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Abstract

Studies have shown that certain singular affine curves O(X) (e.g nodal cubic, lem-
niscate) admit a quantum homogeneous space structure – a right coideal subalgebra
of a Hopf algebra H such that H is faithfully flat as a O(X)-module. The starting
point of our work is to demand like their classical analogues the extension of the
quantum symmetries given by quantum groups H to the field of rational funtions of
these singular curves.

Taking this idea futher, we study the construction of Hopf algebras H acting on
a given algebra K in terms of algebra morphisms σ : K → Mn(K). This approach is
particularly suited for controlling whether these actions restrict to a given subalgebra
B of K, whether H is pointed, and whether these actions are compatible with a
given ∗-structure on K. In particular, we applied this theory to the field K = k(t) of
rational functions containing the coordinate ring B = k[t2, t3] of the cusp. We also
described an explicit example of this theory and showed how it equips the cusp with
a quantum homogeneous space structure.
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Chapter 1

Introduction

The concept of symmetry is ubiquitous in mathematics and in nature. Loosely
speaking, an object is called symmetric if it stays the same under certain trans-
formations such as rotations, reflections, and translations among others. Groups
were first understood as symmetries of certain objects and thus to study symmetries
of spaces, we study actions of groups on these spaces. For example, people study
actions of Lie groups on manifolds, and of discrete groups on rings and algebras.
Generalizing this theory, we study the actions of quantum groups (non-commutative
non-cocommutative Hopf algebras) on algebras. In particular in this thesis we will
study the (co)actions of these generalized groups on coordinate rings and function
fields of singular plane curves.

Quantum groups

The name quantum groups goes back to the work of Drinfel’d [19] who used the
basic notions of states and observables in the theory of classical and quantum me-
chanics to introduce these generalized groups. He considered in the classical setting
elements of a space X (e.g groups, manifolds) as states and functions on X as ob-
servables, and in the quantum case, he considered states as 1-dimensional subspaces
of a Hilbert space and observables as (self-adjoint) linear operators on the Hilbert
space. The collection of these observables form a unital associative algebra which,
together with added structures becomes a commutative Hopf algebra in the classical
case, and a non-commutative Hopf algebra in the quantum case. Intuitively, this
means quantization replaces commutative algebras by noncommutative ones thus,
there is a dichotomy between classical groups and quantum groups and their theo-
ries. Taking this idea further leads to the notion and theory of quantum homoge-
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2

neous spaces, the quantum analogue of classical homogeneous spaces which was first
introduced by Podleś in [42] when he found that a continuously parametrized family
{Sq(ν, µ) : q 6= 0, (0, 0) 6= (ν, µ) ∈ R≥0} of SUq(2)-spaces have “good enough” prop-
erties to be called a homogeneous space of the quantum group SUq(2). He showed
that this family is a quantum analog of the classical 2-spheres SU(2)/SO(2) and
they are famously called the Podleś’ spheres.

Quantum homogeneous space

Classically, we understand that homogenous spaces X of a group G are in bijection
with the set of cosets of G by subgroups (stabilizer of a fixed element of X). As one
would expect, this carries over to the quantum setting as Podleś showed in [43] that
the quotient of a quantum group H by a quantum subgroup corresponds to a homo-
geneous space of the quantum group H. By a quantum subgroup, we mean a Hopf
algebra H0 together with a surjective morphism of Hopf algebras π : H −→ H0 and
the quantum homogeneous space B is the set of elements of H which are invariant
under the coaction of H0 induced by π. Podleś noted that defining quantum homo-
geneous spaces in this sense is quite restrictive since he showed that quantum groups
have fewer quantum subgroups compared to their classical counterpart as shown in
the case of SUq(2) [42, Section 2]. A less restrictive and larger class of quantum ho-
mogeneous spaces is the class of embeddable quantum homogeneous spaces – these
are right comodule algebras of H together with an injective morphisms of comodule
algebras to H [43, 14, 29]. Interestingly, the quotient quantum homogeneous spaces
are embeddable. Takeuchi [48] however gave a more rigorous definition of quotient
quantum homogeneous spaces using the notion of relative Hopf modules and the
equivalence of the categories of right (H,B)-Hopf modules and of left (π(H), H)-
Hopf modules, where π is a surjective morphism of coalgebras and B ⊆ H is a right
coideal subalgebra. The equivalence of these categories require the faithful flatness
and faithful coflatness of H as a B-module respectively of H as a π(H)-comodule.
Thus following the definition given in [41, 39, 38, 46], we take quantum homogeneous
spaces to be right coideal subalgebras over which H is faithfully flat, see Definition
3.4.2.

New examples and more recent works

The study of quantum groups and their actions on commutative algebras goes back
to the question raised in Cohen’s article [16]: which Hopf algebras can (co)act on
a commutative algebra? For semisimple Hopf algebras H over algebraically closed
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fields k of characteristic 0, it was answered completely by Etingof and Walton [21],
see also [20]: if H acts inner faithfully (see Section 2.3.4) on a commutative integral
domain K, then H is a group algebra. On the other hand, there are many examples
of inner faithful actions of infinite-dimensional pointed Hopf algebras on a commu-
tative algebra even when it admits only few automorphisms and derivations. For
example, the coordinate rings B of singular plane curves are conjecturally all quan-
tum homogeneous spaces [34, 33, 12], and their containing pointed Hopf algebras H
are dually paired with Hopf algebras A ⊆ H◦ which are not in general again pointed

Results in this thesis

The starting point of our work is to demand that like classical symmetries (given by
actions of group algebras or universal enveloping algebras), these examples of quan-
tum symmetries should extend from the coordinate ring B to the field K of rational
functions on the curve. We also examine the example of the quantum homogeneous
space structure on the cusp mentioned in [32] and show that in this case, the resulting
Hopf algebra H that acts inner faithfully on the coordinate ring is not pointed, see
Remark 3.6.10 below. As the classification of Hopf algebra (co)actions on fields is an
interesting topic in its own right (see e.g. [22, 23, 25, 49, 50, 18] and the references
therein), we felt it worthwhile to begin a systematic study of such actions on function
fields that restrict to coordinate rings.

The approach we take was maybe first applied by Manin in his construction of
quantum SL(2) as a Hopf algebra (co)acting on the quantum plane [37]. More re-
cently, it was used mostly in the C∗-algebraic quantum group community in the con-
struction and study of compact quantum automorphism groups such as the quantum
permutations groups or the liberations of compact Lie groups [4, 6, 52, 7, 5, 9, 3].

In this approach, a bialgebra action on a k-algebra K is constructed from an alge-
bra morphism K → Mn(K); the bialgebra is a Hopf algebra if this morphism, viewed
as an element of Mn(Endk(K)) is strongly invertible in the sense of Definition 4.1.2
below. The general approach is well-known, but some aspects of our presentation are
to our knowledge novel, such as the connection to the theory of general linear groups
over noncommutative rings (see Section 4.1.1), the treatment of ∗-structures in the
pointed rather than the semisimple setting (see Section 4.2.8), and the application
to the field K = k(t) of rational functions (see Section 4.1.4).

Example: k[t2, t3]

Our main focus is the construction of pointed Hopf algebra (co)actions on K = k(t)
which restrict to the coordinate ring B = k[t2, t3] of the cusp. Working over a field
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k in which 2 and 3 are invertible, we construct Hopf algebras Aσ and Hσ which are
generated as algebras by γ, ψ, ϕ respectively K,D, Y . These generators satisfy the
defining relations in Proposition 4.2.24(1) respectively in Lemmas 4.2.3, 4.2.8. In
terms of these generators, the coproduct, counit, and antipode of Aσ and Hσ are
given by Proposition 4.2.24(2) respectively by

∆(K) = K ⊗K, ∆(D) = 1⊗D +D ⊗K,
∆(Y ) = 1⊗ Y − 6D ⊗DK + Y ⊗ 1,

ε(K) = 1, ε(D) = ε(Y ) = 0,

S(K) = K, S(D) = −DK, S(Y ) = −Y.

The structure of the thesis is as follows. In Chapter 2 we fix notations and give
definitions of algebras, coalgebras, bialgebras, and Hopf algebras as well as examples,
morphisms of these algebraic objects, their dualizations, (co)representations and
results characterizing them. We proceed in Chapter 3 to introduce the definition
of quantum homogeneous space in the sense discussed in the paragraphs above, and
we also talk about the motivation behind the definition of quantum homogeneous
spaces following the notations of [48, 41]. We conclude the chapter with the first
contribution of this thesis, where we show in particular that the coaction map by
which the coordinate ring k[t2, t3] of the cusp admits a quantum homogeneous space
structure must be the coaction in [32] see Sections 3.5.2, 3.6 for more details.

Chapter 4 contains the main results of this thesis with the full description of the
dually paired Hopf algebras Hσ and Aσ (co)acting on k(t). We show that they are
in fact pointed and that the embedding of the Hopf algebra Aσ ⊆ H◦σ is dense. We
also prove that for any point (λ2, λ3), λ ∈ k of the cusp, there is an embedding

ι : B = k[t2, t3] −→ Aσ

t2 7→ λ2 +
1

3
ϕ2,

t3 7→ γ + λ2ϕ+ λ3ψ

which makes k[t2, t3] a quantum homogeneous space of Aσ. Furthermore, the action
of Hσ on B and the coaction of Aσ on B both extend to (co)actions on the field
K = k(t) of rational functions, which is a step further on previously constructed
Hopf algebra (co)actions on k[t2, t3] in [34, 33, 12]. In addition, if k = C, then Hσ

becomes a Hopf ∗-algebra with K∗ = K, D∗ = −D, Y ∗ = −Y +6iD. The images of
Aσ and of B in H◦σ are ∗-subalgebras provided that λ̄ = λ; the resulting ∗-structure
on C[t2, t3] is given by t∗ = t.



Chapter 2

Preliminaries

In this chapter we will introduce the main object of our study - Hopf algebras - which
is an associative unital algebra with additional structures of a coproduct, a counit
and an antipode satisfying some axioms. Commutative Hopf algebras somewhat
generalize the notion of algebraic groups as we will show in the next chapter. We
denote unless otherwise stated by k a underlying field of characteristic 0, A to be
a k-algebra, C to be a k-coalgebra and H as a k-Hopf algebra. The definitions,
examples, and results in this chapter were adapted from [30], [31], [40], [44], and
[47].

2.1 Algebras and coalgebras

2.1.1 Definitions and examples

Definition 2.1.1. A unital associative algebra over a field k is the triple (A,m, η)
where A is a k-vector space and

m : A⊗ A −→ A, η : k −→ A

a⊗ b 7→ ab 1k 7→ 1

are k-linear maps called the multiplication (or product) respectively the unit of A
where m(a⊗ b) := ab such that the following diagrams commute

A⊗ A⊗ A A⊗ A

A⊗ A A

m⊗id

id⊗m m

m

k ⊗ A ∼= A ∼= A⊗ k A⊗ A

A⊗ A A

id⊗η

idη⊗id m

m

5
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The left commutative diagram implies

m ◦ (m⊗ id)(a⊗ b⊗ c) = m ◦ (id⊗m)(a⊗ b⊗ c)
(ab)c = abc = a(bc),

which means the linear map m is associative and that of the right diagram means

m(a⊗ η(1k)) = aη(1k) = a = m(η(1k)⊗ a) = η(1k)a.

which is referred to as the unitality of η, which in other words means that A is unital.

Thus from now on, a k-algebra is an associative unital algebra and we write A
for (A,m, η) to denote a k-algebra and we denote by Alg the category of k-algebras.

Definition 2.1.2. Let A be a k-algebra. The opposite algebra of A is the triple
(A,mop, η), where mop(a⊗ b) := ba and we write Aop to denote the opposite algebra.

Note that a k-algebra A and its opposite algebra Aop have the same underlying k-
vector space, the same unit but the multiplication in Aop is a flip of the multiplication
in A. They are the same only if A is a commutative k-algebra.

Definition 2.1.3. The algebra A is commutative if mop = m.

In what follows we give our first example of k-algebras:

Example 2.1.4. Let G be a group. The set

k[G] =

{∑
g∈G

αgg : αg ∈ k
}

of formal sums of scalar multiples of elements of G together with product defined as(∑
g∈G

αgg

)(∑
h∈G

λhh

)
=
∑
x=gh

αgλhx

and unit map given by η(1k) = e, (e is the unit element of G) is a k-algebra. k[G] is
called a group algebra and it becomes commutative only when G is an abelian group.

Like k-algebras, k-coalgebras have an underlying vector space that is in addi-
tion equipped with some structure maps, but now they go the opposite way round.
In the language of category theory, k-algebras are monoids in the category of vec-
tor spaces and k-coalgebras are monoids in the opposite category (with the same
monoidal structure). Thus, the arrows of the structure maps defining a k-algebra in
the commutative diagrams above are now reversed. More precisely
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Definition 2.1.5. A coalgebra over a field k is a triple (C,∆, ε) where C is a k-vector
space and ∆ : C −→ C ⊗ C and ε : C −→ k are k-linear maps called the coproduct
respectively the counit of C such that the diagrams

C C ⊗ C

C ⊗ C C ⊗ C ⊗ C

∆

∆ ∆⊗id

id⊗∆

C C ⊗ C

C ⊗ C k ⊗ C ∼= C ∼= C ⊗ k

∆

id
∆ id⊗ε

ε⊗id

commute. The commutativity of the first and second diagram imply coassociativity
of ∆ respectively counitality of ε.

Note that the tensor product C ⊗ C ⊗ C in the first commutative diagram is
a somewhat sloppy notation for C ⊗ (C ⊗ C) ∼= (C ⊗ C) ⊗ C. The coproduct
∆(c) ∈ C ⊗C is denoted by a symbolic sum which in Sweedler’s notation is written
as ∆(c) =

∑
c(1) ⊗ c(2) but we will drop the summation symbol and write ∆(c) =

c(1) ⊗ c(2). The coassociativity condition (∆⊗ id) ◦∆ = (id⊗∆) ◦∆ encoded in the
first commutative diagram in Sweedler’s notation means

c(1)(1) ⊗ c(1)(2) ⊗ c2 = c(1) ⊗ c(2)(1) ⊗ c(2)(2),

which is symbolically written as c(1) ⊗ c(2) ⊗ c(3), and the counitality condition (ε⊗
id) ◦∆ = id = (id⊗ ε) ◦∆ encoded in the second commutative diagram means

c(1)ε(c(2)) = c = ε(c(1))c(2).

From now on, we shall denote the k-coalgebra (C,∆, ε) by C and Coalg the category
of k-coalgebras. The dual of commutativity is cocommutativity, and to define this
we first define the linear map τM,N : M ⊗ N −→ N ⊗M, m ⊗ n 7→ n ⊗ m for
k-vector spaces M, N and it is called the flip morphism.

Definition 2.1.6. The opposite coalgebra of the k- coalgebra (C,∆, ε) is the triple
(C,∆cop, ε), where ∆cop = τC,C ◦∆ that is ∆cop(c) = c(2) ⊗ c(1) and we write Ccop to
denote the opposite coalgebra.

Similar to their algebra counterparts, a k-coalgebra C and its opposite coalgebra
Ccop have the same underlying vector space, counit but the coproduct of Ccop is
the flip of the coproduct of C. Note that Ccop is indeed a coalgebra, since the new
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coproduct ∆cop satisfies the coassociativity and counitality conditions

(∆cop ⊗ id) ◦∆cop = ((τ ◦∆)⊗ id) ◦ (τ ◦∆) = τ ◦ (∆⊗ id) ◦∆

= τ ◦ (id⊗∆) ◦∆ = (id⊗ (τ ◦∆)) ◦ (τ ◦∆)

= (id⊗∆cop) ◦∆cop.

(ε⊗ id) ◦∆cop(c) = ε(c(2))c(1) = c

= ε(c(1))c(2) = c(2)ε(c(1))

= (id⊗ ε) ◦∆cop.

Definition 2.1.7. A coalgebra C is said to be cocommutative if ∆ = ∆cop.

Thus if C is cocommutative then C and Ccop are the same.

Example 2.1.8. The group algebra k[G] described in Example 2.1.4 is also a coal-
gebra: It suffices to define the coproduct on the basis G of k[G] as

∆(g) = g ⊗ g ∀ g ∈ G,

and by the counitality condition, ε(g) = 1. This definition extends linearly to the
whole of k[G] and it is obvious to see that ∆ is coassociative and in fact ∆ = ∆cop

thus, kG is is a cocommutative coalgebra.

We recall the definitions of subalgebras and ideals of a k-algebra A. A k-
subalgebra of A is a k-vector subspace V of A such that m(V ⊗V ) ⊆ V . A left (resp.
right) ideal I of A is a k-vector subspace such that m(A⊗ I)(resp. m(I ⊗ A)) ⊆ I.
The dual counterparts of these subobjects in the category of coalgebras are defined
as follows

Definition 2.1.9. Let C be a k-coalgebra, then

1. A subcoalgebra D of C is a k-vector subspace of C such that ∆(D) ⊆ D ⊗D.

2. A left (resp. right) coideal I of C is a subspace with the property that ∆(I) ⊆
C ⊗ I (resp. I ⊗ C).

3. A subspace I of C is called a coideal if ∆(I) ⊆ C ⊗ I + I ⊗ C and ε(I) = 0.

Just as we can construct a new algebra by taking quotient with a two-sided ideal,
so also we can obtain a new coalgebra by taking quotient with a coideal.
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Definition 2.1.10. A k-coalgebra C is called simple if it has exactly two subcoal-
gebras - the trivial subcoalgebra {0} and itself.

This class of subcoalgebras is very important in the theory of k-coalgebras as
they help in the classification of coalgebras as pointed or semisimple coalgebras and
also in constructing coradical filtrations of coalgebras. We now state the result which
shows that locally, every k-coalgebra is finite dimensional.

Theorem 2.1.11. [47, Theorem 2.2.1] Let C be a k-coalgebra, and c ∈ C. Then,
the subcoalgebra generated by c is finite dimensional.

The subcoalgebra of C generated by c ∈ C is the intersection of all subcoalgebras
of C containing c. This theorem is called the fundamental theorem of coalgebras in
[47] and a consequence of this theorem is the following result

Corollary 2.1.12. [47, Lemma 8.0.1(a)] Every simple subcoalgebra is finite dimen-
sional.

Recall that a map f : A −→ B of k-algebras (A,mA, ηA), (B,mB, ηB) is a k-
linear map such that for all a ∈ A, b ∈ B, f(ab) = f(a)f(b) and f(1A) = 1B which
is the same as saying

f ◦mA = mB ◦ (f ⊗ f), ηA ◦ f = ηB.

Passing to the dual, we can also define a coalgebra map between k-coalgebras (C,∆C , εC)
and (D,∆D, εD) by reversing the composition in the definition of an algebra map.

Definition 2.1.13. A coalgebra map is a linear map of k-vector spaces f : C −→ D
such that (f ⊗ f) ◦∆C = ∆D ◦ f and εD ◦ f = εC . That is for all c ∈ C,

f(c)(1) ⊗ f(c)(2) = f(c(1))⊗ f(c(2)), and εD(f(c)) = εC(c). (2.1.1)

Recall that if f : A −→ B is an algebra map, then ker f is an ideal of A.
Similarly given a coalgebra map g : C −→ D, the kernel ker g of g is a coideal of
C: let x ∈ ker g, then εC(x) = εD ◦ g(x) = 0 thus, εC(ker g) = 0, and ∆(ker g) ⊆
C⊗ker g+ker g⊗C since 0 = ∆D ◦g(x) = (g⊗g)◦∆C(x), that is ∆(x) ⊆ ker g⊗g.

An isomorphism of coalgebras is a linear isomorphism f which satisfies equation
(2.1.1). The underlying field k is a coalgebra over itself with coproduct ∆ = id
and counit ε = id, thus a trivial example of a coalgebra map is the counit map of
coalgebra C, ε : (C,∆, ε) −→ (k, id, id).

Definition 2.1.14. Let C be a k-coalgebra, an element 0 6= c ∈ C is called group-like
if ∆(c) = c⊗ c.
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We denote by G(C) the set of group-like elements of C, and from the counitality
property of ε, it follows that ε(c) = 1 for all c ∈ G(C), however, some authors say
group-like means ∆(c) = c⊗c and ε(c) = 1 to stress that c 6= 0. The name group-like
is motivated from the fact that these elements have properties like the group elements
g ∈ kG and as we will see later, they also have inverses if C is a Hopf algebra.

Remark 2.1.15. The set G(C) is a linearly independent subset of C since it is the
basis of the subcoalgebra (a group algebra) k[G(C)] of C.

Lemma 2.1.16. [47, Lemma 8.0.1(e)] Let C be a k-coalgebra. Then the elements
g ∈ G(C) are in 1-1 correspondence with 1-dimensional subcoalgebras of C.

Definition 2.1.17. Let C be a coalgebra over k, an element x ∈ C is called primitive
if ∆(x) = 1⊗ x+ x⊗ 1 however, x is called twisted primitive(or (g, h)- primitive) if
for some g, h ∈ G(C), ∆(x) = g ⊗ x+ x⊗ h.

The set of (g, h)-primitive elements is denoted by Pg,h, thus a primitive element
belongs to the set P1,1. From the counitality condition of ε one easily deduce that
for all x ∈ Pg,h, ε(x) = 0.

Example 2.1.18. Let g be a Lie algebra over k and (U(g), ) be its universal envelop-
ing algebra – that is U(g) is an associative unital k-algebra and  : g −→ U(g) a mor-
phism of Lie algebras, where U(g) is U(g) together with Lie bracket [g, h] = gh−hg
for all g, h ∈ g. Suppose (A, ı) is an enveloping algebra of g, then by universality of
(U(g), ), there exist a unique algebra map Λ : U(g) −→ A such that Λ ◦  = ı. Now
take U(g) =

⊕
i=0 g

i/I, where I is the ideal generated by all elements of the form
[x, y]− xy + yx for all x, y ∈ g, then (g) generates U(g) as an algebra.

The homomorphisms of Lie algebras

δ : g −→ U(g)⊗ U(g), g 7→ (g)⊗ 1 + 1⊗ (g)

and 0 : g −→ k yield by the universal property of U(g) the algebra maps

∆ : U(g) −→ U(g)⊗ U(g) respectively ε : U(g) −→ k

such that ∆ ◦  = δ, and ε ◦  = 0. It is straightforward that ∆ and ε satisfy
the coassociativity respectively counitality conditions on (g). Thus, the subalgebra
(g) ⊆ U(g) comprise primitives since for all x ∈ (g) the coproduct and counit are
given by

∆(x) = 1⊗ x+ x⊗ 1, ε(x) = 0.
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The group algebra k[G] and the universal enveloping algebra U(g) are examples
of pointed coalgebra and they are very important in the study of the class of pointed
Hopf algebra. One of the important tools used in studying pointed Hopf algebras is
the coradical.

Definition 2.1.19. Let C be a k-coalgebra. The coradical of C is the sum of the
simple subcoalgebras of C and it is denoted by C0.

Definition 2.1.20. A filtration of a k-coalgebra C is a family of subspaces {Vn}∞n=0

of C satisfying

V0 ⊆ V1 ⊆ · · ·
∞⋃
n=0

Vn = C

and the following property: for all n ≥ 0,

∆(Vn) ⊆
n∑
l=0

Vn−l ⊗ Vl.

Whenever such a filtration exists, C is called a filtered coalgebra and the existence
of a filtration is useful in making inductive proofs of statements about coalgebras.

Proposition 2.1.21. [44, Proposition 4.1.2] Suppose {Vn}∞n=0 is a filtration of a
coalgebra C. Then any simple subcoalgebra of C is contained in V0.

In view of this result, it is clear that the coradical C0 ⊆ V0 and this prompts the
definition of a very useful type of filtration in the theory of coalgebras – the coradical
filtration – which we define as follows. Let V,W be two subspaces of C, then their
wedge product V

∧
W = ∆−1(V ⊗ C + C ⊗W ). Note that this is the kernel of the

tensor product
πV ⊗ πW : C ⊗ C −→ C/V ⊗ C/W

of the projections πV and πW of C to the quotient spaces C/V respectively C/W .
Replacing W with V in the wedge product formula and setting

∧0 V = 0,
∧1 V = V ,

then for n > 1 define Vn :=
∧n V :

Definition 2.1.22. The coradical filtration of a k-coalgebra C is {Cn}∞n=0 where for
all n ≥ 1, Cn =

∧n+1 C0 and C = ∪∞n=0Cn.

Definition 2.1.23. A pointed coalgebra is a k-coalgebra C whose simple subcoalge-
bras are 1-dimensional.

In other words, recalling Lemma 2.1.16, a pointed coalgebra is a coalgebra C
whose coradical C0

∼= k[G(C)] is the grouplike coalgebra.
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Remark 2.1.24. In the literature [2, 10] pointed coalgebras are also defined to be
coalgebras whose simple comodules are 1-dimensional.

In a pointed coalgebra, we have a better description of the subcoalgebra C1 =∧2C0 in the coradical filtration: C1 comprises twisted primitives since ∆(C1) ⊆
C1 ⊗ C0 + C0 ⊗ C1 and for any x ∈ Pg,h, we see that ∆(x) = g ⊗ x + x⊗ h, x ∈ C1

thus C1 ⊃ Pg,h, and it is not difficult to see that Pg,h ⊆ C1 hence, C1 = C0 ⊕ Pg,h.

2.1.2 The dual (co)algebra

Let C be a coalgebra and C? := Homk(C, k) be the vector space dual of C, that is,
the set of all linear functionals on C. C? is a k-algebra, and it is called the dual
algebra of C. The algebraic structure for the k-vector space C? is defined using the
coalgebra structure of C: the transpose of the coproduct ∆ of C is the linear map
∆? : (C⊗C)? −→ C?, and we understand that C?⊗C? ⊆ (C⊗C)? via the injection
map defined for all c, d ∈ C as

j : C? ⊗ C? −→ (C ⊗ C)?,

c? ⊗ d? 7→ j(c? ⊗ d?)(c⊗ d) = c?(c)d?(d).

Thus we define the multiplication map m on C? as m = ∆?|C?⊗C? that is for all
c ∈ C

m : C? ⊗ C? −→ C?

f ⊗ g 7→ m(f ⊗ g)(c) = (f ⊗ g) ◦∆(c) = f(c(1))g(c(2))

and the unit map η = ε? : k?(= k) −→ C?, the dual of the counit ε.

Proposition 2.1.25. Let C be a k-coalgebra. Then the triple (C?,m, η) as defined
above is a k- algebra.

