
Descriptor
DADApy: Distance-based
 analysis of data-manifolds
in Python
Graphical abstract
Highlights
d DADApy is a Python software library to characterize data

manifolds

d DADApy can compute intrinsic dimension, density, cluster

structures, and optimal metrics

d DADApy is not based on projections and can work also on

topologically complex manifolds

d DADApy has an easy-to-use Python interface and efficient

C-compiled routines
Glielmo et al., 2022, Patterns 3, 100589
October 14, 2022 ª 2022 The Author(s).
https://doi.org/10.1016/j.patter.2022.100589
Authors

Aldo Glielmo, Iuri Macocco,

Diego Doimo, ..., Maria d’Errico,

Alex Rodriguez, Alessandro Laio

Correspondence
aldo.glielmo@bancaditalia.it (A.G.),
laio@sissa.it (A.L.)

In brief

Real-world data are typically represented

by high-dimensional features, but live on

low-dimensional data manifolds with a

great deal of hidden structure. One can

analyze such a structure, for instance, by

estimating the intrinsic dimension of the

manifold, as well as the density of the

points lying on it. DADApy collects

several algorithms for data manifolds

characterization that have already proven

effective in specific applications, aims to

popularize them, and to make them

available for data-science practitioners.
ll

mailto:aldo.glielmo@bancaditalia.�it
mailto:laio@sissa.�it
https://doi.org/10.1016/j.patter.2022.100589
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patter.2022.100589&domain=pdf


OPEN ACCESS

ll
Descriptor

DADApy: Distance-based analysis
of data-manifolds in Python
Aldo Glielmo,1,2,6,* Iuri Macocco,1 Diego Doimo,1 Matteo Carli,1 Claudio Zeni,1 Romina Wild,1 Maria d’Errico,3,4

Alex Rodriguez,5 and Alessandro Laio1,5,*
1International School for Advanced Studies (SISSA), Via Bonomea 265, Trieste, Italy
2Banca d’Italia, Italy
3Functional Genomics Center, ETH Zurich/UZH, Winterthurerstrasse 190, Zurich, Switzerland
4Swiss Institute of Bioinformatics, Quartier Sorge – Batiment, Amphipole 1015, Lausanne, Switzerland
5The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, Trieste, Italy
6Lead contact

*Correspondence: aldo.glielmo@bancaditalia.it (A.G.), laio@sissa.it (A.L.)
https://doi.org/10.1016/j.patter.2022.100589
THEBIGGERPICTURE Data are often represented viamany thousands of features. Fortunately, in most ap-
plications, such high-dimensional spaces are very sparsely populated, and data points effectively live on
low-dimensional ‘‘data manifolds.’’ This is the key reason behind the success of dimensionality reduction
schemes, which, however, cannot be easily deployed on data manifolds with nontrivial geometries and to-
pologies, where a set of coordinates capable of describing the manifold globally cannot exist. In these sce-
narios, one can analyze the data manifold directly, without an explicit dimensional reduction step, and
compute fundamental properties, such as the intrinsic dimension of the manifold and the density of the
points lying on it. DADApy implements a set of methods recently developed to this aim. DADApy is easy-
to-use as it is written entirely in Python, but also computationally efficient as time-consuming routines
are C-compiled through Cython.

Development/Pre-production:Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
DADApy is a Python software package for analyzing and characterizing high-dimensional data manifolds. It
provides methods for estimating the intrinsic dimension and the probability density, for performing density-
based clustering, and for comparing different distance metrics. We review the main functionalities of the
package and exemplify its usage in a synthetic dataset and in a real-world application. DADApy is freely avail-
able under the open-source Apache 2.0 license.
INTRODUCTION

The need to analyze large volumes of data is rapidly becoming

ubiquitous in all branches of computational science, from quan-

tum chemistry, biophysics, and materials science1,2 to astro-

physics and particle physics.3

Inmany practical applications, data come in the form of a large

matrix of features, and one can think of a dataset as a cloud of

points living in the very high-dimensional space defined by these

features. The number of features for each data point can easily

exceed the thousands, and if such a cloud of points were to

occupy the entire space uniformly, there would be no hope of ex-

tracting any kind of usable information from data.4,5 Luckily this
This is an open access article und
never happens in practice, and real-world datasets possess a

great deal of hidden intrinsic structure. The most important one

is that the feature space, even if very high dimensional, is very

sparsely populated. In fact, the points typically lie on a data

manifold of much lower dimension than the number of features

of the dataset (Figure 1A). A second important hidden structure,

which is almost ubiquitous in real-world data, is that the density

of points on such a manifold is far from uniform (Figure 1B). The

data points are instead often grouped in density peaks (DPs)

(Figures 1B and 1C), at times well separated from each other,

at times organized hierarchically in ‘‘mountain chains.’’

DADApy implements in a single and user-friendly software a

set of state-of-the-art algorithms to characterize and analyze
Patterns 3, 100589, October 14, 2022 ª 2022 The Author(s). 1
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:aldo.glielmo@bancaditalia.it
mailto:laio@sissa.it
https://doi.org/10.1016/j.patter.2022.100589
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patter.2022.100589&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Figure 1. An illustration of the four main classes of tasks that DADApy can perform

From (A) to (D): Intrinsic dimension estimation, density estimation, density peaks estimation (i.e., density-based clustering), and comparison of distance

measures.

ll
OPEN ACCESS Descriptor
the intrinsic manifold of a dataset. In particular, DADApy imple-

ments algorithms aimed at estimating the intrinsic dimension

(ID) of the manifold (Figure 1A) and the probability density of

the data (Figure 1B), at inferring the topography and the relative

position of the DPs by density-based clustering (Figure 1C) and,

finally, at comparing different metrics, finding in this way the fea-

tures that are better suited to describe the manifold (Figure 1D).

All these approaches belong to the class of unsupervised

learning methods and are designed to work also in situations in

which only the distances between data points are available

instead of their features. Therefore, the same tools can be

used for analyzing a molecular dynamics trajectory (where fea-

tures are available) but also a metagenomics or a linguistic data-

base, where one can only define a similarity or a distance be-

tween the data.

