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On the analyticity of the

Dirichlet-Neumann operator and Stokes waves

Massimiliano Berti, Alberto Maspero, Paolo Ventura

To the memory of Antonio Ambrosetti

Abstract: We prove an analyticity result for the Dirichlet-Neumann operator under space peri-

odic boundary conditions in any dimension in an unbounded domain with infinite depth. We de-

rive an analytic bifurcation result of analytic Stokes waves –i.e. space periodic traveling solutions–

of the water waves equations in deep water.
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1 Introduction and main results

The Dirichlet-Neumann operator plays an important role in fluid mechanics, for example in

the Craig-Sulem-Zhakarov [19, 42] formulation of the water waves equations (cfr. Section 1.2),

and in several other branches of analysis, as in the theory of inverse problems. Roughly speaking

it is defined as the linear operator which maps the Dirichlet datum of a harmonic function in
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a given domain into the normal derivative at its boundary (Neumann datum). The Dirichlet-

Neumann operator is nonlinear with respect to the boundary of the domain. In view of many

applications it is important to determine its regularity in different function spaces.

Several results about the analyticity of the Dirichlet-Neumann operator acting between

Sobolev spaces, with respect to the variation of the boundary, have been proved, starting with

the pioneering works of Coifmann-Meyer [16], Craig-Schanz-Sulem [18], Craig-Nicholls [17] and

Lannes [26] where we refer for an extended bibliography. We also mention the deep analysis of

the Dirichlet-Neumann operator in [5, 4, 3, 40], on which we will comment later.

The major aim of this paper is to prove a further analyticity result for the Dirichlet-Neumann

operator G(η) defined in (1.3) on the unbounded domain T
d ×{y ≤ η(x)}, where T

d ∶= (R/2πZ)d

is the standard d-dimensional flat torus, in any space dimension d ≥ 1. Assuming that η(x) is

analytic, we prove in Theorem 1.2 the analyticity of the map η ↦ G(η) acting between suitable

spaces of analytic periodic functions. The delicate point of this result is that η and ψ are assumed

to have the same regularity (if η is more regular than ψ the result is simpler). Following Lannes

[25, 26] and Alazard-Burq-Zuily [1] we make use of a regularizing diffeomorphism to flatten the

domain to the half cylinder, in which the transformed harmonic function solves a perturbed

elliptic equation. Then the proof relies on a perturbative approach to invert the transformed

Laplacian over suitable spaces of functions u(x, y) which are analytic in x, with Sobolev regularity

in y and decay to zero as y → −∞, cfr. (2.7). The key step is obtain linear elliptic regularity

estimates for the Poisson equation in these spaces, see Lemma 2.10. Then the elliptic estimates

for the modified problem are obtained by a perturbative argument differently from [1].

As a consequence of Theorem 1.2, we derive an analytic bifurcation result of analytic Stokes

waves –i.e. space periodic traveling solutions, which look stationary in a moving frame with

constant speed– of the pure gravity water waves equations in infinite depth, see Theorem 1.3.

Existence of traveling waves which are constant in one space dimension, i.e. are 1-dimensional

waves, dates back to classical works of Levi-Civita [27], Nekrasov [31] and Struik [37], in the

twenties of the last century. Then Lewy [28] proved that a traveling wave which is at least C1

is actually analytic. Theorem 1.3 proves in addition that small amplitude Stokes waves depend

analytically on the amplitude taking values in a space of analytic functions. In finite depth and

with surface tension, a result of this kind is proved in Nicholls-Reitich [33] by a power series

expansion approach.

In this paper we deduce Theorem 1.3 by the analytic Crandall-Rabinowitz bifurcation theorem

from a simple eigenvalue, as presented in the book of Ambrosetti-Prodi [6], thanks to the analytic

estimates of the Dirichlet-Neumann operator obtained in Theorem 1.2.

In addition to their interests per se –traveling waves have fundamental importance in fluid

mechanics–, these results have been used in the study of the Benjiamin-Feir instability of the

Stokes waves in [13].

We now state precisely our results. Along this paper we use the following notation. We

denote the spatial variables by (x, y) ∈ Td ×R, d ≥ 1, where T
d ∶= (R/2πZ)d is the standard flat
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torus. The symbol ∇ denotes the gradient

∇ ∶= (∂xj
)j=1,...,d and ∆ ∶=

d

∑
j=1

∂2
xj
, ∆x,y ∶=∆ + ∂2

y .

A dot will denote the standard scalar product in R
d. Moreover N ∶= {1,2, . . .} and N0 = {0} ∪N.

1.1 Dirichlet-Neumann operator

We consider the cylindrical domain

Dη ∶= {(x, y) ∈ Td ×R ∶ y < η(x)} , d ≥ 1 , (1.1)

delimited by the graph ∂Dη = {y = η(x)} of a periodic function η(x), and, given a periodic

Dirichlet datum ψ(x), we consider the unique harmonic function Φ(x, y) solving the system

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

∆x,yΦ = 0 in Dη

Φ(x, y) = ψ(x) at y = η(x)

∂yΦ(x, y) → 0 as y → −∞ .

(1.2)

The Dirichlet-Neumann operator G(η) is then defined as the linear operator

[G(η)ψ](x) ∶=√1 + ∣∇η∣2 ∂nΦ∣y=η(x)

= (∂yΦ)(x, η(x)) −∇η(x) ⋅ (∇Φ)(x, η(x)) (1.3)

where n denotes the exterior normal

n ∶=
1√

1 + ∣∇η∣2 [−∇η1
] , ∂n ∶=

1√
1 + ∣∇η∣2 (∂y −∇η ⋅ ∇) .

The reason of the name “Dirichlet-Neumann” is that the operator G(η) maps the Dirichlet

datum ψ(x) of the harmonic function Φ(x, y) into the (normalized) normal derivative ∂nΦ at

the boundary ∂Dη = {y = η(x)} (Neumann datum).

Remark 1.1. In (1.2) it is equivalent to require the boundary condition ∇Φ(x, y) → 0 as y → −∞,

see Remark 2.8. Actually ∇Φ(x, y) decays to zero exponentially fast as y → −∞.

Simple algebraic properties of the Dirichlet-Neumann operator are recalled in Appendix A.

Since Calderon it is known that the Dirichlet-Neumann operator G(η) is, if η is a C∞ function,

a classical pseudo-differential operator, elliptic of order 1, with an asymptotic expansion in

classical decreasing symbols. For the flat surface η(x) = 0, the Dirichlet-Neumann operator is

the Fourier multiplier

G(0) = ∣D∣ = (−∆) 1

2

as follows by the elementary calculus (2.25). In space dimension d = 1 the Dirichlet-Neumann

operator is equal to ∣D∣ up to infinitely many times regularizing operators, see e.g. [14, 8]. If
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η(x) has a finite smoothness, Lannes [25, 26] proved an analogous expansion in symbols with

finite smothness.

The Dirichlet-Neumann operator is a nonlinear map with respect to the boundary of the

domain ∂Dη. The analytic dependence with respect to η of the Dirichlet-Neumann operator

η ↦ G(η) has been first established in the two dimensional setting by Coifman-Meyer [16], and

in the three dimensional setting by Craig, Schanz and Sulem [18], showing that, if η ∈ Ck+1,

ψ ∈Hk+1, k ∈ N, then G(η)[ψ] ∈ Hk is analytic in Ck+1 ∩ {∥η∥C1 < r} for r sufficiently small.

In view of of application to water waves Craig-Nicholls [17], Wu [40, 41], and Lannes [25,

26] proved, with different approaches, that if η,ψ have the same Sobolev regularity Hs then

G(η)[ψ] ∈ Hs−1. In particular Lannes proved tame estimates using regularizing diffeomorphisms

to straighten the domain.

The paralinearization of G(η)ψ, which enables to prove optimal estimates for the action of

the Dirichlet-Neumann operator, has been obtained in Alazard-Metivier [5], Alazard-Delort [4],

and Alazard-Burq-Zuily [2, 3] in rough domains, using a variational analysis to construct the

solution and applying elliptic regularity theory. The paralinearization of the Dirichlet-Neumann

operator in d = 1 with a multilinear expansion in η is proved in Berti-Delort [10], by using a

paradifferential parametrix à la Boutet de Monvel.

Finally we mention the work of Alazard-Burq-Zuily [1] for the study of the Dirichlet-Neumann

operator acting in analytic function spaces, making use of a regularizing diffeomorphism as in

[25], variational methods and elliptic regularity analysis.

In this paper we prove an analyticity result (Theorem 1.2) for the Dirichlet-Neumann map

η ↦ G(η)ψ in the cylindrical domain Dη defined in (1.1), acting between spaces of periodic

analytic functions defined in (1.4) below. We suppose that the functions η and ψ belong to the

spaces of periodic functions

Hσ,s
∶=Hσ,s(Td) ∶= {u(x) = ∑

k∈Zd

uke
ik⋅x
∶ ∥u∥2Hσ,s ∶= ∑

k∈Zd

e2σ∣k∣1 ⟨k⟩2s ∣uk ∣2 <∞} (1.4)

where, for any k = (k1, . . . , kd) ∈ Zd, we set

∣k∣1 ∶= ∣k1∣ + ⋅ ⋅ ⋅ + ∣kd∣ , ⟨k⟩ ∶=max(1, ∣k∣) , ∣k∣ ∶= ( d

∑
j=1

k2
j )1/2 .

Clearly, if the dimension d = 1 then ∣k∣ = ∣k∣1.

If σ = 0 the spaceH0,s is the usual Sobolev spaceHs. If σ > 0, a periodic function u(x) belongs

to Hσ,s(Td), if and only if it admits an analytic extension in the strip ∣y∣∞ ∶=max{∣y1∣, . . . , ∣yd∣} <
σ and the traces at the boundaries u(⋅ + iy), ∣y∣∞ = σ, belong to the Sobolev space Hs ∶=Hs(Td).
In Appendix B.1 we prove this characterization, together with the property that the spaces Hσ,s

form, for s > d/2, an algebra with respect to the product of functions and satisfy tame estimates.

The main result of this section is the following theorem.

Let Bσ,s(r) denote the open ball in Hσ,s of center 0 and radius r > 0.
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Theorem 1.2. (Dirichlet-Neumann operator) Let σ ≥ 0 and s, s0 such that s + 1
2
, s0 ∈ N,

and s − 3
2
≥ s0 > d+1

2
. Then there exists ǫ0 ∶= ǫ0(s) > 0 such that the Dirichlet-Neumann operator

map1

η ↦ G(η) , Hσ,s
∩Bσ,s0+

3

2 (ǫ0)→ L(Hσ,s,Hσ,s−1) ,
is analytic and fulfills the tame estimate

∥G(η)ψ∥Hσ,s−1 ≤ C(s)(∥ψ∥Hσ,s + ∥η∥Hσ,s∥ψ∥
H

σ,s0+
3

2
) . (1.5)

We remark that, in Theorem 1.2, the functions η,ψ have the same analytic regularity. The

proof of such result, given in Section 2, relies on a regularizing flattening method (following

[25, 1]) together with a perturbative argument in suitable functional spaces.

1.2 Stokes waves

As an application of Theorem 1.2 we prove that 1-dimensional Stokes waves solutions of the

pure gravity water waves equations in deep water are analytic functions belonging to the spaces

Hσ,s, and moreover depend analytically with respect to the amplitude parameter. Clearly 1-

dimensional traveling waves are also 2d-traveling waves which are constant in one space direction,

so it extends to higher dimensional Stokes waves. We first present the water waves equations.

The pure gravity water waves equations. We consider the Euler equations for a bi-

dimensional incompressible, inviscid, irrotational fluid under the action of gravity, filling the

region Dη defined in (1.1) with d = 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tΦ +
1
2
((∂xΦ)2 + (∂yΦ)2) + gη = 0 at y = η(x)

∂tη = ∂yΦ − (∂xη) (∂xΦ) at y = η(x)
∆x,yΦ = 0 in Dη

∂yΦ→ 0 as y → −∞ ,

(1.6)

where g > 0 is the acceleration of gravity. The irrotational velocity field is the gradient of the

harmonic scalar potential Φ = Φ(t, x, y), determined by its trace ψ(t, x) = Φ(t, x, η(t, x)) at the

free surface y = η(t, x). Actually Φ(t, ⋅) is the unique solution of the elliptic equation (1.2). The

time evolution of the fluid is determined by the first two boundary conditions in (1.6) at the free

surface. The first states that the pressure of the fluid is equal, at the free surface, to the constant

atmospheric pressure (dynamic boundary condition) and the second one that the fluid particles

remain, along the evolution, on the free surface (kinematic boundary condition).