Proof. We only need to check that m and η satisfy the associativity and unitality
conditions: for all f, g, h ∈ C?, c ∈ C,

m ◦ (m⊗ id)(f ⊗ g ⊗ h)(c) = m((fg)(c(1)))⊗ h(c(2))

= f(c(1)(1))g(c(1)(2))h(c(2)) = f(c(1))g(c(2))h(c(3))

m ◦ (id⊗m)(f ⊗ g ⊗ h)(c) = f(c(1))⊗m(g ⊗ h)(c(2))

= f(c(1))g(c(2)(1))h(c(2)(2)) = f(c(1))g(c(2))h(c(3)),
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the equality of these two equations follows from the coassociativity of ∆ on C. The
unitality axiom follows from

m ◦ (η ⊗ id)(1k ⊗ f)(c) = ((1k ◦ ε)⊗ f) ◦∆(c)

= ε(c(1))f(c(2)) = f(ε(c(1))c(2)) = f(c)

and a similar straightforward computation as above shows m ◦ (id⊗ η) = id.

Definition 2.1.26. Let C be a coalgebra over k. The algebra (C?,m, η) defined in
Proposition 2.1.25 is called the dual algebra of C. We usually write C? for (C?,m, η).

On the other hand, constructing the dual coalgebra of an algebra is not as straight-
forward as its coalgebra counterpart. The challenge is that we do not automatically
get the finiteness property that is inherent in coalgebras in the linear dual space
A? = Homk(A, k) of A. To fix this problem, we define a subspace of A? and it is
this subspace we equip with a coalgebra structure induced by the algebra structure
on A.

Definition 2.1.27. Let A be an algebra. A cofinite ideal is an ideal J ⊆ A such
that A/J is finite dimensional.

Definition 2.1.28. For an algebra A, we define

A◦ = {g ∈ A? : ker(g) contains a cofinite ideal}.

Indeed, A◦ is a subspace of A? since it is closed under scalar multiplication and
addition: let f, g ∈ A◦, then f+g ∈ A◦ since ker(f+g) ⊃ ker(f)∩ker(g). However,
if A is a finite dimensional algebra over the field k, then A◦ = A?.

Lemma 2.1.29. [47, Lemma 6.0.1], Suppose A and B are algebras and f : A −→ B
is an algebra map. Then

(i) The dual map f ? : B? −→ A? has f ?(B◦) ⊆ A◦.

(ii) A? ⊗B? ⊆ (A⊗B)? implies that A◦ ⊗B◦ = (A⊗B)◦.

Given a k-algebra (A,m, η), with m? : A? −→ (A⊗ A)?, by (i) of Lemma 2.1.29
above, we have m?(A◦) ⊆ (A ⊗ A)◦ and since A? ⊗ A? ⊆ (A ⊗ A)?, then by (ii)
of Lemma 2.1.29, we have m?(A◦) ⊆ A◦ ⊗ A◦. The coproduct on A◦ is defined as
∆ = m?|A◦ and the counit ε = η?|A◦ .

Proposition 2.1.30. Let A be a k-algebra, then the triple (A◦,∆, η) with ∆ = m?|A◦
and ε = η?|A◦ is a coalgebra.



14

Proof. We need to show that the coassociativity and counitality axioms are satisfied
by ∆ and ε as defined above and we show this using commutative diagram

A◦ A◦ ⊗ A◦

A◦ ⊗ A◦ A◦ ⊗ A◦ ⊗ A◦

A? (A⊗ A)?

(A⊗ A)? (A⊗ A⊗ A)?

∆

∆

id⊗∆
∆⊗id

m?

m?

(id⊗m)?
(m⊗id)?

Notice that the bottom diagram is commutative because it is the dual of a commu-
tative diagram encoding the associativity of m, that is

(id⊗m)? ◦m? = (m ◦ (id⊗m))? = (m ◦ (m⊗ id))? = (m⊗ id)? ◦m?.

Furthermore, since the vertical maps are injections and because of the definition of
∆, we have that the front, rear, right and left square diagrams commute, thus the
coassociativity condition follows from the commutativity of the top diagram

(∆⊗ id) ◦∆ = (m⊗ id)? ◦m? = (id⊗m)? ◦m? = (id⊗∆) ◦∆.

Next, we show using the unitality condition of η of A, that ε(as defined above) of A◦

satisfies the counitality condition

(ε⊗ id) ◦∆ = (η? ⊗ id) ◦m?|A◦ = (m ◦ (η ⊗ id))?|A◦ = id?

= (m ◦ (id⊗ η))?|A◦ = (id⊗ η?) ◦m?|A◦ = (id⊗ ε) ◦∆.

Definition 2.1.31. Let A be an algebra. The coalgebra (A◦,∆, ε) defined in Propo-
sition 2.1.30 is the dual coalgebra of A.

Remark 2.1.32. In [44], the definition of A◦ given is more practical as it is useful for
computations involving A◦. This alternative definition also ensures that finiteness is
built into the coalgebra structure of A◦ and we give this definition as follows

A◦ = {a? ∈ A? : ∀ a, b ∈ A, a?(ab) =
r∑
i=1

a?i (a)b?i (b)},

that is ∆(a?) =
∑

i a
?
i ⊗ b?i , for fixed a?i , b

?
i .



15

Example 2.1.33. Let Mn(k) be the algebra of n × n matrices with entries in the
field k. Consider the functional

uij : Mn(k) −→ k, M 7→ mij

on Mn(k), then the linear span {uij : i, j ∈ N} is a coalgebra with coalgebra structure
given by

∆(uij) =
n∑
k=0

uik ⊗ ukj , ε(uij) = δij.

This coalgebra is the dual coalgebra of the algebra Mn(k) and it is called the matrix
coalgebra.

Relationship between (co)algebras and their duals

As one would expect, there is a natural relation between (co)algebras and their duals.
Categorically, we can think of these dualizations as contravariant functors:

(−)? : Coalg −→ Alg, (−)◦ : Alg −→ Coalg.

C 7→ C? A 7→ A◦

Having shown that C? and A◦ are dual algebra and coalgebra respectively, we only
need to show that given a map of coalgebras f : C −→ D, then (f)? = f ? : D? −→ C?

is an algebra map: let d?1, d
?
2 ∈ D?, c ∈ C, then

(f ? ◦mD)(d?1 ⊗ d?2)(c) = f ?(mD(d?1 ⊗ d?2))(c) = mD(d?1 ⊗ d?2)(f(c))

= d?1 ⊗ d?2(∆D ◦ f)(c) = (d?1 ⊗ d?2) ◦ ((f ⊗ f) ◦∆C)(c)

= d?1(f(c(1)))d
?
2(f(c(2))) = f ?(d?1)(c(1))f

?(d?2)(c(2)),

thus, f ?(d?1d
?
2) = f ?(d?1)f ?(d?2), in addition, f ? preserves the unit of the algebra D?

f ?(1D?) = 1D? ◦ f = ηD?(1k) ◦ f = εD ◦ f = εC = ηC? = 1C? .

Similarly, we will show that given a k-algebra map g : A −→ B, then

(g)◦ = g◦ : B◦ −→ A◦, b◦ 7→ g◦(b◦)(a) = b◦(g(a))

is a map of k-coalgebras: let a, a′ ∈ A and b◦ ∈ B◦,

(∆A◦ ◦ g◦)(b◦)(a⊗ a′) = ∆A◦(g
◦(b◦))(a⊗ a′) = (g◦(b◦)) ◦m(a⊗ a′)

= b◦(g(aa′)) = b◦(g(a)g(a′)) = ∆B◦(b
◦)(g(a)⊗ g(a′))

= (g◦ ⊗ g◦) ◦∆B◦(b
◦)(a⊗ a′).

Hence, ∆A◦ ◦ g◦ = (g◦ ⊗ g◦) ◦∆B◦ , in addition εA◦ ◦ g◦ = η?A|A◦ ◦ g◦ = η?B|B◦ = εB◦ .
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Theorem 2.1.34. [47, Theorem 6.0.5] The contravariant functors (−)◦ and (−)?

are adjoint to each other. In other words, given a k-algebra A and a k-coalgebra C,
there is a 1− 1 correspondence between the sets,

Alg(A,C?)←→ Coalg(C,A◦).

The correspondence can be understood by considering the maps

Ψ : Alg(A,C?) −→ Coalg(C,A◦)

A
f−→ C? 7→ C

i
↪−→ (C?)◦

f◦−→ A◦

where i is the natural C −→ C?? whose image lies in C?◦, and

Φ : Coalg(C,A◦) −→ Alg(A,C?)

C
g−→ A◦ 7→ A

π−→ (A◦)?
g?−→ C?.

From the definition of Ψ and Φ, it can be straightforwardly shown that they are
inverses of each other, that is Ψ ◦ Φ = ICoalg(C,A◦) and Φ ◦Ψ = IAlg(A,C?).

Remark 2.1.35. (1) The natural map i : C −→ C?? has its image in C?◦ because
the left module action of C? on C defined by c? · c = c(1)c

?(c(2)) is finite
dimensional and generated by the c(1) and by Proposition (6.0.3) of [47], the
conclusion follows.

(2) The injection map A◦ ↪→ A? induces the surjective map A?? −→ A◦? which in
turn yields π : A ⊆ A?? −→ A◦?.

There is also a very nice correspondence between the subobjects of the categories
Alg and Coalg which we state in the following result

Proposition 2.1.36. [44, Proposition 2.6.4] Let A be a k-algebra. Then,

(1) If a subspace I ⊆ A is a subalgebra (resp. ideal, left ideal, right ideal) of A,
then I⊥ ∩ A◦ is a coideal (resp. subcoalgebra, left coideal, right coideal) of A◦.

(2) If a subspace U of A◦ is a coideal (resp. subcoalgebra, left coideal, right coideal)
of A◦, then U⊥ is a subalgebra (resp. ideal, left ideal, right ideal) of A.
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2.2 Bialgebras and Hopf algebras

2.2.1 Definitions and examples

In the previous sections, we gave definitions and some examples of algebras and
coalgebras. Here, we want to discuss objects that have both of these structures -
bialgebras and Hopf algebras.

Definition 2.2.1. A bialgebra over a field k is a tuple (B,m,∆, η, ε) comprising an
algebra structure (B,m, η) and a coalgebra structure (B,∆, ε) such that either of
the following is satisfied

(1) m and η are coalgebra maps,

(2) ∆ and ε are algebra maps.

The two axioms stated in the above definition are equivalent for instance, if ∆ is
an algebra map then it follows that ∆B ◦m = (m ⊗m) ◦ ∆B⊗B which means that
m : B ⊗B −→ B is a morphism of k-coalgebras.

In practice, bialgebras are often constructed as quotients of free bialgebras on
coalgebras. This process is an extension of the free algebra construction on sets
or vector spaces and the universal mapping property of free algebras to bialgebras.
Let (C, δ, e) be a k-coalgebra, then define a free algebra (T (C), ι) on the underlying
vector space of C, where i : C −→ T (C) is an injective linear map, recall that
T (C) =

⊕
nC
⊗n. By the universal property of free algebras, the linear maps (ι ⊗

ι) ◦ δ : C −→ T (C)⊗ T (C) and e : C −→ k yield algebra morphisms

∆ : T (C) −→ T (C)⊗ T (C), ι(c) 7→ (ι⊗ ι) ◦ δ(c),

respectively,
ε : T (C) −→ k ι(c) 7→ e(c).

It is easy to check that (∆⊗idT (C))◦∆ = (idT (C)⊗∆)◦∆ and (ε⊗idT (C))◦∆ = idT (C),
thereby making (T (C),∆, ε) a coalgebra and hence a bialgebra. The analogue of the
universal property of free algebras for free bialgebras is given as follows: suppose
f : C −→ A is a coalgebra map from coalgebra C to bialgebra A, then there is a
unique map of bialgebras F : T (C) −→ A such that F ◦ ι = f .

Definition 2.2.2. Let C be a k-coalgebra, then the free bialgebra on C is the pair
(T (C), ι) described above.
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(T (C), ι) is also called the tensor bialgebra on the coalgebra C, and the following
result shows that every bialgebra B is a quotient of the free bialgebra T (C) on any
coalgebra C that generates B as an algebra.

In particular, taking C = B yields:

Theorem 2.2.3. [44, Corollary 5.3.3] Let B be a k-bialgebra, then there exists a
k-coalgebra C and a surjective bialgebra map T (C) −→ B.

We shall see the full application of this result in Section 4.2.

Definition 2.2.4. Let (B,m,∆, η, ε) be a k-bialgebra, an antipode S on B is a
k-linear map S : B −→ B satisfying the relation

m ◦ (S ⊗ id) ◦∆ = η ◦ ε = m ◦ (id⊗ S) ◦∆. (2.2.1)

To understand the role of the antipode better, we will describe the convolution
algebra Hom(C,A) of a coalgebra C and an algebra A.

Definition 2.2.5. The convolution algebra Hom(C,A) of a coalgebra C and an
algebra A is the algebra of all k-linear maps f : C −→ A with multiplication defined
as

f • g = m ◦ (f ⊗ g) ◦∆

for all f, g ∈ Hom(C,A) and the unit element is η ◦ ε.

It thus follows that the antipode equation (2.2.1) means that S is the inverse of
the identity map id in the convolution algebra End(B), since the antipode equation
can be written as S • id = η ◦ ε = id • S in the convolution algebra of B.

Remark 2.2.6. The antipode S is a k-linear map but it is anti-multiplicative and
is an anti coalgebra map that is for all a, b ∈ B,

S(ab) = S(b)S(a), ∆ ◦ S = τ ◦ (S ⊗ S) ◦∆.

In other words, the antipode is an algebra map S : B −→ Bop from B to Bop,
its opposite bialgebra (has an underlying opposite algebra structure) and is also
a coalgebra map B −→ Bcop from B to its opposite bialgebra(has an underlying
opposite coalgebra structure).

Definition 2.2.7. A Hopf algebra H is a bialgebra (H,m,∆, η, ε) equipped with a
linear map S satisfying (2.2.1).
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Example 2.2.8. (1) The universal enveloping algebra U(g) of a Lie algebra g in
Example 2.1.18 is a Hopf algebra: recall from Example 2.1.18 that ∆ and ε
are algebra maps by the universality of U(g) and they extend from jmath(g)
to the entire algebra U(g). A direct substitution into the antipode equation
yields S(x) = −x.

(2) The group algebra kG described in (2.1.4) is a Hopf algebra since for all g, h ∈
G, the coproduct and counit are algebra maps

∆(gh) = gh⊗ gh = (g ⊗ g)(h⊗ h) = ∆(g)∆(h)

ε(gh) = 1 = ε(g)ε(h),

it follows from the antipode equation, S(g) = g−1.

(3) Sweedler’s Hopf algebra: This is a 4-dimensional Hopf algebra H with basis
{1, g, x, xg}. H is generated as an algebra by x, g satisfying the relations

g2 = 1, x2 = 0, gx = −xg,

with Hopf algebra structure given by

∆(g) = g ⊗ g, ∆(x) = 1⊗ x+ x⊗ g, ε(g) = 1,

ε(x) = 0 S(g) = g−1 = g, S(x) = −xg.

Moreover, since the simple subcoalgebras are of the form kg, for g ∈ G(H)
hence, they are 1-dimensional and thus H is pointed.

(4) A generalization of the Sweedler’s Hopf algebra is the classHn,q of n-dimensional
Hopf algebras called Taft’s algebras with basis {aixj : 0 ≤ i, j < n} and gen-
erated by grouplike element a and (1, a)-twisted primitive element x satisfying
the relations

an = 1, xn = 0, ax = qxa,

where qn = 1 and q ∈ k and with antipode given by S(a) = a−1, S(x) = −xa−1.

In the following we give definitions of subobjects in the categories of bialgebras
and Hopf algebras over a field k.

Definition 2.2.9. (1) A Hopf subalgebra B ⊆ H is a subbialgebra of H that is
invariant with respect to the antipode, that is S(B) ⊆ B.

(2) A Hopf ideal is a subspace I ⊆ H which is a biideal – an ideal that is also a
coideal – such that S(I) ⊆ I.
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(3) Given a Hopf ideal I of H, we define the quotient Hopf algebra as the algebra
H/I with Hopf structure inherited from H.

A set X is said to generate an algebra A over a field k if every element a ∈ A
can be expressed as sum of words in the alphabet X. In other words, A = kX is
the free algebra on the set X. This construction extends to the construction of free
bialgebras T (C) on coalgebras C (where C is viewed as a vector space that generates
T (C)) as in Definition 2.2.2.

Following [44, section 7.5], we want to briefly discuss the construction of free Hopf
algebras on coalgebras. We do this in three steps, first we explain what it means for a
coalgebra to generate a Hopf algebra as an algebra, then we equip the free bialgebra
constructed above with an antipode and then we conclude.

Suppose C is a coalgebra which generates a Hopf subalgebra B ⊆ H as an algebra,
then C = C +S(C) +S2(C) + · · · is a subcoalgebra of B since the sum of coalgebras
is again a subcoalgebra and in fact S(C) ⊆ C. Thus, the subalgebra that C generates
is a sub-bialgebra of B that is invariant under S and contains C. Hence, C generates
H as a Hopf algebra if C generates B as an algebra and note that S|C : C −→ Ccop is
a coalgebra map.

Let (T (C), ι) be the free bialgebra on the coalgebra C, and ζ : C −→ Ccop be a
coalgebra map. Then, the composite

ι ◦ ζ : C −→ T (C)opcop

is a coalgebra map (note that we need op for the composite to be a coalgebra map)
and by the universality of T (C), we have a bialgebra map S : T (C) −→ T (C)opcop

such that S ◦ ι = ι ◦ ζ (that is S(ι(C)) ⊆ im(ι) meaning im(ι) is invariant under S).
We now equip T (C) with an antipode by setting I ⊆ T (C) to be the ideal generated
by the elements

S(c(1))c(2) − ε(c)1 c(1)S(c(2))− ε(c)1,
for all c ∈ ι(C). I is a coideal: using the fact that S is a bialgebra map, we obtain

ε(S(c(1))c(2) − ε(c)1) = ε⊗ ε(ι(c(2))⊗ c(1))− ε(c) = ε(c(2)ε(c(1)))− ε(c) = 0,

and setting u(c) := S(c(1))c(2) − ε(c)1, we have

∆(u(c)) = u(c)⊗ S(c(1))c(2) + 1⊗ u(c).

Hence I is a bi-ideal and in fact S(I) ⊆ I since ι(C) is S-invariant. Thus T (C)/I is
bialgebra and S lifts to the bialgebra map

S : T (C)/I −→ T (C)opcop/I
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via the projection π : T (C) −→ T (C)/I. By definition, Hζ(C) = T (C)/I is a
Hopf algebra with antipode S (the elements in I vanish in Hζ(C) thus satisfying the
antipode equation (2.2.1)).

Theorem 2.2.10. [44, Theorem 7.5.2] Let C be a k-coalgebra, then there exists the
pair (j,H(C)) such that

(a) H(C) is a k-Hopf algebra, and j : C −→ H(C) is a coalgebra map.

(b) Given any pair (f, A) of k-Hopf algebra A and a coalgebra map f : C −→ A,
there exists a Hopf algebra map F : H(C) −→ A such that F ◦ j = f.

This theorem applies the above construction of the free Hopf algebras (Hζ(C), ι)
to when C generates H(C) as a Hopf algebra, that is construct the free Hopf algebra
(Hζ(C), ι) with C = C⊕Ccop⊕C⊕· · · , and take ζ to be the injective coalgebra map

ζ : C −→ Ccop (c1, c2, c3, · · · ) 7→ (0, c1, c2, · · · ),

so taking H(C) = Hζ(C) and j = ι|C , gives the free Hopf algebra on the coalgebra C.
We will see an application of this construction in section 4.1, where we constructed
a free Hopf algebra acting on a commutative algebra.

2.2.2 The dual Hopf algebra

Let (A,m, η,∆, ε) be a k-bialgebra. Then, the underlying algebra structure (A,m, η)
of the bialgebra A defines the dual coalgebra (A◦,m?|A◦ , η?|A◦), and likewise the un-
derlying coalgebra structure (A,∆, ε) defines the dual algebra (A?,∆?, ε?). Knowing
that both the coalgebra and algebra of a bialgebra have the same underlying vector
space, a natural question to ask: is A◦ ⊆ A? a subalgebra?
The answer to this question is in the affirmative as detailed in the following result

Proposition 2.2.11. [44, Proposition 5.2.1] Let A be a bialgebra over the field k.
Then, A◦ ⊆ A? is a subalgebra. In addition, A◦ is a bialgebra with the dual coalgebra
structure and the subalgebra structure of the dual algebra A?.

Definition 2.2.12. Let A be a k-bialgebra, the dual bialgebra of A is the dual
coalgebra A◦ together with the algebra structure inherited as a subalgebra of A?.

Let H be a k-Hopf algebra, then the dual Hopf algebra as we expect is the
dual bialgebra H◦ equipped with an antipode which should be the transpose of the
antipode S on H, that is S? : H? −→ H?, f 7→ S?(f)(h) = f(S(h)) and we want
that S?(H◦) ⊆ H◦.
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Theorem 2.2.13. [44, Theorem 7.4.1] Let H be a Hopf algebra over the field k with
antipode S. Then, S?(H◦) ⊆ H◦ and S?|H◦ is an antipode for H◦.

Indeed S? is an antipode for H◦ since it satisfies the antipode equation:

mH◦ ◦ (S? ⊗ id) ◦∆H◦ = ∆?
H ◦ (S? ⊗ id) ◦m?

H

= (mH ◦ (S ⊗ id) ◦∆H)? = (ηH ◦ εH)? = ηH◦ ◦ εH◦
= (mH ◦ (id⊗ S) ◦∆H)? = mH◦ ◦ (id⊗ S?) ◦∆H◦ .

Definition 2.2.14. Let H be a Hopf algebra over the field k with antipode S. Then,
the dual Hopf algebra is the dual bialgebra H◦ together with the antipode S?|H◦ .

The notion of dualization of Hopf algebra structures can be generalized in the
following way

Definition 2.2.15. Let U and H be two Hopf algebras over the field k. A dual
pairing between U and H is a bilinear map

〈·, ·〉 : U ×H −→ k

such that for all f, f1, f2 ∈ U and h, h1, h2 ∈ H, the following axioms are satisfied

(i) 〈∆U(f), h1 ⊗ h2〉 = 〈f, h1h2〉, 〈f1f2, h〉 = 〈f1 ⊗ f2, ∆H(h)〉.

(ii) 〈f, 1H〉 = εU(f), 〈1U , h〉 = εH(h).

(iii) 〈SU(f), h〉 = 〈f, SH(h)〉.

Definition 2.2.16. A dual pairing of Hopf algebras U and H is called nondegenerate
if 〈f, h〉 = 0 for all f ∈ U then h = 0, and if 〈f, h〉 = 0 for all h ∈ H then f = 0.

Remark 2.2.17. (1) Indeed the dual Hopf algebra H◦ discussed above has a non-
degenerate dual pairing with H with the pairing 〈h◦, h〉 = h◦(h). In addition,
there is a canonical nondegenerate dual pairing between any two Hopf algebras
U and H given by 〈f, h〉 = εU(f)εH(h) for all f ∈ U and h ∈ H.

(2) New nondegenerate dual pairing can be obtained from known nondegenerate
dual pairings via compositions with Hopf algebra morphisms in the two vari-
ables. Suppose 〈·, ·〉 is a dual pairing of U and H and α : U ′ −→ U and
β : H ′ −→ H are Hopf algebra morphisms, then the composition 〈·, ·〉 ◦ (α⊗β)
is a dual pairing of U ′ and H ′.
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(3) The axioms of a dual pairing of Hopf algebras reveal information about the
links between the two structures. For example, axiom (i) reveals that U is
cocommutative if and only if H is commutative and vice versa: suppose U is
cocommutative, then

〈f, h1h2〉 = 〈∆U(f), h1 ⊗ h2〉 = 〈∆cop
U (f), h1 ⊗ h2〉 = 〈f, h2h1〉.

On the other hand, if U is commutative, then

〈f1 ⊗ f2,∆H(h)〉 = 〈f1f2, h〉 = 〈f2f1, h〉 = 〈f2 ⊗ f1,∆H(h)〉
= f2(h(1))f1(h(2)) = f1(h(2))f2(h(1))

= 〈f1 ⊗ f2,∆
cop
H (h)〉.

2.2.3 Hopf *-algebras

Definition 2.2.18. Assume that k is a field with a chosen involutive field automor-
phism that we denote by λ 7→ λ̄.

1. For each k-vector space V , we denote by V̄ the conjugate vector space which
is the same abelian group but whose scalar multiplication is twisted by ·̄ that
is, λ ·V̄ v := λ̄v.

2. A ∗-structure on a k-algebra B is an involutive k-algebra isomorphism

∗ : B → B̄op.

3. An involution on a k-algebra P is an involutive k-algebra isomorphism

θ : P → P̄ .

So explicitly, an involution θ : P → P satisfies for all λ ∈ k, f, g ∈ P

θ(λf + g) = λ̄θ(f) + θ(g), θ(fg) = θ(f)θ(g), θ(θ(f)) = f.

Typically, these notions are considered for k = C with involution given by complex
conjugation, see e.g. [31, Section 1.2.7].

On Hopf algebras, one demands the following compatibility between ∗-structures
and involutions with the coalgebra structure:

Definition 2.2.19. Let H be a Hopf algebra.



24

1. A Hopf ∗-structure on H is a ∗-structure on the underlying algebra satisfying
for all h ∈ H

(h∗)(1) ⊗ (h∗)(2) = (h(1))
∗ ⊗ (h(2))

∗, ε(h∗) = ε(h).

In other words, the coalgebra structure maps are ∗-morphisms.

2. A Cartan involution on H is an involution θ on the underlying algebra such
that for all h ∈ H, we have

θ(h)(1) ⊗ θ(h)(2) = θ(h(2))⊗ θ(h(1)), ε(θ(h)) = ε(h).

We remark that in any Hopf ∗-algebra with antipode S, we have

S ◦ ∗ ◦ S ◦ ∗ = idH ,

that is S is invertible with inverse ∗◦S ◦∗. One efficient way to show this is to verify
that ∗ ◦ S ◦ ∗ is an antipode for Hop, hence as antipodes are unique, ∗ ◦ S ◦ ∗ = S−1.
Furthermore, one defines a ∗-structure on the dual Hopf algebra H◦ as

f ∗(h) = f(S(h)∗),

for f ∈ H◦, h ∈ H, which in the language of dual pairing, can be re-written as

〈f ∗, h〉 = 〈f, S(h)∗〉.

