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Abstract

On February 11th, 2016, the LIGO and Virgo scientific collaborations announced
the first direct detection of gravitational waves (GWs), a signal caught by the LIGO
interferometers on September 14th, 2015, and produced by the coalescence of two
stellar-mass black holes. The discovery represented the beginning of an entirely new
way to investigate the Universe. The latest gravitational-wave catalog by LIGO, Virgo,
and KAGRA brings the total number of gravitational-wave events to 90, and the count
is expected to significantly increase in the next years when additional ground-based
and space-born interferometers will be operational. From the theoretical point of view,
we have only fuzzy ideas on where the detected events came from, and the answers to
most of the five Ws and How for the astrophysics of compact binary coalescences are
still unknown.

However, two main formation channels have been proposed so far for the formation
of merging compact objects (neutron stars - NSs, and black holes BHs). In the isolated
binary channel, two progenitor stars are bound since their formation, evolve, and then
turn into (merging) compact objects at the end of their life, without experiencing any
kind of external perturbation. This scenario is driven by single and binary stellar
evolution processes, and it is sometimes referred to as the “field” scenario because it
assumes that binaries are born in low-density environments, i.e., that they evolve in
isolation. In contrast, in the dynamical channel, two compact objects get very close to
each other after one (or more) gravitational interactions with other stars or compact
objects. This evolutionary scenario is quite common in dense stellar environments (e.g.,
star clusters), and it is driven mainly by stellar dynamics. In reality, the two formation
pathways might have a strong interplay. In star clusters, the orbital parameters of
binaries might be perturbed by many passing-by objects.

One of the main issues is that most stars form in dense stellar environments, and nu-
merical simulations of merging compact-object binaries in such crowded stellar systems
are very challenging. However, to investigate the origins and the properties of merging
compact objects we need a powerful N-body code, which can handle, at the same time,
the large spatial and time-evolutionary scales of star clusters (∼pc and ∼Gyr), and the
small scales typical of tight binaries (∼AU and ∼days). Therefore, in this thesis, I dis-
cuss the innovative algorithms behind isteddas, a new direct N-body code I developed
in C++ from scratch that natively supports CUDA to run on Graphics Processing Unit
(GPU) supercomputers. I coupled isteddas with the few-body code tsunami, which
numerically integrates the orbits of tight systems (e.g., binaries or three-body encoun-
ters) with very high accuracy, and also with the population-synthesis code sevn, which
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includes up-to-date prescriptions for the evolution of both single and binary stars.
In this Thesis, I will explain the complex machinery behind isteddas. In particu-

lar, the second, third, and fourth chapters are overviews of isteddas, tsunami, and
sevn, respectively. In those chapters, I will go through the implementation details of
the codes and I will explain how they are interfaced with each other. In the fourth
chapter, I will show some results that validate the first version of the isteddas code.
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Chapter 1

The direct N-body code isteddas on
GPU

In this chapter, I will give an overview of the strategies adopted in our code to
numerically solve the N-body problem using GPUs. isteddas (the word for “stars”
in Sardinian language) is a direct N-body code that implements the Hermite 6th order
time integrator combined with the block time steps method, and the Ahmad-Cohen
neighbours scheme. isteddas is written by combining utilities of C and C++ and it
uses CUDA, MPI, and OpenMP to exploit GPU workstations as well as GPU clusters
[21]. The main features of isteddas are described in the following sections.

1.1 The Hermite integrator
The Hermite time integrators (4th, 6th and 8th order) represent the state-of-the-art

for direct N-body simulations [2, 4]. The 4th order scheme is, by far, the most used
algorithm in this context [1, 6, 20, 25, 31, 32], but the 6th order can be more accurate
and almost as fast as the 4th order when implemented on GPUs [24]. The Hermite
integrators are based on the Taylor series of positions, velocities, and accelerations
and their most important feature is that they need to evaluate the distances between
particles just once per time step. For instance, this is a huge advantage compared to
a classic 4th order Runge-Kutta method, which needs to evaluate accelerations 4 times
per integration step.

To evolve a stellar system from time t0 to time t1 (∆t = t1− t0, 1 integration step),
the Hermite 6th order integrator takes advantage of a predictor-evaluation-corrector
scheme. The prediction step performs a Taylor expansion on stars’ positions (r)1,

1Throughout the manuscript, I use bold letters to refer to three-dimensional vectors.
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1 The direct N-body code isteddas on GPU

velocities (v) and accelerations (a), using time derivatives up to ...
a :

rp = r0 + v0∆t+ a0
∆t2

2
+ ȧ0

∆t3

6
+ ä0

∆t4

24
+

...
a 0

∆t5

120
, (1.1)

vp = v0 + a0∆t+ ȧ0
∆t2

2
+ ä0

∆t3

6
+

...
a 0

∆t4

24
, (1.2)

ap = a0 + ȧ0∆t+ ä0
∆t2

2
+

...
a 0

∆t3

6
, (1.3)

where the quantities labeled with p are the predicted ones and the quantities labeled
with 0 come from the corrector performed in the previous step, or from initial condi-
tions.

During the evaluation step, the code computes the total force on the star i from all
the other stars in the system, using the classical Newtonian formula and the predicted
values p, v, and a:

ai,1 =
N∑
j ̸=i

mj

|rij,p|3
rij,p , (1.4)

ȧi,1 =
N∑
j ̸=i

mj

|rij,p|3

(
vij,p − 3

rij,p · vij,p

|rij,p|2
rij,p

)
, (1.5)

äi,1 =
N∑
j ̸=i

mj

|rij,p|3

[
aij,p − 6

rij,p · vij,p

|rij,p|2
vij,p+

+
3

|rij,p|2

(
5
(rij,p · vij,p)

2

|rij,p|2
− rij,p · aij,p − |vij,p|2

)
rij,p

]
, (1.6)

where the quantities with subscript “ij, p” are the relative predicted values between
the stars i and j (e.g. rij,p = rj,p − ri,p), and the gravitational constant it is assumed
as G = 1. Finally, in the corrector step, the predicted quantities are corrected to
obtain a more accurate solution using the newly evaluated accelerations. Positions and
velocities are corrected as:

vc = v0 + (a1 + a0)
∆t

2
− (ȧ1 − ȧ0)

∆t2

10
+ (ä1 + ä0)

∆t3

120
, (1.7)

rc = r0 + (vc + v0)
∆t

2
− (a1 − a0)

∆t2

10
+ (ȧ1 + ȧ0)

∆t3

120
. (1.8)

During the correction phase, a new time step for each star is computed using the new
accelerations, as in [24]:

∆t = ηh 6

√
|a1||ä1|+ |ȧ1|2

|a(5)
1 || ...a 1|+ |a(4)

1 |2
, (1.9)

where ηh is an accuracy parameter that set to 0.4 [6, 8]. ...
a 1, a

(4)
1 , and a

(5)
1 are the

third, fourth, and fifth derivatives of the acceleration. Furthermore, ...
a 1 is saved for

the next iteration since it is needed in the predictor for the Taylor expansion.
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1.1 The Hermite integrator

1.1.1 Polynomial interpolation for the sixth-order integrator

For each star, the third, fourth, and fifth derivatives of the acceleration at the next
step ( ...

a 1, a
(4)
1 , and a

(5)
1 ) are estimated analytically during the corrector step using a0,

a1, ȧ0, ȧ1, ä0 and ä1 [24]. It is convenient to define the following summations and
differences between them as:

A+ = a1 + a0 , (1.10)
A− = a1 − a0 , (1.11)
J+ = h(ȧ1 + ȧ0) , (1.12)
J− = h(ȧ1 − ȧ0) , (1.13)
S+ = h2(ä1 + ä0) , (1.14)
S− = h2(ä1 − ä0) , (1.15)

where h = ∆t/2 = (t1 − t0)/2. The coefficients of the polynomial interpolation at the
midpoint t = h are:

a1/2 =
1

16

(
8A+ − 5J− + S+

)
, (1.16)

hȧ1/2 =
1

16

(
15A− − 7J+ + S−) , (1.17)

h2

2
ä1/2 =

1

8

(
3J− − S+

)
, (1.18)

h3

6

...
a 1/2 =

1

8

(
−5A− + 5J+ − S−) , (1.19)

h4

24
a
(4)
1/2 =

1

16

(
−J− + S+

)
, (1.20)

h5

120
a
(5)
1/2 =

1

16

(
3A− − 3J+ + S−) . (1.21)

Thus ...
a 1, a

(4)
1 , and a

(5)
1 are obtained by expanding their midpoint counterparts to t1:

...
a 1 =

...
a 1/2 + ha

(4)
1/2 +

h2

2
a
(5)
1/2 , (1.22)

a
(4)
1 = a

(4)
1/2 + ha

(5)
1/2 , (1.23)

a
(5)
1 = a

(5)
1/2 . (1.24)

Finally, by integrating, we obtain the sixth-order corrector:

v1 = v0 + h

(
A+ − 2

5
J− +

1

15
S+

)
, (1.25)

r1 = r0 + hv1 + h2

(
−2

5
A− +

1

15
J+

)
, (1.26)

here v1 and r1 correspond exactly to vc and rc in Eqs.1.7,1.8.
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1 The direct N-body code isteddas on GPU

1.2 The block time steps method
Stars in an N-body system can have very different accelerations. This corresponds

to have a large variety of evolutionary dynamical time scales. In this context, it is
convenient to assign to all stars their individual time step, which becomes a function
of the physical parameters that describe the kinematic state of stars. To avoid time-
synchronization issues between the stars, and to simplify the parallelization process,
the time step of the i-th star is discretized to powers of two: ∆tdiscretizedi = 2−n, where
n is an integer. In the code, by default, the maximum and minimum time steps are
∆tmax = 2−3 and ∆tmin = 2−35 respectively. For each star, we use Eq.1.9 to calculate
the ideal time step ∆treali , but we always approximate n to the largest integer value,
so the effective time step is ∆tdiscretizedi ≤ ∆treali . Thus, particles are sub-divided into
several groups (blocks) that share the same time step [3] and the groups are indexed
according to n. The latter strategy is very effective to select, for each step, the stars that
need to be integrated, since we need to update positions and velocities only for m stars
per time step, where m ≤ N . Specifically, stars with smaller time steps will be updated
more often than stars with larger time steps, and for the latter, the kinematic state
will be estimated using the predictor step only. This implies that the computational
complexity is reduced from O(N2) to O(mN). This is a significant gain in terms of
performance, with a negligible cost in terms of the precision of the integrator.