Another important feature of the methods included in the

package is that they are specifically designed to work even

when the ID of the data manifold is relatively high, of order ten

or more, and if the manifold is topologically complex, and, in

particular, not isomorphic to a hyperplane. Therefore, the pack-

age can be considered complementary to other packages, such

as Scikit-learn,6 which implement classical approaches for unsu-

pervised manifold learning, which should be preferred in simpler

cases, such as PCA,7 kernel-PCA,8 or Isomap.9

In the following, we first briefly describe the four classes of al-

gorithms implemented in DADApy. We then illustrate the struc-

ture of the package and demonstrate its usage for the analysis

of both a synthetic and a realistic dataset. We will also discuss

the computational efficiency of the implementations, demon-

strating that the package can be used to analyze datasets

of 106 points or more, even with moderate computational

resources.
RESULTS AND DISCUSSION

Description of the methods
ID estimators

The ID of a dataset can be defined as theminimumnumber of co-

ordinates that are needed to describe the data manifold without

significant information loss.10,11 In our package we provide the

implementation of a class of approaches that are suitable to es-

timate the ID using only the distances between the points, and

not the features. Most of these approaches are rooted in the
2 Patterns 3, 100589, October 14, 2022
observation that, in a uniform distribution of points, the ratio mi

of the distances of two consecutive nearest neighbors of a point

i are distributed with a Pareto distribution, which depends only

on the ID. This allows defining a simple likelihood for theN obser-

vations of mi, one for each point of the dataset:

pðfmigjIDÞ =
YN

i = 1

ID m
�ðID+ 1Þ
i : (Equation 1)

The ID is then estimated either by maximizing the likelihood,12

by Bayesian inference,13 or by linear regression after a suitable

variable transformation.14 We refer to these estimators as two

nearest neighbors (2NN) estimators.

It is possible that the datamanifold possesses different IDs de-

pending on the scale of variations considered. For example, a

spiral dataset can be one-dimensional on a short scale, but

two-dimensional on a larger scale. Hence, one might be inter-

ested in computing an ID estimate as a function of the scale.

The package provides two routines to perform this task. The first

method allows to probe the ID at increasing length scales by

sub-sampling the original dataset. By virtue of the reduced num-

ber of points considered, the average distance between them

will be larger; this can be then interpreted as the length scale

at which the ID is computed. Obviously, subsampling the

dataset also increases the variance of the ID estimate. The sec-

ondmethod, an algorithm called "generalized ratios ID estimator

(Gride),’’ circumvents this issue by generalizing the likelihood

in Equation 1 to directly probe longer length scales without

subsampling.13

After using one of these algorithms, one can select the ID of the

dataset as the estimate that is most consistently found across

different scales. However, this choice is often not straightfor-

ward, and for a more in depth discussion on this topic we refer

to Denti et al.13,14 and Facco et al.13,14

ID estimation has been successfully deployed in a number of

applications, ranging from the analysis of deep neural net-

works,15 to physical applications, such as phase transition

detection16 and molecular force-field validation.17

Density estimators

The goal of density estimation is to reconstruct the probability

density rðxÞ from which the dataset has been harvested. The

package implements a non-parametric density estimator called

point-adaptive kNN (PAk),18 which uses as input only the dis-

tances between points and, importantly, is designed to work



ll
OPEN ACCESSDescriptor
under the explicit assumption that the data are contained in an

embeddingmanifold of relatively small dimension. This algorithm

is an extension of the standard kNN estimator,19 which estimates

the density on a point as proportional to the empirical density

sampled in its immediate surrounding. More precisely, the kNN

estimates can be written as

ri =
1

N

k

Vi;k

; (Equation 2)

where k is the number of nearest neighbors considered, and

Vi;k is the volume they occupy. The volume is typically

computed as Vi;k = uIDd
ID
i;k , where uID is the volume of unit

sphere in RID and di;k is the distance between point i and its

kth nearest neighbor.

In PAk the number of neighbors k used for estimating the den-

sity around point i is chosen adaptively for each data point by an

unsupervised statistical approach in such a way that the density,

up to that neighbor, can be considered approximately constant.

This trick dramatically improves the performance of the esti-

mator in complex scenarios, where the density varies signifi-

cantly at short distances.18 Importantly, the volumes that enter

the definition of the estimator are measured in the low-dimen-

sional intrinsic manifold rather than in the full embedding space.

This prevents the positional information of the data from being

diluted on irrelevant directions orthogonal to the data manifold.

Assuming that the data manifold is Riemannian, namely locally

flat, it can be locally approximated by its tangent hyperplane

and distances between neighbors, the only distances used in

the estimator, can be measured in this low-dimensional

Euclidean space. This allows to operate on the intrinsic manifold

without any explicit parametrization. The only prerequisite is an

estimate of the local ID, since this is needed to measure the vol-

umes directly on the manifold.

Another key difference between kNN and PAk estimators is

that kNN assumes the density to be exactly constant in the

neighborhood of each point, while PAk possesses an additional

free parameter that allows to describe small density variations.

The PAk density estimator can be used to reconstruct free en-

ergy surfaces, especially in high-dimensional spaces,18,20–22

and it can also be used for a detailed analysis of the data, as in

Offei-Danso et al.,23 where a distinct analysis of the data points

with different densities lead to some physical insight about the

system under study.

The same estimator can be used also for estimating the den-

sity on points that do not belong to the dataset,24 a procedure

that has been recently used to quantify the degree to which

test data are well represented by a training dataset.25

Finally, PAk is commonly used within the density-based clus-

tering algorithms discussed in the following section.

DP clustering

The different ‘‘peaks’’ of the probability density can be consid-

ered a natural partition of the dataset into separate groups or

‘‘clusters.’’ This is the key idea underlying density peak (DP) clus-

tering,26 implemented in DADApy. This algorithms works by first

estimating the density ri of all points i, for example using the PAk

method described in the previous section. Then, the minimum

distance di between point i and any other point with higher den-

sity is computed as
di = min
j j rj > ri

dij: (Equation 3)

The peaks of the density (and hence the cluster centers) are

expected to have both a high density ri and a large distance di

from points with higher density, and are hence selected as the

few points for which both ri and di are very large. The selection

is typically done by plotting ri against di and visually identifying

the outliers of the distribution. Once the cluster centers are

found, each remaining point is assigned to the same cluster as

its nearest neighbor of higher density.

In DP clustering the DPs must be specified by the user, and

this arbitrariness represents an obvious source of errors. The

advanced DP (ADP) clustering approach,27 also available in

DADApy, proposes a solution to this problem. In ADP clustering,

all local maxima of the density are initially considered DPs, and a

statistical significance analysis of each peak is subsequently

performed. A peak c is considered statistically significant only

if the difference between the log density of the peak ln rc and

the log density of any neighboring saddle point ln rcc0 is suffi-

ciently larger than the sum of the errors on the two estimated

quantities

ln rc � ln rcc0 >Zðsc + scc0 Þ: (Equation 4)

If this is not the case, the two peaks c and c0 are merged into a

single peak. This process is iterated until no peak that is not sta-

tistically significant is remaining. The parameter Z appearing in

Equation 4 can be interpreted as the statistical significance

threshold of the found peaks. A higher value of Z will give rise

to a smaller number of peaks with a higher statistical signifi-

cance. Typical values range from 1 to 5. ADP and DP are general

clustering tools, and as such have been used in different fields,

including single-cell transcriptomics,28,29 spike-sorting,30,31

word embedding,32 climate modelling,33 Markov state model-

ling,34 and the analysis of molecular dynamics simulations,35,36

just to mention some of them.

