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Abstract
In this paper we study the fiber bodies, that is the extension of the notion of fiber
polytopes for more general convex bodies. After giving an overview of the properties
of the fiber bodies, we focus on three particular classes of convex bodies. First we
describe the strict convexity of the fiber bodies of the so called puffed polytopes.
Then we provide an explicit equation for the support function of the fiber bodies of
some smooth convex bodies. Finally we give a formula that allows to compute the
fiber bodies of a zonoid with a particular focus on certain zonoids called discotopes.
Throughout the paper we illustrate our results with detailed examples.
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1 Introduction

If K is a convex body in R
n+m and π : Rn+m → V is the orthogonal projection onto

a subspace V ⊂ R
n+m of dimension n, the fiber body of K with respect to π is the

average of the fibers of K under this projection:

�πK =
∫

π(K )

(K ∩ π−1(x)) dx . (1)

This expression will be made rigorous in Proposition 2.7.
Such a notion was introduced for polytopes by Billera and Sturmfels in [4]. It has

been investigated in many different contexts, from combinatorics such as in [2] to
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algebraic geometry and even tropical geometry in the context of polynomial systems
[9, 10, 19]. Notably, recent studies concern the particular case of monotone path
polytopes [5].

This paper is dedicated to the study of the fiber body of convex bodies that are not
polytopes. This construction was introduced and studied by Esterov in [9]. In Sect. 2
the general properties of fiber bodies are stated. In particular, we show in Example 2.12
that a point of the boundary of the fiber bodymay not have a continuous representative.
In the rest of the paper, each section regards the fiber bodyof a particular class of convex
bodies.

Section 3 applies directly the description of the faces to certain convex bodies that
we call puffed polytopes. They are convex bodies that are obtained from polytopes by
taking the “derivative” of their algebraic boundary (see Definition 3.1). Propositions
3.6, 3.7, and 3.8 describe the strict convexity of the fiber body of a puffed polytope.
As a concrete example we study the case of the elliptope with a particular projection.

In Sect. 4 we investigate the class of curved convex bodies. Namely, we consider
convex bodies whose boundary areC2 hypersurface with no “flat” directions, i.e., with
a strictly positive curvature. In that case Theorem 4.4 gives an explicit formula for the
support function of �πK , directly in terms of the support function of K . This is an
improvement of (4) which involves the support function of the fibers. We immediately
give an example in which the support function of the fiber body is easily computed
using Theorem 4.4.

The last section is dedicated to the case of zonoids. Zonoids arise as limits of finite
Minkowski sums of segments.We prove that the fiber body of a zonoid is a zonoid, and
give an explicit formula to compute it in Theorem 5.9. We then focus on a particular
class of zonoids that are finite Minkowski sums of discs in 3-space, called discotopes.
After giving a general description of discotopes as algebraic bodies, we illustrate our
formula for zonoids by computing the fiber body of a specific discotope.

2 Generalities

2.1 Main Definitions

Consider the Euclidean vector space R
n+m endowed with the standard Euclidean

structure and letV ⊂ R
n+m be a subspace of dimensions n. Denote byW its orthogonal

complement, such that Rn+m = V ⊕ W . Let π : Rn+m → V be the orthogonal
projection onto V . Throughout this article we will canonically identify the Euclidean
space with its dual. However the notation is meant to be consistent: x, y, z will denote
vectors, whereas we will use u, v, w for dual vectors.

We call convex bodies the non-empty compact convex subsets of a vector space.
The space of convex bodies in a vector space E is denoted byK (E). If K , L ∈ K (E)

their Minkowski sum is the convex body K + L ∈ K (E) given by

K + L := {x1 + x2 | x1 ∈ K , x2 ∈ L}.

Moreover, if λ ∈ R, we write λK := {λx | x ∈ K }. The support function of a convex
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body K ∈ K (Rn+m) is the function hK : Rn+m → R given for all u ∈ R
n+m by

hK (u) := max {〈u, x〉 | x ∈ K }, (2)

where 〈 · , · 〉 is the standard Euclidean scalar product. This map becomes handy when
manipulating convex bodies as it satisfies some useful properties (see [17, Sect. 1.7.1]
for proofs and more details).

Proposition 2.1 Let K , L ∈ K (Rn+m) with their respective support functions
hK , hL . Then:

(i) hK = hL if and only if K = L.
(ii) If T : Rn+m → R

k is a linear map then hT K = hK ◦ T t .
(iii) hK is differentiable at u ∈ R

n+m if and only if the point x realizing the maximum
in (2) is unique. In that case x = ∇h(u) where ∇h denotes the gradient of h.

If K ∈ K (Rn+m) we write Kx for the orthogonal projection onto W of the fiber of
π |K over x , namely

Kx := {y ∈ W | (x, y) ∈ K }.

Definition 2.2 Amap γ : π(K ) → W such that for all x ∈ π(K ), γ (x) ∈ Kx is called
a section of π . When there is no ambiguity on the map π we will simply say that γ

is a section.

Using this notion we are now able to define our main object of study. In this paper
measurable is always intended with respect to the Borelians.

Definition 2.3 The fiber body of K with respect to the projection π is the convex body

�πK :=
{∫

π(K )

γ (x) dx
∣∣∣ γ : π(K ) → W measurable section

}
∈ K (W ).

Here dx denotes the integration with respect to the n-dimensional Lebesgue measure
on V . We say that a section γ represents y ∈ �πK if y = ∫

π(K )
γ (x) dx .

Remark 2.4 Note that, with this setting, if π(K ) is of dimension < n, then its fiber
body is �πK = {0}.
This definition of fiber bodies, that can be found for example in [9] under the name
Minkowski integral, extends the classic construction of fiber polytopes [4], up to a
constant. Here, we choose to omit the normalization 1/vol(π(K )) in front of the
integral used by Billera and Sturmfels in order to make apparent the degree of the map
�π seen in (3). This degree becomes clear with the notion of mixed fiber body, see [9,
Thm. 1.2].

Proposition 2.5 For any λ ∈ Rwe have�π(λK ) = λ|λ|n�πK. In particular if λ ≥ 0

�π(λK ) = λn+1�πK . (3)
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Proof If λ = 0 it is clear that the fiber body of {0} is {0}. Suppose now that λ �= 0 and
let γ : π(K ) → W be a section. We can define another section γ̃ : π(λK ) → W by
γ̃ (x) := λγ (x/λ). Using the change of variables y = x/λ, we get that

∫
λπ(K )

γ̃ (x) dx = λ|λ|n
∫

π(K )

γ (y) dy.

This proves that �πλK ⊆ λ|λ|n�πK . Repeating the same argument for λ−1 instead
of λ, the other inclusion follows. ��
Corollary 2.6 If K is centrally symmetric then so is �πK.

Proof Apply the previous proposition with λ = −1 to get �π((−1)K ) = (−1)�πK .
If K is centrally symmetric with respect to the origin then (−1)K = K and the result
follows. The general case is obtained by a translation. ��
As a consequence of the definition, it is possible to deduce a formula for the support
function of the fiber body. This is the rigorous version of (1).

