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Non-equilibrium dynamics in the antiferromagnetic Hubbard model

Matteo Sandri1 and Michele Fabrizio1

1 International School for Advanced Studies (SISSA), and CRS Democritos,
CNR-INFM, - Via Bonomea 265, I-34136 Trieste, Italy

(Dated: September 21, 2018)

We investigate by means of the time-dependent Gutzwiller variational approach the out-of-
equilibrium dynamics of an antiferromagnetic state evolved with the Hubbard model Hamiltonian
after a sudden change of the repulsion strength U . We find that magnetic order survives more than
what expected on the basis of thermalization arguments, in agreement with recent DMFT calcu-
lations. In addition, we find evidence of a dynamical transition for quenches to large values of U
between a coherent antiferromagnet characterized by a finite quasiparticle residue to an incoherent
one with vanishing residue, that finally turns into a paramagnet for even larger U .

PACS numbers: 71.10.Fd, 71.30.+h, 64.60.Ht

I. INTRODUCTION

In the last years the out of equilibrium physics in
correlated systems has attracted considerable interest,
mainly driven by impressive experimental progresses.
On one hand, trapped cold atoms, known to effec-
tively realize simple model Hamiltonians, have been
successfully exploited to investigate quench dynamics or
field-driven non-equilibrium phenomena in quasi-isolated
quantum many-body systems1. On the other hand,
time-resolved femtosecond spectroscopies have made it
possible to perturb solid state systems and access the
dynamics of the electronic degrees of freedom before
they thermalize with the environment and even before
they equilibrate with the lattice2. Overall, these experi-
ments allow to study how strong correlation affects the
out-of-equilibrium physics and possibly identify “novel
phases” that cannot be reached by conventional thermal
pathways.
To this end, a fundamental issue to address is the
real time dynamics across a phase transition in which
symmetry is broken or restored. The ultra-fast melting
and creation of long range order in transition metal
compounds has already been investigated in many
experiments.3–5 On the theoretical side, however, while
an equilibrium phase transition is a well established
concept, there is yet no clear extension to the out of
equilibrium case.6 The common viewpoint is that the
initial excess energy ∆E turns into heat, hence the
system evolves into a thermal state at a higher effective
temperature T∗, higher the bigger ∆E. Should T∗
exceed the critical temperature for a order-to-disorder
phase transition, the system would dynamically disorder
though initially ordered.

Recently the dynamics of a symmetry breaking state
has been addressed by means of time-dependent DMFT
in the single-band repulsive Hubbard model on a Bethe
lattice.7,8 Such model, which may be considered as the
simplest idealization of strongly correlated electrons, dis-
plays at equilibrium a Néel transition from a low tem-

perature antiferromagnet (AFM) to a high temperature
paramagnet (PM). As mentioned, upon sudden changing
the interaction strength, Ui → Uf , one could dynamically
move around the phase diagram and eventually cross the
Néel transition. Refs. 7 and 8 showed that both for
Uf < Ui and Uf > Ui, long-lived non-thermal ordered
states exist even though their expected T∗ is above the
Néel temperature TN . Moreover, it was found that for
Uf < Ui, the melting of the AFM order is related to the
existence of a non-thermal critical point with an associ-
ated vanishing amplitude mode. Both these features are
consequence of pure non-equilibrium effects.
Here we address the same model dynamics by means

of the time dependent Gutzwiller variational approach
introduced in Ref. 9. This method, although being less
accurate than DMFT, is computationally far less expen-
sive and has already proved its reliability in reproduc-
ing the main results of DMFT in the out-of-equilibrium
dynamics of paramagnetic states.9–11 We find that also
in the broken-symmetry dynamics, the time-dependent
Gutzwiller tecnique correctly reproduces both the pres-
ence of a critical point at which magnetism disappears
as well as the existence of non-thermal ordered states.
Moreover, we find evidence of an additional critical point
at Uf > Ui between two antiferromagnetic states that we
interpret as the magnetic analogue of a dynamical Mott
transition.
The paper is organized as follows. In section II we

briefly present how the method works in the specific case
of an antiferromagnet. In section III we move to discuss
the results of a quench from an initial magnetic state,
ground state of the Hamiltonian at repulsion Ui, evolved
with the Hamiltonian at a different value Uf , both for
Uf < Ui, section III A, and Uf > Ui, section III B. Fi-
nally, section IV is devoted to conclusions.

