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Black holes in Lorentz violating gravity, such as Einstein-Aether or Hořava-Lifshitz gravity, are
drastically different from their general relativistic siblings. Although they allow for superluminal motion in
their vicinity, they still exhibit an absolute causal boundary in the form of a universal horizon. By working
in the tunneling picture for a gravitating scalar field, we show that universal horizons emit Hawking
radiation in a manner akin to standard results in general relativity, with a temperature controlled by the
high-energy behavior of the dispersion relation of the gravitating field, and in agreement with alternative
derivations in the literature. Our results substantiate the link between the universal horizon and
thermodynamics in Lorentz violating theories.
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I. INTRODUCTION

The thermodynamical features of horizons have been
extensively studied ever since Hawking predicted that
black holes create particles in their vicinity [1]. His
seminal work inspired a wealth of research aiming at
understanding the occurrence of quantum processes at
causal boundaries. Although horizons act classically as
semipermeable membranes, allowing only a one-way
crossing, quantum effects might follow classically for-
bidden processes and exit the region trapped by the
horizon. Hawking tentatively described particle produc-
tion as a consequence of this through quantum tunneling,
but it took twenty years until such description was made
manifest [2,3]. In this picture, particles escape the causal
enclosure of the horizon through gravitational tunneling
on complex paths. The formalism proposed by [2,3] was
substantiated by [4], and finally connected to the
Hamilton-Jacobi formalism by [5,6], where thermody-
namical properties were shown to be in agreement with
previous results that use Bogoliubov coefficients. In
contrast to the latter, the Hamilton-Jacobi method links
the pole structure of the semiclassical amplitude at the
horizon to the imaginary part of the classical action, such
that the tunneling rate can be compared with the
Boltzmann distribution, from which thermal properties
follow immediately.

The prevalence of horizon thermodynamics underlines
how deeply this effect is enmeshed in the foundation of
quantum field theory. Although seemingly simple, the
tunneling picture offers various insights into the local
quantum processes that govern the vicinity of the horizon.
Especially after its application to dynamical horizons
[7–10], this method offers a huge advantage over other
approaches, since these concepts of horizons are quasilocal
and independent from global properties such as asymptotic
flatness. Due to its very explicit usage of the paths across
the horizon, the tunneling picture allows us to find
generalizations in a very systematic way [11,12]. It also
suggests a generalized notion of the Hawking effect [13]
that applies to all types of horizons, dynamical and static,
and draws a connection to the consistency of quantum field
theory.
In this article we extend the tunneling method to the case

of universal horizons (UH) in Lorentz violating theories of
gravity. In particular, we study Einstein-Aether (EA) gravity
[14], where boost invariance is explicitly broken by the
presence of a timelike unit four-vectorUμ, the aether, which
propagates a vector and a scalar degree of freedom on top of
the usual transverse traceless graviton, when coupled to the
Einstein-Hilbert action [15]. As a consequence of this, once
the time direction is identified with the integral lines of Uμ,
the symmetry of the theory is effectively reduced down to
foliation preserving diffeomorphisms (FDiff), consisting of
the direct product of time reparametrizations and time-
dependent spatial diffeomorphisms

τ → τ0ðτÞ; xi → x0iðτ; xiÞ; ð1Þ
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where τ0ðτÞ must be a monotonous function.1 In other
words, once a preferred threading is given by the aether,
then the above transformation describes all coordinate
changes that respect this particular choice, effectively
breaking Lorentz invariance at the local level.
This allows for matter actions coupled to gravity to

include higher derivative operators along spatial directions,
while keeping only two time derivatives, thus avoiding the
presence of Ostrogradsky ghost instabilities. As a conse-
quence, matter fields coupled to EA gravity propagate with
modified dispersion relations of the generic form

ω2 ¼ k2 þ α4
k4

Λ2
þ � � � þ α2Z

k2Z

Λ2Z−2 ; ð2Þ

which allow for superluminal propagation at high momen-
tum k > Λ.
The former statement seems to imply that the usual

notion of horizon looses its meaning, since rays of these
fields can freely enter and exit the region enclosed by the
event horizon of a black hole. However, this naive intuition
is broken in the case of known stationary and spherically
symmetric black hole solutions in EA gravity [16]. In these,
the aether is hypersurface orthogonal, and thus it defines a
preferred foliation in codimension one hypersurfaces,
described by a scalar field T

Uμ ¼
∂μTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij∂αT∂aTj

p ; ð3Þ

which has the interpretation of a preferred time direction
that every motion has to follow. Incidentally, these are also
solutions to the low energy action of Hořava-Lifshitz
gravity [17,18], known as khronometric gravity [19]. The
latter propagates only one extra scalar field, in contrast to
the vector and scalar propagated by EA gravity. However, in
this work we will not discuss the dynamics of gravitational
perturbations, and thus all our results can be applied
indistinctively to either EA or Hořava-Lifshitz gravity.
In certain space-times—which include the black hole

solutions of interest—, it might happen that a foliation leaf
becomes a constant radius hypersurface. Since the foliation
defines a preferred time direction that all world-lines must
follow, this implies that nothing can escape the region
enclosed by the leaf. Such a hypersurface is thus named
universal horizon and it is locally characterized by the
following two properties [20]

ðU · χÞ ¼ 0; ða · χÞ ≠ 0; ð4Þ

where χμ is the timelike Killing vector of the metric and
aμ ¼ Uα∇αUμ is the acceleration of the foliation.2 The
usual notion of a horizon as a causal boundary thus gets
resurrected in these theories by the existence of the UH.
Even those motions traveling at infinite speed will be
forever future trapped in the inner region once they cross
the UH. Due to this, one naively expects that UHs must
radiate, have an entropy and, in general, replicate all the
features that are usually associated with horizons in Lorentz
invariant theories.
Indeed, the thermodynamical properties of UHs have

been studied in the recent past [21,22]. In [23,24] the
tunneling picture was tentatively applied to UHs. However,
despite showing a proof of concept and anticipating the
same result we shall find for the Hawking temperature, we
feel that in these early works several technical and physical
subtleties—arising from the recently improved understand-
ing on the shape and dynamical role of the preferred
foliation—were not fully spelled out and require a more in
detailed discussion.
In particular, it has been recently shown in [25] that the