Proposition 2.7 For any u ∈ W we have

h�π K (u) =
∫

π(K )

hKx (u) dx . (4)

Proof By definition

h�π K (u) = sup

{∫
π(K )

〈u, γ (x)〉 dx
∣∣∣ γ measurable section

}
≤

∫
π(K )

hKx (u) dx .

To obtain the equality, it is enough to show that there exists a measurable section
γu : π(K ) → W with the following property: for all x ∈ π(K ) the point γu(x)
maximizes the linear form 〈u, · 〉 on Kx . In other words for all x ∈ π(K ), 〈u, γu(x)〉 =
hKx (u). This is due to [3, Prop. 2.1]. ��
A similar result can be shown for the faces of the fiber body.

Definition 2.8 Let K ∈ K (Rn+m) and let u ∈ R
n+m . We denote by Ku the face of

K in direction u, that is all the points of K that maximize the linear form 〈u, · 〉:

Ku := {y ∈ K | 〈u, y〉 = hK (u)}.

Moreover, if U = {u1, . . . , uk} is an ordered family of vectors of Rn+m , we write

KU := (· · · (Ku1)u2 · · · )uk .

Note that Ku is usually called an exposed face of K . The notion of faces and exposed
faces coincide for polytopes but are different in general. In this paper we only consider
exposed faces that we call faces for simplicity. In the following, we show that the face
of the fiber body is, in some sense, the fiber body of the faces.

123



Discrete & Computational Geometry (2023) 70:1451–1475 1455

Lemma 2.9 Let U = {u1, . . . , uk} be a an ordered family of linearly independent
vectors of W , take y ∈ �πK and let γ : π(K ) → W be a section that represents y.
Then y ∈ (�πK )U if and only if γ (x) ∈ (Kx )

U for almost all x ∈ π(K ). In particular
we have that

(�πK )U =
{∫

π(K )

γ (x) dx
∣∣∣ γ section such that γ (x) ∈ (Kx )

U for all x

}
. (5)

Proof Suppose first that U = {u}. Assume that γ (x) is not in (Kx )
u for all x in a set of

non-zeromeasureO ⊂ π(K ). Then there exists ameasurable function ξ : π(K ) → W
with 〈u, ξ 〉 ≥ 0 and 〈u, ξ(x)〉 > 0 for all x ∈ O , such that γ̃ := γ + ξ is a section
(for example you can take γ̃ (x) to be the nearest point on Kx of γ (x) + u). Let
ỹ := ∫

π(K )
γ̃ . Then 〈u, ỹ〉 = 〈u, y〉 + ∫

π(K )
〈u, ξ 〉 > 〈u, y〉. Thus y does not belong

to the face (�πK )u .
Suppose now that y is not in the face (�πK )u . Then there exists ỹ ∈ �πK such

that 〈u, ỹ〉 > 〈u, y〉. Let γ̃ be a section that represents ỹ. It follows that
∫
π(K )

〈u, γ̃ 〉 >∫
π(K )

〈u, γ 〉. This implies the existence of a setO ⊂ π(K ) of non-zero measure where
〈u, γ̃ (x)〉 > 〈u, γ (x)〉 for all x ∈ O . Thus for all x ∈ O , γ (x) does not belong to the
face (Kx )

u .
In the case U = {u1, . . . , uk+1} we can apply inductively the same argument.

Replace �πK by (�πK ){u1,...,uk } and u by uk+1, and use the representation of
(�πK ){u1,...,uk } given by (5). ��
Using the same strategy in the proof of Proposition 2.7weobtain the following formula.

Lemma 2.10 For every u, v ∈ W, h(�π K )u (v) = ∫
π(K )

h(Kx )u (v) dx.

The fiber body behaves well under the action of GL(V ) ⊕ GL(W ) as a subgroup of
GL(Rn+m).

Proposition 2.11 Let gn ∈ GL(V ), gm ∈ GL(W ), and K ∈ K (Rn+m). Then

�π((gn ⊕ gm)(K )) = |det(gn)| · gm(�πK ).

Proof This is a quite straightforward consequence of the definitions. After observing
that

((gn ⊕ gm)(K ))x = gm
(
Kg−1

n (x)

)

and π((gn ⊕ gm)(K )) = gnπ(K ), use (4) with the change of variables x �→ g−1
n x .

By Proposition 2.1 (ii) we have hgmKx (u) = hKx (g
T
mu), so the claim follows. ��

2.2 Regularity of the Sections

By definition, a point y of the fiber body �πK is the integral y = ∫
π(K )

γ (x) dx of
a measurable section γ . Thus γ can be modified on a set of measure zero without
changing the point y, i.e., y only depends on the L1 class of γ . It is natural to ask
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Fig. 1 The convex body of Example 2.12. In its boundary there are two green half-discs, two red triangles,
and four blue cones

what our favourite representative in this L1 class will be and how regular can it be. In
the case where K is a polytope, γ can always be chosen continuous. However if K is
not a polytope and if y belongs to the boundary of �πK , a continuous representative
may not exist. This is due to the fact that, in general, the map x �→ Kx is only upper
semicontinuous, see [12, Sect. 6].

Example 2.12 Consider the function f : S1 → R such that

f (x, y) =
{
0 x < 0,

1 x ≥ 0,

and let K := conv (graph( f )) ⊂ R
3 in Fig. 1. This is a semialgebraic convex body,

whose boundary may be subdivided in eight distinct pieces: two half-discs lying on
the planes {z = 0} and {z = 1}, two triangles with vertices (−1, 0, 0), (0,±1, 1) and
(1, 0, 1), (0,±1, 0) respectively, four cones with vertices (0,±1, 0), (0,±1, 1). Let
π : R3 → R be the projection on the first coordinate π(x, y, z) = x . Then the point
p ∈ �πK ⊂ R

2 maximizing the linear form associated to (y, z) = (1, 0) must have
only non-continuous sections. This can be proved using the representation of a face
given by (5).

We prove that most of the points of the fiber body have a continuous representative.

Proposition 2.13 Let K ∈ K (Rn+m) and let �πK be its fiber body. The set of its
points that can be represented by a continuous section is convex and dense. In partic-
ular, all interior points of �πK can be represented by a continuous section.

Proof Consider the set

C =
{∫

π(K )

γ (x) dx
∣∣∣ γ : π(K ) → K continuous section

}

that is clearly contained in the fiber body�πK . It is convex: take a, b ∈ C represented
by continuous sections α, β : π(K ) → K respectively. Then any convex combination
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can bewritten as c = ta+(1−t)b = ∫
π(K )

(tα(x)+(1−t)β(x)) dx . Since tα+(1−t)β
is a continuous section for any t ∈ [0, 1], C is convex.

