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1 Introduction

Our understanding of generalizations of global symmetries, which capture the quantum
numbers of extended operators in quantum fields [1–5], is undergoing a rapid evolution [6–
90]. Symmetries of quantum fields are understood in terms of subsectors of extended
quasi-topological defect operators whose fusion rules generalize the notion of groups, but
can be characterized, exploiting higher categories, thus producing so-called global cate-
gorical symmetries. In particular, such generalized symmetry defects are not necessarily
invertible [12, 35].

While such non-invertible symmetries in 1 + 1-dimensional QFTs are well known (see
e.g. the discussion in [91]), it is a more recent result that 3+1 dimensional QFTs admit
non-invertible symmetry defects as well [61, 62] (see also [74, 79, 81]). One can formulate
two (pretty much related) strategies to produce such examples. The first builds on a
generalization of the Kramers-Wannier duality defect, and involves finding models with
a self-dual point in their moduli spaces, so that the duality defects become symmetries
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for these systems, but with fusion rules happening to be non-invertible [62, 79, 81]. For
the second, given a theory T with a Z(0)

M × Z(1)
N symmetry with a mixed anomaly, one

constructs a new theory by gauging the Z(1)
N symmetry: the resulting theory has non-

invertible codimension-one symmetry defects, descending from the original symmetry Z(0)
M .

The corresponding fusion rules can be explicitly computed as a result of this construction [61].
This short note is the first in a series, whose purpose is to describe simple applications of
6d (2,0) superconformal field theories (SCFTs) in producing infinitely many examples of
3+1 dimensional theories with non-invertible global categorical symmetries of these kinds.
This is yet another of the many applications of higher-dimensional SCFTs in unravelling
interesting features of lower-dimensional dynamics.

More precisely, our technique can be explained as follows. 6d (2,0) SCFTs compactified
on a Riemann surface Σg (possibly with punctures, suitably chosen and decorated) give
rise to 4d N = 2 SCFTs, whose conformal manifolds are identified with the moduli spaces
of complex structures of Σg; these theories are known in the literature as theories of class
S [92, 93]. In particular, the S-duality group of these models is identified with the mapping
class group of Σg [93]. Since the action of the mapping class group is not free, there are
points which admit a non-trivial stabilizer: the corresponding class S theories have an
enhanced 0-form symmetry provided their global structure is compatible with such an action
— the stabilizer subgroup of the S-duality group becomes an ordinary 0-form symmetry for
the theory corresponding to that point in moduli space. Since S-duality transformations
typically rotate the global structure of the theory of interest, the resulting 0-form symmetry
is expected to have a mixed anomaly with the corresponding 1-form symmetries. One can
explicitly detect these mixed anomalies, exploiting the relative nature of 6d (2,0) SCFTs and
its interplay with the global structure of class S theories [94]. This gives a geometric origin
for a large class of non-invertible symmetries in 4d theories with a mixed anomaly origin.

Whenever the stabilizer subgroup of the S-duality does not respect the global structure,
we can compensate its action via gauging of a subgroup of the one-form symmetry, thus
giving rise to intrinsic Kramers-Wannier duality defects, which do not have a mixed anomaly
origin. In this paper we focus on cases that exhibit a mixed anomaly. In a follow up of this
work we will study the more general case of intrinsic duality defects, building on uplifting
the formalism introduced in [76] to our setup.

The power of the 6d approach is clear from the outset: our results can be obtained
in few lines, starting from the simplest possible examples of class S theories, arising from
the compactification of 6d (2,0) SCFTs of type An−1 on Riemann surfaces Σg of genus g
without punctures. As an example of the power of this method, we showcase an infinity of
theories with non-invertible symmetries of orders M = pk, where p > 1 is a prime number
and k is a positive integer.

The structure of this note is as follows. In section 2 we review the argument of [61] for
obtaining Kramers-Wannier-like non-invertible symmetries in four-dimensional theories. In
section 3, to establish some notations and conventions, we quickly review the Tachikawa’s
method for reading off the global structures of class S theories from 6d [94]. In section 4
we discuss our general strategy in more detail, formulating a sufficient criterion for the
existence of a mixed anomaly. In section 5 we discuss several applications of our method. In
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particular, in §. 5.1 we rederive the original N = 4 example in [61] from the 6d perspective,
in §. 5.2 we give further 4d N = 4 examples, and in §. 5.3 we construct infinitely many
examples of models with non-invertible symmetry defects of orders M = pk, where p > 1 is
a prime number and k is a positive integer. In section 6 we present our conclusions and
outlook. An alternative strategy to produce other kinds of non-invertible symmetry defects
is briefly sketched in the appendix, building on the mechanism illustrated in [74].

2 “M-ality” from Z(0)
M × Z(1)

N mixed anomalies

In this section we review the construction of [61] for generating non-invertible M -ality
defects, starting from a 4d theory T with a Z(0)

M × Z(1)
N mixed anomaly.1

Consider coupling T to background gauge fields for the Z(0)
M × Z(1)

N symmetry, which
we denote by A(1) and B(2). Assume T has a mixed anomaly

ZT [A(1) + dλ(0), B(2)] = ei
2π
2N p

∫
X
λ(0)P(B(2))ZT [A(1), B(2)], (2.1)

where p is an integer and P(B(2)) represents the Pontryagin square operation.2 Let us denote
the codimension one topological defects associated to the Z(0)

M symmetry D3(M3, B
(2)),

where we are emphasizing their explicit dependence on B(2). Because of the anomaly, the
defect D3(M3, B

(2)) is not invariant with respect to background gauge transformations of
B(2): only the following combination

D3(M3, B
(2))ei

2π
2N p

∫
M4
P(B(2))

, ∂M4 = M3, (2.2)

is. As emphasized by Kaidi, Ohmori and Zheng [61], since this defect only depends on M4
via the background, it is still a genuine defect of the theory. We are interested in gauging
Z(1)
N , which leads to a new theory T̃ with a dual ZN one form symmetry which we will

label as Z̃(1)
N . Upon such gauging we are promoting B(2) to a dynamical gauge field b(2).

