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Time-Dependent Mean Field Theory for Quench Dynamics in correlated electron

systems
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A simple and very flexible variational approach to the out-of-equilibrium quantum dynamics in
strongly correlated electron systems is introduced through a time-dependent Gutzwiller wavefunc-
tion. As an application, we study the simple case of a sudden change of the interaction in the
fermionic Hubbard model and find at the mean field level an extremely rich behaviour. In particu-
lar, a dynamical transition between small and large quantum quench regimes is found to occur at
half-filling, in accordance with the analysis of Eckstein et al., Phys. Rev. Lett. 103, 056403 (2009),
obtained by dynamical mean field theory, that turns into a crossover at any finite doping.

PACS numbers: 71.10.Fd, 05.30.Fk, 05.70.Ln

Introduction. Triggered by the enormous advances in
the physics of ultra-cold atomic gases,[1] time dependent
non equilibrium phenomena in strongly interacting quan-
tum systems have recently become of greatest interest.
The possibility of artificially engineering many-particle
quantum states with tunable interactions and almost per-
fect isolation from the environment gives the chance of
probing directly in the time domain the quantum dy-
namics following an external perturbation [2]. While
early experiments focus mainly on bosonic systems [3]
or fermionic condensates,[4] the recent experimental re-
alization of a fermionic Mott insulator [5] opens the way
to investigate out-of-equilibrium phenomena in electron
systems too.[6] From a theoretical perspective, these ex-
periments raise several intruiguing questions touching
quantum dynamics at its roots. Indeed, when driven
out of equilibrium, interacting quantum systems can dis-
play peculiar dynamical behaviours or even be trapped
into metastable configurations [7] that differ completely
from their equilibrium counterpart. The simplest way
one could imagine to induce a non trivial dynamics is
through a so called quantum quench. Here the system is
firstly prepared in the ground-state of some given Hamil-
tonianHi, and then suddenly let evolved under the action
of a new hamiltonian Hf . Recently, quantum quenches
have been the subject of a vast literature focusing on inte-
grable systems,[8] one dimensional models,[9] or systems
close to a quantum criticality.[10] The interest on these
class of non equilibrium problems relies both on the dy-
namics itself,[11] as well as on the long-time properties
where the issue of thermalization or its lack of is still
highly debated.[12, 13] For what concerns strongly corre-
lated electrons in more than one dimension, the subject
is still largely unexplored and progresses have been done
only very recently. The single band fermionic Hubbard
model is likely the simplest lattice model of correlated
electrons emboding the competition between metallic and
insulating behaviour driven by a local Hubbard repulsion

U . Its Hamiltonian reads

H (t) = −
∑

σ

∑

〈i,j〉
tij c

†
iσ cjσ + U (t)

∑

i

ni↑ ni↓ . (1)

In two pioneering works,[14, 15] the response of a Fermi
sea to a sudden switch-on of the Hubbard U has been
studied in infinite dimensions using respectively the flow-
equation method and the Dynamical Mean Field Theory
(DMFT). Results suggest the existence of two different
regimes in the real-time dynamics depending on the fi-
nal interaction strength Uf . At weak coupling,[14] the
systems is trapped at long-times into a quasi-stationary
regime where correlations are more effective than in equi-
librium. This pre-thermalization phenomenon has been
confirmed by DMFT results,[15] which further indicate
a true dynamical transition above a critical Ufc towards
another regime with pronounced oscillations in the dy-
namics of physical quantities. These intriguing results
have been so far restricted to a quench starting from a
non interacting system (Ui = 0) and, more importantly,
limited to rather short accessible time scales and weak
quenches, thus leaving open many important issues.
A simple and flexible approach, although less rigor-

ous than e.g. DMFT, is thus extremely desirable and
this is actually the aim of the present work. Specifi-
cally, here we propose a variational approach to the out-
of-equilibrium dynamics of a correlated electron system
based on a proper extension of the Gutzwiller wavefunc-
tion. We apply this technique to study the interaction
quench in the Hubbard model, where we find a rich be-
haviour featuring a transition in the real-time dynam-
ics at a critical quench line Ufc (Ui), in accordance with
Ref. [15] at Ui = 0. Remarkably, a finite doping com-
pletely washes out this transition, leaving behind only a
crossover from weak to strong coupling.
Variational Approach to Quantum Dynamics. Many

basic concepts in the theory of strongly correlated sys-
tems, like e.g. the Brinkman-Rice scenario for the Mott
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transition, have been originated from calculations based
on a very simple and physically transparent variational
approach introduced in the 60th’s by Gutzwiller [16].
This approach has been so far applied only at equilibrium
or at most in the linear response regime,[17] but it turns
out to be so flexible to allow for full out-of-equilibrium
calculations.

