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We show that an interacting two-spin model subjected to two circularly polarized drives enables a feasible
realization of a correlated topological phase in synthetic dimensions. The topological observable is given by
a quantized frequency conversion between the dynamical drives, which is why we coin it the interacting
topological frequency converter (ITFC). The ITFC is characterized by the interplay of interaction and synthetic
dimension. This gives rise to striking topological phenomena that have no counterpart in the noninteracting
regime. By calculating the topological phase diagrams as a function of interaction strength, we predict an
enhancement of frequency conversion as a direct manifestation of the correlated topological response of the
ITFC.
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Introduction. Recent advances in the realization and ma-
nipulation of quantum systems far from thermal equilibrium
have triggered the quest for identifying and observing topo-
logical phenomena in such settings [1–4]. In particular, it
has become clear that periodic driving in time can induce
intriguing topological features [5–27], numerous of which
have been shown to be unique to Floquet systems [28–38].
Many of these novel nonequilibrium phases rely on the fact
that a time-periodic driving may formally be viewed as a
dimensional extension of the system [39,40]. The archetypal
example in this context is provided by the Thouless pump in
one spatial dimension, which maps onto an integer quantum
Hall scenario upon interpreting time as an extra dimension
[41–43]. This line of reasoning can be generalized to multifre-
quency driving [39,44,45]. There, the harmonics of different
drives are viewed as lattice sites along different synthetic
spatial dimensions, which allows for the realization of a wide
range of topological effects [46–52]. Along these lines, it
has been shown in Refs. [46,50] that driving a qubit with
two fields of incommensurate temporal periodicity generates
a dynamical analog of a Chern insulator [53,54], where the
Hall response translates into a quantized frequency conversion
between the external fields.

In this work, we extend the notion of topologically quan-
tized frequency conversion to interacting spin systems. We
focus on a minimal model of two interacting spins exposed to
two circularly polarized incommensurate drives (see Fig. 1 for
an illustration). Despite its simplicity, this setup already offers
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a striking example of how the interplay of interaction and the
aforementioned dynamical dimensional extension can have a
profound impact on the resulting topological properties. Most
prominently, while in a noninteracting system of two identical
spins the topological charge determining the frequency con-
version is constrained to be even, in the interacting case also
odd integers are allowed. This feature may, in turn, result in an
enhancement by interactions of the topological response. For
these reasons, we call our setup an interacting topological fre-
quency converter (ITFC). We provide a simple interpretation
of our results in terms of two-body spin configurations and
corroborate the observed topological phase diagram with an
explicit calculation of the system’s dynamics and the related
frequency conversion.

Model. We analyze the ITFC schematically as shown in
Fig. 1, in which two spins coupled by spin-spin interaction
are exposed to a dynamical magnetic field B(�ϕt ). The corre-
sponding Hamiltonian is given by

Ĥ (�ϕt ) = gμB

2
B(�ϕt ) (σA + σB) +

∑
i=x,y,z

Ji σAi σBi, (1)

where we have introduced the vector of Pauli matrices σα =
(σαx, σαy, σαz ) acting on the individual spins α = A/B, and
assumed anisotropic Heisenberg interaction with coupling
parameters Ji {i = x, y, z}. We focus on the case of spin
1/2, where g = 2 is the bare g factor of the electron and
μB is the Bohr magneton. An experimental realization of
such an interacting Hamiltonian could be implemented in
gated double quantum dots [55,56]: in this case the bare g
factor is replaced by the effective factor g∗ (for GaAs g∗ =
−0.44). Alternatively, superconducting quantum circuits [57]
allow for the realization of this type of interaction, with a
substantial degree of tunability of the anisotropy. In addition
to a static magnetic field with amplitude B0 in the z direction,
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FIG. 1. Interacting topological frequency converter (ITFC). The
spins A/B coupled by spin-spin interaction are subjected to a static
magnetic field with amplitude B0 and two circularly polarized drives
with frequencies ω1 and ω2. The interaction is controlled by the
coupling parameters Ji {i = x, y, z}.

the external field

B(�ϕt ) =
⎛
⎝ B1 sin(ϕ1t )

B2 sin(ϕ2t )
B0 − B1 cos(ϕ1t ) − B2 cos(ϕ2t )

⎞
⎠ (2)

is composed of two circularly polarized drives with time-
dependent phases �ϕt = (ϕ1t , ϕ2t ) = �ω t + �φ and amplitudes
B1/2 > 0, where the frequencies and offset phases are
parametrized by �ω = (ω1, ω2) and �φ = (φ1, φ2). In the fol-
lowing, we set B1/2 = Bc and h̄ = 1 for simplicity.