Another clustering algorithm available in DADApy is k-peaks

clustering.37 In short, this method is a variant of ADP that takes

advantage of the observation that the optimal ki is high in two

cases: (1) in high-density regions, due to the high concentration

of points, and (2) in vast regions where the density is everywhere

constant. Therefore, the peaks in ki correspond either to peaks in

density or to the center of large regions with nearly constant den-

sity (e.g., metastable states stabilized by entropy). An example

application of k-peaks clustering can be found in Sormani

et al.,37 where it was used to describe the free-energy landscape

of the folding/unfolding process of a protein.

Metric comparisons

In several applications, the similarity (or the distance) between

different data points can bemeasured using very differentmetrics.

For instance, a group of atoms or molecules in a physical system

can be represented by their Cartesian coordinates, by the set of

their inter-particle distances, or by a set of dihedral angles, and

one can measure the distance between two configurations with

any arbitrary subset of these coordinates. Similarly, the ‘‘distance’’

between two patients can be measured taking into account their

clinical history, any subset of blood exams, radiomics features,

genome expression measures, or a combination of those.
Patterns 3, 100589, October 14, 2022 3



Metric comparisons

IdEstimation

Base

Data

Clustering

compute_density_kNN, 
compute_density_kstarNN, 
compute_density_PAk, ...

return_inf_imb_full_all_coords, 
greedy_feature_selection_full, 
return_overlap, ...

compute_id_2NN, 
return_id_scaling_2NN,
return_id_scaling_gride, ...

compute_distances, 
remove_identical_points, ...

log_den, 
log_den_err, ...

intrinsic_dim, 
intrinsic_dim_err, ...

coordinates, maxk, 
distances, ...

Inheritance

Classes

Methods

Attributes

DensityEstimation

compute_clustering_DP, 
compute_clustering_ADP, ...

N_clusters, 
cluster_assignment,
cluster_centers, ...

Figure 2. The class structure of the package

Classes are highlighted in blue boxes, and the main methods and attributes of each class are reported in the yellow and red boxes, respectively. Relationships of

inheritance are indicated as black arrows. The class Data inherits from all other classes, thus providing easy access to all available algorithms of the package.

ll
OPEN ACCESS Descriptor
It might hence be useful to evaluate the relationships be-

tween all these different manners to measure the similarity

between data points. DADApy implements two methods

for doing this: the neighborhood overlap and the information

imbalance. Both approaches use only the distances between

the data points as input, making the approaches applicable

also when the features are not explicitly defined (e.g., a

social network, a set of protein sequences, a dataset of

sentences).

The neighborhood overlap is a simple measure of equivalence

between two representations.38 Given two representations a

and b, one can define two k-adjacency matrices Aa
ij and Ab

ij as

matrices of dimension N3 N, which are all zero except when j

is one of the k nearest neighbors of point i. The neighborhood

overlap cða;bÞ is then defined as

cða; bÞ =
1

N

X

i

1

k

X

j

Aa
ijA

b
ij : (Equation 5)

Note that the term Aa
ijA

b
ij is equal to one only if j is within the k

nearest neighbors of i both in a and in b, otherwise it is zero. For

this reason, the neighborhood overlap can also be given a very

intuitive interpretation: it is the average fraction of common

neighbors in the two representations. If cða; bÞ = 1 the two rep-

resentations can be considered effectively equivalent, while if

cða; bÞ = 0 they can be considered completely independent.

The parameter k can be adjusted to improve the robustness of

the estimate but in practice this does not significantly change

the results obtained as long as k � N.38

In the original article,38 the neighborhood overlap was pro-

posed to compare layer representations of deep neural networks

and to analyze in this their inner workings.

The information imbalance is a recently introduced quantity

capable of assessing the information that a distance measure

a provides about a second distance measure b.39 It can be

used to detect not only whether two distance measures are

equivalent or not, but also whether one distance measure is

more informative than the other. The information imbalance defi-

nition is closely linked to information theory and the theory of
4 Patterns 3, 100589, October 14, 2022
copula variables.39 However, for the scope of this article it can

be empirically defined as
Dða/bÞ = 2

N
Crbjra = 1D

=
2

N2

X

i;j: ra
ij
= 1

rbij

; (Equation 6)

where raij is the rank matrix of the distance a between the points

(namely raij = 1 if j is the nearest neighbor of i, raij = 2 if j is the sec-

ond neighbor, and so on). In words, the information imbalance

from a to b is proportional to the empirical expectation of the dis-

tance ranks in b conditioned on the fact that the distance rank

between the same two points in a is equal to one. If

Dða/bÞz0 then a can be used to describe b with no loss of

information.

When measuring the information imbalances between

two representations we can have three scenarios. If

Dða/bÞzDðb/aÞz0 the two representations are equivalent,

if Dða/bÞzDðb/aÞz1 the two representations are indepen-

dent, and, finally, if Dða/bÞz0 and Dðb/aÞz1 we have that

a is informative about b but not vice versa, therefore a is more

informative than b. The information imbalance allows for effec-

tive dimensional reduction since a small subset of features that

are the most relevant, either for the full set or for a target prop-

erty, can be identified and selected.39 This feature selection

operation is available in DADApy and can be performed as a

pre-processing step before the tools described in the previous

sections are deployed.

The information imbalance proved successful in dealing with

atomistic and molecular descriptors, either to directly perform

compression39 or to quantify the information loss incurred by

competing compression schemes.40 In the original article,39

the information imbalance was also proposed for detecting cau-

sality in time series—with illustrative results shown on COVID-19

time series—and to analyze or optimize the layer representations

of deep neural networks.



Figure 3. A simple DADApy script

ll
OPEN ACCESSDescriptor
Software structure and usage
DADApy is written entirely in Python, with themost computation-

ally intensive methods being sped up through Cython. It is orga-

nized in sixmain classes: Base, IdEstimation, DensityEstimation,

Clustering, MetricComparison, and Data. The relationships of in-

heritance between these classes, as well as the main methods

and attributes available in each class are summarized in Figure 2.