Fig.1.1 shows a cartoon that explains the block time steps method. Stars in lower
blocks have a smaller time step compared to stars in higher blocks, and the time steps
are all integer multiples of the minimum one so that it is straightforward to synchronize
the blocks with each other. In Fig.1.1, red arrows show that the stars in block 0 are
always updated (time step dt), while the stars in block 1 are updated every two steps
(2dt) and the stars in block 2 every four steps (4dt). Each star can jump from its
block to another one, accordingly to its time step variation. The jump is possible only
when the current block of the star is synchronized with the block where the star aims
to jump. In Fig.1.1, these jumps are shown as green lines. It is worth noting that
jumps toward lower blocks are always permitted (by construction, a block is always
synchronized with its lower blocks); in contrast, stars can jump toward higher blocks
only at synchronous times (forbidden transitions are shown as yellow arrows that end
up on red crosses).

1.3 The Ahmad-Cohen neighbours scheme
Star clusters may contain a large number of stars (up to ∼ 106 for massive GCs),

and this makes direct N-body simulations very challenging because of the high com-
putational complexity of O (N2). In order to deal with such numerical challenges, a
neighbour procedure that requires fewer total force calculations can be introduced. A
very common strategy for direct N-body simulations is to adopt the Ahmad-Cohen
(AC) neighbour scheme [5, 17]. In this method, the force on a star is split into two
contributions that evolve over different time scales. The first contribution depends only
on near stars and the other one is owed to distant stars. It is apparent that the latter
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Figure 1.1: A cartoon of the block time steps method with four particles (indicated as “A”,
“B”, “C” and “D”) as an example. Horizontally, three example blocks are placed,
with three time steps: dt, 2dt, 4dt. The vertical axis represents the discretized
time. The red arrows represent a particle doing its time step. The green arrows
represent a particle changing time step, and therefore block. The yellow arrows
represent a particle that is trying to change time step, but it fails because the
arriving block is not synchronized with the its actual block. At the bottom of the
cartoon, particles “A” and “B” are in block 0, “C” is in block 1 and “D” is in block
2. Particles “A” and “D” do not change block, “A” keeps doing time steps dt (fast
evolution) while “D” 4dt (slow evolution). “B” changes block after two steps, then
it switch back to the previous block. “C” tries to change time step when blocks
1 and 2 were not synchronized, failing; later it was able to successfully change it
when the two block were synchronized.

force evolves over much slower time scales than the one from close stars, therefore it
does not have to be recalculated with the same frequency. This implies fewer oper-
ations per step and a significant performance gain. The combination with the block
time steps method described above is straightforward: each star will be in two separate
blocks, corresponding to two (discretized) time steps ∆tclose and ∆tfar, calculated for
close and distant stars, respectively. For each star, we only compute the forces from
its neighbours, proceeding with a time step ∆tclose (neighbour steps), and the forces
from distant particles are approximated using a Taylor expansion; in contrast, every
k steps (with k∆tclose = ∆tfar), we compute the force from both close and distant
particles self-consistently. isteddas implements the AC neighbours scheme entirely
on the GPU. This is a significant advantage in terms of performance since, for each
step, there is no need to communicate the neighbours between the CPU and the GPU,
reducing communication latencies.
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1 The direct N-body code isteddas on GPU

To identify neighbours, we use the external C++ library ANN (to see why we have
chosen this library see the subsection 1.4.3) that builds a three-dimensional k-d tree
structure using an approximate nearest neighbor searching algorithm. Actually, there
is the possibility to use a fixed number or a variable number of neighbours.

Let us first discuss the case with a variable number of neighbours. To calculate
the ideal number of neighbours, we evaluate the total number of operations performed
with and without neighbours within a time step ∆tf :

with neighbours: Noperations = nn
∆tf
∆tc

+ (N − nn) ,

without neighbours: Noperations =
∆tf
∆tc

N ,

dividing the above contribution we obtain the cost function:

Cost(nn) =
nn

N
+

∆tc
∆tf

(
1− nn

N

)
, (1.27)

where nn is the number of neighbours. The ideal number of neighbours is retrieved
from the above equation in the minimum of the cost function. To compute both ∆tc
and ∆tf we use the Hermite 4th order time step criterion [17]:

∆t = ηℓ

√
|a1||ä1|+ |ȧ1|2
|ȧ1||

...
a 1|+ |ä1|2

, (1.28)

where ηℓ is a free parameter that we take as 0.05 for ∆tc and 0.1 for ∆tf . In Eq. 1.28,
the time step depends on nn through the accelerations. The cost function is computed
for different values of nn until the maximum value, that is [18]:

nn,max =
1

4

(
N

4

) 3
4

. (1.29)

The ideal value for nn is the one that minimizes the cost function. For each star, we
save the radius of its neighbour sphere, rneigh, which corresponds to the distance of
the star’s nn-th neighbour. To stabilize the number of neighbors per star, that is to
avoid too frequent neighbors’ changes, we have introduced a threshold value, so if the
minimum cost is bigger than 0.6 no neighbours are selected (rneigh = 0). The three-
dimensional k-d tree structure and the number of neighbours are updated every time
all stars are synchronized (every ∆tmax), therefore every time the code computes N2

forces. However, rneigh can change before one global synchronization and the next one.
After the update of the tree structure, we calculate the local star density considering,
for each star, the distance to its 6th nearest neighbor, and we use it to estimate the
system’s radial density profile, ρ (r). Every ∆tf , we update rneigh so the number of
neighbours per star does not change significantly, that is:

rneigh,new = rneigh,old

(
ρ (r∗,old)

ρ (r∗,new)

) 1
3

, (1.30)
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1.3 The Ahmad-Cohen neighbours scheme

where r∗,old and r∗,new are the position of the star in the system at the previous and
current time-step respectively.

Let us now consider the case with a fixed number of neighbours. The more natural
choice is to take as a fixed number of neighbours a multiple of 32 (nn ∝ 32). In this
way, the force calculation on GPU during the neighbour step is more efficient since
32 is the number of threads in a single GPU warp. In this case, we do not use rneigh,
therefore, to always have the right neighbours, we compute the three-dimensional k-d
tree structure every time that at least one star is doing a distant step. This last case,
for isteddas, is much more stable than the configuration with a variable number of
neighbours: the numerical errors are accumulated much slower with respect to the case
with variable neighbours due to the decreased number of operations made, and the
block distribution is more stable overall. Moreover, since it does much less work on
the CPU, we get a reduction of the latencies between the CPU and GPU speeding
up the simulation. Furthermore, using a fixed number of neighbors, there is no need
to calculate and adjust the neighbor distance (see Eq. 1.30), which relies crucially on
the assumption of spherical symmetry of the N-body system. This means that, with
fixed neighbors, we can evolve even systems that are far from spherical symmetry (e.g.,
fractal clusters).

Moving forward, some complications arise when using this scheme combined with
the Hermite integrator. With the AC method, during the neighbour integration steps
(∆tn), no issues are encountered, since the neighbours are constant. Though during
a distant step (i.e. every ∆tf ), the neighbours might have changed, thus the Hermite
corrector is not self-consistent anymore because in Eqs.1.7,1.8 we are summing and sub-
tracting accelerations and derivatives computed with potentially different neighbours,
in fact, the Hermite 6th order corrector writes as:

vc = v0,old + (a1,new + a0,old)
∆t

2
− (ȧ1,new − ȧ0,old)

∆t2

10
+ (ä1,new + ä0,old)

∆t3

120
, (1.31)

rc = r0,old + (vc + v0,old)
∆t

2
− (a1,new − a0,old)

∆t2

10
+ (ȧ1,new + ȧ0,old)

∆t3

120
, (1.32)

where the variables labeled with old and new are computed using the neighbours of
the previous and the actual step respectively. Therefore, we apply the following steps,
as in [17] for the Hermite 4th order integrator, to solve the problem:

• Compute the acceleration and its derivatives due to neighbors based on the list
of neighbours calculated in the previous step (aclose,old).

• Apply the corrector calculated for the acceleration due to neighbors

• Compute the acceleration and its derivatives due to neighbors and distant stars
based on the new list of neighbours calculated in this step (aclose,new and afar,new)

• Compute the acceleration and its derivatives due to distant particles based on
the old neighbor list as afar,old = afar,new + aclose,new − aclose,old.

• Apply the corrector for the acceleration due to distant particles using afar,old and
its derivatives.
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1 The direct N-body code isteddas on GPU

It is worth noting that a, ȧ and ä are computed with the new neighbours list,
during the evaluation step, while ...

a (far and close) is estimated during the corrector
step using the old neighbours list. Since in the Hermite 6th order scheme ...

a is needed
in the predictor step and to calculate the correct individual time steps for stars, it is
important to compute it self-consistently. To achieve this, we keep track of the incoming
and outgoing neighbors with respect to rneigh, and we retrieve ...

a new by subtracting and
summing on ...

a old the contribution from outgoing and incoming neighbours:

...
a new =

...
a old −

...
a outgoing +

...
a incoming . (1.33)

We compute the outgoing and the incoming contributions using the explicit Newtonian
formula for ...

a :

...
a i,1 =

S∑
k=1

mk

|rik,p|3

{
ȧik,p − 9

rik,p · vik,p

|rik,p|2
aik,p+

+
9

|rik,p|2

[
5
(rik,p · vik,p)

2

|rik,p|2
− rik,p · aik,p − |vik,p|2

]
vik,p+

+
1

|rik,p|2

[
24

(rik,p · vik,p)(rik,p · aik,p + |vik,p|2)
|rik,p|2

− 21
rik,p · vik,p

|rik,p|2

(
5
(rik,p · vik,p)

2

|rik,p|2
+

− rik,p · aik,p − |vik,p|2
)
− 3(rik,p · ȧik,p + 3aik,p · vik,p)

]
rik,p

}
,

(1.34)

where, as in Eqs.(1.4,1.5,1.6), the quantities with subscript “ik, p” are the relative
predicted values between stars i and k (e.g. rik,p = rk,p − ri,p), S is the total number
of incoming or outgoing neighbours, and we have assumed the gravitational constant
G = 1.

Finally, to estimate ∆tclose and ∆tfar we use Eq.1.9 only if the neighbours do not
change; otherwise, we use the low order, Hermite 4th order, criterion as in Eq.1.28. This
is necessary because a(4) and a(5) would be inconsistent if the neighbor list changes.
Furthermore, a(4) and a(5) are not needed in the predictor step, and correcting them
with the corresponding Newtonian formulas, as we do for ...

a , would have a significant
computational cost without increasing the order of the integrator.