As shown by Zakharov [42] and Craig-Sulem [19], the evolutionary system (1.6) amounts to

the following equations for the unknowns (η(t, x), ψ(t, x)),
ηt = G(η)ψ , ψt = −gη −

ψ2
x

2
+

1

2(1 + η2
x)(G(η)ψ + ηxψx)

2
, (1.7)

1Hσ,s ∩Bσ,s0(ǫ0) is an open set in the Hσ,s topology.
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where G(η) is the Dirichlet-Neumann operator in (1.3). In addition the equations (1.7) are the

Hamiltonian system

∂tη = ∇ψH , ∂tψ = −∇ηH , (1.8)

where ∇η,∇ψ denote the L2-gradients of the Hamiltonian

H(η,ψ) ∶= 1

2
∫
T

(ψG(η)ψ + gη2)dx ,

which is the sum of the kinetic energy (cfr. (A.1)) and potential gravitational energy of the fluid.

Actually, as proved in [19, 42], the L2-gradient with respect to η of the kinetic energy

K(η,ψ) ∶= 1

2
(ψ,G(η)ψ)L2

(A.1)
=

1

2
∫
Dη

∣∇Φ∣2 dx , (1.9)

is equal to

∇ηK(η,ψ) = −1

2
ψ2
x +

1

2(1 + η2
x)(G(η)ψ + ηxψx)

2
, (1.10)

yielding the equivalence between (1.8) and (1.7).

We also remark that the water waves equations (1.7) are invariant under space translations

namely, by (A.2),

H ○ τθ = H , ∀θ ∈ Rd .

In addition, the water waves equations are reversible with respect to the involution

ρ [η(x)
ψ(x)] ∶= [ η(−x)−ψ(−x)] , i.e. H ○ ρ = H ,

as a consequence of (A.3).

The Stokes waves. Noteworthy solutions of (1.7) are the so-called Stokes waves, namely

traveling solutions of the form

η(t, x) = η̆(x − ct) , ψ(t, x) = ψ̆(x − ct) , (1.11)

for some real c (the speed) and 2π-periodic functions (η̆(x), ψ̆(x)) (the profiles). In a reference

frame in translational motion with constant speed c, the water waves equations (1.7) then become,

by using the translation invariance property (A.2),

ηt = cηx +G(η)ψ , ψt = cψx − gη −
ψ2
x

2
+

1

2(1 + η2
x)(G(η)ψ + ηxψx)

2
. (1.12)

The Stokes waves profiles (η̆, ψ̆) in (1.11) are then equilibrium steady solutions of (1.12), namely

solve the system

cηx +G(η)ψ = 0 , cψx − gη −
ψ2
x

2
+

1

2(1 + η2
x)(G(η)ψ + ηxψx)

2
= 0 . (1.13)

The next theorem is the main bifurcation result of small amplitude Stokes waves proved in this

paper. We denote by B(r) ∶= {x ∈ R∶ ∣x∣ < r} the real ball with center 0 and radius r.
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Theorem 1.3. (Stokes waves) For any σ ≥ 0, s > 5/2 and k ∈ N, there exists ǫ0 ∶= ǫ0(σ, s, k) > 0

and a unique family of solutions

(ηǫ(x), ψǫ(x), cǫ) ∈Hσ,s(T) ×Hσ,s(T) ×R
of the system (1.13), parameterized by ∣ǫ∣ ≤ ǫ0, such that

1. the map ǫ↦ (ηǫ, ψǫ, cǫ), B(ǫ0) →Hσ,s(T) ×Hσ,s(T) ×R is analytic;

2. ηǫ(x) is even, ηǫ(x) has zero average, ψǫ(x) is odd;

3. the solutions (ηǫ(x), ψǫ(x), cǫ) have the expansion

(ηǫ(x), ψǫ(x)) = ǫ(√k cos(kx),√g sin(kx)) +O(ǫ2) , cǫ →
√
g

k
as ǫ → 0 . (1.14)

Theorem 1.3 is proved in Section 3. Let us make some comments on the result.

1. As already mentioned in the introduction, the first rigorous bifurcation proof of small ampli-

tude Stokes waves for pure gravity water waves goes back to Levi-Civita [27] and Nekrasov [31]

in deep water, and Struik [37] in finite depth. We refer to the monographs of Ambrosetti-Prodi

[6] and Buffoni-Toland [15] for a complete presentation. Concerning regularity, it is known since

Lewy [28] that a Stokes wave which is at least C1 is actually analytic. Theorem 1.3 proves in ad-

dition that the Stokes waves (ηǫ(x), ψǫ(x)) depend analytically on the amplitude ǫ taking values

in a space of analytic functions Hσ,s ×Hσ,s. In finite depth and in presence of surface tension,

an analyticity result of this kind is proved in Nicholls-Reitich [33], by a power series expansion.

We also mention Plotnikov-Toland [35] for related results about analytic continuation of Stokes

waves.

Existence of traveling water waves has been also proved by Zeidler [43] under the effect of

capillary forces and Martin [30], Walhén [39] also for constant vorticity flows. We expect that,

thanks to Theorem 1.2, an analyticity result for the Stokes waves, analogous to Theorem 1.3,

holds also in these cases.

2. Higher order Taylor expansions of the Stokes waves in ǫ are known, see e.g. [20], [32], [33].

We remark that Theorem 1.3 proves the convergence of the Taylor series of the Stokes waves in

ǫ, taking values in spaces of analytic periodic functions.

3. Quasi-periodic traveling waves. More general 1d time quasi-periodic traveling Stokes waves

have been recently obtained in Berti-Franzoi-Maspero [11, 12], with or without surface tension,

and Feola-Giuliani [21], by means of a Nash-Moser implicit function iterative scheme. We remark

that these solutions are not steady in any moving frame. This implies a small divisor problem.

4. Higher space dimension: existence. For three dimensional fluids, in addition to Stokes waves,

also traveling wave solutions which are nontrivially periodic in both spatial directions are known,

for example forming hexagonal patterns. Their existence was first proved in Craig-Nicholls [17]

for gravity-capillary water waves, by applying variational bifurcation arguments à la Weinstein-

Moser, exploiting the Hamiltonian nature (1.8) of the water waves equations. The surface tension

allows to apply, in the bifurcation analysis, the standard implicit function theorem. On the other
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hand the existence of 2d pure gravity doubly-periodic traveling wave solutions is a small divisor

problem. In this case, solutions with Sobolev regularity were constructed by Iooss-Plotinkov

[22, 23] by means of a Nash-Moser implicit function theorem, requiring suitable Diophantine

conditions on the speed vector.

5. Regularity. In higher space dimensions a regularity result à la Lewy [28], i.e. a traveling wave

surface which is at least C1 is actually analytic, has been proved for gravity-capillary water waves

by Craig-Matei [16]. For pure gravity waves, a result of this kind is false, because the system

is no more elliptic. This feature is the counterpart of the small divisor problem arising in the

existence proof of Iooss-Plotinkov [22, 23]. Assuming Diophantine conditions on the speed vector,

Alazard-Metivier [5] proved that the periodic traveling waves constructed in [22, 23], which have

Sobolev regularity, are indeed C∞.

6. We finally note that, for larger values of the amplitude ǫ, the regularity of the traveling wave

solutions may break down. Indeed it is well known that large traveling waves have cusps, as

proved in the celebrated works about the Stokes conjecture of Amick, Fraenkel, Toland [7] and

Plotinkov [34].

2 Analyticity of the Dirichlet-Neumann operator

In this section we prove Theorem 1.2 concerning the analyticity of the Dirichlet-Neumann

operator. The first step is to straighten the free surface.

Regularizing diffeomorphism. Following [25, 1] we apply the regularizing change of variables

x = x′ , y = ρ(x′, y′) , ρ(x′, y′) ∶= y′ + ey′∣D∣η(x′) , (2.1)

where ey∣D∣ is the Fourier multiplier

(ey∣D∣g) (x) ∶= ∑
k∈Zd

gk e
y∣k∣ eik⋅x , ∀ g(x) = ∑

k∈Zd

gk e
ik⋅x .

Note that

ρ(x′,0) = η(x′) , lim
y′→−∞

ρ(x′, y′) − y′ = η0 ,

and, since

∂y′ρ(x′, y′) = 1 + ey∣
′D∣∣D∣η ,

if supy′<0 ∥ey′∣D∣∣D∣η∥L∞(Td) < 1 the change of coordinates (2.1) is a diffeomorphism between the

domain Dη = {(x, y) ∶ y ≤ η(x)} and the flat half-cylinder {(x′, y′) ∶ y′ ≤ 0} = T
d × R≤0 where

R≤0 ∶= (−∞,0]. By the change of variables (2.1) the derivatives ∂y and ∇x become respectively

Λ1 =
1

∂y′ρ
∂y′ , Λ2 = ∇x′ −

∇x′ρ

∂y′ρ
∂y′ ,

and the transformed harmonic function

ϕ(x′, y′) ∶= Φ(x′, y′ + ρ(x′, y′))
8



solves the elliptic problem ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(Λ2
1 +Λ2

2)ϕ = 0

ϕ(x,0) = ψ(x)
∂yϕ(x, y) → 0 as y → −∞ .

(2.2)

By means of chain rule, system (2.2) is rewritten (cfr. [1]) as the perturbed elliptic problem (we

rename the variables x′, y′ as x, y)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∆x,yϕ = F (η)[ϕ]
ϕ(x,0) = ψ(x)
∂yϕ(x, y) → 0 as y → −∞ ,

(2.3)

where

F (η)[ϕ] ∶= (α(η)∂2
y + β(η)∆ + γ(η) ⋅ ∇∂y + δ(η)∂y)ϕ (2.4)

with, since ∇ρ(x, y) = ey∣D∣∇η and ∂yρ(x, y) = 1 + ey∣D∣∣D∣η,

α(η) ∶= 1 −
1 + ∣∇ρ∣2
∂yρ

=
ey∣D∣∣D∣η − ∣ey∣D∣∇η∣2

1 + ey∣D∣∣D∣η ,

β(η) ∶= 1 − ∂yρ = −ey∣D∣∣D∣η ,
γ(η) ∶= 2∇ρ = 2ey∣D∣∇η ,

δ(η) ∶= 1

∂yρ
( − 2∇ρ ⋅ ∇∂yρ + ∂yρ∆ρ +

1 + ∣∇ρ∣2
∂yρ

∂2
yρ) .

(2.5)

In the new variables (2.1), the Dirichlet-Neumann operator defined in (1.3) becomes

[G(η)ψ](⋅) = −∇η ⋅ ∇ϕ(⋅,0) + 1 + ∣∇η∣2(⋅)
1 + (∣D∣η)(⋅) (∂yϕ)(⋅,0) . (2.6)

Function spaces. In order to state our main existence result for the solutions of (2.3), we

introduce some function spaces. Given s ∈ N0, σ, a ≥ 0, we define

Hσ,s,a ∶= {u(x, y) = ∑
k∈Zd

uk(y)eik⋅x
∶ T

d
× (−∞,0]→ C : ∥u∥σ,s,a <∞} (2.7)

endowed with the norm

∥u∥2σ,s,a ∶= s

∑
j=0

∥∂jyu∥2L2,a(R≤0,Hσ,s−j) (2.8)

=
s

∑
j=0
∫

0

−∞

∥∂jyu(⋅, y)∥2Hσ,s−j e
−2aydy

=
s

∑
j=0
∫

0

−∞

∑
k∈Zd

e2σ∣k∣1 ⟨k⟩2(s−j) ∣∂jyuk(y)∣2e2a∣y∣dy

=
s

∑
j=0

∑
k∈Zd

e2σ∣k∣1 ⟨k⟩2(s−j) ∥∂jyuk∥2L2,a (2.9)
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where, given a Hilbert space X , we have used the notation

∥u∥2L2,a(R≤0,X) ∶= ∫
0

−∞

∥u(y)∥2Xe−2ay dy = ∫
0

−∞

∥u(y)∥2Xe2a∣y∣ dy . (2.10)

Remark 2.1. For σ = a = 0, the space H0,s,0 coincides with the Sobolev space Hs(Td ×R≤0) of

L2 functions u ∶ Td ×R≤0 → C possessing weak derivatives ∂αu in L2, for any multiindex α ∈ Nd+1

with modulus ∣α∣ ≤ s, with equivalent norm ∥u∥2s =∑α∈Nd+1,∣α∣≤s ∥∂αu∥2L2.