two regions bordering the universal horizon must feature a
smooth lapse, since otherwise the theory loses its predict-
ability on a fundamental level. This however contradicts the
naive expectation that the whole space-time—exterior and
interior—should be described by the same global foliation
or, at the very least, by a discrete set of discontinuous
foliations that are, however, globally oriented in the same
way. This property manifests itself in the pole structure at
the horizon, so that the construction of a well-defined
tunneling path is compromised and needs to be revisited.
As we shall see in what follows, our renewed analysis of the
gravitational tunneling in this framework exposes quite
relevant physical lessons concerning the origin and nature
of the Hawking radiation in these settings.
In this paper we aim to solve these issues by inves-

tigating and formalizing the tunneling picture for UHs in
Lorentz-violating theories in a solid way. Our work is
organized as follows: First, in Sec. II we summarize and
review the standard derivation of Hawking radiation in
general relativistic space-times through the tunneling
method. Later, in Sec. III we show how this can be applied
to the case of UHs in a straightforward way, by studying
arbitrary spherically symmetric solutions and the trajecto-
ries of gravitating fields therein, by means of the Hamilton-
Jacobi method. Due care will be given to the choice of the
privileged time direction in Sec. IV, which influences the
temperature of the emitted radiation through the UV
behavior of the dispersion relation of the field. Finally,
we draw our conclusions in Sec. V.

1From now on we use greek indices to denote space-time
coordinates—including time—and latin indices to denote spatial
directions only. We also use a mostly plus convention for the
metric signature.

2We have defined the dot-product between two vectors Xμ and
Yμ with respect to the space-time metric to be ðX · YÞ ¼ gμνXμYμ.
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II. RELATIVISTIC TUNNELING

Before we explore the trenches of Lorentz-violating
theories, we briefly review the tunneling picture in theories
with full invariance under diffeomorphisms. This allows us
to introduce the basic concepts that we will later extend to
Lorentz-breaking theories. Most importantly, it will help us
clarifying how the tunneling paths are identified, the
Hamilton-Jacobi method to describe the tunneling rate,
and the consistency criterion for a well-defined Hawking
effect. Our review is based on [13], which discusses the
relativistic framework generically also for dynamical cases.
In the following we restrict ourselves to spherically sym-
metric and static space-times. However, generalizations are
immediate.

A. Gravitational tunneling

Let us consider an asymptotically flat, static, and
spherically symmetric space-time. Its metric can always
be written in terms of outgoing (ingoing) rays of light by
using Eddington-Finkelstein-Bardeen (EFB) coordinates

ds2 ¼ −FðrÞdξ2 � 2BðrÞdξdrþ r2d2S2; ð5Þ

where d2S2 is the line element of the two-dimensional
sphere of unit radius, and ξ ¼ fu; vg is a placeholder for
the light-cone coordinates, u ¼ t − r� and v ¼ tþ r�, with
r� ¼ R

r
dr
FðrÞ the tortoise coordinate. Here the functions

FðrÞ and BðrÞ determine completely the metric. The
existence of a horizon is determined by the condition
FðrÞ ¼ 0, with FðrÞ ∈ C2ðRÞ at the least. The sign in front
of the nondiagonal term is negative (positive) for ξ≡
u (ξ≡ v).
The horizon, separating trapped and normal regions,

acts as a semipermeable surface allowing only penetra-
tion from one side. Which paths are classically allowed
depend on the nature of the trapped surface. For a black
hole, the interior becomes future trapped and only
ingoing causal trajectories can cross the horizon. This
can be seen from the null congruences in Schwarzschild
space-time, that generate the lightcone. While the ingoing
congruence l− ¼ −2∂r is inwards pointing and well
defined across the horizon, the outgoing one lþ ¼ ∂v þ
FðrÞ∂r changes its direction from outgoing to effectively
ingoing, when traveling from the (exterior) normal region
into the (interior) trapped region. This is due to the fact
that FðrÞ changes its sign across the horizon. All causal
curves in the interior are hence classically destined to stay
inside.
Similarly, causal curves outside the horizon cannot

classically have departed from within it. Indeed, they show
a singular behavior in their momentum and classical action
at the horizon. For example, for the radial momentum kr,

one finds through the Hamilton-Jacobi method3 that
kr ∼ F−1ðrÞ. A small complexification around the horizon
FðrÞ → Fðr� iεÞ can be introduced so to resolve this
problem, but this also leads to a complex action, given that
the imaginary part of the classical action

S0 ¼ −Ωvþ
Z

2Ω
Fðr� iεÞ dr; ð6Þ

is then determined by the Sokhotski-Plemelj theorem.4

Thus, an outgoing trajectory cannot start in the interior
of the black hole. The classical one-particle action would
become complex along this path, making it classically
forbidden [26]. However, things dramatically change once
quantum effects are considered, as prohibited processes
can become quantum-mechanically allowed. In particular,
horizon crossing due to gravitational tunneling becomes
possible.
Although conceptually different, it is instructive to look

first at quantum mechanical tunneling through a finite size
barrier. Suppose that we have a bounded one-dimensional
L1-integrable classical potential, such that limx→�∞
VðxÞ¼0. The probability for a quantum mechanical wave
function ΨðxÞ with energy E < max ðVðxÞÞ to tunnel
through it is given by the ratio of the norm of the
transmitted wave Ψ> divided by the norm of the incident
wave Ψ< before hitting the wall

jTj2 ¼ kΨ>k2
kΨ<k2

: ð8Þ

For any shape of the potential, as long as the potential
itself is only mildly time dependent, this can be described
by using a WKB approximation for the wave function

3Alternatively, one can use the expansion parameters θV ¼
habLVhab of a hypersurface with metric hab along a vector field
Vμ, that are negative along ingoing and positive along outgoing
directions. At the horizon, where one direction gets marginally
trapped, we get θ ¼ 0. For a Schwarzschild black hole, the
outgoing direction along lþ becomes trapped, hence, θþ changes
sign and vanishes when FðrÞ ¼ 0. The classical action S0 can be
rewritten using θþ such that the spatial momentum kr ∝ 1=θþ,
thus inducing a pole in the integral [11].