II. TIME DEPENDENT GUTZWILLER

In this section we briefly show how the time-dependent
Gutzwiller technique introduced in Ref. 9 has to be mod-
ified to treat the AFM dynamics within the single band

http://arxiv.org/abs/1306.5733v2
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Hubbard model at half filling, with Hamiltonian

H = −
∑

〈R,R′〉,σ

(

c†RσcR′σ +H.c.
)

+
U(t)

2

∑

R

(nR − 1)2,

(1)
where cRσ annihilates a spin-σ electron at site R, U(t)
is the (time dependent) interaction strength and nR =
∑

σ c
†
RσcRσ. The hopping parameter is set equal to one

and is our unit of energy.
We follow the same notations as Ref. 12, which the reader
is referred to for a more detailed derivation.
The main idea of the time dependent Gutzwiller tech-
nique is to approximate the evolving wavefunction |Ψ(t)〉
in terms of a variational wavefunction whose dynamics is
set by requiring the stationarity of the real time action

L(t) =
∫ t

0

dτ 〈Ψ(τ)|i∂τ −H(τ)|Ψ(τ)〉. (2)

In the same spirit of the ground state Gutzwiller method,
one introduces the following ansatz for the evolving
wavefunction9

|Ψ(t)〉 =
∏

R

PR(t) |ψ(t)〉 (3)

where |ψ(t)〉 is a generic time-dependent variational
Slater determinant, and PR(t) a time-dependent varia-
tional local operator.
Upon introducing a basis for the local Fock space

|R, {n}〉 =
∏

α=↑,↓

(c†Rα)
nα (4)

one can parametrize the Gutzwiller projector in terms of
a set of time dependent variational parameters ΦR {n}(t)

PR(t) =
∑

{n}

ΦR {n}(t)
√

P
(0)
R {n}(t)

|R, {n}〉〈R, {n}| (5)

where

P
(0)
R {n}(t) = 〈ψ(t)|R, {n}〉〈R, {n}|ψ(t)〉. (6)

In Ref. 12 it was shown that the stationarity of (2)
amounts to solve a set of coupled differential equations
that determine the evolution of the uncorrelated wave-
function |ψ(t)〉 and the variational parameters ΦR {n}(t):

i∂t|ψ(t)〉 = H∗[Φ̂(t)] |ψ(t)〉 (7)

i∂tΦ̂R(t) = Û(t)Φ̂R(t) + 〈ψ(t)|∂H∗[Φ̂(t)]

∂Φ̂†
R(t)

|ψ(t)〉.(8)

With the notation ÔR we indicate the matrix represen-
tation of the operator OR on the Fock basis (4). If we
assume the magnetization directed along z, then we can
choose Φ̂R to be a diagonal matrix with diagonal ele-
ments ΦR {0}, for empty site, ΦR {↑} and ΦR {↓}, for

singly occupied site with a spin up or down electron, re-
spectively, and finally ΦR {↑↓} for a doubly occupied site.
The Slater determinant evolves according to a “renor-
malized” one-body Hamiltonian

H∗[Φ̂(t)] = −
∑

〈R,R′〉,σ

(

R∗
Rσ(t)c

†
RσRR′σ(t)cR′σ +H.c.

)

(9)
which is self-consistently coupled to the evolution of the
matrix Φ̂R(t) through the renormalization factors

RRσ(t) =
1

√

nRσ(t)(1 − nRσ(t))
Tr(Φ̂†

R(t)ĉRσΦ̂Rσ(t)ĉ
†
Rσ).