The resulting defect is no longer a genuine operator of T̃ . To obtain a well-defined genuine
topological defect of T̃ , one needs to cancel the dependence of D3(M3, b

(2)) on M4. When
gcd(N, p) = 1, this can be done with a straightforward generalization of the argument
in [61]: one can simply absorb the anomaly by stacking a copy of the minimal 3d TFT
AN,−p of [11] along D3(M3, b

(2)) to obtain a new genuine defect in the T̃ theory:

N (M3) = D3(M3, b
(2))⊗AN,−p(M3, b

(2)) . (2.3)

Then the theory T̃ has a non-invertible M -ality defect N (M3), with fusion rules determined
from the properties of the 3d TFT AN,−p and by the condensate of Z̃(1)

N on M3.3

If instead gcd(N, p) = k, one can show that in this case the Zk subgroup of one-
form symmetry is anomaly free and consequently anomaly only involves the quotient

1The main emphasis in [61] is on duality defects: the M -ality case is somewhat implicit in the appendix
of that paper. We are thankful to Justin Kaidi for sharing his insight on this more general argument with us.

2We refer our readers to the appendix titled Pontryagin Square on page 13 of the nice reference [2] for a
summary about the definition of this operation, in the same set of conventions we adopt in this paper.

3We refer our readers that are not familiar with the notion of condensate to the beautiful papers [77, 79, 95].
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ZN/Zk ∼= ZN/k, assuming that X4 is spin (and hence
∫
X P(B2) is divisible by two).4 Let us

proceed by demonstrating this explicitly. Since gcd(N, p) = k, we have an exact sequence

0→ Zk → ZN → ZN/k → 0, (2.4)

and we can decompose

B(2) = N

k
B

(2)
k +B

(2)
N/k, (2.5)

where B(2)
k is a background for Z(1)

k and B
(2)
N/k for Z(1)

N/k. By massaging the Pontrjagin
square, one can show that:5

2πp
2N

∫
X
P(B(2)) = 2πp

2N
N

k

∫
X
P(B(2)

k ) + 2πp
2N

∫
X
P(B(2)

N/k) + 2π × (integers) . (2.6)

The first term simplifies to

2πp
2N

N

k

∫
X
P(B(2)

k ) = π`

∫
X
P(B(2)

k ), where p = k` . (2.7)

Since
∫
X P(B(2)

k ) is even on spin manifolds, this term does not contribute to the anomaly.
Thus,

2πp
2N

∫
X
P(B(2)) = 2πp

2N

∫
X
P(B(2)

N/k) + 2π × (integers), (2.8)

and since
2πp
2N = 2π`

2N/k , (2.9)

we obtain that a non-trivial B(2)
N/k flux causes the anomaly

2πp/k
2N/k

∫
X
P(B(2)

N/k) . (2.10)

Gauging the Z(1)
k anomaly-free subgroup of the one-form symmetry, one obtains a theory

with a symmetry group Z(1)
N/k and the anomaly above. Gauging such Z(1)

N/k, we obtain yet
another new theory T̃ , which has an M -ality defect obtained by

N3(M3) = D3(M3, b
(2)
N/k)⊗AN/k,−p/k(M3, b

(2)
N/k) . (2.11)

Notice that this defect is also genuine: the anomaly now can be absorbed by stacking a 3d
TFT AN/k,−p/k since gcd(N/k, p/k) = 1. This implies that also in this case we obtain an
M -ality defect, whose fusion is proportional to the Z(1)

N/k condensate along M3.

4Since we are working with supersymmetric theories in this paper, this is always the case.
5The relevant identities can be found in appendix A.
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6d
SCFTB

7d
TFT

Figure 1. Schematic picture of 6d SCFTs as relative field theories to a 7d TFT.

3 Global structures from 6d — a quick review

3.1 The 6d partition vector

In this section we establish our notations and conventions by quickly summarising some
of the features of 6d theories that will be useful below. We closely follow the presentation
in [94]. For the sake of brevity and clarity, in this paper we focus on the 6d (2,0) theories of
type An−1. It is well-known that the An−1 6d (2,0) theories are relative field theories [96, 97]:
given a compact closed torsionless six-manifold Y , the 6d (2,0) An−1 theory does not assign
to it a complex number, a partition function, but rather a collection of partition functions,
organized in a partition vector |Z(Y )〉, which is an element of a Hilbert space. It is believed
that the Hilbert space in question can be obtained from a non-invertible 7d TFT — see
figure 1: the 6d SCFT are understood as non-topological boundary conditions for such a
theory on a 7d spacetime with Y as a boundary. The Hilbert space can be characterised as
a representation of a Heisenberg algebra of non-commuting discrete 3-form fluxes valued
in Zn, the defect group of the 6d theory [6]. More precisely, the Heisenberg algebra in
question is

Φ(a)Φ(b) = ei〈a,b〉Φ(b)Φ(a), a, b ∈ H3(Y,Zn), (3.1)

where
〈a, b〉 = 2π

n

∫
Y
a ∪ b . (3.2)

The Heisenberg algebra is also equipped with a canonical normal ordering prescription,
which gives a group homomorphism from H3(Y,Zn) to the quantum torus in (3.1)6

Φ(a+ b) = Φ(a)Φ(b)ei〈a,b〉/2 (3.3)

By the Stone-Neumann-Mackay theorem, for each choice of a maximally isotropic sublattice
L of H3(Y,Zn) there is a unique ray in the Hilbert space H(Y ), such that

Φ(`)|L, 0〉 = |L, 0〉 ∀` ∈ L. (3.4)
6Indeed: Φ(b+ a) = Φ(b)Φ(a)ei〈b,a〉/2 = Φ(a)Φ(b)ei〈a,b〉/2 = Φ(a+ b) — we refer our readers that have

caught the ambiguity in this equation to appendix B where we further clarify it.

