisfy tame estimates.

The main result of this section is the following theorem.
Let B?*(r) denote the open ball in H?* of center 0 and radius r > 0.



Theorem 1.2. (Dirichlet-Neumann operator) Let o > 0 and s, so such that s + %, s0 €N,

and s — % > S0 > %. Then there exists g = €o(s) > 0 such that the Dirichlet-Neumann operator

ma

77'_’0(77), H(T’snBa’sM'%(eO) —>£(H‘775’Ho,s—1),

is analytic and fulfills the tame estimate

|G rreer < C(8) ([N mres + [l mre [ oo ) - (1.5)

We remark that, in Theorem [[L2] the functions 7, have the same analytic regularity. The
proof of such result, given in Section 2 relies on a regularizing flattening method (following

[25 [1]) together with a perturbative argument in suitable functional spaces.

1.2 Stokes waves

As an application of Theorem we prove that 1-dimensional Stokes waves solutions of the
pure gravity water waves equations in deep water are analytic functions belonging to the spaces
H?? and moreover depend analytically with respect to the amplitude parameter. Clearly 1-
dimensional traveling waves are also 2d-traveling waves which are constant in one space direction,

so it extends to higher dimensional Stokes waves. We first present the water waves equations.

The pure gravity water waves equations. We consider the Euler equations for a bi-

dimensional incompressible, inviscid, irrotational fluid under the action of gravity, filling the
region D, defined in (1)) with d =1,

3P+ 1((9,9)% + (9,2)2) + gn =0 at y =n(z)
Oim = 0y® — (0,m) (0, P) at y =n(x)
(1.6)
Ay y®=0 in D,
0y® -0 asy — —oo,

where g > 0 is the acceleration of gravity. The irrotational velocity field is the gradient of the
harmonic scalar potential ® = ®(¢,x,y), determined by its trace ¥ (t,z) = ®(¢,x,n(t,x)) at the
free surface y = n(t,z). Actually ®(¢,-) is the unique solution of the elliptic equation (I2)). The
time evolution of the fluid is determined by the first two boundary conditions in (L6) at the free
surface. The first states that the pressure of the fluid is equal, at the free surface, to the constant
atmospheric pressure (dynamic boundary condition) and the second one that the fluid particles
remain, along the evolution, on the free surface (kinematic boundary condition).

As shown by Zakharov [42] and Craig-Sulem [19], the evolutionary system (L.6) amounts to
the following equations for the unknowns (n(t,x),¥(t,x)),

V3 1

=G, Yy=-gn- =+

2 W(G(anr%%)Q, (1.7)

LH$ 0 B30 () is an open set in the H%® topology.



where G(7) is the Dirichlet-Neumann operator in (L3)). In addition the equations (7)) are the
Hamiltonian system

om=VyH, Ob=-V,H, (1.8)
where V,,, V4 denote the L?-gradients of the Hamiltonian
1
U ) =5 [ (G + o) da,

which is the sum of the kinetic energy (cfr. (A.J])) and potential gravitational energy of the fluid.
Actually, as proved in [19, 2], the L?-gradient with respect to 7 of the kinetic energy

K(,0) = 50,60 =2 [ vePa, (19)
is equal to . . ,
VoK (n,9) = —5%23 + W(G(UW +0aths) (1.10)

yielding the equivalence between (L8] and (7).
We also remark that the water waves equations (7)) are invariant under space translations

namely, by (A.2),

Horg=H, VOeR?.

In addition, the water waves equations are reversible with respect to the involution

n(z) | _ [ n(-=z) . o
p [w(z)] = |:7¢(71)] , e Hop=H,

as a consequence of (A3).

The Stokes waves. Noteworthy solutions of (L) are the so-called Stokes waves, namely

traveling solutions of the form

77(?5,33) =77(.T—Ct), ¢(ta$) :’JJ(QC_Ct)a (1'11)

for some real ¢ (the speed) and 27-periodic functions (7j(«x), 7,/?(:0)) (the profiles). In a reference
frame in translational motion with constant speed ¢, the water waves equations (7)) then become,
by using the translation invariance property (A.2]),
M= ek G, =t —gn— 24— (@ + ) (1.12)
t T ) t x 2 2(1 + 77%) xVx . .
The Stokes waves profiles (7, JJ) in (ILIT)) are then equilibrium steady solutions of ([LI2), namely
solve the system
P2

cne +G(MY =0, cp—gn--—-"+

2 W(G(nwwmmf -0. (1.13)

The next theorem is the main bifurcation result of small amplitude Stokes waves proved in this
paper. We denote by B(r) := {x € R: |x| < r} the real ball with center 0 and radius r.



Theorem 1.3. (Stokes waves) For anyo >0, s >5/2 and k € N, there exists €y := €o(0, s,k) >0

and a unique family of solutions
(ne(2),Ye(), cc) € H*(T) x H7*(T) xR
of the system (LI13), parameterized by |e| < €o, such that
1. the map € = (Ne, Ve, ce), B(eg) > H7*(T) x H™*(T) x R is analytic;
2. ne(x) is even, n.(x) has zero average, . (x) is odd;

3. the solutions (ne(x),ve(x),ce) have the expansion

(ne(x), e () = e(Vk cos(kx), /gsin(kz)) + O(€2), ¢c - \/% as €—0. (1.14)

Theorem is proved in Section Bl Let us make some comments on the result.

1. As already mentioned in the introduction, the first rigorous bifurcation proof of small ampli-
tude Stokes waves for pure gravity water waves goes back to Levi-Civita [27] and Nekrasov [31]
in deep water, and Struik [37] in finite depth. We refer to the monographs of Ambrosetti-Prodi
[6] and Buffoni-Toland [15] for a complete presentation. Concerning regularity, it is known since
Lewy [28] that a Stokes wave which is at least C! is actually analytic. Theorem [[3] proves in ad-
dition that the Stokes waves (n¢(x),1¥.(x)) depend analytically on the amplitude € taking values
in a space of analytic functions H?® x H?®. In finite depth and in presence of surface tension,
an analyticity result of this kind is proved in Nicholls-Reitich [33], by a power series expansion.
We also mention Plotnikov-Toland [35] for related results about analytic continuation of Stokes
waves.

Existence of traveling water waves has been also proved by Zeidler [43] under the effect of
capillary forces and Martin [30], Walhén [39] also for constant vorticity flows. We expect that,
thanks to Theorem [[L2] an analyticity result for the Stokes waves, analogous to Theorem [[3]

holds also in these cases.

2. Higher order Taylor expansions of the Stokes waves in € are known, see e.g. [20], [32], [33].
We remark that Theorem proves the convergence of the Taylor series of the Stokes waves in

€, taking values in spaces of analytic periodic functions.

3. Quasi-periodic traveling waves. More general 1d time quasi-periodic traveling Stokes waves
have been recently obtained in Berti-Franzoi-Maspero [I1], [12], with or without surface tension,
and Feola-Giuliani [21], by means of a Nash-Moser implicit function iterative scheme. We remark

that these solutions are not steady in any moving frame. This implies a small divisor problem.