The Base class contains basic methods of data cleaning and

manipulation that are inherited in all other classes. Attributes con-

taining the coordinates and/or the distances defining the dataset

are contained here. Then, in a train of inheritance: IdEstimation in-

herits from Base; DensityEstimation inherits from IdEstimation

and Clustering inherits from DensityEstimation. Each of these

classes contains asmethods the algorithms described in the pre-

vious section, under the same name. The inheritance structure of

these classes is well motivated by the fact that, to perform a den-

sity-based clustering one first needs to compute the density, and

to perform a density estimation one first needs to know the ID,

which can be estimated only if the distances are preliminarily

computed. TheMetricComparison class contains the algorithms

described in the section titled ‘‘Metric comparisons’’ used to

compare couples of representations using the distances be-

tween points.

The class Data does not implement any extra attribute or

method but, importantly, it inherits all methods and attributes

from the other classes. As such, Data provides easy access to

all available algorithms of the package and is the main class

that is used in practice.

A typical usage of DADApy is reported in Figure 3. In this sim-

ple example a Data object is first initialized with the matrix con-

taining the coordinates of the points shown in Figures 1B and 1C,

and later a series of methods are called sequentially to compute

the distances, the ID, the density (Figure 1B), and finally the DPs

(clusters) of the dataset (Figure 1C). In the example given, Data is
initialized with a matrix of coordinates, and the distances be-

tween points are later computed. Note that, however, the object

could have been equivalently initialized directly with the dis-

tances between points, and all methods in the package would

work equivalently. This is particularly important for those appli-

cations for which coordinates are not available, but distances

can be computed, such as DNA or protein sequences, or

networks.

The main aim of the package is to provide user-friendly, fast,

and light routines to extract some of the most common

and fundamental characteristics of a data manifold through solid

statistical and numerical techniques. DADApy offers high-speed

code with reduced memory consumption. These features are

achieved by exploiting locality. In particular, it is generally

enough to compute the distances between each point and a

small number of its neighbors (defined in DADApy by an attribute

named maxk), and hence such distances can be computed and

stored with close-to-linear time and memory requirements.

We believe that the Python interface of DADApywill encourage

its rapid diffusion, as Python is by far the most used language in

the computational science community nowadays. We are aware

that Python is, however, a notoriously inefficient language for

large-scale computation. In DADApy we circumvent this short-

coming by implementing all the heavy numerical routines using

Cython extensions, which essentially generate C-compilable

code that runs with very high efficiency (typically over two orders

of magnitude faster in evaluation time than the pure Python im-

plementation). In this manner we are able to maintain the user

friendliness of Python without sacrificing the computational effi-

ciency of a fully compiled language.

All of the mentioned properties allow to easily analyze up to a

million points on an ordinary laptop within minutes. This can be

seen in Figure 4, where we report the time spent by the code

on many DADApy routines as a function of the number N of

points of the dataset, using a neighborhood of maxk = 100

points. The plot shows that all methods scale linearly in compu-

tational time with N, with the exception of the ADP clustering,

whose scaling becomes unfavorable for more than 50,000

points. This is a consequence of the neighborhood size maxk be-

ing much smaller than the number of points N of the dataset, a

condition which forces the estimation of many fictitious DPs

that take a long time to be merged together. The problem can

be solved by appropriately increasing maxk when necessary.

The runtime performance for the computation of the distances

also scales linearly with the embedding dimension D, while the

other routines take as input the computed distances, and are

thus independent on D. Therefore, when D is very large, say

DU104, the distance computation can represent the actual

computational bottleneck of the package.

The code has been thoroughly commented and documented

through a set of easy-to-run Jupyter notebooks, an online

manual, and an extensive code reference. This can allow new

users approaching DADApy to quickly learn to use it, as well

as to modify or extend it.

Illustration on a topologically complex synthetic dataset
We now illustrate the use of some key DADApy methods on the

synthetic dataset depicted in Figure 5A, and consisting of a 2D

plane with eight clusters, twisted to form a 3D Möbius strip
Patterns 3, 100589, October 14, 2022 5



Figure 4. Time complexity of DADApy
The time required by the various routines of DADApy grows linearly with the

number of samplesN, with the only exception of ADP (see text for details). The

dataset used was two dimensional and we set maxk = 100. The benchmark

was performed on an ordinary desktop using a single Intel Xeon(R) CPU E5-

2650 v2 at 2.60 GHz.

ll
OPEN ACCESS Descriptor
and finally embedded in a noisy 50D space. The reference 2D da-

taset is taken from d’Errico et al.,27 and consists of data points

sampled from an analytic density function, with points belonging

to a singlemode of this density assigned to the same cluster, and

all other considered unassigned.

Despite the 2D inner structure of the dataset, common projec-

tion methods can easily fail as a consequence of the nontrivial

topological properties of the data manifold. This is illustrated in

Figure 5B, where PCA and ISOMAP projections are reported.

One key advantage of themethods implemented in DADApy is

their ability to exploit the low-dimensional structure of the data

without any explicit projection. In this case, for example, we

compute the ID using the Gride method (see ‘‘intrinsic dimension

estimators"), which is correctly identified around 2. We then use

the ID to provide accurate density estimates using the PAk

method from ‘‘density estimators,’’ and finally identify the clus-

ters (or DPs) using the ADP algorithm from ‘‘density peak clus-

tering.’’ The end result is a cluster assignment that is remarkably

close to the ground truth, and often superior to other state-of-

the-art clustering schemes that do not exploit the low-dimen-

sional structure of the data (see Figure 5B).

Another unique feature of DADApy is the ability of compactly

representing the cluster structure through a special kind of

dendrogram reporting the log densities of the DPs and of the

saddle points between them. The bottom part of Figure 5C de-

picts the dendrogram for the Möbius strip data, which can be

seen to provide a remarkably accurate perspective of the rela-

tionship between the estimated DPs shown in the upper panel

of the figure.

Note that the dendrogram can be generated independently of

the ID of the manifold, unlike most graphical data representa-

tions which are practically limited to three dimensions, thus

providing a robust way to visualize the cluster structure even

for the common scenario of ID> 3 manifolds.