4The Sokhotski-Plemelj theorem is a relation for integrals with
a small complexification around a pole

lim
ε→0

Z
b

a
dx

fðxÞ
x� iε

¼ ∓iπfð0Þ þ P
�Z

b

a

fðxÞ
x

�
; ð7Þ

where P denotes the Cauchy principal value. An alternative path
can be taken by complexifying the Hamilton-Jacobi equation by
introducing the Feynman� iε prescription [13].
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ΨðxÞ ¼ Ψ0 exp

�
i
ℏ

X
i

SiðxÞℏi

�
: ð9Þ

To leading order, and considering the Schrödinger
equation, the solution for ingoing and outgoing waves
is determined by the classical action S0¼�R

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðE−VðxÞÞp

with E being the energy of the incident
wave andm its mass. Thus, one can understand the tunneling
process as occurring through a classically forbidden path
where the exponent becomes complex—since inside the
potential E < VðxÞ. This has some similarities with the case
of gravitational paths, as we see below.
Let us start by noting that gravitational tunneling leads to

particle creation by horizons. This has been formulated in
[2,3] for the static black hole, and then further refined to a
vast variety of examples [6]. A cartoon picture of the
process was already suggested by Hawking [1]. Close to
but still outside the horizon, a Hawking pair consisting of a
positive and a negative energy particle, can be created. The
positive energy particle escapes the gravitational well and it
is measured by an asymptotic observer, while the negative
energy one falls into the black hole (where its existence on-
shell is allowed by the spacelike nature of the Killing vector
associated with stationarity in time).
Courtesy of the energy budget provided by the black

hole, we can describe this from a different perspective.
Instead of a pair creation, we interpret the same process as a
single particle coming from the interior and tunneling
outwards in a quantum mechanical way. This is possible
because (a) we can always trade an inward-pointing
negative Killing energy particle with a positive energy,
outward-pointing one; and (b) the notion of energy pos-
itivity is linked to the Killing vector, which changes its
character at the horizon.
This idea can be made explicit by considering a massive

scalar field ϕ in the space-time described by (5) and
obeying the Klein-Gordon equation

�
□ −

m2

ℏ2

�
ϕðxÞ ¼ 0: ð10Þ

Assuming that the space-time does not change too rapidly,
we can use a WKB ansatz for the field

ϕ ¼ ϕ0e
i
ℏ

P
n
ℏnSnðxÞ ¼ ϕ0e

i
ℏS0þOðℏ0Þ; ð11Þ

with S0ðxÞ the classical action. The constant ϕ0 is allowed to
have a mild coordinate dependence, but it is usually treated
as effectively constant. We can then plug (11) into (10) to get
the Hamilton-Jacobi equation to lowest order5 in ℏ,

∂μS0∂
μS0 þm2 ¼ 0: ð12Þ

One can formulate a general ansatz for the classical
action as S0 ¼

R
dxμ∂μS0 with dxμ ¼ P

K KμðKνdxνÞ=jKj
where the vectors Kμ determine the observer, or in other
words, the vacuum state. They must be such that they span
the full chart of space-time coordinates. Generally, some of
the Kμ are chosen to reflect the symmetries of the setup,
i.e., Killing (static space-times), Kodama (spherically
symmetric but dynamical), or dual-null vector (general
space-times). In the case of a timelike Killing vector
Kμ ≡ χμ, this introduces a covariantly conserved energy,
or frequency

Ω ≔ −χμ∂μS0; ð13Þ
that defines a preferred notion of observers. The ansatz of
S0, thus, drastically simplifies to

S0 ¼ −Ωvþ
Z

krdr; ð14Þ

where we have assumed spherical symmetry. Hence, the
trajectory is completely determined by the Killing energy
and the function krðrÞ, denoting the spatial momentum.
Coming back to our discussion on the quantum-

mechanical tunneling, in a system with gravitational
tunneling, the probability to reach a classically inaccessible
region is given through complex paths, which is reminis-
cent to the case of the one-dimensional potential barrier.
The positive energy particle inside a black hole is now
interpreted to take a generically complex path across the
horizon determined by S0, as shown in Fig. 1.
The particle first travels along a past-directed null curve

to the horizon which becomes an outgoing future-directed
null path after horizon crossing. As we discussed previ-
ously in (6), this happens when kr ∼ F−1ðrÞ, which
corresponds to the outgoing trajectory. This also establishes

FIG. 1. The Killing horizon is displayed as a null line that
separates the normal (unshaded) from the trapped region (gray
shaded). The tunneling path shows a positive energy particle that
starts in the interior on a past-directed outgoing null path, crosses
the horizon on a complex path (dashed), and scatters into a future-
directed outgoing null path, once it has crossed the horizon. This
is equivalent to the negative energy particle tunneling inwards.

5In principle we could also consider the subleading term S1.
However, this does not contribute to the tunneling probability.
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a clear link between the existence of tunneling, and hence
of particle production, and the presence of a single pole in
the classical action.6

Finally, we can define the tunneling rate as the ratio
between the transmitted fraction and the incident wave [11]

Γ ¼ kϕ>k2
kϕ<k2

∼ e−
2
ℏImðS0Þ; ð15Þ

which vanishes along classical paths ImðS0Þ ¼ 0, but it is
finite otherwise. This is connected to thermodynamics by
following [29,30]. Comparing the probability for a detector
to absorb a particle Pabs with its probability to emit one Pem
at a fixed energy Ω we get

Γ≡ Pabs

Pem
¼ e−Ω=TH ; ð16Þ

thus finding that the detector is in a thermal equilibrium at
(horizon) temperature TH. The particle absorbed by the
detector coincides with the particle that has crossed the
horizon. Thus, whenever ImðS0Þ ∝ Ω, we can read off a
horizon temperature from the tunneling rate. However, the
thermodynamics is only well defined whenever the imagi-
nary part is positive definite [13]

ImðS0Þ > 0; ð17Þ
otherwise the process leads to inconsistencies such as the
violation of the probabilistic interpretation. In the sub-
sequent analysis we will show the robustness of this
criterion even in Lorentz-violating theories, which under-
lines the resilience of thermodynamic properties and the
generality of the analysis in [13].