– 5 –



J
H
E
P
0
9
(
2
0
2
3
)
1
6
1

The rest of the basis elements of H(Y ) are obtained from the elements v ∈ L⊥ ≡
H3(Y,Zn)/L:7

|L, v〉 = Φ(v)|L, 0〉 ∀ v ∈ L⊥ . (3.5)

A crucial remark for us is that these are eigenvectors for the Φ(`) with ` ∈ L, with eigenvalues

Φ(`)|L, v〉 = ei〈`,v〉|L, v〉 . (3.6)

Another consequence of the Stone-Neumann-Mackay theorem is that, given two maximal
isotropic subgroups of H3(Y,Zn), say L and L′, the representations constructed in this way
are isomorphic, meaning that there is an invertible linear transformation such that

|L′, v′〉 =
∑
v∈L⊥

R v′
v|L, v〉 ∀ v′ ∈ L′⊥. (3.7)

For fixed L, we can then write

|Z(Y )〉 =
∑
v∈L⊥

Zv(Y )|L, v〉 . (3.8)

The coefficients Zv(Y ) are the so-called 6d conformal blocks [97]. Clearly, choosing a
different maximally isotropic lattice L′, one has another set of 6d conformal blocks Zv′(Y ),
but the two must be related. Indeed,

|Z(Y )〉 =
∑

v′∈L′⊥
Zv′(Y )|L′, v′〉 =

∑
v′∈L′⊥

Zv′(Y )
∑
v∈L⊥

R v′
v|L, v〉, (3.9)

which implies that
Zv(Y ) =

∑
v′∈L′⊥

Zv′(Y )R v′
v . (3.10)

In order to extract values out of the partition vector, one can consider placing the 7d TFT
on a finite interval times Y . On one side of the interval we have the relative 6d SCFT, on
the other we insert a topological boundary condition, which in the figure we schematically
denote B. For example, we could be setting Dirichlet boundary conditions for all the 3-form
fields, corresponding to the 3-form fluxes associated to the lattice L. In this way we obtain
a vector dual to |L, 0〉. Hence,

ZL(Y ) = 〈L, 0|Z(Y )〉 = Z0(Y ). (3.11)

Choosing different boundary conditions, corresponding to a different lattice, one obtains

ZL′(Y ) = Z0′(Y ) =
∑
v∈L⊥

Zv(Y )(R−1)v
0′ (3.12)

instead. This is the mechanism, which gives the 6d origin of the different partition functions,
associated to possible global forms in lower dimensional field theories.

7Here we are implicitly choosing a representative of v ∈ L⊥ inside H3(Y ) — of course the state |L, v〉
depends on this choice only up to a phase which can always be absorbed in a local counterterm.
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3.2 6d origin of global structure of class S theories

Class S theories are obtained by compactifying the 6d (2,0) theories on Riemann surfaces.
In this work, to keep technicalities at a minimum, we focus on theories arising from Riemann
surfaces Σg of genus g without punctures. For g = 1, i.e. when the Riemann surface is
a torus, the corresponding class S theories one obtains from this construction are the
various N = 4 SYM with gauge algebra su(n). For g > 1, one obtains models with an
S-duality frame, where they can be interpreted as conformal gaugings of 2g − 2 trinion Tn
theories [93] (see also [98] for a thorough review), coupled to 3g− 3 gauge groups with su(n)
gauge algebras.

The various global structures are captured from 6d exploiting the conformal block
expansion. Consider the 6d (2,0) theory on a background Y = Σg ×X, where X is the 4d
spacetime. Assuming X is compact, torsion-free, and that H1(X,Z) is trivial, from the
Künneth formula and the universal coefficient theorem we obtain

H3(Y,Zn) ' H1(Σg,Zn)⊗H2(X,Zn). (3.13)

From our discussion above, for each fixed n ≥ 2, the additional discrete data needed to
fully specify the theory is a maximal isotropic lattice L of H1(Σg,Zn) with respect to the
canonical pairing induced by the intersection pairing on Σg. Then

L = L⊗H2(X,Zn) (3.14)

gives a maximal isotropic lattice of H3(Y,Zn) automatically. Different global forms for the
4d class S theories, corresponding to the surface Σg, are parametrized by such choices of
maximally isotropic sublattices. Fixing one such sublattice, the fluxes in L⊥ parametrize
the possible partition functions for the 4d theory with inequivalent 1-form symmetry
backgrounds along X