The Jupyter notebook used to perform the analysis described

in this section can be found at https://github.com/sissa-data-

science/DADApy/blob/main/examples/notebook_mobius.ipynb.
6 Patterns 3, 100589, October 14, 2022
Usage for a realistic application
We now exemplify and showcase the usage of DADApy for the

analysis of a biomolecular trajectory. The dataset is composed

of 41,580 frames from a replica-exchange MD simulation

(400 ns, 340 K replica, dt = 2 fs) of the 10-residue peptide

CLN025, which folds into a beta hairpin.41 Several numerical rep-

resentations are possible for this trajectory. A very high-dimen-

sional one is given by the set of all distances between the heavy

atoms, which amounts to 4,278 features. Such a representation

is possibly very redundant, and in fact typically more compact

representations are used to describe systems of this type. For

example, a compact representation for this system can be taken

as the set of all its 32 dihedral angles.42,43 In Figure 6A we use

DADApy to compute the information imbalance from the space

of heavy atom distances to the space of the dihedral angles

for an increasing number of dihedral angles, and vice versa.

Not surprisingly, the compact space of dihedral angles is seen

to be almost equally informative to the very high-dimensional

heavy atom distance space, with information imbalance

DðXdihedrals /XfullÞ lower than 0.1 when considering around 15

angles (Figure 6A). We thus select the set of the 15most informa-

tive dihedral angles as the collective variables to represent this

dataset, since the information imbalance reaches a plateau

around this number.

We then use DADApy to compute the ID of the dataset

along different scales through both decimation and the Gride al-

gorithm13 (Figure 6B). The two procedures provide fairly overlap-

ping estimates for the ID, which is comprised between 5 and 8

within short range distances, and thus much lower than the orig-

inal feature space. We continue by estimating the density

through the PAk algorithm, for which we set the ID to 7. This ID

selection is motivated by the observation that the density is a

local property computed at short scales but, importantly, select-

ing a lower ID consistent with Figure 6B (say, 5 or 6) does not

significantly affect the results. Finally, we use DADApy to

perform clustering using the ADP algorithm. The results are

shown in Figure 6C.

ADP clustering (Z = 4.5) produces three clusters. The biggest

cluster is the folded beta hairpin state of the protein, as depicted

in Figure 6C (cluster 0). A cluster of roughly half the size is made

of a collapsed twisted loop structure (Figure 6C, cluster 2). Since

CLN025 is suspected to have two main metastable states, the

folded hairpin and a denatured collapsed state,44 we suggest

that the twisted loop could be the dominant topology of the dena-

turedcollapsedensemble. Thehighoccurrenceof the twisted loop

might be due to the simulation temperature of 340 K, which is just

below theexperimentalmelting temperatureofCLN025of343K.45

Less than 1%of the structures are in cluster 1, which is composed

of denatured extended and less-structured topologies.

The 32-dimensional space of dihedrals used so far in our anal-

ysis is known to be well suited to differentiate meaningful protein

structures but, to showcase the possibility of using DADApy to

work in very-high-dimensional spaces, we performed a similar

analysis also on the 4,278-dimensional space of all heavy atom

distances. Using this alternative data description we performed

ID estimation with the 2NN method, density estimation with the

PAk estimator, and clustering with the ADP algorithm (ID = 9;

Z = 3.5). The resulting dendrogram is shown as an inset of

Figure 6C.

https://github.com/sissa-data-science/DADApy/blob/main/examples/notebook_mobius.ipynb
https://github.com/sissa-data-science/DADApy/blob/main/examples/notebook_mobius.ipynb


C

Isomap

A PCA

km
ea

ns SC

DBS
CAN

HDBS
CAN

ADP
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ad
ju

st
ed

 M
ut

ua
l I

nf
or

m
at

io
n

0 2500 5000 7500 10000 12500 15000 17500 20000

Population
3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

ln
(

)

4

3
1

2

6

7 0

5

21

0
7

6
4

3

5

B

Figure 5. Example usage of DADApy for the analysis of a topologically complex synthetic dataset

(A) The dataset analyzed, consisting of clusters lying on a 2D sheet twisted to form a Möbius strip and immersed in a noisy 50D space.

(B) The accuracy of some common clustering methods on reconstructing the original clusters (in order: Kmeans, Spectral Clustering [SC], DBSCAN, HDBSCAN,

and ADP), as well as two low-dimensional projections.

(C) Summary of the results obtained using 2NN ID estimation, PAk density estimation and ADP clustering. The top part shows the estimated density peaks, while

the bottom part shows the dendrogram of the dataset. The y axis of the dendrogram reports the log density of the density peaks and of the saddle points. The x

axis provides an indication on the relative cluster sizes, since each cluster is in the middle of a region proportional to its population. This region is delimited by the

links in which these clusters are involved and, in the case of the first and last clusters, by the beginning and end of the graph.

ll
OPEN ACCESSDescriptor
As clear from the figure, we find a remarkably similar cluster

structure, defined by the twomajor macrostates of themolecule,

the beta pin and the twisted loop, as well as the cluster with un-

structured configurations.

The equivalence in the two cluster assignments is confirmed

by the fact that 89% of the data points are assigned to the

same cluster independently of the data representation.

A Jupyter notebook containing the analyses performed in

this section is available at https://github.com/sissa-data-science/

DADApy/blob/main/examples/notebook_beta_hairpin.ipynb along

with the necessary datasets.

Conclusions
In this work we introduce DADApy, a software package for

quickly extracting fundamental properties of data manifolds.
A B

Figure 6. Example usage of DADApy for the analysis of a biomolecula

(A) The computation of the information imbalance between a compact molec

increasing size) and amuch higher dimensional one Xfull (the full space of heavy ato

heavy atom distances and the space of dihedral angles, and vice versa. For clar

(B) The computation of the intrinsic dimension across different scales using both 2N

refers to the space of 4,278 heavy atom distances.

(C) A dendrogram visualization of the peaks and the saddle points of the density,

cluster center structures are drawn next to their corresponding peaks. Themain g

atom distances. In both cases, the central and rightmost peaks capture the main

peak. The two cluster assignments are identical for roughly 90% of the data poin
DADApy is written entirely in Python, which makes it easy to

use and to extend; and it exploits Cython extensions and algo-

rithms for sparse computation and sparse memory handling,

which make it computationally efficient and scalable to large da-

tasets. The package is documented by a set of easy-to-run Ju-

pyter notebooks and by a code-reference and manual available

online.

DADApy includes state-of-the-art algorithms for ID estimation,

density estimation, density-based clustering, and distance com-

parison, which found numerous applications in recent years, but

have not yet found widespread usability. We believe this was, at

least in part, precisely due to the lack of a fast and easy-to-use

software like DADApy, and we hope that our work will allow a

growing number of practitioners from different research domains

to approach the field of manifold learning.
C

r trajectory

ular representation Xdihedrals (optimally selected sets of dihedral angles with

m distances). The inset shows the information imbalance between the space of

ity, the depicted points are sparsed out.