(10)
In the presence of Néel AFM order we can separate the

bipartite lattice into two sublattices A and B such that
Eq. (9) becomes

H∗(t) = −
∑

〈Ra,Rā〉,σ

(

R∗
Raσ(t)RRa−σ(t)c

†
Raσ

cRāσ
+H.c.

)

(11)
where if a = A then ā = B and vice versa, and we make
use of

RRaσ = RRā−σ, with a ∈ {A,B}. (12)

It is more convenient to work in Fourier space where Eq.
(11) reads

H∗(t) =
∑

kσ

ε(k)
[

ℜ
(

R∗
RAσ(t)RRA−σ(t)

)

c†kσckσ

−iℑ
(

R∗
RAσ(t)RRA−σ(t)

)

c†kσck+Qσ

]

(13)

with ε(k) = 1
N

∑

〈Ra,Rā〉
eik·(Ra−Rā) where N is the

number of sites, and the vector Q such that

eiQ·Ra =

{

1 if a ∈ A
−1 if a ∈ B

. (14)

The time evolution of the uncorrelated |ψ(t)〉 can then

be re-casted into that of ∆σ
kk′(t) := 〈ψ(t)|c†kσck′σ|ψ(t)〉

whose equations of motion are

i∂t∆
σ
kk = −iε(k)ℑ

(

Zσ(t)
)

(

∆σ
kk+Q +∆σ

k+Qk

)

i∂t∆
σ
kk+Q = −2ε(k)ℜ

(

Zσ(t)
)

∆σ
kk+Q (15)

+iε(k)ℑ
(

Zσ(t)
)

(

∆σ
kk −∆σ

k+Qk+Q

)

.

To simplify notations we introduced the quantity Zσ(t) =
R∗

RAσ(t)RRA−σ(t). By construction it follows that

nA(B)σ(t) =
1

N

∑

k

∆σ
kk(t)±∆σ

kk+Q(t). (16)

The evolution of the uncorrelated wavefunction is self-
consistently coupled to equation (8) that, because of (12),
can be evaluated for a single sublattice and reads

i
∂Φ̂A

∂t
= Û Φ̂A(t) (17)
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+
1

N

∑

k,σ

ε(k)
[

RA−σ

(

∆σ
kk(t)−∆σ

kk+Q(t)
)∂R∗

Aσ

∂Φ̂†
A

+ R∗
A−σ

(

∆σ
kk(t) + ∆σ

kk+Q(t)
)∂RAσ

∂Φ̂†
A

]

.

In conclusion Eqs. (15)-(17) together with Eqs. (10) and
(16) define a set of coupled non-linear differential equa-
tions which must be solved numerically.
In spite of the nonlinearity, the dynamics is still over-
simplified and we do not expect to reach thermalization
in the long time limit, mainly because the evolution of
the Slater determinant still admits an infinite number of
integrals of motion. In fact, the dynamics of |ψ(t)〉 does
not mix different (k,k+Q) subspaces. Within each sub-
space, the set of equations (15) can be mapped onto the
dynamics of a pseudospin- 12 Hamiltonian. Indeed, upon
defining

∆σ
kk −∆σ

k+Qk+Q ≡ 〈σ1〉
∆σ

kk+Q +∆σ
k+Qk ≡ 〈σ2〉

∆σ
kk+Q −∆σ

k+Qk ≡ −i〈σ3〉

(where in this case k is restricted to the Magnetic Bril-
louin Zone (MBZ)), the set of equations (15) is equivalent
to solving the dynamics of the pseudo-spin Hamiltonian

HS
kσ(t) = ε(k)ℑ

(

Zσ(t)
)

σ3 − ε(k)ℜ
(

Zσ(t)
)

σ1 (18)

where σ1,2,3 are Pauli matrices. Indeed, as we mentioned,
the length of the pseudo-spin is a conserved quantity in
each subspace.