For simplicity, we assume initially a many-body wave-
function |Ψ0〉, which, for times t > 0, is let evolve with
a Hamiltonian H that includes sizable on-site interac-
tions. In the spirit of the Gutzwiller approach, we make
the following variational ansatz for the time-dependent
wavefunction |Ψexact(t)〉 = e−iHt |Ψ0〉

|Ψexact(t)〉 ≃ |Ψ(t)〉 =
∏

i

e−iSi(t) Pi(t) |Φ(t)〉, (2)

where |Φ(t)〉 is a time-dependent Slater determinant.
Pi(t) is a hermitean operator that acts on the Hilbert
space of site i and controls the weights of the local elec-
tronic configurations. Si(t) is also hermitean and we as-
sume it depends on some variables φiα(t) such that

∂

∂φiα

e−iSi = −iOiα e−iSi ,

where Oiα is any local hermitean operator. Since (2)
is just a variational ansatz, it does not solve the full
Schrœdinger equation. Our proposal is to determine the
variational parameters by requiring: (i) that the Heisen-
berg equations of motion of the local operators Oiα are
satisfied when averaging over (2); (ii) that the average
energy E = 〈Ψ(t)| H |Ψ(t)〉 is, as it should be, conserved
during the evolution. Since, by definition,

∂

∂φiα

eiSi H e−iSi = i eiSi [Oiα,H] e−iSi ,

it follows that

∂Oiα

∂t
= −i〈Ψexact(t)| [Oiα,H] |Ψexact(t)〉

≡ −i〈Ψ(t)| [Oiα,H] |Ψ(t)〉 = − ∂E

∂φiα

, (3)

where the equivalence is our variational assumption.
Within the Gutzwiller approximation,[18] which is ex-
act in the limit of infinite coordination lattices, E =
〈Φ(t)| H∗(t) |Φ(t)〉, where H∗(t) is a non-interacting
Hamiltonian that depends on all time-dependent vari-
ational parameters defining Pi and Si. In general, these
parameters can be expressed in terms of φiα and Oiα. If
we impose that |Φ(t)〉 is the solution of the Schrœdinger
equation, namely that −i∂t |Φ(t)〉 = H∗(t) |Φ(t)〉 and fur-
thermore that

∂φiα

∂t
=

∂E

∂Oiα

, (4)

conservation of energy follows automatically. Therefore,
φiα and Oiα act like conjugate variables and the energy
functional E as their effective Hamiltonian.
As a simple application of the above variational

scheme, we assume H to be the Hubbard model (1) at
half-filling with U(t ≤ 0) = Ui ≥ 0 and U(t > 0) =
Uf > Ui, and furthermore we limit our analysis to ho-
mogeneous paramagnetic wavefunctions. In the limit of
infinite coordination lattices, one can compute exactly
average values on the variational wavefunction provided
the following conditions are imposed [18, 19]

〈Φ(t)|P2
i (t)|Φ(t)〉 = 1 , 〈Φ(t)|P2

i (t) c
†
iσciσ|Φ(t)〉 =

1

2
.

We assume Pi(t) =
∑2

n=0 λi,n(t)Pi,n, where Pi,n is the
projector at site i onto configurations with n = 0, . . . , 2
electrons and Si(t) =

∑2
n=0 φi,n(t)Pi,n, which implies

that φi,n(t) plays the role of the conjugate variable of the
occupation probability Pi,n = 〈Ψ(t)|Pi,n|Ψ(t)〉. From the
constraints above it follows that Pi,0 = Pi,2 and Pi,1 =
1 − 2Pi,2. We define Pi,2 = (1 − cos θi)/4 and set φi,0 =
φi,2 = φi while φi,1 = 0. Using θi and φi as variational
parameters, one finds the average energy [18]

E =
Uf

4

∑

i

(1− cos θi(t)) (5)