We point out that, for any s ∈ N,

∥u∥2σ,s,a = ∥u∥2L2,a(R≤0,Hσ,s) + ∥∂yu∥2σ,s−1,a ,

and, by (2.8) and ∥∂xi
v∥Hσ,s−1 ≤ ∥v∥Hσ,s , we directly get the following simple lemma.

Lemma 2.2. Let s ∈ N, σ ≥ 0, a ≥ 0. The linear maps

∂xi
∶Hσ,s,a ↦Hσ,s−1,a , ∀i = 1, . . . , d, ∂y ∶Hσ,s,a ↦Hσ,s−1,a ,

are continuous.

We also denote

C⊕Hσ,s,a ∶= {c + u(x, y) , c ∈ C , u ∈ Hσ,s,a} , Π ∶ C⊕Hσ,s,a →Hσ,s,a, Π[c + u] = u , (2.11)

and, with a small abuse of notation, given a function g ∈ C ⊕ Hσ,s,a, we denote its norm by∥g∥σ,s,a ∶= ∥Πg∥σ,s,a + ∣g −Πg∣. The function spaces Hσ,s,a and C⊕Hσ,s,a are modeled to mimic

the decay of the harmonic function ϕ in (2.25) as y → −∞, cfr. Lemma 2.5.

We now list a series of properties of the spaces Hσ,s,a used in the sequel; we defer their proofs

in Appendix B.2.

Lemma 2.3 (Trace). Let σ ≥ 0, s ∈ R. Then one has

∥u∥C0(R≤0,Hσ,s) ≤ ∥u∥L2(R≤0,H
σ,s+ 1

2 ) + ∥∂yu∥L2(R≤0,H
σ,s− 1

2 ). (2.12)

In particular, the trace operator

Γ(u) ∶= u(⋅,0) ∶= u∣y=0 (2.13)

is, for any s ∈ N0, a ≥ 0, a linear bounded map between Hσ,s+1,a →Hσ,s+ 1

2 , satisfying

∥Γ(u)∥
H

σ,s+ 1

2
≤ ∥u∥σ,s+1,0 ≤ ∥u∥σ,s+1,a . (2.14)

If s > d+1
2

, the space Hσ,s,a is an algebra with respect to the product of functions and the

following tame estimates hold.

Proposition 2.4 (Tame). Let σ, a ≥ 0 and s ≥ s0 > d+1
2

, s, s0 ∈ N. Then there exist positive

constants Cs ≥ 1 (non-decreasing in s) such that, for any u ∈ Hσ,s,0 and v ∈ Hσ,s,a,

∥uv∥σ,s,a ≤ Cs(∥u∥σ,s,0 ∥v∥σ,s0,a + ∥u∥σ,s0,0 ∥v∥σ,s,a) . (2.15)

In particular one has

∥uj∥σ,s,a ≤ (2Cs∥u∥σ,s0,a)j−1∥u∥σ,s,a , ∀j ≥ 1 . (2.16)
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The next lemma proves the continuity of the harmonic function ey∣D∣g, which solves the

Dirichlet-Neumann elliptic problem (2.25), with respect to the Dirichlet datum g at y = 0.

Lemma 2.5 (Harmonic propagator). Let σ ≥ 0 and s + 1
2
∈ N. Then, for any g ∈ Hσ,s, the

function (ey∣D∣g)(x) ∶= ∑
k∈Zd

gk e
y∣k∣ eik⋅x

belongs to C⊕Hσ,s+
1

2
,a, a ∈ (0,1), and the linear map

Hσ,s →Hσ,s+ 1

2
,a , g ↦ Π[ey∣D∣g] = ey∣D∣g − g0 ,

is continuous.

We now come back to Theorem 1.2. The key result of its proof is the following proposition

regarding the solution of the elliptic problem (2.3).

The parameter a ∈ (0,1) plays a technical role in studying the decay as y → −∞ of the solution

of the elliptic problem (2.2) (see in particular Lemma C.1). In the sequel we fix a = 1
2
.

Proposition 2.6. Let σ ≥ 0 and s, s0 such that s + 1
2
, s0 ∈ N and s − 3

2
≥ s0 > d+1

2
. Then

there exist ǫ0 ∶= ǫ0(s) > 0 and, for any η ∈ Hσ,s ∩ Bσ,s0+
3

2 (ǫ0) and ψ ∈ Hσ,s, a unique solution

ϕ ∈ C⊕Hσ,s+
1

2
,a of the elliptic problem (2.3), satisfying

∥Πϕ∥σ,s+ 1

2
,a ≤ C(s)(∥ψ∥Hσ,s + ∥η∥Hσ,s∥ψ∥

H
σ,s0+

3

2

) . (2.17)

Moreover ϕ = Ψ(η)[ψ], where Ψ is an analytic map Hσ,s ∩Bσ,s0+
3

2 (ǫ0)→ L(Hσ,s, C⊕Hσ,s+
1

2
,a),

and Ψ(0)ψ = ey∣D∣ψ.

Postponing the proof of this proposition, we first use it to deduce Theorem 1.2.

Proof of Theorem 1.2. By Proposition 2.6, for any η ∈Hσ,s ∩Bσ,s0+
3

2 (ǫ0) and ψ ∈ Hσ,s, there

exists a unique solution ϕ ∈ C⊕Hσ,s+
1

2
,a of (2.3). The Dirichlet-Neumann operator is computed

in (2.6). Since ϕ(x,0) = ψ(x), using the trace operator Γ(u) = u(⋅,0) in (2.13), and recalling the

definition of Π in (2.11), we rewrite (2.6) as

G(η)ψ = −∇η ⋅ ∇ψ + 1 + ∣∇η∣2
1 + (∣D∣η) Γ[∂yϕ]

= −∇η ⋅ ∇ψ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶G1(η)ψ

+Γ[∂yΠϕ]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶G2(η)ψ

+
∣∇η∣2 − (∣D∣η)

1 + (∣D∣η) Γ[∂yΠϕ]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶G3(η)ψ

. (2.18)

We prove that each map

Gi ∶H
σ,s
∩Bσ,s0+

3

2 (ǫ0)→ L(Hσ,s,Hσ,s−1) , i = 1,2,3 , is analytic , (2.19)

and fulfills the tame estimate (1.5). Regarding G1(η)ψ, it suffices to note that it is linear in η

and by (B.3), ∥∇η ⋅ ∇ψ∥Hσ,s−1 ≲s ∥η∥
H

σ,s0+
1

2
∥ψ∥Hσ,s + ∥η∥Hσ,s∥ψ∥

H
σ,s0+

1

2
. (2.20)
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Next we consider G2(η)ψ = Γ[∂yΠΨ(η)ψ]. By Lemma 2.2 and 2.3, the map ϕ ↦ Γ[∂yΠϕ] ∈
L(C ⊕Hσ,s+ 1

2
,a,Hσ,s−1) which, together with the analyticity of η ↦ Ψ(η) stated in Proposition

2.6, implies the analyticity of η ↦ G2(η) as in (2.19). Moreover by (2.14), Lemma 2.2 and (2.17),

we have ∥Γ[∂yΠϕ]∥Hσ,s−1 ≤ ∥∂yΠϕ∥σ,s− 1

2
,0 ≲s ∥ψ∥Hσ,s + ∥η∥Hσ,s∥ψ∥

H
σ,s0+

3

2
. (2.21)

Finally consider G3(η)ψ = f(η)G2(η)ψ, where f(η) is the multiplication operator by the function

f(η) = ∣∇η∣2 − (∣D∣η)
1 + (∣D∣η) = (∣∇η∣2 − (∣D∣η)) ∞∑

j=0

(−∣D∣η)j . (2.22)

By Lemma B.2 we have that ∥(∣D∣η)j∥Hσ,s−1 ≤ (C(s)∥η∥
H

σ,s0+
3

2
)j∥η∥Hσ,s for any j ∈ N, and

therefore f(η) in (2.22) is bounded, on the domain Hσ,s ∩Bσ,s0+
3

2 (ǫ0), by

∥f(η)∥Hσ,s−1 ≲s ∥η∥Hσ,s . (2.23)

Moreover f(η) in (2.22) is a series of analytic functions uniformly convergent on the sets Bσ,s(R)∩
Bσ,s0+

3

2 (ǫ0), ∀R > 0. Thus, by Weierstrass theorem, η ↦ f(η) is analytic on Bσ,s(R) ∩
Bσ,s0+

3

2 (ǫ0), and, by the arbitrariness of R, on the whole open set Hσ,s ∩Bσ,s0+
3

2 (ǫ0) →Hσ,s−1.

We conclude that also G3(η) is analytic as stated in (2.19). Finally, (2.23) and (2.21) imply that

G3(η) satisfies the tame estimate (1.5).

Remark 2.7. It follows from the proof that G(0)ψ = G2(0)ψ = Γ[∂yΠΨ(0)ψ], which, together

with Ψ(0)ψ = ey∣D∣ψ, recovers the identity G(0)ψ = ∣D∣ψ.

The final paragraph is devoted to the proof of Proposition 2.6.

Proof of Proposition 2.6: the perturbative argument. We look for a solution ϕ of (2.3)

of the form

ϕ(x, y) = ϕ(x, y) + u(x, y) (2.24)

where ϕ is the harmonic solution of

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∆x,yϕ = 0

ϕ(x,0) = ψ(x)
∂yϕ(x, y)→ 0 as y → −∞ ,

i.e. ϕ(x, y) ∶= ey∣D∣ψ(x) , (2.25)

whereas u solves the elliptic problem

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∆x,yu = F (η)[φ + u] ,
u(x,0) = 0

∂yu(x, y)→ 0 as y → −∞ ,

(2.26)

with φ ∶= ϕ. The harmonic function ϕ = ey∣D∣ψ ia estimated by Lemma 2.5.
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Remark 2.8. Also the derivative ∂xϕ(x, y) → 0 as y → −∞. Actually any solution of (1.2)

satisfies ∇Φ(x, y) → 0 as y → −∞. Indeed let a such that T × {y = −a} ⊂Dη. Since the harmonic

function Φ(x, y) is analytic then ϑ(x) ∶= Φ(x,−a) is analytic as well. Thus (cfr. (2.25)) we can

represent Φ(x, y) = ∑k∈Zd ϑk e
∣k∣(y+a) eik⋅x, which proves that

∇Φ(x, y) = ∑
k∈Zd

∖{0}
ik ϑk e

∣k∣(y+a) eik⋅x → 0 as y → −∞ ,

actually exponentially fast.

The solution of system (2.26) is given by the following lemma.

Lemma 2.9. Let σ ≥ 0 and s, s0 such that s + 1
2
, s0 ∈ N and s − 3

2
≥ s0 > d+1

2
. Then there exist

ǫ0 ∶= ǫ0(s) > 0 and a unique analytic map

η ↦ U(η) , U ∶Hσ,s
∩Bσ,s0+

3

2 (ǫ0)Ð→ L(C⊕Hσ,s+ 1

2
,a) ,

such that u = U(η)[φ] = U(η)[Πφ], with Π in (2.11), solves (2.26), satisfying

∥ΠU(η)[φ]∥σ,s+ 1

2
,a ≤ C(s)(∥η∥Hσ,s0+

3

2
∥Πφ∥σ,s+ 1

2
,a + ∥η∥Hσ,s∥Πφ∥σ,s0+2,a) . (2.27)

The proof of Lemma 2.9 relies on Lemmata 2.10 and 2.11 below.