It is generally believed that the average values of local
operators along the unitary evolution of a wave function
|Ψ〉, generically consisting of a superposition of a macro-
scopic number of eigenstates, will approach at long times
the thermal averages on a Boltzmann-Gibbs distribution
at an effective temperature T∗ for which the internal en-
ergy coincides with the energy of the wave function |Ψ〉,
conserved during the unitary evolution, i.e.

Tr

(

e−H/T∗ H
)

Tr

(

e−H/T∗

) = 〈Ψ| H |Ψ〉.

Therefore it is worth comparing the results of the time-
dependent Gutzwiller technique with equilibrium results
at finite temperature obtained by a similar technique.
For that purpose, we shall make use of an extension to
finite temperature of the Gutzwiller variational approach
recently proposed.13 In brief, the thermal values are com-
puted minimizing the following variational estimate of
the free energy,

F ≤ min
{ρ∗,Φ̂}

{

∑

〈R,R′〉,σ

Tr

[

ρ∗

(

−RRσRR′σc
†
RσcR′σ

+H.c.
)

]

+
∑

R

Tr
(

Φ̂†
R Û Φ̂R

)

−T Max
(

Svar

(

ρ∗, Φ̂
†Φ̂

)

, 0
)

}

, (19)

where ρ∗ = e−βH∗/(Tr e−βH∗) is the Boltzmann distri-
bution corresponding to the variational Hamiltonian H∗,
and the variational estimate of the entropy reads

Svar

(

ρ∗, Φ̂
†Φ̂

)

= −Tr
(

ρ∗ log ρ∗

)

−
∑

R,{n}

|ΦRn|2 log
( |ΦRn|2

P
(0)
Rn

)

. (20)

We conclude this section remarking that all the above
treatment is strictly variational only in the limit of infi-
nite coordination number, where the exact averages on
the Gutzwiller variational wavefunction (or the thermal
averages on the variational canonical distribution) coin-
cide with those we have computed.12 However the ap-
proach remains essentially a mean-field one, hence, al-
though improves the time-dependent Hartree-Fock ap-
proximation simply because of the larger number of vari-
ational parameters, it misses dissipative processes that in
reality bring the system to a stationary state. In spite of
that, the Gutzwiller approach seems to reproduce quite
satisfactorily the main results obtained by exact DMFT
calculations, whenever a comparison is possible and even
when time-dependent Hartree-Fock fails completely, like
in the case of quantum quenches within the paramagnetic
sector.9

In finite coordination lattices the approach is not any-
more variational. Nevertheless, it is common to keep
using the same expressions also in these more physical
cases, which goes under the name of Gutzwiller Approx-

imation. Even though to our knowledge there are so far
no exact out-of-equilibrium results to compare with in fi-
nite coordination lattices, recent high order perturbative
calculations in one and two dimensions14,15 bring results
quite similar to those obtained in Ref. 9 through the
Gutzwiller approach.
At equilibrium, instead, the Gutzwiller approximation
seems to reproduce well exact variational Monte Carlo
calculations on the Gutzwiller wave functions,16 and,
when applied in combination with ab-initio density func-
tional theory methods, also physical properties of real
materials.17

III. INTERACTION QUENCH

In this section we apply the time dependent Gutzwiller
approach to study the dynamics of (1) after a sudden
quench of the interaction strength, U(t) = Ui + (Uf −
Ui)θ(t), where θ(t) is the Heaviside function. Although
an instantaneous quench is distant from the real practice
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in experiments, it is a well-controlled theoretical excita-
tion protocol and suffices well the scope of this work.
We assume nearest neighbor hopping on an infinitely
branched Bethe lattice, i.e. a semicircular density of
statesD(ε) =

√
4− ε2/(2π), in which case the Gutzwiller

approximation becomes exact. We remark that the mo-
mentum representation we previously adopted is not ap-
propriate for a Bethe lattice but can be easily extended
in this case.
In Fig. 1 we plot the finite temperature phase diagram
for the model as found by means of the finite tempera-
ture extension of the Gutzwiller technique.13 We see that
the low temperature AFM ordered phase compares qual-
itatively well with the DMFT results.8 In particular, the
Gutzwiller wavefunction is able, unlike straight Hartree-
Fock, to describe a finite temperature Mott insulating
phase devoid of magnetism.