4. Higher space dimension: existence. For three dimensional fluids, in addition to Stokes waves,
also traveling wave solutions which are nontrivially periodic in both spatial directions are known,
for example forming hexagonal patterns. Their existence was first proved in Craig-Nicholls [I7]
for gravity-capillary water waves, by applying variational bifurcation arguments a la Weinstein-
Moser, exploiting the Hamiltonian nature (IL8]) of the water waves equations. The surface tension

allows to apply, in the bifurcation analysis, the standard implicit function theorem. On the other



hand the existence of 2d pure gravity doubly-periodic traveling wave solutions is a small divisor
problem. In this case, solutions with Sobolev regularity were constructed by Iooss-Plotinkov
[22, 23] by means of a Nash-Moser implicit function theorem, requiring suitable Diophantine

conditions on the speed vector.

5. Regularity. In higher space dimensions a regularity result a la Lewy [2§], i.e. a traveling wave
surface which is at least C! is actually analytic, has been proved for gravity-capillary water waves
by Craig-Matei [16]. For pure gravity waves, a result of this kind is false, because the system
is no more elliptic. This feature is the counterpart of the small divisor problem arising in the
existence proof of Tooss-Plotinkov [22] [23]. Assuming Diophantine conditions on the speed vector,
Alazard-Metivier [5] proved that the periodic traveling waves constructed in [22] 23], which have

Sobolev regularity, are indeed C'*°.

6. We finally note that, for larger values of the amplitude ¢, the regularity of the traveling wave
solutions may break down. Indeed it is well known that large traveling waves have cusps, as
proved in the celebrated works about the Stokes conjecture of Amick, Fraenkel, Toland [7] and
Plotinkov [34].

2 Analyticity of the Dirichlet-Neumann operator

In this section we prove Theorem concerning the analyticity of the Dirichlet-Neumann

operator. The first step is to straighten the free surface.

Regularizing diffeomorphism. Following [25] [T] we apply the regularizing change of variables
v=a',  y=py), el y) =y e P, (2.1)
where e¥Pl is the Fourier multiplier
(eyIDlg) (z):= Z gk eVl ik VY oga) = Z i ok
keZd keZd
Note that
Pl 0)=n(a"),  lim p(z'y") ~y =m0,
and, since
dyp(a’y') =1+ e/ ™Dy,

if sup,/g Hey"D‘|D|7}HLw(’H‘d) <1 the change of coordinates [21]) is a diffeomorphism between the
domain D,, = {(z,y):y < n(x)} and the flat half-cylinder {(2’,y):y’ < 0} = T? x Ry where
Rgp := (—00,0]. By the change of variables (Z.I)) the derivatives 9, and V, become respectively

1 Vaz p

A= =8y, As=Va-
Oyp ! Oy p

Oy ,
and the transformed harmonic function

o(z',y") =",y + p(z',y"))



solves the elliptic problem
(AT + A3 =0
¢(z,0) = ¢(x) (2.2)
Oyo(z,y) >0  asy—> -oo.

By means of chain rule, system (2.2)) is rewritten (cfr. [I]) as the perturbed elliptic problem (we

rename the variables ',y as z,y)

Avyp = F()[e]
o(x,0) = 1p(z) (2.3)
dye(z,y) >0 asy—>—oo,
where
F(n)le] = (a()d + B(m)A +~(n) - VI, +6(n)dy) ¢ (2.4)
with, since Vp(z,y) = e¥Plvy and 9,p(z,y) = 1+ ¥P!|D|n,

1+|vpl* _ e’PID[p - |e¥IPlvp|?

=1- =
) Oyp L+evPl[Dlnp

B(n) =1-0yp=-e"PI|Dly,

(2.5)
v(n) =2Vp = 2"y,
5(n) = L( —2Vp-VOyup+ OypAp + M@%)
Oyp Y Y oyp V)
In the new variables (2J), the Dirichlet-Neumann operator defined in (I.3]) becomes
1+|vnl*()
(G0 =~ 96,0 + D (9,0)(0). (2.6

L+ (D) ()

Function spaces. In order to state our main existence result for the solutions of ([23]), we

introduce some function spaces. Given s € Ny, 0,a > 0, we define

H7 = {u(z,y) = Y wk(@)eF T T x (00,01 > C ¢ g < o0} (2.7)
keZ4d

endowed with the norm

™M

HajuHL?a(R(O Hos-3) (2.8)

Hu”a s,a "~

Il
[=)

J

0 .
[ 10 ) ey €00y

™

<
Il
(=)

|| Mm S Mv

f S €27 ()26 |9y (y) P2 dy

keZd

Z 2okl (y2(5=9) Ere (2.9)
kezd



where, given a Hilbert space X, we have used the notation

0 0
ulf ey = [ u@lke?ay= [ jut)liedy. (2.10)

Remark 2.1. For o = a = 0, the space H**? coincides with the Sobolev space H*(T¢ x R<y) of
L? functions u : T? x Ry — C possessing weak derivatives 9%u in L?, for any multiindex o € N¢+!

with modulus o < s, with equivalent norm [u|? = ¥ ,enast jajes [07u]7 2.

We point out that, for any s € N,

[ulZ s = 1l oo @ ey + 105ullG o1 0

and, by 238) and ||0,,v] go.s-1 < |v] ge.s, we directly get the following simple lemma.
Lemma 2.2. Let seN, 0 >0, a>0. The linear maps
o Ho,s,a s HO’,S—l,a Vi=1 d . Ho,s,a s HO’,S—l,a
ZTq I Bt I Bt Yy - I
are continuous.
We also denote
CoHT> = {c +u(z,y), ceC, ue ’Ha’s’a} , MM:CeH”>>H> M[c+u]=u, (2.11)

and, with a small abuse of notation, given a function g € C @ H”%“, we denote its norm by
l9lo,s,a = T1g|s,s,a + |g — IIg|. The function spaces H”** and C & H7** are modeled to mimic
the decay of the harmonic function ¢ in ([2.25) as y - —oo, cfr. Lemma 25

We now list a series of properties of the spaces H7>** used in the sequel; we defer their proofs
in Appendix

Lemma 2.3 (Trace). Let 0 >0, seR. Then one has

HUHCU(RSO,HG’S) S HUHLZ(RS(),HG’S+%) + HayuHL2(]R507HU,S*%)' (212)

In particular, the trace operator
I'(u) :=u(-,0) = uly=o (2.13)

is, for any s € Ny, a >0, a linear bounded map between HT 1% — Hos%3 , satisfying
IT(u)] fyoovs < lullossro < Julosira- (2.14)

If s > %, the space H?"*% is an algebra with respect to the product of functions and the

following tame estimates hold.

Proposition 2.4 (Tame). Let 0,a >0 and s > s9 > &L, 5,50 € N. Then there ewist positive

2
constants Cs > 1 (non-decreasing in s) such that, for any u € HO? and v e HT*?,

HUUHG,S,a < CS(HUHU,S,O ”UHU,So,a + HUHG,SmO HUHG,S,a)- (2'15)
In particular one has

i j-1 .
HUJ HG,S,a < (205 HUHQSO,a) ”uHa,s,av Vj>1. (2'16)

10



The next lemma proves the continuity of the harmonic function e¥/Plg, which solves the
Dirichlet-Neumann elliptic problem (Z25]), with respect to the Dirichlet datum g at y = 0.