We now need to prove that the set C is also dense in �πK . Let γ be a measurable
section; by definition it is a measurable function γ : π(K ) → W , such that γ (x) ∈ Kx

for all x ∈ π(K ). For every ε > 0 there exists a continuous function g : π(K ) → W
with ‖γ − g‖L1 < ε, but this is not necessarily a section of K , since a priori g(x) can
be outside Kx . Hence define γ̃ : π(K ) → W such that

γ̃ (x) = p(Kx , g(x)),

where p(A, a) is the nearest point map at a with respect to the convex set A. By [17,
Lem. 1.8.11], γ̃ is continuous and by definition graph(γ̃ ) ⊂ K . Therefore

∫
π(K )

γ̃

∈ C . Moreover,

‖γ − γ̃ ‖L1 ≤ ‖γ − g‖L1 < ε,

hence the density is proved. As a consequence we get that int�πK ⊆ C ⊆ �πK so
all the interior points of the fiber body have a continuous representative. ��

To our knowledge, the regularity of the sections needed to represent all points is not
known.

2.3 Strict Convexity

In the case where Ku consists of only one point we say that K is strictly convex in
direction u. Moreover, a convex body is said to be strictly convex if it is strictly convex
in every direction. We now investigate this property for fiber bodies.

Proposition 2.14 Let K ∈ K (Rn+m) and let us fix a vector u ∈ W. The following
are equivalent:

(i) �πK is strictly convex in direction u;
(ii) almost all the fibers Kx are strictly convex in direction u.

Proof By Proposition 2.1 (iii), a convex body is strictly convex in direction u if and
only if its support function is C1 at u. Therefore, if almost all the fibers Kx are strictly
convex in u, then, the convex body being compact, the support function h�π K (u) =∫
π(K )

hKx (u) dx is C1 at u, i.e., the fiber body is strictly convex in that direction.
Now suppose that �πK is strictly convex in direction u, i.e., (�πK )u consists of

just one point y. This means that the support function of this face is linear and it is
given by 〈y, · 〉. We now prove that the support function of Ku

x is linear for almost
all x , and this will conclude the proof. Lemma 2.10 implies that

h(�π K )u =
∫

π(K )

hKu
x
dx = 〈y, · 〉.
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For any two vectors v1, v2, we have

〈y, v1 + v2〉 =
∫

π(K )

hKu
x
(v1 + v2) dx

≤
∫

π(K )

hKu
x
(v1) dx +

∫
π(K )

hKu
x
(v2) dx = 〈y, v1〉 + 〈y, v2〉,

thus the inequality in the middle must be an equality. But since hKu
x
(v1 + v2) ≤

hKu
x
(v1) + hKu

x
(v2), we get that this is an equality for almost all x , i.e., the support

function of Ku
x is linear for almost every x ∈ π(K ). Therefore almost all the fibers

are strictly convex. ��
The elliptope in Sect. 3.2 furnishes an example of a convex body E and a projection π

such that the fiber body �πE is strictly convex, but the two fibers E±1 are segments,
hence not strictly convex.

3 Puffed Polytopes

In this section we introduce a particular class of convex bodies arising from polytopes.
A known concept in the context of hyperbolic polynomials and hyperbolicity cones
is that of the derivative cone; see [14] or [15]. Since we are dealing with compact
objects, we will repeat the same construction in affine coordinates, i.e., for polytopes
instead of polyhedral cones.

Let P be a full-dimensional polytope in R
N , containing the origin, with d facets

given by affine equations l1(x1, . . . , xN ) = a1, . . . , ld(x1, . . . , xN ) = ad . Consider
the polynomial

p(x1, . . . , xN ) =
d∏

i=1

(li (x1, . . . , xN ) − ai ). (6)

Its zero locus is the algebraic boundary of P , i.e., the algebraic closure of the bound-
ary, in the Zariski topology, as in [18]. Consider the homogenization of p, that is,
p̃(x1, . . . , xN , w) = ∏d

i=1(li (x1, . . . , xN ) − aiw). It is the algebraic boundary of a
polyhedral cone and it is hyperbolicwith respect to the direction (0, . . . , 0, 1) ∈ R

N+1.
Then for all i < d the polynomial

(
∂ i

∂wi
p̃

)
(x1, . . . , xN , 1) (7)

is the algebraic boundary of a convex set containing the origin, see [15]. This allows
us to introduce the following definition.

Definition 3.1 Let Zi be the zero locus of (7) in RN . The i -th puffed P is the closure
of the connected component of the origin in R

N \ Zi . We denote it by puffi (P).
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Fig. 2 The octagon, in blue, and (the algebraic boundary of) its puffed octagon, in violet

In particular, the puffed polytopes are always spectrahedra [6, Cor. 1.3]. As the name
suggests, the puffed polytopes puffi (P) are fat, inflated versions of the polytope P
and in fact contain P . On the other hand, despite the definition involves a derivation,
the operation of “taking the puffed” does not behave as a derivative. In particular, it
does not commute with the Minkowski sum, that is, in general for polytopes P1, P2:

puff1(P1 + P2) �= puff1(P1) + puff1(P2).

To show this with, we build a counterexample in dimension N = 2.

Example 3.2 Take two squares P1 = conv {(±1,±1)}, P2 = conv {(0,±1),(±1, 0)}
⊂ R

2. The first puffed square is a disc with radius half of the diagonal, so puff1(P1)
has radius

√
2 and puff1(P2) has radius 1. Therefore puff1(P1) + puff1(P2) is a disc

centered at the origin of radius 1 + √
2. On the other hand P1 + P2 is an octagon. Its

associated polynomial in (6) is

p(x, y) = ((x + y)2 − 9)((x − y)2 − 9)(x2 − 4)(y2 − 4).

Via the procedure explained above we obtain the boundary of this puffed octagon, as
the zero locus of the following irreducible polynomial:

2x6 + 7x4y2 + 7x2y4 + 2y6 − 88x4 − 193x2y2 − 88y4 + 918x2 + 918y2 − 2592.

This is a curve with three real connected components, shown in violet in Fig. 2. Clearly
the puffed octagon is not a circle, hence puff1(P1) + puff1(P2) �= puff1(P1 + P2).
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3.1 Strict Convexity of the Puffed Polytopes

Our aim is to study the strict convexity of the fiber body of a puffed polytope. In order
to do so, we shall at first say something more about the boundary structure of a puffed
polytope itself. In particular, we will see that the appropriate quantity to consider is the
multiplicity of the faces, that is, their multiplicity as zeroes of the polynomial defining
the algebraic boundary. Indeed, a face F ⊂ P will be in the boundary of puffi (P) for
all i less or equal than the multiplicity of F .

Lemma 3.3 Let P ⊂ R
N be a full-dimensional polytope. Then all faces F of P of

dimension k < N − i , are contained in the boundary of puffi (P).

Proof Let F be a k-face of P; it is contained in the zero set of the polynomial (6).
Moreover, F arises as the intersection of at least N − k facets (i.e., faces of dimension
N − 1), thus its points are zeros of multiplicity at least N − k. Hence, if N − k > i
the face F is still in the zero set of (7), i.e., it belongs to the boundary of puffi (P).

��
The other direction is not always true: there may be k-faces of P , with k ≥ N − i ,
whose points are zeros of (7) of multiplicity higher than i , and hence faces of puffi (P).
However there are two cases in which this is not possible.