−
∑

ij

wij(t) sin θi(t) cosφi(t) sin θj(t) cosφj(t) ,

where wij(t) = tij
∑

σ 〈Φ(t)| c
†
iσcjσ + H.c. |Φ(t)〉. One

recognizes in (5) the mean field energy of an Ising model
in a transverse field

HI =
Uf

4

∑

i

(1− σz
i )−

∑

ij

wij(t)σ
x
i σ

x
j , (6)

where 〈σz
i 〉 = cos θi and 〈σx

i 〉 = sin θi cosφi. This
connection can be established rigorously at the varia-
tional level,[20] and agrees with the Z2-slave-spin the-
ory recently introduced. [21, 22] Therefore, it is not
surprising that the equations of motion that we obtain
through Eqs. (3) and (4) are just those of the Ising model
〈∂t σa

i 〉 = −i〈[σa
i ,HI ]〉 within mean field. Therefore, un-

der the above assumption of homogeneous and param-
agnetic wavefunctions, a quantum quench in the half-
filled Hubbard model is equivalent, within the Gutzwiller
variational scheme, to a quench in a Ising model in the
presence of a transverse field. In particular, if |Φ(t)〉 is
taken to be the half-filled Fermi sea, then wij(t) = w
and (6) is the conventional ferromagnetic Ising model
with constant and uniform exchange w and transverse
field Uf/4. Quantum quenches of the transverse field
have been recently investigated in one-dimension [8] and
on a fully connected lattice [23]. In the following we
assume that the system is prepared in the metallic varia-
tional wavefunction that optimizes (1) with U = Ui < Uc,
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FIG. 1: Left Panels: Gutzwiller mean field dynamics at half-
filling for quasiparticle weight Z(t) (black line) and double
occupation D(t) (dashed red line) for quantum quenches from
ui = 0.25 to uf = 0.35 (top panel) and uf = 1.25 (bottom
panel). Right Panel: Period of oscillations at half filling and
for a finite doping δ 6= 0. Note the logarithmic singularity at
ufc for δ = 0 (see main text) which is cut-off by finite doping.

where Uc is the variational estimate of the Mott transi-
tion. This corresponds to initial values φi(0) = 0 and
cos θi(0) = Ui/Uc ≡ ui for the coupled equations: 2φ̇ =
Uc cos θ cos2 φ−Uf and 2θ̇ = Uc sin θ sinφ cosφ. We note
that, apart from the trivial case in which Uf = Ui, these
equations admit a non-trivial stationary solution θ = 0
and cos2 φ = Uf/Uc = uf , which is compatible with the
initial conditions only when uf = ufc = (1 + ui)/2. It
turns out that ufc identifies a dynamical critical point
that separates two different regimes similarly to a simple
pendulum. When uf < ufc, 2φ(t) oscillates around the
origin, while, for uf > ufc, it performs a cyclic motion
around the whole circle.

In order to characterize the different regimes, we
focus on three physical quantities, the double occu-
pancy D(t) = (1 − cos θ(t))/4, the quasiparticle residue
Z(t) = sin2 θ(t) cos2 φ(t) and their period of oscillation,
T . While detailed calculations will be presented else-
where [20], in the rest of the paper we just sketch the
results of the mean field dynamics. Let us start from
the weak coupling side ui < uf < ufc, see top panel
in Fig. 1, where both D(t) and Z(t) display small oscil-
lations. Their amplitude and period increase with the
strength of the quench δu = uf − ui, the latter reading

T = 4
√
2K(k)√
Z(0)

, where K (k) is the complete elliptic integral

of the first kind with argument k2 = 4ufδu/Z(0). For
δu → 0 we find a linear increase T ≃ T0 (1 + ui δu/Z(0))
with T0 = 4π/

√

Z(0).

Conversely, when quenching above the critical value,
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FIG. 2: Average double occupation D̄ (top) and quasiparticle
weight Z̄ (bottom) as a function of uf at fixed ui = 0.0, 0.5.
We show results at half filling (full lines) that display a sharp
transition at ufc, as well as at finite doping (dashed lines)
where only a crossover remains. We also plot the zero tem-
perature equilibrium results for δ = 0 (red points).

uf > ufc, a novel strong-coupling dynamical behaviour
emerges. Here oscillations become faster, their period
T = 4K (1/k) /

√

ufδu now decreases as a function of δu.
In particular, for uf ≫ ui, we get T ≃ 2π

uf
smoothly

matching the atomic limit result. The oscillation ampli-
tude ofD(t) decreases with uf , which results into a frozen
dynamics in the infinite quench limit,[7] while quasipar-
ticle weight Z(t) still shows large oscillations even for
uf → ∞, mainly reflecting the unbounded dynamics of
the phase φ(t).

Remarkably, the weak and the strong coupling regimes
are separated by a critical quench line ufc at which mean-
field dynamics exhibits exponential relaxation. Indeed,
upon approaching this line from both sides, the period

T diverges logarithmically, T ≃ 4√
Z(0)

log
(

1
|uf−uc

f
|

)

.