Lemma 2.5 (Harmonic propagator). Let 0 >0 and s+ % e N. Then, for any g € H??®, the

function

(ey\D\g)(z) - Z gk eYlkl ik
keZd

belongs to C BHT*IN ge (0,1), and the linear map
H* > o5 g H[edPlg] = efPlg - gy
18 continuous.

We now come back to Theorem The key result of its proof is the following proposition
regarding the solution of the elliptic problem (2.3]).
The parameter a € (0, 1) plays a technical role in studying the decay as y — —oo of the solution

of the elliptic problem (Z2)) (see in particular Lemma [Cl). In the sequel we fiz a = %

%, soeNands—§Zso>%. Then

there exist €y := eg(s) > 0 and, for any n € H>*n B”’S“Jr%(eo) and ¥ € H>®, a unique solution
peC @ Mot of the elliptic problem 23), satisfying

Proposition 2.6. Let 0 > 0 and s, so such that s +

1Tl g 0it.a < CE) (W laes + Inlzme 1] o003 ) - (2.17)

Moreover ¢ = W(n)[4], where ¥ is an analytic map H* 0 B7*0*3 (¢y) » L(HT*, C®H* %),
and ¥(0)y) = e¥Ply.

Postponing the proof of this proposition, we first use it to deduce Theorem
Proof of Theorem By Proposition 28, for any i € H7* 0 B7*0*2 (¢y) and ¢ € H*, there

exists a unique solution p € C&® HT5+3:0 of 23). The Dirichlet-Neumann operator is computed
in (26). Since p(x,0) =1 (x), using the trace operator I'(u) = u(-,0) in (ZI3), and recalling the
definition of I in (ZITl), we rewrite (2.6]) as

1+|vn?
G =-Vn- ———T'[0,

vn|* - (|D
=-vn- vy +T[0,Ip] + M r'[o,Ip] . (2.18)

— ——  1+(Dln)

=G1(m)Y  =Ga2(n)y
=G3(my
We prove that each map

G H* A B7*0"3 (¢g) > L(H®, H>*'), i=1,2,3, is analytic, (2.19)

and fulfills the tame estimate (LHl). Regarding G1(n)v, it suffices to note that it is linear in n

and by (B3),

1V VYoo Ss 10l pocoeg 10N Eres + Il e [9] o soeg - (2.20)

11



Next we consider Go(n)y = I'[0,I1¥(n)y]. By Lemma and [Z3] the map ¢ — I'[0,IIp] €
L(C @ H=*2% Ho5~1) which, together with the analyticity of 5 — ¥(n) stated in Proposition
2.6 implies the analyticity of n = G2(n) as in (ZI9). Moreover by (2.14]), Lemma 22l and (2.17),
we have

P (2.21)

Finally consider G3(n)vy = f(n)G2(n)v, where f(n) is the multiplication operator by the function

) = 2 (ot = (1DIn) (-1l (2.22)

1Ty ) oo < [0y g 5-1 0 S5 [¥] o + (0] o

By Lemma [B.2] we have that [(|D|n)?|ge.s1 < (C)nll o032 Y |n| e for any j € N, and
therefore f(n) in [Z22) is bounded, on the domain H* n B%%0%3 (¢y), by

(I IS Ul PFE (2.23)

Moreover f(n) in [2:22) is a series of analytic functions uniformly convergent on the sets B%*(R)n
B70*3(¢y), YR > 0. Thus, by Weierstrass theorem, n ~ f(n) is analytic on B%*(R) n
Boso+3 (€0), and, by the arbitrariness of R, on the whole open set H?® n Boso+s (o) - H*L.
We conclude that also G3(n) is analytic as stated in (ZI9)). Finally, (Z23)) and (2.2I)) imply that
G3(n) satisfies the tame estimate (LX)). O

Remark 2.7. It follows from the proof that G(0)y = G2(0)y = I'[9,I1¥(0)v], which, together
with W(0)y = e¥Pli, recovers the identity G/(0)y) = [D|s).

The final paragraph is devoted to the proof of Proposition

Proof of Proposition the perturbative argument. We look for a solution ¢ of (Z3)

of the form
o(x,y) = p(x,y) +u(z,y) (2.24)

where % is the harmonic solution of

Az yp=0
p(z,0) =9(x) ie.  p(a,y)=ePly(), (2.25)

Oyp(z,y) >0 asy—>—oo,

whereas u solves the elliptic problem

Az yu=F(n)[o+u],
u(x’O) =0 (2.26)

Oyu(z,y) -0 asy - —00,

with ¢ := . The harmonic function ¢ = e¥Ply ia estimated by Lemma 25

12



Remark 2.8. Also the derivative d,¢(z,y) — 0 as y — —oo. Actually any solution of (L2)
satisfies V®(z,y) - 0 as y - —oo. Indeed let a such that T x {y = —a} ¢ D,,. Since the harmonic
function ®(x,y) is analytic then J(z) := ®(z,-a) is analytic as well. Thus (cfr. (Z23)) we can
represent ®(z,y) = ¥ jeza U5 ) 157 which proves that

VO(z,y)= Y kU lflyra) gihe 0 as gy - —o0,
kezZa\{0}

actually exponentially fast.

The solution of system (226 is given by the following lemma.

3

Lemma 2.9. Let 0 >0 and s, sg such thats+%, soeNand s—5 250> d+1

> - Then there exist

€0 == €0(s) >0 and a unique analytic map
neU(n), U:H”n Bos0*3 (€0) — E((C ) H‘T’SJ'%’“) ,
such that w=U(n)[¢] = U(n)[He], with II in (ZII)), solves (Z28), satisfying

10 (D[]l g04 2.0 < CEY 1l 00043 1Tl g 11 0 + [0l 175 [ TD ] 0,5042,0) - (2.27)

The proof of Lemma relies on Lemmata and [2.IT] below.

Given a function g(z,y) defined in T¢ x (=o00,0), we first consider the linear elliptic problem

Apyu=g
u(z,0)=0 (2.28)

Oyu(z,y) >0 asy—>-oo.
The following key lemma is proved in Appendix

Lemma 2.10 (Elliptic regularity). Fiz 0 >0, s € Ny and a € (0,1). For any g € H>**, the
elliptic problem [228) has a unique solution u:= L(g) € C® H°**2%. The linear map

L:HT>" 5> CoH™>%, g L(g),
is continuous, i.e. there exists Cq >0 such that |Lg| s s+2,0 < Calglo.s.a-
Thanks to Lemma [ZT0, we recast the nonlinear elliptic problem (Z26) into the equation
(Id = Lo F(n))[u] = Lo F(n)[4]. (2.29)

Note that the linear operator Id — L o F/(7) depends non-linearly on 1 and that, recalling (2.4,
F(n)[¢] = F(n)[Il¢] depends only on the component ¢ € H7** of ¢ defined in (ZIT)), for
the presence of the derivatives 9y, 0yy, VOy. In the next lemma we study the regularity of the

nonlinear map n — F(n).

13



d+1

Lemma 2.11. Let 0 >0, s+ , 80 € N with s— S > 50> Y2, There exists € = €p(s) > 0 such that

the nonlinear map

F:Hn BU’SU+%(€0) N £((C ® Ho,s+%,a’HG,s—%,a),

1 > {eo~Flgl},
defined in [24) is analytic and satisfies the tame estimate
1EMg,5-2.0 < C) (0l o003 1o+ nlmes a)- (2.30)
Proof. We write F(n)[¢] in (2Z4) as
d
FOI9] = Fila(n): 61 + F050).61 + 3. Foilry (). 61+ Fil5(2). ]

with bilinear maps

Filg. 6= 90,0, Falg.¢):=gAd, Fs;lg,¢]:=9g0s,0,6, Fulg.d]:=gdyo.