0 2 4 6 8 10
U

0

0.1

0.2

0.3

0.4

0.5

T

HF 
GA

AFM 

PM

FIG. 1: (color online) Finite temperature phase diagram for
the single band Hubbard model as obtained by mean of the
finite temperature Gutzwiller approach. The solid black line
separates the AFM solution from the PM phase. The dot-
ted line indicates the MIT transition when only paramagnetic
states are considered. The red line is the Néel temperature
within the Hartree-Fock approximation.

A. Uf < Ui quench

We start by analyzing the dynamics for quenches at
Uf < Ui. We plot in Fig. 2 the time evolution of the
AFM order parameter m = n↑ − n↓ for an interaction
quench starting from the optimized variational ground
state at Ui = 4.0. We immediately recognize a pat-
tern which is very similar to that obtained within DMFT
and Hartree-Fock dynamics.8 The order parameter m(t)
quickly decreases in time after the quench and starts
oscillating; as Uf decreases below the critical value of

U
Uf<Ui
c ≈ 1.7, the order parameter vanishes.

On the same figure we also plot the thermal values

mth calculated from the finite temperature Gutzwiller
approach13 at an effective temperature T∗ such that the
equilibrium internal energy is equal to the average en-
ergy on the variational wavefunction, which is conserved
by the unitary evolution.
We note thatm(t) oscillates around a value which is more
and more distant from the thermal one and stays finite
even when T∗ exceeds the Néel temperature, suggesting
that the dynamics stays trapped in a non-thermal or-
dered state in accordance with DMFT result.8 From Fig.
2 two well separated frequencies are distinguishable in the
dynamics, which we extract by a discrete Fourier trans-
form and plot in Fig. 5. A high frequency ω1 sets the
fast oscillation and decreases with Uf , although staying
finite. A lower frequency ω2 can instead be associated to
the presence of magnetic order and vanishes at the criti-

cal point as ∝ |Uf − U
Uf<Ui
c |; the existence of a linearly

vanishing mode was found also in Ref. 8.
This two-frequency dynamics reveals the mechanism be-

yond the disappearance of the AFM order at U
Uf<Ui
c .

This is more clearly shown in Fig. 3 where we plot the
values of the real and imaginary part of the renormal-

ization factors. We observe that approaching U
Uf<Ui

c

the renormalization factors show main oscillations with
frequency ω2, on top of which there are much narrower

oscillations controlled by ω1. In proximity of U
Uf<Ui
c ,

ω1 ≫ ω2 → 0, so that, within each (k,k + Q) sub-
space, the magnetic field in the pseudo-spin Hamiltonian
(18) can be effectively taken constant in time. Hence
the dynamics of (18) is equivalent to that of a spin in
the presence of a k-dependent constant magnetic field.
The total staggered magnetization then vanishes due to
the de-phasing that occurs summing on the entire Bril-
louin zone, hence the nature of the critical point is essen-
tially that found within the Hartree-Fock approximation
by Ref. 8.
Finally, from Fig. 6 we see that the long time average
of |Rσ|2 increases in the limit of Uf → 0, indicating that
the AFM insulator actually melts into a PM metal.