Lemma 3.4 Let P ⊂ R
N be a full-dimensional polytope.

i = 1 the flat faces in the boundary of puff1(P) are exactly the faces of dimension
k < N − 1;

i = 2 the flat faces in the boundary of puff2(P) are exactly the faces of dimension
k < N − 2.

Proof The first point is clear because the facets (faces of dimension N − 1) are the
only zeroes of multiplicity one. The second point follows from the so called “diamond
property” of polytopes [22]. ��
Remark 3.5 By [14, Prop. 24] we can deduce that the flat faces of a puffed polytope
must be faces of the polytope itself. The remaining points in the boundary of puffi (P)

are exposed points.

Using this result we can deduce conditions for the strict convexity of the fiber body of
a puffed polytope.

Proposition 3.6 (fiber 1st puffed polytope) Let P ⊂ R
n+m be a full-dimensional

polytope, n ≥ 1, m ≥ 2, and take any projection π : Rn+m → R
n. The fiber puffed

polytope �π(puff1(P)) is strictly convex if and only if m = 2.

Proof By Lemma 3.4, the flat faces in the boundary of puff1(P) are the faces of P of
dimension k < n + m − 1. Suppose first that m > 2 and let F be an (n + m − 2)-
face of P . Take a point p in the relative interior of F and let xp := π(p). Then the
dimension of F ∩ π−1(xp) is at least m − 2 ≥ 1; we can also assume without loss of
generality that

1 ≤ dim (F ∩ π−1(xp)) < n + m − 2. (8)
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Furthermore, there is a whole neighborhood U of xp such that condition (8) holds,
so for every x ∈ U the convex body (puff1(P))x is not strictly convex. By Proposi-
tion 2.14 then �π(puff1(P)) is not strictly convex. Suppose now that m = 2 and fix
a flat face F of puff1(P). Its dimension is less or equal than n, so F ∩ π−1(xp) is
either one point or a face of positive dimension. In the latter case dim π(F) ≤ n − 1,
i.e., it is a set of measure zero in π(puff1(P)). Because there are only finitely many
flat faces, we can conclude that almost all the fibers are strictly convex and thus by
Proposition 2.14, �π(puff1(P)) is strictly convex. ��
A similar result holds for the second fiber puffed polytope, using Lemma 3.4.

Proposition 3.7 (fiber 2nd puffed polytope) Let P ⊂ R
n+m be a full-dimensional

polytope, n ≥ 1, m ≥ 2, and take any projection π : Rn+m → R
n. The fiber puffed

polytope �π(puff2(P)) is strictly convex if and only if m ≤ 3, i.e., m = 2 or 3.

Proof We can use the previous strategy again. If m > 3, there always exists a face
of puff2(P) of dimension n + m − 3 whose non-empty intersection with fibers of π

has dimension at least 1 and strictly less than n +m − 3. So in this case we get a non
strictly convex fiber body. On the other hand, when m = 2 or 3 the intersection of the
fibers and the flat faces has positive dimension only on a measure zero subset of Rn ,
hence almost all the fibers are strictly convex and the thesis follows. ��
Can we generalize this result for the i-th puffed polytope? In general no, and the
reason is precisely that a k-face may be contained in more than n+m−k facets, when
k < n + m − 2. The polytopes P for which this does not happen are called simple
polytopes. Thus with the same proof as above we obtain the following.

Proposition 3.8 (fiber i-th puffed simple polytope) Let P ⊂ R
n+m be a full-

dimensional simple polytope, n ≥ 1, m ≥ 2, and take any projection π : Rn+m → R
n.

The fiber puffed polytope �π(puffi (P)) is strictly convex if and only if m ≤ i + 1.

In the case where P is not simple, one has to take into account the number of facets
in which each face of dimension k ≥ n + m − i is contained, in order to understand
if they are or not part of the boundary of puffi (P).

3.2 A Case Study: The Elliptope

Take the tetrahedron T in R3 realized as

conv {(1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1)}.

The first puffed tetrahedron (for the rest of the subsection we will omit the word
“first”) is the semialgebraic convex body called the elliptopewhich is the set of points
(x, y, z) ∈ [−1, 1]3 such that x2 + y2 + z2 − 2xyz ≤ 1. Let π be the projection on
the first coordinate: π(x, y, z) = x . The fibers of the elliptope at x for x ∈ (−1, 1)
are the ellipses defined by

Ex =
{
(y, z)

∣∣∣
(

y − xz√
1 − x2

)2
+ z2 ≤ 1

}
.
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(b)(a)

Fig. 3 Left: the four green parabolas meet in the four black points on the boundary of the fiber elliptope,
that lie on the diagonals y = z and y = −z. Right: sandwiched fiber bodies. The blue square is the fiber
tetrahedron �πT ; the green convex body is the fiber elliptope �πE ; the grey square is the fiber cube
�π([−1, 1]3)

Introducing the matrix

Mx :=
⎛
⎝

1√
1 − x2

−x√
1 − x2

0 1

⎞
⎠ ,

it turns out that Ex = {(y, z) | ‖Mx (y, z)‖2 ≤ 1} = (Mx )
−1B2, where B2 is the unit

2-disc. We obtain

hEx (u, v) = hB2((Mx )
−T (u, v)) = ‖(Mx )

−T (u, v)‖ =
√
u2 + v2 + 2xuv.

By (4) we need to compute the integral of hEx between x = −1 and x = 1 to obtain
the support function of the fiber body of the elliptope. We get

h�πE (u, v) = |u + v|3 − |u − v|3
3uv

.

Hence the fiber body is semialgebraic and its algebraic boundary is the zero set of the
four parabolas 3y2 +8z−16, 3y2 −8z−16, 8y+3z2 −16, 8y−3z2 +16, displayed
in Fig. 3.

As anticipated in Proposition 3.6 the fiber elliptope is strictly convex. Notice that
the elliptope is naturally sandwiched between two polytopes: the tetrahedron T and
the cube [−1, 1]3. Therefore, as a natural consequence of the definition, the same
chain of inclusions works also for their fiber bodies:

�πT ⊂ �πE ⊂ �π([−1, 1]3),

as shown in Fig. 3b.

Remark 3.9 From this example it is clear that the operation of “taking the fiber body”
does not commute with the operation of “taking the puffed polytope”. In fact, the
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puffed polytope of the blue square in Fig. 3b is not the green convex body bounded
by the four parabolas: it is the disc y2 + z2 ≤ 4.

4 Curved Convex Bodies

In this section we are interested in the case where the boundary of the convex body
K is highly regular. We prove Theorem 4.4 which is a formula to compute support
function of the fiber body directly in terms of the support function of K , without
having to compute those of the fibers.

Definition 4.1 We say that a convex body K is curved if the following two conditions
are satisfied: the support function hK is C2 and the gradient ∇hK restricted to the
sphere is a C1 diffeomorphism with the boundary of K .

In that case K is full-dimensional and its boundary is a C2 hypersurface. Moreover
we have the following.

