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Abstract
The ‘operator entanglement’ of a quantum operator O is a useful indicator of
its complexity, and, in one-dimension, of its approximability by matrix product
operators. Here we focus on spin chains with a global U(1) conservation law,
and on operators O with a well-defined U(1) charge, for which it is possible
to resolve the operator entanglement of O according to the U(1) symmetry.
We employ the notion of symmetry resolved operator entanglement (SROE)
introduced in Rath et al (2023 PRX Quantum 4 010318) and extend the results
of the latter paper in several directions. Using a combination of conformal
field theory and of exact analytical and numerical calculations in critical free
fermionic chains, we study the SROE of the thermal density matrix ρβ = e−βH

and of charged local operators evolving in Heisenberg picture O= ei tHOe−i tH.
Our main results are: i) the SROE of ρβ obeys the operator area law; ii) for free
fermions, local operators in Heisenberg picture can have a SROE that grows
logarithmically in time or saturates to a constant value; iii) there is equipartition
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of the entanglement among all the charge sectors except for a pair of fermionic
creation and annihilation operators.

Keywords: entanglement, symmetries, operator entanglement,
quantum field theory, free fermions

1. Introduction

Quantum entanglement plays a pivotal role to understand emergent phenomena in quantum
many-body physics and numerical methods. In this context, the entanglement entropy has
received significant attention and has become the most popular measure of bipartite entangle-
ment in quantum systems. It is relevant in various contexts, ranging from high-energy phys-
ics [1–4] to condensed matter theory [5–8], when studying extended systems like quantum
field theories (QFTs) and lattice models. For example, it can be useful to detect and describe
phase transitions, even when a conventional order parameter is unavailable. In fact, its beha-
viour as a function of the subsystem size allows us to discern if the system is in a gapped or
gapless phase and what are the universal features of critical systems. It turns out that in the
former case, the entanglement follows the area law [9], i.e. it is proportional to the size of the
border of the subsystem, in contrast to the thermal entropy which is characterised by a volume
law. However, for the ground state of gapless local Hamiltonians in one dimension (1D), the
area law is corrected by a logarithmic term [10–14].

One practical implication is that the presence of entanglement makes it difficult to simu-
late quantum many-body systems on a classical computer. For example, efficient simulations
based on Matrix Product States (MPS) work well in non-critical 1D systems [15–19], but
they are less efficient when we approach a quantum critical point. The counterpart to MPS
for approximating operators are Matrix Product Operators (MPOs), which are tensor network
representations of operators, and it is natural to ask whether a quantity similar to the entan-
glement entropy exists to accurately capture the validity of this approximation [20–27]. The
answer lies in the concept of operator entanglement (OE), which quantifies the entanglement
between quantum operators acting on different parts of a quantum system [20–23, 28–40].
The results about the OE depends on the specific operator and on the framework in which it
is employed. In this paper we continue the analysis initiated in [41] of the symmetry resolved
operator entanglement (SROE), which extends the notion of OE to consider the entanglement
properties of operators with respect to specific symmetries of the quantum system. The inter-
play between the entanglement of a state and symmetries has been intensively studied in the
last years through the symmetry-resolved entropies [42–44], both theoretically [45–53] and
experimentally [41, 54–56], for several entanglement measures [57–61]. The only symmetry
resolution for operators studied so far is the reduced density matrix after a quantum quench
from a product state [41] (see also [27, 31] for related quantities in open systems and [40] for
analogous objects in free models). As in the non-resolved case, it exhibits an entanglement
barrier [22, 62, 63]: it grows linearly in time as entanglement builds up between the local
degrees of freedom, it then reaches a maximum, and ultimately decays to a small finite value
as the reduced density matrix converges to a simple stationary state.

Before moving to the organisation of the paper, we introduce the main concepts: the OE,
and how to symmetry resolve it.
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1.1. Definition of operator entanglement

The entanglement properties between a region A and its complementary B are usually defined
starting from a state |ψ |. Nevertheless, one can also study the entanglement properties of an
operator O by vectorizing it. Namely, if the operator O lives in End(HA)⊗End(HB), we can
view it equivalently as a vector in (HA⊗HB)⊗ (H̄A⊗H̄B), where HA,B denotes the Hilbert
space in part A or B, and H̄A,B its dual. To work with a properly normalised state after the
vectorization, we divide the operator O by a normalisation factor

√
Tr(O†O). Operationally,

one can pick an orthonormal basis {|i〉} for (HA⊗HB) and the corresponding basis {|j〉}
for its dual (H̄A⊗H̄B), and write O=