1.4 Optimizations and parallelization
isteddas runs almost completely on GPU accelerators. Therefore we were able to

minimize the amount of data communication between the CPU and the GPU.
isteddas can run on single or multiple GPUs, and on single or multiple MPI

nodes, in this way, the code can exploit GPU workstations as well as GPU clusters.
One problem that is important to address is related to the evaluation kernel. The
calculation of the newtonian gravitational force involves the computation of the inverse
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1.4 Optimizations and parallelization

square root:

Fij =
mimjG

|ri,j|3
ri,j =

(
1√

(xj − xi)2 + (yj − yi)2 + (zj − zi)2

)3

mimjGri,j , (1.35)

that is famous to be a computationally heavy operation, in fact, in the early 1990s
the fast inverse square root was invented to overcome this problem. The algorithm
is, as one can guess by the name, a faster implementation of the inverse square root
that approximates the exact value of 1/

√
x. We cannot use such an algorithm since we

need as much accuracy as we can. Thankfully, nowadays the algorithms to compute
the inverse square root are quite fast, therefore we use the CUDA function rsqrt(),
which is a native reciprocal square root instruction. However, to speed up the code
as much as possible, we try to optimize every operation. For example, whenever we
can, we use the fused multiply-addition (fma()), which is a floating-point operation
(a ·b+c) performed in one step with a single rounding error. It can be used to compute
the square module of a vector v:

|v|2 = vx · vx + vy · vy + vz · vz = fma (vx, vx, fma (vy, vy, fma (vz, vz, 0))) , (1.36)

where vx, vy, vz are the 3D components of the vector v. In this simple example, we
pass from 5 floating-point operations (3 multiplications and 2 summations) to just 3
floating-point operations. It can also be used to compute the Taylor expansions of any
quantity q, for example, for a third-order expansion:

q1 ≃ q0 + q̇0dt+ q̈0
dt2

2
+

...
q 0

dt3

6
=

= fma
(
dt, fma

(
dt

2
, fma

(
dt

3
,
...
q 0, q̈0

)
, q̇0

)
, q0

)
. (1.37)

In this simple example, we pass from 6 floating-point operations (3 multiplications and
3 summations) to just 3 floating-point operations.

1.4.1 Forces evaluation algorithm

Computing ai,1, ȧi,1, äi,1, and ...
a i,1 can be extremely computationally expensive

due to the huge amount of multiplications, divisions, summations, and inverse square
roots (see Eqs.1.4,1.5,1.6,1.34). However, a lot of these calculations are repeated, there-
fore, for each couple (i, j) of stars, we define the following quantities to avoid these
repetitions:

S0 = rij,p · rij,p , (1.38)
S1 = rij,p · vij,p , (1.39)
S2 = rij,p · aij,p + vij,p · vij,p , (1.40)
S3 = rij,p · ȧij,p + 3vij,p · aij,p , (1.41)
Q1 = −3r2invS1 , (1.42)
Q2 = −r2inv (5S1Q1 + 3S2) , (1.43)
Q3 = −r2inv (8S2Q1 + 7S1Q2 + 3S3) , (1.44)
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1 The direct N-body code isteddas on GPU

where, again, the quantities with subscript “ij, p” are the relative predicted values
between stars i and j (e.g. rij,p = rj,p − ri,p), and rinv = 1/

√
S0. Using the above

quantities we can rewrite the equations for the acceleration and its derivatives as:

ai,1 =
N∑
j ̸=i

mjr
3
invrij,p , (1.45)

ȧi,1 =
N∑
j ̸=i

mjr
3
inv (Q1rij,p + vij,p) , (1.46)

äi,1 =
N∑
j ̸=i

mjr
3
inv (Q2rij,p + 2Q1vij,p + aij,p) , (1.47)

...
a i,1 =

N∑
j ̸=i

mjr
3
inv (Q3rij,p + 3Q2vij,p + 3Q1aij,p + ȧij,p) . (1.48)

By computing this equation we avoid a lot of extra calculations, even the inverse square
root is done just once. On top of this, we also use the tricks explained above (e.g. the
fma() function).

1.4.2 Forces reduction and gather

When simulating star clusters with more than 104-105 stars, it is very useful to use
multiple GPUs to speed up the calculation of the forces. The predictor and corrector
kernels are computed equally on each GPU since they scale with the number of stars
(N), and therefore are light kernels from the computational point of view. Thus they
do not need any kind of communication between GPUs, however, we do transfer the
results of GPU 0 to all the other GPUs every time that all the stars are synchronized.
In this way we avoid the arise of discrepancies in the quantities among the GPUs.

Anyway, the force evaluation is a computationally heavy kernel, it scales at maxi-
mum as N2 (distant step for N stars) and at minimum as N · nn (neighbours step for
N stars). Thus the evaluation process is split among the available GPUs to decrease
the computational load on each GPU, this is done for both the far and the close accel-
erations. This split of the forces evaluation inevitably introduces extra communication
between GPUs and CPUs at each step. The two cases, distant and neighbours steps,
are handled separately with two different GPU kernels, and also different communi-
cation strategies. For the distant step, every GPU computes the interactions between
all the i stars (N) with only a fraction of the j stars (N/ngpu), in this way they will
perform ∼ N2/ngpu operations, that is a perfectly balanced use of the devices. In more
detail, every star has its own one-dimensional block with 128 threads (4 warps), so
each thread will compute and accumulate the forces from (N/ngpu)/128 j stars. Since
we have divided the j stars, at the end a reduction will be necessary to build the total
forces between stars. Instead, for the neighbours step, since nn is much smaller than N
or N/ngpu would not make sense to divide the neighbours among the GPUs (nn/ngpu),
because each i star would have to interact with a very small amount of j star on each

12



1.4 Optimizations and parallelization

device, that is not optimal, especially if that number is smaller then 32. Thus, every
GPU computes the interactions between a fraction of the i stars (N/ngpu) with all their
neighbours, or j stars, (nn), in this way they will perform ∼ N ·nn/ngpu operations. In
more detail, every block is, again, one-dimensional and has 128 threads, but this time
it will handle 4 i stars (one for each warp). So, each thread of the warp will compute
and accumulate the forces from nn/32 j stars, and this is the reason why we choose
nn ∝ 32 for the value of the number of neighbours. Since this time we have divided the
i stars, at the end a gather will be necessary to communicate the total forces between
stars to all the GPUs.

For the reduction we apply the following strategy: first of all, there is the single
GPU reduction, which is done at warp level, to be as efficient as possible, using the
CUDA function __shfl_down_sync(), see Fig.1.22. Then, since in the evaluation

0 1 2 3 4 5 6 7 

1 1 1 1 1 1 1 1 
 

 

2 2 2 2 1 1 1 1 
  

 

4 4 2 2 1 1 1 1 
  

 

8 4 2 2 1 1 1 1 
 

 

 

 

Lane 

𝑣 += __shfl_down_synch(m, 𝑣, 4); 

𝑣 += __shfl_down_synch(m, 𝑣, 2); 

𝑣 += __shfl_down_synch(m, 𝑣, 1); 

unsigned m = 0XFFFFFFFF; 

Figure 1.2: The cartoon shows an example of using warp-level primitives. It uses
__shfl_down_sync() to perform a tree-reduction to compute the sum of the v
variable held by each thread in a warp. At the end of the loop, v of the first thread
in the warp contains the desired sum (8 in this example). m = 0XFFFFFFFF is the
standard mask used to perform this operation, and it is an hexadecimal integer
constant where the prefix 0X means the next number is written in the hexadeci-
mal, and FFFFFFFF is 232 − 1 in decimal notation, or 32 consecutive “1” in binary
notation. A warp comprises 32 lanes, with each thread occupying one lane, so it
needs 5 uses of the function to be reduced. The data exchange is performed be-
tween registers, and it is more efficient than going through shared memory, which
requires a load, a store, and an extra register to hold the address.

kernel each block handles an i star, we reduce all the values of the first threads of
each warp of each block. After these passages, every GPU has the reduced forces on

2See the link https://developer.nvidia.com/blog/using-cuda-warp-level-primitives/ for extra details
about warp level reductions.

13

https://developer.nvidia.com/blog/using-cuda-warp-level-primitives/


1 The direct N-body code isteddas on GPU

each i star from N/ngpu stars. To obtain the total force from all the N stars of the
simulation there are two final steps: the computed forces are copied to the CPUs that
perform an intra-node reduction between the GPUs within each node and in the end an
MPI reduction (MPI_Allreduce()) is performed between the nodes to finally have the
complete far and close forces for each star. For the gather we use a similar strategy as
above: first of all, there is the single GPU reduction, which is done at warp level exactly
as before. Since every warp handles the interaction of each star with its neighbours,
this is the only reduction required. In fact, after this step, we already pass to the
intra-node gather between the GPUs within each node, and in the end, we perform
an MPI gather (MPI_Allgatherv()) between the nodes to finally have the complete
neighbours forces for each star on all the GPUs.

1.4.3 Ahmad-Cohen tree building optimization

In order to identify neighbours, we needed a nearest-neighbour searching tree li-
brary, therefore we test 5 different codes to decide which one best match our needs
isteddas:

• ANN3 (Approximate Nearest Neighbor searching): a library written in C++,
running on CPU, which supports data structures and algorithms for both exact
and approximate nearest neighbor searching in arbitrarily high dimensions.

• FLANN4 (Fast Library for Approximate Nearest Neighbors): a library for per-
forming fast approximate nearest neighbor searches in high dimensional spaces.
It is written in C++ and runs on GPU [22].

• FAISS5 (Facebook AI Similarity Search): a library for efficient similarity search
and clustering of dense vectors. It contains algorithms that search in sets of
vectors of any size. It is written in C++ and runs on GPU [14].

• hnswlib6 (Hierarchical Navigable Small World graphs library): a library written
in C++ that runs on CPU, for the approximate K-nearest neighbor search it uses
navigable small world graphs with controllable hierarchy [19].

• GGNN7 (Graph-based GPU Nearest Neighbor search): its search structure is
based on nearest neighbor graphs and information propagation on graphs. the
code is designed to take advantage of GPU architectures to accelerate the hier-
archical building of the index structure and for performing the query [12].