Lemma 4.2 Let K ⊂ R
n+m be a curved convex body and let v ∈ Sn+m−1. Then the

differential dv∇hK is a symmetric positive definite automorphism of v⊥.

Proof This is proved in [17, p. 116], where curved convex bodies are said to be “of
class C2+” and dv∇hK is denoted by W v . ��
The following gives an expression for the face of the fiber body. This is to be compared
with the case of polytopes which is given in [10, Lem. 11].

Lemma 4.3 If K is a curved convex body and u ∈ W with ‖u‖ = 1, then

∇h�π K (u) =
∫
V

∇hK (u + ξ) · Jψu (ξ) dξ,

where ψu : V → V is given by ψu(ξ) = (π ◦ ∇hK )(u + ξ) and Jψu (ξ) denotes its
Jacobian (i.e., the determinant of its differential) at the point ξ .

Proof From (5) we have that ∇h�π K (u) = ∫
π(K )

γu(x) dx , where γu(x) = ∇hKx (u).
Assume x = ψu(ξ) is a change of variables. We get γu(x) = (γu ◦ π ◦ ∇hK )(u + ξ)

= ∇hK (u + ξ) and the result follows.
It remains to prove that it is indeed a change of variables. Note that ∇hK (u + ξ) =

∇hK (v)where v = (u + ξ)/(‖u + ξ‖) ∈ Sn+m−1. The differential of the map ξ �→ v

maps V to (V + Ru) ∩ v⊥. Moreover, ∇hK restricted to the sphere is a C1 diffeo-
morphism by assumption. Thus it only remains to prove that its differential dv∇hK
sends (V +Ru)∩v⊥ to a subspace that does not intersect ker

(
π

∣∣
v⊥

)
. To see this, note

that ker
(
π

∣∣
v⊥

)⊥ = (V + Ru) ∩ v⊥. Moreover, by the previous lemma, we have that
〈w, dv∇hK · w〉 = 0 if and only if w = 0. Thus if w ∈ ker

(
π

∣∣
v⊥

)⊥ and w �= 0, then
π(dv∇hK · w) �= 0. Putting everything together, this proves that dξψu has no kernel
which is what we wanted. ��
As a direct consequence we derive a formula for the support function.
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Theorem 4.4 Let K ⊂ R
n+m be a curved convex body. Then the support function of

�πK is for all u ∈ W,

h�π K (u) =
∫
V
〈u,∇hK (u + ξ)〉 · Jψu (ξ) dξ, (9)

where ψu : V → V is given by ψu(ξ) = (π ◦ ∇hK )(u + ξ) and Jψu (ξ) denotes its
Jacobian at the point ξ .

Proof Apply the previous lemma to h�π K (u) = 〈u,∇h�π K (u)〉. ��
Assume that the support function hK is algebraic, i.e., it is a root of some polynomial
equation. Then, the integrand in Lemma 4.3 and in Theorem 4.4 is also algebraic.
Indeed, it is simply ∇hK (u + ξ) times the Jacobian of ψu which is a composition of
algebraic functions. We can generalize this concept in the direction of D-modules (see
[21], or [16] for a text with a view towards applied nonlinear algebra). One can define
what it means for a D-ideal of the Weyl algebra D to be holonomic. Then a function
is holonomic if its annihilator, a D-ideal, is holonomic. Intuitively, this means that
such function satisfies a system of linear homogeneous differential equations with
polynomial coefficients, plus a suitable dimension condition. Holonomicity can be
seen as a generalization of algebraicity which is closed under integration. We say that
a convex body K is holonomic if its support function hK is holonomic. In this setting,
the fiber body satisfies the following property.

Corollary 4.5 If K is a curved holonomic convex body, then its fiber body is again
holonomic.

Proof We prove that the integrand in Theorem 4.4 is a holonomic function of u and ξ .
Then the result follows from the fact that the integral of a holonomic function is
holonomic [16, Prop. 2.11]. If hK is holonomic then ∇hK (u + ξ) is a holonomic
function of u and ξ , as well as its scalar product with u. It remains to prove that the
Jacobian of ψu is holonomic. But ψu is the projection of a holonomic function and
thus holonomic, so the result follows. ��

4.1 A Case Study: Schneider’s Polynomial Body

In [17, p. 203] Schneider exhibits an example of a one parameter family of semi-
algebraic centrally symmetric convex bodies that are not zonoids (see Sect. 5 for a
definition of zonoids). Their support function is polynomial when restricted to the
sphere. We will show how in that case Theorem 4.4 makes the computation of the
fiber body relatively easy.

Definition 4.6 Schneider’s polynomial body is the convex body Sα ∈ K (R3) whose
support function is given by (see [17, p. 203])

hSα
(u) = ‖u‖

(
1 + α

2

(
3(u3)2

‖u‖2 − 1

))

for α ∈ [−8/20,−5/20].
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Fig. 4 Fiber body of Schneider’s polynomial body for a α = −i/20 with i = 5, 6, and 7

Let π := 〈e1, · 〉 : R ⊕ R
2 → R be the projection onto the first coordinate. We want

to apply Theorem 4.4 to compute the support function of �πSα . For the gradient we
obtain:

∇hSα
(u)

= 1

2‖u‖3

⎛
⎜⎝

−u1
(
(u1)2(α − 2) + (u2)2(α − 2) + 2(u3)2(2α − 1)

)
−u2

(
(u1)2(α − 2) + (u2)2(α − 2) + 2(u3)2(2α − 1)

)
u3

‖u‖2
(
(u1)

2(5α + 2) + (u2)
2(5α + 2) + 2(u3)

2(2α + 1)
)
⎞
⎟⎠ .

For u = (0, u2, u3), the Jacobian is Jψu (t) = d(π ◦∇hSα
(t, u2, u3))/dt , which gives

Jψu (t) = t2(−(u2)2(α − 2) + (u3)2(5α + 2)) − ‖u‖2((u2)2(α − 2) + 2(u3)2(2α − 1))

2(t2 + ‖u‖2)5/2 .

Substituting in (9), we integrate 〈u,∇hSα
(t, u2, u3)〉Jψu (t) and get the support func-

tion of the fiber body (see Fig. 4) which is again polynomial:

h�πSα
(u) = π

64‖u‖3
(
8(α − 2)(u2)

4 − 8(α2 + 2α − 8)(u2)
2(u3)

2

+ (−25α2 + 16α + 32)(u3)
4).

(10)

5 Zonoids

In this section, we focus on the class of zonoids. Let us first recall some definitions
and introduce some notation. For more details we refer to [17, Sect. 3.5]. We will use
the following notation for centered segments: for any x ∈ R

n+m we write

x := 1

2
[−x, x]. (11)
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Definition 5.1 A convex body K ∈ K (Rn+m) is called a zonotope if there exist
x1, . . . xN ∈ R

n+m such that, with the notation introduced above, K = x1 +· · ·+ xN .
A zonoid is a limit (in the Hausdorff distance) of zonotopes. The space of zonoids of
R
n+m will be denoted by Z0(R

n+m).