Given a function g(x, y) defined in T
d × (−∞,0), we first consider the linear elliptic problem

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∆x,yu = g

u(x,0) = 0

∂yu(x, y)→ 0 as y → −∞ .

(2.28)

The following key lemma is proved in Appendix C.

Lemma 2.10 (Elliptic regularity). Fix σ ≥ 0, s ∈ N0 and a ∈ (0,1). For any g ∈ Hσ,s,a, the

elliptic problem (2.28) has a unique solution u ∶= L(g) ∈ C⊕Hσ,s+2,a. The linear map

L ∶Hσ,s,a → C⊕Hσ,s+2,a , g ↦ L(g) ,
is continuous, i.e. there exists Ca > 0 such that ∥Lg∥σ,s+2,a ≤ Ca∥g∥σ,s,a.

Thanks to Lemma 2.10, we recast the nonlinear elliptic problem (2.26) into the equation

(Id −L ○ F (η))[u] = L ○ F (η)[φ] . (2.29)

Note that the linear operator Id − L ○ F (η) depends non-linearly on η and that, recalling (2.4),

F (η)[φ] = F (η)[Πφ] depends only on the component Πφ ∈ Hσ,s,a of φ defined in (2.11), for

the presence of the derivatives ∂y, ∂yy,∇∂y . In the next lemma we study the regularity of the

nonlinear map η ↦ F (η).
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Lemma 2.11. Let σ ≥ 0, s+ 1
2
, s0 ∈ N with s− 3

2
≥ s0 > d+1

2
. There exists ǫ0 ∶= ǫ0(s) > 0 such that

the nonlinear map

F ∶Hσ,s
∩Bσ,s0+

3

2 (ǫ0) → L(C⊕Hσ,s+ 1

2
,a,Hσ,s−

3

2
,a) ,

η ↦ {φ↦ F (η)[φ] } ,
defined in (2.4) is analytic and satisfies the tame estimate

∥F (η)[φ]∥σ,s− 3

2
,a ≤ C(s)(∥η∥Hσ,s0+

3

2
∥Πφ∥σ,s+ 1

2
,a + ∥η∥Hσ,s∥Πφ∥σ,s0+2,a) . (2.30)

Proof. We write F (η)[φ] in (2.4) as

F (η)[φ] = F1[α(η), φ] +F2[β(η), φ] + d

∑
j=1

F3j[γj(η), φ] +F4[δ(η), φ]
with bilinear maps

F1[g,φ] ∶= g∂2
yφ , F2[g,φ] ∶= g∆φ , F3j[g,φ] ∶= g∂xj

∂yφ , F4[g,φ] ∶= g∂yφ .
In view of (2.15), Lemma 2.2 and (2.11), each of these maps is boundedHσ,s−

3

2
,a×(C⊕Hσ,s+ 1

2
,a)→

Hσ,s−
3

2
,a and any F ∈ {F1,F2,F3j ,F4} fulfills the tame estimates

∥F[g,φ]∥σ,s− 3

2
,a ≲s ∥g∥σ,s− 3

2
,a∥Πφ∥σ,s0+2,a + ∥g∥σ,s0,a∥Πφ∥σ,s+ 1

2
,a . (2.31)

We claim that the maps

Hσ,s
∩Bσ,s0+

1

2 (ǫ0)→Hσ,s− 1

2
,a , η ↦ α(η) , β(η) , γj(η) , j = 1, . . . , d ,

Hσ,s
∩Bσ,s0+

3

2 (ǫ0)→Hσ,s− 3

2
,a , η ↦ δ(η) , (2.32)

are analytic and, for any s ≥ s0 +
3
2
, j = 1, . . . , d,

∥α(η)∥σ,s− 1

2
,a, ∥β(η)∥σ,s− 1

2
,a, ∥γj(η)∥σ,s− 1

2
,a, ∥δ(η)∥σ,s− 3

2
,a ≤ C(s)∥η∥Hσ,s . (2.33)

It is clear that these properties, together with (2.31), imply the Lemma.

Let us consider first α(η), defined in (2.5), which we rewrite as

α(η) = (1 − 1

∂yρ(η)) + (1 − 1

∂yρ(η))∣∇ρ(η)∣2 − ∣∇ρ(η)∣2 .
We first prove that η ↦ 1− 1

∂yρ(η) is analytic as a map Hσ,s∩Bσ,s0(ǫ0)→Hσ,s− 1

2
,a. We first note

that Lemma 2.5 implies

∥∂yρ(η) − 1∥σ,s− 1

2
,a = ∥ey∣D∣∣D∣η∥σ,s− 1

2
,a ≲s ∥η∥Hσ,s . (2.34)

Then by (2.16) and (2.34) the series

1 −
1

∂yρ(η) = −∑j≥1

(1 − ∂yρ(η))j (2.35)
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is bounded by

∥ 1

∂yρ(η) − 1∥
σ,s− 1

2
,a
≤ ∥∂yρ(η) − 1∥σ,s− 1

2
,a∑
j≥1

(2Cs∥∂yρ(η) − 1∥σ,s0,a)j−1
≤ C(s)∥η∥Hσ,s (2.36)

provided ∥η∥
H

σ,s0+
1

2
< ǫ0(s) is small enough. The series (2.35) of analytic functions in uniformly

convergent in Hσ,s−
1

2
,a on the domain η ∈ Bσ,s(R)∩Bσ,s0(ǫ0), ∀R > 0, thus it defines an analytic

map on Hσ,s ∩ Bσ,s0(ǫ0). Moreover the linear map η ↦ ∇ρ(η) = ey∣D∣∇η is, by Lemma 2.5,

bounded between Hσ,s → Hσ,s− 1

2
,a. Therefore α(η) is the product of analytic functions Hσ,s ∩

Bσ,s0+
1

2 (ǫ0)→Hσ,s− 1

2
,a, and using the tame estimate (2.15) we get (2.33).

The analyticity and the estimates of the functions η ↦ β(η), γj(η), j = 1, . . . , d stated in (2.32)

follow similarly. Finally consider δ(η) in (2.5). The biggest loss of derivatives follows from the

linear maps η ↦∆ρ(η), ∂2
yρ(η), ∇∂yρ(η) which, by Lemmata 2.2 and 2.5, are bounded between

Hσ,s → Hσ,s− 3

2
,a. Moreover δ(η) satisfies the estimate ∥δ(η)∥

H
σ,s− 3

2
,a ≤ C(s, ∥η∥

H
σ,s0+

3

2
) ∥η∥Hσ,s

for any s − 3
2
≥ s0.

Proof of Lemma 2.9. For any s ≥ s0 +
3
2

such that s+ 1
2
∈ N, by Lemmata 2.10 and 2.11, the map

η ↦ P (η) ∶= L ○ F (η) , Hσ,s
∩Bσ,s0+

1

2 (ǫ0)→ L(C⊕Hσ,s+ 1

2
,a) ,

is analytic and, for positive constants C(s) ≥ C′(s0) > 0, in view of (2.11),

∥P (η)[φ]∥σ,s+ 1

2
,a ≤ C(s) (∥η∥Hσ,s0+

3

2
∥Πφ∥σ,s+ 1

2
,a + ∥η∥Hσ,s∥Πφ∥σ,s0+2,a)

∥P (η)[φ]∥σ,s0+2,a ≤ C′(s0) ∥η∥
H

σ,s0+
3

2
∥Πφ∥σ,s0+2,a .

(2.37)

We claim that, for any η ∈Hσ,s ∩Bσ,s0+
3

2 (ǫ0) and ǫ0(s) > 0 small enough, the operator Id−P (η)
is invertible in L(C⊕Hσ,s+ 1

2
,a) and the inverse map

η ↦ (Id − P (η))−1 =
∞

∑
j=0

P (η)j[φ] , Hσ,s
∩Bσ,s0+

3

2 (ǫ0) → L(C⊕Hσ,s+ 1

2
,a) , (2.38)

is analytic. As each η ↦ P (η)j is analytic Hσ,s ∩ Bσ,s0+
1

2 (ǫ0) → L(C ⊕ Hσ,s+ 1

2
,a), the claim

follows by proving that the series (2.38) converges uniformly in L(C⊕Hσ,s+ 1

2
,a) for η ∈ Bσ,s(R)∩

Bσ,s0+
3

2 (ǫ0) for any R > 0. By (2.37) we have, for any j ∈ N,

∥P (η)j[φ]∥σ,s0+2,a ≤ (C′(s0)∥η∥
H

σ,s0+
3

2

)j∥Πφ∥σ,s0+2,a , (2.39)

and, by induction, we prove that

∥P (η)j[φ]∥σ,s+ 1

2
,a ≤ C(s)j∥η∥j−1

H
σ,s0+

3

2

(∥η∥
H

σ,s0+
3

2
∥Πφ∥σ,s+ 1

2
,a+j∥η∥Hσ,s∥Πφ∥σ,s0+2,a) . (2.40)

Indeed, for j = 1 this is (2.37). Then assuming that (2.40) holds for j, we get

∥P (η)j+1[φ]∥σ,s+ 1

2
,a

(2.37)
≤ C(s) ( ∥η∥

H
σ,s0+

3

2
∥P (η)j[φ]∥σ,s+ 1

2
,a´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶A

+ ∥η∥Hσ,s∥P (η)j[φ]∥σ,s0+2,a´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶B

).
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By the inductive hypothesis the first term is bounded by

A ≤ C(s)j∥η∥j
H

σ,s0+
3

2

(∥η∥
H

σ,s0+
3

2
∥Πφ∥σ,s+ 1

2
,a + j∥η∥Hσ,s∥Πφ∥σ,s0+2,a) ,

whereas, by (2.39),

B ≤ (C′(s0)∥η∥
H

σ,s0+
3

2
)j∥η∥Hσ,s∥Πφ∥σ,s0+2,a ,

and we deduce, as C′(s0) ≤ C(s), that

∥P (η)j+1[φ]∥σ,s+ 1

2
,a ≤ C(s)j+1∥η∥j

H
σ,s0+

3

2

(∥η∥
H

σ,s0+
3

2
∥Πφ∥σ,s+ 1

2
,a + (j + 1)∥η∥Hσ,s∥Πφ∥σ,s0+2,a) ,

which proves (2.40) at the step j + 1.

By (2.40), the series in (2.38) is bounded by

∥(Id − P (η))−1[φ]∥σ,s+ 1

2
,a ≤∑

j≥0

∥P (η)j[φ]∥σ,s+ 1

2
,a

≤ ∥Πφ∥σ,s+ 1

2
,a +∑

j≥1

C(s)j∥η∥j−1

H
σ,s0+

3

2

∥η∥
H

σ,s0+
3

2
∥Πφ∥σ,s+ 1

2
,a

+∑
j≥1

C(s)j∥η∥j−1

H
σ,s0+

3

2

j ∥η∥Hσ,s∥Πφ∥σ,s0+2,a

≤ 2∥Πφ∥σ,s+ 1

2
,a +C∥η∥Hσ,s∥Πφ∥σ,s0+2,a (2.41)

provided ∥η∥
H

σ,s0+
3

2
< ǫ0(s) is sufficiently small. In particular this shows the claim on the uniform

convergence of the series on Bσ,s(R) ∩Bσ,s0+
3

2 (ǫ0) for any R > 0.

The analytic map

U ∶Hσ,s
∩Bσ,s0+

3

2 (ǫ0)Ð→ L(C⊕Hσ,s+ 1

2
,a) , U(η)[φ] ∶= (Id −L ○ F (η))−1[L ○ F (η)[φ]] ,

defines the unique solution u = U(η)[φ] of (2.29) and, consequently, of system (2.26). By (2.41)

and (2.37) we deduce (2.27). This proves Lemma 2.9.

Proof of Proposition 2.6. It follows with ϕ = Ψ(η)[ψ] = ey∣D∣ψ +U(η)[ey∣D∣ψ], see (2.24), (2.25)

and Lemma 2.9.