These structures - ∗-structure and Cartan involution - correspond bijectively to
each other:

Lemma 2.2.20. A map ∗ : H → H is a Hopf ∗-structure if and only if ∗ ◦ S is a
Cartan involution.

Proof. Since ∗ is a ∗-structure on H, then the anti-linearity of ∗, the anti-colinearity
of the antipode S proves that ∗ ◦ S is anti-colinear and anti-linear. The relation
∗ ◦ S ◦ ∗ ◦ S = id proves that ∗ ◦ S is involutive hence, ∗ ◦ S is a Cartan involution.
Conversely, suppose that ∗ ◦ S is a Cartan involution then, for all h ∈ H, we have
h∗∗ = S(S(h)∗)∗ = h, that is ∗ is involutive. The compatibility of ∗ with the coalgebra
structure on H follows from the properties of the Cartan involution property of ∗◦S:

∆(h∗) = ∆(S(S(h)∗)) = τ ◦ (S ⊗ S)(S(h)∗(1) ⊗ S(h)∗(2))

= τ ◦ (S ⊗ S)(S(h(2))
∗ ⊗ S(h(1))

∗) = S(S(h(1))
∗)⊗ S(S(h(2))

∗)

= (h(1))
∗ ⊗ (h(2))

∗,

and ε(h∗) = ε(S(S(h)∗) = ε(S(h)∗) = ε(h).
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2.3 Representations of Hopf algebras

2.3.1 Definitions and examples

Definition 2.3.1. Let A be an algebra and V be a vector space over a field k. A
representation of A on V is the algebra map

ϕ : A −→ Endk(V ), a 7→ ϕa.

In other words, that ϕ is an algebra map means for all a, b ∈ A and α, β ∈ k,
ϕαa+βb = αϕa + βϕb, ϕab = ϕaϕb, and ϕ1A = idV .

Definition 2.3.2. A left A-module is a vector space V together with a linear map

ϕ : A⊗ V −→ V, a⊗ v 7→ ϕ(a⊗ v) := a · v

such that ϕ ◦ (id⊗ ϕ) = ϕ ◦ (m⊗ id), and ϕ ◦ (η ⊗ id) = id.

The equations in the definition above mean for all a, b ∈ A v ∈ V we have
ab · v = a · (b · v) and 1A · v = v. A right A-module is defined similarly only that
the action is on the right and the equations are now ϕ ◦ (ϕ⊗ id) = ϕ ◦ (id⊗m) and
ϕ ◦ (id ⊗ η) = id. In practice, we use representations and modules of a k-algebra A
interchangeably because there is a correspondence between the set of representations
of A and A-modules given by

ϕa(v) 7→ ϕ(a⊗ v) = a · v.

Let ϕ be a representation of A on a vector space V , then it defines a left (resp. right)
A-module structure on V

ϕ : A⊗ V −→ V, (a, v) 7→ ϕ(a⊗ v) = ϕa(v),

the module axioms follow since ϕa is an algebra map. On the other hand, suppose
(V, ϕ) is a left (resp. right) A-module, then the module action ϕ defines an algebra
map

ϕ : A −→ Endk(V ), a 7→ ϕa(v) = a · v.

Definition 2.3.3. Let A be an algebra over k, then

(1) A k-vector space V is an A-bimodule if it is both a left and a right A-module
and if in addition (a · v) · b = a · (v · b), ∀ a, b ∈ A, v ∈ V .
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(2) Let V and W be two representations of A, then a morphism of representations
or left A-module map is a linear map θ : V −→ W such that ∀ a ∈ A, v ∈
V, w ∈ W θ(a · v) = a · θ(v), that is θ is A-linear.

If A is a bialgebra, then we can obtain new representations from previously known
ones, in particular we can tensor two representations for instance. Let (V, ϕV ) and
(W,ϕW ) be two representations of A then the tensor product ϕV ⊗ ϕW = ϕV⊗W is
the representation of A on the vector space V ⊗W defined as

A
∆−→ A⊗ A ϕV ⊗ϕW−−−−−→ Endk(V )⊗ Endk(W )

a 7→ a(1) ⊗ a(2) 7→ ϕV (a(1))ϕW (a(2)),

that is for all a ∈ A, v ∈ V, w ∈ W

a · (v ⊗ w) = ϕV⊗W (a) = ϕV (a(1))ϕW (a(2)) = (a(1) · v)(a(2) · w),

the module axioms are satisfied since ϕV and ϕW are module structure maps.
Dually, we define comodules and corepresentations of coalgebras by dualizing the

definitions of modules and representations of an algebra.

Definition 2.3.4. Let C be a coalgebra, then a corepresentation or left C-comodule
is a vectorspace V together with a linear map

ψ : V −→ C ⊗ V, v 7→ v(−1) ⊗ v(0)

such that (id⊗ ψ) ◦ ψ = (∆⊗ id) ◦ ψ, and (ε⊗ id) ◦ ψ = id.

Similarly, the equations in the definition of a corepresentation of coalgebra C
mean for all v ∈ V ,

v(−1) ⊗ v(0)(−1)
⊗ v(0)(0) = v(−1)(1) ⊗ v(−1)(2) ⊗ v(0)

which is jointly written as
v(−2) ⊗ v(−1) ⊗ v(0)

respectively ε(v(−1))v(0) = v. Note that the elements with negative indices lies in C.
In similar way, we define a right C-comodule as a k-vector space V together with the
linear map ψ : V −→ V ⊗ C, v 7→ v(0) ⊗ v(1) such that (ψ ⊗ id) ◦ ψ = (id ⊗∆) ◦ ψ
and (id⊗ ε) ◦ ψ = id.

Definition 2.3.5. Let (V, ψV ) and (W,ψW ) be two left C-comodules, then a map
of left C-comodules is a linear map α : V −→ W such that for all v ∈ V , ψW ◦ α =
(id ⊗ α) ◦ ψV , that is α(v)(−1) ⊗ α(v)(0) = v(−1) ⊗ α(v(0)). If α is bijective, then V
and W are isomorphic as C-comodules.
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Definition 2.3.6. Let A be an algebra, C a comodule and V a vector space over k,
then

(1) Suppose V is a representation, then a left (resp. right) submodule or subrepre-
sentation of V is a linear subspace U ⊆ V such a·u (resp. u·a) ∈ U for all u ∈ U .
If V is a corepresentation, then a left (resp. right) C-subcomodule or sub corep-
resentation of (V, ψV ) is a subspace U ⊆ V with ψ(U) ⊆ C ⊗ U(resp. U ⊗ C).

(2) A left (resp. right) (co)module (V, ψV ) is called simple if V has no non-trivial
sub(co)module, that is the only sub(co)modules of V are {0} and V , and ψV
is called an irreducible (co)representation.

Example 2.3.7. (1) The trivial corepresentation is defined by the k-linear map

ψ : V −→ C ⊗ V v 7→ 1⊗ v,

for all v ∈ V . The comodule axioms are trivially satisfied thus, any vector
space V can be made into a left C-comodule via ψ.

(2) The coproduct ∆ : C −→ C ⊗ C of the coalgebra C defines both a left and
right comodule action on C.

In what follows is a characterization of finite dimensional corepresentations in
terms of matrices with entries in the coalgebra C. A corepresentation V of C is
finite-dimensional if V has a vector space basis.

Proposition 2.3.8. [31, Proposition 13] Let V be a finite dimensional vector space
with basis e1, e2, · · · , ed, ψ : V −→ C ⊗ V be a linear map, and c = (cij) be the d× d
matrix of elements of C such that

ψ(ei) =
d∑

k=1

cik ⊗ ek, i = 1, 2, · · · , d

then ψ is a corepresentation of C if and only if for all i, j = 1, 2, · · · , d

∆(cij) =
d∑

k=1

cik ⊗ ckj, ε(cij) = δij. (2.3.1)

Notice that the formula of the coproduct and counit in the above proposition are
similar to those of the matrix coalgebra in Example 2.1.33. ψ is a corepresentation
of C on V if and only if the comodule axioms

d∑
j,k=1

cik ⊗ ckj ⊗ ej =
d∑
j=1

∆(cij)⊗ ej,
d∑
i=1

ε(cij)ej = ei,
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are satisfied ⇐⇒ ∆(cij) =
∑d

j,k=1 cik ⊗ ckj and ε(cij) = δij. The matrix (cij) ∈
Md(C) is called a matrix corepresentation of C.

Definition 2.3.9. Let H be a Hopf algebra. A left (resp. right) H-(co)module is a
vector space V that is a left (resp. right) (co)module with respect to the (co)algebra
structure of H.

It is possible for a vector space V to be both a left and a right H-(co)module. If
this is the case, V is called a bi(co)module over H: suppose V is a right H-comodule
via ϕ then

ψ : V
ϕ−→ V ⊗H id⊗S−−−→ V ⊗H τ−→ H ⊗ V

defines a left H-comodule structure on V .

2.3.2 Hopf (co)module (co)algebras

A k-Hopf algebra H can act (as in modules) and coact (as in comodules) on al-
gebras and coalgebras as they do on vectorspaces. However, it is required that
the (co)module (co)action be compatible with the underlying algebra and coalgebra
structures. Before we give definitions of (co)modules (co)algebras, we recall from
the comment after Definition 2.3.3 that if A is a left H-module then A⊗A is again
a left H-module with module structure map ϕA⊗A. Similarly, one can describe the
tensor products of two corepresentations: Let (C,ψC) and (D,ψD) be two right H-
comodules, then the tensor product corepresentation ψC⊗D of H on the vector space
C ⊗D is defined as the composite

C⊗D ψC⊗ψD−−−−→ (C⊗H)⊗ (D⊗H)
idC⊗τ⊗idH−−−−−−−→ C⊗D⊗H⊗H idC⊗idD⊗m−−−−−−−→ C⊗D⊗H

that is
ψC⊗D(c⊗ d) = c(0) ⊗ d(0) ⊗ c(1)d(1).

Thus, if C is a coalgebra and also a right H-comodule, then the tensor product C⊗C
is again a right H-comodule and the comodule structure maps ∆ : C −→ C⊗C and
ε : C −→ k are morphisms of right H-comodules.

Definition 2.3.10. Let H be a Hopf algebra, then a left (resp. right) H-(co)module
algebra is an algebra (A,m, η) which is a left (resp. right) H-(co)module such that
the algebra structure maps m, η are maps of H-(co)modules.

Definition 2.3.11. A left (resp. right) H-(co)module coalgebra is a coalgebra (C,∆, ε)
which is a left (resp. right) H-(co)module and whose coalgebra structure maps ∆, ε
are morphisms of H-(co)modules.
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Remark 2.3.12. (1) The underlying field k is a H-module and H-comodule via
the trivial action given by H ⊗ k −→ k, (h, λ) 7→ ε(h)λ and coaction k −→
k ⊗H, λ 7→ λ⊗ 1.

(2) The requirement in the definitions above that the algebra structure maps m, η
be H-module maps means that for all h ∈ H, a, b ∈ A

h · ab = (h(1) · a)(h(2) · b), and h · 1k = ε(h)1A,

and as H-comodule maps means the coaction ψA of H on algebra A satisfies

ψA(ab) = ψA(a)ψA(b), and ψA(1) = 1⊗ 1,

that is the comodule structure map ψA must be an algebra map. Similarly the
requirement that the coalgebra structure maps ∆, ε be H-module maps means
for all c ∈ C, h ∈ H

∆(c · h) = c(1) · h(1) ⊗ c(2) · h(2), and ε(c · h) = ε(c)ε(h).

In [31], comodule algebras A over Hopf algebras H were called quantum spaces
and as we will see in Chapter 3, H becomes the coordinate ring of some “quantum
group” having satisfied some axioms. If H is a Hopf ∗-algebra, and A has a ∗-
algebra structure, then A is a ∗-quantum space – a comodule ∗-algebra over a Hopf
∗-algebra – and the comodule structure map ψA is a ∗- algebra morphism, that is
ψA(a∗) = ψA(a)∗.

2.3.3 (Co)modules under dual pairing

As one would expect there are relations and correspondences between the represen-
tations and corepresentations of two dually paired Hopf algebras U and H. It is easy
to see that a corepresentation of H via the dual pairing 〈−,−〉 is a representation of
U : suppose (V, ψ) is a right H-comodule then the composite

U ⊗ V idU⊗ψ−−−−→ U ⊗ V ⊗H τ⊗idH−−−→ V ⊗ U ⊗H idV ⊗〈−,−〉−−−−−−→ V

u⊗ v 7→ u⊗ v(0) ⊗ v(1) ⊗ u 7→ v(0)〈u, v(1)〉

defines a left U -module structure . on V : since for u, u′ ∈ U , v ∈ V we have

uu′ . v = v(0)〈uu′, v(1)〉 = v(0)〈u⊗ u′,∆(v(1))〉 = v(0)〈u, v(1)〉〈u′, v(2)〉
= u . v(0)〈u′, v(1)〉 = u . u′ . v,
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and 1U . v = v(0)〈1U , v(1)〉 = εH(v(1))v(0). Thus on any right H-comodule, the dual
pairing induces a left U -module structure. Similarly, one can show that left H-
comodules are again right U -modules and this prompts the question: is the converse
true? In other words, do all left (resp. right) U -modules arise as left (resp. right)
H-comodules? The answer is no.

In particular when H is a coalgebra C and U is its dual algebra C?, there is
a class of C?-modules which have certain properties that make them to arise from
C-comodules. These C?-modules are called rational modules and they have the
following property:

Let (V, ϕ) be a left C?-module, and define for all c? ∈ C?, v ∈ V the map

ρ : V −→ Hom(C?, V ), v 7→ ϕv,

where ϕv(c
?) = c? . v. Then for elementary tensors v ⊗ c, the linear map

V ⊗ C
φ
↪−→ Hom(C?, V ) v ⊗ c 7→ 〈−, c〉v

is a well defined embedding: suppose (v ⊗ c) ∈ ker φ, then for all c? ∈ C? we have
0 = φ(v ⊗ c)(c?) = 〈c?, c〉v that is 〈c?, c〉 = 0 for all c? hence, 〈 , 〉 is degenerate – a
contradiction – thus φ is injective.

Definition 2.3.13. A left C?-module V is called rational if ρ(V ) ⊆ V ⊗ C.

In view of this, a rational left C?-module has a right C-comodule structure in-
duced by ρ. Thus we have the correspondence

{Rational left C?-modules} ←→ {Right C-comodules}.

For the purpose of this thesis, especially our discussion in Section 3.6 we state and
prove the following useful results for which we have no references.

Proposition 2.3.14. Let (M,ϕ) be a left finite dimensional module over an algebra
A. Then (M?, ϕT ) is a left A◦-comodule, where ϕT is the transpose of ϕ.

Proof. Denote by {m1, · · · ,md} and {f 1, · · · , fd} the basis respectively the dual
basis of M . We claim that A? ⊗M? ∼= (A ⊗M)?: every element in A ⊗M and
A? ⊗M? can be uniquely written as

∑d
i=1 xi ⊗mi respectively

∑d
j=1 aj ⊗ f j. Then

we define

φ : A? ⊗M? −→ (A⊗M)?,
d∑
j=1

aj ⊗ f j 7→ aj(xj).
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φ is injective since aj(xj) = 0 for all xj implies aj = 0. Given ψ ∈ (A⊗M)?, define

aj := ψ(−,mi) ∈ A? then take ψ =
∑d

j=1 aj ⊗ f j and evaluating at
∑d

i=1 xi⊗mi, we
conclude that φ is surjective.

Consider the transpose ϕT : M? −→ (A ⊗ M)? ∼= A? ⊗ M? of the A-module
structure map ϕ on M . We claim that the image ϕT (M?) ⊆ A◦ ⊗M?. This follows
by observing that for f ∈M?, ξ ∈M?? ∼= M we have (id⊗ξ)◦ϕT (f) = f(−, ξ) ∈ A?.
f(−, ξ) is the matrix coefficients of the representation on M and by [28, Corollary
1.4.5], it is in A◦.

This means given a finite dimensional representation of an algebra A, its dual
gives a corepresentation of the dual coalgebra of A.

Corollary 2.3.15. Let A be an algebra. Then the following are equivalent

(1) A◦ is pointed.

(2) All the finite dimensional irreducible representations of A are 1-dimensional.

Proof. By Proposition 2.3.14, all the simple comodules of A◦ are 1-dimensional, hence
by Remark 2.1.24 the conclusion follows.

2.3.4 Inner faithful representations

Banica and Bichon in [4, construction 2.1] introduced the notion of Hopf image Hρ

of a representation of a Hopf algebra H on an algebra A. By a representation of a
Hopf algebra H on A we mean an algebra map ρ : H −→ A.

Definition 2.3.16. A factorization of a representation ρ of H on A is the triple
(G, f, s) where G is a Hopf algebra, s : H −→ G is a surjective morphism of Hopf
algebras and f : G −→ A is a representation such that ρ = f ◦ s.

In other words, the representation ρ factors through G. We can form a category
of factorizations of ρ where the objects are triples (G, f, s) and morphism between
two objects (G, f, s) and (G̃, f̃ , s̃) is a morphism of Hopf algebras σ : G −→ G̃ such
that f̃ = σ ◦ f and s = s̃ ◦ σ.

Definition 2.3.17. The Hopf image Hρ of a representation ρ of Hopf algebra H
on algebra A is the factorization (Hρ, θ, ρ̃) such that for all objects (G, f, s) in the
category of factorizations of ρ there exists a single morphism from G to Hρ.

In the language of category theory, the Hopf image is the final (or terminal) object
in the category of factorizations of ρ.



32

Theorem 2.3.18. [4, Theorem 2.1] Let ρ : H −→ A be a representation of a Hopf al-
gebra H on algebra A. Then ρ has a Hopf image: there exists a triple (Hρ, θ, ρ̃) where
Hρ is a Hopf algebra, θ : H −→ Hρ a surjective Hopf algebra map and ρ̃ : Hρ −→ A
is a representation such that ρ = ρ̃ ◦ θ and if (L, q, ϕ) is another factorization of ρ,
then there exists a unique Hopf algebra map f : L −→ Hρ such that f ◦ q = θ and
ρ̃ ◦ f = ϕ.

In classical representation theory, a representation π : k(G) −→ A of the group
algebra k(G) on A is said to be faithful if the map π is injective. However, we can
ask is the restriction

π|G : G −→ A×

also faithful as a group homomorphism? So one can talk about the faithfulness of π
in two ways depending on the object one is interested in. Observe that

Lemma 2.3.19. π|G is faithful if and only if ker π does not contain any non-zero
Hopf ideal.

Proof. Suppose π|G is faithful, that is ker π|G = {eG} and suppose 0 6= I ⊆ ker π is
a Hopf ideal. Then, for s ∈ I we have

0 = π(s) = π
( ∑
gα∈G

α gα
)

=
∑
gα∈G

α π|G(gα)

this means s = αeG, hence a contradiction. Conversely, suppose ker π contains no
non-zero Hopf ideal. Let s ∈ ker π|G ⊆ ker π, then the two-sided ideal generated
by s − eG is a non-zero Hopf ideal of k[G] contained in ker π. Thus by assumption
s = eG and therefore ker π|G is trivial.

This result leads to the notion of inner faithful representations

Definition 2.3.20. A representation π : H −→ A of a Hopf algebra H on an algebra
A is called an inner faithful representation if ker π does not contain a non-zero Hopf
ideal.

This definition means that if the representation of H on A is inner faithful, then
the Hopf image of π is H itself. In other words, aside the Hopf algebra H there is
no minimal Hopf algebra representation on algebra A. Arguably, the notion of inner
faithfulness is a more useful notion and less restrictive compared to faithfulness since
one can pass uniquely to inner faithful actions by taking quotients by the Hopf ideals.
We shall heavily apply this notion in Chapter 4.



Chapter 3

Quantum symmetries of
coordinate rings

In this chapter, following [27] we give definitions and examples of affine algebraic
sets as well as their coordinate rings. We introduce concepts and results such as
faithful flatness which aids the study of quantum group actions on commutative
algebras, which under some additional assumptions are said to equip these commu-
tative domains with quantum homogeneous space structures. We also give a short
literature review of studies conducted on quantum homogeneous spaces starting with
the Poodleś’ spheres [42] which are examples of quantum homogeneous spaces. Then
we briefly discuss more recent studies such as [24, 32, 34, 33, 12] on quantum sym-
metries of coordinate rings of singular affine curves. We conclude the chapter with
Sections 3.5.2 and 3.6 which contain the first contributions of this thesis – a detailed
example of the coordinate ring of the cusp being equipped with such a quantum
homogeneous space structure.

3.1 Coordinate rings

3.1.1 Algebraic sets

Definition 3.1.1. Let k be an algebraically closed field and n ∈ Z≥0. An affine
space is the set

kn = {(a1, · · · , an) : ai ∈ k, 1 ≤ i ≤ n}

of all n-tuples of elements of k.
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Elements p = (a1, · · · , an) of kn are called points and the ai are called the co-
ordinates of p. Let A = k[x1, · · · , xn] be a polynomial ring over k, we can think of
polynomials f ∈ A as functions kn −→ k defined by f(p) = f(a1, · · · , an) for points
p in the affine space.

Definition 3.1.2. Let f ∈ A then a point p ∈ kn is called a zero of f if f(p) = 0.
In particular the set Z(f) = {p ∈ kn : f(p) = 0} is called the zero set of f .

Thus in general, given a subset T of A the set Z(T ) consists of all points p ∈ kn
on which every polynomial f ∈ T vanishes. That is

Z(T ) = {p ∈ kn : f(p) = 0 ∀ f ∈ T}

and it is a subspace of the affine space kn.

Definition 3.1.3. A subspace C of kn is called an algebraic set if C = Z(T ) for
some subset T of A.

Example 3.1.4. (1) The field k is an algebraic set since it is the zero set of the
zero polynomial. It is called the affine line.

(2) The set V := {(t2, t3) : t ∈ k} is an algebraic set: it is the zero set of the plane
curve x3 − y2 ∈ k[x, y].

Note that A is a Noetherian ring thus every ideal is finitely generated. To every
ideal I of A we can associate an algebraic set Z(I) – the set of common zeros of the
polynomials that generate I. On the other hand, we can associate to a subset of kn

an ideal of A

Definition 3.1.5. For any subset C of kn define an ideal of C to be the set

I(C) = {f ∈ A : f(p) = 0 ∀ p ∈ C}.

The ideal I(C) of C is the set of all polynomials that vanish on C. This thus
leads to a map between subsets of kn and ideals of A

{Subsets of kn } ←→ {Ideals of A}
C → I(C)

Z(I)← I

This map is an inclusion reversing map: suppose C1 ⊆ C2 are subsets of kn, then
I(C2) ⊆ I(C1) since all polynomials f ∈ I(C2) vanish on all of C2 ⊃ C1. Similarly for
ideals I1 ⊆ I2 we have Z(I2) ⊆ Z(I1). This mapping becomes a 1−1 correspondence
between algebraic sets in kn and radical ideals of A which is a consequence of the
Nullstellensatz’s theorem:
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Theorem 3.1.6. (Hilbert’s Nullstellensatz) Let k be an algebraically closed field. Let
J be an ideal of A and f ∈ A be a polynomial that vanish at all points of Z(T ). Then
f r ∈ J for all r > 0.

Definition 3.1.7. Let I be an ideal of A. The radical
√
I of I is the set

{f ∈ A : f r ∈ I ∀ r > 0}.

An ideal is called a radical ideal if it is equal to its radical, that is
√
I = I. Another

consequence of the Nullstellensatz’s theorem is that the points (a1, · · · , an) (which
are minimal algebraic sets) of kn correspond to maximal ideals 〈x1−a1, · · · , xn−an〉
of A.

Definition 3.1.8. Let C ∈ kn be an algebraic set, the coordinate ring O(C) of C is
the quotient

k[x1, · · · , xn]/I(C).

In other words, the coordinate ring O(C) of the algebraic set C consists of all
polynomials that do not vanish on C. Building on our thoughts about polynomials
in A as functions on kn, the polynomials in O(C) are called regular functions on C.

Example 3.1.9. (1) The coordinate ring of the affine space kn is the polynomial
ring k[x1, · · · , xn].

(2) The ideal I(V ) of the algebraic set V in Example 3.1.4 is the ideal generated
by the irreducible polynomial x3 = y2. Thus O(V ) = k[x, y]/〈x3 − y2〉.

Definition 3.1.10. For any f, g ∈ O(C) the quotient f
g

: C −→ k such that g(c) 6= 0

for all c ∈ C is called a rational function on C. We denote by k(C) the field of rational
functions on C.

The commutative ring O(C) equipped with pointwise multiplication becomes an
algebra. It can also be equipped with a Hopf algebra structure: Let G be a group
and also an algebraic set of kn. Then the group structure maps multiplication and
inversion

µ : G×G −→ G, (g1, g2) 7→ g1g2 ι : G −→ G, g 7→ g−1

are morphisms of algebraic sets (i.e are polynomial functions). Associated to G is
the algebra of regular functions O(G), with a commutative associative product given
by pointwise multiplication: for all g ∈ G, f, h ∈ O(G),

m(f ⊗ h)(g) = fh(g) = f(g)h(g)
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and with unit given by η : k −→ O(G), where 1O(G) is the regular function on G
which assigns 1k to all g ∈ G.

The product µ on G induces an algebra map

∆ : O(G) −→ O(G)⊗O(G), ∆(f)(g, g′) = f ◦ µ(g, g′) = f(gg′),

similarly the unit and inversion operations on G induce the counit

ε : O(G) −→ k, f 7→ ε(f) = f(e)

respectively the antipode S : O(G) −→ O(G) with S(f)(g) = f(g−1). It follows
from the group structure of G that the axioms of a Hopf algebra are satisfied by the
algebra maps ∆, ε and S.

It is important to mention the 1 − 1 correspondence between algebraic groups
G and commutative Hopf algebras O(G): from the above discussion, we see how an
algebraic group G yields a commutative Hopf algebra O(G). Conversely, given a
commutative Hopf algebra A over an algebraically closed field k, associated is the
algebraic group Algk(A, k) of algebra maps A −→ k also known as characters of A.
For better insight on this correspondence, we consider the following example

Example 3.1.11. Consider the algebraic group

SL2(C) =

{(
a b
c d

)
∈M2(C) : ad− bc = 1

}
,

whose group structure is given by matrix multiplication. It is an algebraic set when
considered as the locus of the polynomial ad− bc− 1 ∈ C[a, b, c, d]. Thus its ring of
regular function is the quotient polynomial ring

O(SL2(C)) = C[a, b, c, d]/〈ad− bc− 1〉.