∑
ijOij|i〉〈j|, where Oij = 〈i|O|j〉. Then the normalised

operator-state is obtained as [64, 65]

|O〉= 1√
Tr(O†O)

∑
ij

Oij|i〉|j〉. (1)

Importantly, O admits a Schmidt decomposition,

O√
Tr(O†O)

=
r∑

i=1

λiOA,i⊗OB,i, (2)

where r is the operator Schmidt rank, and the λi are real positive coefficients that satisfy∑r
i=1λ

2
i = 1. The operators OA,i ∈ End(HA) (same for OB,i) obey the orthonormality condi-

tion Tr[O†
A,i,OA,j] = δij. This can be seen by performing the ordinary Schmidt decomposition

of the pure state |O〉 and eventually reverting the vectorization to get back to the space of
operators.

The OE is defined as follows. From the vectorization |O〉, we can build the super-
reduced-density-matrix TrB⊗B(|O〉〈O|)—where ‘super’ refers to the operators in the space
of operators—which is a super-operator acting on operators onHA. Then the OE is the Rényi
entropy of that super-reduced-density-matrix,

S(n) (O) =
1

1− n
logTr

[
(TrB⊗B (|O〉〈O|))n

]
. (3)

Alternatively, the OE is given in terms of the Schmidt values λi in equation (2) as

S(n) (O) =
1

1− n
log

r∑
i=1

(
λ2i
)n
. (4)

As usual, the limit n→ 1 produces the von Neumann OE

S(O) =−
r∑

i=1

λ2i logλ
2
i . (5)

1.2. U(1) charge and symmetry resolution of OE

We now assume that there is a charge operatorQ acting on the full Hilbert spaceH=HA⊗HB

which generates a U(1) symmetry, and which is a sum of the two charge operators acting
on subsystems A and B, i.e. Q= QA⊗1B+1A⊗QB. A natural question is how to define
a symmetry resolution of the OE of an operator O that possesses a fixed charge qO, i.e.
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[Q,O] = qOQ. The answer is based on the symmetry resolution for |O〉, as we are going to
review. This problem has been already addressed in [26, 27, 41] and we report here the main
definitions we will use in this manuscript.

From the commutation relation between O and Q, the terms in the Schmidt decomposi-
tion (2) can be reorganised according to their charge q as [41, 61]

O√
Tr(O†O)

=
∑
q

∑
j

λ
(q)
j O(q)

A,j ⊗O(qO−q)
B,j , (6)

where [
QA,O

(q)
A, j

]
= qO(q)

A, j,
[
QB,O

(qO−q)
B, j

]
= (qO− q) O(qO−q)

B, j , (7)

such that [Q,O(q)
A,j ⊗O(qO−q)

B,j ] = qOO
(q)
A,j ⊗O(qO−q)

B,j . The charge q that appears in these equations
can be introduced as the eigenvalue of a charge ‘superoperator’ Q living in the Hilbert space
End(H)⊗End(H̄)

Q= Q⊗1−1⊗QT. (8)

Such superoperator satisfies the commutation relation

[|O〉〈O|,Q] = 0, (9)

where we have used the vectorization introduced in equation (1). Using the local structure of
Q in A∪B, we can write

Q=QA⊗1B⊗B+1A⊗A⊗QB, QA = QA⊗1A−1A⊗QT
A, (10)

and the following commutation relation holds

[TrB⊗B (|O〉〈O|) ,QA] = 0. (11)

We can exploit the result above such that TrB⊗B(|O〉〈O|) can be decomposed as

TrB⊗B (|O〉〈O|) =
⊕
q

p(q)TrB⊗B (|O〉〈O|)(q) , p(q)≡ Tr [ΠqTrB⊗B (|O〉〈O|)] , (12)

whereΠq is a projector onto the eigenspace ofQA with fixed q and TrB⊗B(|O〉〈O|)(q) denotes
the (normalised) reduced density matrix built from the vector |O〉 and restricted to the charge
q. The partition function projected in a given charge sector reads

Z(n)
q (O)≡ Tr

[
Πq (TrB⊗B (|O〉〈O|))n

]
, (13)

and the SROE is given by

S(n)q (O) =
1

1− n
log

Z(n)
q (O)[

Z(1)
q (O)

]n , Sq (O) = lim
n→1

S(n)q (O) . (14)