3 Analyticity of the Stokes wave

In this section we prove Theorem 1.3. With the aid of the analyticity result of Theorem 1.2,

the bifurcation proof is classical. We report it for completeness. It is based on the application

of the analytic Crandall-Rabinowitz Theorem 3.1 below. For the proof we refer e.g to [15], and

Theorem 4.1 in Chap. 5 of [6] for its smooth version.

Theorem 3.1 (Crandall-Rabinowitz bifurcation Theorem). Let X,Y be Banach spaces and

U ⊂X be an open neighbourhood of 0. Let F ∶ U ×R → Y , F (u, c), be an analytic map satisfying

F (0, c) = 0 for any c ∈ R. Let c∗ be such that L ∶= duF (0, c∗) ∈ L(X,Y ) is not invertible and

1. Ker(L) = span⟨u∗⟩, u∗ ∈ X, is 1-dimensional;
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2. the range R ∶= Rng(L) is closed and codim R = 1;

3. (transversality) ∂cduF (0, c∗)[u∗] ∉ R .
Then there exist ǫ∗ > 0 and an analytic function

(−ǫ∗, ǫ∗) → U ×R, ǫ↦ (uǫ, cǫ) , uǫ = ǫu∗ +O(ǫ2) , cǫ = c∗ +O(ǫ) ,
such that F (uǫ, cǫ) = 0 for any ∣ǫ∣ < ǫ∗.

Theorem 1.3 is proved by applying Theorem 3.1 to the nonlinear operator

F ∶ (Hσ,s
ev0
∩Bσ,s0(ǫ0)) ×Hσ,s

odd
×RÐ→ H

σ,s−1
odd

×Hσ,s−1
ev0

, σ ≥ 0 , s > 5/2 ,
F (η,ψ, c) ∶= (cηx +G(η)ψ , cψx − gη −

ψ2
x

2
+

1

2(1 + η2
x)(G(η)ψ + ηxψx)

2) (3.1)

where Hσ,s
ev0

, respectively Hσ,s
odd

, denote the space of even, respectively odd, and average-free real

valued functions in Hσ,s defined in (1.4), and ǫ0 ∶= ǫ0(σ, s, s0) > 0 is provided by Theorem 1.2.

Note that a real function (η,ψ) ∈Hσ,s
ev0
×H

σ,s
odd

admits a Fourier series expansion

[η(x)
ψ(x)] = ∑

k≥1

[ηk cos(kx)
ψk sin(kx)] with norm ∥(η,ψ)∥2Hσ,s ≃ ∑

k≥1

e2σ∣k∣⟨k⟩2s(η2
k + ψ

2
k) . (3.2)

The fact that the nonlinear operator F in (3.1) maps a pair of functions (η,ψ) which are odd/even

in x into a pair of functions which are even/odd in x is verified thanks to the reversibility property

(A.3). Moreover, the second component of F has zero average thanks to the following lemma.

Lemma 3.2. Let G(η) be the Dirichlet-Neumann operator defined in (1.3). Then

∫
T

−
1

2
ψ2
x +

1

2(1 + η2
x)(G(η)ψ + ηxψx)

2
dx = 0 . (3.3)

Proof. By (A.4), the kinetic energy K(η,ψ) = 1
2
(ψ,G(η)ψ)L2 in (1.9) satisfies K(η +m,ψ) =

K(η,ψ) for any m ∈ R. Thus

0 =
d

dm
K(η +m,ψ) = dηK(η,ψ)[1] = (∇ηK(η,ψ),1)L2 = ∫

T

∇ηK(η,ψ)dx .
In view of (1.10), the identity (3.3) is proved.

We now start verifying the assumptions of the Crandall-Rabinowitz Theorem 3.1. First, by

Theorem 1.2, the nonlinear operator F defined in (3.1) is analytic. Moreover, by inspection,

F (0,0, c) = 0 , ∀c ∈ R .

The possible bifurcation values of non-trivial solutions of F (η,ψ, c) = 0 are those speeds c such

that the linearized operator

d(η,ψ)F (0,0, c) ∶ Hσ,s
ev0
×H

σ,s
odd
→Hσ,s−1

odd
×Hσ,s−1

ev0
, [η̂

ψ̂
]↦ ⎡⎢⎢⎢⎣

c∂x ∣D∣
−g c∂x

⎤⎥⎥⎥⎦ [
η̂

ψ̂
] , (3.4)

has a nontrivial kernel. In the next lemma we characterize such values.
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Lemma 3.3. (Bifurcation speeds) The kernel of d(η,ψ)F (0,0, c) in (3.4) is nontrivial if and

only if

c = ±
√
g

k
for some k ∈ N . (3.5)

For any k ∈ N, the Kernel of L ∶= d(η,ψ)F (0,0, c∗k), where we set c∗k ∶=
√
g

k
, is one dimensional

and

Ker(L) = ⟨u∗⟩ with u∗ ∶= [√k cos(kx)√
g sin(kx)] . (3.6)

Proof. By the Fourier expansion (3.2), it results that the kernel of d(η,ψ)F (0,0, c) is nontrivial if

and only if at least one of the matrices
⎡⎢⎢⎢⎣
−ck k

−g ck

⎤⎥⎥⎥⎦, k ∈ N, has zero determinant. This is verified

provided c2k = g for some k ∈ N, i.e. (3.5) holds. In addition, a vector [η(x)
ψ(x)] = ∑j≥1 [ηj cos(jx)

ψj sin(jx)]
belongs to the Kernel of d(η,ψ)F (0,0, c∗k) if and only if

⎡⎢⎢⎢⎣
−c∗kj j

−g c∗kj

⎤⎥⎥⎥⎦[
ηj

ψj
] = 0 , ∀j ≥ 1 . (3.7)

If j ≠ k then

det
⎡⎢⎢⎢⎣
−c∗kj j

−g c∗kj

⎤⎥⎥⎥⎦ = −(c∗k)2j2
+ gj = j2((c∗j )2 − (c∗k)2) ≠ 0 , (3.8)

since the map k ↦ (c∗k)2 = g/k is injective on N. Hence ηj = ψj = 0 for any j ≠ k. On the other

hand, if j = k then (3.7) is solved provided
√
gηk =

√
kψk, proving (3.6).

We apply Theorem 3.1 with c∗k ∶=
√
g

k
. By Lemma 3.3 assumption 1 holds. The next lemma

verifies the assumptions 2)-3).

Lemma 3.4. The range R ∶= RngL, L = d(η,ψ)F (0,0, c∗k), is

R =
⎧⎪⎪⎨⎪⎪⎩[
f

g
] ∈Hσ,s−1

odd
(T) ×Hσ,s−1

ev0
(T) ∶ [f(x)

g(x)] = [ fk sin(kx)
c∗

k
fk cos(kx)] + ∑

j≥1,j≠k
[fj sin(jx)
gj cos(jx)]

⎫⎪⎪⎬⎪⎪⎭ . (3.9)

In particular R is closed and codimR = 1.

The vector (∂cd(η,ψ)F )(0,0, c∗k) [
√
k cos(kx)√
g sin(kx)] does not belong to R.

Proof. A vector [f
g
] ∈Hσ,s−1

odd
(T)×Hσ,s−1

ev0
(T) belongs to R if and only if there is [η

ψ
] ∈ Hσ,s

ev0
×H

σ,s
odd

such that, recalling (3.4) and (3.2),

⎡⎢⎢⎢⎣
−c∗kj j

−g c∗kj

⎤⎥⎥⎥⎦[
ηj

ψj
] = [fj

gj
] ∀j ≥ 1 where [f(x)

g(x)] =∑
j≥1

[fj sin(jx)
gj cos(jx)] . (3.10)

For any j ≠ k, by (3.8), system (3.10) has the unique solution

ηj =
1

g

√
k

k − j
(√gfj −√kgj) , ψj =

1

j
√
g

√
k

k − j
(√kgfj − jgj) . (3.11)
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If j = k, the system (3.10) is solvable if and only if

√
gfk =

√
kgk (3.12)

and a solution is ηk = − 1√
kg
fk, ψk = 0. By (3.11) we deduce that ∣ηj ∣, ∣ψj ∣ ≤ Ck

j
(∣fj ∣+ ∣gj ∣), for any

j ∈ N ∖ {k}, implying that (η,ψ) ∈ Hσ,s, actually

∥η∥Hσ,s , ∥ψ∥Hσ,s ≤ Ck(∥f∥Hσ,s−1 + ∥g∥Hσ,s−1) .
In conclusion, the range R of L has the form (3.9), by (3.12) and c∗k =

√
g/k.

Finally differentiating (3.4) one computes

(∂cd(η,ψ)F )(0,0, c∗k) [√k cos(kx)√
g sin(kx)] = [∂x 0

0 ∂x
] [√k cos(kx)√

g sin(kx)] = [−k
3

2 sin(kx)
k
√
g cos(kx)]

which does not belong to the range R in (3.9).

All the assumptions of the Crandall-Rabinowitz Theorem are verified, proving Theorem 1.3.

A Basic properties of the Dirichlet-Neumann operator

The linear Dirichlet-Neumann operator G(η) defined in (1.3) is self-adjoint with respect to

the L2 scalar product,

(G(η)ψ1, ψ2)L2
= ∫

Dη

∇Φ1 ⋅ ∇Φ2 dx = (G(η)ψ2, ψ1)L2
,

where Φ1 and Φ2 are the harmonic functions associated to ψ1, ψ2 as in (1.2). Thus G(η) is

semi-positive definite (G(η)ψ,ψ)
L2
= ∫

Dη

∣∇Φ∣2dx ≥ 0 , (A.1)

and its kernel contains only the constant functions, G(η)[1] = 0. In particular (A.1) implies also

the unicity of the solutions of (1.2).

We list other classical algebraic properties of the Dirichlet-Neumann used in the paper.

Lemma A.1. The Dirichlet-Neumann G(η) in (1.3) is:

(i) invariant under space translations

τθG(η)ψ = G(τθη)[τθψ] , τθu(x) ∶= u(x + θ) , ∀θ ∈ Rd ; (A.2)

(ii) invariant under the reflection at the origin, namely

G(η∨)[ψ∨] = (G(η)[ψ])∨ where f∨(x) ∶= f(−x) ; (A.3)

(iii) constant along vertical translations, i.e.

G(η +m) = G(η) , ∀m ∈ R . (A.4)
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Proof. Let us prove (A.2). Let Φ be the solution of (1.2). For any θ ∈ Rd the harmonic function

Φθ(x, y) ∶= Φ(x + θ, y) ∀(x, y) ∈ Dτθη = {y < η(x + θ)}
solves

∆x,yΦθ = 0 in Dτθη , Φθ(x, τθη(x)) = τθψ(x) , ∂yΦθ(x, y) → 0 as y → −∞ .

Therefore, by (1.3),

G(τθη)[τθψ] = (∂yΦθ)(x, τθη) − (∇τθη)(x) ⋅ (∇Φθ)(x, τθη)
= (∂yΦ)(x + θ, η(x + θ)) − (∇η)(x + θ) ⋅ (∇Φ)(x + θ, η(x + θ)) = τθG(η)[ψ]

proving (A.2). To prove (A.3), consider the harmonic function

Φ∨(x, y) ∶= Φ(−x, y) ∀(x, y) ∈ Dη∨ = {y < η∨(x)}
which solves

∆x,yΦ
∨ = 0 in D

∨

η , Φ∨(x, η∨(x)) = ψ∨(x) , ∂yΦ
∨(x, y) → 0 as y → −∞ .

Therefore (A.3) follows by

G(η∨)[ψ∨] = (∂yΦ∨)(x, η∨(x)) − (∇η∨)(x) ⋅ (∇Φ∨)(x, η∨(x))
= (∂yΦ)(−x, η(−x)) − (∇η)(−x) ⋅ (∇Φ)(−x, η(−x)) = G(η)[ψ](−x) .

For any m ∈ R the harmonic function

Φm(x, y) ∶= Φ(x, y −m) ∀(x, y) ∈Dη+m = {y < η(x) +m}
solves

∆x,yΦm = 0 in Dη+m , Φm(x, η(x) +m) = ψ(x) , ∂yΦm(x, y)→ 0 as y → −∞ .