In view of (ZI7), LemmaZZand ZII), each of these maps is bounded H*~ 3¢ x (COHT 5+ %) -
Ho5"5:9 and any F € {F1,Fa, Fsj, Fa} fulfills the tame estimates

1719, 1l o5-2 .0 Ss 19]o,5-2 ol al s+dia- (2.31)
We claim that the maps
H* 0 B2 (eg) > H™* 0% s a(n), B(n), v (n), j=1,....d,
H7* 0 B0 (cg) = HO R0 s 3, .
are analytic and, for any s > sg + %, j=1,...,d,
la(os-3,a0 1B os-2 .00 17 (Mo 5-3 .00 160D]5,5-5.0 < C()nlzos . (2.33)

It is clear that these properties, together with (231)), imply the Lemma.
Let us consider first a(n), defined in (23], which we rewrite as

1 1 2 2
a(n)=(1—m)+(1—m)lw(n)l - [V

We first prove that n— 1- m is analytic as a map H*n B7*(¢y) - H s=3:% We first note
Y
that Lemma implies

[0yp(1) = 1s-1.0 = 1 Ss [nlaee (2.34)
Then by (ZI6) and (Z34) the series
1
=2 (1=0yp(m)Y (2.35)
" 9y0(n) =

14



is bounded by

1 j-1
[ 1], <100 Ty 3 (2C10,p ) ~ Vloysna) " < CCs)nlie (236)
yp(n) 0,5=3,a j>1
provided |7 ,5..0+3 <€0(s) is small enough. The series ([Z33) of analytic functions in uniformly

convergent in #%*"%* on the domain 5 € B®*(R)nB7* (¢y), YR > 0, thus it defines an analytic
map on H%*n B7*°(¢y). Moreover the linear map n ~ Vp(n) = e¥Plvy is, by Lemma 5]
bounded between H?® — H75"3:%. Therefore a(n) is the product of analytic functions H?* n
B7%0%3 (¢y) > H7* 2% and using the tame estimate (ZI5) we get (Z33).

The analyticity and the estimates of the functions n — 8(n),~v;(n), j=1,...,d stated in (Z32)
follow similarly. Finally consider 6(n) in (235]). The biggest loss of derivatives follows from the
linear maps 7~ Ap(n), 82p(n), VIyp(n) which, by Lemmata 22 and 25, are bounded between
H*® — H7 3% Moreover 6(n) satisfies the estimate H(S(n)HHC,,S,%,a < C(s, HnHHU,Sm%) 7] o
foranys—%zso. O

Proof of Lemmal[2.9. For any s > so + % such that s+ % e N, by Lemmata 210/ and 2111 the map
ne P(n)=LoF(y), H"° nB™**3(¢)— L(CoHT* ),
is analytic and, for positive constants C'(s) > C'(so) > 0, in view of (ZITJ),

[PD[)o,5+2,0 < C6) (1] e 108l 6 g1 0+ 1l 100 [T o5 42.0)

, (2.37)
[P(m)[#]lo,50+2,a < C'(50) (1] o0+ 3 11|

o,50+2,a -

We claim that, for any € H%* 0 B%%0%3 (¢y) and €o(s) > 0 small enough, the operator Id — P(n)

is invertible in £(C ® H7**2-%) and the inverse map

e (1A= Pm) " = S P(n)[6], H 0 B3 (c) » L(C @ H 1), (2.38)
3=0

is analytic. As each 1 — P(n)’ is analytic H* n B7*0*3(¢y) - L£(C & H7**2*), the claim
follows by proving that the series (Z38) converges uniformly in L(CoHT*2:) for n e B*(R)n
B‘T’s‘”%(eo) for any R > 0. By (Z31) we have, for any j € N,

|P@ (B0 +2.0 < (C"(50) 0] g ) 111G

0,50+2,a (239)

and, by induction, we prove that

1P [D)losr 1.0 < CGY 1770 s (Il yo.cors T losat atilnl s [T os0r2.a) - (2:40)

Foso+

Indeed, for j =1 this is (Z31). Then assuming that ([240) holds for j, we get

1Py Doz < CE) (10l yon0e3 1P [0t 10 + [0l es [P(0) [0]l,5042,0 )-

=A =B
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By the inductive hypothesis the first term is bounded by

ASCEY I ey (Il yoiord M0l st + 0l o (TG o,5042.0)
whereas, by (239),
B< (C,(SO) HnHHmso+% )] HUHHU’S HH(M 0,50+2,a 5
and we deduce, as C’(sp) < C(s), that
PO 0lsr g0 Py (o 6L+ G+ Dl e W0l sr2.)
which proves (240) at the step j + 1.
By (240), the series in ([2.38) is bounded by
[Ad=P) " o ar .0 < 20 1P [0],0r3
TI U,5+2,a 77 g,8t35,a
20
T
Il T OGP g 1] e Mo
o _
+ 2 CY Il s d Inlmes T¢lo,s042,0
j>1 H 2
<2|¢ g 5410 + Clnl sz [11] 5,50 +2.0 (2.41)

yoeord < €o(s) is sufficiently small. In particular this shows the claim on the uniform

convergence of the series on B7*(R) n B7*0*% (¢y) for any R > 0.

provided |n|

The analytic map
U:H* 0BT (o) — L(COHT™3), U(n)[¢]:= (Id- Lo F(n))[Lo F(n)[s]],

defines the unique solution u = U(n)[¢] of [229) and, consequently, of system (Z26). By (241)
and (237) we deduce (Z2T). This proves Lemma O

Proof of Proposition [Z8. Tt follows with ¢ = U (n)[¢] = e¥Ply + U(n)[e?Ply], see (224), (Z25)
and Lemma 2.9 O

3 Analyticity of the Stokes wave

In this section we prove Theorem With the aid of the analyticity result of Theorem [L2]
the bifurcation proof is classical. We report it for completeness. It is based on the application
of the analytic Crandall-Rabinowitz Theorem Bl below. For the proof we refer e.g to [15], and

Theorem 4.1 in Chap. 5 of [6] for its smooth version.

Theorem 3.1 (Crandall-Rabinowitz bifurcation Theorem). Let X,Y be Banach spaces and
U c X be an open neighbourhood of 0. Let F:U xR - Y, F(u,c), be an analytic map satisfying
F(0,¢) =0 for any ce R. Let ¢* be such that L :=d,F(0,c*) € L(X,Y) is not invertible and

1. Ker(L) = span(u*), u* € X, is 1-dimensional;
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2. the range R := Rng(L) is closed and codim R =1;
3. (transversality) 0.d,F(0,c¢*)[u*] ¢ R.
Then there exist €, >0 and an analytic function
(—€s,6:) > U xR, € (Ue,ce), e =eu* +O(?), cc=c"+0(e),
such that F(ue,c.) =0 for any || < €.
Theorem is proved by applying Theorem [B1] to the nonlinear operator

F: (HGE 0B (eo)) x Hs xR — H ' x HGE Y, 020, s>5/2,

evg odd
2
¥z 1

F(n,,c) = (C% +G(MY , ey —gn— 5t 20+ m2)

) 3.1
(G +natse)”) &y

where HZ;®, respectively H oig» denote the space of even, respectively odd, and average-free real

valued functions in H?*® defined in (4], and €p := €y(0, s,80) > 0 is provided by Theorem

Note that a real function (n,v) € H x Hy;3 admits a Fourier series expansion

[Zg]:z[lz:;g:g] with norm [ (n,¥) 3o = 3 2 MKV (nf + ). (3.2)

k>1 k>1

The fact that the nonlinear operator F in (BI]) maps a pair of functions (7, ¢) which are odd/even
in z into a pair of functions which are even/odd in z is verified thanks to the reversibility property

(A23). Moreover, the second component of F' has zero average thanks to the following lemma.