These libraries have two main operations: the construction of the tree, and the search
for neighbours. The first operation is the creation of the tree structure from which
the search for neighbours is done. We benchmark these codes based on the usage

3The code is public and available here: http://www.cs.umd.edu/∼mount/ANN/
4The code is public and available here: https://github.com/flann-lib/flann
5The code is public and available here: https://github.com/facebookresearch/faiss
6The code is public and available here: https://github.com/nmslib/hnswlib
7The code is public and available here: https://github.com/chingyaoc/ggnn.pytorch
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that they would have in isteddas, therefore we use a three-dimensional space and
we test a number of points that could resemble the number of stars in star clusters
N = [211, 213, 214, 215, 216, 217]. For each code, and for each number of stars, I save both
the time needed to build the tree structure and the searches (or queries) of the first
64 neighbours on Nq stars. For the benchmarks, Nq is chosen to be an integer fraction
of N : [1, N/128, N/32, N/8, N/2, N ]. The benchmarks in Fig.(1.3,1.4) were done on a
laptop with the specifics in Table 1.1.

CPU : Intel(R) Core(TM) i7-10750H 2.60GHz
RAM : 16GB DDR4
GPU : NVIDIA GeForce GTX 1650 Ti
GRAM : 4GB GDDR6

Table 1.1: Laptop specifics.

Fig.1.3 shows the scalability of each library with respect to the increasing number
of points and the increasing number of queries, moreover, it is also shown the time com-
parison for the creation of the tree. Instead, in Fig.1.4, the same data are rearranged to
show the time comparison for the neighbours searches among the 5 libraries. From the
point of view of building the tree, the two best options are ANN and FLANN, ANN
performs much better with smaller N , and FLANN scales better with increasing N . In
contrast, from the point of view of the searches, hnswlib perform better than anyone
else with Nq = 1 for every N , however increasing N and Nq, the two best options for
isteddas are, again, ANN and FLANN. Probably, the reason behind these results is
that the other libraries are optimized for high-dimensional spaces, while we just need
a three-dimensional tree. For isteddas, on a single GPU, the best possible combi-
nation would be to use ANN with a small number of stars and FLANN with a large
number of stars, with the separation around 214-215 stars. However, because ANN
does not scale on multiple nodes and can use only one CPU (see Section 4.1), while
FLANN can scale on multiple GPUs, it will be crucial to take advantage of FLANN
inside isteddas in order to achieve good scaling over tens or hundreds of GPUs on
the next-generation supercomputers. Since ANN was already implemented inside the
code and the difference between ANN and FLANN is not significantly high on a single
GPU, we stick with it, leaving the implementation of FLANN in isteddas for future
work. The library ANN is implemented in isteddas, and it was modified to run the
search for neighbours in parallel with OpenMP. This optimization speeds up the ANN
library on a single node, however it still cannot scale with multiple nodes.
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Figure 1.3: Benchmarks of the 5 tested libraries. In the top-left panel it is shown the time
taken by each library to build the 3D tree structure in function of the total number
of stars. In the other 5 panels it is shown, for each library, the time taken to
perform a search (or query) of the first 64 neighbours on Nq points. Nq is a
fraction of the total number of stars N : [1, N/128, N/32, N/8, N/2, N ]. N is
chosen as a power of 2: [211, 213, 214, 215, 216, 217].
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Figure 1.4: Benchmarks of the 5 tested libraries. In each panel it is shown, for a certain
total number of stars N , the time taken by each library to perform a search (or
query) of the first 64 neighbours on Nq points (stars). Nq is a fraction of the total
number of stars N : [1, N/128, N/32, N/8, N/2, N ]. N is chosen as a power of 2:
[211, 213, 214, 215, 216, 217].
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Chapter 2

The few body code tsunami

While the 6th order Hermite integrator is a powerful main integrator in isteddas,
it might not be suitable for the long-term integration of stable, very tight star systems
(e.g. binaries, triples). To integrate a tight binary, the Hermite integrator would sig-
nificantly reduce the time step time, making the numerical integration of the whole
system stall, and accumulating numerical error very fast. Thus, implementing a fast,
high-accuracy algorithm to take care of tight systems in isteddas is crucial, espe-
cially if our aim is to investigate the evolution of merging compact-object binaries and
their GW emission. Therefore, we have coupled isteddas with tsunami, a code for
the high-accuracy numerical integration of binaries and hierarchical systems [27–29].
tsunami is based on the following techniques: regularization of the equations of mo-
tion, chain coordinates to reduce round-off errors, and Bulirsch–Stoer extrapolation.
The first technique (regularization) takes care of the singularity of the gravitational po-
tential (when the distance between the two bodies is near zero). The second technique
(chain coordinates) helps reduce the round-off errors in hierarchical systems, which
arise when moving to center-of-mass coordinates, without introducing numerically ex-
pensive techniques of compensated summation. The third method (Bulirsch–Stoer
extrapolation) increases the accuracy of the integration and makes it adaptable over
a wide dynamical range. Furthermore, tsunami includes additional features such as
perturbative forces, general relativity corrections through post-Newtonian terms up to
3.5 order, tidal interactions, and a collision-detection algorithm. In this chapter, I will
go into further detail on these techniques.

2.1 Coupling isteddas and tsunami

tsunami is completely re-implemented inside isteddas as a module of it and it
runs completely on the CPU. The crucial part of the coupling is the “decision making”,
that is the totality of the effective criteria to decide whether a group of stars must
be regularized with tsunami, or it is better to leave it within isteddas. This is
important because tsunami runs entirely on CPU code while isteddas is designed to
run entirely on GPU. Thus, switching-on regularization would imply significant CPU-
GPU data transfer, which might become a bottleneck if the decision-making is not
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carefully implemented.

2.1.1 Decision Making

In isteddas the decision making is similar to that described in [3, 15], but with
some crucial differences. Finding the binary systems in an N-body system is a slow
procedure with time complexity O(N2), but using the already built k-d tree from the
Ahmad-Cohen scheme (see Section 1.3) we have it for free since we already know the
nearest neighbours of every star in the system. There are two possible systems for
which the code decides to integrate a group of stars using tsunami: binary systems or
close encounters. Before entering into details, let us define the important length scale
to check the proximity of two stars: the close encounter radius, defined as:

Rcl = 2
m̄

σ2
ηr , (2.1)

where m̄ and σ2 are the average mass and the velocity dispersion, and ηr is a free
parameter used to conveniently adjust Rcl. We do not consider the whole N-body
system to compute these quantities, but only the nearest nn,max stars (see eq. 1.29),
in this way, we are computing the local Rcl for each star. In addition, To understand
whether two stars are a bound (soft or hard binary) or unbound (close encounter)
system we use the total energy, that is:

Etot = U +K = −mimj

|rij|
+

1

2
mi|vi − vcom|2 +

1

2
mj|vj − vcom|2 , (2.2)

where U and K are the gravitational potentials and kinetic energy of the two stars,
mi,j and vi,j are the masses and the velocities, vcom = (mivi +mjvj)/(mi +mj) is the
velocity of the two stars’ center of mass, and |rij| is the distance between the two stars.
The sign of the total energy carries an important physical meaning, a negative Etot is
associated with a bound gravitational system, and a positive Etot is associated with
an unbound gravitational system. therefore, comparing Etot with the average kinetic
energy of the N-body system (K̄ > 0) we understand the type of bound between the
two considered stars:

Etot/K̄ ≤ −1 bound system (hard binary) ,
−1 < Etot/K̄ < 0 bound system (soft binary) ,
0 ≤ Etot/K̄ unbound system (close encounter) ,

Putting everything together, we have a binary system if two stars are separated by
a distance lesser than Rcl and they are a hard binary from the energy point of view,
while we have a close encounter if two stars are separated by a distance lesser than
Rcl, they are an unbound system and they are pointing to each other (the dot product
between their relative position and velocity is negative). I can finally summarize the
conditions as:

Binary system: |rij| < Rcl & Eb/K̄ ≤ 1 ,

Close encounter: |rij| < Rcl & Eb/K̄ ≥ 0 & rij · vij < 0 ,
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where the vectors rij and vij are the relative position and velocity of the two stars,
and the symbol & is the logic “and”.

Once the code has found two stars for tsunami it also checks if the next nearest
star wants to be part of the system. For close encounters, the code simply checks the
distance between the extra star and the center of mass of the two stars already in
tsunami:

|rij| <
2

3
Rcl .

In this case, we would have a three-body close encounter, however, to add other stars
the check is done considering the center of mass of the most bound couple of stars in
the system (called inner binary, the one with minimum Eb). For a binary system, we
have the exact same check as above, however, there are other two conditions, based
on orbital parameters, for stars to enter tsunami and form a multiple-body system.
First of all, the orbital eccentricity between the entering body and the harder binary,
and the semi-major axis of the inner binary in the tsunami system are defined as:

e =
1

µ

∣∣∣∣(|vbk| −
µ

|rbk|

)
rbk − (rbk · vbk)vbk

∣∣∣∣ , (2.3)

a =
mb

2

(
|vij|2

2
− mb

|rij|

)−1

, (2.4)

where mb = mi +mj, µ = mb +mk, the quantities labeled with bj are relative to the
center of mass of the inner binary (b) and the entering stars (k), and the ones labeled
with ij are relative to the stars in the inner binary. The other two exclusive conditions
to let a star enter the tsunami integration are relative to the orbit configurations:

e > 1(open orbit case) & |rij| < Rcl

√
0.5Nµ ,

e ≤ 1(close orbit case) & γ ≥ γcrit ,

where N is total number of stars in the N-body system, the symbol & is the logic “and”,
and γ is the perturbation parameter defined as:

γ =
2m̄

mb

(
a

|rij|

)3

, (2.5)

γcrit = 2−6 = 0.015625 is a fixed parameter, m̄ is the average mass of the N-body
system and mb is the mass of the binary system.

At the end of this selection, we could have one or multiple systems of stars that need
to be integrated with the ARChain algorithm, those systems will be called regularized
systems in the rest of this thesis. Inside tsunami the stars will be shifted in the center
of mass reference frame, while in isteddas the center of mass of the regularized system
takes the place of one of those stars and it is evolved with the Hermite integrator, the
other stars become “ghost” particles with m = 0.

It is crucial to identify, and carefully take care of, another set of stars, that is
the perturbers. They will have two roles: they will enter the tsunami integration as
differential external accelerations during the Leapfrog and will be checked to see if new
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stars need to be part of the regularized system. The perturbers are selected among the
nearest bodies for each regularized system using the perturbation parameter defined
above (eq. 2.5):

γ > γpert ,

where γpert = 10−6 is a fixed parameter.
The final part of the decision-making is the termination conditions, that is the

checks that establish whether a star will continue to be integrated using the ARChain
or will go back to the Hermite integrator. For binary systems there is a single condition
to break the regularization:

|rij| > 2Rcl .