N andGride. Themain graph refers to the space of 15 dihedrals, while the inset

estimated using PAk and the ADP clustering algorithm. Peptide backbones of

raph refers to the space of dihedrals, while the inset refers to the space of heavy

macro states of the peptide and are much more populated than the leftmost

ts.

Patterns 3, 100589, October 14, 2022 7

https://github.com/sissa-data-science/DADApy/blob/main/examples/notebook_beta_hairpin.ipynb
https://github.com/sissa-data-science/DADApy/blob/main/examples/notebook_beta_hairpin.ipynb


ll
OPEN ACCESS Descriptor
The algorithms included in DADApy do not rely on low-

dimensional projections or on any strong assumptions on

the structure of the data. This can be a great advantage, as

it makes DADApy suited to analyze topologically complex

data manifolds, but it also means that DADApy cannot be

used to build low-dimensional maps for data visualization.

Other shortcomings of the software are in its level of maturity

for industrial-grade standards—DADApy is still a young soft-

ware—and in the relatively small number of algorithms imple-

mented in it.

We plan to improve DADApy by addressing both of these is-

sues. On the one hand we are working on the development of

algorithms that extend many of the methods discussed here,

including ID estimators for discrete spaces,46 density estima-

tors that exploit data correlations, and more refined feature se-

lection schemes based on the information imbalance, and

intend to implement these as new DADApy methods. On the

other hand we intend to improve code quality in a variety of di-

rections, such as by increasing unit test coverage, expanding

documentation and lint checks, and adding static type check-

ing. Finally, we will greatly welcome open-source contributions

to the project.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by the lead contact, Aldo Glielmo (aldo.glielmo@bancaditalia.it).

Materials availability

This study did not generate new materials.

Data and code availability

DADApy is available at https://github.com/sissa-data-science/DADApy

(https://doi.org/10.5281/zenodo.6998360), and the notebooks to generate

the key graphs of Figures 5 and 6 are available at https://github.com/

sissa-data-science/DADApy/blob/main/examples/notebook_mobius.ipynb

and https://github.com/sissa-data-science/DADApy/blob/main/examples/

notebook_beta_hairpin.ipynb, respectively. We strongly encourage the sci-

entific community to fork the repository, submit pull requests, and open

new issues through the GitHub interface.
ACKNOWLEDGMENTS

A.G. and A.L. acknowledge support from the European Union’s Horizon 2020

research and innovation program (grant no. 824143, MaX ‘‘Materials design at

the eXascale’’ Centre of Excellence). The views and opinions expressed in this

paper are those of the authors and do not necessarily reflect the official policy

or position of Banca d’Italia.
AUTHOR CONTRIBUTIONS

Conceptualization, A.G. and A.L.; software, all authors; writing – original draft,

A.G., I.M., and A.L.; writing – review & editing, all authors; visualization, C.Z.,

I.M., and R.W.; supervision, A.G. and A.L.
DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: May 20, 2022

Revised: July 24, 2022

Accepted: August 24, 2022

Published: September 19, 2022
8 Patterns 3, 100589, October 14, 2022
REFERENCES

1. Sch€utt, K.T., Chmiela, S., von Lilienfeld, O.A., Tkatchenko, A., Tsuda, K.,

and M€uller, K.-R. (2020). Machine learning meets quantum physics.

Lect. Notes Phys.

2. Glielmo, A., Husic, B.E., Rodriguez, A., Clementi, C., Noé, F., and Laio, A.

(2021). Unsupervised learning methods for molecular simulation data.

Chem. Rev.

3. Carleo, G., Cirac, I., Cranmer, K., Daudet, L., Schuld, M., Tishby, N., Vogt-

Maranto, L., and Zdeborová, L. (2019). Machine learning and the physical

sciences. Rev. Mod. Phys. 91, 045002.

4. Keogh, E., and Mueen, A. (2010). Curse of Dimensionality (Springer US),

pp. 257–258. https://doi.org/10.1007/978-0-387-30164-8_192.

5. Aggarwal, C.C., Hinneburg, A., and Keim, D.A. (2001). On the surprising

behavior of distance metrics in high dimensional space. In International

conference on database theory (Springer), pp. 420–434.

6. Pedregosa, F., Varoquaux,G.,Gramfort, A.,Michel, V., Thirion,B., Grisel, O.,

Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-

learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830.

7. Abdi, H., and Williams, L.J. (2010). Principal component analysis. WIREs.

Comp. Stat. 2, 433–459.

8. Schölkopf, B., Smola, A., andM€uller, K.-R. (1997). Kernel principal compo-

nent analysis. In International conference on artificial neural networks

(Springer), pp. 583–588.

9. Balasubramanian, M., and Schwartz, E.L. (2002). The isomap algorithm

and topological stability. Science 295, 7.

10. Campadelli, P., Casiraghi, E., Ceruti, C., and Rozza, A. (2015). Intrinsic

dimension estimation: relevant techniques and a benchmark framework.

Math. Probl Eng. 2015, 1–21.

11. Camastra, F., and Staiano, A. (2016). Intrinsic dimension estimation:

Advances and open problems. Inf. Sci. 328, 26–41.

12. Levina, E., and Bickel, P. (2004). Maximum likelihood estimation of

intrinsic dimension. In Advances in Neural Information Processing

Systems, 17, L. Saul, Y. Weiss, and L. Bottou, eds. (MIT Press).

https://proceedings.neurips.cc/paper/2004/file/74934548253bcab849

0ebd74afed7031-Paper.pdf.

13. Denti, F., Doimo, D., Laio, A., and Mira, A. (2021). Distributional results for

model-based intrinsic dimension estimators. Preprint at arXiv, 13832. pre-

print arXiv:2104.

14. Facco, E., d’Errico, M., Rodriguez, A., and Laio, A. (2017). Estimating the

intrinsic dimension of datasets by a minimal neighborhood information.

Sci. Rep. 7, 12140–12148.

15. Ansuini, A., Laio, A., Macke, J.H., and Zoccolan, D. (2019). Intrinsic

dimension of data representations in deep neural networks. In

Advances in Neural Information Processing Systems, 32, H. Wallach,

H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc, E. Fox, and R. Garnett,

eds. (Curran Associates, Inc.). https://proceedings.neurips.cc/paper/

2019/file/cfcce0621b49c983991ead4c3d4d3b6b-Paper.pdf.

16. Mendes-Santos, T., Turkeshi, X., Dalmonte, M., and Rodriguez, A. (2021).

Unsupervised learning universal critical behavior via the intrinsic dimen-

sion. Phys. Rev. X 11, 011040.