Lemma 3.2. Let G(n) be the Dirichlet-Neumann operator defined in (L3)). Then

1 1 2
S 29 gy (G ) da =0, (3:3)

x

Proof. By (&), the kinetic energy K(n,v) = 3(¢,G(n)¢) 2 in (LI) satisfies K(n+m, 1) =
K(n,) for any m € R. Thus

d
0= ——K(n+m, ) =d,K(n.0)[1] = (V,K(n.9), D1z = [ 9,K(n.)de
In view of (LINO)), the identity (33 is proved. O

We now start verifying the assumptions of the Crandall-Rabinowitz Theorem Bl First, by
Theorem [[L2] the nonlinear operator F' defined in (B1) is analytic. Moreover, by inspection,

F(0,0,¢) =0, VceR.

The possible bifurcation values of non-trivial solutions of F'(n,,c) = 0 are those speeds ¢ such

that the linearized operator

_ i O |D| |+
Aoy P(0.0,) s B x HGgg gy iz, |1] - [ "][Z]’ (3:4)

ev, ev,
0 0 —g Oy

has a nontrivial kernel. In the next lemma we characterize such values.
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Lemma 3.3. (Bifurcation speeds) The kernel of d, ) F(0,0,c) in (34) is nontrivial if and

only if
c= :I:\/% for some k eN. (3.5)

For any k € N, the Kernel of L := d(, 4, F(0,0,c), where we set cj := /%, is one dimensional
and Y
ok . + . | VEcos(kx)
Ker(L) = (u*) with u*:= [\/gsin(km)] . (3.6)
Proof. By the Fourier expansion (B.2)), it results that the kernel of d(, ) F(0,0,c) is nontrivial if

-ck k

k::|’ k € N, has zero determinant. This is verified
g ¢

and only if at least one of the matrices [

provided ¢k = g for some k € N, i.e. (3.5) holds. In addition, a vector [Z((i))] =Yt [Zﬁ:ﬁgg]

belongs to the Kernel of d(, 4 F(0,0,c},) if and only if
[_C’” 3][’“] -0, Vjx1. (3.7)
-9 |l
If j # k then

dot [—c?;j j

g PR - @) 0, (53)
g CiJ

since the map k — (c})? = g/k is injective on N. Hence n; = 1); = 0 for any j # k. On the other
hand, if j = k then [37) is solved provided \/gni = Vi, proving (30). O

We apply Theorem B with ¢}, := \/% . By Lemma assumption 1 holds. The next lemma

verifies the assumptions 2)-3).

Lemma 3.4. The range R:= RngL, L = d(, 4)F'(0,0,c}), is

_ f o,s—1 o,5—1 . f(x) _ frsin(kx) fj Sin(jx):l
R {[g] € Hodd (T) x Hevo (T) : [g(x):l [C;ka Cos(k‘x)] + jzlz,;;k [gj cos(jx) } ’ (39)

In particular R is closed and codim R = 1.

The vector (0ed(y,4)F)(0,0,c}) [\/Ecos(km)

\/Zysin(km)] does not belong to R.

evp evp

such that, recalling [34) and (3.2,

[—C?;j j][m]:[fj] Vj>1 where [f@)]:;[ffsm(jx)]_ (3.10)

-9 il 9; g(x) g; cos(jz)

Proof. A vector [;] e HZS7H(T) x HZ5'(T) belongs to R if and only if there is [Z] e HS x HS

For any j # k, by (88), system (B.I0) has the unique solution

nj = ;%(\@fr\/@j)a %(\/Efj—jgj). (3.11)

1
Vi35
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If j = k, the system (B.I0) is solvable if and only if

Vo = Vg (3.12)

o c
and a solution is 7y, = _ﬁfk’ ¥, =0. By @II) we deduce that |n;], |v);| < == (|f]+|g;]), for any
j € N~ {k}, implying that (n,¢) € H>®, actually

Inlzee, [¢1mes < Cellflaer + gl o).
In conclusion, the range R of L has the form [39), by BI2) and ¢} =/g/k.

Finally differentiating (34 one computes

(0cd(y,0y F)(0,0,c}) [\/Ecos(ka:)] _ [am 0] [\/Ecos(km)] _ [—k2 sin(kx)]

Vg sin(kz) 0 9z || +/gsin(kz) k\/g cos(kx)
which does not belong to the range R in (39)). O

All the assumptions of the Crandall-Rabinowitz Theorem are verified, proving Theorem [L.3l

A Basic properties of the Dirichlet-Neumann operator

The linear Dirichlet-Neumann operator G(n) defined in ([3)) is self-adjoint with respect to

the L? scalar product,
(G)1,42) ., = /,D VO - VP da = (G(n)a,11) .,

where ®; and Py are the harmonic functions associated to ¢1,%9 as in ([2)). Thus G(n) is

semi-positive definite

(G.0),. = [ [vofds >0, (A1)

and its kernel contains only the constant functions, G(n)[1] = 0. In particular (A.I]) implies also
the unicity of the solutions of (L.2]).
We list other classical algebraic properties of the Dirichlet-Neumann used in the paper.

Lemma A.1. The Dirichlet-Neumann G(n) in (L3) is:

(i) invariant under space translations
TGP = G(ren)[me], Tou(z) =u(z+0), V0eR?; (A.2)
(i) invariant under the reflection at the origin, namely
G )] = (GWD"  where ()= f(-2); (A-3)
(i) constant along vertical translations, i.e.

G(n+m)=G(n), VYmeR. (A4)

19



Proof. Let us prove (A2). Let ® be the solution of (LZ). For any § € R? the harmonic function
Py(z,y) = (x+0,y) V(z,y) € Dryy = {y <n(z+0)}
solves
Agy®e=0in Doy, Doz, mon(x)) =m90(x), 0OyPse(x,y) >0asy—>—oo.
Therefore, by (L3),

G(rom)[Tov] = (9y®o) (z,70m) — (VTom) () - (V®0) (2, Tom)
= (0y®)(z +0,n(z+0)) - (Vn)(x+0) - (VO)(z +0,n(x +0)) = 19G (1)[¢]

proving (A.2). To prove ([(A3)), consider the harmonic function
"(z,y) = ®(-z,y) V(x,y) € Dyv ={y <n’(2)}
which solves
Ay y®@ =0in Dy, &Y(x,n'(x))=7¢"(x), 0,®"(x,y) >0asy—>-co.
Therefore (A.3) follows by

G = (9,2")(z,n" () = (V") (@) - (V&) (2, 7" (z))
= (0y®)(=z,n(=x)) = (V) (=) - (V@) (=, n(-2)) = G(n)[$](-=).