In contrast, for multiple stars systems, a particle can exit the regularization if the
following 3 conditions are satisfied:

! [ e < 1 & |rbj| < 10Rcl ] , (2.6)
rbj · vbj > 0 , (2.7)
γ < γcrit , (2.8)

where the symbol & is the logic “and”, and the symbol ! is the logic negation. The
first condition is important for the hierarchical system in which a third body has a
very eccentric and elongated orbit, we want to avoid the body entering and exiting
the regularization at each orbit (see Fig.4.7). The second condition is to ensure that
the body is moving away from the harder binary, while the third condition is, again, a
threshold on the perturbation parameter. After the termination, the exiting stars will
regain their mass in isteddas and, if the regularized system survives, the center of
mass coordinate is updated accordingly.

2.1.2 Time synchronization with the block time-step method

The block time-steps method (see Section 1.2) is a powerful addition to isteddas,
as it significantly increase the performance of the code without losing accuracy. The
centers of mass of the regularized systems are always considered without neighbours in
isteddas (rneigh = 0), therefore they have always single time-step (∆far). When the
center of mass does a step in isteddas, the regularized system relative to the center
of mass is integrated simultaneously in tsunami on the same time-step. However, the
tsunami works with the regularized time coordinate, which is not quantized as the
time step of the centre of mass and is related to physical time through the integral
equation ds = Udt, where ds and dt are the regularized and physical time steps and
U is the gravitational potential energy. Thus, synchronizing the integration time of
the regularized system and that of the associated centre of mass results in potential
time-synchronization errors. To fix this issue, I implemented the following strategy:
the ARChain integrator stops right after the physical time step that overpasses the
centre of mass step, and the initial quantities of this last step are used to re-initialize
the integrator that will run again for the remaining amount of time using a normal
Leapfrog (ds = dt). In this way, the last piece of time before the synchronization with
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isteddas is done without regularization (the algorithm can not change the time-step),
and the ARChain ends the integration exactly at the desired time. However, using
this method results, sometimes, in a slightly wrong computation of the orbits in the
final step, especially when the regularized system is very tight or very eccentric, and
this, after a long integration, accumulates a lot of errors on the energy of the system.
Therefore, I implement another strategy to solve the synchronization problem without
losing precision: as before, the ARChain integrator stops right after the step that
overpasses the desired time, and the initial quantities of this last step are used to re-
initialize the integrator that will run again for the remaining amount of time but forcing
the time-step to be roughly an order on magnitude smaller than the one computed by
the integrator. If the desired final time is surpassed without reaching the desired
precision, the previous step is retrieved and the timestep is decreased again. I keep
adjusting these final time-steps to reach the convergence at the isteddas time-step
within a certain small threshold. This strategy does not take more time with respect
to the other described strategy and completely solves the synchronization problem
without losing the accuracy of the ARChain integrator.

2.1.3 Parallelization

tsunami runs on CPU and, in order to speed it up, I parallelize it using OpenMP,
however, it is important to stress that also the ANN library is running in parallel
using OpenMP. Thus, I use the OpenMP tasks: the entire isteddas loop is run by
the master thread of OpenMP on each node, then, when the simulation needs a tree-
search, or to integrate a system in tsunami, a task is open by the master thread, that
spawns the needed amount of threads to parallelize the operation. Using an OpenMP
task is a good strategy since the master thread can go on in the simulation while the
spawned threads keep working in parallel. Thus, even if both the two operations are
needed, the two different tasks will spawn different threads to run them in parallel with
each other. While the ANN library must do its search before the new computation of
forces, and so it needs a barrier before the forces-evaluation kernel on GPU, tsunami
is free to run independently from isteddas. Because of this, the tsunami threads do
not need any barrier and can run asynchronously with the GPU for multiple isteddas
steps until their next synchronization with the isteddas time-step, which can happen,
borderline, after a single step of isteddas. Each thread of tsunami will run one
regularized systems, or multiple if they are too many to evolve. Since each system will
have its own time-step in isteddas, the entire OpenMP task will synchronize with
isteddas when the regularized system with the faster time-step will be synchronized
with the isteddas time-step.
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Chapter 3

The population-synthesis code sevn

In an N-body code, the evolution of single and binary stars can be implemented
following different approaches. A possible strategy is to use a stellar evolution code
(e.g., parsec [7, 9–11, 23, 26]) to evolve stars every time that is needed, but this is
a very slow approach because stellar evolution codes are very sophisticated and need
to integrate the equations for the internal structure of stars, at each step. Another
strategy is to use fitting formulas for all the stellar parameters. This approach is
very fast but the generation of such formulas is very complicated and time-consuming
since, each time a stellar prescription has to be updated, all the formulas must be re-
derived from scratch. Therefore, it would be hard to keep up with the state-of-the-art
stellar evolution prescriptions. In contrast, a look-up table-based population-synthesis
code uses pre-evolved stellar evolution tracks that are provided in the form of look-up
tables, for a grid of masses and metallicities, which are read and interpolated on the fly.
This strategy has two crucial advantages: it is computationally very fast, and users
can easily switch to a different set of look-up tables, thus investigating the impact
of different stellar evolution prescriptions is possible without changing any lines in
the code. isteddas is designed to be interfaced with the sevn population-synthesis
code. In this chapter, I will give an overview of the strategies adopted in our code to
implement single and binary stellar evolutionary processes. Moreover, I will describe
sevn following [13].

3.1 Coupling isteddas and sevn

sevn can work as a stand-alone code (for fast population synthesis studies in the
field) or can be linked to an N-body code, without having performance penalties. Our
dynamical evolution code isteddas is coupled with the new population-synthesis code
sevn.

There are only three quantities that have to be communicated between the two
codes, for each star: mass, radius, and the stellar evolution time-step. The radius is
important to check whether two stars collide/merge or they are only passing close to
each other. The new masses are needed by isteddas to correctly compute the new
accelerations. The evolution time-step is needed to synchronize the evolution of the

23



3 The population-synthesis code sevn

stars with the block time-steps method in isteddas.
An aspect that is worth mentioning is that sevn lacks the evolutionary tables for

low-mass stars (mass ≲ 2M⊙). Such low-mass tracks will be included in an upcoming
version of the sevn code (Spera, M., private communication). Therefore, for now,
in isteddas we select and evolve only the stars with a mass larger than a certain
threshold (default at 3M⊙, for safety). The other stars will be considered as non-
evolving point-mass stars. This is an acceptable approximation considering that the
isteddas code is still under development and for preliminary tests, we do not evolve
star clusters for more than a few hundred of Myrs.

3.1.1 Single star evolution

The selected single stars are evolved by sevn, which will adjust the evolutionary
time-step according to its own algorithms, for multiple time steps until the mass has
changed beyond a certain percentage threshold (by default we choose 2%). For each
time step, the mass of the stars in isteddas is evolved through a linear interpolation
between the initial and the final mass of the stars. This is done during the predictor
step. To perform such interpolation on GPU we communicate two quantities: the
angular coefficient (am) and the intercept (bm) of the line (m(t) = amt+ bm), that is:

am = ṁ =
dm

dt
=

m(t1)−m(t0)

t1 − t0
,

bm = m(t0)− amt0 ,

where for t0 and t1 we consider the initial and final time of the total step performed
by sevn. In Fig.3.1 I show the evolution of an example star born with ∼ 61M⊙ and
Z = 0.002Z⊙ on the ZAMS. The comparison between sevn and the sevn module
in isteddas are perfectly superposed, since they correctly use the same algorithms
to evolve stars, while the interpolation made on GPU slightly differs from them, as
expected. I also plotted the evolution of the core masses, the radius, and the luminosity,
to show a complete picture of the star’s evolution.

Using sevn, the mass of stars is no longer a constant, it changes because of the var-
ious mechanisms involved in the stellar evolution, therefore we modified the equations
for the derivatives of the acceleration used in isteddas (Eqs.1.5,1.6,1.34) to consider
the variation of the star’s masses. In this way, all the stars can feel the mass changes
of other stars in the cluster by adjusting their dynamical time-step in isteddas, see
Eq.1.9. Moreover, it is crucial to modify the derivatives of the acceleration to stabilize
the dynamical integrator, in fact, without this correction, the high derivatives tend to
accumulate errors until the simulation becomes unstable. The new acceleration of a
single star (see Eq.1.4) is:

ai =
N∑
j ̸=i

mj

|rij|3
rij =

N∑
j ̸=i

mjQij , (3.1)
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3.1 Coupling isteddas and sevn

0 1 2 3 4
t [Myr]

50

52

54

56

58

60

M
as

s [
M

]
ISTEDDAS-SEVN Comparison

ISTEDDAS GPU interpolation
SEVN
SEVN in ISTEDDAS
He burning
CO burning
Supernova
Black Hole

3.4 3.5 3.6 3.7 3.8
t [Myr]

0

10

20

30

40

50

60

M
as

s [
M

]

SEVN, Masses

MTOT

MHe

MCO

He burning
CO burning
Supernova
Black Hole

3.4 3.5 3.6 3.7 3.8
t [Myr]

0

200

400

600

800

1000

1200

Ra
di

us
 [R

]

SEVN, Radius

Radius
He burning
CO burning
Supernova
Black Hole

3.4 3.5 3.6 3.7 3.8
t [Myr]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lu
m

in
oi

ty
 [L

]
1e6 SEVN, Luminosity

Luminosity
He burning
CO burning
Supernova
Black Hole

Figure 3.1: The plots in this figure are referred to the evolution of a star born with ∼ 61M⊙
and Z = 0.002Z⊙. In the top-left panel, I show the comparison between the mass
evolution over time simulated in sevn (red), in the sevn module in isteddas
(green), and its GPU interpolation in the isteddas integrator (blue). In the top-
right panel, I show the total mass evolution (blue), and the mass evolution of the
Helium core (red) and the Carbon-Oxygen core (green). In the bottom-left and
bottom-right panels, I show the evolution of the radius and the luminosity of the
star respectively. In the last three plots, I zoomed on the last moment of the life of
the star. In all the plots, the four colored stars represent the important moments
in the star’s evolution: the starting of the Helium burning phase (fuchsia), the
starting of the Carbon-Oxygen burning phase (cyan), the supernova (orange), and
the formation of the black hole (black).
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3 The population-synthesis code sevn

where Qij contains all the terms but the mass, and we have assumed the gravitational
constant G = 1. In this way, the derivatives become:

ȧi =
N∑
j ̸=i

mjQ̇ij −→ ȧi =
N∑
j ̸=i

mjQ̇ij + ṁjQij ,

äi =
N∑
j ̸=i

mjQ̈ij −→ äi =
N∑
j ̸=i

mjQ̈ij + 2ṁjQ̇ij ,

...
a i =

N∑
j ̸=i

mj

...
Qij −→ ...

a i =
N∑
j ̸=i

mj

...
Qij + 3ṁjQ̈ij ,

where ṁ corresponds to the angular coefficient am, and all the successive derivatives
of the mass are zero since we interpolate it linearly. The extra terms on the right are
not computationally expensive since we already compute them: in ȧi we need ṁjQij,
but Qij it has already been computed for ai, in äi we need 2ṁjQ̇ij, but Q̇ij it has
already been computed for ȧi, and in ...

a i we need 3ṁjQ̈ij, but Q̈ij it has already been
computed for äi.