The interaction favors ferromagnetic (Ji < 0) or antifer-
romagnetic (Ji > 0) alignment of the spins along the re-
spective quantization axis in the ground state. The interplay
of interaction and magnetic field B(�ϕt ) can be conveniently
investigated by introducing the total spin Ŝ = 1

2 (σA + σB) and
the associated eigenstates |ψs,mz 〉 determined by the quantum
numbers (s, mz ):

Ŝ2
∣∣ψs,mz

〉 = s (s + 1)
∣∣ψs,mz

〉
, Ŝz

∣∣ψs,mz

〉 = mz

∣∣ψs,mz

〉
,

where {s = 0, 1} and {mz = −s, . . . , s}. The Hamiltonian of
Eq. (1) commutes with the total spin [Ĥ , Ŝ2] = 0, so that the
total spin quantum number s is conserved. Thus, the singlet
state |ψ0,0〉 is an eigenstate of the interacting system with
trivial dynamics. For this reason, we restrict ourselves to study
the Hilbert subspace with s = 1. In this case, apart from a
global constant, the Hamiltonian (1) can be written as

ĤT = λ

⎛
⎜⎜⎝

2 Bz

Bc
+ Jz

√
2 B−

Bc
Jx−y√

2 B+
Bc

−Jz

√
2 B−

Bc

Jx−y

√
2 B+

Bc
−2 Bz

Bc
+ Jz

⎞
⎟⎟⎠, (3)

in the basis of triplet states {|ψ1,1〉 , |ψ1,0〉 , |ψ1,−1〉}. We have
introduced the transverse components B± = Bx ± i By, the
energy scale λ = gμB Bc

2 , and the effective interaction strengths

Jx±y = Jx±Jy

λ
and Jz = Jz

λ
− Jx+y

2 . The interaction enters ĤT

with the parameters Jz and Jx−y, while the third parameter
Jx+y only affects the energy E0,0 = −λ (2Jx+y + Jz ) of the
decoupled singlet state |ψ0,0〉. With isotropic exchange in-
teraction, the interacting part of Eq. (1) commutes with Ŝz,

TABLE I. Interaction strength Jz (as a function of M) for which
a Dirac gap closing happens at high-symmetry points (HSPs) of the
BZ. Positive (negative) Jz correspond to inversions between the fer-
romagnetic ground (highest excited) state and the antiferromagnetic
state |ψ1,0〉. Since gap closings and reopenings at (0, π ) and (π, 0)
occur simultaneously, the change in the global Chern number is twice
as large as in the other HSPs.

HSP Jz

(0, 0) ± |2 − M|
(0, π ), (π, 0) ± |M|
(π, π ) ± |2 + M|

effectively resulting in interaction strengths Jz = Jx−y = 0.
Below, we focus on the anisotropic case, setting Jx−y = 0
for simplicity. Additional results for nonvanishing Jx−y are
presented in the Supplemental Material [58], showing that our
main predictions are not qualitatively affected.

Topological phase diagrams. For each qubit, the non-
interacting part of Eq. (1) is equivalent to a Chern in-
sulator [53,54,61] with mass parameter M = B0/Bc. The
time-dependent phases ϕ1t and ϕ2t play the role of Bloch
quasimomenta: as they vary between 0 and 2π , they define
a two-dimensional torus, analogous to a 2D Brillouin zone
(BZ). Hence, the dynamics of the magnetic field B(�ϕt ) of
Eq. (2) can induce nontrivial topology in the single-spin
subspaces for quasiadiabatic driving [46]. Each of the two
eigenstates of the single-spin Hamiltonian can be character-
ized by a Chern number: ν = ±1 (nontrivial) for |M| � 2 or
ν = 0 (trivial) for |M| � 2 [62,63]. In the interacting case,
we can diagonalize the projected Hamiltonian in Eq. (3)
and determine the Chern number [64–66] of the respective
eigenstates |�n(�ϕ)〉 {n = 0, 1, 2} according to

Cn = i

2π

∫
BZ

d2 �ϕ [〈∂ϕ1�n(�ϕ)| ∂ϕ2�n(�ϕ)〉

− 〈∂ϕ2�n(�ϕ)| ∂ϕ1�n(�ϕ)〉]. (4)

The resulting topological phase diagrams as a function of
mass parameter M and effective interaction strength Jz

(Jx−y = 0) are displayed in Fig. 2. Interactions have two
striking effects on the topology of the eigenstates. First,
phases with odd Chern numbers Cn = ±1, ±3 emerge. This
observation is a genuine interaction effect since for Jz = 0
the two qubits are independently exposed to the same mag-
netic field B(�ϕt ), so that the global topological invariant can
only change by an even number Cn = ±2, ±4. Second,
a finite interaction strength Jz �= 0 can induce a nontrivial
topology for states that were trivial in the noninteracting
regime.