B. Black holes in the tunneling picture

As we discussed before, the classical action for an
S-wave (spherically symmetric) in EFB coordinates is
given by (14), where all that remains to be done is to
obtain the value of kr. This is done by plugging (14) into
(12), so arriving at the Hamilton–Jacobi equation in the
EFB vacuum

2Ωkr − FðrÞk2r ¼ 0: ð18Þ
Tracing the particle that arrives to the asymptotic region of
large radius down to the horizon, we find that its momentum
diverges and that the particle thus travels on an approx-
imately light-like trajectory, which allows us to neglect the
mass term7 and solve for the radial null momentum krðrÞ.
One finds two solutions, the first corresponding to the

ingoing fields (kr ¼ 0), and which is regular across the
horizon; and the outgoing momentum [31]

krðrÞ ¼
2Ω
FðrÞ ; ð19Þ

which develops the aforementioned pole at the position of
the horizon, thus requiring to be analytically continued
in r through FðrÞ ¼ 0. In our case we choose8 FðrÞ →
Fðr − iεÞ, with ε ≪ 1. Alternatively, one can add a
Feynman iε-prescription in the Hamilton-Jacobi equation
and solve directly for the imaginary part. As a result, krðrÞ
will contribute to ImðR drkrðrÞÞ such that after some
manipulations (cf. [13] for details)

ImðS0Þ ¼ lim
ε→0

Im

�Z
r2

r1

Ωdr
κKHðr− rKH − iε

κKH
Þ
�
¼ πΩ
κKH

; ð20Þ

where we performed a near-horizon expansion FðrÞ ≅
κKHðr − rKHÞ þOððr − rKHÞ2Þ, and identified the surface
gravity of the horizon as κKH ¼ ∂F

∂r jr¼rKH. This surface
gravity can be shown to fulfill the condition lμ∇μlν ¼
2κKHlν that measures the inaffinity properties of null geo-
desics [31].
Furthermore, we implemented the crossing path of the

positive energy mode from the interior starting at r1 < rKH
and tunneling to the exterior region to r2 > rKH [2].
Comparing the tunneling rate (15) with the Boltzmann
distribution (16) we find

Γ ¼ e−2πΩ=κKH ¼ e−E=TH ; ð21Þ

yielding the standard result for the horizon temperature
TH ¼ κKH

2π .

III. NONRELATIVISTIC TUNNELING

After summarizing the tunneling approach in relativistic
theories, let us now turn to the main topic of this work. In
the following, we will extend the tunneling picture to the
case of space-times endowed with a UH in Lorentz violating
theories. In particular, we will focus on EA gravity, which
for our purposes here also includes the low energy limit of
Hořava-Lifshitz gravity. In what follows, we investigate
tunneling across UHs, and hereinafter verify the principles
formulated in [13], and revisited in the previous section, for
Lorentz breaking theories. Their persistence even in the

6Higher order poles lead to a purely real action, cf. [27,28] for
details.

7The Hamilton-Jacobi equation is soluble even in the case of
keeping the mass term. However, since we will perform later a
near horizon approximation, this term will drop out anyways and
does not add anything to the analysis but mere complication.

8The definition for a quantum process leading to a consistent
contour integral, as well as thermodynamics, was derived in [13]
and is given by ImðS0Þ > 0. This influences our choice of
analytic continuation. Note, that once a physical process is
determined, the result does not depend on the choice of the
analytic continuation. This can be seen by its independence of the
iε-prescription.
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absence of Lorentz symmetry fortifies the universality of
horizon thermodynamics.

A. Einstein-Aether gravity

We consider matter actions coupled to EA gravity, with
action

IEA ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p ðR−LUþ λðUμUμþ 1ÞÞ; ð22Þ

where R is the Ricci scalar, λ is a Lagrange multiplier
implementing a unit norm condition for the aether field
Uμ, and LU ¼ Kαβ

μν∇αUμ∇βUν, with Kαβ
μν ¼ c1gαβgμν þ

c2δαμδ
β
ν þ c3δανδ

β
μ þ c4UαUβgμν and couplings ci ∈ R.

This action is invariant under the FDiff transformations
(1), which then dictate the form of the matter action.
Hereinafter we take the simplest case of a Lifshitz scalar
field9

Im¼−
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
∂
μϕ∂μϕþ

XZ
z¼2

α2z
Λ2z−2ϕð−ΔÞzϕ

�
; ð23Þ

whose corresponding equation of motion is thus

□ϕ −
XZ
z¼2

α2z
Λ2z−2 ð−ΔÞzϕ ¼ 0: ð24Þ

Here, all the α2z are dimensionless, and we choose to
normalize α2Z ¼ 1. The scale Λ sets the momentum scale at
which Lorentz violations become relevant. In 3þ 1 dimen-
sions, usually Z ¼ 3 is chosen so to enforce power-counting
renormalizability of the gravitational action in the case of
Hořava-Lifschitz (HL) gravity [32–34]. The d’Alembert as
well as the spatial Laplace operators are given by □ ¼
gμν∇μ∇ν and Δ ¼ γμν∇μ∇ν, with γμν ¼ gμν −UμUν the
metric induced on the leafs orthogonal to the aether. We
further restrain ourselves to space-times with UHs, for
which it is a necessary condition that the aether is hyper-
surface orthogonal, taking the form (3). Examples of
vacuum solutions of this kind can be found analytically
[16] and numerically [35] for generic regions of the
parameter space of EA gravity. All of them equally
correspond to vacuum solutions of khronometric gravity
[19]. Finally, we will also require the existence of a timelike
Killing vector χμ—i.e., both metric and aether are supposed
to be Lie dragged by this field—, from which a notion of a
conserved Killing energy for a particle of four-momentum
kμ, namely Ω ¼ −ðχ · kÞ, can be derived.

Note that the equation of motion (24) generically contains
higher spatial and time derivatives, since γ00 and γ0i are
generically nonvanishing. This fact is quite problematic,
because it leads to Ostrogradsky ghosts, signaling a classical
runaway instability and a loss of unitarity in the quantum
theory. Only when the time direction is identified with the
integral lines of Uμ, the equation of motion remains second
order in time derivatives. This selects a preferred time
direction that every motion must follow within this space-
time, and thus a universal preferred frame, up to FDiff
transformations of course. In this frame, the scalar field ϕ
inherits a modified dispersion relation which can be read
from (24).
Given a particle four-momentum kμϕ ¼ −ið∂μϕÞ, it can

always be decomposed in the aether frame as

kμ ¼ ωUμ þ kρSμ; ð25Þ

where Sμ is the spacelike unit vector orthogonal toUμ. Here
ω and kρ are the energy and spatial momentum in the aether
frame

ω ¼ −ðU · kÞ; kρ ¼ ðS · kÞ: ð26Þ
Hence, in the preferred frame (24) implies the dispersion
relation

ω2 ¼ k2ρ þ
XZ
z¼1

α2z
k2zρ

Λ2z−2 : ð27Þ

Note however that these aether frame quantities are not
constant along the motion. As said before, it is the Killing
energy to be conserved along free motions under the sole
influence of metric and aether. Given the above definitions
we decompose it as