[MS#1: Quello che segue non si capisce davvero.. per favore, rifrasa tutto in modo
che si capisca qualcosa.. da qui fino a “Then the neighbours of this star follow its time-
step with the algorithm explained before.”][MM#1: L’ho rimesso, anche aiutandomii
con chatgpt, mi sembra più chiaro adesso.] These adjustments aim to anticipate mass
changes among stars in the cluster, yet they don’t entirely resolve the issue. When
a star, labeled isteddas, progresses to evolve within sevn (tist ≥ tsevn,i), inactive
stars at that point won’t immediately sense the ṁ change until they become active.
Consequently, their time-steps will be updated too late. To tackle this, synchronizing
the entire cluster each time a single star desires to evolve in sevn was considered.
However, this approach would impose a substantial computational burden and negate
the advantages of the block time-step method. Hence, we opted to synchronize only
the neighboring stars, identified through the Ahmad-Cohen scheme, of the evolving
star.

To achieve this, we verify in advance whether star i intends to evolve with sevn
based on the condition:

tist +∆tc ≥ tsevn,i , (3.2)

where ∆tc represents the time-step relative to the star’s neighbors. If this condition
holds true, we proceed to evolve the star in sevn and, in the subsequent step, designate
all its neighbors as active particles artificially. This adjustment allows them to adapt
their time-steps according to the newly computed accelerations and derivatives based
on the updated ṁ. Importantly, this artificial activation doesn’t disrupt the synchro-
nization of the block time-step method. As the star is placed within the same active
block as the evolving star, the method remains reliable even if the actual time-step
executed by the star doesn’t align as a power of 2. In instances where a star is among
the neighbors of multiple evolving stars, its block in the subsequent step will be set to
the largest (or smallest time-step) among the blocks of the involved evolving stars.
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3.1 Coupling isteddas and sevn

Additionally, there’s another issue concerning the time-step that must be addressed.
In cases where the sevn evolution involves one or multiple exceedingly small steps, the
dynamical time-step of a star might be large enough to bypass these steps, resulting
in the loss of information regarding the changing ṁ. Consequently, if the dynamical
steps of a star meet this condition, we constrain it to not skip over more than a single
sevn step. Subsequently, the neighboring stars follow its time-step using the previously
outlined algorithm.

At the end of star evolution, massive stars can have different fates: become a
neutron star or a black hole after a supernova explosion, or they disintegrate because
of the PISN mechanism. In the first case, we stop the evolution of the mass, assigning
the final mass of the remnant, and we add to the corrected velocity of the body the kick
velocity due to the supernova explosion. In the second case, the star is simply removed
from the N-body system. Since the kick velocity can be much higher then the escape
velocity of the simulated star cluster, those stars who receive a strong kick will become
“super-fast stars”. Since these stars have not reached such high speeds gradually because
of accelerations, but instead, their speeds were instantaneously increased because of the
supernova kick, their neighbours will not be able to adapt their time steps accordingly.
Therefore, after a supernova kick, we checked the velocity of the newborn remnant, if
it is higher than the escape velocity of the cluster we force its neighbours to have an
equal or smaller time-step with respect to the considered star. This is achieved in the
exact same way as was already explained for the synchronization of the sevn steps
and the isteddas steps.

3.1.2 Binary star evolution

As for the single star evolution, binary stars are also evolved in sevn only if both
stars have greater masses than the chosen threshold. If, instead, only one of the two
stars has a greater mass with respect to the threshold, that star will evolve as a single
star in sevn.

When isteddas detects a binary that is tight enough to be integrated with tsunami
(see the explanation on the decision making in Subsec.2.1.1), if both the stars have
masses greater with respect to the threshold and the system is gravitationally bound,
a binary is created in sevn. It has already been explained that the time steps in sevn
are adaptive, and that we do not evolve stars one step at a time: the stars keep evolving
until their mass has changed beyond a certain percentage threshold. Thus, because of
the nature of the time steps, creating a binary in sevn is not an easy task. First of
all, it is necessary to synchronize the two stars, to do so, for each evolving star, we
create two of them to track both the actual and the last state of the stars. In this way,
when a binary is created, we can bring back the two involved stars to their last state,
and evolve them again until the exact moment of the binary creation. In particular,
we evolve the stars until they overpass that moment for one step, then we restore their
state and redo the very last step with the needed time step (using a specific function
of sevn to impose a time step). Therefore, at the creation of the binary, the two stars
have the same age in sevn, isteddas, and tsunami, as it is supposed to be.
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3 The population-synthesis code sevn

The selected binaries are evolved by sevn for multiple time steps until either one
of the two masses, the eccentricity, or the semi-major axis of the system has changed
beyond a certain percentage threshold (by default we choose 2%). Then, the inner
dynamics of the binary is evolved with tsunami while the dynamics of its center of
mass is evolved, along with the rest of the star cluster, by isteddas. Because of the
binary evolution, the masses of the two stars change over time, so isteddas interpolates
the total mass of the system in the same way as it was for the single stellar evolution.
However, we can not use the same approach with tsunami due to the way its algorithm
works: it uses the relative error of the energy of the system to adjust its internal time
step, however, by interpolating the masses, we cannot preserve the conservation of
energy and the algorithm will not be able to compute the regularized time steps. In the
worst-case scenario, the Bulirsch-Stoer algorithm will not be able to converge, blocking
the whole simulation. In order to avoid this problem, we wait for the binary system
to be synchronized in sevn and tsunami, then we communicate the changed masses
from sevn to tsunami. The time synchronization between sevn binary evolution and
tsunami dynamical evolution is achieved in the way of the synchronization of two
single stars before the creation of the binary. Thus, for each binary, we have two copies
of it to track both the actual and the last state of the binary stars. When the binary
feels that, on the next step, the dynamical evolution will overpass its evolution time,
the binary is reset to its last state and re-evolved to the exact time when tsunami
will arrive with its own time step. We also implement another check in tsunami:
whether the eccentricity or the semi-major axis of the system has changed beyond a
certain percentage threshold (on default we choose 10%), tsunami will ask for a time
synchronization with sevn in advance with respect to the time set by sevn; this also
happens if tsunami decides to terminate the binary. Somebody could notice that using
this method we evolve every binary star two times, however, this will never become a
computational bottleneck since sevn is orders of magnitudes faster than the dynamical
integrators of isteddas and tsunami.

When, in the next step, the binary is perfectly synchronized in sevn and tsunami,
it will be possible to coherently communicate between the two codes. sevn has to com-
municate to tsunami the new masses of the two stars, and the new orbital parameters,
that are the semi-major axis and the eccentricity (the evolution of binaries can change
these parameters because of the exchange of mass in the system), and simultaneously,
tsunami has to communicate to sevn its own new orbital parameters. The fact
that the orbital parameters are influenced simultaneously by the dynamics and the bi-
nary stellar evolution, complicates this otherwise trivial communication. What would
physically happen in reality is that the orbital parameters would continuously vary
because of both the contributions happening simultaneously, however, in our case, we
will approximate this behavior by combining the two contributions every time that a
synchronization happens. This is the very reason why we use those thresholds to stop
the codes and synchronize them, to combine the orbital parameters in the smoothest
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3.1 Coupling isteddas and sevn

way possible. The orbital parameter combination is:

a1 = a0 + dasevn + datsunami ,

e1 = e0 + desevn + detsunami ,

where a1 and e1 are the new combined semi-major axis and eccentricity respectively,
a0 and e0 are the previous ones, which is the same for both the codes because of the
previous synchronization, and finally da and de are the contributions from sevn and
tsunami for the actual step and are computed as the difference between the values at
the end of the step minus the values at the end :

dasevn = a1,sevn − a0,sevn ,

desevn = e1,sevn − e0,sevn ,

datsunami = a1,tsunami − a0,tsunami ,

detsunami = a1,tsunami − a0,tsunami .

At this point tsunami has the new orbital parameters and communicates them to
sevn that updates the old ones. However, since tsunami use Cartesian coordinates to
integrate systems, we have to translate these new orbital parameters into new positions
and velocities for the two bodies. The starting point is for tsunami to compute
datsunami and detsunami, to do it we switch from Cartesian coordinates, that are positions
and velocities (x, y, z, vx, vy, vz), to Keplerian coordinates, that are 6 orbital parameters:
eccentricity (e), semi-major axis (a), inclination (i), longitude of the ascending node
(Ω), argument of periapsis (ω) and true anomaly (ν). Then, using the new eccentricity
and semi-major axis but maintaining fixed the old i, Ω, ω and ν, we pass again to
Cartesian coordinates finding the relative positions of the two stars. Since sevn does
not give any information about the phase of the two bodies in their orbits, we do not
have any way of retrieving those four angles, thus keeping the old ones from tsunami
is the only way to return to Cartesian coordinates.

Moreover, during this operation, we fix the position of the center of mass of the
binary, that is like hypothesizing that the binary system loses mass isotopically, and
we recompute positions and velocities of the two bodies with respect to the center of
mass. To do so we use the following equations:

rCOM =
r1m1 + r2m2

m1 +m2

, (3.3)

vCOM =
v1m1 + v2m2

m1 +m2

, (3.4)

r12 = r2 − r1 , (3.5)
v12 = v2 − v1 , (3.6)
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to obtain the final result:

r1 = rCOM − r12
m2

m1 +m2

, (3.7)

r2 = rCOM + r12
m1

m1 +m2

, (3.8)

v1 = vCOM − v12
m2

m1 +m2

, (3.9)

v2 = vCOM + v12
m1

m1 +m2

. (3.10)

Finally, if the regularized system has more than 2 bodies, tsunami shifts the total
center of mass of the system to zero to be consistent.