Therefore, by (1.3),

G(η +m)[ψ] = (∂yΦm)(x, η(x) +m) − (∇η)(x) ⋅ (∇Φm)(x, η(x) +m)
= (∂yΦ)(x, η(x)) − (∇η)(x) ⋅ (∇Φ)(x, η(x)) = G(η)[ψ]

proving (A.4).

B Functional spaces

We collect in this Appendix some properties of the function spaces Hσ,s and Hσ,s,a.
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B.1 The spaces Hσ,s

We first note the following characterization of the spaces Hσ,s.

Lemma B.1. (Characterization of Hσ,s) The space Hσ,s(Td), σ > 0, coincides with the

periodic functions u(x) which admit an extension u(z) in the complex strip

T
d
σ ∶= T

d
+ i [−σ,σ]d = {z = x + iy ∶ x ∈ Td , y ∈ Rd, ∣y∣∞ ∶=max{∣y1∣, . . . , ∣yd∣} ≤ σ} ,

which is analytic in ∣y∣∞ < σ, and whose traces at the boundaries u(⋅ + iy), ∣y∣∞ = σ, belong to the

Sobolev space Hs ∶=Hs(Td), with equivalence of the norms

∥u∥Hσ,s ≃d sup
∣y∣∞≤σ

{∥u(⋅ + iy)∥Hs} . (B.1)

Proof. Let u(x) be a function in Hσ,s(Td). For any z ∈ Cd, z = x + iy, ∣y∣∞ ≤ σ, we define its

extension

u(z) ∶= ∑
k∈Zd

uk e
ik⋅z

which is analytic for ∣y∣∞ < σ. For any y ∈ Rd with ∣y∣∞ ≤ σ, the Sobolev norm ∥ ∥Hs of the

periodic function

x↦ u(y)(x) ∶= u(x + iy) = ∑
k∈Zd

uk e
−k⋅yeik⋅x (B.2)

is bounded by

∥u(y)∥2Hs = ∑
k∈Zd

∣uk ∣2e−2k⋅y⟨k⟩2s ≤ ∑
k∈Zd

∣uk ∣2e2∣y∣∞∣k∣1 ⟨k⟩2s
≤ ∑
k∈Zd

∣uk ∣2e2σ∣k∣1 ⟨k⟩2s = ∥u∥2Hσ,s .

Thus u(y)(⋅) belongs to Hs and ∥u(y)∥Hs ≤ ∥u∥Hσ,s .

In order to prove the equivalence (B.1), consider the partition of Zd,

Z
d = ⋃

ǫ⃗∈{±1}d

Z
d
ǫ⃗ , Z

d
ǫ⃗ ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩k = (k1, . . . , kd) ∈ Zd ∶

⎧⎪⎪⎪⎨⎪⎪⎪⎩
kj > 0 , if ǫj = −1 ,

kj ≤ 0 , if ǫj = 1 ,
∀j = 1, . . . , d

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .
For any ǫ⃗ = (ǫ1, . . . , ǫd) ∈ {±1}d, the function u(σǫ⃗) defined as in (B.2) satisfies

∥u(σǫ⃗)∥2Hs = ∑
k∈Zd

∣uk ∣2e−2σk⋅ǫ⃗⟨k⟩2s ≥ ∑
k∈Zd

ǫ⃗

∣uk∣2⟨k⟩2se2σ(∣k1 ∣+...+∣kd∣)

and therefore ∥u∥2Hσ,s = ∑
ǫ⃗∈{±1}d

∑
k∈Zd

ǫ⃗

∣uk ∣2⟨k⟩2se2σ∣k∣1 ≤ 2d sup
∣y∣∞=σ

∥u(y)∥2Hs .

The equivalence (B.1) is proved.

The spaces Hσ,s, s > d/2, form an algebra with respect to the product of functions, and the

following more general tame estimates hold.
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Lemma B.2. (Tame) Let σ ≥ 0 and s ≥ s0 > d/2. There exist positive constants Cs,s0
≥ 1 (non

decreasing in s) such that, for any f, g ∈Hσ,s, one has

∥fg∥Hσ,s ≤ Cs,s0
(∥f∥Hσ,s∥g∥Hσ,s0 + ∥f∥Hσ,s0 ∥g∥Hσ,s) . (B.3)

In particular, for any j ≥ 1,

∥f j∥Hσ,s ≤ (2Cs,s0
∥f∥Hσ,s0 )j−1∥f∥Hσ,s . (B.4)

Proof. The classical proof follows adapting the proof of Lemma 4.5.1 in [9] and it is quite similar

to that of Lemma B.5. So we omit it. Estimate (B.4) follows by induction from (B.3) in the

same way (2.16) descends from (2.15).

B.2 The spaces Hσ,s,a

Proof of Lemma 2.3. For any u ∈ C∞c (Td ×R≤0), any y0 ≤ 0, we have the inequality

∣uk(y0)∣2 ≤ 2∫
0

−∞

∣∂yuk(y)∣ ∣uk(y)∣dy .
Multiplying by ⟨k⟩2s and using the elementary inequality 2⟨k⟩2sab ≤ ⟨k⟩2s−1a2+⟨k⟩2s+1b2, for any

a, b ≥ 0, we get that

∥u(⋅, y0)∥2Hσ,s = ∑
k∈Zd

e2σ∣k∣1 ⟨k⟩2s∣uk(y0)∣2
≤ ∑
k∈Zd

e2σ∣k∣1 ∫
0

−∞

2⟨k⟩2s∣∂yuk(y)∣ ∣uk(y)∣dy
≤ ∫

0

−∞

∑
k∈Zd

e2σ∣k∣1 ⟨k⟩2s−1∣∂yuk(y)∣2dy +∫
0

−∞

∑
k∈Zd

e2σ∣k∣1 ⟨k⟩2s+1∣uk(y)∣2dy

= ∥u∥2
L2(R≤0,H

σ,s+ 1

2 )
+ ∥∂yu∥2

L2(R≤0,H
σ,s− 1

2 )

which proves (2.12) for smooth functions with compact support and then by density for all

functions. Finally, recalling the definition of the norm ∥ ∥σ,s,a in (2.8), we deduce (2.14).

Proof of Lemma 2.5. In view of (2.8) we have that

∥ey∣D∣g − g0∥2σ,s+ 1

2
,a
=
s+ 1

2

∑
j=0

∑
k∈Zd

∖{0}
e2σ∣k∣1 ⟨k⟩2(s+ 1

2
−j) ∣gk ∣2 ∫ 0

−∞

∣∂jye∣k∣y ∣2 e−2aydy

=
s+ 1

2

∑
j=0

∑
k∈Zd

∖{0}
e2σ∣k∣1 ⟨k⟩2s+1⟨k⟩−2j ∣gk ∣2∣k∣2j ∫ 0

−∞

e2(∣k∣−a)ydy

= (s + 1

2
)∑
k≠0

⟨k⟩2s+1

2(∣k∣ − a) e2σ∣k∣1 ∣gk ∣2 ≤ Ca,s∥g∥2Hσ,s

proving the lemma.

Proof of Proposition 2.4. We define

Hσ,s,a
R

∶= {u ∶ Td ×R→ C ∶ ∥u∥σ,s,a,R <∞}
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endowed with the norm

∥u∥2σ,s,a,R ∶= s

∑
j=0

∥∂jyu∥2L2,a(R,Hσ,s−j)

=
s

∑
j=0
∫
R

∑
k∈Zd

e2σ∣k∣1 ⟨k⟩2(s−j) ∣∂jyuk(y)∣2e2a∣y∣dy

=
s

∑
j=0

∑
k∈Zd

e2σ∣k∣1 ⟨k⟩2(s−j) ∥∂jyuk∥2L2,a(R) (B.5)

where, given a Hilbert space X , we have used the notation

∥u∥2L2,a(R,X) ∶= ∫
R

∥u(y)∥2Xe2a∣y∣dy .

By adapting the method in [29] of “extension by reflection” we have the following lemma.

Lemma B.3. (Extension operator) There exists a linear bounded extension operator Es ∶

Hσ,s,a →Hσ,s,a
R

such that Esu = u a.e. on (−∞,0). Thus

∥u∥σ,s,a ≤ ∥Esu∥σ,s,a,R ≲s ∥u∥σ,s,a . (B.6)

Proof. We follow [29]. For any u ∈ C∞c (R,Hσ,s) we define

(Esu)(y) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩
u(y), y ≤ 0 ,

α
(s)
0 u(−y) + ⋅ ⋅ ⋅ +α(s)s u(−(s + 1)y) , y > 0 ,

(B.7)

where the coefficients α
(s)
j , j = 0, . . . , s are to be chosen in order to have

∂jy(Esu)(0) = (∂jyu)(0), ∀j = 0, . . . , s ,

namely solve the linear system

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 . . . 1

−1 −2 . . . −s − 1

⋮ ⋮ ⋱ ⋮

⋮ ⋮ ⋱ ⋮(−1)s (−2)s . . . (−s − 1)s

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

α
(s)
0

⋮

⋮

⋮

α
(s)
s

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

⋮

⋮

⋮

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The above Vandermonde matrix is invertible and thus the coefficients α
(s)
0 , . . . , α

(s)
s are uniquely

well-defined. Then by (B.7)

∥Esu∥2σ,s,a,R ≤ ∥u∥2σ,s,a +Cs s

∑
j=0

s

∑
i=0
∫
∞

0
∥∂jyu(−(i + 1)y)∥2Hσ,s−je

2a∣y∣dy

≤ C′s
s

∑
i,j=0
∫

0

−∞

∥∂jyu(z)∥2Hσ,s−je
2a∣z∣
i+1 dz ≲s ∥u∥2σ,s,a .

By density the operator u ↦ Esu admits a bounded linear extension to Es ∶ Hσ,s,a → Hσ,s,aR
and

the lemma follows.
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In order to analyze the space Hσ,s,a
R

we can use the Fourier transform in the variable y. Given

a function y ↦ u(y) in L2(R,X), where X is a Hilbert space, we denote its Fourier transform

û(ξ) ∶= (Fu)(ξ) ∶= ∫
R

û(y)e−i ξ ydy

and, by the inverse Fourier transform formula,

u(y) = ∫
R

û(ξ)ei ξ ydξ , d ∶=
1

2π
d .

When X =Hσ,s(Td) we may also Fourier expand in x writing

u(y, x) = ∑
k∈Zd

uk(y)eik⋅x = ∑
k∈Zd

∫
R

ûk(ξ)ei (ξy+k⋅x)dξ . (B.8)

In the sequel we shall also denote ûk(ξ) = û(k, ξ).
The following lemma characterizes the space Hσ,s,a

R
.

Lemma B.4. (Characterization of Hσ,s,a
R

) The space Hσ,s,a
R

, a > 0, coincides with the func-

tions y ↦ u(y) ∈ L2(R,Hσ,s) whose Fourier transform ξ ↦ û(ξ) admits an extension û(ζ) in the

complex strip {ζ = ξ+ iη ∶ ξ ∈ R , η ∈ R, ∣η∣ ≤ a}, analytic in ∣η∣ < a, whose traces at the boundaries

û(⋅ + ςia), belong to L2(R,Hσ,s) and ⟨ξ⟩j û(ξ + ςia) ∈ L2(R,Hσ,s−j), for any j = 0, . . . , s, ς = ±1,

with equivalence of the norms

∥u∥2σ,s,a,R ≃s,a max
j=0,...,s
ς=±1

∥⟨ξ⟩j û(ξ + ςia)∥2
L2(R,Hσ,s−j) (B.9)

≃s,a max
j=0,...,s
ς=±1

∑
k∈Zd

∫
R

⟨ξ⟩2j⟨k⟩2(s−j)e2σ∣k∣1 ∣ûk(ξ + ςia)∣2dξ

≃s,a max
ς=±1

∑
k∈Zd

∫
R

⟨k, ξ⟩2se2σ∣k∣1 ∣ûk(ξ + ςia)∣2dξ (B.10)

where ⟨k, ξ⟩ ∶=√1 + ∣k∣2 + ∣ξ∣2.