ZΣg ,L(X, ξ) = 〈L, ξ| Z(Σg ×X)〉 ξ ∈ L⊥

= 〈L, 0|Φ(ξ) |Z(Σg ×X)〉,
(3.15)

where we have used that 〈L, ξ| = 〈L, 0|Φ(ξ) by definition.8

4 Non-invertible symmetries from 6d

4.1 0-form symmetry from mapping class group fixed points

Four-dimensional N = 2 SCFTs have N = 2 conformal manifolds which can be described
as the space of exactly marginal deformations modulo S-duality. For the theories of class S
of interest for this paper the S-duality group has a beautiful geometrical description: the
exactly marginal couplings of the N = 2 theory are identified with the complex structure
coordinates of the Teichmüller space of Σg, while the S-duality group is identified with the

8Morally this should be a Φ†, but since we always act on the left and never on the right, we won’t pay
attention to that.
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mapping class group. The conformal manifold then is given byMg, the moduli space of
complex structures modulo the mapping class group.9

Interestingly, the action of the mapping class group is not free: there can be points on
the Teichmüller space that are fixed under the action of some subgroup of the mapping
class group, and for that reason the conformal manifold is better characterized as a Deligne-
Mumford stack. Whenever we have fixed points, naively one would claim that the theory
corresponding to such a point Σ∗g, which is stabilized by a subgroup G of the mapping
class group, has an enhanced G(0) symmetry. This statement is slightly too naive: it is
sufficient to consider the simplest case, i.e. genus one, to understand the problem. The
mapping class group in that case is SL(2,Z) and it acts on the complexified coupling τ ,
giving rise to the Montonen-Olive duality of N = 4 SYM. If that statement above were to
be true, all N = 4 SYM theories would have an enhanced Z(0)

2 symmetry corresponding to
the S transformation

τ → −1/τ (4.1)

at the self dual τ = i. This statement is clearly false: SU(n) is mapped to PSU(n) =
SU(n)/Zn by S-duality. This indicates there is a further requirement that needs to be
imposed for G to give rise to an enhanced G(0) symmetry: the resulting symmetry must
respect the global structure of the theory. This requirement is transpart from the 6d
perspective. An element φ of the mapping class group acts on the surface Σg to give us a
new surface φ(Σg). It also induces an isomorphism between the cohomology of Σg and that
of φ(Σg) by pull-back. As a result, it generically changes the lattice L ' L ⊗H2(X,Zn)
which defines the 1-form symmetry of the theory (and hence its global structure), as follows:

φ(L) ≡ φ∗(L)⊗H2(X,Zn) (4.2)

In order for φ to truly generate a zero-form symmetry, it must fix not only Σg, but also the
lattice L:

φ(Σ∗g) = Σ∗g φ∗(L) = L ⇒ φ(L) = L. (4.3)

If these conditions are met, then

ZΣ∗g ,L(X, 0) = Zφ(Σ∗g),φ(L)(X, 0) (4.4)

and φ is indeed a symmetry of the theory.10

For genus g > 1 the mapping class group has a rather complicated structure,11 but in
this paper we are only interested in subgroups of the mapping class group that stabilize
some surface Σ∗g: describing these is much simpler because the stabilizer in the mapping

9This picture is slightly too naive because it does not keep track of the action of S-duality on the global
structure of the theory. Including the global structure one obtains an extended conformal manifold. As we
will see below, this remark has an important effect on our construction.

10When φ is not a symmetry it can give rise to more interesting effects, that give rise to intrinsic K-
ality defects in the language of [76]. There one obtains a theory with a non-invertible symmetry starting
from this setup as well, by coupling the 4d theory to an appropriate SPT to compensate to the given
transformation [62, 79]. We will describe these in a separate work.

11We refer to [99] for an instructive review.
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class group of a surface Σ∗g of genus g > 1 is isomorphic to the group of isometries of Σ∗g.12

For g > 1, the group of isometries is always finite, and like the finite symmetries of the
torus, these isometries are a non-generic feature. The size of the group of isometries is
bounded from above by 84(g − 1), and the maximal order of a cyclic subgroup is 4g + 2.

Examples of surfaces with a Z4g+2 group of isometries can be constructed in a very
analogous manner to the tori with discrete symmetry: we start with a regular 4g + 2-gon
but, this time in hyperbolic space, and identify the diagonally opposite sides. This gives us
a surface of genus g, which has rotations by an integer multiple of 2π

4g+2 as its isometries
(see e.g. figure 2 as an example). Compactification on these surfaces can be exploited to
obtain class S theories with a Z(0)

4g+2 enhanced symmetries.

4.2 Reading off the mixed anomaly from 6d

We now turn to the question of how we can use this technology as a diagnostic of mixed
zero-form and one-form anomalies. In order to detect the ’t Hooft anomaly, we act with
our symmetry generator in presence of a non-trivial 1-form symmetry background. The
simplest such background has a 6d avatar of the form β ⊗ v ∈ L⊥ then

Zφ(Σ∗g),φ(L)(X,φ(β ⊗ v)) = ZΣ∗g ,L(X,φ(β ⊗ v))

= 〈L, 0|Φ(φ(β ⊗ v))|Z(Σ∗g ×X)〉
(4.5)

by construction. Now the key point is that φ(β ⊗ v) is not necessarily an element of L⊥.
For instance, consider the case

φ(β ⊗ v) = β ⊗ v + α⊗ v where α⊗ v ∈ L (4.6)

If that is the case, via the normal ordering prescription in equation (3.3)

Φ((β + α)⊗ v) ≡ Φ(β ⊗ v)Φ(α⊗ v)ei
1
2 〈β⊗v,α⊗v〉 (4.7)

and (4.5) equals

〈L, 0|Φ(β ⊗ v)Φ(α⊗ v)ei
1
2 〈β⊗v,α⊗v〉 |Z(Σ∗g ×X)〉

= 〈L, 0|Φ(α⊗ v)Φ(β ⊗ v)ei
1
2 〈α⊗v,β⊗v〉 |Z(Σ∗g ×X)〉

= ei
1
2 〈α⊗v,β⊗v〉〈L, 0|Φ(β ⊗ v)|Z(Σ∗g ×X)〉

= ei
1
2 〈α⊗v,β⊗v〉ZΣg ,L(X,β ⊗ v)

(4.8)

We obtain a mixed anomaly provided

ei
1
2 〈α⊗v,β⊗v〉 6= 1. (4.9)

Then mutatis mutandis the argument of [61] we can obtain a theory with a non-invertible
symmetry by gauging the one-form symmetry associated to the choice of background
β ⊗ v ∈ L⊥. In the next section we illustrate this mechanism in practice.