3.1.3 Energy conserving scheme

isteddas implements the Hermite 6th order integrator, which is an energy-conserving
scheme, therefore we expect the total energy of the simulation to be conserved over
time, except for the accumulation of numerical errors. On default, the total energy of
the star cluster energy is computed considering point-mass stars with constant masses:

E = K + U =
1

2

N∑
i=0

(
mi|vi|2 −

N∑
j ̸=i

mimj

|rij|

)
, (3.11)

here the potential energy U is divided by 2 because we are computing twice all the
couples (i, j) of stars, and we have assumed the gravitational constant G = 1. It
is crucial for an N-body code to conserve the total energy because the check on the
relative error of the energy:

∆E

E(t0)
=

E(t)− E(t0)

E(t0)
= 0 , (3.12)

is a powerful tool to check whether the simulation has any numerical or algorithmic
errors.

The addition of stellar evolution with sevn breaks the conservation of energy be-
cause of the multiple stellar evolution processes simulated that continuously decrease
the mass of the evolving stars. Because of the mass losses, it is impossible to conserve
the total energy of the system computing it as above. Therefore, to be able to conserve
the energy, we re-inject the energy of the lost mass using ṁ. Theoretically, if the mass
is constant the time derivative of the total energy would be always zero, in this case,
with a varying mass, we would have instead:

Ė =
1

2

N∑
i=0

(
ṁi|vi|2 −

N∑
j ̸=i

ṁimj +miṁj

|rij|

)
, (3.13)

or, more simply:

Ė =
N∑
i=0

(
1

2
ṁi|vi|2 −

N∑
j ̸=i

ṁimj

|rij|

)
. (3.14)
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All the derivatives which do not involve ṁ cancel each other out because, as mentioned
before, if the mass is constant Ė = 0. Thus, for each i star of the system, we integrate
in time the lost energy:

Elost,i =

∫ t

0

Ėidt . (3.15)

To numerically compute it, at each distant step and for each star, we accumulate Ėi∆tf .
At this point, we have retrieved the conservation of the energy as:

∆E

E(t0)
=

E(t)− E(t0)− Elost

E(t0)
= 0 , (3.16)

where Elost is the summation of Elost,i on all the evolving stars of the system.
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Chapter 4

Numerical tests

In this chapter, I am going to show the preliminary results from the code. In
particular, I will show the benchmark of the N-body code isteddas,

4.1 isteddas tests
The benchmarks in this section are done on the new CINECA supercomputer

Leonardo1, that today is the fourth most powerful supercomputer in the world ac-
cordingly to the TOP500 list2. In Table 4.1 there are the specifics of the GPU nodes
of Leonardo.

CPU : Intel(R) Xeon(R) Platinum 8358 2.60GHz (32 cores, 1 thread per core)
RAM : 512 (8× 64) GB DDR4 3200 MHz
GPU : 4 NVIDIA Ampere 100
GRAM : 256 (4× 64) GB HBM2
Network : NVIDIA Mellanox HDR DragonFly++ 200Gb/s

Table 4.1: Leonardo’s nodes specifics. See [30] for further details about Leonardo’s architec-
ture.

I will use a maximum of 2 nodes with 4 parallel GPUs each for the scaling tests,
therefore 8 GPUs at maximum. In particular I will run scaling tests on 1, 2, 4 and
8 GPUs for star clusters with 2048 (211), 4096 (212), 8192 (213), 16384 (214), 32768
(215), 65536 (216), 131072 (217), and 262144 (218) stars (as shown in Table 4.2). The
star clusters are generated using the McLuster3 code [16]. All these clusters have a
King density profile with W0 = 5 (dimensionless parameter which specifies the model
concentration), a half-mass radius of 2 pc, a velocity dispersion of σ = 1.3127 km/s,
they are at the virial equilibrium, and their initial mass function follows the Kroupa

1Check the link https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.4%3A+Leonardo+UserGuide
for extra details about Leonardo.

2TOP500 June 2023 link: https://www.top500.org/lists/top500/2023/06/
3The code is public and available here: https://github.com/ahwkuepper/mcluster.
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4.1 isteddas tests

IMF within the range of star’s masses 0.1M⊙ < M∗ < 150M⊙. Moreover, these clusters
do not have binary stars, tidal field, mass segregation, or fractality. All the simulations
reach a total time of 10 in code units, check Table 4.2 to see how many Myr this
corresponds for each simulation.

Nstars Mtot [M⊙] ρ [M⊙/pc3] trelax [Myr] Ttot [Myr] τ%

2048 (211) 1322.4 57.37 109.71 4.11 3.75%
4096 (212) 2597.9 77.53 82.65 2.93 3.54%
8192 (213) 5165.0 154.13 41.82 2.08 4.97%
16384 (214) 10398.5 310.31 20.63 1.46 7.07%
32768 (215) 20429.9 609.66 10.69 1.04 9.73%
65536 (216) 41664.7 1243.34 5.14 0.73 14.20%
131072 (217) 83983.8 2506.21 2.53 0.52 20.55%
262144 (218) 169716.0 5064.59 1.24 0.36 29.04%

Table 4.2: List of simulations made for the scaling tests of isteddas. It contains: the total
number of stars, the total mass (in M⊙), the two-body relaxation timescale (in
Myr), the total simulated time (in Myr), and the total simulated time as a per-
centage of the relaxation time: τ% = Ttot/trelax · 100.

First of all, in Fig.4.1 I show the relative error on the total energy of the cluster
(see Eq.3.12): note how well the energy conservation is maintained by the Hermite 6th

order integrator for all the simulations made for the scaling tests. From the plot, one
could think that the bigger the number of stars, the faster the error grows. In reality,
the rate at which the error grows depends on how many trelax were simulated. So,
the total simulated time as a percentage of the relaxation time (τ% = Ttot/trelax · 100,
see Table 4.2) tells us that higher the number of particles higher τ%, and so faster the
error grows (for the specifically chosen settings of these simulations). In theory, in a
set of simulations with settings chosen ad hoc to have τ% equal in all the simulations,
we would see a similar error plot for all the cases. [MS#2: Perche dici che questa cosa
e’ expected? Secondo me non e’ expected a parita’ di tempi di crossing... per esempio,
su 10 tempi di crossing mi aspetto conservazioni di energia simili, solo che 10 tempi
di crossing per un sistema piccolo sono pochi Myr, mentre su un sistema grande sono
olti Myr.. quindi, paradossalmente, a parita’ di Myr integrati, mi aspetto che l’errore
sia migliore per i clusters con piu’ particelle... per favore spiega meglio qui cosa sta
succedendo...]. However, the error is always maintained quite low (maximum ∼ 10−5),
and it is consistent among the simulations with different numbers of GPUs, proving
the correctness of the multi-GPU implementation.

In Fig.4.2 and Fig.4.3 I show the results of the scaling tests on a single node.
In particular, in Fig.4.2 I show the larger contributions to the total running time
of the simulations: the ANN tree contribution (see the subsection 1.4.3), the MPI
contribution, the computation of the forces due to far stars (afar,new in Section 1.3),
and the contribution from the searching algorithm that determines which stars need
to be integrated for each step. Since the ANN tree contribution is the larger one, I
also show its two main internal contributions: The tree construction, and the search
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Figure 4.1: Relative error on the total energy of the system (see Eq.3.12) versus the time in
code units for each scaling test simulation. For each simulation multiple lines are
shown, one for each number of GPUs used (1,2,4, and 8), they have the same style
and color since they superpose almost perfectly, as expected.

for neighbours, which is the most computationally expensive operation in the code.
Instead, in Fig.4.3 I show less important contributions together with the total running
time for reference: the computation of the forces due to far stars, close stars, and the
contribution from the old neighbours (respectively afar,new, aclose,new, and aclose,old in
Section 1.3), the contributions from the predictor and the corrector, the contribution
from updating the time-steps of all the stars at each step, and the contribution from
the memory transfers between CPUs and GPUs. In Fig.4.4 I show the scaling of the
far forces kernel alone. In order to highlight how it performs, I plot the running time
with a single GPU with the running time for other cases. The computation of the
forces was the bottleneck in N-body codes for decades, therefore we optimize it as
much as possible, obtaining a remarkable result. The cases with few stars do not scale
well, as expected, since a single GPU can already handle that number of stars, and
dividing the work just introduces extra operations: memory transfers, reductions, and
gatherings. However, from 32768, stars the scaling on a single node becomes perfect,
while on multiple nodes at least 65536 stars are needed to improve the performance. In
Fig.4.5 I show the results of the scaling tests on two nodes: simulation characteristics
are the same as in Fig.4.2, except for the fact I show just the two cases with more stars
(131072 and 262144). From the plots, it is clear that the MPI implementation slows
down isteddas too much, making it even worse than running the code on a single
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node.
The reason behind this behavior is that the far forces kernel is the only part of

the code that can scale with an increasing number of GPUs. isteddas was designed
in this way because that was the main bottleneck for N-body codes. Clearly from all
the scaling tests that I have shown, the actual bottleneck of the code is the ANN tree
and the MPI implementation, and both of these bottlenecks can be solved. For the
tree, as I extensively discussed in Section 1.4.3, the solution would be to switch to
another library, in particular, we could use FLANN, which already runs on GPU and
can scale on multiple GPUs.Another possible solution would be to think about a new
algorithm to further reduce the number of tree constructions within each macro step,
but this is beyond the scope of this thesis. For MPI, the solution would be to exploit
the new technology in the new GPU supercomputers. For example, each node of the
CINECA’s supercomputer Leonardo is provided with a new NVIDIA Mellanox HDR
Dragonfly++ network card that enables direct communication between GPUs from
different nodes, and provides some preliminary calculations when needed, in order to
speed up communications even more (for example if a reduction operation is called
in the code). Moreover, the communication between GPUs on the same nodes can
avoid passing through the CPU because of the InfiniBand connections between GPUs.
Nowadays, almost all the most powerful supercomputers in the world are provided with
GPUs and use a similar technology to speed up communications among accelerators.
Among them, Frontier4 and LUMI5 (that use AMD GPUs) or Leonardo6, Summit7,
and Sierra8 (that use NVIDIA GPUs). Clearly, this technology represents the future
of GPU computation. In order to use such technology one could use the CUDA-Aware
MPI (for NVIDIA hardware), which is an implementation of MPI that can exploit
the new connections between GPUs, or one could use NCCL, an NVIDIA library for
communication that underneath uses CUDA-Aware MPI. These optimizations will be
done in future works related to the development of isteddas.