We shall write O(SL2) and SL2 for O(SL2(C)) respectively SL2(C).
O(SL2) as a commutative algebra, is generated by regular functions a, b, c, and d on
SL2 since for any matrix M ∈ SL2 they are defined by

a(M) = m11, b(M) = m12, c(M) = m21, d(M) = m22.

Furthermore, O(SL2) is a Hopf algebra over C with Hopf structure given by

∆(a) = a⊗ a+ b⊗ c, ∆(b) = a⊗ b+ b⊗ d, ∆(c) = c⊗ a+ d⊗ c
∆(d) = c⊗ b+ d⊗ d, ε(a) = 1 = ε(d), ε(b) = 0 = ε(c) (3.1.1)

S(a) = d, S(b) = −b, S(c) = −c, S(d) = a.
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Notice that this is a specific example of the matrix coalgebra structure described in
Example 2.1.33. In this case, we have u1

1 = a, u1
2 = b, u2

1 = c, u2
2 = d.

We remark that every matrix M ∈ SL2 is an element of AlgC(O(SL2),C) – the
group of algebra maps (otherwise known as characters on SL2). That is as a map,
M : O(SL2) −→ C is

a 7→M(a) = a(M) = m11, b 7→M(b) = b(M) = m12

c 7→M(c) = c(M) = m21, d 7→M(d) = d(M) = m22.

Conversely, every element γ ∈ AlgC(O(SL2),C) defines a matrix in SL2 by specifying

γ on the generators a, b, c, d to obtain

(
γ(a) γ(b)
γ(c) γ(d)

)
. Indeed this matrix lies in SL2,

since its determinant γ(a)γ(d)− γ(b)γ(c) = γ(ad− bc) = γ(1) = 1. This proves that
SL2
∼= AlgC(O(SL2),C).

Thus in this sense, algebraic groups correspond to commutative Hopf algebras
and in fact according to Cartier, commutative Hopf algebras arise in this way –
regular functions defined on algebraic groups.

Theorem 3.1.12. [15] Let H be a commutative Hopf algebra over an algebraically
closed field k of characteristics 0. Then H is isomorphic to the algebra of regular
functions O(G) on an algebraic group G. In particular, if H is finite dimensional,
then H is isomorphic to kG = {f : G −→ k : f(x) = 0 for almost all x} where G is
the finite group G = Algk(H, k).

3.1.2 Quantum groups

Depending on the source, the term “quantum group” is often reserved for defor-
mations and quantizations of classical objects such as algebras of regular functions
on algebraic groups, universal enveloping algebras of semisimple Lie groups among
others. As Gastón remarked in [1]: there is no rigorous universally acceptable defi-
nition for quantum groups so for us, quantum groups mean non-commutative non-
cocommutative Hopf algebras.

We give examples of quantum groups obtained as quantizations of algebras of
regular functions and universal enveloping algebras.

Quantum SL2

The quantum SL2 otherwise denoted by Oq(SL2) is a one-parameter q ∈ C× \ {1}
deformation of the commutative algebra O(SL2). As an algebra, Oq(SL2) is generated
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by a, b, c, d such that the following relations hold

ba = qab, db = qbd, ca = qac, dc = qcd,

bc = cb, ad− da = (q−1 − q)bc.

Clearly, Oq(SL2) is not commutative (unless q = 1). The coalgebra structure is given
on generators by the same formulas as for q = 1 (3.1.1) that is O(SL2) but the
antipode is slightly modified as follows

S(a) = d, S(d) = a, S(b) = −qb, S(c) = −q−1c,

because in this quantum setting, the normal determinant is replaced by the quantum
determinant detq = ad− q−1bc = da− qbc.

Quantum sl2

The linear group SL2, apart from being a subspace of C4 is also a smooth manifold,
hence a Lie group. The Lie algebra associated to SL2 is the group of traceless
matrices sl2, and we are interested in U(sl2), the universal enveloping algebra of
sl2. Let q ∈ C× \ {±1}. The one-parameter deformation Uq(sl2) of U(sl2) is a
non-commutative C-algebra generated by E,F,K,K−1 satisfying the relations

KK−1 = 1 = K−1K, KE = q2EK, KF = q−2FK,

FE − EF =
K −K−1

q − q−1
. (3.1.2)

There is a unique Hopf algebra structure on Uq(sl2) with coproduct, counit and
antipode given by

∆(K) = K ⊗K, ∆(K−1) = K−1 ⊗K−1,

∆(F ) = K−1 ⊗ F + F ⊗ 1, ∆(E) = E ⊗K + 1⊗ E,
ε(K) = 1 = ε(K−1), ε(E) = 0 = ε(F )

S(K) = K−1, S(K−1) = K, S(E) = −EK−1, S(F ) = −KF.

These hold true as one first extend ∆ to an algebra morphism of the free algebra
C[E,F,K,K−1] to Uq(sl2)⊗ Uq(sl2) and then finally pass to the quotient Uq(sl2) of
C[E,F,K,K−1] by ensuring that ∆ satisfies (3.1.2). In similar way, we extend the
counit and antipode to Uq(sl2) and by straightforward computations, one checks that
the axioms of Hopf algebra are satisfied.

Remark 3.1.13. The quantum groups Oq(SL2) and Uq(sl2) have a non-trivial Hopf
dual pairing stated in [31, Theorem 21]). This means that Oq(SL2) ⊆ Uq(sl2)◦ and
vice-versa.
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3.2 Flatness and faithful flatness

New modules can be obtained from known ones through various operations such as
direct sums, direct products among others. In particular the Hom functor is used to
characterize important modules such as injective and projective modules.

Our interest is a special class of modules called flat modules. The motivation for
their study stems from the fact that tensor products of injective linear maps fail to
be injective. However, certain modules preserve injections and these are flat modules.
In this subsection, we will briefly discuss flat and faithfully flat modules as well as
their characterizations and we will follow the notations and definitions in [45].

Let RMod and ModR be the categories of left respectively right modules over
a ring R. Suppose M is a right R-module and N a left R-module, then their tensor
product is an abelian group M ⊗R N together with a R-biadditive map f : M ×R
N −→M ⊗R N , that is for all r ∈ R, m,m′ ∈M, n, n′ ∈ N ,

f(m+m′, n) = f(m,n) + f(m′, n), f(m,n+ n′) = f(m,n) + f(m,n′),

f(rm, n) = f(m, rn).

Furthermore, if g : M ×RN −→ P is another R-biadditive map to the abelian group
P , then there exist a unique group homomorphism f̃ : M ⊗R N −→ P such that
f̃ ◦ f = g. Therefore, given a right R-module M and a morphism θ : N −→ N ′ of
left R-modules, then

M ⊗R − : RMod −→ Ab,

N 7→M ⊗R N,
θ 7→ idM ⊗ θ.

is a functor from the category of left R-modules to the category Ab of abelian groups.

Definition 3.2.1. A category C is called additive if for any two objects X and
Y , the set Hom(X, Y ) of morphisms is an abelian group such that Hom(X, Y ) ×
Hom(Y, Z) −→ Hom(X,Z), (f, g) 7→ g◦f is linear in both arguments and C contains
a zero object as well as the product X × Y .

The categories Ab, RMod and ModR are additive categories.

Definition 3.2.2. A functor F : C −→ D between additive categories is called
additive if the map

C(X, Y ) −→ D(FX,FY ), f 7→ F (f)

is a morphism of abelian groups.
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In other words, F is additive if for all f, g ∈ C(X, Y ) we have F (f + g) =
F (f) +F (g) and F (idX) = idF (X). Clearly, the functor M ⊗R− is additive since for
θ, ε ∈ RMod(N,N ′′), we have idM ⊗ (θ + ε) = idM ⊗ θ + idM ⊗ ε.

Definition 3.2.3. An additive functor F is called

(i) left exact if F (ker(f)) = ker F (f),

(ii) right exact if F (Im(f)) = Im F (f)),

(iii) exact if it is both left and right exact.

for all f ∈ C(X, Y ).

In more explicit terms, F is exact if whenever 0 −→ N ′
g−→ N

f−→ N ′′ −→ 0 is a
short exact sequence, then

0 −→ F (N ′)
F (g)−−→ F (N)

F (f)−−→ F (N ′′) −→ 0

is also exact in the target category. The additive functor M ⊗R − is right exact
and not left exact because tensor products do not in general preserve kernels of mor-
phisms. Nevertheless as mentioned before, there are modules for which the functor
M ⊗R − is exact and these are the modules we are interested in.

Definition 3.2.4. Let R be a ring. A right R-module M is called flat if M ⊗R − is
an exact functor.

The ring R is flat as a right R-module: suppose f : N ′ −→ N is an injective

morphism of left R-modules, then R ⊗R N ′
∼=−→
τ ′

N ′ and likewise R ⊗R N
∼=−→
τ

N ,

where τ and τ ′ are the module structure maps on N respectively N ′. Note that
idR ⊗ f = τ−1 ◦ f ◦ τ ′ and ker(idR ⊗ f) = R ⊗ ker(f) + ker(idR) ⊗ N ′ = 0. Other
examples of flat modules include localisations of rings and modules over R (since
S−1R ⊗R N ∼= S−1N where S ⊆ R is a multiplicatively closed) among others. The
following result gives a characterization of flat modules

Theorem 3.2.5. [45, Proposition 3.46] Let R be an arbitrary ring. Then, the direct
sum

⊕
jMj of right R-modules is flat if and only if each Mj is flat. In particular

every projective R-module is flat.

The proof of the theorem follows from the fact that tensor products commute
with direct sums, that is (

⊕
jMj) ⊗ N ∼=

⊕
j(Mj ⊗ N) and that

⊕
j(idMj

⊗ θ) is
injective if and only if each summand idMj

⊗ θ is injective. A consequence of this
theorem is
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Corollary 3.2.6. Every free R-module is flat.

Proof. Suppose M is a free right R-module then M ∼=
⊕

iR
i. Since R is flat as a

R-module, then by the theorem above, M is flat.

For our purpose, we are most interested in the subcategory of flat modules for
which the exactness condition in Definition 3.2.3 is bi-conditional.

Definition 3.2.7. A flat right R-module M is faithfully flat if the exact sequence of
abelian groups

0 −→M ⊗R N ′
1M⊗g−−−→M ⊗R N

1M⊗f−−−→M ⊗R N ′′ −→ 0

implies that the sequence

0 −→ N ′
g−→ N

f−→ N ′′ −→ 0

of left R-modules is exact.

Proposition 3.2.8. [35, Theorem 4.70] A right R-module M is faithfully flat if M
is flat, and if for all left R- module N we have M ⊗R N = 0 =⇒ N = 0.

Proposition 3.2.9. Let N,P be faithfully flat right R-modules, then their direct sum
N
⊕

P is faithfully flat.

Proof. Suppose for all left R-modules Q, N ⊗R Q = 0 then since N is faithfully flat,
Q = 0 (similarly P⊗Q = 0 impliesQ = 0). Now, (N⊕P )⊗Q = (N⊗Q)⊕(P⊗Q) = 0
implies Q = 0 thus (N

⊕
P ) is faithfully flat.

Corollary 3.2.10. Free modules are faithfully flat.

Proof. A free R-module is isomorphic to the direct sum
⊕

iR
i. The conclusion

follows since each of the summand are faithfully flat.

3.3 Bergman’s diamond lemma

Bergman in [8] introduced an approach of constructing vector space basis for associa-
tive algebras presented by generators and relations. This construction is particularly
useful in proving faithful flatness of these algebras as a module. Since we will use
this approach in our work, we give a rather brief introduction of notations and defini-
tions (as given in [8]) to aid our understanding and application of Bergman’s diamond
Lemma.
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Let X be a set, 〈X〉 the free semigroup with 1 in X, and k〈X〉 be the semigroup
algebra over a commutative associative ring k with 1 on 〈X〉. k〈X〉 is a free as-
sociative k-algebra of linear combinations of monomials formed by letters in X. A
set

S = {ε = (Wε, fε) : Wε ∈ 〈X〉, fε ∈ k〈X〉}

is called a reduction system. In other words, Wε is a monomial with letters in X, fε
is a linear combination of these monomials, and the relations Wε = fε will be used as
instructions to reduce other expressions in k〈X〉. A reduction for k〈X〉 is a k-module
endomorphism

rAεB : k〈X〉 −→ k〈X〉, AWεB 7→ AfεB,

such that rAεB(A) = A for all A,B ∈ 〈X〉.
A reduction rAεB is said to act trivially on f ∈ k〈X〉 (or f is invariant under

rAεB) if no term of f contains the monomial AWεB. An element f is said to be irre-
ducible(under S) if it is invariant under every reduction using the reduction system
S. We denote by k〈X〉irr the k- submodule of all irreducible elements of k〈X〉.

A 5-tuple (ε, τ, A,B,C) with ε, τ ∈ S and A,B,C ∈ 〈X〉 \ {1} is an overlap
ambiguity of S if Wε = AB and Wτ = BC. This ambiguity is said to be resolvable
if there exist compositions (which is also a reduction) of reductions r and r′ such
that for monomials D,E,G,H, rDεC(AB)C = Ar′GτH(BC) that is fεC = Afτ . This
equality is used when reducing expressions involving the monomial ABC. If τ 6= ε
and A,B,C ∈ 〈X〉 such that Wε = B and Wτ = ABC, the 5-tuple (ε, τ, A,B,C) is
called an inclusion ambiguity. The inclusion ambiguity is resolvable if AfεC and fτ
can be reduced to a common expression.

Finally in building the set up for the diamond lemma, we equip 〈X〉 with a
semigroup partial ordering which is defined to be a partial order “ ≤ ” on 〈X〉 such
that for all monomials A,B,B′, C, ABC < AB′C only if B < B′. This ordering is
compatible with S if for all ε ∈ S, fε is a linear combination of monomials < Wε.

Theorem 3.3.1. [8, Theorem 1.2] Let S be a reduction system for a free associative
algebra k〈X〉 and ≤ a semigroup ordering on 〈X〉 which is compatible with S and
having a descending chain condition. Suppose all ambiguities of S are resolvable and
I = 〈{Wε − fε : ε ∈ S}〉 be a two sided ideal of k〈X〉. Then k〈X〉irr ∼= k〈X〉/I by
sending a 7→ a + I as k-vector spaces. In particular, the irreducible words in 〈X〉
form a vector space basis of k〈X〉/I.

We will see an application of this result in the Sections 3.5.2, 3.6 and Chapter 4.



43

3.4 Quantum homogeneous space

It is understood that a homogeneous space X of a Lie group G can be realized as a
quotient of G by a closed subgroup. Thus there is a 1 − 1 correspondence between
closed subgroups of G and homogeneous G-spaces. A generalization of this notion
to quantum groups suffers a setback since quantum groups have fewer quantum
subgroups compared to their classical counterparts as Podleś [42] proved for the
quantum group SUq(2) - the quantization of the classical group SU(2).

In [43], Podleś introduced quantum analogues of homogeneous spaces in two ways:
first, embeddable homogeneous spaces and second, quotients of quantum groups by
quantum subgroups. Embeddable homogeneous spaces are left comodule algebras B
over a Hopf algebra A such that B embeds into A as a subalgebra via ι : B −→ A and
ι is a morphism of A-comodule algebras. Examples of this class of quantum homo-
geneous space include the Podleś’ spheres Sq(ν, µ) – a polynomial algebra generated
by 1, x, y, z such that

xz = q2zx, yz = q−2zy, xy = −q(µ− z)(ν + z),

yx = −q(µ− q2z)(ν + q−2z),

where q 6= 0, ν, µ ∈ R≥0 and (ν, µ) 6= (0, 0). These embed into the quantum group
SUq(2), see [43, 14, 29] for more details.

The other class of quantum homogeneous spaces comprises those that can be
realized as quotients of quantum groups. By quantum subgroup, we mean a Hopf
algebra A0 together with a surjective morphism π : A −→ A0 of Hopf algebras. The
quantum quotient is the subalgebra B of all points a ∈ A that are invariant under
the left coaction (π ⊗ idA) ◦∆A of A0 on A. Brzezinski in [14] showed that in fact,
certain embeddable quantum homogeneous spaces can be understood as quotients
spaces, see [14, Proposition 2.5].

As in [48, 32, 41, 51, 11, 38] we take in this thesis quantum homogeneous spaces
to be quantum quotient spaces.
Recall from Definition 2.1.9 the definitions of right (resp. left) coideal and coideals
of a Hopf algebra then we define

Definition 3.4.1. A right (resp. left) coideal subalgebra of a Hopf algebra A is a
subalgebra B ⊆ A which is a right (resp. left) coideal.

We now formally define a quantum homogeneous space as

Definition 3.4.2. A right coideal subalgebra B of a Hopf algebra A is called a
quantum homogeneous space if A is faithfully flat as a right B-module.
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From now on, we shall use the abbreviation QHS for quantum homogeneous
space.

Remark 3.4.3. We remark that a QHS can be defined using a left coideal subalgebra
of A since it becomes a right coideal subalgebra of Acop.

Following the notations and results in [48, 41], we will discuss the construction
of QHS as a quotient space and we will see the importance of the requirement of
faithful flatness of A as a B-module.

Let B ⊆ A be a right coideal subalgebra, and we denote MA
B to be the category

whose objects are of the form (M,ρM , µ) where (M,ρM) is a right A-comodule and
(M,µ) is a right B-module structure on M such that

ρM ◦ µ(m⊗ b) = m(0) · b(1) ⊗m(1)b(2)

for all m ∈ M, b ∈ B and morphisms are right A-comodule maps which are right
B-linear. Similarly, we denote by

π(A)
A M the category of left π(A)-comodules and

left A-modules, where π : A −→ π(A) is a quotient left A-module coalgebra map and
morphisms of this category are left π(A)-colinear and left A-linear maps. A simpler
way to think of π is: the coalgebra π(A) is a left A-module and for all a, b ∈ A, we
have π(ba) = bπ(a).

It is important to observe that given a right coideal subalgebra B, we can con-
struct a quotient coalgebra as we show in the following:

Proposition 3.4.4. Let B ⊆ A be a right coideal subalgebra of Hopf algebra A and
define B+ = B ∩ ker ε. Then the set AB+ = spank{ab : a ∈ A, b ∈ B+} is a coideal
and A/AB+ is a quotient coalgebra.

Proof. For any ab ∈ AB+ we have

∆(ab) = (ab)(1) ⊗ (ab)(2) = a(1)b(1) ⊗ a(2)b(2),

which can be rewritten as

a(1)(b(1) − ε(b(1))⊗ a(2)b(2) + a(1)ε(b(1))⊗ a(2)b(2).

thus ∆(AB+) ⊆ AB+ ⊗ A + A ⊗ AB+. Furthermore, since B+ ⊆ ker ε, it follows
that ε(AB+) = 0. Therefore the coalgebra structure of A descends to A/AB+.

Thus we have a projection πB : A −→ A/AB+ which is also a morphism of left
A-module coalgebras: the left A-module structure (given by multiplication in A) on
A descends to A/AB+, and A admits a left A/AB+-comodule structure given by
(πB ⊗ id) ◦∆, hence A ∈ πB

A M. Therefore, we conclude that if given a right coideal
subalgebra, one can construct a quotient coalgebra map of A-modules.
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Proposition 3.4.5. [48, Proposition 1] If π : A −→ π(A) is a quotient left A-module
coalgebra map, then the set

Bπ = {a ∈ A : π(a(1))⊗ a(2) = 1⊗ a}

is a right coideal subalgebra of A.

The set Bπ comprises all elements of A which are invariant under the coaction of
(π ⊗ id) ◦∆ of π(A) on A. This thus gives a converse to Proposition 3.4.4. That is
if given a quotient coalgebra of a Hopf algebra A, we can construct a right coideal
subalgebra Bπ. In particular as shown below, if π = πB then BπB

∼= B as right
coideal subalgebras of A and this gives a 1− 1 correspondence between right coideal
subalgebras over which A is a faithfully flat module and quotient coalgebras of A.
This can be reformulated using the cotensor product of comodules:

Definition 3.4.6. Let (P, ρ) and (Q, λ) be a right respectively a left A-comodule.
The cotensor product P�AQ of P and Q is the module over a field k which makes
the sequence

0 −→ P�AQ −→ P ⊗Q
wP,Q−−−→ P ⊗ A⊗Q

exact.

The map wP,Q = ρ⊗ 1Q− 1P ⊗λ, and exactness of the sequence means P�AQ =
ker wP,Q so, in other words,

P�AQ =

{∑
i

xi ⊗ yi ∈ P ⊗Q :
∑
i

xi(0) ⊗ xi(1) ⊗ yi =
∑
i

xi ⊗ yi(−1)
⊗ yi(0)

}
.

Observe that the cotensor product can be viewed as a functor from the category AM
of left A-comodules to the category of k-modules.

Definition 3.4.7. A right A-comodule M is called faithfully coflat if as a functor,
M�A− is faithful and preserves exact sequences.

We define the functors

Ψ :Mπ −→MA
B, S 7→ S�πA

Φ :MA
B −→Mπ, M 7→ M̄ = M/MB+

where S ∈ Mπ, M ∈ MA
B and S�πA ⊆ S ⊗ A. It is clear that S�πA inherits

the right B-module of the ambient space S ⊗ A and is a right A-comodule via the
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coproduct ∆ of A. In addition, M has a right π(A)-comodule structure induced by
the surjective coalgebra map π : A −→ π(A). Suppose f : M −→ S is a morphism
of right π(A)-comodules, then f induces the map

M
ρM−−→M ⊗ A f⊗idS−−−→ S ⊗ A.

This composite restricts to the morphism F : M −→ S�πA of right A-comodules
which is B-linear (if F (MB+) = 0). On the other hand, let F : M −→ S�πA, be a
map of right A-comodules, then it induces the composite

M
F−→ S�πA ⊆ S ⊗ A id⊗ε−−→ S ⊗ k ∼= S

that is f = (id⊗ ε) ◦ F which is a morphism of right π(A)-comodules. Hence there
is an isomorphism

Mπ(M̄, S) ∼=MA
B(M,S�πA)

that defines the adjunction of Ψ and Φ so we can say Ψ is right adjoint to Φ and
vice versa.

Dually, one can show that BM(Nπ, T ) ∼= π
AM(N,A ⊗B T ) where T is a left

B-module, N ∈ π
AM, and Nπ is the set of elements of N that are coinvariant under

the comodule action of A on N . Now we can state the following theorem due to
Takeuchi

Theorem 3.4.8. [48, Theorem 1 & 2]

(1) Let B ⊆ A be a right coideal subalgebra and π = πB. Suppose there is a left A-
module M which is faithfully flat as a left B-module. Then, the categories MA

B

and Mπ are equivalent via Ψ and Φ. Moreover, B = Bπ and A is faithfully
coflat as a left π(A)-comodule.

(2) Suppose there is a right A-comodule which is faithfully coflat as a right π(A)-
comodule. Then, the categories BM and π

AM are equivalent, π = πB and A is
faithfully flat right B-module.

This theorem establishes a one to one correspondence
Right coideal sub-
algebras B of A
over which A is
faithfully flat

←→


Quotient left A-
module coalgebras
over which A is
faithfully coflat


B → πB

Bπ ← π
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A version of the above theorem was given by Masuoka and Wigner [39, Theorem
2.1] but with the requirement that the Hopf algebra A has a bijective antipode.
They stated that the equivalence of the functors Φ and Ψ is the same as saying A is
faithfully flat as a module over its coideal subalgebra B.

To this end, we can say that quantum homogeneous spaces correspond (not bijec-
tive) to quotient coalgebras of their containing Hopf algebras and they are precisely
the subalgebras of all elements that are invariant under the comodule action induced
by these quotients coalgebras.

However as Takeuchi pointed out, when A is commutative, π(A) becomes a quo-
tient bialgebra and the antipode S (which is now bijective) defines a right π(A)-
comodule structure on A. Thus, the correspondence in the above theorem becomes a
bijection between the set of right coideal subalgebra over which A is a faithfully flat
module and the set of quotient Hopf algebras over which A is faithfully coflat. Recall
from Example 3.1.11 the correspondence between algebraic groups and commutative
Hopf algebras, we get close to the classical bijection of homogeneous G-spaces and
cosets of G by taking G to be the group of characters A −→ k of A and the set of
cosets G/H where H is the group of characters on the quotient Hopf algebra A/AB+.

To show that a certain coideal subalgebra B of A is a QHS, one must establish
that A is a faithfully flat module over B. One of the ways to show this is to use
Bergman’s diamond Lemma 3.3.1 to construct a vector space basis for A. If the
basis elements are of the form biej, where {bi}i∈I is a basis of B, then A is free as a
B-module thus faithful flatness follows by Corollary 3.2.10. However, this approach
is limited to Hopf algebras presented by generators and relations. In the literature,
other methods have been studied for Hopf algebras which are not finitely presented
(which are also applicable to finitely presented Hopf algebras), and we will briefly
state these results.

Masuoka and Wigner proved that given a non-commutative Hopf algebra A with
a bijective antipode such that A is a flat module over a coideal subalgebra B ⊆ A,
then A is faithfully flat (see [39, Theorem 2.1]). Building on this, they also showed
that every commutative Hopf algebra is flat over their coideal subalgebra see [39,
Theorem 3.4]. A consequence of this later result is that commutative Hopf algebras
are faithfully flat over their right coideal subalgebras.

In addition, Masuoka showed in [38] that Hopf algebras with cocommutative
coradical are faithfully flat, more precisely

Theorem 3.4.9. [38, Theorem 1.3] Let A be a Hopf algebra with bijective antipode S
and suppose the coradical A0 of A is cocommutative. If B is a right coideal subalgebra
of A such that S(B0) = B0 where B0 := B ∩ A0, then A is faithfully flat as a right
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or left B-module.

The bijectivity of the antipode means that Aop is a Hopf algebra with S−1 as the
antipode, thus the categories BMA and MAop

Bop are equivalent. The condition that
S(B0) = B0 is used to show that every module M ∈ MAop

Bop is free as a B-module.
Thus whenever A is a pointed Hopf algebra faithful flatness of A as a module over
its coideal subalgebras is implied. This result will be applied in our discussion in
Chapter 4.

3.5 Quantum symmetry of singular affine curves

Section 3.5.1 is reviewing the results on the containing Hopf algebras which makes
certain coordinate rings of singular affine curves admit a QHS. Section 3.5.2 contains
the first contribution of this thesis.