12For g = 1 the isometry group always contains the group of translations and in addition there can be a
discrete subgroup of isometries. This discrete subgroup is generically trivial, and is non-trivial only for the
tori obtained by identifying the diagonally opposite sides of a square or a regular hexagon. In these cases it
is isomorphic to the symmetries of the square or a regular hexagon, respectively.
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5 Examples of applications

The technology developed in 4 suggests the following process for finding mixed zero-form
one-form anomalies and consequently non-invertible duality defects:

1. Construct a class S theory with a discrete global symmetry using a surface Σg with
discrete isometries. For g = 1 this corresponds to the point τ = i which is self-dual
under S duality. For g > 1 we obtain theories with Z4g+2 0-form symmetry using the
surface obtained by identifying the diagonally opposite edges of a regular hyperbolic
polygon.

2. Find a maximal isotropic sublattice L of H1(Σg,Zn), which is invariant under the
action of the discrete isometries constructed in the first step.

3. Find a background which under the action of the isometry changes by an element
of the self dual lattice L constructed in the second step. If (4.9) holds, we have
found a mixed anomaly, and consequently a non-invertible duality defect in the theory
obtained by gauging the anomalous one-form symmetry.

Below we present some examples where this strategy can be successfully carried out.

5.1 The Z(0)
2 × Z(1)

2 mixed anomaly in SO(3)− at τ = i from 6d

As a warm-up and consistency check we now reproduce the mixed anomaly in SO(3)− using
our formalism. The relevant surface in this case is a torus with complex structure τ . The
Z2 valued cohomology of the torus is generated by A and B cycles with A ·B = 1 and has
four elements

0, A,B,A+B . (5.1)

The global form SO(3)− is obtained from the lattice L ' (A+B)⊗H2(X,Zn). In this case
S duality acts by φ : τ 7→ − 1

τ and A 7→ B, while B 7→ −A = A since A+A = 0. Since L is
invariant under the exchange of A and B, we obtain a zero-form symmetry at the self dual
point τ = i. For SO(3)−, the S-duality then implies

ZSO(3)−(− 1
τ , X) = 〈φ(L), 0|Z〉 = 〈L, 0|Z〉 = ZSO(3)−(τ,X) (5.2)

Now to detect the mixed anomaly, we wish to turn on a non-trivial background through a
two cycle v in the spacetime, hence we consider

ZSO(3)−(− 1
τ , X,A⊗ v) = 〈φ(L), φ(A⊗ v)|Z〉

= 〈L, B ⊗ v|Z〉
= 〈L, (A+ (A+B))⊗ v|Z〉

= ei
1
2 〈A⊗v,(A+B)⊗v〉〈L, A⊗ v|Z〉

= ei
1
2 〈A⊗v,(A+B)⊗v〉ZSO(3)−(τ,X,A⊗ v)

= ei
1
2 〈A⊗v,B⊗v〉ZSO(3)−(τ,X,A⊗ v)

= ei
π
2P(v)ZSO(3)−(τ,X,A⊗ v)

(5.3)
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which gives exactly the mixed anomaly at τ = i needed for generating a non-invertible
duality symmetry along the lines discussed in [61].

5.2 More N = 4 SYM examples from class S

As a first example let us consider N = 4 theory with gauge algebra su(4n2) at τ = i. The
surface in this case is a square torus and S duality acts as rotation by π

2 . The cohomology
H1(T 2,Z4n2) is generated by the usual A and B cycles with A · B = 1 and relations
A4n2 = B4n2 = 1 and has a total of (2n)4 elements. We choose as the discrete data the
lattice L = L⊗H2(X,Zn) where L is the sublattice of H1(T 2,Z4n2) generated by 2nA and
2nB. The lattice L⊗H2(X,Zn) is isotropic, since the intersection number of any two of
its elements involves a factor of 4n2, which is zero in Z4n2 . Since it contains (2n)2 elements,
it is also maximal. This choice corresponds to the gauge group SU(4n2)/Z2n. Moreover,
this gauging is done without any discrete theta angle. The one-form symmetry group of
this theory is Z2n × Z2n.

The lattice L is manifestly self-dual under the S-duality which sends A → B and
B → −A. So the remaining task is to find a subgroup of the one form symmetry which has a
mixed anomaly with S-duality. For this we consider a background given by (nA+nB)⊗v ∈
L⊥. Since 2(nA + nB) ⊗ v ∈ L, this background is for a Z2 subgroup of the one-form
symmetry. Now, under S-duality

φ((nA+ nB)⊗ v) = (nB − nA)⊗ v = (nA+ nB)⊗ v − 2nA⊗ v (5.4)

and the phase in equation (4.9) is

1
2〈(nA+ nB)⊗ v,−2nA⊗ v〉 = 1

2
2π
4n2 (−2n2)P(v) = −π2P(v) (5.5)

which exhibits a mixed anomaly between the symmetry Z(0)
2 at τ = i and the Z(1)

2 subgroup
of Z(1)

2n × Z(1)
2n corresponding to the element (nA+ nB)⊗ v ∈ L⊥.