Proof. For any ∣η∣ ≤ a, integrating by parts,

(−i ξ)j û(ξ ± iη) = ∫
R

u(y)e∓ηy(−i ξ)je−i ξydy = ∫
R

u(y)e∓ηy∂jy(e−i ξy)dy
= (−1)j ∫

R

∂jy(u(y)e∓ηy)e−i ξydy = ∫
R

( j

∑
p=0

(j
p
)(∓η)j−pe∓ηy∂pyu(y))e−i ξydy .

By Plancherel theorem we have

∥ξj û(ξ ± iη)∥2L2

ξ
(R,Hσ,s−j) ≲

j

∑
p=0
∫
R

∥∂pyu(y)∥2Hσ,s−je
2∣y∣ady ≲ ∥u∥2σ,s,a,R . (B.11)

Conversely, for any 0 ≤ j ≤ s, we have

∥ea∣y∣∂jyu∥2L2(R,Hσ,s−j) = ∫
∞

0
e2ay∥∂jyu(y)∥2Hσ,s−jdy +∫

0

−∞

e−2ay∥∂jyu(y)∥2Hσ,s−j dy

24



≤ ∥eay∂jyu(y)∥2L2(R,Hσ,s−j) + ∥e−ay∂jyu(y)∥2L2(R,Hσ,s−j) . (B.12)

Now

F(e±ay∂jyu(y))(ξ) = ∫
R

e−i ξye±ay∂jyu(y)dy = (−1)j j

∑
p=0

(j
p
)(±a)j−p(−i ξ)p∫

R

e−i ξye±ayu(y)dy
=

j

∑
p=0

(j
p
)(∓a)j−p(i ξ)pû(ξ ∓ ia) ,

and thus, by Plancharel theorem,

∥e±ay∂jyu(y)∥2L2(R,Hσ,s−j) ≃ ∥F(e±ay∂jyu(y))(ξ)∥2L2(R,Hσ,s−j)

≲a,j ∥⟨ξ⟩j û(ξ ∓ ia)∥2L2(R,Hσ,s−j) . (B.13)

We deduce by (B.12) and (B.13) that, for any j = 0, . . . , s,

∥ea∣y∣∂jyu∥2L2(R,Hσ,s−j) ≲a,s max
ς=±
∥⟨ξ⟩j û(ξ + ςia)∥2L2(R,Hσ,s−j) . (B.14)

The estimates (B.11) and (B.14) prove (B.9).

The last equivalence in (B.10) follows by Young’s inequality ⟨ξ⟩2j⟨k⟩2(s−j) ≤ ⟨ξ⟩2s + ⟨k⟩2s.
We now prove the tame estimate for the product of two functions in Hσ,s,a

R
.

Lemma B.5 (Tame). Let σ, a ≥ 0, s, s0 ∈ N such that s ≥ s0 > d+1
2

. Then

∥uv∥σ,s,a,R ≤ Cs ∥u∥σ,s,0,R∥v∥σ,s0,a,R +Cs ∥u∥σ,s0,0,R∥v∥σ,s,a,R . (B.15)

Proof. The product of the functions (cfr. (B.8))

u(x, y) = ∑
k∈Zd

∫
R

û(k, ξ)ei (ξy+k⋅x)dξ , v(x, y) = ∑
k∈Zd

∫
R

v̂(k, ξ)ei (ξy+k⋅x)dξ ,

is uv = ∑m∈Zd ∫R ûv(m,η)eiηy eimxdη with

ûv(m,η) = ∑
k∈Zd

∫
R

û(k, ξ) v̂(m − k, η − ξ)dξ . (B.16)

By (B.10), (B.16) we have that

∥uv∥2σ,s,a,R ≃ max
ς∈{±1}

∑
m∈Zd

∫
R

∣ûv(m,η + ςia)∣2e2σ∣m∣1⟨m,η⟩2sdη (B.17)

≤ max
ς∈{±1}

∑
m∈Zd

∫
R

( ∑
k∈Zd

∫
R

∣û(k, ξ)∣ ∣v̂(m − k, η − ξ + ςia)∣eσ∣m∣1 ⟨m,η⟩sdξ)2dη.
We split the frequency space into

A ∶= {(m,η, k, ξ) ∈ Zd ×R ×Zd ×R ∶ ⟨m,η⟩ ≤ 2⟨k, ξ⟩},
B ∶= {(m,η, k, ξ) ∈ Zd ×R ×Zd ×R ∶ ⟨m,η⟩ > 2⟨k, ξ⟩}
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and, since eσ∣m∣1 ≤ eσ∣k∣1eσ∣m−k∣1 , we estimate (B.17) as

∥uv∥2σ,s,a,R ≤ I1 + I2 (B.18)

where

I1 ∶= ∑
m∈Zd

∫
R

(∑
k∈Zd
∫
RA

eσ∣k∣1 ∣û(k, ξ)∣⟨k, ξ⟩s eσ∣m−k∣1 ∣v̂(m − k, η − ξ + ςia)∣⟨m − k, η − ξ⟩s0
⟨m,η⟩s

⟨k, ξ⟩s⟨m − k, η − ξ⟩s0

dξ)
2

dη,

I2 ∶= ∑
m∈Zd

∫
R

(∑
k∈Zd

∫
RB

eσ∣k∣1 ∣û(k, ξ)∣⟨k, ξ⟩s0 eσ∣m−k∣1 ∣v̂(m − k, η − ξ + ςia)∣⟨m − k, η − ξ⟩s ⟨m,η⟩s
⟨k, ξ⟩s0⟨m − k, η − ξ⟩s dξ)

2

dη,

where, given m, k ∈ Zd and η ∈ R, we denoted

RA ∶= {ξ ∈ R ∶ (m,η, k, ξ) ∈ A}, RB ∶= {ξ ∈ R ∶ (m,η, k, ξ) ∈ B} .
Using that, if (m,η, k, ξ) ∈ A then ⟨k, ξ⟩ > 1

2
⟨m,η⟩, the Cauchy-Schwarz inequality and exchanging

the order of integration we get

I1 ≲s ∑
m∈Zd

∫
R

( ∑
k∈Zd

∫
R

e2σ∣k∣1 ∣û(k, ξ)∣2⟨k, ξ⟩2s e2σ∣m−k∣1 ∣v̂(m − k, η − ξ + ςia)∣2⟨m − k, η − ξ⟩2s0 dξ)
× ( ∑

k∈Zd

∫
RA

1⟨m − k, η − ξ⟩2s0

dξ)dη
≲s ∑

k∈Zd

∫
R

e2σ∣k∣1 ∣û(k, ξ)∣2⟨k, ξ⟩2s(∫
R

∑
m∈Zd

e2σ∣m−k∣1 ∣v̂(m − k, η − ξ + ςia)∣2⟨m − k, η − ξ⟩2s0 dη)dξ
(B.10)

≲s ∥u∥2σ,s,0,R∥v∥2σ,s0,a,R
. (B.19)

Note that since s0 ∈ N, s0 > (d + 1)/2 then s0 ≥ d+1
2
+

1
2
. If (m,η, k, ξ) ∈ B, i.e. ⟨k, ξ⟩ < 1

2
⟨m,η⟩,

then ⟨m − k, η − ξ⟩ > 1
2
⟨m,η⟩, and one deduces similarly that

I2 ≲s,s0
∥u∥2σ,s0,0,R∥v∥2σ,s,a,R ,

proving, in view of (B.18), the tame estimate (B.15).

We now prove (2.15). Given u ∈ Hσ,s,0 and v ∈ Hσ,s,a, we consider their extensions Esu and

Esv obtained by Lemma B.3. Since the product EsuEsv is an extension of uv we have that∥uv∥σ,s,a ≤ ∥EsuEsv∥σ,s,a,R. Thus the tame estimate (B.15) and the equivalence of the norms in

(B.6), imply (2.15).

The proof of (2.16) follows by induction on j. For j = 1 it is trivial and if it holds for j then

∥uj+1∥σ,s,a (2.15)
≤ Cs(∥u∥σ,s,a∥uj∥σ,s0,a + ∥u∥σ,s0,a∥uj∥σ,s,a)

(2.16)j

≤ Cs(∥u∥σ,s,a(2Cs0
)j−1∥u∥jσ,s0,a

+ ∥u∥σ,s0,a(2Cs∥u∥σ,s0,a)j−1∥u∥σ,s,a)
≤ (2Cs)j∥u∥jσ,s0,a

∥u∥σ,s,a
proving (2.16) at the step j + 1.
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C Proof of the elliptic regularity Lemma 2.10

We define the weighted L2-space of functions (cfr. (2.10))

L2,a
∶= {p ∶ R≤0 → C ∶ ∥p∥2L2,a ∶= ∫

0

−∞

∣p(y)∣2e−2aydy <∞} . (C.1)

For any λ ≥ 0, define also the integral operators

(Tλp)(y) ∶= ∫ y

−∞

eλ(z−y) p(z)dz , (T̃λp)(y) ∶= ∫ 0

y
eλ(y−z) p(z)dz , ∀y ≤ 0 . (C.2)

The next technical lemma shows that the operators Tλ, T̃λ extend to bounded operators on L2,a.

Lemma C.1. Let s ≥ 0, a > 0. For any λ ≥ 0 one has

∥Tλp∥L2,a ≤
1

λ + a
∥p∥L2,a , (C.3)

∣(Tλp)(y)∣ ≤ eay√
2(λ + a)∥p∥L2,a , ∀y ≤ 0 , (C.4)

∥∂jy(Tλp)∥L2,a ≤ Ca
j−1

∑
i=0

⟨λ⟩j−i−1∥∂iyp∥L2,a , ∀j ≥ 1 , (C.5)

where ⟨λ⟩ =max{1, ∣λ∣}. For any λ > a, one has

∥T̃λp∥L2,a ≤
1

λ − a
∥p∥L2,a , (C.6)

∣(T̃λp)(y)∣ ≤ (e2ay − e2λy

2(λ − a) )
1

2 ∥p∥L2,a , ∀y ≤ 0 , (C.7)

∥∂jy(T̃λp)∥L2,a ≤ Ca
j−1

∑
i=0

⟨λ⟩j−i−1∥∂iyp∥L2,a , ∀j ≥ 1 . (C.8)

Proof. We consider first the operator Tλ. Recalling (C.2) we have

∥Tλp∥2L2,a = ∫
0

−∞

∣∫ y

−∞

eλ(z−y)p(z)dz∣2 e−2ay dy ≤ ∫
0

−∞

(∫ y

−∞

e(λ+a)(z−y)∣p(z)∣e−azdz)2

dy .

Since ∫ y−∞ e(λ+a)(z−y)dz = 1
λ+a

, the measure (λ + a)e(λ+a)(z−y)dz is normalized on the domain(−∞, y), and Jensen inequality and exchanging the order of integration implies

∥Tλp∥2L2,a ≤
1(λ + a)2 ∫

0

−∞

∫
y

−∞

(λ + a)e(λ+a)(z−y) ∣p(z)∣2e−2azdzdy

=
1

λ + a
∫

0

−∞

e−2az ∣p(z)∣2e(λ+a)z (∫ 0

z
e−(λ+a)ydy)dz

=
1(λ + a)2 ∫

0

−∞

e−2az ∣p(z)∣2 (1 − e(λ+a)z)dz ≤
1(λ + a)2 ∥p∥2L2,a

as 1 − e(λ+a)z ≤ 1 for any z ≤ 0. This proves (C.3). Estimate (C.4) descends, recalling (C.2),

(C.1), and applying Cauchy-Schwarz inequality,

∣(Tλp)(y)∣ ≤ e−λy ∫ y

−∞

eλz ∣p(z)∣dz
≤ e−λy (∫ y

−∞

e2(λ+a)zdz) 1

2 (∫ 0

−∞

∣p(z)∣2e−2azdz) 1

2

=
eay√

2(λ + a)∥p∥L2,a .

27



In order to prove the estimate (C.5) for ∂jy(Tλp), we first note the following inductive formula

∂jy (Tλp) = j−1

∑
i=0

(−λ)j−i−1 ∂iyp + (−λ)jTλp , ∀j ≥ 1 .