3.5.1 The Hopf algebra A(g, f)

The earliest work on quantum symmetries of affine curves goes back to the work of
Goodearl and Zhang. In [24, Construction 1.2] they constructed a Noetherian Hopf
algebra B(1, 1, n,m, q) of GK dimension 2, where (n,m) = 1 and q is a primitive
mnth root of unity. The Hopf algebra B(1, 1, n,m, q) is the skew group algebra
of the infinite cyclic group B := k[tn, tm][x±1, σ] generated as an algebra by the
grouplike element x and twisted primitive elements tn and tm such that xtm =
σ(tm)x, xtn = σ(tn)x. σ is an automorphism of the ring of coefficients k[tn, tm]
which is the coordinate ring of the cusp ym = xn. Trivially k[tn, tm] embeds into B
as a subalgebra and is a left coideal since ∆(tn) = tn ⊗ 1 + xmn ⊗ tn and ∆(tm) =
tm ⊗ 1 + xmn ⊗ tm.

Krähmer and Tabiri showed that the coordinate ring of the nodal cubic y2 =
x3 +x2 is a coideal subalgebra of the pointed Hopf algebra described in [34, Theorem
1]. This pointed Hopf algebra obtained has GK dimension 3 and as shown in [33],
it is not the smallest containing Hopf algebra for which the nodal cubic admits
a QHS since Krähmer and Martins [33, Theorem 1] constructed a quotient Hopf
algebra of GK dimension 1. Furthermore, Brown and Tabiri in [12] showed that
coordinate rings O(C) of plane curves C which decompose as f(y) = g(x) such that
2 ≤ deg f = m, deg g = n ≤ 5 admit a quantum homogeneous space structure in the
containing pointed Hopf algebra

A(g, f) = A(a, x, g)⊗ A(b, y, f)/〈an − bm, f − g〉.
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We will briefly explain the construction of A(g, f) as this Hopf algebra in some sense,
encompasses previously discussed containing Hopf algebras for which the coordinate
rings of the cusp and the nodal cubic become a QHS.

Suppose g and f are monic polynomials, the pointed Hopf algebras A(x, a, g)
and A(y, b, f) where a, b are grouplikes, and x and y are (1, a)-twisted primitives
respectively (1, b)-twisted primitives are constructed as follows:

Let F0 be the free algebra on the set of generators {x, a, c}. We define F := F0/I,
where I is the ideal generated by the relations ac − 1 and ca − 1. F has a unique
Hopf algebra structure (see [12, Lemma 1.1]) whose coproduct, counit and antipode
satisfy

∆(a) = a⊗ a, ∆(x) = 1⊗ x+ x⊗ a, ∆(c) = c⊗ c
ε(a) = ε(c) = 1, ε(x) = 0 (3.5.1)

S(a) = c, S(x) = −xc, S(c) = c.

Define a (Z≥0,Z≥)-grading on F by assigning to a and x the degrees (1, 0) respectively
(0, 1). We denote by P (j, i)(a,x) the sum of all monomials in F of degree (j, i) and
set P (0, 0) = 1. For deg g(x) := n ≥ 2, g(x) =

∑s
i=1 six

i and sn 6= 0 define

σj := σj(a, x, g(x)) :=
n∑
i=j

siP (j, i− j)− sjan.

For example, if g(x) = x3 + x2 then σ1 = ax + xa + ax2 + x2a + xax and σ2 =
a2 + a2x+ axa+ xa2 − a3.

Definition 3.5.1. Ig(x) := 〈σj : 1 ≤ j ≤ n−1〉 is the ideal generated by the elements
σj of F .

Following the example given above, Ix3+x2 = 〈σ1, σ2〉.

Proposition 3.5.2. [12, Lemma 1.2] The ideal Ig(x) is a Hopf ideal of F .

Definition 3.5.3. Let F and Ig(x) be as described above. Then A(x, a, g) is defined
to be the quotient F/Ig(x) of F .

Similarly one defines A(y, b, f) to be the quotient F/If(y) of F . However F here
is the Hopf algebra obtained from the quotient of the free algebra on the set {y, b, d}
by the ideal J = 〈bd− 1, db− 1〉. Furthermore, If(y) is defined similarly as Ig(x).

In particular following [12, Lemma 1.2], A(x, a, g) and A(y, b, f) are Hopf algebra
with Hopf algebra structure descended from F :
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Theorem 3.5.4. [12, Theorem 1.3] The k-algebra A(x, a, g) is a Hopf algebra with
coproduct, counit and antipode given by (3.5.1).

Consider the tensor product T = A(a, x, g)⊗ A(b, y, f) with Hopf algebra struc-
ture inherited from the A(a, x, g) and A(b, y, f), that is tensor coalgebra and ten-
sor algebra structures. In particular, following the definitions of the Hopf algebra
A(a, x, g) A(b, y, f), we can write T = k〈x, y, a±1, b±1〉 where the elements x, y are
primitive elements and a, b group-likes thus T is a pointed Hopf algebra [44, Corollary
5.1.14].

Proposition 3.5.5. [12, Proposition 1.6] The elements f, g, an, bm are central in T

Thus we define I to be the ideal generated by {an − bm, f − g}.

Definition 3.5.6. Let T and I be as defined above then A(g, f) := T/I as a k-
algebra.

Theorem 3.5.7. [12, Theorem 5.1, 5.2]

1. A(g, f) is a Hopf algebra.

2. The coordinate ring O(C) is a quantum homogeneous space of the Hopf algebra
A(g, f).

The embedding of the coordinate ring O(C) = k[x, y]/〈g − f〉 as a right coideal
subalgebra ofA(g, f) is premised on the fact that the tensor product algebra k[x, a±n]⊗
k[y, b±m] of the subalgebras k[x, a±n] ⊆ A(x, a, g) and k[y, b±m] ⊆ A(y, b, f) can be
identified with k[x, y, a±n, b±m] which is generated by twisted primitive elements x, y,
and grouplike elements a±n, b±m. Thus, k[x, y, a±n, b±m] is a right coideal subalgebra
of the Hopf algebra A(a, x, g)⊗A(b, y, f) (see [12, Proposition 4.1] for more details).

An application of this construction to k[t2, t3] yields the pointed Hopf algebra
A(x2, y3) (of GK dimension 3) thus making the cusp admit a quantum homogeneous
space structure. It was shown in [12] that the representation of A(x2, y3) on k[t2, t3]
factors through the Hopf algebra B(1, 1, 2, 3, q) found in [24]. In other words A(x2, y3)
does not act inner faithfully on k[t2, t3].

3.5.2 Affine coaction on the cusp

In this section we give a detailed construction of a quantum group A for which the
coordinate ring k[t2, t3] of the cusp is a quantum homogeneous space. In compari-
son with previous works discussed above, what is new is that we start off with an



51

ansatz given by affine transformations of the plane as a comodule structure map of
a bialgebra A on k[t2, t3] and we proved that it is not different from the coaction in
[32].

Proposition 3.5.8. Let B = k[t2, t3] be the coordinate ring of the cusp and set
x = t2 and y = t3. Suppose A is any bialgebra coacting on B via

ρ : B → A⊗B
x 7→ a⊗ x+ b⊗ y + r ⊗ 1

y 7→ c⊗ x+ d⊗ y + s⊗ 1

and the elements a, b, c, d, r, s of A are linearly independent. Then these elements
satisfy the following relations

[a, c] = 0, [b, d] = 0, [s, r] = 0, [a, d] = [c, b], [a, s] = [c, r],

[b, s] = [d, r], c3 = 0, c2d+ cdc+ dc2 = 0, cd2 + dcd+ d2c = 0,

c2s+ csc+ sc2 + d3 = a2, d2s+ dsd+ sd2 = b2, r2 = s3,

ab+ ba = cds+ csd+ dcs+ dsc+ scd+ sdc,

ar + ra = cs2 + scs+ s2c, br + rb = s2d+ sds+ ds2.

The coalgebra structure on the elements a, b, c, d, r, s is given by

∆(a) = a⊗ a+ b⊗ c, ∆(b) = a⊗ b+ b⊗ d, ∆(r) = a⊗ r + b⊗ s+ r ⊗ 1,

∆(c) = c⊗ a+ d⊗ c, ∆(d) = c⊗ b+ d⊗ d, ∆(s) = c⊗ r + d⊗ s+ s⊗ 1,

ε(a) = 1 = ε(d), ε(b) = ε(c) = ε(r) = ε(s) = 0. (3.5.2)

Proof. The relations are obtained using the defining equation of the algebra B and
the fact that ρ is an algebra map. That is rename X := a ⊗ x + b ⊗ y + r ⊗ 1 and
Y := c⊗ x+ d⊗ y + s⊗ 1, we have

XY = ac⊗ x2 + ad⊗ xy + bc⊗ yx+ (as+ rc)⊗ x
+ bd⊗ y2 + (bs+ rd)⊗ y + rs⊗ 1

Y X = ca⊗ x2 + da⊗ yx+ cb⊗ xy + (sa+ cr)⊗ x
+ db⊗ y2 + (sb+ dr)⊗ y + sr ⊗ 1.

Solving XY = Y X and using the relations xy = yx yields

[a, c] = [r, s] = [b, d] = 0 [a, d] = [b, c], [a, s] = [c, r], [b, s] = [d, r].
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In a similar way solving X3 = Y 2 and using the relation x3 = y2 yields the remaining
relations. The coalgebra structure maps stated can be obtained from evaluating the
coaction axioms

(∆⊗ idB) ◦ ρ = (idA ⊗ ρ) ◦ ρ, (ε⊗ idB) ◦ ρ = idB,

on the generators x and y of B. That is equating

(idA ⊗ ρ) ◦ ρ(x) = (a⊗ a+ b⊗ c)⊗ x+ (a⊗ b+ b⊗ d)⊗ y
+ (a⊗ r + b⊗ s+ r ⊗ 1)⊗ 1

with (∆⊗ idB) ◦ ρ(x) = ∆(a)⊗ x+ ∆(b)⊗ y + ∆(r)⊗ 1 yields

∆(a) = a⊗ a+ b⊗ c ∆(b) = a⊗ b+ b⊗ d
∆(r) = a⊗ r + b⊗ s+ r ⊗ 1.

Furthermore, x = (ε⊗ idB) ◦ ρ(x) = ε(a)x+ ε(b)y + ε(r)1 implies

ε(a) = 1, ε(b) = 0 = ε(r).

The other formulas can be obtained by evaluating the coaction axioms on y.

Lemma 3.5.9. The bialgebra A described above is a Hopf algebra if and only if
bc = cb.

Proof. Suppose A is a Hopf algebra, then an antipode S is well defined and satisfies

µ ◦ (S ⊗ id) ◦∆ = η ◦ ε = µ ◦ (id⊗ S) ◦∆.

We set t := ad − cb = da − bc and evaluate the antipode equation at a, b, c, d
and simplify to obtain S(a)t = d, S(b)t = −b, S(c)t = −c, S(d)t = a. Post
multiply the antipode equation evaluated at a, aS(a) + bS(c) = 1 by t to obtain
ad− bc = t = ad− cb thus bc = cb. The converse follows likewise.

Corollary 3.5.10. If the bialgebra A is a Hopf algebra, then a, b, c, d all commute
with one another.

Proof. Suppose A is a Hopf algebra then by the above proposition bc = cb. Since ∆
is an algebra map we have

0 = ∆(b)∆(c)−∆(c)∆(b) = ac⊗ (ba− ab) + (ad− da)⊗ bc
+ bc⊗ (da− ad) + bd⊗ (dc− cd),
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but from the relation [a, d] = [b, c] we have ad = da and the above equation becomes

ac⊗ (ba− ab) + bd⊗ (dc− cd) = 0.

Using the assumption that a, b, c, d are linearly independent, the conclusion follows.

Note that in the Hopf algebra A, the element t = ad−cb is grouplike: ∆(t) = t⊗t
and ε(t) = 1. Hence, t−1 exists and both t and t−1 commute with a, b, c, d.

Proposition 3.5.11. The coordinate ring B of the cusp is a left coideal subalgebra
of the Hopf algebra A whose elements a, b, c, d, r, s satisfy the relations

[a, c] = 0, [b, d] = 0, [a, d] = 0, [b, c] = 0, [s, r] = 0, [a, s] = [c, r],

[b, s] = [d, r], c3 = 0, [a, b] = 0, [c, d] = 0, c2d = 0 = cd2,

c2s+ csc+ sc2 + d3 = a2, d2s+ dsd+ sd2 = b2; r2 = s3,

2ba = 2cds+ csd+ dsc+ 2scd, ar + ra = cs2 + scs+ s2c,

br + rb = s2d+ sds+ ds2,

with coalgebra structure (3.5.2) and antipode given by

S(a) = t−1d, S(b) = −t−1b, S(c) = −t−1c, S(d) = t−1a,

S(r) = t−1(bs− dr), S(s) = t−1(cr − as).

Proof. The proof follows from taking ∆A(B) = ρ(B) and identifying x and y with r
respectively s.

The Hopf algebra A described above contains commuting elements a, b, c, d, t−1

as shown in Lemma 3.5.10 and they generate a commutative Hopf subalgebra with
a nilpotent element c. However, we know that

Theorem 3.5.12. [15] A finitely generated commutative Hopf algebra over a field k
of char(k) = 0 has no nilpotent element that is, it is reduced.

Therefore we have that

Lemma 3.5.13. In the commutative Hopf subalgebra of A generated by a, b, c, d, t−1,
c = 0.

Proof. Notice that c3 = 0, so c is nilpotent and by Theorem 3.5.12, c = 0.
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Implementing this result in A, yields new relations a2 = d3 and ab = 0 precisely
when c = 0 is substituted into the relations c2s + csc + sc2 + d3 = a2 respectively
2ba = 2cds+ csd+ dsc+ 2scd. In view of this, we now have

Corollary 3.5.14. b = 0.

Proof. By Lemma 3.5.13, we know that c = 0, and hence we have that ∆(a) = a⊗a,
∆(d) = d⊗ d that is a and d are group-like elements. Hence, their inverses exist and
since ab = 0, we have that b = 0.

We have shown that B is a left coideal subalgebra of A, hence it is a right coideal
subalgebra of Acop. We will now show that A is a faithfully flat right B-module using
Bergman’s diamond lemma in Theorem 3.3.1 to construct a vector space basis for A

Proposition 3.5.15. The set B = {rjslaidk : i, j ∈ {0, 1}, k, l ∈ Z≥0} is a k-vector
space basis for A.

Proof. Following the setup of the Bergman’s diamond lemma 3.3.1, X = {a, d, r, s}
and I = spank{ad − da, rs − sr, as − sa, dr − rd, a2 − d3, d2s + dsd + sd2, r2 −
s3, ar + ra, s2d + sds + ds2}. Clearly the Hopf algebra A ∼= k〈X〉/I and there are
no unresolved ambiguities. Notice that the set B comprises irreducible words in 〈X〉,
thus by Theorem 3.3.1 it is a vector space basis of A.

Hence, by 3.2.10, we haveA is free and thus faithfully flat as aB-module therefore,
the coordinate ring B of the cusp is a quantum homogeneous space of the Hopf
algebra A whose Hopf structure is described in Theorem 3.5.11 and is presented by
generators a, d, r, s and relations:

ad = da, rs = sr, as = sa, dr = rd, a2 = d3,

d2s+ dsd+ sd2 = 0, r2 = s3, ar = −ra, s2d+ sds+ ds2 = 0.

3.6 True quantum symmetry

In the classical setting, symmetries of algebraic sets given by actions of group alge-
bras or universal enveloping algebras do extend to their coordinate rings and fields
of rational functions. One naturally ask if this carries over to the quantum setting.
The answer is no in general, however in this section we will motivate an example of
a quantum symmetry of k[t2, t3] which extends to k(t), see Remark 3.6.10. Further-
more, we show that the dual Hopf algebra to the pointed Hopf algebra A generated
by this quantum symmetry is not pointed, see Proposition 3.6.8.
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Definition 3.6.1. Let G be an algebraic set equipped with a group structure and
X be an algebraic set. A G-action on X is a map α : G×X −→ X, (g, x) 7→ g . x
such that for all g, h, eG ∈ G, x ∈ X

g . (h . x) = gh . x, and eG . x = x.

Every G-action α of G on an algebraic set X yields an action of G on the coor-
dinate ring O(X) of X via

α̂ : G×O(X) −→ O(X), (g, f) 7→ (g . f)(x) := f(g−1 . x),

and as we have for all g, h ∈ G

(g . h . f)(x) = (h . f)(g−1 . x) = f(h−1 . g−1 . x) = f(h−1g−1 . x) = (gh . f)(x)

and
(eG . f)(x) = f(eG . x) = f(x).

In particular, O(X) becomes a left G-module algebra since for all a, b ∈ O(X) and
g ∈ G

(g . ab)(x) = ab(g−1 . x) = a(g−1 . x) b(g−1 . x) = (g . a)(g . b)(x),

and
(g . 1)(x) = 1(g−1 . x) = 1.

Furthermore, this module action of G on O(X) extends to the rational function field
k(X) of X with module action defined by

g .

(
a

b

)
=
g . a

g . b
,

with b 6= 0 on X. This module action is well defined:

a

b
=
a′

b′
⇐⇒ a′b = ab′

⇐⇒ g . (a′b) = g . (ab′)

⇐⇒ (g . a′)(g . b) = (g . a)(g . b′)

⇐⇒ g . a′

g . b′
=
g . a

g . b
.
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A morphism of algebraic sets induces a contravariant algebra homomorphism between
the algebras of their regular functions. Thus, α induces an algebra map

α# : O(X) −→ O(G×X) ∼= O(G)⊗O(X)

f 7→ α#(f)(g, x) = f ◦ α(g, x) = f(g . x).

Note that α# is not only an algebra map but also a left coaction of O(G) on O(X).
However, this coaction does not in general extend to the function field k(X) of X as
shown in what follows.

Example 3.6.2. Recall the algebraic group G = SL2(C) described in Example
3.1.11. Define a left action of G on the affine plane X = C, via matrix multiplication(

a b
c d

)
·
(
x
y

)
=

(
ax+ by
cx+ dy

)
. (3.6.1)

Thus by equation (3.1.1), A = O(G) is a coalgebra and the SL2(C)-action on C
induces a left A-comodule algebra structure

ρ : B −→ A⊗B
x 7→ a⊗ x+ b⊗ y,
y 7→ c⊗ x+ d⊗ y,

on B := O(X) = C[x, y] since the coalgebra structure (3.1.1) of A ensures that
(id⊗ ρ) ◦ ρ = (∆⊗ id) ◦ ρ and (ε⊗ id) ◦ ρ = id.

However, this comodule structure does not extend to the field C(x, y) of rational
functions.

Proposition 3.6.3. Let

eijk :=

{
aibjck i ≥ 0

dibjck i < 0,

then the set {eijk : i ∈ Z, j, k ∈ N} is a vector space basis for O(SL2(C)).

Proof. We define an order on the set {eijk : i ∈ Z, j, k ∈ N} ⊆ O(SL2(C)) by

eijk < erst ⇐⇒


i < r, or

i = r, j < s, or

i = r, j = s, k < t,

for all i, r ∈ Z, j, k, s, t ∈ N. Following the setup of the diamond Lemma 3.3.1, take
X to be the set {a, b, c, d} of generators and I to be the ideal generated by ad−bc−1.
The result follows by Theorem 3.3.1.
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As the last ingredient, we define

Definition 3.6.4. Let V be a vector space. Then, for v ∈ A⊗ V , we write

v =
∑

i∈Z, j,k∈N

eijk ⊗ vijk.

The leading coefficient of v is the vector vijk for which eijk is maximal among all
{erst : vrst 6= 0}.

We are now ready to prove that the SL2-action (3.6.1) does not extend to the
field of rational functions on C.

Proposition 3.6.5. Let A and ρ be the C-coalgebra respectively coaction map as in
Example 3.6.2. Then the comodule structure defined by ρ on C[x, y] does not extend
to C(x, y).

Proof. We will prove this by contradiction. Suppose there is such a left coaction ρ
on C(x, y) given by

ρ(1/x) =
∑
i,j,k

eijk ⊗ vijk,

where vijk ∈ C(x, y), then we have

1⊗ 1 = ρ(1) = ρ(x)ρ(1/x) =
∑
ijk

a eijk ⊗ x vijk + b eijk ⊗ y vijk =: w

Case 1: i ≥ 0
The leading term of w is ei+1 jk ⊗ xvijk but the leading term of the LHS is
1⊗ 1 and ei+1 jk 6= 1.

Case 2: i < 0
The leading term of w is ei j+1 k ⊗ y vijk since ad = 1 + bc, however the leading
term on the LHS is 1⊗ 1 and since j + 1 > 0, ei j+1 k 6= 1.

Remark 3.6.6. In other words, there is no A-comodule algebra structure ρ on
C(x, y) such that when restricted to C[x, y] we have ρ(x) = a ⊗ x + b ⊗ y and
ρ(y) = c ⊗ x + d ⊗ y. Thus, in general Hopf algebra (either commutative or non-
commutative) (co)actions on coordinate rings of an affine varieties do not extend to
their fields of rational functions. In this sense, we say quantum symmetries arising
from such (co)actions are not true quantum symmetries.
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3.6.1 Constructing the Hopf dual of A(x3, y2)

Recall that A is generated by group-like elements a, d, and twisted primitives r, s
satisfying the relations:

[a, d] = [r, s] = [a, s] = [d, r] = 0,

a2 = d3, d2s+ dsd+ sd2 = 0,

r2 = s3, ar = −ra, s2d+ sds+ ds2 = 0.

Constructing the full Hopf dual of a Hopf algebra is rather involved. Nevertheless, for
our purpose, we will compute enough representations of A which gives us a sufficiently
large Hopf subalgebra of A◦ to arrive at a conclusion. The question: is A◦ pointed
will be answered by investigating the dimensions of irreducible representations of A.
If all irreducible finite dimensional representations of A are 1-dimensional, then the
answer is in the affirmative (see Proposition 2.3.14 and Corollary 2.3.15).

Consider the quotient Ã of the Hopf algebra A by the Hopf ideal generated by
a2−d3−1. Ã◦ embeds into the dual A◦ via the dual of the quotient map A −→ Ã. In
what follows, we compute explicitly 1-dimensional (which are simple modules) and
2- dimensional representations of Ã.

1-dimensional representations: Observe that the 1-dimensional representa-
tions π : Ã −→ C of Ã are just complex numbers satisfying the defining relations
of Ã. In particular, the counit ε of Ã is a 1-dimensional representation defined by
a, d 7→ 1 and r, s 7→ 0. We claim that all the 1-dimensional representations of Ã are
of this form: clearly a2 = 1 = d3 as ε is an algebra map and this relation give rise to
six 1-dimensional representations: π(a) = ±1, π(d) ∈ {1, ξ, ξ2}, where ξ3 = 1, and
π(r) = π(s) = 0.

2-dimensional Representations: These are given by 2 × 2 matrices which
satisfy the defining relations of Ã. Note that the image π(a)2 = 1 of the relation
a2 = 1 under π means the matrix π(a) is diagonalizable. Thus it decomposes C2

into eigenspaces Eλ1 and Eλ2 corresponding to the eigenvalues λ1 = 1 respectively
λ2 = −1. That is C2 = Eλ1

⊕
Eλ2 . Hence, with respect to any basis {(v1, v2)T :

v1, v2 ∈ C} of C2, we have

π(a) =

(
1 0
0 −1

)
, if dim Eλ1 = 1, and dim Eλ2 = 1,

or

π(a) =

(
1 0
0 1

)
, if dim Eλ1 = 2, and dim Eλ2 = 0,
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or

π(a) =

(
−1 0
0 −1

)
, if dim Eλ1 = 0, and dim Eλ2 = 2.

If π(a) = ±I2, where I2 is the 2 × 2 identity matrix, then the relation ar = −ra in
Ã which translates to π(a)π(r) = −π(r)π(a) implies that π(r) = 0. Thus it follows
from r2 = s3 that π(s) is a nilpotent matrix which in Jordan normal form is(

0 0
0 0

)
or

(
0 1
0 0

)
.

Case (i): suppose π(s) =

(
0 1
0 0

)
, and π(d) =

(
x y
z w

)
with x, y, z, w ∈ C. Then,

from the relation s2d+ sds+ ds2 = 0 we deduce that z = 0, and the relation d3 = 1
yields

x3 = 1 = w3, y(x2 + wx+ w2) = 0,

but the image of d2s+dsd+sd2 = 0 under π implies that x2 +xw+w2 = 0. However
since x,w ∈ {1, ξ, ξ2}, then

x2 + xw + w2 = 0 =⇒ x 6= w.

Thus, π(d) can assume any of the matrices:(
1 y
0 ξ

)
,

(
1 y
0 ξ2

)
,

(
ξ y
0 1

)
,

(
ξ2 y
0 1

)
,

(
ξ y
0 ξ2

)
,

(
ξ2 y
0 ξ

)
.

These matrices up to conjugation can be brought to their standard normal form so
that y = 0, and π(d) can admit up to conjugation six different diagonal matrices
with distinct 3rd roots of unity on the diagonal.

Case (ii): if π(s) =

(
0 0
0 0

)
, the only non trivial relation to work with is d3 = 1

and this means the matrix π(d) has three distinct eigenvalues 1, ξ, ξ2 - third roots of
unity. Thus up conjugation, π(d) can be admit any of the following matrices(

1 0
0 ξ

)
,

(
1 0
0 ξ2

)
,

(
ξ 0
0 ξ

)
,

(
ξ2 0
0 ξ2

)
,

(
ξ 0
0 ξ2

)
,

(
1 0
0 1

)
.

If π(a) =

(
1 0
0 −1

)
, then the relation as = sa implies

π(a)(π(s)v) = π(s)(π(a)v) = π(s)(λv) = λ(π(s)v),
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for eigenvalue λ and eigenvector v of matrix π(a). In other words π(s)v lies in the
eigenspaces Eλ1 and Eλ2 of π(a), thus π(s) as a linear map leaves the two eigenspaces
invariant and we conclude that for α, β ∈ C

π(s) =

(
α 0
0 β

)
.

Furthermore, the relation ar = −ra implies that for γ, δ ∈ C,

π(r) =

(
0 γ
δ 0

)
which in addition to the fact that rs = sr yields

γβ = αγ, αδ = βδ.

Thus, for γ 6= 0 and δ 6= 0, we have α = β which further implies that π(s) = αI2.
However, the relations d2s+ dsd+ sd2 = 0 and s2d+ sds+ ds2 = 0 yield απ(d)2 = 0
respectively α2π(d) = 0, but d3 = 1 in the Hopf algebra A so α = 0 and π(s) = 0 as
a matrix. Therefore, π(r) is nilpotent and in Jordan normal form,

π(r) =

(
0 0
0 0

)
or π(r) =

(
0 1
0 0

)
or π(r) =

(
0 0
1 0

)
.