This example illustrates how it is possible to have further examples of su(n) N = 4 SYM
theories which exhibit a Z(0)

2 ×Z(1)
m mixed anomaly for a subgroup Z(1)

m of the corresponding
1-form symmetry. Gauging such a subgroup one obtains a theory with a non-invertible
duality defect.

5.3 Higher genus examples with non-invertible symmetries

In the discussion so far, we have only generated examples of non-invertible duality defects.
In this section we use the class S construction for higher genus Riemann surfaces to exhibit
infintely many example which give rise to M -ality non-invertible zero-form symmetries.

5.3.1 Geometry of Riemann surfaces Σ∗g with Z4g+2 isometry

Let us begin by describing some general features of the genus g surfaces Σ∗g which exhibit an
isometry group Z4g+2. These can be obtained by identifying the opposite edges of a regular
hyperbolic 4g+ 2-gon. There is a (redundant) collection of 1-cycles C1, C2, . . . , C2g+1 which

– 11 –
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C1

C1

C2

C2

C3C3

C4

C4

C5

C5

L1

L1

L2

L2

L3

L3 L4

L4

L5

L5

Figure 2. Decagon in the hyperbolic space, giving rise to a g = 2 surface upon identification of the
opposite sides. Coloured lines indicate homology cycles on the surface, among which any four are
linearly independent.

realise the Z4g+2 action as Ci 7→ Ci+1 where the index is identified modulo 2g + 1 — see
figure 2. The non-trivial intersection numbers are

Ci · Ci+1 = 1 1 ≤ i ≤ 2g and C2g+1 · C1 = −1 (5.6)

and there is one relation between them:

C2g+1 =
2g∑
i=1

(−1)iCi . (5.7)

A basis for H1(Σg,Zn) is given by Ci with 1 ≤ i ≤ 2g. The isometry φ rotating the polygon
by 2π

4g+2 acts on the independent cycles as,

φ(Ci) = Ci+1 , 1 ≤ i ≤ 2g . (5.8)

A generic class S theory obtained by compactifying 6d (2,0) theory with gauge algebra su(n)
on a genus g surface Σg has a one form symmetry group of the same order as the order of a
maximal isotropic sublattice of H1(Σg,Zn) i.e. ng. We would like to find subgroups of this
one form symmetry, which have mixed anomaly with Z(0)

4g+2 zero-form symmetry generated
by φ.

5.3.2 Infinitely many examples of pk-ality defects

Armed with the geometry described in the previous section we can now describe a generali-
sation of the examples found above whenever the genus satisfies

2g + 1 = pk (5.9)

– 12 –
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where p is a prime. In this case we choose to work with 6d (2,0) An−1 theories that are
such that

n = p (5.10)

so that we can view the cohomology group H1(Σg,Zp) as a 2g-dimensional vector space
over a finite field Fp. This has the advantage that we can use the Jordan decomposition to
find subspaces invariant under φ.

We proceed by computing the characteristic polynomial of φ, i.e. det(φ− x). We do
this using the following trick: since for a prime p,(

pk

m

)
= 0 mod p (5.11)

for m 6= 0, pk, we obtain

(φ− x)2g+1 = φ2g+1 − x2g+1 mod p. (5.12)

Since φ2g+1 = −1,

det
(
(φ− x)2g+1

)
= (det(φ− x))2g+1 = (−1)2g+1(x2g+1 + 1)2g+1 . (5.13)

Next we use the fact that all the elements of the field Fp except 0 form a multiplicative
group of order p− 1 so xpk = x. Hence,

det(φ− x) = (−1)2g+1(x+ 1)2g+1 . (5.14)

One can easily check that there is only one eigenvector of eigenvalue −1, by explicitly
writing down the recurrence equation for the components of that eigenvector, therefore for
each ` ≤ 2g there is a unique subspace invariant under the action of φ given by the kernel
of (φ+ 1)`. Explicitly, there is a basis Di such that,

φ(D1) = −D1 ,

φ(Di) = −Di +Di−1 1 < i ≤ 2g . (5.15)

In terms of Ci, these new basis elements are given by,

Di =
2g−i∑
j=0

(
2g − i
j

)
Cj+1 . (5.16)

The unique invariant subspace of dimension d under the action of φ is given by the
span of D1, . . . , Dd. Specializing to d = g we obtain the unique invariant subspace that can
determine a global structure. We just need to check if it is isotropic. To do that we note
that Di = (φ+ 1)2g−iD2g. We then need to evaluate

Di ·Dj = DT
2g

(
(φ+ 1)2g−i

)T
Ω(φ+ 1)2g−jD2g, (5.17)

– 13 –
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where we denoted Ω the pairing induced by the intersection form on Σg. The middle part
of this expression can be reorganised as13

(
(φ+ 1)2g−i

)T
Ω(φ+ 1)2g−j = Ω(φ−1 + 1)2g−i(φ+ 1)2g−j

= Ωφ−2g+i(φ+ 1)4g−i−j .
(5.18)

Recalling that (1 + φ)2gD2g = 0, we see that

Di ·Dj = 0 ∀ i+ j < 2g + 1. (5.19)

Hence, the g-dimensional subspace spanned by D1, . . . , Dg is indeed isotropic, we denote it