Ω ¼ ðχ · kÞ ¼ ωðU · χÞ − kρðS · χÞ. ð28Þ

B. Spherically symmetric black holes

In the following we consider arbitrary spherically sym-
metric and static solutions to the equations of motion
obtained from (22), written in the form (5) with ξ≡ v

ds2 ¼ −FðrÞdv2 þ 2BðrÞdvdrþ r2d2S2; ð29Þ

and endowed with an aether Uμ of the form [16]

Uμdxμ ¼ −
1þ FðrÞA2ðrÞ

2AðrÞ dvþ BðrÞAðrÞdr;

Sμdxμ ¼
1 − FðrÞA2ðrÞ

2AðrÞ dvþ BðrÞAðrÞdr; ð30Þ

satisfying UμUμ ¼ −1. As said above, Sμ is the vector
orthogonal toUμ, which satisfies SμSμ ¼ 1, and it is chosen

9Here we set a possible mass term to vanish. As in the
relativistic tunneling, its presence is irrelevant and thus we can
neglect it without loss of generality.
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to be inwards pointing. The functions FðrÞ, BðrÞ, and AðrÞ
must be determined case by case by solving explicitly the
equations of motion derived from (22). Hereinafter we keep
the functions arbitrary,10 albeit demanding the existence of
a Killing as well as a universal horizon. The former is
localized by the condition FðrKHÞ ¼ 0, while the latter is
given by

ðU · χÞjUH ¼ −
1þ FðrUHÞA2ðrUHÞ

2AðrUHÞ
¼ 0; ð31Þ

with χμ ¼ ð1; 0; 0; 0Þ the timelike Killing vector of the
metric. Incidentally, note that the lapse N of the foliation
described by the surfaces orthogonal to the aether field
(cf. below), is N ¼ −ðU · χÞ and so it changes sign
crossing the UH [25]. Finally, we also demand asymptotic
flatness, which implies that Uμ becomes parallel to χμ at
large radius, thus fixing the asymptotics of FðrÞ and AðrÞ
to FðrÞ ¼ AðrÞ ¼ 1 for r → ∞. Note, that there exist also
black hole solutions with maximally symmetric asymp-
totics [36].
Since the aether defines a physical foliation, it is

convenient to change coordinates into the preferred system,
that allows us to align the notion of time with the evolution
direction of the aether, such that the spatial vector will
always be tangent to the foliation. The following trans-
formation allows to change into this system, given by
fτ; ρ; ϑ;φg [37]

τ ¼ vþ
Z

Ur

Uv
dr and ρ ¼

Z
Sr
Sv

drþ v: ð32Þ

There is an important point to take into account here,
since the integral defining τ takes the form

Z
Ur

Uv
dr ¼

Z
−2BðrÞA2ðrÞ
1þ FðrÞA2ðrÞ dr; ð33Þ

it actually diverges at the UH and in its proximity
behaves as

Z
Ur

Uv
dr¼BðrUHÞAðrUHÞ

∂rNjUH
lnjr−rUHjþOðr−rUHÞ; ð34Þ

where we have expanded the lapse as N ¼ ∂rNjUH
ðr − rUHÞ, and taken into account that AðrÞ and BðrÞ are
regular everywhere. In these coordinates, the position of
the UH thus corresponds to τ → ∞, with the foliation
exhibiting an infinite accumulation there. This matches the
behavior of the light-cone coordinate u in standard

approaches to Hawking radiation (cf. [38] and references
within), and hence serves as a smoking gun to expect a
similar property from the UH. Moreover, we can also note
that the logarithm requires an analytic continuation through
r ¼ rUH. This will introduce an imaginary part that will
eventually resurface in the solution to the Hamilton-Jacobi
equation for the field in (23), in similar manner to the
relativistic case discussed in Sec. II B.
In foliation adapted coordinates the metric takes the

ADM form

ds2 ¼−ðN2−NiNiÞdτ2þ 2Nρdτdρþ γijdxidxj; ð35Þ

where the Latin indices now run over the spatial directions
fρ;ϑ;φg only. The lapse N, shift vector Ni, and spatial
metric γij, are given by

N ¼ 1þ FðrÞA2ðrÞ
2AðrÞ ; ð36Þ

Ni ¼ 0; ð37Þ

γijdxidxj ¼
ð1 − FðrÞA2ðrÞÞ2

4A2ðrÞ dρ2 þ r2d2S2; ð38Þ

where r must be understood as rðτ; ρÞ at all times. Notice
that the conditions for the existence of the UH (4) translate
in this language to N ¼ 0 and ∂rN ≠ 0, which again points
towards a full analogy with the relativistic case. This
criterion is fully consistent with the covariant criterion
given in [39].
We thus proceed as in the relativistic case, by construct-

ing a solution for the Lifshitz scalar field ϕ by means of
the WKB approximation, obtaining the corresponding
Hamilton-Jacobi equation. To this aim, we need the inverse
metric

g−1 ¼ diag

�
−

1

N2
; γρρ;

1

r2
;

1

r2 sin2ðϑÞ
�
: ð39Þ

All divergences when approaching the UH are encoded in
the behavior of the lapse, so mere observation is enough to
spot that at the UH, only g00 blows up, while the other
components remain finite. Note also that close to the
Killing horizon all coefficients are regular. This will be
important in stressing the difference between the Killing
and the universal horizon in the setting at hand.

C. WKB approximation and Hamilton-Jacobi equation

In order to derive the Hamilton-Jacobi equation we first
need to formulate an ansatz for our field through the WKB
approximation (11). Again, in the semiclassical limit, the

10In spherically symmetric setups, a generic vector contains
two independent functions. The normalization condition of the
aether fixes one of them, and as such only one variable AðrÞ is
left. The specific form of U is then chosen for computational
convenience.
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dominant contribution is given by the classical action S0.
Using the ansatz11

S0 ¼
Z

dxμ∂μS0 ¼ −
Z

ωdτ þ
Z

kρdρ; ð40Þ

where we have assumed spherically symmetric waves.
Using it, we can obtain the corresponding leading order
of the Hamilton-Jacobi equation by inserting the WKB
approximated field in (24) to get