B. Uf > Ui quench

For quenches at Uf < Ui the Gutzwiller dynam-
ics is not different from the one obtained through
single-particle methods such as the Hartree-Fock ap-
proximation; the magnetization shows an oscillatory
behavior that turns eventually into a fast decay due
to dephasing. Differences instead arise when Uf > Ui.
Here time-dependent Hartree-Fock predicts incorrectly
that the magnetic order parameter never vanishes,
whatever Uf is. This drawback is directly related to the
inadequacy of Hartree-Fock in reproducing a decaying
Néel temperature at large values of U , feature that
is instead captured by the Gutzwiller approach, see
Fig. 1. In the assumption that the unitary evolution
following the quantum quench brings the system in
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0.2

0.4

0.6

0.8

m

FIG. 2: (color online) Time evolution of the staggered
magnetization m for quenches Ui = 4.0 → Uf =
3.8, 3.2, 2.6, 2.2, 2.0, 1.8, 1.6. The bold arrows indicate the cor-
responding thermal values, mth, while the black dashed lines
indicate the long time averages.
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1

FIG. 3: (color online) Time evolution of ℜ(RA↑) (black) and
ℑ(RA↑) (red) for quenches Ui = 4.0 → Uf = 3.2, 2.6, 2.0, 1.6
(clockwise order from top left).

some thermal configuration at finite temperature, the
higher the greater |Uf − Ui|, we can not only rationalize
why time-dependent Hartree-Fock fails, but also antic-
ipate, within the time-dependent Gutzwiller tecnique,
a dynamical transition from an antiferromagnetic to a
paramagnetic phase. Indeed, in the limit of very large
Uf > Ui, when the frequency ω1 ∼ Uf gets much higher
than the excitation energies of the Slater determinant,
each (k,k +Q) pseudo-spin evolves under an effectively
slow magnetic field, hence the staggered magnetization
averages again to zero due to dephasing.
We find confirmation of this expectation in the time evo-
lution of m(t), see Fig. 4, and the main drive frequencies
shown Fig. 5. In the limit of large Uf , a two frequency

oscillation pattern appears again, with a high frequency
ω1 that grows as ∝ Uf and a lower frequency associated

with a vanishing mode which decays as ∝ |Uf −U
Uf>Ui
c |

with the critical value of U
Uf>Ui

c ≈ 21.0.
We note that also in this regime the long time average
of the magnetization differs from the corresponding
thermal value. Indeed in Fig. 4 we see that for
Uf = 12.0 the effective temperature has already crossed
the Néel temperature, while the long time average of
the magnetization stays greater than zero, indicating
the persistence of a non-equilibrium ordered state in
accordance with the results of Ref. 7.

0 20 40 60 80 100
t

0

0.2

0.4

0.6

0.8

1

m

FIG. 4: (color online) Time evolution of the staggered
magnetization m for quenches Ui = 4.0 → Uf =
12.0, 14.0, 16.0, 18.0, 20.0, 22.0. The green arrow indicates the
thermal values mth for Uf = 12.0 and shows that the effec-
tive temperature has already crossed the Néel temperature.
The black dashed lines indicate the values of the long time
average.

0 5 10 15 20
U

f

0

1

2

3

ω ω 1
ω2

U
f
 < U

i
U

f
 > U

i

FIG. 5: (color online) Behaviour of the main drive frequencies
ω1 and ω2 as a function of Uf . The two dashed red lines indi-
cate the crossover region in which the Fourier power spectrum
presents broad peaks.

For smaller values of Uf instead a less clear scenario
appears. Indeed, in the range of values 5.8 . Uf . 8.4
(vertical dashed lines of Fig. 5), although the main fre-
quencies ω1 and ω2 can be still recognized by continuity
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1

U
f
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i
U
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i

FIG. 6: (color online) Long time averages of the magnetiza-
tion (black squares) and of |Rσ|

2 (red circles) as a function
of Uf . At Uc

f ≈ 8.2 the renormalization factor time average
decays to zero signaling the presence of the dynamical critical
point.