V = span (D1, . . . , Dg) ⊂ H1(Σg,Zp) . (5.20)

The theory Tg,p with global form corresponding to the maximal coisotropic lattice

LV = V ⊗H2(X,Zn) (5.21)

that we just identified has a Z(0)
4g+2 form enhancement of its symmetry at the self-dual point

Σ∗g ofMg with Z4g+2 isometry.
To exhibit an anomaly we can consider a background of the form v ⊗Dg+1, we have

φ(Dg+1) = −Dg+1 +Dg and φ2(Dg+1) = Dg+1 − 2Dg +Dg−1 (5.22)

while the action of φ does not have the form φ(β ⊗ v) = β ⊗ v + α ⊗ v, the action of φ2

indeed does, and we have

φ2(β ⊗ v) = β ⊗ v + α⊗ v with

β = Dg+1

α = −2Dg +Dg−1
(5.23)

therefore we see that the Z(0)
2g+1 subgroup of Z(1)

4g+2 generated by φ2 can have a mixed
anomaly with a subgroup of the (Zgn)(1) one-form symmetry for all these models. It is easy
to see that there is an anomaly, since the phase in equation (4.9) is14

1
2〈α⊗ v, β ⊗ v〉 = π

n
(Dg+1 ·Dg)

∫
X
P(v) . (5.24)

Then we produce a mixed anomaly of the form discussed in section 2, between the Z(0)
2g+1

subgroup of the duality symmetry and the Z(1)
p subgroup of the one-form symmetry

((Zp)g)(1) which corresponds to the subspace of L⊥ associated to Dg+1 ⊗H2(X,Zn). It is
the condensate of this subgroup which features in the resulting fusion algebra.

These anomalies are interesting in their own right are the smallest examples of mixed
anomalies at a given genus when 2g + 1 = pk for some prime p. When 2g + 1 has more
than one prime factors, we again need to look at the corresponding prime fields for the
smallest examples. We expect these mixed anomalies, obtained when the homology of the

13Here we are using that φTΩφ = Ω since φ is an isometry, and therefore φTΩ = Ωφ−1.
14Here we are using that Dg+1 ·Dg−1 = 0 by (5.19) and we also must have that Dg+1 ·Dg must be non-zero:

if it was zero, this would violate the maximality of the isotropic sublattice generated by D1, . . . , Dg.
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Riemann surface is a vector space over a finite field, to be building blocks for more general
mixed anomalies. We plan to return to a more systematic study of these phenomena in a
future work.

6 Conclusions

In this note we have initiated the study of non-invertible defects in 4d N = 2 theories of
class S. We have exploited the observation that such defects can be constructed, whenever
a mixed anomaly between a zero-form symmetry and a one-form symmetry is present.
Starting from this point, and using the insights coming from the 6d perspective, we were
able to recover some known cases of 4d N = 4 theories, possessing non-invertible defects,
as well as to provide a bunch of new examples, coming from the higher-genus surfaces. In
particular, we provide an infinite family of examples with increasing M -ality and M = pk.

Our results presented here are just the tip of the iceberg, and several very natural
directions for further explorations can be identified. First, a more systematic exploration
of the M -ality defects we predict is interesting. We are currently studying the resulting
fusion algebras, and we will present them in a follow-up of this short note.15 Second, so
far we have considered only theories of An type. At the same time, it was observed [74]
that for certain choices of the global structure also gauge theories with the gauge algebra
of Dn type may have non-invertible defects in the operator spectrum.16 This is a good
motivation to extend our analysis to the class S theories of Dn and En types. Third, we
were concentrating exclusively on the theories obtained from compactifications of 6d (2, 0)
theories on surfaces without punctures. It would certainly be interesting to extend the scope
of examples by considering surfaces with punctures, regular or irregular ones. This exercise
is interesting because in these examples we expect to be able to exhibit generalizations of
symmetry defects corresponding to non-abelian finite zero-form symmetry groups arising
from fixed points of the mapping class group.

It should also be mentioned that, while we have mostly been focused on the duality
defects coming from the aforementioned mixed anomalies, there is another tool based
on the self-duality a theory might obey and the corresponding Kramers-Wannier duality
defects [62]. Exploiting our techniques it is easy to exhibit a broad scope of examples where
the first method does not apply, while the second one is quite fruitful.

Finally, a potentially interesting class of examples to which our methods also apply
is provided by compactifications of 6d (1, 0) theories down to 4d (see e.g. [102–121] for a
(partial) list of references on the subject). In this context the role of the Heisenberg algebra
we discuss in this paper is played by the corresponding Heisenberg algebra arising from the
6d defect group of the 6d (1,0) SCFT [6, 13].

15Since the initial appearance of this note, this program has indeed been carried out by the authors of the
current work in collaboration with Justin Kaidi [100] as well as independently in reference [101]. Further
details about the defects presented here (including their fusion rules) can be found in these works to which
we refer our readers for details.