Then (C.5) follows estimating ∥Tλp∥L2,a by (C.3).

Now we consider the operator T̃λ in (C.2). Since ∫ 0
y e
(λ−a)(y−z)dz = 1−e(λ−a)y

λ−a
, then, for any

λ > a, the measure λ−a
1−e(λ−a)y e

(λ−a)(y−z)dz is normalized on the domain (y,0), and, by Jensen

inequality and exchanging the order of integration,

∥T̃λp∥2L2,a ≤ ∫
0

−∞

1 − e(λ−a)y

λ − a
∫

0

y
∣p(z)∣2e−2aze(λ−a)(y−z)dzdy

=
1

λ − a
∫

0

−∞

∣p(z)∣2e−2aze−(λ−a)z ∫
z

−∞

(e(λ−a)y − e2(λ−a)y)dydz

=
1(λ − a)2 ∫

0

−∞

∣p(z)∣2e−2az(1 − 1

2
e(λ−a)z)dy ≤ 1(λ − a)2 ∥p∥2L2,a

as 1− 1
2
e(λ−a)z ≤ 1 for any z ≤ 0. This proves (C.6). The estimate (C.7) follows similarly to (C.4).

Finally (C.8) descends from the identity

∂jy (T̃λp) = − j−1

∑
i=0

λj−i−1 ∂iyp + λ
j T̃λp , ∀j ≥ 1 ,

together with the estimate for T̃λp in (C.6).

Proof of Lemma 2.10. Writing u(x, y) = ∑k∈Zd uk(y)eik⋅x, we expand (2.28) in Fourier in the x

variables, obtaining for any k ∈ Zd the second order system for uk(y),
⎧⎪⎪⎪⎨⎪⎪⎪⎩
−∣k∣2uk(y) + ∂2

yuk(y) = gk(y)
uk(0) = 0, ∂yuk(y)→ 0 as y → −∞ .

(C.9)

Case k = 0: The solution of (C.9) is, for k = 0,

u0(y) = ∫ y

−∞

∫
y′

−∞

g0(z)dzdy′ −∫
0

−∞

∫
y′

−∞

g0(z)dzdy′
(C.2)
= (T 2

0 g0)(y)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=Πu0

−(T 2
0 g0)(0)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=u0−Πu0

. (C.10)

First note that, since g ∈ Hσ,s,a, then, by (2.9),

∥∂jyg0∥L2,a ≤ ∥g∥σ,s,a , ∀j = 0, . . . , s . (C.11)

By (C.3), (C.4), the function Πu0 = T 2
0 g0 and the constant u0 −Πu0 = −(T 2

0 g0)(0) satisfy

∥Πu0∥L2,a ≤ a−2∥g0∥L2,a ≤ a−2∥g∥σ,s,a , ∣u0 −Πu0∣ ≤ 1√
2a3/2

∥g0∥L2,a ≤
1√

2a3/2
∥g∥σ,s,a . (C.12)

Thus u0 ∈ C⊕L2,a. Moreover ∂yu0 = T0g0 and (C.4), (C.3) imply that

∣(∂yu0)(y)∣ ≤ eay√
2a
∥g0∥L2,a , ∥∂yu0∥L2,a ≤ a−1∥g0∥L2,a ≤ a−1∥g∥σ,s,a . (C.13)
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In addition, since ∂2
yu0 = g0, we get ∂jyu0 = ∂j−2

y g0, for any j ≥ 2, and then, by (C.11),

∥∂jyu0∥L2,a = ∥∂j−2
y g0∥L2,a ≤ ∥g∥σ,s,a , ∀2 ≤ j ≤ s + 2 . (C.14)

The bounds (C.12), (C.13), (C.14), and recalling (2.9), imply that

∣u0 −Πu0∣2 + ∥Πu0∥2L2,a +

s+2

∑
j=1

∥∂jyu0∥2L2,a ≤ Ca∥g∥2σ,s,a . (C.15)

Case k ≠ 0: The solution of the linear equation (C.9) is (by the variation of constants method)

uk(y) = − 1

2∣k∣
y

∫
−∞

e∣k∣(z−y) gk(z)dz − 1

2∣k∣
0

∫
y

e∣k∣(y−z)gk(z)dz + e∣k∣y
2∣k∣

0

∫
−∞

gk(z)e∣k∣zdz
(C.2)
= −

1

2∣k∣ (T∣k∣gk)(y)− 1

2∣k∣ (T̃∣k∣gk)(y) + e
∣k∣y

2∣k∣ (T∣k∣gk)(0) . (C.16)

By (2.9), each gk ∈ L2,a and ∥gk∥L2,a ≤ ∥g∥σ,s,a. Thus by ∥e∣k∣y∥L2,a = 1/√2(∣k∣ − a), Lemma C.1,

and recalling that a ∈ (0,1), we bound (C.16) for any ∣k∣ ≥ 1, as

∥uk∥L2,a ≤
1

2∣k∣ ∥T∣k∣gk∥L2,a +
1

2∣k∣ ∥T̃∣k∣gk∥L2,a +
∣(T∣k∣gk)(0)∣

2∣k∣√2(∣k∣ − a) ∣ ≲a
1∣k∣2 ∥gk∥L2,a . (C.17)

Thus each uk ∈ L2,a, k ≠ 0. Note also that ∂yuk(y) = 1
2
(T∣k∣gk)(y)− 1

2
(T̃∣k∣gk)(y)+ e∣k∣y2

(T∣k∣gk)(0)
satisfies, by (C.4) and (C.6),

∣∂yuk(y)∣ ≤ 1

2
∣(T∣k∣gk)(y)∣ + 1

2
∣(T̃∣k∣gk)(y)∣ + e∣k∣y

2
∣(T∣k∣gk)(0)∣

≤
1

2

eay√
2(∣k∣ + a)∥gk∥L2,a +

1

2
(e2ay − e2∣k∣y

2(∣k∣ − a) )
1

2 ∥gk∥L2,a +
e∣k∣y

2

1√
2(∣k∣ + a)∥gk∥L2,a

thus tends to 0 as y → −∞.

By (C.17) and recalling (2.9) we deduce that

∑
k≠0

e2σ∣k∣1 ⟨k⟩2(s+2) ∥uk∥2L2,a ≲a ∥g∥2σ,s,a (C.18)

and we conclude that u = u0(y) +∑k≠0 uk(y)eik⋅x is in C⊕L2,a(R≤0,H
σ,s+2) with

∥Πu∥2L2,a(R≤0,Hσ,s+2) = ∥Πu0∥2L2,a +∑
k≠0

e2σ∣k∣1 ⟨k⟩2(s+2) ∥uk∥2L2,a

(C.12),(C.18)
≤ Ca∥g∥2σ,s,a . (C.19)

Now we estimate the derivatives ∂jyu, j ≥ 1. Differentiating (C.16) we get, for any j ≥ 1,

∂jyuk(y) = − 1

2∣k∣∂jy(T∣k∣gk)(y) − 1

2∣k∣∂jy(T̃∣k∣gk) + 1

2
∣k∣j−1 e∣k∣y(T∣k∣gk)(0)

and, using ∥e∣k∣y∥L2,a = 1/√2(∣k∣ − a), Lemma C.1, a ∈ (0,1), we get, for any ∣k∣ ≥ 1,

∥∂jyuk∥L2,a ≤
1

2∣k∣ ∥∂jyT∣k∣gk∥L2,a +
1

2∣k∣ ∥∂jyT̃∣k∣gk∥L2,a +Ca∣k∣j− 3

2 ∣(T∣k∣gk)(0)∣
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(C.5),(C.8),(C.4)

≲a

j−1

∑
i=0

⟨k⟩j−i−2 ∥∂iygk∥L2,a . (C.20)

By (C.20) we conclude that, for any 1 ≤ j ≤ s + 1,

∑
k≠0

e2σ∣k∣1 ⟨k⟩2(s+2−j)∥∂jyuk∥2L2,a ≲a

j−1

∑
i=0

∑
k≠0

e2σ∣k∣1 ⟨k⟩2(s+2−j)⟨k⟩2(j−i−2)∥∂iygk∥2L2,a

≲a

j−1

∑
i=0

∑
k≠0

e2σ∣k∣1 ⟨k⟩2(s−i)∥∂iygk∥2L2,a

(2.9)
≤ Ca∥g∥2σ,s,a .

(C.21)

We finally estimate the last derivative ∂s+2
y uk. Differentiating (C.9) with respect to ∂sy, we get

∂s+2
y uk(y) = ∂sygk(y) + ∣k∣2∂syuk(y)

and then

∑
k∈Zd

e2σ∣k∣1∥∂s+2
y uk∥2L2,a ≲ ∑

k∈Zd

e2σ∣k∣1(∥∂sygk∥2L2,a + ∣k∣4∥∂syuk∥2L2,a)
(2.9),(C.20)

≲a ∥g∥2σ,s,a + ∑
k∈Zd

e2σ∣k∣1 ⟨k⟩4 s−1

∑
i=0

⟨k⟩2(s−i−2) ∥∂iygk∥2L2,a

≲a ∥g∥2σ,s,a + s−1

∑
i=0

∑
k∈Zd

e2σ∣k∣1 ⟨k⟩2(s−i) ∥∂iygk∥2L2,a

(2.9)
≤ Ca∥g∥2σ,s,a . (C.22)

Recalling (2.8), summing the estimates (C.15), (C.19), (C.21) and (C.22), we deduce that u ∈
C⊕Hσ,s+2,a and ∥u∥σ,s+2,a = ∣u −Πu∣ + ∥Πu∥σ,s+2,a ≤ Cs,a∥g∥σ,s,a. Lemma 2.10 is proved.
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241, 2015.

[5] Alazard T., Métivier G. Paralinearization of the Dirichlet to Neumann operator, and regularity of the three

dimensional water waves. Comm. Partial Differential Equations 34, no. 10-12, 1632-1704, 2009.

[6] Ambrosetti A., Prodi G. A Primer of Nonlinear Analysis. Cambridge Studies in Advanced Math. 34, 1993.

[7] Amick C. J., Fraenkel L. E. , Toland J. F. On the Stokes conjecture for the wave of extreme form. Acta

Matematica 148, 193 - 214, 1982.

[8] Baldi P., Berti M., Haus E., Montalto R. Time quasi-periodic gravity water waves in finite depth. Inv. Math.

214 (2): 739–911, 2018.

[9] Berti M., Bolle P. Quasi-Periodic Solutions of Nonlinear Wave Equations on the d-Dimensional Torus, EMS

Monographs in Mathematics, xv - 358 pp. ISBN: 978-3-03719-211-5, 2020.

30



[10] Berti M., Delort J.-M. Almost Global Solutions of Capillary-gravity Water Waves Equations on the Circle.

UMI Lecture Notes 2018, ISBN 978-3-319-99486-4.

[11] Berti M., Franzoi L., Maspero A. Traveling quasi-periodic water waves with constant vorticity, Archive for

Rational Mechanics, 240: 99–202, 2021.

[12] Berti M., Franzoi L., Maspero A. Pure gravity traveling quasi-periodic water waves with constant vorticity,

arXiv:2101.12006, 2021.

[13] Berti M., Maspero A., Ventura P. Full description of Benjamin-Feir instability of Stokes waves in deep

water, arXiv:2109.11852 .

[14] Berti M., Montalto R. Quasi-periodic standing wave solutions of gravity-capillary water waves, Volume 263,

MEMO 1273, Memoires AMS, ISSN 0065-9266, 2020.

[15] Buffoni B., Toland J. Analytic Theory of Global Bifurcation. Princeton University Press, 2016.

[16] Coifman R., Meyer Y. Nonlinear harmonic analysis and analytic dependence. Proc. Symp. Pure Math., Vol.

43, pp. 71-78, 1985.

[17] Craig W., Nicholls D. Travelling two and three dimensional capillary gravity water waves. SIAM J. Math.

Anal. 32, no. 2, 323-359, 2000.

[18] Craig W., Schanz U., Sulem C. The modulational regime of three-dimensional water waves and the Davey-

Stewartson system. Annales de l’I.H.P. Analyse non linèaire 14(5): 615–667, 1997.
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