For any m € R the harmonic function
O (2,y) = P(z,y —=m)  V(,y) € Dyam = {y <n(x) + m}
solves
Apy @ =0in Dy, Pz, () +m) =9(x), 0yPm(z,y) >0asy—>-o.
Therefore, by (L3]),

G(n+m)[] = (0yPm)(z,n(x) + m) = (V) () - (VO ) (z,n(x) +m)
= (8,®)(z,n(x)) = (V) () - (V) (x,1(x)) = G(n)[¥]

proving (A.4). O

B Functional spaces

We collect in this Appendix some properties of the function spaces H?® and H%.
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B.1 The spaces H%*

We first note the following characterization of the spaces H°.

Lemma B.1. (Characterization of H°*) The space H*(T¢), o > 0, coincides with the

periodic functions u(x) which admit an extension u(z) in the complex strip
T¢ =T +i[-0,0]¢ = {z —z+iy: 2eT, yeRY, |yloo = max{|y1l,...,|yal} < O’},

which is analytic in |yl < o, and whose traces at the boundaries u(-+1y), |yl = o, belong to the

Sobolev space H® := H*(T?), with equivalence of the norms

ul e a sup {Ju(-+iy)|u-}. (B.1)

[Yleo <o

Proof. Let u(x) be a function in Ho*(T?). For any z € C%, z = x + iy, |yl < o, we define its

extension

u(z):= > up etk

kezd
which is analytic for |yl < 0. For any y € R? with |y|e < o, the Sobolev norm || ||+ of the

periodic function

v uW(z) =u(z+iy) = g e kY ik (B.2)
keZd

is bounded by

Hu(y)H%{S - Z |uk|26—2k~y<k>2s < Z |uk|2e2|y|oo\kh(k>2s
keZd keZd

< O lule? (k) = ul B

Thus u)(-) belongs to H* and |[u™| g+ < |u] o

In order to prove the equivalence (B.)), consider the partition of Z,

ki >0, ife=-1,
2= \J 728, Zd={k=(kn,... . ka)ezl: " n Vi=1,....d

€

ee{£1}d k/’j <0, if €5 = 1,
For any €= (e1,...,€q) € {+1}%, the function u(?9 defined as in (B.2) satisfies

Hu(aé) H%{S - Z |uk|26—2ok~€<k>2s > Z |uk|2<k>2se2a(|k1|+...+|kd|)

kezZd kezd
and therefore
lul2oe = >0 3 JurP (k)25 <29 sup [u™|%. .
e{x1}4 ezt [Yloo=c
The equivalence (B.I)) is proved. O

The spaces H%®, s > d/2, form an algebra with respect to the product of functions, and the

following more general tame estimates hold.
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Lemma B.2. (Tame) Let 0 >0 and s > sg > d/2. There exist positive constants Cs s, 21 (non

decreasing in s) such that, for any f,g € H>*, one has

| folzirs < Coao (I£1mos gl mro0 + 1 f 12050 gl 110:5) (B.3)

In particular, for any j > 1,

|7 e < (2Cs,0 1 f 720 )~ [ f [ s - (B.4)

Proof. The classical proof follows adapting the proof of Lemma 4.5.1 in [9] and it is quite similar
to that of Lemma So we omit it. Estimate (B.4) follows by induction from (B.3) in the

same way (2.I6]) descends from (Z.I3)). O

B.2 The spaces Ho%¢

Proof of Lemma For any u € C2°(T? x Rgg), any yo < 0, we have the inequality

) <2 [ 1,y dy-

Multiplying by (k)** and using the elementary inequality 2(k)?*ab < (k)**71a?+ (k)***1b?, for any
a,b>0, we get that

JuCs yo) [Fee = D0 €M (k) Jur (yo)
keZd

< 3 [ ok 0, ue(w)] lue ()] dy

keZd
0 0
< [ % P o)y + [ 5 e R () Py
T kezd T kezd

2 2
2, gy 1O, ey

which proves (ZI2) for smooth functions with compact support and then by density for all
functions. Finally, recalling the definition of the norm | ||s s, in (Z.8]), we deduce (Z.I4).

Proof of Lemma In view of (2.8]) we have that

+
=

S

0
Helelg _ goui vla= €2<7|k|1 <k>2(s+%—j) |gk|2 f |a;€|k|y|2 €—2aydy
,St3, —o0

=0 kezZd4~{0}
s+3

. X 0
e2a|k|1 <k)25+1<k)72j |gk|2|k|2j f 62(‘k‘*a)ydy
§=0 kezZd~{0} et

:(s+%)z

k+0

20‘“(5‘1

(k>2s+1
m e \gx]* < Cusllgl|Fro.s

proving the lemma.

Proof of Proposition 2.4. We define

’H%’S’a = {u :T*xR - C : [u]s,s5.0r < oo}
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endowed with the norm

S
HuHi,s,a,R = Z Haéuﬂiz,a(u@ﬂa,sq)
j=0

= Z;)/R Z e20lkl (k>2(sfj) |3§uk(y)|2e2alyldy
j=

kezZa

3 e2olkh (1)2(s=0) Haiw H%WR) (B.5)
7=0 keza

where, given a Hilbert space X, we have used the notation

JulFaeqa = | JuCw) e ¥ldy.

By adapting the method in [29] of “extension by reflection” we have the following lemma.

Lemma B.3. (Extension operator) There exists a linear bounded extension operator Eg :
HT%* - HZ® such that Esu=u a.e. on (—00,0). Thus

[ullos,a < 1€sul

lo.s,a - (B.6)

o,s,a,R gs Hu

Proof. We follow [29]. For any u € € (R, H?*) we define

(Esu)(y) := ugi/))v y<0,

o u(—y)+---+a§s)u(—(s+1)y), y>0, (B7)

(s)

where the coefficients a; 7, j=0,...,s are to be chosen in order to have

07 (&su)(0) = (Hu)(0), Vj=0,...,s,

namely solve the linear system

1 1. 1 o\ 1
-1 -2 . -s—-1 : :
(-1 (-2)* ... (-s-1)*J ) \1
The above Vandermonde matrix is invertible and thus the coefficients aés), e ags) are uniquely

well-defined. Then by (B1)

[€su

2eat O R 2 [ 105+ 1)) ey Wy
o 0

§=01i=0

R O 2 2alz|
<Y [ 105 e T dz 5
i,j=0 7 =%

<27,s,a,]R < H’LL

2

0,s,a "

By density the operator u ~ & u admits a bounded linear extension to &, : H7** - Hp>* and
the lemma follows. |
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In order to analyze the space Hg'*“ we can use the Fourier transform in the variable y. Given
a function y ~ u(y) in L?(R, X), where X is a Hilbert space, we denote its Fourier transform

(&) = (Fu)(©) = [ ay)e?ay

and, by the inverse Fourier transform formula,
e\ E 1
u(y) = [ rag, a=d.
R 2m
When X = H%*(T%) we may also Fourier expand in z writing

u(y.a) = ¥ ()= ¥ [ m©e e, (B.5)

kezd kezZa

In the sequel we shall also denote (&) =u(k,§).