Furthermore, the commutation ad = da similarly interprets to mean π(d) leaves the

eigenspaces of π(a) invariant, hence π(d) =

(
m 0
0 n

)
for m,n ∈ C.

(i) If π(r) =

(
0 0
0 0

)
, the only non-trivial relation d3 = 1 implies that m3 = 1 =

n3. Thus, π(d) admits up to conjugation six different diagonal matrices with the 3rd

roots of unity as diagonal entries(
1 0
0 ξ

)
,

(
1 0
0 ξ2

)
,

(
ξ 0
0 ξ

)
,

(
ξ2 0
0 ξ2

)
,

(
ξ 0
0 ξ2

)
,

(
1 0
0 1

)
.

(ii): If π(r) =

(
0 1
0 0

)
or π(r) =

(
0 0
1 0

)
, the non-trivial relations are rd = dr

and d3 = 1 and they imply that m = n respectively m and n are 3rd roots of unity.
Thus, π(d) can admit three matrices;(

1 0
0 1

)
,

(
ξ 0
0 ξ

)
,

(
ξ2 0
0 ξ2

)
.
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Remark 3.6.7. Notice that none of these 2-dimensional representations is irre-
ducible: the vector (1 , 0)T is an eigenvector to all the matrice representations.
Hence the eigenspace (1 , 0)TC is a proper subspace of C2 which is invariant with
respect to these representations.

One could continue in this way to find representations of dimension n however
there is an irreducible 6-dimensional representation of Ã as shown in the following
result

Proposition 3.6.8. Let π be a 6-dimensional representation of Ã, defined by

π(a)(u±) = u±, π(a)(v±) = v±, π(a)(w±) = w±, π(d)(u±) = u±,

π(d)(v±) = ξv±, π(d)(w±) = ξ2w±, π(s)(u±) = v±, π(s)(v±) = ξw±,

π(s)(w±) = ξ2u±, π(r)(u±) = u∓, π(r)(v±) = v∓, π(r)(w±) = w∓,

where {u±, v±, w±} is a basis. π is irreducible.

Proof. Suppose π is reducible and W is a non-trivial subspace of the vector space C6

that is invariant with respect to π. Then, as stated earlier,the relation a2 = 1 = d3

implies that π(a), π(d) decomposes W into eigenspaces W±1 and W1,ξ,ξ2 correspond-
ing to the eigenvalues of π(a) respectively π(d). Furthermore, the commutation
relation ad − da = 0 in Ã, means π(a) and π(d) share a common eigenvector in W
which up to rescaling is one of the basis elements. Notice that π(s) cyclicly permutes
the basis elements and since W is invariant under π then {u±, v±, w±} ⊆ W =⇒
W = codom(π).

In particular A has an irreducible 6-dimensional representation thus

Corollary 3.6.9. The Hopf dual A◦ of the Hopf algebra A is not pointed.

Remark 3.6.10. The 6-dimensional representation π of A described in the above
proposition motivates an example of a quantum symmetry of k[t2, t3] as follows:
Recall that the coaction of A on B is given by

x 7→ a⊗ x+ r ⊗ 1, y 7→ d⊗ y + s⊗ 1.

Thus the 36 matrix coefficients s(ij)(mn) of the 6-dimensional representation π act on
B from the right as follows:

x / s(ij)(mn) = δim((−1)jδjnx+ δj(n+1))

y / s(ij)(mn) = ξmδjn(δimy + δi(m+1)),
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where i, j,m, n ∈ {1, · · · , 6}. We denote by X respectively Y the 6× 6 matrices

X =


x 1 0 0 0 0
1 −x 0 0 0 0
0 0 x 1 0 0
0 0 1 −x 0 0
0 0 0 0 x 1
0 0 0 0 1 −x

 Y =


y 0 1 0 0 0
0 y 0 1 0 0
0 0 ξy 0 ξ 0
0 0 0 ξy 0 ξ
ξ2 0 0 0 ξ2y 0
0 ξ2 0 0 0 ξ2y


representing the action of the sij,mn on x, y. Since x2 = y3 in B, then we must have
that X2 = Y 3 and therefore (detX 6= 0 is easily verified) setting

X = T 3, Y = T 2 with T := XY −1,

we obtain

T :=
1

t6 + 1
·


t7 t4 −ξ2t5 −ξ2t2 ξt3 ξ
t4 −t7 −ξ2t2 ξ2t5 ξ −ξt3
t3 1 ξ2t7 ξ2t4 −ξt5 −ξt2
1 −t3 ξ2t4 −ξ2t7 −ξt2 ξt5

−t5 −t2 ξ2t3 ξ2 ξt7 ξt4

−t2 t5 ξ2 −ξ2t3 ξt4 −ξt7

 .

T is a quantum symmetry on k(t) in particular, when restricted to B = k[t2, t3], it
is again a quantum symmetry of k[t2, t3] since T 2, T 3 ∈Mn(k[t2, t3]).



Chapter 4

Quantum symmetries of function
fields

The starting point for the main results of this thesis which are presented in this chap-
ter is to demand that like classical symmetries, the examples of quantum symmetries
of the singular curves discussed in the previous chapter extend to the field of rational
functions of these curves. We in particular focus on the example of the cusp. The
approach we take was maybe first applied by Manin in his construction of quantum
SL(2) as a Hopf algebra (co)acting on the quantum plane [37]. In this approach
as detailed in Sections 4.1, 4.2, we constructed a bialgebra action on a k-algebra K
from an algebra morphism K −→ Mn(K). The resulting bialgebra becomes a Hopf
algebra if this morphism when viewed as an element of Mn(Endk(K)) is strongly
invertible in the sense of Definition 4.1.2. In particular, if K = k(t), this Hopf action
does indeed restricts to k[t2, t3].

4.1 Quantum automorphisms

4.1.1 Strongly invertible matrices

Let P be a unital associative ring. Recall that if σ ∈ GLn(P ) is an invertible n× n-
matrix with entries P , then the transpose σT is in general not invertible:

Example 4.1.1. If a, d are elements of a ring P with da = 1 but ad 6= 1, the matrix

σ :=

(
a 1
0 d

)
is invertible with inverse σ−1 =

(
d −1

1− ad a

)
.
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However, σT =

(
a 0
1 d

)
is not invertible.

More precisely, σT ∈ GLn(P ) if and only if σ ∈ GLn(P op), where P op denotes
the opposite ring of P (the additive abelian group P equipped with the opposite
multiplication a ·op b := ba). Indeed for σ, τ ∈ Mn(P ), suppose τ is the inverse of σ
in P op then we have

δij = (σ ·op τ)ij =
n∑
r=1

σir ·op τrj =
n∑
r=1

τrjσir

=
n∑
r=1

τTjrσ
T
ri = (τTσT )ji

that is In = (σ ·op τ)T = τTσT , where on the left hand side, ·op is the multiplication
in Mn(P op). In other words, σ, σT ∈ GLn(P ) if σ ∈ GLn(P )∩GLn(P op). This yields
the contragredient isomorphism (see e.g. [26, Chapter 3] for a discussion of this map)

GLn(P )→ GLn(P op), σ 7→ σ̄ := (σ−1)T

The theory of Hopf algebras motivates to study those matrices to which one can
apply this operation arbitrarily often without leaving GLn(P ); we are not aware of
a standard name for such matrices, so we introduce a working terminology:

Definition 4.1.2. We call σ ∈ Mn(P ) strongly invertible if there exists a sequence
{σd}d∈Z in GLn(P ) with σ0 = σ and σd+1 = σ̄d.

Note this means that also all σTd are invertible with (σTd )−1 = σd−1. Thus, a nec-
essary condition for σ to be strongly invertible is for σ, σT ∈ GLn(P ). We will focus
on upper triangular matrices; for these, the condition is relatively easily controlled:

Proposition 4.1.3. If σ ∈ Mn(P ) is upper triangular, σij = 0 for i > j, then σ is
strongly invertible if and only if σii ∈ P is invertible for i = 1, . . . , n. In this case,
σ−1 is upper triangular and all (σ−1)ij are contained in the subring of P generated
by the σij and the σ−1

ii .

Proof. “⇒”: Suppose σ is strongly invertible. Then σ and σT are invertible. As
σni = 0 for i < n, we then have

(σσ−1)nn = σnn(σ−1)nn = 1 (4.1.1)

and similarly
1 = ((σT )−1σT )nn = ((σT )−1)nnσnn.
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Hence, σnn is invertible in P with inverse

(σnn)−1 = (σ−1)nn = ((σT )−1)nn.

Moreover, (4.1.1) shows

σnn(σ−1)nj = 0 ∀ j = 1, · · · , n− 1.

But σnn is invertible, thus

(σ−1)nj = 0 ∀ j = 1, · · · , n− 1.

Analogously, one shows that ((σT )−1)jn vanishes for j = 1, . . . , n− 1. So σ, σ−1,
and (σT )−1 can be written in block matrix form as

σ =

(
α µ
0T σnn

)
, σ−1 =

(
β γ
0T σ−1

nn

)
, (σT )−1 =

(
δ 0
νT σ−1

nn

)
,

where α, β, δ ∈ Mn−1(P ), µ, γ, ν are column vectors in P n−1, and 0 is the zero vector
in P n−1.

From σσ−1 = 1 = σ−1σ we obtain that α is invertible with inverse β. Analogously,
αT is invertible with inverse δ. We also obtain

γ = −α−1µσ−1
nn ,

so the entries γj are elements of the subring of P generated by the entries of σ and
of α−1. Continuing inductively one obtains the claim.

“⇐”: Suppose the diagonal entries σii of σ = σ0 are invertible. We show that the
equation στ = 1 can be solved inductively in the ring of upper triangular matrices
with entries in P . Indeed, this equation means that

n∑
m=l

σlmτmn = δln.

These equations can be solved by induction on n− l. For n− l = 0 we obtain

τll = σ−1
ll .

For n− l = i, we obtain

τl i+l = −σ−1
ll

( n∑
m=l+1

σlmτmn

)
.

Furthermore, solving the equation τσ = 1 inductively as above, we conclude that
τ = σ−1. Analogously, one can show by solving the equations σTρ = 1 and ρσT = 1
inductively in the ring of lower triangular matrices that σT is invertible with inverse
ρ.
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4.1.2 A quantum Galois group

Let now k ⊆ B be a ring extension and let P = Endk(B) be the ring of k-linear
maps B → B. A matrix σ ∈ Mn(Endk(B)) can alternatively be viewed as a map
B → Mn(B), and we can demand this to be a ring morphism:

Definition 4.1.4. A quantum automorphism of B over k ⊆ B is a strongly invertible
matrix σ ∈ Mn(Endk(B)) satisfying

σij(1) = δij, σij(ab) =
n∑
l=1

σil(a)σlj(b) ∀ a, b ∈ B. (4.1.2)

Given a quantum automorphism, we denote by

Uσ ⊆ Endk(B)

the ring generated by the entries σd,ij of the σd ∈ Mn(Endk(B)), σ0 = σ, σd+1 = σ̄d.

For n = 1 this just means that σ is a ring automorphism of B that fixes k
pointwise, and Uσ is the group ring of the subgroup of the Galois group Gal(B/k) of
B over k that is generated by σ. In this sense, the set of quantum automorphisms is
a generalisation of Gal(B/k).

If B is noncommutative, σ−1 is in general not a ring morphism. However, note
that the set of quantum automorphisms is closed under σ 7→ σ̄:

Proposition 4.1.5. If σ is a quantum automorphism, then so is σ̄.

Proof. The key point is to show that σ̄ is multiplicative. To see this, first apply σ−1
pi

to (4.1.2) and sum over i. This yields δpjab =
∑n

i,l=1 σ
−1
pi (σil(a)σlj(b)). Inserting into

this equation a = σ−1
qr (c), b = σ−1

jq (d) for elements c, d ∈ B and summing over j and
q yields the claim:

n∑
q=1

σ̄rq(c)σ̄qp(d) =
n∑
q=1

σ−1
qr (c)σ−1

pq (d) =
n∑

q,j=1

δpjσ
−1
qr (c)σ−1

jq (d)

=
n∑

i,j,l,q=1

σ−1
pi (σil(σ

−1
qr (c))σlj(σ

−1
jq (d)))

=
n∑

i,l,q=1

σ−1
pi (σil(σ

−1
qr (c))δlqd) =

n∑
i,l=1

σ−1
pi (σil(σ

−1
lr (c))d)

=
n∑
i=1

σ−1
pi (δircd) = σ−1

pr (cd) = σ̄rp(cd).
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However, even when B is commutative, the (matrix) product of quantum auto-
morphisms is in general not a quantum automorphism, so quantum automorphisms
do not form groups. As we will explain in Section 4.2, they instead generate quantum
groups (Hopf algebras).

4.1.3 A quantum subgroup

Even for basic examples of ring extensions, the set of all quantum automorphisms is
too enormous to classify. There are various subsets that one can focus on, and we
will in particular be interested in the following two attributes:

Definition 4.1.6. A quantum automorphism σ is

1. upper triangular if σij = 0 for i > j, and

2. locally finite if for all a ∈ B, the set {σij(a) | σij ∈ Uσ} is contained in a finitely
generated k-module.

We denote by QBn(B/k) ⊆ Mn(Endk(B)) the set of all quantum automorphisms
which share these two properties.

Both conditions will be motivated and explained further in Section 4.2. For now,
we only point out that the upper triangularity makes it particularly easy to find such
quantum automorphisms:

Corollary 4.1.7. A k-linear ring morphism σ : B → Mn(B) with σij = 0 for i > j
is a quantum automorphism if and only if its diagonal entries σii are invertible for
i = 1, · · · , n. In this case, Uσ is generated by the σij together with the σ−1

ii .

Proof. This follows immediately from Proposition 4.1.3.

A typical situation in which local finiteness holds is the following:

Proposition 4.1.8. Suppose B is a k-algebra, that {Fd}d∈Z is an exhaustive k-
algebra filtration of B with dimk Fd < ∞, and that σ ∈ Endk(B) is a quantum
automorphism with σij(Fd) ⊆ Fd. Then σ is locally finite.

Proof. By assumption, all Fd are invariant under the action of Uσ, and if b ∈ B is
any element, then there exists d ∈ Z with b ∈ Fd, and hence Uσb ⊆ Fd is finite-
dimensional.
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4.1.4 Quantum automorphisms of k(t)

We will be interested in quantum automorphisms of coordinate rings of singular
plane curves whose field of fractional functions is the field k(t), and we first classify
the upper triangular quantum automorphisms of the latter.

Proposition 4.1.9. For any field k, the assignment σ 7→ σ(t) ∈ Mn(k(t)) defines a
bijection between upper triangular quantum automorphisms of k(t) over k and upper
triangular matrices in Mn(k(t)) whose diagonal entries are of the form

σ(t)ii =
αit+ βi
γit+ δi

for some αi, βi, γi, δi ∈ k, αiδi − βiγi 6= 0.

Proof. For any ring extension k ⊆M , σ 7→ T := σ(t) defines a bijection between the
set {σ : k[t]→M} of k-linear ring morphisms and M .

Such a ring morphism extends in at most one way to a ring morphism σ : k(t)→
M given by p

q
7→ p(T )q(T )−1, and it does extend if and only if for any q ∈ k[t] \{0}

the element q(T ) ∈M is invertible in M .
Specialising these general considerations to the case M = Mn(k(t)), we have

furthermore by elementary linear algebra over fields:

1. p(T ) is upper triangular for all p ∈ k[t] if and only if T is so.

2. q(T ) is invertible if and only if det(q(T )) 6= 0.

3. If q(T ) is invertible and upper triangular, so is q(T )−1.

4. If T is upper triangular, det(q(T )) = q(T11) · · · q(Tnn).

We conclude that k-linear ring morphisms k(t) → Mn(k(t)) that are upper
triangular correspond bijectively to upper triangular matrices T ∈ Mn(k(t)) with
q(Tii) 6= 0 for all i = 1, . . . , n and q ∈ k[t] \{0}.

Corollary 4.1.7 shows that such a ring morphism is a quantum automorphism if
and only if its diagonal entries σii are in the Galois group of k(t) over k, which is
well-known to be the group of Möbius transformations [17, Theorem 7.5.7]. So if we
are given an upper triangular matrix T that defines an upper triangular quantum
automorphism of k(t), the Tii are necessarily of the form as stated. Conversely, if all
Tii are of this form, then we also have q(Tii) 6= 0 for all q ∈ k[t] \{0}, as the inverse
of the unique k-linear ring automorphism σii : k(t) → k(t) that maps t to Tii maps
q(Tii) to q; thus T defines a ring morphism k(t)→ Mn(k(t)) which by Corollary 4.1.7
is a quantum automorphism.
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4.1.5 Restriction to k[t2, t3]

A quantum automorphism σ of k(t) restricts to an intermediate ring k ⊆ B ⊆ k(t)
if and only if we have

b(σ(t)) ∈ Mn(B) ∀ b ∈ B (4.1.3)

If we consider
B = k[t2, t3] = spank{ti | i 6= 1} ⊆ k[t],

then it is evidently sufficient to test (4.1.3) only for b = t2 and b = t3. In other
words, we have:

Corollary 4.1.10. A quantum automorphism σ of k(t) restricts to k[t2, t3] if and
only if T 2, T 3 ∈ Mn(k[t2, t3]), where T = σ(t).

When classifying upper triangular quantum automorphisms of k[t2, t3] that ex-
tend to k(t), it is sufficient to consider matrices whose entries are Laurent polyno-
mials:

Proposition 4.1.11. If an upper triangular matrix T ∈ Mn(k(t)) satisfies T 2, T 3 ∈
Mn(k[t2, t3]) then T ∈ Mn(k[t, t−1]) whose entries contain no terms of degree less
than −3n+ 4.

Proof. We prove that the Tij are Laurent polynomials by induction on j − i.
j − i = 0: We have shown that the diagonal entries are Möbius transformations

i.e are of the form Tii = αit+βi
γit+δi

. The condition T 2 ∈ Mn(k[t2, t3]) and αiδi − βiγi 6= 0
forces βi = γi = 0, so without loss of generality, we have Tii = αit.

j − i = 1: We get the equations

(T 2)i i+1 = (αi + αi+1)tTi i+1,

(T 3)i i+1 = (α2
i + αiαi+1 + α2

i+1)t2Ti i+1

are in k[t2, t3] if either tTi i+1 ∈ k[t2, t3] or t2Ti i+1 ∈ k[t2, t3] since it is impossible that
both the scalar factors are zero hence, Ti i+1 is a Laurent polynomial and contains
no term of degree < −2.

j − i = n: Assume that Ti i+r is for all r < n a Laurent polynomial and contains
no term of degree less than −3n+ 1.
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By assumption, the elements

(T 2)i n+i = (αi + αn+i)tTi n+i +
n−1∑
r=1

Ti i+rTi+r n+i

(T 3)i n+i = (α2
i + αiαn+i + α2

n+i)t
2Ti n+i+

+
n−1∑
r=1

Ti i+r(T
2)i+r n+i + αitTi i+rTi+r n+i

must be in k[t2, t3]. As both scalars αi + αn+i and α2
i + αiαn+i + α2

n+i cannot be
simultaneously zero, it follows from the induction hypothesis that Ti n+i is a Laurent
polynomial which contains no term of degree less than −3n+ 1.

4.1.6 Complete classification for n = 2, 3

Recall that for l ∈ N and β ∈ k, one defines the quantum numbers

[[l]]β := 1 + β + · · ·+ βl−1 =
1− βl

1− β
,

where the last equality of course only applies when β 6= 1.

Lemma 4.1.12. If z =
∑

i∈Z zit
i, then the matrix

T =

(
αt z
0 αβt

)
corresponds to a quantum automorphism of k[t2, t3] if and only if

1. [[2]]β = 0⇔ β = −1 and z−1 = z−3 = z−4 = . . . = 0, or

2. [[3]]β = 0⇔ β = e±2πi/3 and z0 = z−2 = z−3 = . . . = 0 or

3. [[2]]β, [[3]]β 6= 0 and z0 = z−1 = z−2 = . . . = 0.

Proof. We have

T 2 = α

(
αt2 [[2]]βtz
0 αβ2t2

)
, T 3 = α2

(
αt3 [[3]]βt

2z
0 αβ3t3

)
so T corresponds to a quantum automorphism of k[t2, t3] if and only if

[[2]]βtz, [[3]]βt
2z ∈ k[t2, t3].
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That is either [[2]]β = 0, that is β = −1 which implies that [[3]]βt
2z = t2z ∈ k[t2, t3]

meaning z−1 = z−3 = z−4 = · · · = 0 or [[3]]βt
2z = 0 which thus implies z0 = z−2 =

z−3 = . . . = 0, Or [[2]]βtz and [[3]]βt
2z are non zero, in this case, z ∈ k[t]/k.

Lemma 4.1.13. If z =
∑

i∈Z zit
i, y =

∑
j∈Z yjt

j, and x =
∑

l∈Z xlt
l, then the matrix

T =

 αt x z
0 αβt y
0 0 αβγt


corresponds to a quantum automorphism of k[t2, t3] if and only if we have

(a) β = −1 and x−1 = x−3 = x−4 = . . . = 0, or

(b) β = e±2πi/3 and x0 = x−2 = x−3 = . . . = 0, or

(c) β 6= −1, e±2πi/3 and x0 = x−1 = x−2 = . . . = 0

and

(A) γ = −1 and y−1 = y−3 = y−4 = . . . = 0, or

(B) γ = e±2πi/3 and y0 = y−2 = y−3 = . . . = 0, or

(C) γ 6= −1, e±2πi/3 and y0 = y−1 = y−2 = . . . = 0,

and

(r) β 6= −1− γ−1 and there are a, b ∈ k[t2, t3] with

z = (1 + β + βγ)t−1a− t−2b, xy = α(−[[3]]βγa+ [[2]]βγt
−1b),

or

(s) β = −1− γ−1 and

c := xy − αγtz ∈ k[t2, t3], [[3]]γtc ∈ k[t2, t3].

Proof. Applying Lemma 4.1.12 to the two matrices obtained by deleting from T
the first respectively third row and column leads to the conditions a,b,c,A,B,C. The
remaining two conditions r,s arise from considering the (1, 3)-entry of T 2, T 3:(

α[[2]]βγ 1
α2[[3]]βγt α(1 + β[[2]]γ)t

)(
tz
xy

)
=:

(
a
b

)
∈ k[t2, t3]2
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The determinant of the coefficient matrix is

α2βt(1 + γ + βγ).

So we can invert the matrix over k[t, t−1] if

β 6= −1− γ−1.

In this regular case, we obtain

1

α2β(1 + γ + βγ)

(
(1 + β[[2]]γ)t

−1 −t−2

−α[[3]]βγ α[[2]]βγt
−1

)(
a
b

)
=

(
z
xy

)
By rescaling a, b this yields elements a, b ∈ k[t2, t3] with

z = (1 + β + βγ)t−1a− t−2b

and
xy = α(−[[3]]βγa+ [[2]]βγt

−1b).

In the singular case 1 + γ + βγ = 0, the equation reduces to

c := xy − αγtz ∈ k[t2, t3], [[3]]γtc ∈ k[t2, t3].

4.1.7 An explicit example

From now on, we assume that 2, 3 are invertible in k, and that k contains a square root
i of −1. We will study in detail the following example of a quantum automorphism
of k(t):

σ(t) = T =

t t− i −1
3
t−1 − 1

2
t

0 −t t+ i
0 0 t

 .

Its restriction to B = k[t2, t3] yields:

σ(x) =

x 0 1
3

0 x 0
0 0 x

 , σ(y) =

y y − ix −1
2
y

0 −y y + ix
0 0 y


where x := t2, y := t3.
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By definition, the resulting algebra Uσ has four generators that act as follows on
the elements x, y:

K := σ22 : x 7→ x, y 7→ −y,
E := σ12 : x 7→ 0, y 7→ y − ix, F := σ23 : x 7→ 0, y 7→ y + ix, (4.1.4)

Z := σ13 : x 7→ 1

3
, y 7→ −1

2
y.

since σ is upper triangular, the operator K is an algebra automorphism of k[t2, t3],
so for all f, g ∈ k[t2, t3] we have

K(fg) = K(f)K(g).

The operators E,F are twisted derivations satisfying for f, g ∈ k[t2, t3]

E(fg) = fE(g) + E(f)K(g), F(fg) = K(f)F(g) + F(f)g.

Similarly, Z is a twisted differential operator of order 2,

Z(fg) = fZ(g) + E(f)F(g) + Z(f)g.

This and the action (4.1.4) completely determines K,E,F,Z as k-linear maps on
k[t2, t3].

Lemma 4.1.14. For all n ∈ N, we have

K(tn) = (−1)ntn, (4.1.5)

E(tn) =

{
tn − itn−1 n is odd,

0 n is even
, F(tn) =

{
tn + itn−1 n is odd,

0 n is even
,

Z(tn) =

{
n−3

6
tn−2 − 1

2
tn n is odd,

n
6
tn−2 n is even.

.

Proof. We prove this by induction on n. For n = 1, we have

K(t) = −t, E(t) = t− i, F(t) = t+ i, Z(t) = −1

3
t−1 − 1

2
t.

Assume for n = p the formulas hold true. Then, as K is an automorphism,

K(tp+1) = K(tp)K(t) = (−1)p+1tp+1,
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and since E is a twisted derivation, when p is odd we have:

E(tp+1) = E(tpt) = idB(tp)E(t) + E(tp)K(t) = 0,

when p is even:

E(tp+1) = E(tpt) = idB(tp)E(t) + E(tp)K(t) = tp+1 − itp

which similarly holds for operator F. Finally for the second order differential operator
Z, when p is odd,

Z(tp+1) = idB(tp)Z(t) + E(tp)F(t) + Z(tp)idB(t) =
p+ 1

6
tp−1

and when p is even, observe that the operator E vanishes thus we have,

Z(tp+1) = idB(tp)Z(t) + Z(tp)idB(t) =
p− 2

6
tp−1 − 1

2
tp+1.

In particular, one observes:

Corollary 4.1.15. The restriction of σ to B = k[t2, t3] is locally finite.

Proof. The algebra k[t2, t3] inherits a grading from k[t], so

deg(x) = 2, deg(y) = 3,

and if we denote by
Fd := spank{1, t2, t3, . . . , td} (4.1.6)

the resulting filtration of k[t2, t3], then by the above formulas all assumptions of
Proposition 4.1.8 are met.