Remark 5.2 It follows immediately from the definition that all zonoids are centrally
symmetric centered in the origin, i.e., if K ∈ Z0(R

n+m) then (−1)K = K . In general
the definition of zonoids may also include translations of such bodies. The elements
of Z0(R

n+m) are then called centered zonoids. For simplicity here we chose to omit
the term “centered”.

We introduce the approach of Vitale from [20] using random vectors. The following
is [20, Thm. 3.1] rewritten in our context.

Proposition 5.3 A convex body K ∈ K (Rn+m) is a zonoid if and only if there is a
random vector X ∈ R

n+m with E‖X‖ < ∞ such that for all u ∈ R
n+m,

hK (u) = E |〈u, X〉|
2

. (12)

We call such a zonoid theVitale zonoid associated to the random vector X, and denote
it by K0(X).

5.1 The Fiber Body of a Zonoid

We now show that the fiber body of a zonoid is a zonoid and give a formula to compute
it in Theorem 5.9. Let us first introduce some of the tools used by Esterov in [9].

Definition 5.4 For any u ∈ W define Tu := IdV ⊕ 〈u, · 〉 : V ⊕ W → V ⊕ R.

Definition 5.5 Let C ∈ K (V ⊕R). The shadow volume V+(C) of C is defined to be
the integral of the maximal function on π(C) ⊂ V such that its graph is contained
in C , i.e.,

V+(C) =
∫

π(C)

ϕ(x) dx,

where ϕ(x) = sup {t | (x, t) ∈ C}. In particular if (−1)C = C , then the shadow
volume is V+(C) = voln+1(C)/2.

The shadow volume can then be used to express the support function of the fiber body.

Lemma 5.6 For u ∈ W and K ∈ K (Rn+m), we have

h�π K (u) = V+(Tu(K )).

In particular, if (−1)K = K,

h�π K (u) = voln+1(Tu(K ))

2
. (13)
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Proof Wealso denote byπ : V ⊕R → V the projection onto V . The shadow volume is
the integral on π(Tu(K )) = π(K ) of the function ϕ(x) = sup {t | (x, t) ∈ Tu(K )} =
sup {〈u, y〉 | (x, y) ∈ K } = hKx (u). Thus the result follows from Proposition 2.7. ��
Remark 5.7 Note that if m = 2 then Tu is the projection onto the hyperplane spanned
by V and u. In that case (13) is the formula for the support function of the projection
body K of K at Ju, where J is a rotation by π/2 in W , see [17, Sect. 10.9]. Thus
in that case, �πK is the projection of K onto W rotated by π/2.

We will show that the mixed fiber body of zonoids comes from a multilinear map
defined directly on the vector spaces.

Definition 5.8 Wedefine the following (completely skew-symmetric)multilinearmap:

Fπ : (V ⊕ W )n+1 → W ,

((x1, y1), . . . , (xn+1, yn+1)) �→ 1

(n + 1)!
n+1∑
i=1

(−1)n+1−i (x1 ∧ · · · ∧ x̂i ∧ · · · ∧ xn+1)yi

where x1 ∧ · · · ∧ x̂i ∧ · · · ∧ xn+1 denotes the determinant of the chosen vectors
omitting xi .

We are now able to prove the main result of this section, here stated in the language
of the Vitale zonoids introduced in Proposition 5.3.

Theorem 5.9 The fiber body of a zonoid is a zonoid. Moreover, if X ∈ R
n+m is a

random vector such that E‖X‖ < ∞ and K := K0(X) is the associated Vitale
zonoid, then

�πK = K0(Fπ (X1, . . . , Xn+1)) (14)

where X1, . . . , Xn+1 ∈ R
n+m are i.i.d. copies of X. In other words, the support

function of the fiber body �πK is given for all u ∈ W by

h�π K (u) = E |〈u,Y 〉|
2

(15)

where Y ∈ W is the random vector defined by Y := Fπ (X1, . . . , Xn+1).

Proof Suppose that K = K0(X) and let u ∈ W . Note that by (12) and Proposition
2.1 (ii), Tu(K ) = K0(Tu(X1)). Thus by (13) and [20, Thm. 3.2] we get

h�π K (u) = vol (K0(Tu(X)))

2
= 1

2
· 1

(n + 1)! E |Tu(X1) ∧ · · · ∧ Tu(Xn+1)|, (16)

where X1, . . . , Xn+1 ∈ R
n+m are i.i.d. copies of X . Now let us write Xi := (αi , βi )

with αi ∈ V and βi ∈ W . Then

|Tu(X1) ∧ · · · ∧ Tu(Xn+1)| = ∣∣(α1, 〈u, β1〉) ∧ · · · ∧ (αn+1, 〈u, βn+1〉)
∣∣
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=
∣∣∣∣∣
n+1∑
i=1

(−1)n+1−i (α1 ∧ · · · ∧ α̂i ∧ · · · ∧ αn+1)〈u, βi 〉
∣∣∣∣∣

= |〈u, (n + 1)! Fπ ((α1, β1), . . . , (αn+1, βn+1))〉|.

Reintroducing this in (16) we obtain (15). ��
This allows to generalize [4, Thm. 4.1] for all zonotopes.

Corollary 5.10 For all z1, . . . , zN ∈ R
n+m, the fiber body of the zonotope

∑N
i=1 zi is

the zonotope given by

�π

(
N∑
i=1

zi

)
= (n + 1)!

∑
1≤i1<...<in+1≤N

Fπ (zi1 , . . . , zin+1), (17)

where we used the notation of (11), writing x for the segment [−x/2, x/2].
Proof We apply Theorem 5.9 to the discrete random vector X , that is equal to Nzi
with probability 1/N for all i = 1, . . . , N . In that case one can check from (12) that
the Vitale zonoid K0(X) is precisely the zonotope

∑N
i=1 zi , and the result follows

from (15). ��
An implementation of formula (17) for OSCAR 0.8.2-DEV1 and SageMath 9.22

is available at https://mathrepo.mis.mpg.de/FiberZonotopes.

Esterov shows in [9] that the map �π : K (Rn+m) → K (W ) comes from another
map, which is (Minkowski) multilinear in each variable: the mixed fiber body. The
following is [9, Thm. 1.2].

Proposition 5.11 There is a unique symmetric multilinear map

M�π : (K (Rn+m))n+1 → K (W )

such that for all K ∈ K (Rn+m),M�π(K , . . . , K ) = �π(K ).

Once its existence is proved, one can see that themixedfiber bodyM�π(K1, . . . , Kn+1)

is the coefficient of t1 · . . . · tn+1, divided by (n + 1)!, in the expansion of
�π(t1K1 + · · · + tn+1Kn+1). Using this polarization formula, one can deduce from
Theorem 5.9 a similar statement for the mixed fiber body of zonoids.

Proposition 5.12 The mixed fiber body of zonoids is a zonoid. Moreover, if X1, . . . ,

Xn+1 ∈ R
n+m are independent (not necessarily identically distributed) random vec-

tors such that E‖Xi‖ is finite, and Ki := K0(Xi ) are the associated Vitale zonoids,
then

M�π(K1, . . . , Kn+1) = K0(Fπ (X1, . . . , Xn+1)).