According to equation (12), the total von Neumann OE associated to O splits into

S(O) =
∑
q

p(q)Sq (O)−
∑
q

p(q) logp(q) . (15)
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As it was shown in detail in [41], using the uniqueness of the Schmidt coefficients, the set
of all (non-zero) values {λ(q)j } altogether must be the same as the set of values {λi} from

equation (2). Therefore, all quantities defined above can be defined in terms of {λ(q)j } as
follows

p(q) =
∑
j

(
λ
(q)
j

)2
, S(n)q (O) =

1
1− n

log

∑
j


(
λ
(q)
j

)2
p(q)


n . (16)

1.3. Organization of the paper

Our goal is to extend our previous study on SROE [41]. Themanuscript is organised as follows.
In section 2we review the known analytical techniques for computing the (non-resolved) OE in
CFT and in free fermion spin chains, and we extend these to include the symmetry resolution.
In section 3we apply these techniques to the case of the densitymatrix of a critical 1D system at
thermal equilibrium. In section 4 we study the SROE of local operators evolving in Heisenberg
picture for free fermion chains. We draw our conclusions in section 5.

2. Techniques to compute the SROE

Before reviewing the technical tools necessary to evaluate the SROE, both in field theory and in
free fermionic lattice models, we summarise how to tackle the problem of symmetry resolution
of a U(1) symmetric state following [42, 47].

2.1. U(1) symmetry resolution

In this section, we explain how to compute the symmetry resolved entanglement entropy in a
given charge sector for a state |ψ〉, denoted by S(n)q (|ψ〉).

Let us consider a systemwith an internalU(1) symmetry and its bipartition into two subsys-
tems, A and B. Tracing out the degrees of freedom of B, we obtain the reduced density matrix
(RDM) of A, ρA = TrB|ψ〉〈ψ|. A measure of the entanglement between A and its complement-
ary part is provided by the Rényi entropies, defined as

S(n) (|ψ〉) = 1
1− n

lnTrρnA, (17)

and the limit n→ 1 gives the von Neumann entropy as usual. When |ψ〉 is an eigenstate of
the Hermitian charge operatorQ, by taking the partial trace of the commutator [|ψ〉〈ψ|,Q] = 0
over B one finds that [ρA,QA] = 0, usingQ= QA⊗1B+1A⊗QB. This means that the reduced
density matrix ρA has a block-diagonal structure where each block corresponds to an eigen-
value q′ of QA,

ρA =⊕q ′pA (q
′)ρA (q

′) , (18)

where pA(q ′) is the probability of finding q′ in a measurement of QA in the RDM ρA, i.e.
pA(q ′) = Tr(Πq ′ρA). Within this convention, the density matrices ρA(q ′) of different blocks
are normalised as trρA(q ′) = 1. Thus, from the normalised ρA(q ′), we can define the symmetry
resolved Rényi entropies as

5
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S(n)q ′ (|ψ〉)≡
1

1− n
lnTrρnA (q

′) Sq ′ (|ψ〉) = lim
n→1

S(n)q ′ (|ψ〉) . (19)

The total von Neumann entanglement entropy associated to ρA in equation (18) admits a
decomposition as in equation (15),

S(|ψ〉) =
∑
q ′

p(q ′)Sq ′ (|ψ〉)−
∑
q ′

p(q ′) lnp(q ′) . (20)

The two terms are known as ‘configurational entanglement entropy’ and ‘fluctuation entan-
glement entropy’ (or ‘number entanglement entropy’) respectively [54]. The configurational
entropy is also related to the operationally accessible entanglement entropy of [66–68], while
the number entropy is the subject of a substantial recent activity [54, 69–72].

The calculation of the symmetry resolved entropies by the definition (19) is a difficult task,
especially for an analytic derivation. As proposed in [42], it is convenient to focus on the
charged moments of ρA, Tr

(
ρnAe

iQAα
)
[73–76]. Their Fourier transforms with respect to α are

the moments of the RDM restricted to the sector of fixed charge q′ [42], i.e.

Z(n)
q ′ (|ψ〉)≡ Tr(Πq ′ ρnA) =

ˆ π

−π

dα
2π

e−iq ′αTr
(
ρnAe

iQAα
)
. (21)

Finally the symmetry resolved entropies are obtained as

S(n)q ′ (|ψ〉) =
1

1− n
ln

 Z(n)
q ′ (|ψ〉)(

Z(1)
q ′ (|ψ〉)

)n
 . (22)

We can apply the same machinery to compute the symmetry resolution of the OE in the charge
sectors of the operator in equation (10) starting from the chargedmoments of the super-density-
matrix built from |O〉. They are defined as

Zn (α)≡ Tr
[
(TrB⊗B (|O〉〈O|))n eiαQA

]
, (23)

and their Fourier transform gives

Z(n)
q (O) = Tr

(
Πq (TrB⊗B (|O〉〈O|))n

)
=

ˆ π

−π

dα
2π

e−iqαZn (α) , (24)

where q is the eigenvalue of QA. Thus, we have described a procedure to compute the SROE
without the explicit knowledge of how the spectrum of the operator is resolved into the different
charge sectors.