The following lemma characterizes the space Hg ™

Lemma B.4. (Characterization of Hy>") The space Hg>*, a >0, coincides with the func-
tions y — u(y) € L2(R, H%*) whose Fourier transform & v (&) admits an extension w(¢) in the
complex strip {( =&+in: £eR, neR, |n| <a}, analytic in |n| < a, whose traces at the boundaries
(- +cia), belong to L>(R, H™®) and (¢)YT(¢ +cia) € L>(R, HO*77), for any j =0,...,s, ¢ = 1,

with equivalence of the norms

[ul2 00 0 max [ (€ >J‘a<zs+<ia>|lim,w_j> (B.9)

.....

4,0 MAX Z fR<k,§>28e2“'k'1m<§ +cia)*dg (B-10)

s==1 keZd

where (k,&) :== /1 + |k|? +[£]?.

Proof. For any || < a, integrating by parts,
(Y a(«in) - f u(y)e™ (=Y e vy = [ M) )y
1)J / 3] y)eﬂw lﬁydy / ( )(*77)] peﬂwap (y))efiﬁydy.
By Plancherel theorem we have
1672 +im) |72 ooy S Z f 185 u(y) 370 €y <} o o (B.11)

Conversely, for any 0 < j <'s, we have

. o . 0 .
|03l ey = [ 1) o sy + [ 21 0u(y) sy
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< |‘eayaiu(y)H%Z(R,Hovs-ﬂ') + He_ayaiu(y)H%Z(R,Hms—j) :

Now

T 0ju))(©) = [ e ojuty)dy - (1Y

p=0
j .
= Z( ) Fa)P(i6)PU(E Fia),
and thus, by Plancharel theorem,

|8 u(y) |72k, preesy = |F (Y O5u(y) ) ()72 R, o1

Saj (€Y T(EF ia)H2L2(]R,HU’S*J') :
We deduce by (B.I2) and (BI3) that, for any 5 =0,...,s,
Hea‘y‘aiuH%?(R,Hms—j) Sa,s max [{e)ya(e + d‘l)H%Z(R,Hms—j) .

The estimates (B.11) and (BI4) prove (B.9).

(B.12)

(V) esayr iy [ty

(B.13)

(B.14)

The last equivalence in (B.I0) follows by Young’s inequality (£)%7 (k)2(5=1) < (€)% + (k)?s. O

We now prove the tame estimate for the product of two functions in Hg**

Lemma B.5 (Tame). Let o,a >0, 5,50 € N such that s > s9 > d+1. Then
”u'()”a,s,a,]R < Cs HU”a,s,O,]RHvHa',so,a,R + Cs HUHU,SO,O,RHvHa,s,a,]R .

Proof. The product of the functions (cfr. (B.8)))

u(ey) = ¥ [ AN, vy = Y [ ke g,

kezZd keZd

is uv = ¥ eza [ W0 (m,n)el " e ™ dn with

@(m,n) = % [ @) Tm - k- e

keZd

By (B10Q), (BI6) we have that

asa]R ~ max Z f |U1}(m 7’+§1a)|2 2cr|m\1<m n)Qsdn
se{£1} "

<max 3 [(3 [ @O~ by - €+ cia)ler!™ fm, )" dc) d

“{ﬂ} meZd kezd

We split the frequency space into

A= {(manakag)GZdXRXdeR : <m’n>g2<k’§>}’
Bi={(m,n,k,€) e Z* x Rx Z xR : (m,n) > 2(k, &)}
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(B.15)

(B.16)

(B.17)



: alm olkl1 ,olm—-k :
and, since ™l < eIkl eolm=Fl \ye estimate (BIT) as

Juv]?,om <+ 12 (B.18)
where
i olkl1 |~ s _o|m—k|1 |~ _ _ i _ _£\S0 (mﬂﬁs 2
h ~—m§de(kEZZ:de§ [ak, ©)|(k, €)" e [o(m ~k,n - & +<ia)|(m - k,n - €) (k,{)s(m—k,n—g)sodg)dn’
Io:= TRl Gk, €)|(K, £)°0 €M FI [5(m — ke, - € + o k- £)* (m,m)* a€)an,
= 3 fR(kgd e k€)1, €70 € o m —km = €+ i)l om — . - €) T g )

where, given m, k € Z% and n € R, we denoted
Ry := {5 eR : (m,n, k&) EA}, Rp := {geR s (mym, k&) eB}.

Using that, if (m,n, k, &) € A then (k,£) > 2(m,n), the Cauchy-Schwarz inequality and exchanging

the order of integration we get

hse S [ (S [ e e, O (k€)™ 1 otm = kon = ¢ + cia)m — k,n - )0 dg)

meZd keZd
1
x S —
(k.EZZ:d-/]};A (m—kz,n—§)280 5) "
e ¥ [ @M at OP k> ( [ X e pim - k- ¢+ cia)(m - by - ) dn)ag
kezd IR R ez
EI
s Nl e 0rl?7 000k (B.19)

Note that since sg € N, sg > (d+ 1)/2 then s¢ > % + % If (m,n,k,&) € B, i.e. (k&)< %(m,n),
then (m-k,n-¢) > %(m, 7n), and one deduces similarly that

<27,50,O,RHU|

12 Ss,so Hu g,s,a,R’

proving, in view of (B.I8), the tame estimate (B.I5). O

We now prove (ZI5). Given u € H%*? and v € H7*?, we consider their extensions €,u and
&,v obtained by Lemma [B.3l Since the product &,u€,v is an extension of uv we have that
|uv]o.s.a < |EsuEsv]o.s.0r- Thus the tame estimate (BIH) and the equivalence of the norms in

(B.6), imply ZI5).

The proof of [2I6) follows by induction on j. For j =1 it is trivial and if it holds for j then

HUJHHG,S,a < CS(HUHG,S,a”uJHG,SU,a+HUHG,So,aHUJHG,S,a)

<’ C 2C,, )7t
< S(HUHG,S,a( o)’ u
< (20 [[ul]

0,50,

g’,so,a + ] ullg,50,a(2Cs HUHG,So,a)jil HUHG,S,a)

allttlos,a

proving (ZTIG) at the step j + 1.
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C Proof of the elliptic regularity Lemma [2.10]
We define the weighted L?-space of functions (cfr. (ZI0))

0
2= {pi R~ C o plfee = [ Ip(p)Pedy <oo} (oY

For any A > 0, define also the integral operators

@)= [ ez, @)= [ A0 pe)z, w0 (©2)

—oo y

The next technical lemma shows that the operators Ty, T extend to bounded operators on L.

Lemma C.1. Let s>0,a>0. For any A >0 one has
1

T 2,0 < 2,0 , C.3
Tl < ool (©3)
e
Top) ()| € ————p|l 2, Vy<O, C.4
[(Txp) ()] 2()\+a)H Iz (C.4)
. =t .
[05(Top) |20 < Ca ANV T 0pllpoe, Vi21, (C.5)
=0

where (\) = max{1,|\|}. For any A > a, one has

~ 1
1Toplzze < 5= plzee (C.6)
—-a

_ e2ay_e2Ay %

T <|{l— 2,4, \ SO, C.7
(@< (Gogy) Iplees vy (C.7)

. =r .
|0 (Fp)lze < Co LV 19)plane, V321, (C8)

Proof. We consider first the operator T. Recalling (C.2]) we have

2 01 Y oA = 0 Yo 2
ITp|72.0 = /:oo ‘[ooe Cp(2)dz| e?¥dy < ./:00 ([OO e +“)(Z_y)|p(z)|e_azdz) dy.