Right at criticality, uf = ufc, the mean field dynam-
ics can be integrated exactly. The result gives D(t) =
D(0)

(

1− tgh2 (t/τ⋆)
)

; the double occupation relaxes ex-
ponentially to D̄ = 0 pushing also Z̄ → 0, with a char-
acteristic time scale τ⋆ = 2/

√

Z(0) that increases upon
approaching the Mott Insulator.

We now turn to discuss long-time average properties
of the Gutzwiller mean-field dynamics that we define
as Ō = limt→∞

1
t

∫ t

0
dt′ O(t′). The analytical expres-

sions [20] of D̄ and Z̄ are shown in Fig. 2. At weak

coupling, we find D̄ = D(0)
[

1 +
uc
f

uf

(

E(k)−K(k)
K(k)

)]

, where

E (k) is the complete elliptic integral of the second kind
and k2 is the same as before. In addition, due to energy
conservation, the knowledge of D̄ completely fixes the av-
erage quasiparticle weight Z̄ = Z(0) + 8uf

(

D̄ −D(0)
)

.
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It is interesting to consider first the small quench limit
δu → 0. We find that, given D(0) = (1−ui)/4 the initial
equilibrium value, D̄ ≃ D(0)−δu/4 = (1−uf)/4, namely
tends to the equilibrium value corresponding to the final
interaction. Hence the prethermalization result [14] for
the quasiparticle weight Z̄ immediately follows. Indeed,
quenching from a non-interacting Fermi sea, ui = 0 hence
Z(0) = 1, we find that the non-equilibrium Z̄ is reduced
twice more than its equilibrium value at Uf .
For large quenches, the average double occupancy D̄

increases as a function of the final interaction uf , D̄ =
D(0)− 1

2 (uf − ui) (1− E (1/k) /K (1/k)), eventually ap-
proaches its initial value D(0) for uf → ∞. A similar be-
haviour is found for Z̄ which is however further reduced
by a factor 1/2 with respect to the initial value Z(0) due
to the freely oscillating behaviour of the phase. We find
therefore that, for large quantum quenches, the dynamics
retains memory of the initial condition and thermaliza-
tion is prevented by a dynamical blocking.
Finally, for quenches close to ufc, both D̄ and Z̄ are

very small, vanishing as 1/ log |uf − ufc| on approach-
ing the critical point. Namely, ufc not only signals a
transition in the dynamics but also identifies the critical
interaction at which the quenched system shows genuine
Mott insulating behaviour.
Away from half-filling, the dynamical equations be-

come more cumbersome [20]. However, key features can
be easily derived even without resorting to a numerical
integration. In particular, we find that any finite dop-
ing turns the half-filled dynamical critical point into a
crossover. For instance, the logarithmic singularity of
the oscillatory period T is cut-off by any finite doping, as
shown in figure 1. As a consequence, the singular behav-
ior of the average values across the half-filling transition
is smoothed into a crossover at finite doping, see figure
2.
Discussion. It is worth discussing the above results in

light of those recently obtained by DMFT.[15] Remark-
ably, our variational ansatz (2) seems to catch many non
trivial effects observed in DMFT. In particular the exis-
tence of two different regimes separated by a real dynam-
ical transition at ufc, already suggested in [15], clearly
emerges from our mean field theory.
We note however that the suppression of quantum fluc-

tuations, which is at the ground of our results, give rise
to an oversimplified periodical dynamics that lacks re-
laxation. In this respect DMFT, which can treat exactly
all local quantum fluctuations, works much better and
turns these oscillations into a true relaxation. We guess
that a similar result could be obtained from our varia-
tional treatment, for example, by allowing fluctuations
in the Fermi sea and treating the Quantum Ising Model
beyond the simplest mean field level [21]. Finally we
notice that the Ising analogy provides a simple interpre-
tation of the dynamical transition, at least from a local
DMFT-like point of view. Indeed, if we assume that the

role of the neglected quantum fluctuations is to provide
dissippation for the two-level system described by the lo-
cal Ising variable, the two dynamical regimes found by
DMFT resemble those in the phase diagram of the spin-
boson model.[24]

Conclusion. We introduced a variational approach to
the out-of-equilibrium dynamics in strongly correlated
electron systems. Using a time dependent Gutzwiller
ansatz we address the problem of an interaction quench
in the Hubbard model finding a dynamical transition at
half-filling. Our results provide a simple and intuitive
mean field theory for the quench dynamics in interacting
Fermi systems.
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