from the large and small Uf limits, the Fourier power
spectrum loses regularity and shows an increased num-
ber of broad peaks.
In this interval of Uf , the long time average of the mag-
netization increases while the renormalization factors di-
minish, see (Fig. 6), suggestive of the systems driven
towards a Mott localized regime.
We note that Eqs. (15) and (17) admit a stationary so-
lution identified by Rσ = 0 and energy equal to zero,
which describes a trivial Mott insulating state. We find
that when the conserved energy after the quench is van-
ishing, which happens at Udyn

c ≈ 8.2 when Ui = 4.0,
Eqs. (15) and (17) flow towards the above stationary so-
lution, see Fig. 6, a lot alike what found in the absence of
magnetism in Ref. 9. We can shed some light on this dy-
namical behavior by writing the Gutzwiller parameters
as

Φ0 = Φ↑↓ = ρ0 e
iϕ0 , (21)

Φσ = ρσ e
iϕσ , (22)

with ρ0(σ) ≥ 0 that, because of normalization, satisfy

2ρ20 + ρ2↑ + ρ2↓ = 1 and analyzing the quantity

ℜ
(

Φ↑Φ↓

Φ2
0

)

=
ρ↑ρ↓

ρ20
cos

(

2ϕ0 − ϕ↑ − ϕ↓

)

≡ ρ↑ρ↓

ρ20
cosϕ. (23)

Neglecting magnetism, which is the same as starting from
Ui = 0, it was shown in Ref. 9 that the Mott-localized
phase can be identified by the dynamics of the angle
ϕ, which reproduces that of a classical pendulum. Be-
low Udyn

c , ϕ undergoes small oscillations around zero,
hence Eq. (23) is positive. On the contrary, above Udyn

c ,

cosϕ starts precessing around the whole unit circle, and,
in particular, is negative right in the regions where the
double-occupancy probability |Φ↑↓|2 = ρ20 is lower. It
follows that, for Uf > Udyn

c , the quantity in Eq. (23)
is on average negative. Exactly at Udyn

c , ρ0 vanishes ex-

ponentially, so that the long time average of ℜ
(

Φ↑Φ↓

Φ2

0

)

diverges and changes sign right at Udyn
c , see Fig. 7 left

panel. In the right panel of the same figure we show that
the same singular behavior persists also when the system
is quenched from an AFM state. Even though in this
case the angle ϕ is not bounded between [0 : 2π] below
Udyn
c , due to the dynamics of the AFM order parameter,

yet the time average has a well defined sign that changes
crossing a singularity at Udyn

c .
This is suggestive of a dynamical Mott localization at

Udyn
c ≈ 8.2, that has no equilibrium counterpart and

separates two different antiferromagnetic insulators. We
cannot exclude that this transition may be an artifact
of the Gutzwiller technique, although we are tempted to
give it a physical meaning.
In order to clarify this point, we first introduce a

more general definition of the quasiparticle residue Zkσ

through

Zkσ = |〈kσ,N + 1| c†kσ |0, N〉|2, (24)

where |0, N〉 is the ground state with N electrons, as-
sumed to have zero momentum and spin, and |kσ,N +1〉
the lowest energy state with N +1 electrons, momentum
k and spin σ. Zkσ defined by Eq. (24) coincides with the
jump of the momentum distribution at the Fermi sur-
face |k| = kF for a Landau-Fermi liquid, but remains
well defined also for an insulator, where it can be used to
establish whether well-defined quasiparticles exist above
the gap. Indeed, one can readily realize that Zkσ = 1
for a non-interacting band-insulator. Therefore, one can
in principle distinguish two different insulators: a “coher-
ent” insulator akin to a band insulator with 0 < Zkσ ≤ 1,
and an “incoherent” insulator, similar to an idealized
Mott insulator, with Zkσ = 0 and no well-defined quasi-
particles above the gap.
We then observe that, at zero temperature, |Rσ|2

defined by Eq. (10) is just an estimate, within the
Gutzwiller approximation, of Zkσ above. Indeed, one
can readily prove that