The topological phase transitions are caused by band in-
versions at high-symmetry points (HSPs) of the analog of the
BZ, accompanied by Dirac gap closings for mass parameters
|M| = 2 or M = 0, and effective interaction strengths Jz

shown in Table I. Notably, gap closings and reopenings at
(0, π ) and (π, 0) occur simultaneously, so that the change in
the global Chern number is twice as large as in (0,0) or (π, π ).
At HSPs, the Hamiltonian (1) commutes with Ŝz, making ĤT
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FIG. 2. Topological phase diagrams for the eigenstates |�n(�ϕ)〉 {n = 0, 1, 2} as a function of mass parameter M and effective interaction
strength Jz (Jx−y = 0). Due to many-body effects, interactions can drive the system into correlated topological phases with odd Chern numbers
Cn = ±1, ±3. Furthermore, a finite interaction strength Jz �= 0 can induce a nontrivial topology for states that were trivial in the noninteracting
regime.

diagonal in the |ψs,mz 〉 basis: Gap closings caused by Jz (M =
const) lead to inversions between the ferromagnetic triplet
states |ψ1,1〉, |ψ1,−1〉 and the antiferromagnetic triplet state
|ψ1,0〉. The corresponding topological phases are bounded
by straight lines in Fig. 2. Topological phase transitions for
mass parameters |M| = 2 or M = 0, however, only involve
the ferromagnetic states |ψ1,1〉 and |ψ1,−1〉, which is why
the polarization of both spins reverses upon band inversion
at the respective HSP. The global topological invariant then
changes by an even number Cn = ±2, ±4. Conversely, a
band inversion containing the antiferromagnetic state |ψ1,0〉
is the reason for the generation of the odd topological phases
with Cn = ±1, ±3.

Interpretation of the results. From the previous consider-
ations, it seems illuminating to investigate the relationship
between the spin configuration of the eigenstates and the
respective topological invariants. In our case, it is sufficient
to focus on HSPs, which completely determine the topology
of the system [59]. In Fig. 3, the spin configurations at HSPs
are schematically shown for an increasing interaction strength
Jz � 0 and fixed mass parameter M = 1.2 (compare also to
Fig. 2). For Jz = 0, the ground state |�0(�ϕ)〉 is always a

separable state, and the global topological features can be
interpreted by examining the qubits separately: each one has a
well-defined single-particle Chern number corresponding to
the winding number in the single-qubit Bloch sphere as �ϕ
varies. The global Chern number Cn is then simply the sum
of the two single-particle ones. Since the two qubits at (0, 0)
are polarized in opposite directions with respect to the other
HSPs, each spin winds once around its Bloch sphere resulting
in the combined Chern number C0 = 2.

By increasing the interaction strength Jz > 0, a phase tran-
sition into the correlated topological phase C0 = 1 is achieved.
Within this phase, the separable ground state at (0, 0) is
substituted by the maximally entangled ground state |ψ1,0〉.
Thus, since it is no longer possible to specify a winding num-
ber for the individual constituents, we exploit the following
idea: We examine the topological features of each separable
state that contributes to the linear combination in |ψ1,0〉 indi-
vidually. For instance, for the phase of C0 = 1 the topology
for the equally weighted quantum states (a) |↑↓〉(0,0) and
(b) |↓↑〉(0,0) at (0, 0) is examined. Each separable state shows
a single-spin winding number ν

(a)
A = 1 or ν

(b)
A = 0 for spin A.

Moreover, spin B is antiferromagnetically correlated to spin

FIG. 3. Spin configurations of the ground state |�0(�ϕ)〉 at HSPs for interaction strength Jz � 0 and M = 1.2 (see also Fig. 2). Topological
phase transitions caused by Jz lead to inversions between separable and maximally entangled states, which is why it is no longer possible to
specify a winding number for the individual constituents. To describe the topology, we consider each separable state that contributes to the
linear combination in |ψ1,0〉 individually according to its topological features. Depending on the number {k = 0, . . . , 3} of HSPs [59,60] with
a maximally entangled state |ψ1,0〉 as ground state, this leads to 2k combinations for the spin configurations formed by the equally weighted
quantum states |↑↓〉 and |↓↑〉 at different HSPs.
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A, resulting in the winding number ν
(a)
B = 0 or ν

(b)
B = 1. In

both cases (a) and (b), the single-particle Chern numbers add
up to a global Chern number C0 = 1. This picture provides
an intuitive explanation for the odd topological phase: each
band inversion between an antiferromagnetic (maximally en-
tangled) state and a ferromagnetic (separable) state causes a
change in the global Chern number by Cn = ±1.