1 The OSCAR Team, https://oscar.computeralgebra.de (2022).
2 Sage Developers, https://www.sagemath.org (2021).
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Proof Let us show the case of n + 1 = 2 variables. The general case is done in a
similar way. Let X̃ := t1α2X1+ t2(1−α)2X2 where α is a Bernoulli random variable
of parameter 1/2 independent of X1 and X2. Using (12), one can check that K0(X̃) =
t1K1 + t2K2. Now let Y1 (respectively Y2) be an i.i.d. copy of X1 (respectively, X2)
independent of all the other variables. Define Ỹ := t1β2Y1 + t2(1−β)2Y2 where β is
a Bernoulli random variable of parameter 1/2 independent of all the other variables.
By Theorem 5.9 we have that �π(t1K1 + t2K2) = K0(Fπ (X̃ , Ỹ )). By (12), using the
independence assumptions, it can be deduced that for all t1, t2 ≥ 0,

hK0(Fπ (X̃ ,Ỹ ))
= t21h�π K1 + t22h�π K2 + t1t2

(
hK0(Fπ (X1,Y2)) + hK0(Fπ (X2,Y1))

)
.

The claim follows from the fact that K0(Fπ (X1,Y2)) = K0(Fπ (X2,Y1)) =
K0(Fπ (X1, X2)). ��

5.2 Discotopes

In this section, we investigate the fiber bodies of finite Minkowski sums of discs inR3,
calleddiscotopes. They also appear in the literature, see [1] for example.Discotopes are
zonoids (because discs are zonoids see Lemma 5.14 below) that are neither polytopes
nor curved (see Sect. 4) but still have simple combinatorial properties and a simple
support function. For a deep analysis of this family of zonoids, we refer to [11]. We
will see how in this case formula (15) can be useful to compute the fiber body.

Definition 5.13 Let v ∈ R
3, we denote by Dv the disc in v⊥ centered at 0 of radius ‖v‖.

Lemma 5.14 Discs are zonoids. If a, b is an orthonormal basis of v⊥, we define
the random vector σ(θ) := ‖v‖(cos θ · a + sin θ · b) with θ ∈ [0, 2π ] uniformly dis-
tributed. Then we have

Dv = π · K0(σ (θ)) (18)

where we recall the definition of the Vitale zonoid associated to a random vector in
Proposition 5.3. In other words we have:

hDv (u) = ‖v‖
√

〈u, a〉2 + 〈u, b〉2 = π

2
E|〈u, σ (θ)〉|. (19)

Proof Consider the zonoid K0(σ (θ)). We will prove that it is a disc contained in
v⊥ centered at 0 of radius ‖v‖/π . First of all, since σ(θ) ∈ v⊥ almost surely, we
have hK0(σ (θ))(±v) = 0. Thus K0(σ (θ)) is contained in the plane v⊥. Moreover, let
O(v⊥) denote the stabilizer of v in the orthogonal group O(3). The zonoid K0(σ (θ))

is invariant under the action of O(v⊥) thus it is a disc centered at 0. To compute
its radius it is enough to compute the support function at one point: hK0(σ (θ))(a1) =
‖v‖ · E|cos θ | = ‖v‖/π and this concludes the proof. ��
Remark 5.15 Note that the law of the random vector σ(θ) does not depend on the
choice of the orthonormal basis a, b. It only depends on the line spanned by v and the
norm ‖v‖.
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Definition 5.16 A convex body K ⊂ R
3 is called a discotope if it can be expressed

as a finite Minkowski sum of discs, i.e., if there exist v1, . . . , vN ∈ R
3, such that

K = Dv1 + · · · + DvN . In particular discotopes are zonoids. Moreover we can and
will assume without loss of generality that

vi

‖vi‖ �= ± v j

‖v j‖ for i �= j .

What is the shape of a discotope? In order to answer this question we are going to
study the boundary structure of such a convex body, when N ≥ 2.

Lemma 5.17 Consider the discotope K = Dv1+· · ·+DvN , fix q ∈ ∂(Dv2+· · ·+DvN )

and take the Minkowski sum Dv1 + {q}. Then such disc is part of the boundary of the
discotope if and only if

〈q, v1〉 = ±max {〈q̃, v1〉 | q̃ ∈ Dv2 + · · · + DvN }. (20)

Proof We do the proof for N = 2; the general case is then given by a straightforward
induction. Let r : S2 → R≥0 be the radial function of the discotope, namely r(x) :=
max {λ ≥ 0 | λx ∈ K }. A point x ∈ ∂K if and only if r(x/‖x‖) = ‖x‖. So we claim
that for all p ∈ Dv1

r

(
p + q

‖p + q‖
)

= ‖p + q‖,

where q ∈ Dv2 satisfies 〈q, v1〉 = ±max {〈q̃, v1〉 | q̃ ∈ Dv2}. Assume first that q
realizes the maximum. Let r((p + q)/‖p + q‖) = λ. Then we have

λ

(
p + q

‖p + q‖
)

= p′ + q ′ ∈ ∂K

for some p′ ∈ Dv1 and q
′ ∈ Dv2 . By taking the scalar product with v1 we get

λ

‖p + q‖〈q, v1〉 = 〈q ′, v1〉 ≤ 〈q, v1〉;

therefore λ ≤ ‖p + q‖. Since p + q is a point of K , λ ≥ ‖p + q‖ and the claim
follows. The other case where q realizes the minimum is analogous. ��
Since we assumed that all the vi are non colinear, for every i there are exactly two qi
that satisfy (20) that we will denote by q+

i and q−
i respectively. Lemma 5.17 then says

that in the boundary of the discotope there are exactly 2N discs, namely

Dv1 + {q+
1 }, Dv1 + {q−

1 }, . . . , DvN + {q+
N }, DvN + {q−

N }.

The rest of the boundary of the discotope is the open surface S := ∂K \ ⋃N
i=1(Dvi +

{q±
i }) made of exposed points. Moreover, we show in the next proposition that S has

either one or two connected components.
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Fig. 5 The six blue discs are part of the boundary of the discotope K = Dv1 +Dv2 +Dv3 , where v1, v2, v3
belong to the red-shaded hyperplane H . It separates the two connected components of S. In particular the
intersection ∂K ∩ H is the red hexagon

Proposition 5.18 Consider the discotope K = Dv1 + · · · + DvN , then S has two
connected components if and only if v1, . . . , vN lie all in the same plane. Otherwise
it is connected and no two discs intersect.

Proof Assume first that v1, . . . , vN ∈ H where without loss of generality H is the
hyperplane defined by {z = 0}, then we claim that all the discs in ∂K meet on H in a
very precise configuration. Trivially theMinkowski sum (Dv1 ∩H)+· · ·+(DvN ∩H)

is contained in K ∩ H . On the other hand let p ∈ K ∩ H , then

p = (α1, β1, γ1) + · · · + (αN , βN , γN ),

where (αi , βi , γi ) ∈ Dvi and
∑

γi = 0. But because vi ∈ H , then also (αi , βi , 0) ∈
Dvi and so we can write p as

p = (α1, β1, 0) + · · · + (αN , βN , 0)

hence p ∈ (Dv1 ∩ H)+· · ·+ (DvN ∩ H). This implies that K ∩ H is a 2-dimensional
zonotopewith 2N edges, as in Fig. 5; its vertices are exactly the points of intersection of
the discs in the boundary. Hence the boundary discs divide S in exactly two connected
components.