−
ω2

N2
þ γρρk2ρþ

ðγρρÞZ
Λ2Z−2 ðk2Zρ þGðkρ;∇kρ;ΛÞÞ ¼ 0: ð41Þ

The operator Gðkρ;∇kρ;ΛÞ contains subleading terms that
depend on a combination of kρ and derivatives thereof, but
which are suppressed at the UH. Since the leading con-
tribution is given by the highest power, we singled this
term out.
To understand better the behavior of the quantum fields

across the horizon, we investigate the structure of (41) by
following the discussion in [21,22]. We distinguish two
regimes—the soft regime, corresponding to Λ → 0, and the
hard regime, where we take Λ → ∞ instead. The former
displays solutions that cross the universal horizon with
finite momentum, while in the latter they have been red-
shifted by climbing up the gravitational well, such that their
momentum diverges when traced back to the universal
horizon, lingering there eternally. As such, these hard
modes show a non-analytic behavior in ðr − rUHÞ, in
contrast to those found in the soft regime.12 A detailed
discussion of the behavior of all solutions can be found in
[21,22], and it is summarized in Fig. 2.
At any moment, outside the universal horizon but still

nearby, we have four solutions. The ingoing blue mode ϕin
(soft), the outgoing red mode ϕout (hard), and the trapped
orange mode ϕtr, which departs the UH as hard, but
eventually turns back, crossing it as a soft mode.
Although this mode is clearly different form the other
two, it mimics their behaviors when we zoom close to the
UH. In order to single out the orange mode, we would need
to trace it across the region enclosed between the two
horizons. For our purposes here, it is thus enough to talk
about soft and hard modes, since the trapped one degen-
erates locally with the ingoing and outgoing rays.
In the interior of the UH we find a similar structure,

although with the roles of ϕtr and ϕin exchanged. While the
former remains soft, the latter becomes hard when
approaching the UH from its interior. In this region we

also find a purely hard mode ϕp, corresponding to the CP
reversed—and thus also T reversed, provided that CPT is
conserved in our framework—partner of ϕout. This mode is
equally diverging as the latter in the UH, but travels from the
singularity towards the horizon.13

Once this is settled, and in order to understand the
contribution of all these modes to the tunneling probability,
we find the “soft” and “hard” limits of the Hamilton-Jacobi
equation to be

−
ω2

N2
þ γρρk2ρ þm2 þO

�
1

Λ

�
¼ 0; Soft ð42Þ

1

Λ2Z−2 ðk2Zρ þGðkρ;∇kρ;ΛÞ þOðΛÞÞ ¼ 0: Hard ð43Þ

As previously mentioned however, and differently from
the Killing energy Ω, neither ω nor kρ are constants of
motion, which obstructs the efforts of solving the previous
equations explicitly. However, we can make use of the
relation Eq. (28) among these quantities to write

ω ¼ −
kρðS · χÞ þ Ω

ðU · χÞ : ð44Þ

FIG. 2. Structure of the modes. Close to the UH and outside of
it we have four modes—ingoing ϕin, outgoing ϕout, and the two
tails of the trapped one ϕtr . However, the latter is indistinguish-
able from the former in the region r ∼ rUH. Note that the mode ϕp

is the Hawking partner to the red mode. The UH is denoted by the
purple line, while the Killing horizon is shown as a dotted line.
The zigzag line on the left depicts the singularity.

11From now on, we work in natural units such that although
formally ℏ plays the role of a smallness parameter that is later
identified with the physical ℏ, we will set it to one.

12Note that the softness is related to the character of the modes
when crossing the UH, and nothing prevents soft modes from
carrying large momentum.

13Note however that the direction of the evolution of the rays is
tied to the notion of time advance as measured by an observer.
The description depicted here corresponds to an observer sitting
outside the UH. A different observer sitting on its interior would
instead measure a reversed time flow—because the sign of their
lapse is flipped, cf. [25]—and would assign a reversed evolution
to the modes.
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We also need to solve kρ in terms of Ω and its associated
spatial momentum kr ¼ ðk · ζÞ, where ζμ is the vector
orthogonal to χμ and satisfying ζ2 ¼ −χ2, taken inwards
pointing. Contracting now (25) with ζμ and solving for kρ
we get

kρ ¼ −Θ
�
Ωþ ðU · χÞ

ðU · ζÞ kr
�
; ð45Þ

where we have defined the position dependent angle to be

Θ ¼
�
ðS · χÞ − ðS · ζÞðU · χÞ

ðU · ζÞ
�
−1
: ð46Þ

Asymptotically Θ vanishes, while close to the UH, we find
instead

ΘjUH ¼ ðS · χÞ−1: ð47Þ

By substituting these quantities into the Hamilton-Jacobi
equation, we have all the required tools to study the
contribution of all the different modes to the tunneling
probabilities.

1. Soft Hamilton-Jacobi equation

Let us start by considering the soft Hamilton–Jacobi
equation (42) with the substitutions (44) and (45). This
introduces additional dependencies on the lapse function, as
we can see by noting that ðU · χÞ ¼ −N. Additionally, we
expect these modes to cross the universal horizon with finite
momentum. Taking this into account and working close to
the universal horizon, so that N ∼ ∂rNjUHðr − rUHÞ, the
leading term in (42) becomes

ðΩþ kρðS · χÞÞ2
N4

þO
�

1

N2

�
¼ 0; ð48Þ

with solution

kρ ¼ −
Ω

ðS · χÞ : ð49Þ

In terms of kr this turns out to be

ksr¼Ω½1−ΘðS ·χÞ�ðU ·ζÞ
ðU ·χÞ¼−Ω½1−ΘðS ·χÞ�ðU ·ζÞ

N
: ð50Þ

Here we have indicated the soft (and later the hard) modes
with the superscript “s” (and “h”, respectively).
What is left is to evaluate S0 to obtain its imaginary part,

if any. In order to do this, we integrate the solution above
through a contour integral connecting the exterior and
interior of the universal horizon. Since the soft modes are
regular along the UH, they have support along r ¼ rUH and
the integration is straightforward:

ImðSs
0Þ¼ Im

�I
c
ksrðrÞdr

�

¼−
Ω½1−ΘjUHðS ·χÞUH�ðU ·ζÞUH

∂rNjUH
Im

�I
c

dr
r−rUH

�
;

ð51Þ

where we have used ðU · χÞ ¼ −N. Using again the
Sokhotski-Plemelj theorem (cf. footnote 4) to resolve the
pole in the lapse, this evaluates to

ImðSs
0Þ ¼

πΩ½1 − ΘjUHðS · χÞUH�ðU · ζÞUH
∂rNjUH

¼ 0; ð52Þ

which vanishes due to (47). This implies that the modes
following these trajectories do not escape the gravitational
well. This is in agreement with their description as purely
incoming, and thus classically allowed, through the UH.