When the interaction strength Jz > 0 is increased up to
the phase C0 = −1, the separable ground states at (0, π ),
(π, 0) are replaced by the maximally entangled ground states
|ψ1,0〉. By applying the previous picture, we have to con-
sider four [60] combinations for the spin configurations
formed by the equally weighted quantum states |↑↓〉 and
|↓↑〉 at different HSPs: |↑↓〉(0,0) |↑↓〉(0,π ), |↑↓〉(0,0) |↓↑〉(0,π ),
|↓↑〉(0,0) |↑↓〉(0,π ), and |↓↑〉(0,0) |↓↑〉(0,π ). For each combi-
nation, the corresponding single-spin Chern numbers add
up to the combined Chern number C0 = −1. This mecha-
nism is quite generic and applies whenever Jz �= 0 [59]: If
{k = 0, . . . , 3} is the number of HSPs [60] with a maxi-
mally entangled state |ψ1,0〉, we have to examine 2k equally
weighted combinations of spin configurations individually
(see Fig. 3). Topological transitions are then associated
with a change in the configuration of the eigenstate under
consideration.

Observable consequences. The dynamics of the system
can also be described within a two-dimensional frequency
lattice with built-in “electric” field [46,50,68,69], where the
Hall response in the nontrivial regime is given by a transverse
current in this frequency domain. For a system initially pre-
pared in an eigenstate of ĤT , the topological features of Fig. 2
then translate into a quantized frequency conversion between
the circularly polarized drives [46,50]. As first realized in
Ref. [46], energy is pumped between the two fields at a
time-averaged rate

P12
n = −P21

n = Cn

2 π
ω1 ω2 (5)

when the system is confined to an energy level of Chern
number Cn. A necessary condition for the observation of a
quantized rate, besides quasiadiabaticity [67], is that the two
frequencies are incommensurate in such a way that the dy-
namics effectively samples the whole BZ. Notably, the en-
hancement of the frequency conversion for Cn = ±3 is a direct
consequence of the correlated topological response.

We investigate the topological energy pumping by numer-
ically solving the Schrödinger equation associated with Ĥ
[70]. We then compute the expectation value of the “current
operator” Ĵ = ∇�ϕ Ĥ , which is associated with the total energy
transfer rate as can be seen from the Heisenberg equation:
d
dt 〈Ĥ〉 = 〈∂t Ĥ〉 = �ω 〈Ĵ〉. If the initial state is the eigenstate
|�n(�ϕ(t = 0))〉, then the average pumping rate P12

n can be
extrapolated through linear regression of the energy transfer
Ei(t ) = ωi

∫ t
0 dt ′ 〈Ĵi(t ′)〉 [46]. We have chosen the frequen-

cies ω1 = 0.1 λ and ω2 = γ ω1, where γ = 1
2 (1 + √

5) is
the golden ratio. The offset phases are φ1 = π/10, φ2 =
0. In Fig. 4, the extrapolated pumping rate of the ground
state is shown as a function of Jz for parameters M = 1.2
and M = 2.2. A quantized frequency conversion occurs in
an excellent agreement (white regimes) with the topological

FIG. 4. Extrapolated energy pumping rate P0 as a function of
Jz for parameters (a) M = 1.2 and (b) M = 2.2. The quantiza-
tion occurs in an excellent agreement (white regimes) with the
topological phase diagrams of Fig. 2. This applies as long as the
system shows quasiadiabaticity [67], while otherwise the topological
response breaks down (gray regimes).

phase diagrams of Fig. 2. This applies as long as the ITFC
shows quasiadiabaticity. Otherwise, the topological response
is suppressed (gray regimes), and perfect quantization breaks
down.

Conclusion. We have demonstrated that combining two-
body interaction with the notion of dynamically induced
synthetic dimensions gives rise to remarkable topological phe-
nomena that go beyond a noninteracting implementation. In
particular, we predict that an interacting topological frequency
converter (ITFC) realizes correlated topological phases with
odd Chern numbers Cn = ±1, ±3. The topological response
of the ITFC is given by a quantized frequency conversion
between the dynamical drives, and can be enhanced for
Cn = ±3, as compared to its noninteracting counterpart. This
amplification is found to be more pronounced as the number
of interacting spins increases, as we explicitly confirmed in
the Supplemental Material [58] for the example of three
spins where Chern numbers up to Cn = ±5 are observed.
An experimental realization of the ITFC proposed in our
present work might be implemented in a singlet-triplet qubit
[55,56] exposed to circularly polarized driving fields or in
superconducting quantum circuits [57].
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