16Fusion algebras arising from gauging an outer automorphisms acting non-trivially on the one-form
symmetries [74] can be easily realized geometrically. We present some examples with these features in
appendix C, as an appetizer.
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A On the proof of equation (2.6)

In order to prove (2.6) one needs to start from the following property of the Pontryagin
square operation, which follows from the fact that it is a quadratic form∫

X
P(A+B) =

∫
X
P(A) +

∫
X
P(B) + 2

∫
X
A ∪B , (A.1)

and applying it recursively one can show that∫
X
P(`A) = `

∫
X
P(A) + (2× integer)

∫
X
A ∪A (A.2)

Indeed∫
X
P(`A) =

∫
X
P(A) +

∫
X
P((`− 1)A) + 2(`− 1)

∫
X
A ∪A

= 2
∫
X
P(A) +

∫
X
P((`− 2)A) + 2(`− 2)

∫
X
A ∪A+ 2(`− 1)

∫
X
A ∪A

= · · ·

= `

∫
X
P(A) + (2× integer)

∫
X
A ∪A

(A.3)

B Further details about the quantum torus algebra

The Heisenberg algebra given by (3.1) is well defined for a, b ∈ H3(Y,Zn). However,
the computation of anomalies requires the quantum torus algebra (3.3), which involves
expressions of the form 1

2 〈a, b〉. The factor of 1
2 in these expressions seem troubling at first

glance. For the case when n is odd the issue can be dealt with easily: in that case 2 is
invertible in Zn and hence (3.3) is well-defined. However, when n is even 2 is not invertible
in Zn and so we need to explain what do we mean by the factor of 1

2 . One way out of
this difficulty is to promote

∫
Y a ∪ b to an element of Z2n. Let us look more closely at
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how this can be done for the special case of interest in this paper, namely Y = Σg ×X
with X simply connected amd Spin. In this case, let’s consider for simplicity cycles of the
form a = α ⊗ v and b = β ⊗ v with α, β ∈ H1(Σg,Zn) and v ∈ H2(X,Zn). Since Σg has
no torsion in homology and X is simply connected (so that in particular has no torsional
1-cycles), the integral lifts for α, β, v, always exist. Let’s choose some which we call α̃, β̃
and ṽ, respectively. Then the required promotion to Z2n is given by

∫
Y
a ∪ b 7→

(∫
Σg
α̃ ∪ β̃

)(∫
X
ṽ ∪ ṽ

)
mod 2n . (B.1)

Since any two integral lifts of v differ by nc with c ∈ H2(X,Z),
∫
X ṽ ∪ ṽ mod 2n is

independent of the lift chosen.17 The cocycle ṽ ∪ ṽ reduces modulo 2n to the Pontryagin
square P(v), in the same set of conventions of reference [2]. The map v →

∫
X P(v) provides

a quadratic refinement of the intersection form of X and is applicable even in the more
general setting when X has torsion in first homology. However, to ensure that the right
hand side of (B.1) is also independent of the chosen lifts α̃ and β̃, we also need

∫
X ṽ ∪ ṽ

to be even, i.e. the intersection form of X must be even. This is always the case for Spin
manifolds.18

We note that P(v) is commonly used in literature to furnish a quadratic refinement for
a single Z(1)

n symmetry. However, for class S theories equation (B.1) naturally gives the
generalization to a quadratic refinement for an arbitrary number of one form symmetries.
The ingredient required for this generalization is the intersection form of the Riemann
surface Σg, which physically is interpreted in terms of the Dirac pairing between electric
and magnetic charges of Wilson and ’t Hooft loops.19

C Categorical symmetries from outer automorphisms

Another fruitful strategy to produce non-invertible fusion rules, that goes beyond condensa-
tion and higher gauging [77, 79, 95], arises when we are gauging an outer automorphism of
the theory which is acting non-trivially on the one-form symmetry [74].

The class of models we are considering in this paper exhibits a natural outer auto-
morphism: consider a degeneration of Σg such that it becomes a sphere with g handles
located symmetrically. This arrangement gives rise to an action of the group Zg by cyclically
permuting the various handles of Σg with one another. This is not a duality defect, rather
an outer automorphism of the SCFT, but we can consider gauging such subgroup. Since
the latter acts on the various factors of the 1-form symmetry of the system associated to
the various handles, upon gauging we obtain non-invertible 2-form symmetries that have a
twisted-sector like fusion.

17Indeed, (ṽ + nc) ∪ (ṽ + nc) = ṽ ∪ ṽ + 2nc ∪ ṽ + n2c ∪ c = ṽ ∪ ṽ mod 2n where we have used that n is
even to write n2 = (n/2)2n, an integer multiple of 2n.

18One can also easily verify that the quantum torus algebra defined with this quadratic refinement satisfies
the Heisenberg algebra as expected.

19We thank the anonymous referee 1 from our JHEP submission for drawing our attention to the issues
addressed here, which helped us clarifying the exposition of our results.
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Labeling Di the i-th codimension two topological surface defect corresponding to the
i-th factor of the one-form symmetry ((Zn)g)(1), the gauged theory will have non-invertible
codimension 2 defects of the form

N⊕j(ik1
1 ,...,i

kg
g )j

=
[⊕

j

D
k1,j
i1,j
⊗Dk2,j

i2,j
⊗ · · · ⊗Dkg,j

ig,j

]
(C.1)

which are labeled by gauge invariant orbits with respect to the Z(0)
g action.

Consider for simplicity the case g = 2, then we have

N (M2) = [(D1(M2)⊗ 1)⊕ (1⊗D2(M2))] (C.2)

with a fusion algebra of the form

N (M2)×N (M2) = N(12,0)⊕(0,12) ⊕N(1,2) (C.3)

where
N(12,0)⊕(0,12) = [(D2

1(M2)⊗ 1)⊕ (1⊗D2
2(M2))] (C.4)

and
N(1,2) = [D1(M2)⊗D2(M2)] . (C.5)

The study of these structures can be carried out along the lines discussed in [74], and we
plan to attack them using the methods discussed above in a subsequent work. We report
of their existence in this appendix because these give a slightly different example of a 6d
origin for 4d non-invertible symmetry defects thus complementing the results presented in
this first exposition.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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