For the converse notice that if there are two connected components, then at least
two boundary discs must intersect. Without loss of generality assume that there is
an intersection point p between a copy of Dv1 and a copy of Dv2 and consider the
plane H = span(v1, v2). Let π(K ) be the projection of the discotope on H ; clearly
π(p) ∈ ∂π(K ) is a vertex. Then for u ∈ S1 ↪→ H ,

hπ(K )(u) = hDv1
(u) + · · · + hDvN

(u)

5.14=
N∑
i=1

‖vi‖
√

〈u, ai 〉2 + 〈u, bi 〉2 =
N∑
i=1

‖vi‖
√

〈u, π(ai )〉2 + 〈u, π(bi )〉2,
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where {vi/‖vi‖, ai , bi } is an orthonormal basis for every i . There are two possibilities
now: either π(ai ) and π(bi ) are linearly independent, or they are linearly dependent
and possibly zero. The latter case corresponds to discs such that vi ∈ H , and the
summand above becomes linear. So, up to relabeling, we can rewrite the support
function splitting these cases:

hπ(K )(u) =
k∑

i=1

|〈u, αi 〉| +
N∑

j=k+1

‖v j‖
√

〈u, π(a j )〉2 + 〈u, π(b j )〉2

for some αi ∈ R and 2 ≤ k ≤ N . Therefore π(K ) is the Minkowski sum of k line
segments and N − k ellipses. The boundary contains a vertex if and only if there are
no ellipses in the sum, hence k = N , i.e., vi ∈ H for every i . ��

Remark 5.19 The previous result can be interpreted with the notion of patches. These
geometric objects have been first introduced in [8] and allow to subdivide the boundary
of a convex body. Accordingly to their definition, in the discotope we find 2N 2-
patches, corresponding to the boundary discs, and either one ore two 0-patches when
S has one or two connected components respectively. Recently Plaumann et al. [13]
refined the definition of patches for a semialgebraic convex body. In this setting it is
more subtle to count the number of patches of our discotopes, because this requires
the knowledge of the number of irreducible components of S.

5.3 A Case Study: The Dice

Definition 5.20 Let e1, e2, e3 be the standard basis ofR3 and let Di := Dei . We define
the dice to be the discotope D := D1 + D2 + D3. See Fig. 6a.

The boundary of the dice consists of six two-dimensional discs of radius 1, lying in
the center of the facets of the cube [−2, 2]3, and a connected surface. The latter is the
zero locus of the polynomial of degree 24:

ϕ(x, y, z) = x24 + 4x22y2 + 2x20y4 + · · · + 728z4

− 160x2 − 160y2 − 160z2 + 16,
(21)

which is too long to fit in a page (it is made of 91 + 78 + 66 + 55 + 45 + 36 + 28 +
21 + 15 + 10 + 6 + 3 + 1 = 455 monomials, here distinguished by their degree).

Consider the projection π := 〈e1, · 〉 : R ⊕ R
2 → R. Even in this simple example

the fibers of the dice under this projection can be tricky to describe. However using
the formula for zonoids one can compute explicitly the fiber body (see Fig. 6b).

Proposition 5.21 With respect to this projection π , the fiber body of D is

�π(D) = D1 + π

4
(e2 + e3) + 1

2
�,
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(a) (b)

Fig. 6 Left: the dice. Right: its fiber body

where � is the convex body whose support function is given by

h�(u2, u3) = 1

2

∫ π

0

√
(cos θ)2(u2)2 + (sin θ)2(u3)2 dθ

and where we recall the notation (11) for segments.

Proof First of all let us note that by expanding the mixed fiber body M�π(D,D) we
have

�π(D) = �π(D1) + �π(D2) + �π(D3) + 2(M�π(D1, D2)

+ M�π(D1, D3) + M�π(D2, D3)).
(22)

Now letσ1(θ) := (0, cos θ, sin θ),σ2(θ) := (cos θ, 0, sin θ),σ3(θ) := (cos θ, sin θ, 0)
in such a way that hDi (u) = (π/2)E|〈u, σi (θ)〉|.

We then want to use Theorem 5.9 and Proposition 5.12 to compute all the sum-
mands of the expansion of �π(D). Using (18) we have that M�π(Di , Dj ) =
π2K0(Fπ (σi (θ), σ j (φ)) with θ, φ ∈ [0, 2π ] uniform and independent. In our case,
Fπ (x, y) = (x1y2 − y1x2, x1y3 − y1x3)/2. We obtain

Fπ (σ1(θ), σ1(φ)) = 0,

Fπ (σ2(θ), σ2(φ)) = 1

2
(0, sin (φ − θ)),

Fπ (σ3(θ), σ3(φ)) = 1

2
(sin (φ − θ), 0),

Fπ (σ1(θ), σ2(φ)) = − cosφ

2
(cos θ, sin θ),

Fπ (σ1(θ), σ3(φ)) = − cosφ

2
(cos θ, sin θ),

Fπ (σ2(θ), σ3(φ)) = 1

2
(cos θ sin φ, sin θ cosφ).
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Computing the support function hπ2K0(Fπ (σi (θ),σ j (φ))) = (π2/2)E|〈u, Fπ (σi (θ),

σ j (φ))〉| and using that E|cosφ| = 2/π , we get

�π(D1) = 0; �π(D2) = π

4
e2; �π(D3) = π

4
e3;

M�π(D1, D2) = M�π(D1, D3) = 1

4
D1.

It only remains to compute M�π(D2, D3). We have

hM�π(D2,D3)(u) = 1

2

(
π

2

)2
E|〈u, Fπ (σ2(θ), σ3(φ))〉|

= π2

16
E|u2 cos θ sin φ + u3 sin θ cosφ|.

We use then the independence of θ and φ and (19) to find

hM�π(D2,D3)(u) = π

8
E

√
(cos θ)2(u2)2 + (sin θ)2(u3)2 = h�(u)

4
.

Putting back together everything we obtain the result. ��
Remark 5.22 It is worth noticing that the convex body� also appears, up to a multiple,
in [7, Sect. 5.1] where it is called D(2), with no apparent link to fiber bodies. In the
case where u2 �= 0 we have

h�(u) = |u2|E
⎛
⎝

√
1 −

(
u3
u2

)2 ⎞
⎠ ,

where E(s) = ∫ π/2
0

√
1 − s2(sin θ)2 dθ is the complete elliptic integral of the second

kind. This function is not semialgebraic thus the example of the dice shows that the
fiber body of a semialgebraic convex body is not necessarily semialgebraic. However
E is holonomic. This suggests that the curved assumption in Corollary 4.5 may not
be needed.
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