4.2 Geometric interpretation

This section contains the interpretation and motivation for the above computations:
we interpret the algebra B = k[t2, t3] as the coordinate ring of the cusp and explain
how quantum automorphisms as described above give rise to (co)actions of Hopf
algebras on B. Finally, we prove that the example discussed in Section 4.1.7 turns B
into a quantum homogeneous space. For simplicity, Hopf algebra here means Hopf
algebra with bijective antipode
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4.2.1 The algebraic curve V

If k is any field and k ( B ⊆ k(t) is any intermediate ring, then B is a subring
of a field, hence an integral domain, and its fraction field embeds naturally into
k(t); so by Lüroth’s theorem, the fraction field is isomorphic to k(t). If B is the
coordinate ring of an algebraic set V this means that V is an irreducible curve which
is birationally equivalent to the affine line. In particular, when k is algebraically
closed, then this is the case if and only if B is finitely generated as a k-algebra (by
Hilbert’s Nullstellensatz).

For B = k[t2, t3], the curve V is the cusp

V = {(α, β) ∈ k2 | α3 = β2} = {(λ2, λ3) | λ ∈ k} ⊆ k2,

so in geometric terms, the theory developed in the previous section is about quantum
automorphisms of the cusp that extend from its coordinate ring to its field of rational
functions.

4.2.2 The Hopf algebra Hσ

In this section we will show that a quantum automorphism σ ∈ Mn(Endk(B)) of a
k-algebra B gives rise to a Hopf algebra Hσ that acts inner faithfully ([4],[21]) on B.
This construction follows the approach of [37]:

1. Consider the free k-algebra k〈sd,ij〉 with generators sd,ij, i, j = 1, . . . , n, d ∈
Z. This carries a unique bialgebra structure whose coproduct and counit are
determined by

∆(sd,ij) =
n∑
r=1

sd,ir ⊗ sd,rj, ε(sd,ij) = δij.

2. Define an action of this free bialgebra on B in which the generators act by the
entries of the quantum automorphisms σd:

. : k〈sd,ij〉 ⊗B → B, sd,ij . a := σd,ij(a).

This turns B into a k〈sd,ij〉-module algebra, that is, for any X ∈ k〈sd,ij〉 and
a, b ∈ B, we have

X . (ab) = (X(1) . a)(X(2) . b).
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3. If I ⊆ k〈sd,ij〉 is the ideal generated by all elements of the form

n∑
r=1

sd,irsd+1,jr − δij,
n∑
r=1

sd+1,risd,rj − δij

for some d, i, j, then k〈sd,ij〉/I becomes a Hopf algebra with (invertible) an-
tipode induced by

S(sd,ij) := sd+1,ji

and the action . on B descends by construction to this quotient. That is, if by
abuse of notation we also denote by σ the action viewed as a morphism

σ : k〈sd,ij〉 → Endk(B), sd,ij 7→ σd,ij

then I ⊆ kerσ since for i = j we have

n∑
r=1

σd,irσ
−1
d,ir(b)− b = 0 =

n∑
r=1

σ−1
d,riσd,ri(b)− b.

Thus σ induces a morphism

k〈sd,ij〉/I → Endk(B)

that we still denote by σ.

4. Up to here, the Hopf algebra k〈sd,ij〉/I is not very interesting and depends only
on the size n of the matrix σ ∈ Mn(Endk(B)) and not on the actual choice of
σ or B.

Recall from Section 2.3.4 that the Hopf image Hσ of the representation σ is the
universal quotient Hopf algebra that acts on B. In other words, Hσ is the quotient
of k〈sd,ij〉/I by the sum Jσ of all Hopf ideals contained in ker σ.

Remark 4.2.1. More abstractly, steps (1)-(3) construct the free Hopf algebra with
invertible antipode on the coalgebra C := Mn(k)?, the dual of the algebra Mn(k). As
discussed in Theorem 2.2.10, the free Hopf algebra on C was constructed, not forcing
the antipode to be invertible. The corresponding version of the above construction
would use only non-negative d in sd,ij. The transpose is used to identify the coalgebra
spanned by sd,ij for a fixed odd d with its coopposite. That is, the choice of a quantum
automorphism σ of B turns B into a module algebra over this free Hopf algebra.

Proposition 4.2.2. If σ is upper triangular, then we have:
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1. Hσ is generated as an algebra by the classes [s0,ij] with i ≤ j, together with
[s1,ii] = [s0,ii]

−1.

2. Hσ is pointed.

Proof. The first claim is shown in the same way as Proposition 4.1.3. The second
claim uses a standard argument: define a Hopf algebra filtration {Cf} of Hσ by
assigning to [sd,ij] the filtration degree j − i,

Cf = spank{[sd1,i1j1 ] · · · [sdl,iljl ] |
∑
q

jq − iq ≤ f}.

This is an algebra filtration by definition and a coalgebra filtration as [sd,ij] = 0 if
i > j. As the [sd,ij] generate Hσ as an algebra, it is exhaustive. If S ⊆ Hσ is a simple
subcoalgebra, then dimk S < ∞, so there exists a minimal f ≥ 0 with S ⊆ Cf ,
S 6⊆ Cf−1, and if f > 0, it is immediately verified that S ∩Cf−1 is a proper non-zero
subcoalgebra of S, contradicting the fact that S is simple. Finally, if S ⊆ C0 then S
is spanned by group-likes and the span of any group-like is a subcoalgebra. So as S
is simple, it is one-dimensional.

4.2.3 Application to k[t2, t3]

For B = k[t2, t3], the curve V is the cusp

V = {(α, β) ∈ k2 | α3 = β2} = {(λ2, λ3) | λ ∈ k} ⊆ k2,

so in geometric terms, the theory developed in the previous section is about quantum
automorphisms of the cusp that extend from its coordinate ring to its field of rational
functions. For the quantum automorphism described in Section 4.1.7, we abbreviate

K := [s0,22], E := [s0,12], F := [s0,23], Z := [s0,13] ∈ Hσ.

By Proposition 4.2.2, Hσ is generated as an algebra by these elements whose image
in Uσ are the operators K,E,F,Z, respectively. Furthermore, the fact that [s0,ij] = 0
for i > j implies that K is group-like, that is, its coproduct is given by

∆(K) = K ⊗K,

that E,F are (1, K)- respectively (K, 1)-twisted primitive,

∆(E) = 1⊗ E + E ⊗K, ∆(F ) = K ⊗ F + F ⊗ 1,
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and Z is of degree 2 with respect to the coradical filtration of Hσ,

∆(Z) = 1⊗ Z + E ⊗ F + Z ⊗ 1.

We will now obtain a presentation of Hσ as an algebra. First, we observe that
the definition of Hσ implies:

Lemma 4.2.3. We have K2 = 1 and F = −KE.

Proof. K2− 1 and KE+F are in the kernel of the representation σ : Hσ → Uσ. The
coproduct of these elements are

∆(K2 − 1) = K2 ⊗K2 − 1⊗ 1 = K2 ⊗ (K2 − 1) + (K2 − 1)⊗ 1,

∆(KE + F ) = K ⊗ (KE + F ) + (KE + F )⊗ 1,

It follows that each one generates a Hopf ideal in Hσ which is in the kernel of σ, so
by definition of Hσ, these elements vanish.

Thus Hσ is generated as an algebra by K,E,Z.
Second, we decompose E and Z into eigenvectors of the map given by conjugation

by K; that is, we define

E± :=
1

2
(E ±KEK), Z± :=

1

2
(Z ±KZK).

By the definition of these elements, they (anti)commute with K:

Lemma 4.2.4. We have KE± = ±E±K and KZ± = ±Z±K.

The coproduct of these elements and their action on B is given by

∆(E±) = 1⊗ E± + E± ⊗K,
∆(Z+) = 1⊗ Z+ − E+ ⊗ E+K − E− ⊗ E−K + Z+ ⊗ 1,

∆(Z−) = 1⊗ Z− − E+ ⊗ E−K − E− ⊗ E+K + Z− ⊗ 1,

σ(E+)(tn) =

{
tn n is odd,

0 n is even,
σ(E−)(tn) =

{
−itn−1 n is odd,

0 n is even,

σ(Z+)(tn) =

{
n−3

6
tn−2 − 1

2
tn n is odd,

n
6
tn−1 n is even,

σ(Z−)(tn) =

{
0 n is odd,

0 n is even,

From this we obtain in a similar manner as in Lemma 4.2.3:
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Lemma 4.2.5. We have Z− = −E+E−, E2
− = 0, E+ = −1

2
(K − 1).

Proof. It follows from the above and the relation K2 = 1 that the elements Z− +
E+E− and E2

− are primitive while E+ + 1
2
(K − 1) is (1, K)-twisted primitive, and

they are straightforwardly verified to be in ker σ, hence as in Lemma 4.2.3 it follows
that they vanish in Hσ.

So Hσ is generated as an algebra by K,E− and Z+.
Finally, we abbreviate

Y := 6Z+ −
3

2
(K − 1), D := iE−, C := Y D −DY.

Their coproduct is given by

∆(Y ) = 1⊗ Y − 6D ⊗DK + Y ⊗ 1, ∆(C) = 1⊗ C + C ⊗K

and they act on B by the operators

Y(tn) :=

{
(n− 3)tn−2, n odd,

ntn−2, n even,
C(tn) :=

{
2tn−3, n odd,

0, n even.
(4.2.1)

D(tn) :=

{
tn−1 n is odd,

0 n is even.

Their commutation relations (as elements in Hσ) are as follows:

Lemma 4.2.6. We have Y K = KY , KC = −CK, DC = −CD, and

Y C = CY, C2 = 0.

Proof. The relationsKY = Y K,KC = −CK,DC = −CD follow from the definition
of Y,C,D and the commutation relations already obtained. The remaining two
relations follow as in Lemma 4.2.3; Y C −CY is (1, K)-twisted primitive while C2 is
primitive.

Remark 4.2.7. Note that we can express the operators Y and D in terms of K, the
differential operator d

dt
, and the multiplication operators by t−m as

D = −1

2
t−1(K− 1), Y = t−1 d

dt
+

3

2
t−2(K− 1).
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The two summands in Y can be considered separately as operators on k(t) that
both restrict to k[t, t−1], but only the sum restricts to k[t2, t3]. As operators on k(t),
Y0 := t−1 d

dt
is a derivation and Y1 := 3

2
t−2(K− 1) is a twisted derivation,

Y0(fg) = fY0(g) + Y0(f)g, Y1(fg) = fY1(g) + Y1(f)K(g),

so it is a rather non-trivial fact that their sum is a twisted differential operator of
order 2 on k[t2, t3]. The other generator D is a twisted derivation,

D(fg) = fD(g) + D(f)K(g).

Our aim is to prove that the relations we have found are complete. In order to
do so, we define the auxiliary Hopf algebra

H̃σ := k〈K̃, D̃, Ỹ 〉/I,
I := 〈K̃2 − 1, K̃D̃ + D̃K̃, K̃Ỹ − Ỹ K̃, Ỹ 2D̃ − 2Ỹ D̃Ỹ + D̃Ỹ 2, D̃2〉

as the algebra generated by K̃, D̃, Ỹ satisfying the relations established in the lem-
mata in this subsection, equipped with the coproduct given on generators by the
same formulas as in Hσ. Bergman’s diamond lemma 3.3.1 immediately yields:

Lemma 4.2.8. If C̃ := Ỹ D̃ − D̃Ỹ , then the set

{C̃aD̃bK̃cỸ d | a, b, c ∈ {0, 1}, d ∈ N}

is a k-vector space basis of H̃σ.

Proof. Following the setup of Bergman’s diamond lemma 3.3.1, X = {C̃, D̃, K̃, Ỹ }
and I is the two sided ideal spanned by the elements

K̃2 − 1, K̃D̃ + D̃K̃, K̃Ỹ − Ỹ K̃, D̃2, Ỹ C̃ − C̃Ỹ .

Clearly, H̃σ
∼= k〈X〉/I and there are no ambiguities, a close inspection reveals that

the set described in the Lemma is vector space basis of H̃σ.

We now describe the algebra morphism σ : H̃σ → Uσ; by showing that its kernel
contains no Hopf ideal, we will then prove that H̃σ = Hσ.

By direct computation, one establishes that the generators K,C,D,Y of Uσ satisfy
the following relations in addition to those satisfied by K̃, C̃, D̃ and Ỹ :

Lemma 4.2.9. We have CD = 0, KC = C, KD = D.
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A moment’s thought tells that this is a complete presentation of Uσ:

Proposition 4.2.10. The above relations define a presentation of Uσ.

Proof. The claim is that if we define an abstract algebra k〈K,C,D,Y〉/R, where R
is the ideal generated by the above relations and those that follow from the ones
between K̃, C̃, D̃, Ỹ in I, then the resulting algebra morphism k〈K,C,D,Y〉/R→ Uσ
is an isomorphism. To do so, observe that using the k-vector space basis of H̃σ and
the relations stated in the current proposition, we obtain a k-vector space basis of
k〈K,C,D,Y〉/R of the form

{Ya,CYb,DYc,KYd | a, b, c, d ∈ N}. (4.2.2)

It is now straightforward to show that these operators are mapped to linearly
independent elements of Endk(B), that is

Ya(tn) =

{
(n− 3) · · · (n− (2a+ 1))tn−2a n is odd

n · · · (n− (2a− 2))tn−2a n is even
(4.2.3)

CYb(tn) =

{
(n− 3) · · · (n− (2b+ 1))tn−3−2b n is odd

0 n is even

KYd(tn) =

{
−(n− 3) · · · (n− (2d+ 1))tn−2d n is odd

n · · · (n− (2d− 2))tn−2d n is even

DYc(tn) =

{
(n− 3) · · · (n− (2c+ 1))tn−1−2c n is odd

0 n is even
.

Remark 4.2.11. Note that Uσ carries a natural grading in which

degK = 0, degC = 3, degD = 1, degY = 2,

and that B becomes a graded Uσ-module, (Uσ)iBj ⊆ Bj−i.

In order to proceed, note that by Lemma 4.2.8 the subalgebra of H̃σ generated by
Ỹ is as an abstract algebra the polynomial algebra k[Ỹ ] and that {C̃aD̃bK̃c | a, b, c ∈
{0, 1}} is a basis of H̃σ as a right k[Ỹ ]-module, so as such, H̃σ has rank 8. Similarly,
Uσ becomes a right k[Ỹ ]-module where Ỹ acts via right multiplication by Y, and by
the above proposition, {1,C,D,K} is a basis of this k[Ỹ ]-module, so this has rank 4.
The map σ : H̃σ → Uσ is right k[Ỹ ]-linear, and we have:
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Corollary 4.2.12. As a right k[Ỹ ]-module, kerσ is free with basis given by

{C̃K̃ + C̃, D̃K̃ + D̃, C̃D̃, C̃D̃K̃}.

Proof. As mentioned in the remark above H̃σ as a k[Ỹ ]-module has basis

{1, C̃, D̃, K̃, C̃D̃, C̃K̃, D̃K̃, C̃D̃K̃}.

Following the relations in Lemma 4.2.9, it follows that the set described in this
corollary is a basis for ker σ.

As a last ingredient, we list the one-dimensional representations of H̃σ and their
left and right hit actions on H̃σ:

Lemma 4.2.13. For any s ∈ {−1, 1}, λ ∈ k, there is an algebra morphism

χs,λ : H̃σ → k, K̃ 7→ s, D̃ 7→ 0, Ỹ 7→ λ

and any algebra morphism H̃σ → k is of this form.

Proof. The defining relations of H̃σ motivate the definition of χs,λ and any algebra
map H̃σ −→ k must respect these relations.

These 1-dimensional representations define algebra automorphisms Ls,λ,Rs,λ : H̃σ →
H̃σ given by

Rs,λ(h) := χs,λ(h(1))h(2), Ls,λ(h) := h(1)χs,λ(h(2)).

That is Rs,λ := (χs,λ ⊗ id) ◦ ∆ and Ls,λ := (id ⊗ χs,λ) ◦ ∆ which are composites of
algebra maps. On the generators of H̃σ, these automorphisms are given by

Ls,λ(K̃) = Rs,λ(K̃) = sK̃,

Ls,λ(D̃) = sD̃, Rs,λ(D̃) = D̃,

Ls,λ(Ỹ ) = Rs,λ(Ỹ ) = Ỹ + λ.

Note further that all one-dimensional representations of H̃σ descend to Uσ:

Lemma 4.2.14. We have kerσ ⊆
⋂
s,λ kerχs,λ.

Proof. By the definition of χs,λ, C,D, and any word X ∈ H̃σ containing alphabets
C,D lie in ker χs,λ. The claim thus follows from Lemma 4.2.12.

We are now ready to prove:
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Theorem 4.2.15. The quotient H̃σ → Hσ is an isomorphism.

Proof. Assume that J ⊆ kerσ is a Hopf ideal. Then for all h ∈ J , we have ∆(h) ∈
J ⊗ H̃σ + H̃σ ⊗ J ; by the last lemma, applying χs,λ to the left or to the right tensor
component yields an element in J . That is, we have

Ls,λ(J) = Rs,λ(J) = J.

The maps Rs,λ, Ls,λ act on the basis elements from Lemma 4.2.8 by

Ls,λ(C̃
aD̃bK̃cỸ d) = sa+b+cC̃aD̃bK̃c(Ỹ + λ)d,

Rs,λ(C̃
aD̃bK̃cỸ d) = scC̃aD̃bK̃c(Ỹ + λ)d.

Thus if
X =

∑
abcd

ιabcdC̃
aD̃bK̃cỸ d ∈ J, ιabcd ∈ k

and dmax(X) is the largest d such that ιabcd 6= 0 for some a, b, c, then unless dmax = 0,

X ′ := X − R1,1(X) ∈ J

is a non-zero element with dmax(X ′) = dmax(X) − 1. So if J 6= 0, it necessarily
contains a non-zero elment of the form

X =
∑
abc

ιabcC̃
aD̃bK̃c.

Using now R−1,0 instead of R1,1, the analogous argument shows that J contains a
non-zero element of the form

X =
∑
ab

ιabC̃
aD̃b.

Considering finally
X ± L−1,0(X)

we find that
ι00 + ι11C̃D̃ ∈ J, ι01C̃ + ι10D̃ ∈ J.

Since C,D ∈ Uσ are linearly independent and J ⊆ kerσ, the second element vanishes.
Using that the coproduct of C̃D̃ is

∆(C̃D̃) = 1⊗ C̃D̃ + C̃ ⊗ K̃D̃ + D̃ ⊗ C̃K̃ + C̃D̃ ⊗ 1

and C̃, D̃ are linearly independent modulo ker σ, one also concludes that the first
element vanishes, a contradiction.
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Remark 4.2.16. Thus Hσ does not act faithfully on B – for example, we now know
that CD ∈ Hσ is a non-zero element while CD = σ(CD) = 0. However, Hσ acts by
definition inner faithfully on B, that is, the action does descend to algebra, but not
to Hopf algebra quotients of Hσ.

Remark 4.2.17. Thus Hσ is the Ore extension of the subalgebra generated by
K,C,D by the derivation ∂ given by

K 7→ 0, D 7→ C, C 7→ 0.

which is induced by the presentation of Hσ, for example: since K2 = 1 in Hσ, we
thus have 0 = ∂(1) = ∂(K2) = K∂(K) + ∂(K)K that is K∂(K) = −∂(K)K which
yields ∂(K) = 0. In particular, Hσ has Gelfan’d-Kirillov dimension 1, but note that
it is not semiprime (the right ideal generated by C is a nonzero ideal that squares to
zero) so is not part of the recent classification of these Hopf algebras (see e.g. [13, 36]
and the references therein).

Remark 4.2.18. Note that the subalgebra generated by K and D (and similarly
the subalgebra generated by K and C) is isomorphic as Hopf algebra to Sweedler’s
4-dimensional Hopf algebra. Note that for any c ∈ k,

Rc :=
1

2
(1⊗ 1 + 1⊗K +K ⊗ 1−K ⊗K)

+
c

2
(D ⊗D −D ⊗KD +KD ⊗D +KD ⊗KD)

is a universal R-matrix for these Hopf subalgebras (see [44, Exercise 12.2.11]) that
is they are cocommutative up to conjugation by Rc, more precisely,

Rc∆R
−1
c = ∆cop.

The Hopf subalgebra generated by K and D( similarly by K and C) is quasitrian-
gular. However, Rc does not define a quasitriangular structure on Hσ as

Rc∆(Y )R−1
c 6= ∆cop(Y ),

but at least for c = 0, the corresponding braiding on B ⊗ B is a morphism of Hσ-
modules. This braiding is simply the standard nontrivial symmetric braiding on the
category of graded vector spaces,

ti ⊗ tj 7→ (−1)ijtj ⊗ ti.
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4.2.4 The Hopf algebra Aσ

We now pass to a dual picture: assume that σ is a locally finite quantum automor-
phism of a k-algebra B. Then the Hσ-action on B arises by dualisation from an
H◦σ-coaction, where H◦σ denotes the Hopf dual of Hσ. In other words, B is a right
H◦σ-comodule algebra with a coaction that we denote by

ρ : B → B ⊗H◦σ, b 7→ b(0) ⊗ b(1).

Definition 4.2.19. We denote by Aσ ⊆ H◦σ the Hopf subalgebra generated by the
matrix coefficients {f(b(0))b(1) | b ∈ B, f ∈ B?} of ρ.

When Hσ is infinite-dimensional, Aσ could be a proper Hopf subalgebra of H◦σ,
but note that it is always dense:

Proposition 4.2.20. The restriction of the dual pairing of H◦σ and Hσ to Aσ ⊗Hσ

is non-degenerate.

Proof. The degeneration space

{X ∈ Hσ | a(X) = 0 ∀ a ∈ Aσ}

is the kernel of the Hopf algebra morphism, 〈−, a〉 : Hσ −→ k for each a ∈ Aσ. Thus
it is a Hopf ideal of Hσ that acts trivially on B, hence vanishes by the definition of
Hσ.

Note that if M ⊆ B is any finite-dimensional Hσ-submodule that generates B as
an algebra, then we have

B ∼= TM/R

as an Hσ-module algebra, where TM is the tensor algebra of M (over k) and R is
the 2-sided ideal of relations that hold among the elements of M in the algebra B.
Then we have:

Lemma 4.2.21. Aσ is generated as a Hopf algebra by the matrix coefficients of M .

Proof. The matrix coefficients of M⊗n are sums of products of n matrix coefficients
of M , and the space of matrix coefficients of a quotient comodule M⊗n/(R ∩M⊗n)
is a subspace of the space of matrix coefficients of M⊗n.
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In coordinates, if e1, . . . , edimkM is a vector space basis of M , then Aσ is generated
as a Hopf algebra by the functionals aij ∈ H◦σ, i, j = 1, . . . , dimkM , for which

X . ei = σ(X)(ei) =

dimkM∑
j=1

aji(X)ej, X ∈ Hσ,

so the coaction ρ is given by

M →M ⊗ Aσ, ei 7→
dimkM∑
j=1

ej ⊗ aji (4.2.4)

Remark 4.2.22. In general, the matrix coefficients of M do not generate Aσ as an
algebra – the subalgebra that they generate is a subbialgebra of Aσ as the span of
the matrix coefficients is a subcoalgebra (with coalgebra structure given by (2.3.1)),
but this subbialgebra is not closed under the antipode in general. However, if the
matrix coefficients can be chosen to be upper triangular (that is, there is a vector
space basis of M such that aij = 0 for i > j), then the same arguments that were
used in Proposition 4.2.2 show that Aσ is generated by the aij together with the a−1

ii ,
and that Aσ is a pointed Hopf algebra.

4.2.5 The map ι

Now assume that χ : B → k is an algebra map, that is, a one-dimensional represen-
tation of B . This induces a map (see [21, Section 3] for a more detailed discussion
of this map)

ι := (χ⊗ idAσ) ◦ ρ : B → Aσ, b 7→ χ(b(0))b(1).

By construction, this is a morphism of algebras: ∀ b, b̃ ∈ B,

ι(bb̃) = χ(b(0)b̃(0))b(1)b̃(1) = χ(b(0))χ(b̃(0))b(1)b̃(1) = ι(b)ι(b̃),

and of right Aσ-comodules: using the coassociativity of ρ, we obtain

(ι⊗ id) ◦ ρ = (χ⊗ id⊗ id) ◦ (ρ⊗ id) ◦ ρ = (χ⊗ id⊗ id) ◦ (id⊗∆) ◦ ρ,

which as morphisms is equal to

∆ ◦ (χ⊗ id) ◦ ρ = ∆ ◦ i,

that is ∆(ι(B)) ⊆ ι(B)⊗ Aσ. Hence ι maps B to a right coideal subalgebra of Aσ.
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Proposition 4.2.23. ι is injective if and only if for all b ∈ B, b 6= 0, there exists
X ∈ Hσ with χ(X . b) 6= 0.

Proof. The map ι is not injective if there exists b ∈ B, b 6= 0 with

ι(b) = χ(b(0))b(1) = 0.

This is an element in Aσ ⊆ H◦σ, so it is zero if and only if it pairs trivially with all
elements X ∈ Hσ. Thus ι is not injective if and only if there exists b ∈ B, b 6= 0,
such that

X(ι(b)) = χ(b(0))b(1)(X) = χ(b(0)b(1)(X)) = χ(X . b) = 0

for all X ∈ Hσ.

If this condition is satisfied, then ι embeds B as a right coideal subalgebra into
Aσ.

In particular, when B = k[V ] is the coordinate ring of an algebraic set V , then
χ corresponds to a point p ∈ V and the above proposition states that B can be
embedded as a right coideal subalgebra into Aσ provided that there exists a point
p ∈ V such that for any non-zero regular function b : V → k there exists some
X ∈ Hσ such that the function X . b does not vanish at p.