Since [¥_eP )G qy = -, the measure (X + a)eP* DY) dz is normalized on the domain

(—o0,y), and Jensen inequality and exchanging the order of integration implies
1 0 y Do s
|T3p]72.0 < m[@ [W(Am)ew ) (1) P2 d2dy

1 0 0
f e—2az |p(z)|2€()\+a)z (f 67()\+a)ydy) dz

:)\+a

1

0 1
_ —2az 2 (A+a)z 2
- 1- dr<— .

()\ )2[ e |p(2)| ( € ) Z s (}\ )2 HPHLZ!

as 1 - e*9? < 1 for any z < 0. This proves (C3). Estimate (C4) descends, recalling (C2),
(C1), and applying Cauchy-Schwarz inequality,

()@l <e™ [~ eip()laz

— Y a)z % 0 —zaz % eay
<e M ([oo p2(A+a) dz) ([m Ip(2)[Pe? dz) = mHPHL“-
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In order to prove the estimate (CH) for ] (T\p), we first note the following inductive formula
| S |
9y (Txp) = ;)(—)\)”_ Oyp+ (=A)Y'Thp, Vj>1.

Then (CH) follows estimating |Thp|r2.« by (C3).
Now we consider the operator Ty in (C2)). Since fyo A=) y=2)qz =

A-a
1-e(A-a)y

inequality and exchanging the order of integration,

~ 0 1_€(>\—a)y 0 s s
Toliae < [ ma [ )P e azy

1 0 z
f |p(z)|2e—2aze—()\—a)z f (e()\—a)y _ e2(>\—a)y)dydz

A—a oo oo

1 0 2 —2az 1 (A-a)z 1 2
= e L PEP (1 50y < e

—o00

_e(A-a)y
16}\7, then, for any

e(A=9)W-2)dz is normalized on the domain (y,0), and, by Jensen

A > a, the measure

as 1-1e(A=% <1 for any z < 0. This proves ((Lf). The estimate (C7) follows similarly to (C4).
Finally (C8) descends from the identity

j-1

09 (Top) = - Z(j) N oip+ NTap, Vjix1,
together with the estimate for Thp in (C.G). O

Proof of Lemma [Z10. Writing u(x,y) = ¥ peza ur(y)el*®, we expand ([Z28) in Fourier in the x
variables, obtaining for any k € Z? the second order system for ug(y),

~|kPur(y) + Our(y) = gk (y)

(C.9)
we(0) =0, ,ui(y) — 0 as y — —co.

Case k = 0: The solution of (CJ) is, for k =0,

ww= [ [ gy [ [ gy D @) -@a)0) . (©10)

=ITug =ug—Ilug

First note that, since g € H7*?, then, by (29),
18790l 2.0 < |gllosas Vi=0,....s. (C.11)

By (C3), (C4), the function Hug = TZgo and the constant ug — Hug = —(T3g0)(0) satisfy

_ _ 1 1
M| z2.e < a™|gol 20 < a™*|glosa s |uo —uol < oz 190leze < T lglosa - (C12)
Thus ug € C ® L*®. Moreover d,ug = Togo and (C4), (C3) imply that
et -1 -1
|(Dyuo) (y)] < lgollzz.e s [Oyuolrze <a™ |golr2e <a™ [g]os,a- (C.13)

V2a
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In addition, since 9;ug = go, we get 8Jug = 8 go, for any j > 2, and then, by (CII),
|03uolL2a = 18] g0l 20 <l glosa, V2<i<s+2. (C.14)

The bounds (CI2)), (CI3), (C14), and recalling 23], imply that

s+2
[uo — Tuo|* + [ Mug| 720 + 3 050720
J=1

(C.15)

g,s,a *

Case k # 0: The solution of the linear equation (C.9) is (by the variation of constants method)

elkly
ug(y) = - 2|k|/ elFlG=v) g (= )dz__f M=) g, (2)dz + — 3 /gk (2)eldz
B @) - 7 T ) + 5 (Tigae) O) (c16)

By @), cach gy € L2 and |glzse < [gloma Thus by [e¥V] 2. = 1//30R - a), Lemma CT)
and recalling that a € (0,1), we bound (C.I6) for any |k| > 1, as
Tigelon o Tgr) O]
2Ikl TN T
~ oIl
Thus each uy € L%, k # 0. Note also that dyur(y) = 5(Tikgx) () — 5 (Tjkgr) (v) + Ty(ngk)(O)

satisfies, by (C4) and (C.6),

1
lukl 2o < S 1 Tiggnl L2 | Sa Wﬂgk JERR (C.17)

2IkI

~ elkly
0y ()] < 5 1(Tig) )]+ 51 Tg) )] + S5 (T O)

L e+ Ao Y g+ L g
S oc—F/———=|9kllL2e +* S|\ o777 9kl L2 =  ———=IYklL2a
2\/2(|k| + a) 2% 2(|k] - a) 2 \2(k[ +a)
thus tends to 0 as y - —oo.
By (CI1) and recalling [Z3) we deduce that
Z o201kl (k>2(s+2) | H%“ <a g,m (C.18)
k=0
and we conclude that u = ug(y) + o s (y)e ¥ is in C ® L>*(Re, H7**?) with
- s m @1g)
1T 2.0 g preevzy = [TTuao |G + 3 €27 ()22 | S ea-  (C19)

k+0

Now we estimate the derivatives dJu, j > 1. Differentiating (CI6) we get, for any j > 1,

Hur(y) = - 2|k:| & (Tiygn) (y) - 2|1k:| I (Tige) + —|k/’|] Lelkly (13 Tirygx)(0)

and, using [[e/*¥ 2.0 = 1/\/2(|k:| —a), Lemmal[Cd] a € (0,1), we get, for any |k| > 1,

|07 ur 2.0 < 2|k| 102 Ty gk |l 2.0 + = 2|k| 109 Ty gl 2.0 + Calk 2 |(T|k|gk)(0)|
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mg@m 1

=0

(kY2 10,9x] 2.0 (C.20)

By (C20) we conclude that, for any 1 <j<s+1,

Z e2a|k|1 (k>2(s+2—j) HaJUkHLZ v <a Z Z e2a|k|1 2(s+2—j) (k>2(j—i72) Ha;gk H2L2,a
k+0 =0 k

s
2262""“'1 kYO 0igk 720 < Calgl? e
i=0 k=0

(C.21)

,_.

We finally estimate the last derivative 95*uy. Differentiating (C9) with respect to 95, we get
05 uk (y) = 05 1(y) + K05 ur (y)
and then

I LA D S (Lo RO N P

keZd kezd
m = —ie i
Sa ot 2 RN S (k)T [0 g1 | 2
keZd =0
s—1 . ) @)
Salglisa+ 2 2 MR 0 gklT20 < Calglia-  (C22)
=0 keZd
Recalling ([Z38), summing the estimates (CI8H), (CI9), (C2I) and ([C22), we deduce that u €
Ceo Hos* 2 = |u — Iy <Cs.al9lo,s,a- Lemma ZT0is proved. O
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