4First position in the TOP500, website: https://www.olcf.ornl.gov/frontier/
5Third position in the TOP500, website: https://www.lumi-supercomputer.eu/
6Fourth position in the TOP500, website: https://leonardo-supercomputer.cineca.eu/it/home-it/
7Fifth position in the TOP500, website: https://www.olcf.ornl.gov/olcf-resources/compute-

systems/summit/
8Sixth position in the TOP500, website: https://hpc.llnl.gov/hardware/compute-platforms/sierra
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Figure 4.2: Scaling tests of isteddas. In each panel, it is shown, for a certain total number
of stars N , the measured times versus the number of used GPUs (NGPU ). The
six most important timings are shown together with the total time (“TOT” in
blue): the MPI contribution (“MPI” in red), the ANN tree contribution (“ANN”
in green), the tree construction and tree search contributions to ANN (“ANN-
tree” in yellow, and “ANN-search” in purple), the contribution of the far forces
computation (“I-forces” in grey), and the search for new active stars contribution
(“active_stars” in cyan).
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Figure 4.3: Scaling tests of isteddas. In each panel, it is shown, for a certain total number of
stars N , the measured times versus the number of used GPUs (NGPU ). The seven
important but less costly timings are shown together with the total time (“TOT”
in blue): the contribution of the far, near, and previous near forces computations
(“I-forces” in red, “N-forces” in green, and “oldI-forces” in yellow), the predic-
tor contribution (“predictor” in purple), the corrector contribution (“corrector” in
grey), the contribution for updating the time-steps (“update_Dt” in cyan), and
the memory transfer between CPUs and GPUs contribution (“memory” in black).
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lines show the scaling of the far forces computation kernel for each simulation.
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Figure 4.5: Scaling tests of isteddas. Same plot type of Fig.4.2. In this case with the “8
GPUS” entry on the x-axis and just for the two more expensive simulations (N
equal to 217 and 218).
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4.2 tsunami tests
The following tests are made on a laptop, its specifications are in Table 1.1. For

Fig.4.6 two simulations were done, both of them on the same star cluster with 2048 stars
and one tight binary system. The two simulations run for the same amount of time on
my laptop (5 minutes). The one with isteddas alone was able to evolve the star cluster
for just ∼ 1400 years. During the simulation, the error keeps increasing almost linearly
(red and red dashed lines), this is due to the vicinity of the two stars in the binary:
the Hermite 6th order integrator is a powerful tool but is not symplectic and cannot
integrate correctly such a tight binary system. Moreover, the block time-step method
(see Section 1.2) assigns the smallest possible time-step to the system because of the
enormous acceleration and its derivatives involved (see Eq.1.9). As a consequence,
the simulation takes so many steps to progress that the numerical error accumulation
becomes an important contribution to the total energy error of the simulation. Thus,
isteddas alone gets “stuck” accumulating numerical errors in simulation with tight
binaries, in this case even a tiny star cluster, as the one in this example, could become
challenging to simulate. Instead, the simulation with tsunami was able to evolve
the star cluster for ∼ 40000 years keeping the relative error on the energy of the star
cluster stable under 10−7 (blue dashed line), since the binary was correctly integrated
with the ARC integrator with a minimal error accumulation (green dotted line). This
plot demonstrates the importance of using two distinct integrators for direct N-body
simulation of star clusters: one to take care of long-range interactions and one to take
care of tight systems such as binary stars, hierarchical systems, and close encounters.

In Fig.4.7 and Fig.4.8 two examples of hierarchical systems are shown, an unstable
one and a stable one respectively. Both of them have three levels of zoom, in order to
show both the motion of the overall system and the specific motion of the tight binaries.
In both the plot the real movement of stars in the combination isteddas+tsunami
came out: tsunami integrates the internal motion of the system (binary stars or
hierarchical system), while isteddas integrates the motion of its center of mass in the
cluster. Therefore, when plotting the orbits, a “twitchy” movement came out, where
the orbits do not evolve smoothly together with the center of mass, they evolve for
the amount of time of the next isteddas step but fixed in the previous center of
mass coordinates. Moreover, in Fig.4.7, one can also see how the decision-making (in
particulate the condition in Eq.2.6) keeps this system in tsunami even when the third
body and the inner binary are very far at their apoastron. This is necessary until the
three bodies are in a bound configuration with a very tight periastron in order to avoid
the system going in and out from tsunami at each orbit.
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Figure 4.6: Simulation of a star cluster with 2048 stars and a single binary made with isted-
das alone using just thee Hermite 6th order integrator, and then made with isted-
das+tsunami, using the ARC integrator for the binary. The top panel shows the
relative error of the energy of the star cluster versus the time in years. In red is
shown the error for the simulation with isteddas alone, and the red dashed line
shows the projection of the error. In blue is shown the error for the simulation
where the binary is integrated by tsunami, and in green is shown the error of
the ARC integrator (tsunami) on the binary alone. The bottom panel shows, in
the x-z plane (in astronomic units), the evolution of the orbit of the binary. The
coordinates are re-centered in the center of mass of the binary in order to show
its stability in 413455 years of evolution.
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Figure 4.7: Example of the evolution of a hierarchical system in an unstable configuration.
The following plots are in the x-y plane (in astronomic units) where the position
(0,0) is the center of mass of the star clusters. The inner binary is formed by
two stars with masses 0.47M⊙ (blue) and 0.28M⊙ (red), and the third body has
a mass of 0.19M⊙ (green). The top-left panel shows the entire evolution of the
system for 52986 years, from its beginning to its disruption. The top-right panel
is a zoom of the yellow square in the first panel, it shows the orbits in the initial
part of the evolution. The bottom panel is a zoom of the yellow square in the
second panel, it shows the orbit of the inner binary, which is so tight is not visible
in the other two plots.
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Figure 4.8: Example of the evolution of a hierarchical system in a stable configuration. The
following plots are in the x-y plane (in astronomic units) where the position (0,0)
is the center of mass of the star clusters. The inner binary is formed by two stars
with masses 0.47M⊙ (blue) and 0.28M⊙ (red), and the third body has a mass of
0.19M⊙ (green). The top-left panel shows the entire evolution of the system for
23113 years. The top-right panel is a zoom of the yellow square in the first panel,
and the bottom panel is a zoom of the yellow square in the second panel, it shows
the orbit of the inner binary, which is so tight is not visible in the other two plots.
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Conclusions

In this thesis work, I presented the strategies in place to develop isteddas, a new
direct N-body code written in C++ and CUDA, that is designed to run natively on
GPUs (proven to be much more proficient than CPUs in handling highly parallelizable
problems) and that uses a combination of a high-order integrator (Hermite 6th order)
with block time-step and the Ahmad-Cohen neighbours scheme to significantly speed
up high-accuracy N-body simulations.

Direct N-body simulations of star clusters still struggle to resolve small-scale binary
interactions while simulating large systems simultaneously. Achieving high resolution
in areas where binary interactions occur is computationally demanding and often lim-
its the size of the simulated cluster or the number of particles that can be realistically
tracked. Some codes avoid a direct N-body approach to solve this computational
problem (e.g. using tree-based codes) and, although the statistical properties of star
clusters are reproduced correctly, they do not compute precisely the trajectories of
stars, overall losing precision. On top of this, most N-body codes are coupled with out-
dated population-synthesis codes to evolve stars. These population-synthesis codes are
difficult to update with the recent prescriptions for single and binary stellar evolution.

isteddas is expected to overcome the shortcomings of current stat-of-the-art N-
body codes.

isteddas can accurately integrate very tight binaries, strong gravitational interac-
tions, and hierarchical few-body systems thanks to the coupling with the state-of-the-
art code tsunami, which implements the Algorithmic Regularization Chain combined
with the Bulirsch-Stoer method. This allows us to resolve all the spans of spatial
and temporal scales of star clusters and to investigate the formation and evolution of
compact-object binaries (i.e., the progenitors of the gravitational-wave events observed
by the LIGO-Virgo-KAGRA collaboration) with high accuracy.

isteddas has also been coupled with the population synthesis code sevn, a new,
up-to-date population-synthesis code based on look-up tables, that takes care of the
evolution of both single and binary stars. Because of the use of look-up tables, updating
sevn does not require much effort and this makes it the perfect tool in order to keep
the simulations always updated with the new stellar evolution prescriptions.

At the moment, a preliminary version of isteddas coupled with tsunami and
sevn is already functional, and some results have been presented in this thesis. The
interface isteddas – tsunami supports the dynamical evolution of tight systems and
binaries and the interface isteddas – sevn supports the evolution of single stars. Bi-
nary stellar evolution, which represents the final coupling of all three codes, is currently
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under testing.
From the point of view of the performance, isteddas demonstrates to be very

effective in computing the forces within the star cluster. In fact, while the raw complete
computation of force scales as N2, the kernel that computes forces in isteddas scales
roughly linearly on multiple GPUs (see Fig.4.4). However, the overall performance of
the code is still sub-optimal since all the extra operations made to optimize the forces
computation are still to be fully optimized, especially the ANN-tree part. Optimization
strategies are possible and they are currently under discussion.

tsunami already demonstrates its efficiency in handling tight systems with respect
to the isteddas integrator (see Fig.4.6). In this thesis, we presented some preliminary
results. However, the interface is still under intensive testing: there are still some
peculiar cases in which the decision-making algorithm is sub-optimal.

sevn was the last addition and its interface and it seems to have almost no impact
on the performance of the code since both isteddas and tsunami are significantly
more computationally demanding.

Regarding the future of the code, the plan is to continue developing and optimizing
the interfaces, also implementing the one between tsunami and sevn. We plan to
further optimize the code by implementing a new GPU library for the approximate
nearest-neighbors search algorithm to overcome the current bottleneck of the N-body
integrator, and by implementing the GPU version of tsunami to speed up the parallel
integration of many regularized systems, in order to optimize the code for star clusters
with a high fraction of binary systems. We also plan to implement the possibility of
adding an external potential to the force calculation in order to simulate the interaction
of dense stellar systems with an external tidal field (e.g., host galaxy).

The combination isteddas – tsunami – sevn, once 100% operational, will be able
to help investigate a plethora of different problems related, in general, to star clusters
and galaxies, not only gravitational waves from compact binary coalescences. The code
will be able to accurately simulate all the trajectories in the system, comprehensive of
binary systems and tight hierarchical systems, and to handle the stellar evolution of
single and binary stars with up-to-date stellar prescriptions.

In essence, the code’s ability to efficiently simulate dense stellar systems while con-
sidering both stellar evolution and dynamics in a comprehensive manner is pivotal.
isteddas fills a critical gap, offering a more coherent and precise approach to under-
standing the multifaceted interactions within star clusters, their relation to compact
object binaries and gravitational waves, their galactic context, and their impact on the
evolution of galaxies as a whole.
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