2. Hard Hamilton-Jacobi equation

Now we take the version (43) of the Hamilton-Jacobi
equation and proceed similarly to the previous case. Note
that although it does not look dynamical, it yields a
dynamical equation for the free-falling observer once the
relation (45) is imposed. The obvious solution to (43) is
kρ ¼ 0, which in turns implies

kρ ¼ 0 → khr ¼ −Ω ×
ðU · ζÞ
ðU · χÞ : ð53Þ

As before, we again integrate khr close to the universal
horizon through a contour integral (cf. footnote 4).
However, this time we find that the hard modes do not
have support through the UH, so the tunneling path has to
be made out of combining an interior hard mode—either ϕp

or ϕin—and an exterior one—ϕout or ϕtr. In practice,
however, this simply corresponds to analytically continuing
one of the modes through the UH, while ensuring that ∂rN
is continuous—cf. [25]. Moreover, by combining the
modes in this way, we find a precise reproduction of
Hawking’s cartoon picture of gravitational tunneling.
Performing the integral, this time we find a nontrivial

contribution to the imaginary part

ImðSh
0Þ¼ Im

�I
khrðrÞdr

�
¼Ω×

ðU ·ζÞUH
∂rNjUH

Im

�I
dr

r−rUH

�

¼πΩ×
ðU ·ζÞUH
∂rNjUH

¼πΩ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−FðrUHÞ

p
∂rNjUH

; ð54Þ

where we have used (47) and evaluated ðU · ζÞUH ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−FðrUHÞ

p
.

In contrast to the ingoing mode, we obtain here instead a
nonvanishing imaginary contribution to Sh

0. This highlights
the fact that the outgoing mode corresponds to trajectories
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whose momentum diverges at the universal horizon,
developing a pole which demands an analytical continu-
ation. Classically, these are unable to cross the surface at
r ¼ rUH, but quantum mechanical tunneling makes this
possible.
Finally, as in the relativistic case, we can obtain the

temperature of the radiation composed by these modes
through a comparison with the Boltzmann distribution

Γ ¼ kϕ>k
kϕ<k

∝ e−2ImðS0Þ ≡ e−Ω=TH ð55Þ

so that

TH ¼ ∂rNjUH
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−FðrUHÞ

p : ð56Þ

Note that our result for ImðS0Þ also fulfills the property
(17) which shows that this setup admits well-defined
thermodynamics. Note in particular that in the case of
UHs discussed here, the existence of an analytic continu-
ation of N−1 through r ¼ rUH requires ∂rNjUH to be
continuous across the UH, thus connecting the consistency
of the tunneling approach with the results of [25].
Finally, we just need to evaluate the value of ∂rNjUH. In

order to do that, we construct the acceleration of the aether
aμ ¼ Uν∇νUμ, and contract it with the Killing vector,
getting

ðχ · aÞ ¼ Uν
∂νðU · χÞ ¼ −Ur

∂rN; ð57Þ

where we have used that the metric and aether are static and
that χμ is a Killing vector. Evaluating it close to the UH we
find

−
∂rNjUHffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−FðrUHÞ

p ¼ ðχ · aÞUH ¼ −2κUH; ð58Þ

where κUH is the surface gravity of the UH as derived in
[37], controlling the peeling of constant khronon hyper-
surfaces away from the UH. This is in analogy to the
standard surface gravity of a Killing horizon, which controls
the peeling of null rays away from it. Substituting this onto
(56) we finally arrive at the horizon temperature

TH ¼ κUH
π

: ð59Þ

This result agrees with that obtained in [25] by other
methods.

3. Radiation from the Killing horizon?

The analysis performed in this section hints towards the
conclusion that the UH controls the thermodynamic proper-
ties of the solution, rather than the Killing horizon. To

confirm this, we can observe what happens at the latter. In
this region of space-time, neither the elements of the
inverse metric (39), nor the relations (44) and (45) between
aether frame and EFB frame quantities diverge at the
Killing horizon. Due to this, the momentum of the modes
will also be regular when crossing the Killing horizon,
signaling that it is not a causal barrier anymore and can be
exited in a finite—perhaps long—time. Thus, the integralH
krðrÞdr along a path crossing the Killing horizon will be

strictly real for all the modes, no matter their character.
Since no mode develops a pole at the Killing horizon, there
is no need for an analytic continuation. This shows that
the UH is the sole responsible for the thermodynamical
properties of the system, being also the only true causal
boundary within the spacetime. The role of the Killing
horizon must be, at most, to introduce a gray body factor
that might distort the shape of the distribution measured by
an observer sitting at large radius, compared to the one
emitted close to the universal horizon. However, this
analysis is beyond the scope of this work.

IV. TIME REPARAMETRIZATION INVARIANCE
AND UV SENSITIVITY OF THE TEMPERATURE

In the previous section we obtained the temperature of
the radiation emitted by the UH via the Hamilton-Jacobi
method and the ansatz (40). The reader might notice that in
writing this ansatz we chose a particular foliation time τ,
which identifies the lapse function of the foliation by
N ¼ −ðU · χÞ. However, this construction is far from
unique. Indeed, as discussed in the introduction, EA
configurations are invariant under time reparametrizations,

τ → τ̂ðτÞ; ð60Þ
which preserve the form of Uμ, but not the choice of the
lapse function. Under a transformation (60) the lapse
function transforms as

N̂ ¼ dτ
dτ̂

N; ð61Þ

which has a strong effect on the value of the temperature
(56). This is not a surprise of course. Taking into account
that the temperature is a measure of the mean energy per
particle, and that time and energy are conjugated variables,
it is clear to see how a redefinition of the former affects the
latter. What thus fixes the right choice of foliation time? In
order to answer this question, we must take into account
that the rays that arrive to the asymptotic region of large
radius have climbed the gravitational well by following
free-falling trajectories, understood here as those ruled by
their equations of motion.14 Thus, we synchronize the