17. Capelli, R., Gardin, A., Empereur-Mot, C., Doni, G., and Pavan, G.M.

(2021). A data-driven dimensionality reduction approach to compare

and classify lipid force fields. J. Phys. Chem. B 125, 7785–7796.

18. Rodriguez, A., d’Errico, M., Facco, E., and Laio, A. (2018). Computing the

free energy without collective variables. J. Chem. Theory Comput. 14,

1206–1215.

19. Loftsgaarden, D.O., and Quesenberry, C.P. (1965). A nonparametric esti-

mate of a multivariate density function. Ann. Math. Statist. 36, 1049–1051.

https://doi.org/10.1214/aoms/1177700079.

20. Zhang, J., and Chen, M. (2018). Unfolding hidden barriers by active

enhanced sampling. Phys. Rev. Lett. 121, 010601. https://doi.org/10.1103/

PhysRevLett.121.010601. https://link.aps.org/doi/10.1103/PhysRevLett.

121.010601.

mailto:aldo.glielmo@bancaditalia.it
https://github.com/sissa-data-science/DADApy
https://doi.org/10.5281/zenodo.6998360
https://github.com/sissa-data-science/DADApy/blob/main/examples/notebook_mobius.ipynb
https://github.com/sissa-data-science/DADApy/blob/main/examples/notebook_mobius.ipynb
https://github.com/sissa-data-science/DADApy/blob/main/examples/notebook_beta_hairpin.ipynb
https://github.com/sissa-data-science/DADApy/blob/main/examples/notebook_beta_hairpin.ipynb
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref1
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref1
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref1
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref1
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref1
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref2
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref2
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref2
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref3
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref3
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref3
https://doi.org/10.1007/978-0-387-30164-8_192
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref5
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref5
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref5
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref6
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref6
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref6
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref7
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref7
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref8
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref8
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref8
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref8
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref9
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref9
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref10
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref10
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref10
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref11
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref11
https://proceedings.neurips.cc/paper/2004/file/74934548253bcab8490ebd74afed7031-Paper.pdf
https://proceedings.neurips.cc/paper/2004/file/74934548253bcab8490ebd74afed7031-Paper.pdf
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref13
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref13
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref13
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref14
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref14
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref14
https://proceedings.neurips.cc/paper/2019/file/cfcce0621b49c983991ead4c3d4d3b6b-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/cfcce0621b49c983991ead4c3d4d3b6b-Paper.pdf
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref16
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref16
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref16
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref17
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref17
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref17
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref18
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref18
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref18
https://doi.org/10.1214/aoms/1177700079
https://doi.org/10.1103/PhysRevLett.121.010601
https://doi.org/10.1103/PhysRevLett.121.010601
https://link.aps.org/doi/10.1103/PhysRevLett.121.010601
https://link.aps.org/doi/10.1103/PhysRevLett.121.010601


ll
OPEN ACCESSDescriptor
21. Marinelli, F., and Faraldo-Gómez, J.D. (2021). Force-correction analysis

method for derivation of multidimensional free-energy landscapes from

adaptively biased replica simulations. J. Chem. Theory Comput. 17,

6775–6788. pMID: 34669402. arXiv:. https://doi.org/10.1021/acs.jctc.

1c00586

22. Salahub, D.R. (2022). Multiscale molecular modelling: from electronic

structure to dynamics of nanosystems and beyond. Phys. Chem. Chem.

Phys. 24, 9051–9081. https://doi.org/10.1039/D1CP05928A.

23. Offei-Danso, A., Hassanali, A., andRodriguez, A. (2022). High-dimensional

fluctuations in liquid water: Combining chemical intuition with unsuper-

vised learning. J. Chem. Theory Comput. 18, 3136–3150. pMID:

35472272. arXiv:. https://doi.org/10.1021/acs.jctc.1c01292

24. Carli, M., and Laio, A. (2021). Statistically unbiased free energy estimates

from biased simulations. Mol. Phys. 119, e1899323.

25. Zeni, C., Anelli, A., Glielmo, A., and Rossi, K. (2022). Exploring the robust

extrapolation of high-dimensional machine learning potentials. Phys. Rev.

B 105, 165141.

26. Rodriguez, A., and Laio, A. (2014). Clustering by fast search and find of

density peaks. science 344, 1492–1496.

27. d’Errico, M., Facco, E., Laio, A., and Rodriguez, A. (2021). Automatic

topography of high-dimensional data sets by non-parametric density

peak clustering. Inf. Sci. 560, 476–492.

28. Ziegler, C.G.K., Allon, S.J., Nyquist, S.K., Mbano, I.M., Miao, V.N.,

Tzouanas, C.N., Cao, Y., Yousif, A.S., Bals, J., Hauser, B.M., et al.

(2020). Sars-cov-2 receptor ace2 is an interferon-stimulated gene in hu-

man airway epithelial cells and is detected in specific cell subsets across

tissues. Cell 181, 1016–1035.e19.

29. Habib, N., Li, Y., Heidenreich, M., Swiech, L., Avraham-Davidi, I.,

Trombetta, J.J., Hession, C., Zhang, F., and Regev, A. (2016). Div-seq:

single-nucleus rna-seq reveals dynamics of rare adult newborn neurons.

Science 353, 925–928. arXiv:https://www.science.org/doi/pdf/10.1126/

science.aad7038. https://doi.org/10.1126/science.aad7038. https://

www.science.org/doi/abs/10.1126/science.aad7038.

30. Yger, P., Spampinato, G.L., Esposito, E., Lefebvre, B., Deny, S., Gardella,

C., Stimberg, M., Jetter, F., Zeck, G., Picaud, S., et al. (2018). A spike sort-

ing toolbox for up to thousands of electrodes validated with ground truth

recordings in vitro and in vivo. Elife 7, e34518. https://doi.org/10.7554/

eLife.34518.

31. Sperry, Z.J., Na, K., Jun, J., Madden, L.R., Socha, A., Yoon, E., Seymour,

J.P., and Bruns, T.M. (2021). High-density neural recordings from feline

sacral dorsal root ganglia with thin-film array. J. Neural. Eng. 18, 046005.

32. Wang, W.M., Liu, J.C., Xu, J., Tian, G., Liu, C.-L., and Hao, H. (2016).

Semantic expansion using word embedding clustering and convolutional

neural network for improving short text classification. Asian Pac. J. Trop.