4.2.6 Application to k[t2, t3]

To compute a full presentation of Aσ in a given example is tedious, but relatively
straightforward. Like elsewhere, we illustrate the theory with our main example:

Proposition 4.2.24. If B = k[t2, t3] and M is the Hσ-module F3 from (4.1.6) with
basis e1 = 1, e2 = t2, e3 = t3, then:

(1) There is a surjective algebra morphism

π : k〈γ, ϕ, ψ〉 → Aσ

given by π(γ) = a13, π(ϕ) = a23, π(ψ) = a33 whose kernel is the ideal generated
by

ψ2 − 1, γψ + ψγ, ϕψ + ψϕ,

27γ2 − ϕ6, 3(γϕ+ ϕγ)− ϕ4.
(4.2.5)
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(2) In this presentation, the coalgebra structure of Aσ is given by

∆(ψ) = ψ ⊗ ψ, ∆(ϕ) = 1⊗ ϕ+ ϕ⊗ ψ,

∆(γ) = 1⊗ γ +
1

3
ϕ2 ⊗ ϕ+ γ ⊗ ψ, (4.2.6)

ε(ψ) = 1, ε(γ) = ε(ϕ) = 0,

and its antipode is given by

S(ψ) = ψ, S(ϕ) = −ϕψ, S(γ) = (
1

3
ϕ3 − γ)ψ. (4.2.7)

For the proof that will be split into several lemmata, we introduce a redundant
generator δ and first observe:

Lemma 4.2.25. Let J C k〈γ, ϕ, ψ, δ〉 be the ideal generated by the elements (4.2.5)
together with δ − 1

3
ϕ2. Then we have:

(1) k〈γ, ϕ, ψ, δ〉 carries a unique bialgebra structure such that

∆(ψ) = ψ ⊗ ψ, ∆(ϕ) = 1⊗ ϕ+ ϕ⊗ ψ,
∆(γ) = 1⊗ γ + δ ⊗ ϕ+ γ ⊗ ψ, ∆(δ) = 1⊗ δ + δ ⊗ 1, (4.2.8)

ε(ψ) = 1, ε(γ) = ε(ϕ) = ε(δ) = 0.

(2) The ideal J is a coideal, so this bialgebra structure descends to

Ãσ := k〈γ, ϕ, ψ〉/J.

(3) The bialgebra Ãσ is a Hopf algebra whose antipode is given on the generators
by (4.2.7) and S(δ) = −δ.

Proof. Define a coproduct and a counit on the free algebra k〈γ, ϕ, ψ, δ〉 as given in
the lemma. We claim every coalgebra structure on k〈γ, ϕ, ψ, δ〉 must be of this form
since for instance ∆(1) = ∆(ψ2) = ψ2 ⊗ ψ2 = 1 ⊗ 1 which is compatible with the
relator ψ2− 1 and this proves (1). By straightforward computations, we see that the
coproduct of the elements in J lie in J⊗k〈γ, ϕ, ψ, δ〉+k〈γ, ϕ, ψ, δ〉⊗J and ε(J) = 0,
for example:

∆(ψ2 − 1) = (ψ2 − 1)⊗ ψ2 + 1⊗ (ψ2 − 1), ε(ψ2 − 1) = 0,

∆(ϕψ + ψϕ) = (ϕψ + ψϕ)⊗ i+ ψ ⊗ (ϕψ + ψϕ), ε(ϕψ + ψϕ) = 0.

This proves (2), and the third assertion follows from (1) by using the coproduct and
counit formulas in the antipode equation.
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Next, we note:

Lemma 4.2.26. There is a surjective bialgebra morphism

π : k〈γ, ϕ, ψ, δ〉 → Aσ

satisfying π(γ) = a13, π(ϕ) = a23, π(ψ) = a33 and π(δ) = a12.

Proof. Recall first that the values of the functionals aji on the generators K,D, Y of
Hσ are by (4.2.1) and (4.1.5) given by the following matrices (for later use, we also
list the values on C):

a(K) =

1 0 0
0 1 0
0 0 −1

 , a(D) =

0 0 0
0 0 1
0 0 0

 ,

a(Y ) =

0 2 0
0 0 0
0 0 0

 , a(C) =

0 0 2
0 0 0
0 0 0

 .

(4.2.9)

A way to read these matrices is to know that each column is the image under (4.2.4)
of each basis element. For instance, K . t3 = −t3 thus a11(K) = a12(K) = 0 and
a13 = −1. As the generators of Hσ act by upper triangular matrices, all elements
in Hσ act by upper triangular matrices, hence as elements of H?

σ, the aij with i > j
vanish (this is just a restatement of the fact that Fi is a filtration of B by Hσ-
submodules).

π is a coalgebra map since for instance

∆Aσ(π(ψ)) = ∆Aσ(a33) = a33 ⊗ a33 = π(ψ)⊗ π(ψ) = (π ⊗ π) ◦∆(ψ),

and εAσ ◦ π(ψ) = 1 = ε(ψ). Finally, a11 = a22 = εHσ = 1Aσ is the counit of
the coalgebra Hσ hence the unit of the algebra Aσ. Using this we conclude that
the algebra morphism π defined on the generators γ, ϕ, ψ, δ as in the lemma is a
bialgebra morphism, and Lemma 4.2.21 implies that π is surjective.

Next, we discuss that π descends to a surjective Hopf algebra morphism Ãσ → Aσ:

Lemma 4.2.27. J ⊆ kerπ.

Proof. The bialgebra map π induces a pairing of bialgebras

〈−,−〉 : Hσ ⊗ k〈γ, ϕ, ψ, δ〉 → k, 〈X, ξ〉 = π(ξ)(X).



90

To prove the lemma, one has to show that this pairing descends to a pairing between
Hσ and Ãσ. This is done by a long but straightforward computation which for us, it
seemed to be the easiest way to organize this computation by showing that for each
of the six relators ξ that generate J and for all i, j, k ∈ {0, 1}, l ∈ N, we have

〈CiDjKkY l, ξ〉 = 0.

For example, using that 〈−,−〉 is a pairing of bialgebras, one obtains

〈CiDjKkY l, ϕ2〉 = 〈(CiDjKkY l)(1), ϕ〉〈(CiDjKkY l)(2), ϕ〉
= 〈Ci

(1)D
j
(1)K

k
(1)Y

l
(1), ϕ〉〈Ci

(2)D
j
(2)K

k
(2)Y

l
(2), ϕ〉

= (〈Ci
(1), ϕ(1)〉〈Dj

(1), ϕ(2)〉〈Kk
(1), ϕ(3)〉〈Y l

(1), ϕ(4)〉)

(〈Ci
(2), ϕ(1)〉〈Dj

(2), ϕ(2)〉〈Kk
(2), ϕ(3)〉〈Y l

(2), ϕ(4)〉),

where the ϕ(i) for i = 1, · · · , 4 are the tensorands of the iterated coproduct

∆(4,1)(ϕ) = (1⊗ 1⊗ 1⊗ ϕ) + (1⊗ 1⊗ ϕ⊗ ψ)

+ (1⊗ ϕ⊗ ψ ⊗ ψ) + (ϕ⊗ ψ ⊗ ψ ⊗ ψ)

of ϕ. Inserting the explicit coproducts of Ci, Dj, Kk, Y l and at last the values (4.2.9)
of the pairings of the generators, one obtains

(〈1, 1〉〈1, 1〉〈K, 1〉〈−6D,ϕ〉)(〈K, 1〉〈K, 1〉〈K, 1〉〈DK,ϕ〉) = 6

as the only surviving term and is equal to

〈CiDjKkY l, 3δ〉 = 3δi0δj0δl1

so that 〈−, δ − 1
3
ϕ2〉 vanishes as a k-linear functional on Hσ. The other five relators

are treated in a similar way.

As a preparation for showing that π : Ãσ → Aσ is also injective, we first note:

Lemma 4.2.28. The set

{γaϕbψc | a, c ∈ {0, 1}, b ∈ N}

is a k-vector space basis of Ãσ.

Proof. This is shown like the analogous statements for Hσ using Bergman’s diamond
lemma.
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Thus to prove the injectivity of π, one has to show that the elements π(γaϕbψc) ∈
Aσ are linearly independent over k. This is maybe shown most easily by explicitly
computing the values of the functionals:

Lemma 4.2.29. The dual pairing 〈−,−〉 : Hσ ⊗ Ãσ → k satisfies

〈CiDjKkY l, γaϕbψc〉 = δj+2l,bδia(−1)j(a+c)+ic+ab+k(a+b+c)2a6ll!

Proof. Using the q-binomial formula [30, Proposition 4.2.2], a direct computation
and a nested induction on b and l shows

∆(γaϕbψc) = (1⊗ γ +
1

3
ϕ2 ⊗ ϕ+ γ ⊗ ψ)a

·
b∑
l=0

(1− [[(b+ 1)l]]−1)

(
[b/2]
[l/2]

)
ϕlψc ⊗ ϕb−lψ[[bl]]−1+c,

where as before [[n]]q = 1 + q + · · ·+ qn−1, which for q = −1 is 0 if n is even and 1 if
n is odd, and

[n/2] :=

{
(n− 1)/2 n odd,

n/2 n even.

Using this and the formulas for the coproduct of and the relations between the
generators of Hσ respectively Ãσ as well as their pairing (4.2.9), one computes

〈CiDjY lKk, γaϕbψc〉 = 〈CiDjY l ⊗Kk,∆(γaϕbψc)〉
= 〈CiDjY l, γaϕbψc〉〈Kk, ψaψ[[b2]]−1+c〉
= 〈Ci ⊗DjY l,∆(γaϕbψc)〉(−1)k(a+c+[[b2]]−1).

If i = 0, the above is equal to

. . . = 〈DjY l, γaϕbψc〉(−1)k(a+c+[[b2]]−1)

= 〈∆(DjY l), γa ⊗ ϕbψc〉(−1)k(a+b+c)

= δia〈DjY l, ϕbψc〉(−1)k(a+b+c).

The last equality follows since the pairing of the first tensor component of ∆(DjY l)
with γ vanishes.

If i = 1, we have instead

. . . = 〈C ⊗DjY l,∆(γaϕbψc)〉(−1)k(a+c+[[b2]]−1)

= 〈DjY l, ϕbψa+c〉2δia(−1)ic(−1)ac(−1)k(a+c+[[b2]]−1)

= 〈DjY l, ϕbψa+c〉2δia(−1)ic+ab+k(a+b+c).
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We deliberately wrote i instead of 0 respectively 1 in the above two cases as we now
can merge them again:

〈CiDjY lKk, γaϕbψc〉 = 〈DjY l, ϕbψa+c〉2aδia(−1)ic+ab+k(a+b+c)

= 〈∆(DjY l), ϕc ⊗ ψa+c〉2aδia(−1)ic+ab+k(a+b+c)

= 〈Dj ⊗ Y l,∆(ϕb)〉2aδia(−1)j(a+c)+ic+ab+k(a+b+c)

= 6ll!(1− [[j + 2l + 1]]−1)j2aδj+2l,bδia

· (−1)j(a+c)+ic+ab+k(a+b+c)

= δj+2l,bδia(−1)j(a+c)+ic+ab+k(a+b+c)6ll!2a.

Therefore, if we define

Euvw :=
(−1)2[v/2](u+v)−v−uw−uv

6[v/2][v/2]!2u+1
CuDv−2[v/2]Y [v/2](1 + (−1)u+v+wK),

then these elements also form a basis of Hσ, and we have

〈Euvw, γaϕbψc〉 = δuaδvbδwc.

Recall that 〈X, ξ〉 = π(ξ)(X) for all X ∈ Hσ and ξ ∈ Ãσ. Thus π(γaϕbψc)(Euvw) =
δuaδvbδwc, hence π(γaϕbψc) form a dual set to Euvw hence is linearly independent in
Aσ and this finishes the proof of Proposition 4.2.24.

Remark 4.2.30. In our example, σ is a 3 × 3-matrix with entries in Endk(B) and
(aji) is a 3× 3-matrix with entries in H◦σ, but be aware it is a pure coincidence that
these sizes match – in general, if σ is an n × n-matrix, then Hσ has n2 generators
(some of which might be zero such as in the upper triangular case), and if B can be
generated by a d-dimensional Hσ-submodule, then Aσ is generated as a Hopf algebra
by the d2 matrix coefficients aij (and in good cases they even generate Aσ as an
algebra).

Finally, we prove that the map ι : B → Aσ is injective for every point p on the
cusp: the algebra morphisms χ : B = k[t2, t3] → k are in bijection with the points
p = (λ2, λ3) on the cusp, λ ∈ k, and the algebra morphism ι is given on generators
by

t2 7→ λ21 +
1

3
ϕ2, t3 7→ γ + λ2ϕ+ λ3ψ. (4.2.10)
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This is obtained as follows: since i(B) is already a right coideal subalgebra then we
can assume that ∆(t2) =

∑∞
j=0 t

j ⊗ aj and ∆(t3) =
∑∞

j=0 t
j ⊗ vj where a1 = 0 = v1.

However the orbits of the action of Hσ on t2 and t3 are spanned by {1, t2} respectively
{1, t2, t3} thus we can assume ∆(t2) = 1⊗a+t2⊗b and ∆(t3) = 1⊗u+t2⊗v+t3⊗w.
Using the coassociativity of ∆ one obtains

∆(a) = 1⊗ a+ a⊗ b, ∆(b) = b⊗ b,
∆(u) = 1⊗ u+ a⊗ v + u⊗ w,

∆(w) = w ⊗ w, ∆(v) = b⊗ v + v ⊗ w.

Comparing these coproduct formulas with those of the generators of Aσ (4.2.5)and
observing that

a : K,D 7→ 0, Y 7→ 2 b : K 7→ 1, D, Y 7→ 0

u : K,D, Y 7→ 0, v : K,Y 7→ 0, D 7→ 1, w : K 7→ −1, D, Y 7→ 0

we see that the group-like elements b and w agree with εHσ respectively ψ on the
generators, the twisted primitive a and v agree with δ(= 1

3
ϕ2) respectively ϕ. Finally

notice that the second order operator agree with γ on the generators and in particular
u(C) = 2 = γ(C). Substituting these into the coproduct formula of t2, t3 and
applying the counitality condition (ε⊗ id) ◦∆ = id yeild (4.2.10).

Now we observe:

Lemma 4.2.31. The element X := Y +D ∈ Hσ acts by

X(tn) :=

{
(n− 3)tn−2 + tn−1, n is odd,

ntn−2 n is even.

In particular, if b ∈ Fd \ Fd−1 is a polynomial of degree d, then

Xdd/2e(b) ∈ k \ {0},
⌈
d/2
⌉

:=

{
(d+ 1)/2, d odd,

d/2, d even.

Proof. The definition of X follows from the definition of the operators Y and D.

Clearly when d = 2 and d = 3, X

⌈
d/2
⌉
(b) = 2. Suppose for 3 < d ∈ N, Xdd/2e(b) =

λ ∈ k \ {0}, then for deg(b) = d+ 1 we have

Xd(d+1)/2e(b) =

{
X(d+1)/2)(b) = λ, d odd,

X((d/2)+1)(b), d even,

where for d even, X((d/2)+1)(b) 6= 0.
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Corollary 4.2.32. The map ι : B → Aσ is injective for all algebra maps χ : B → k.

Proof. The lemma above produces for any non-zero regular function b on the cusp
a non-zero constant regular function Xdd/2e . b which vanishes in no point p on the
k[t2, t3].

4.2.7 Faithful flatness

Finally, we remark that a result of Masuoka (see Theorem 3.4.9) implies that Aσ is a
faithfully flat B-module. As a preliminary result, we need to compute the coradical
of Aσ:

Proposition 4.2.33. The Hopf algebra Aσ is pointed and contains two group-like
elements, χ1,0 = 1 and χ−1,0 = ψ.

Proof. We are in the situation mentioned in Remark 4.2.22 – Aσ is generated as
an algebra by aij, i ≤ j, and in this case we do not even have to add inverses of
the aii as they all are their own inverses. Thus we are in the situation described in
Remark 4.2.22 and the pointedness of Aσ follows as in Proposition 4.2.2.

Since Aσ ⊆ H◦σ, the group-likes in Aσ are by definition one-dimensional rep-
resentations of Hσ. We have listed all one-dimensional representations of Hσ in
Lemma 4.2.13, and by definition of Aσ, χs,λ ∈ Aσ if and only if there exists b ∈ B
and f ∈ B? such that

χs,λ(h) = f(h . b) = f(b(0))b(1)(h)

holds for all h ∈ Hσ. In particular, this must be true for h = Y d for any d ≥ 0,

f(Yd(b)) = λd.

However, if 2d exceeds the degree of b ∈ B = k[t2, t3] (as a polynomial in k[t])(see
4.2.3), then Yd(b) = 0, so λ = 0. Since we know already that εHσ , ψ ∈ Aσ, this
finishes the proof.

Proposition 4.2.34. For any p ∈ V , Aσ is faithfully flat over ι(B) .

Proof. By Theorem 3.4.9, we only need to prove that the intersection of ι(B) with
the coradical spank{1, ψ} is invariant under the antipode S of Aσ. However, this
coradical is as a Hopf algebra isomorphic to the group algebra kZ2 and the restriction
of the antipode S to it is the identity map (1 and ψ are their own inverses), so there
is nothing to prove.

Remark 4.2.35. Thus the coordinate ring k[t2, t3] of the cusp is a quantum homo-
geneous space and in particular the quantum symmetries defined by Aσ restrict from
the field of rational functions k(t) to the k[t2, t3].
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4.2.8 ∗-structures and involutions

As we have seen in Lemma 4.1.13, even the classification of the 3×3-upper triangular
quantum automorphisms of B = k[t2, t3] is rather involved. The explicit example
studied since Section 4.1.7 was obtained by demanding in addition that the quantum
automorphism is compatible with a chosen ∗-structure on B. This might be of
interest in its own right, for example as it is the starting point for the transition
from the algebraic theory of Hopf algebras acting on rings to the analytic theory of
locally compact quantum groups acting on C∗-algebras.

Recalling the definitions given in Section 2.2.3, the following is immediate:

Lemma 4.2.36. A ∗-structure on an algebra B induces an involution on P =
Endk(B) given by θ(f) := ∗ ◦ f ◦ ∗ for all f ∈ P .

Proof. Every other property of the ∗-structure on B carry on to P and the anti-
symmetry of ∗ yields the involutive property of θ by definition.

If H is a Hopf ∗-algebra, then an H-module algebra B which is also a ∗-algebra is
called a module ∗-algebra if (hb)∗ = θ(h)(b∗) holds for all h ∈ H, b ∈ B, that is, if the
resulting map H → Endk(B) is a morphism of algebras with involution. The question
we want to address in this section is whether for a given quantum automorphism σ
of a ∗-algebra B the Hopf algebra Hσ becomes naturally a ∗-algebra in such a way
that B is a module ∗-algebra over Hσ.

In order to do so, we first extend the ∗-structure ∗ respectively the associated
involution θ to Mn(B) respectively Mn(Endk(B)). This depends on the choice of an
involutive permutation

{1, . . . , n} → {1, . . . , n}, i 7→ ī, ¯̄i = i

that will be used afterwards to be able to restrict the resulting ∗-structure on Mn(B)
to upper triangular matrices.

Proposition 4.2.37. Let B be a ∗-algebra and assume s ∈ Sn, s2 = 1. We abbreviate
ī := s(i).

(1) Setting (σ†)ij := σ∗j̄ī defines a ∗-structure † on Mn(B).

(2) Setting ϑ(σ)ij := θ(σīj̄) defines an involution on Mn(Endk(B)).

Proof. Clearly, † is involutive:

(σ††)ij = (σ†)∗j̄ī = σ∗∗¯̄i¯̄j
= σ∗∗ij = σij,
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where the last equality follows as ∗ is a ∗-structure on B. It is also a ring morphism
Mn(B)→ Mn(B)op: let σ, τ ∈ Mn(B) then

((στ)†)ij = ((στ)j̄ī)
∗ =

( n∑
r=1

σj̄rτrī
)∗

=
n∑
r=1

τ ∗rīσ
∗
j̄r

=
n∑
r=1

(τ †)ir̄(σ
†)r̄j = (τ †σ†)ij.

That † is a k-linear map Mn(B) → Mn(B) follows from the fact that ∗ : B → B̄ is
linear. The second claim can be shown analogously:

ϑ(ϑ(σ))ij = θ(ϑ(σ)īj̄) = θ(θ(σ¯̄i¯̄j)) = σij,

where the last equality follows from the involutive property of θ. Furthermore, ϑ is
also an endomorphism on Mn(Endk(B)):

ϑ(στ)ij = θ((στ)īj̄) = θ

(
n∑
r=1

σīrτrj̄

)

=
n∑
r=1

θ(σīr)θ(τrj̄) =
n∑
r=1

ϑ(σir)ϑ(τrj)

= ϑ(σ)ϑ(τ)ij,

where we have used the ring map property of θ. Likewise that ϑ is a k-linear map
Mn(Endk(B))→ Mn(Endk(B)) follows from the fact that θ : Endk(B)→ Endk(B) is
linear.

The definition of this ∗-structure and of this involution is made in order to have
the following:

Lemma 4.2.38. A k-linear map σ : B → Mn(B) satisfies

σ(b∗) = σ(b)†

if and only if ϑ(σ) = σT when σ is viewed as an element in Mn(Endk(B)).

Proof. This result follows from observing that

(σ†)ij(b) = σ∗j̄ī(b) = θ(σj̄ī)(b
∗) = ϑ(σ)ji(b

∗).

That is σ is a morphism of ∗-algebras if and only if ϑ(σ) = σT .
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Now we apply the above to the study of quantum automorphisms:

Proposition 4.2.39. Let σ : B → Mn(B) be a quantum automorphism.

(1) ϑ(σ)T = ϑ(σT ) is a quantum automorphism.

(2) If ϑ(σ)T = σ, then Hσ is a Hopf ∗-algebra with ∗-structure given by

sd,ij 7→ s1−d,̄ij̄

and B is a module ∗-algebra over Hσ.

Proof. (1): First note that from the definition of ϑ we have

ϑ(σT )ij = θ(σj̄ī) = ϑ(σ)ji = ϑ(σ)Tij.

If σ : B → Mn(B) is an algebra morphism, then

(ϑ(σ)T )ij(ab) = θ(σj̄ī)(ab) = σj̄ī((ab)
∗)∗ = σj̄ī(b

∗a∗)∗

= (
∑
r

σj̄r(b
∗)σrī(a

∗))∗

=
∑
r

(σrī(a
∗))∗(σj̄r(b

∗))∗

=
∑
r

θ(σrī)(a)θ(σj̄r)(b)

=
∑
r

(ϑ(σ)T )ir(a)(ϑ(σ)T )rj(b).

In order to the show that ϑ(σ)T is strongly invertible note first that as ϑ is an invo-
lution on Mn(Endk(B)), it is in particular multiplicative (see Proposition 4.2.37(b)),
so if σ ∈ Mn(Endk(B)) is invertible, then so is ϑ(σ)

ϑ(σ)ϑ(σ−1) = ϑ(σσ−1) = 1 = ϑ(σ−1σ) = ϑ(σ−1)ϑ(σ)

with inverse given by ϑ(σ)−1 = ϑ(σ−1). Furthermore, since ϑ commutes with taking
transposes, we have

ϑ(σ̄) = ϑ((σ−1)T ) = ϑ(σ−1)T = (ϑ(σ)−1)T = ϑ(σ).

It follows that if {σd} is a sequence of invertible matrices with σ̄d = σd+1 then {ϑ(σd)}
is a sequence of invertible matrices with ϑ(σd) = ϑ(σd+1).
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(2): Since k〈sd,ij〉 is a free algebra, there is a unique algebra morphism

θ : k〈sd,ij〉 → k〈sd,ij〉

which maps sd,ij to s−d,j̄ī which is also a coalgebra morphism k〈sd,ij〉 → k〈sd,ij〉
cop

:

(θ ⊗ θ) ◦∆cop(sd,ij) = θ ⊗ θ

(
n∑
r=1

sd,rj ⊗ sd,ir

)
=

n∑
r=1

θ(sd,rj)⊗ θ(sd,ir)

=
n∑
r=1

s−d,j̄r̄ ⊗ s−d,r̄ī = ∆ ◦ θ(sd,ij),

and ε(θ(σd,ij)) = ε(σ−d,j̄ī) = δj̄ī = δ̄ij = ε(σij).
Our aim is to show that θ descends to a Cartan involution on Hσ. For this we

first prove by induction on d that

θ(σd,̄ij̄) = ϑ(σd)ij = σT−d,ij = σ−d,ji. (4.2.11)

Note that the first and last equality holds by definition, so we will only prove the
middle equality. Indeed, for d = 0 this holds by the assumption that ϑ(σ)T = σ. In
the induction step we compute

ϑ(σd) = σT−d ⇒ ϑ(σ−1
d ) = (σT−d)

−1 = σ−d−1,

recall the comment following Definition 4.1.2. Hence

ϑ(σd+1) = ϑ(σd) = ϑ(σ̄d) = ϑ(σ−1
d )T = σT−d−1

which proves (4.2.11) for d+ 1.
This means that by the definition of the involution θ on k〈sd,ij〉, the map

f : k〈sd,ij〉 → Endk(B) sd,ij 7→ σd,ij

is a morphism of algebras with involution: that is f ◦ θ = θ ◦ f . In particular, θ
descends to k〈sd,ij〉/I and to Hσ and defines a Cartan involution and hence a Hopf
∗-algebra structure on Hσ by Lemma 2.2.20. It also follows that B is a module
∗-algebra over this Hopf ∗-algebra.

Remark 4.2.40. To obtain the ∗-structure on Hσ defined in the proposition, pre-
compose θ with the inverse of the (bijective) antipode S on Hσ which is given by
S−1(σd,ij) = σd−1ji.
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Example 4.2.41. Throughout we fixed an involutive permutation s ∈ Sn. The
most obvious choice is the identity, ī = i. In this case, σ† is the usual adjoint of a
matrix σ ∈ Mn(B) (transpose and apply ∗ to the entries). However, if σ is upper
triangular, the condition ϑ(σ)T = σ can not hold with respect to this involution, as
we then have ϑ(σ)ij = θ(σij) so ϑ(σ)T is a lower triangular matrix. Hence for upper
triangular quantum automorphisms one focuses on the permutation ī := n+ 1− i.

4.2.9 Application to k[t2, t3]

Assume now that k is a subfield of C with involution given by complex conjugation.
Then B = k[t2, t3] becomes a ∗-algebra via

∗ : B = k[t2, t3] −→ B, (λtn)∗ := λ̄tn.

Geometrically, this ∗-structure on B describes the real points of the singular curve
V ⊆ k2 in the sense that the points of the curve VR = V ∩R2 correspond to the one-
dimensional ∗-representations of B and if k is algebraically closed, they correspond
to the maximal ideals in k[t2, t3] which are invariant under ∗.

The quantum automorphism σ : B → M3(B) that we study since Section 4.1.7
satisfies ϑ(σ)T = σ provided that we work with ī := 4 − i as in Example 4.2.41.
The Hopf ∗-structure on Hσ is computed as follows: Recall from Section 4.2.3 that
K = s0,22 thus

K∗ = s1,22 = S(K) = K.

Similarly recalling that D = iE− and E∗ = s∗0,12 = S(F ) = E we obtain that
E∗− = E− thus

D∗ = −D.

Finally using Z∗ = s∗0,13 = S(Z) = −Z − E2 and Z∗+ = −Z+ − E2, we have

Y ∗ = −Y + 6iD.
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