14These rays do not follow geodesics of the metric, but they are
nevertheless the natural trajectories with no external forces
acting.
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clocks in the asymptotic region with that dictated by the
rays. This is tantamount to select the proper vacuum state,
and the right notion of energy for the field.
In order to make this connection explicit, we aim to

compute the four-velocity of the ray close to the UH,
following [37]. We thus recall (44) and solve it together
with the dispersion relation ωðkρÞ to obtain the value of kρ.
For this, it suffices to consider only the UV limit of the
dispersion relation, since the modes that arrive at the
asymptotic region correspond to hard blue-shifted modes
close to the UH. Hence, we take ω ¼ kZρ=ΛZ−1, and
perform a WKB expansion for large momentum kρ ∼ Λ.
At leading order we get

kZ−1ρ Λ1−Z ¼ 1 − FðrÞA2ðrÞ
1þ FðrÞA2ðrÞ : ð62Þ

From here we compute the group velocity of the field as

cðkρÞ ¼
dω
dkρ

¼ Z ×
1 − FðrÞA2ðrÞ
1þ FðrÞA2ðrÞ ; ð63Þ

and we use it to build the four-velocity

Vμ ¼ Uμ þ cðkρÞSμ: ð64Þ

The vector Vμ is then employed to extract the
trajectory of the field. In particular we are interested in
dv=dr ¼ V0=V1, which close to the UH reads

dv
dr

����
UH

¼ −
Z

Z − 1

BðrUHÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−FðrUHÞ

p 1

N
þOðNÞ: ð65Þ

We can compare this with the relation dτ=dr, which can
be obtained by noting that close to the UH, U0 ∼ 0 so that

−Ndτ ¼ UμdxμjUH ¼ Urdr; ð66Þ

and therefore

dτ
dr

����
UH

¼ −
Ur

N
¼ −

BðrUHÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−FðrUHÞ

p 1

N
: ð67Þ

Thus, we observe that the clock of the rays aligns with
the foliation clock close to the UH, with a proportionality
factor

dτ
dv

¼ Z − 1

Z
; ð68Þ

which in turn implies that the ray sees a lapse

N̂ ¼ Z − 1

Z
N; ð69Þ

close to the UH. Propagating this synchronization factor
throughout our computation, we thus find

T̂H ¼ Z − 1

Z
κUH
π

; ð70Þ

which again agrees with previous results in the literature
[21,25].

V. CONCLUSIONS AND DISCUSSION

In this work, we have studied the application of the
gravitational tunneling method to derive the distribution of
radiation emitted by a universal horizon in Einstein-Aether
and Hořava-Lifshitz gravity. We have done it by focusing
on spherically symmetric black hole solutions, endowed
with a gravitating scalar field satisfying the symmetries of
the background and with an anisotropic scaling between
time and spatial directions. Our findings suggest that the
collection of knowledge built from understanding the role
of quantum fields close to the event horizon of a general
relativistic black hole translates almost straightforwardly to
the case under study here.
In particular, we have found that there exist nonvanishing

tunneling probabilities associated with classically forbidden
trajectories escaping the interior of the UH, which acts here
as a universal causal boundary, a role which is again akin
to the one of the event horizon in general relativity. The
classical action for these trajectories, which peel off the UH
when traced back in time from the asymptotic region where
our observer is placed, develops a nonvanishing imaginary
part, inherited from a pole in the spatial momentum, which
leads to a well-defined temperature once the tunneling
probability is compared to a Boltzmann distribution, given
by (70). This can be interpreted as the existence of Hawking
radiation emitted by the UH in a thermal ensemble made of
quanta of the scalar field. The advantage of the tunneling
method here with respect to other approaches is apparent.
Through analyzing the behavior of the modes of the scalar
fields close to the UH we have been able to obtain the value
of the temperature for all possible static and spherically
symmetric black hole solutions endowed with a UH. This is
in agreement with recent works where this issue is analyzed
from other directions.
An important property to highlight here is that the

temperature shows a dependence on the dispersion relation
of the scalar field through the prefactor ðZ − 1Þ=Z, where
2Z is the highest power of the spatial preferred momentum
in the square of the dispersion relation—i.e., ω2 ∼ k2Zρ at
large momentum. This factor has an important significance
for model building and for the consistency of the model
discussed here. Unless all matter species coupled to gravity
share the same UV scaling in their dispersion relation, the
temperatures of the different thermal ensembles emitted by
the black hole will differ. In such a case, it is not difficult to
envision how to construct a perpetuum mobile of the second
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kind, thus violating the laws of thermodynamics [40].
Therefore, our results here suggest that a universal high
energy behavior of the dispersion relation should exist in a
consistent theory. This is in line with findings and dis-
cussions on the renormalization group flow properties of
models coupling Hořava-Lifshitz gravity to matter actions,
where indeed a universal UV scaling is present and
controlled by the gravitational action [32].
Some open questions linger though. In particular, and

although we have determined the spectrum of radiation
emitted by the UH, there is still a lack of profound
understanding on the role of the Killing horizon in the
process. Although no radiation is emitted by this surface in
the present setting, as we have discussed in Sec. III C 3, it
might still have an important effect on the distribution of
modes measured by an observer sitting at large radius, in the
exterior of all horizons. Different rays of different energies
will climb the gravitational well at a different rate, due to the
momentum dependence of the dispersion relation and group
velocity. In particular, rays with small momentum will
linger for a long time close to the Killing horizon before
being able to escape from it, accumulating energy and
shifting their frequency. One could then expect a distortion
of the spectrum measured by an asymptotic observer when
compared to the emitted one

ρmeasuredðΩÞ ¼
Z

dΩ0

2π
GðΩ;Ω0Þ × ρemittedðΩ0Þ; ð71Þ

where the gray body kernel GðΩ;Ω0Þ encodes the effects
introduced by the Killing horizon. Its computation is
beyond the scope of this work, but is poses an exciting
problem for future research. Is the measured spectrum still
the one of a thermal ensemble with temperature T̂UH? Is it
shifted so that it looks like a thermal emission with TH
instead, thus washing off the presence of Lorentz viola-
tions? Or is it something in between?

Finally, it is worth mentioning that all of our results here
are obtained by assuming a fixed background with no
backreaction onto the geometry due to the presence of the
matter fields. In particular, the black holes discussed here
are solutions only to the low energy Lagrangian of HL
Gravity—usually denoted by L2—and described here in
terms of EA gravity, which serves as an effective field
theory description of Lorentz violations at the second
derivative level. However, the more realistic—and perhaps
UV complete [41–43]—action of HL gravity contains also
terms with four and six derivatives—in 3þ 1 dimensions.
Taking into account the fact that the modes investigated
here, and ultimately responsible of the Hawking radiation,
are blue-shifted to high energies, one could wonder if, in a
general case, they would trigger perturbations of the
geometry with comparable momentum, thus exiting the
applicability of the low energy theory L2. This would
demand the presence of the higher order terms in order to
account for their dynamics. Stability of the UH, or even of
the full space-time, in the presence of these perturbations is
so far an open problem in the field, and one that we should
keep in mind when discussing scenarios like the one in
this work.
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