Med. 9, 806–811.

33. Margazoglou, G., Grafke, T., Laio, A., and Lucarini, V. (2021). Dynamical

landscape and multistability of a climate model. Proc. Math. Phys. Eng.

Sci. 477, 20210019.
34. Pinamonti, G., Paul, F., Noé, F., Rodriguez, A., and Bussi, G. (2019). The

mechanism of rna base fraying: molecular dynamics simulations analyzed

with core-set Markov state models. J. Chem. Phys. 150, 154123.

35. Jong, K., and Hassanali, A.A. (2018). A data science approach to under-

standing water networks around biomolecules: the case of tri-alanine in

liquid water. J. Phys. Chem. B 122, 7895–7906. pMID: 30019898.

https://doi.org/10.1021/acs.jpcb.8b03644.

36. Carli, M., Sormani, G., Rodriguez, A., and Laio, A. (2020). Candidate bind-

ing sites for allosteric inhibition of the SARS-CoV-2main protease from the

analysis of large-scale molecular dynamics simulations. J. Phys. Chem.

Lett. 12, 65–72. https://doi.org/10.1021/acs.jpclett.0c03182.

37. Sormani, G., Rodriguez, A., and Laio, A. (2020). Explicit characterization of

the free-energy landscape of a protein in the space of all its ca carbons.

J. Chem. Theory Comput. 16, 80–87. 80–87, pMID: 31809040. arXiv:.

https://doi.org/10.1021/acs.jctc.9b00800

38. Doimo, D., Glielmo, A., Ansuini, A., and Laio, A. (2020). Hierarchical nucle-

ation in deep neural networks. In Adv. Neural Inf. Process. Syst., 33, H.

Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, eds.

(Curran Associates, Inc.), pp. 7526–7536. https://proceedings.neurips.

cc/paper/2020/file/54f3bc04830d762a3b56a789b6ff62df-Paper.pdf.

39. Glielmo, A., Zeni, C., Cheng, B., Csányi, G., and Laio, A. (04 2022). Ranking

the information content of distance measures. PNAS Nexus 1, pgac039.

arXiv:https://academic.oup.com/pnasnexus/article-pdf/1/2/pgac039/

44246399/pgac039.pdf. https://doi.org/10.1093/pnasnexus/pgac039.

40. Darby, J.P., Kermode, J.R., and Csányi, G. (2021). Compressing local

atomic neighbourhood descriptors. Preprint at arXiv. 2112.13055.

41. Honda, S., Yamasaki, K., Sawada, Y., and Morii, H. (2004). 10 residue

folded peptide designed by segment statistics. Structure 12, 1507–

1518. https://doi.org/10.1016/j.str.2004.05.022.

42. Bonomi, M., Branduardi, D., Bussi, G., Camilloni, C., Provasi, D., Raiteri,

P., Donadio, D., Marinelli, F., Pietrucci, F., Broglia, R.A., and Parrinello,

M. (2009). Plumed: a portable plugin for free-energy calculations with mo-

lecular dynamics. Comput. Phys. Commun. 180, 1961–1972.

43. Cossio, P., Laio, A., and Pietrucci, F. (2011). Which similarity measure is

better for analyzing protein structures in a molecular dynamics trajectory?

Phys. Chem. Chem. Phys. 13, 10421–10425.

44. McKiernan, K.A., Husic, B.E., and Pande, V.S. (2017). Modeling the mech-

anism of cln025 beta-hairpin formation. J. Chem. Phys. 147, 104107.

https://doi.org/10.1063/1.4993207.

45. Honda, S., Akiba, T., Kato, Y.S., Sawada, Y., Sekijima, M., Ishimura, M.,

Ooishi, A., Watanabe, H., Odahara, T., Harata, K., et al. (2008). Crystal

structure of a ten-amino acid protein. J. Am. Chem. Soc. 130, 15327–

15331. https://doi.org/10.1021/ja8030533.

46. Macocco, I., Glielmo, A., Grilli, J., and Laio, A. (2022). Intrinsic dimension

estimation for discrete metrics. Preprint at arXiv. 2207.09688.
Patterns 3, 100589, October 14, 2022 9

https://doi.org/10.1021/acs.jctc.1c00586
https://doi.org/10.1021/acs.jctc.1c00586
https://doi.org/10.1039/D1CP05928A
https://doi.org/10.1021/acs.jctc.1c01292
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref24
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref24
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref25
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref25
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref25
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref26
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref26
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref27
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref27
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref27
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref28
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref28
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref28
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref28
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref28
https://www.science.org/doi/pdf/10.1126/science.aad7038
https://www.science.org/doi/pdf/10.1126/science.aad7038
https://doi.org/10.1126/science.aad7038
https://www.science.org/doi/abs/10.1126/science.aad7038
https://www.science.org/doi/abs/10.1126/science.aad7038
https://doi.org/10.7554/eLife.34518
https://doi.org/10.7554/eLife.34518
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref31
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref31
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref31
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref32
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref32
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref32
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref32
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref33
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref33
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref33
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref34
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref34
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref34
https://doi.org/10.1021/acs.jpcb.8b03644
https://doi.org/10.1021/acs.jpclett.0c03182
https://doi.org/10.1021/acs.jctc.9b00800
https://proceedings.neurips.cc/paper/2020/file/54f3bc04830d762a3b56a789b6ff62df-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/54f3bc04830d762a3b56a789b6ff62df-Paper.pdf
https://academic.oup.com/pnasnexus/article-pdf/1/2/pgac039/44246399/pgac039.pdf
https://academic.oup.com/pnasnexus/article-pdf/1/2/pgac039/44246399/pgac039.pdf
https://doi.org/10.1093/pnasnexus/pgac039
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref40
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref40
https://doi.org/10.1016/j.str.2004.05.022
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref42
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref42
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref42
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref42
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref43
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref43
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref43
https://doi.org/10.1063/1.4993207
https://doi.org/10.1021/ja8030533
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref46
http://refhub.elsevier.com/S2666-3899(22)00207-0/sref46

	DADApy: Distance-based analysis of data-manifolds in Python
	Introduction
	Results and discussion
	Description of the methods
	ID estimators
	Density estimators
	DP clustering
	Metric comparisons

	Software structure and usage
	Illustration on a topologically complex synthetic dataset
	Usage for a realistic application
	Conclusions

	Experimental procedures
	Resource availability
	Lead contact
	Materials availability
	Data and code availability


	Acknowledgments
	Author contributions
	Declaration of interests
	References