〈kσ,N + 1| c†kσ |0, N〉 GW
= 〈ψN | ckσ P c†kσ P |ψN 〉
= Rσ. (25)

Here we used the fact that the Gutzwiller wavefunc-
tion P |ψN 〉 (with |ψN 〉 the N -particle Slater determi-
nant that defines the variational wave function in Eq.
(3)) is the variational estimate of |0, N〉 and that, within
corrections O(N−1), the best variational estimate of the
(N + 1)-electron lowest energy wave function with mo-

mentum k and spin σ is just |kσ,N + 1〉 ≃ P c†kσ |ΨN 〉,
with the same P as for N electrons. Eq. (25) remains
valid also in the time dependent case where the evolution
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of the ground state, being a pure state, is approximated
by Eq. (3).
We thence arrive to the conclusion that our dynam-

ical transition separates two different antiferromagnetic
insulators in the above meaning, one characterized by
a finite Z and the other by a vanishing one. It is worth
mentioning that at equilibrium and zero temperature, all
evidences indicate that Z of Eq. (24) is everywhere finite
in the antiferromagnetic insulating phase of the Hubbard
model at any value of U , as confirmed by DMFT18 and
by quantum Monte Carlo simulations on the t-J model.19

In other words, even at very large U where the Mott’s
physics dominates and local moments are already well
formed, the antiferromagnet has coherent quasiparticles
above the gap. We actually believe that, as soon as
long-range magnetic order sets in below the Néel tem-
perature, the quasiparticle residue Z becomes finite at
equilibrium. In fact, the onset of long-range order is ac-
companied at large U by a hopping energy gain, through
the spin-exchange t2/U , hence by a raise of lattice coher-
ence that we think has to be associated with an increase
of Z. That is why we think that the dynamical transi-
tion that we observe has no equilibrium counterpart in
the whole U versus temperature phase diagram.
We conclude mentioning that the main results pre-

sented above at fixed Ui = 4, remain qualitatively the
same also at different Ui. We indeed verified the presence
of the critical points at which the magnetization vanishes,

U
Uf≶Ui

c , and the presence of the dynamical critical point,

Ui < Udyn
c < U

Uf>Ui
c , for all values of Ui < 10.0.

2 3 4 5
U

f

-4

-2

0

2

4

U
i
 = 0.0

6 9 12
U

f

-4

-2

0

2

4

U
i
 = 4.0

FIG. 7: (color online) Long time average of O = ℜ
(

Φ↑Φ↓

Φ2

0

)

in logarithmic units, i.e. sgnŌ log(|Ō|), for different values of
Uf . Both in the PM case (left panel) and in the AFM one
(right panel) the dynamical critical point is evidenced by a
sharp singularity.

IV. CONCLUDING REMARKS

We have shown that the time dependent Gutzwiller
technique, in spite of its simplicity, is able to reproduce
the main features of a quench dynamics from an antifer-
romagnetic state found by time-dependent DMFT, such
as the existence of non-thermal magnetically ordered
states that disappears above dynamical critical points,
both suddenly decreasing or increasing the value of the
Hubbard U . In addition, we have found evidence of an
additional dynamical transition that occurs at large U ,
which we interpret as a dynamical Mott transition sep-
arating two different antiferromagnetic non-equilibrium
states, one characterized by a finite quasiparticle residue
and the other by a vanishing one. Since the quasiparti-
cle residue Z in an antiferromagnet cannot be extracted
by any static property (unlike in a paramagnet where,
at zero temperature, Z is the jump of the momentum
distribution at the Fermi surface), but requires calculat-
ing for instance the full out-of-equilibrium self-energy, its
dynamical behavior was not addressed by DMFT in Ref.
7 and Ref. 8. Although we cannot exclude that the van-
ishing of Z that we observe could be an artifact of the
Gutzwiller technique, nevertheless this result is intrigu-
ing, as it entails the existence in out-of-equilibrium of an
incoherent antiferromagnet, hence worth to be further
investigated.
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