2.2. SROE from the replica trick in conformal field theory (CFT)

2.2.1. Brief review of the replica trick for the OE in CFT. In field theory, the reason for looking
at Rényi entropies—instead of focusing directly on the von Neumann entropy—is that, for
integer n, TrρnA can be expressed in path-integral formalism as a partition function on an n-
sheeted Riemann surfaceRn obtained by joining cyclically the n sheets along the region A [11,
13]. One approach to compute these Rényi entropies is based on a particular type of twist fields
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in quantum field theory that are associated with the branch points of the Riemann surfaceRn.
We denote them by Tn. Their action, in operator formalism, is defined by [14, 77, 78]

Tn (x1) ϕi (x ′) = ϕi+1 (x
′)Tn (x1) , T−n (x2) ϕi (x

′) = ϕi−1 (x
′)T−n (x2) , (25)

where x1 and x2 are the endpoints of the interval A= [x1,x2] on the real axis, x′ is a point in A
and i = 1, . . . ,n indexes the n sheets modulo n. Here ϕi(z ′) = 1⊗ ·· ·⊗ϕ(z ′) · · · ⊗1 denotes
any operator acting in the single i-th copy. By definition, the two-point function of the twist
fields is the partition function on Rn which enters the definition of the Rényi entropies [14].
In conformal invariant theories the two-point function is fixed by the scaling dimension of the
fields, which here is

∆Tσ
=

c
12

(
n− 1

n

)
. (26)

We can generalise the action of the twist operators to arbitrary permutations σ ∈ Sn of the
permutation group of the n copies of the field theory, namely we can define a twist operator
Tσ as the operator with smallest possible scaling dimension such that [22]

Tσ (x1) ϕi (x ′) = ϕσ(i) (x
′)Tσ (x1) . (27)

If σ has cycles of lengths n1 + · · ·+ nc = n, then the scaling dimension of Tσ is

∆Tσ
=∆n1 + · · ·+∆nc , ∆ni =

c
12

(
ni−

1
ni

)
, (28)

where c is the central charge of the theory. The Rényi entropy is given in terms of the correlator
of the twist fields located at the two endpoints of A [14, 22]

S(n) (|ψ〉) = 1
1− n

log
(
〈ψ|⊗nTσ (x1)Tσ−1 (x2) |ψ〉⊗n

)
, (29)

where |ψ〉⊗n = |ψ〉⊗ |ψ〉 · · · ⊗ |ψ〉 ∈ Hn and σ = (1,2, . . .n). Here σ has a single cycle of
length n, so it has the scaling dimension (26). The OE of an operator O can be computed in a
similar fashion. One has to consider n replicas ofO,O⊗n = O⊗O · · · ⊗O. Then the analogous
expression of equation (29) reads [22]

S(n) (O) =
1

1− n
log

Tr
[(
O†)⊗nTσ (x1)Tσ−1 (x2)O⊗nTσ−1 (x1)Tσ (x2)

]
Tr
(
(O†)

⊗nO⊗n
)

 . (30)

We now generalise this formula to include the charge operators needed for the charged
moments.

7
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2.2.2. Method for computing the charged moments. The replica trick can be adapted as fol-
lows to obtain the charged moments Zn(α). The trick consists in inserting an Aharonov–Bohm
flux through the multi-sheeted Riemann surface Rn such that the total phase accumulated by
the field upon going through the entire surface is α, similarly to what is done for the standard
entanglement entropy [42]. In terms of twist fields, this amounts to computing

Zn (α) =
Tr
[(
O†)⊗nTσ (x1)Tσ−1 (x2)e−iαQA,1O⊗neiαQA,1Tσ−1 (x1)Tσ (x2)

]
Tr
(
(O†)

⊗nO⊗n
) , (31)

where QA,1 = Q1 ⊗1⊗ ·· ·⊗1 is the charge operator acting in the first replica. Let us stress
that the operator eiαQA,1 appears with opposite signs because of the definition of the charge
operator in the doubled Hilbert space (see equation (10)).

In this paper, we will apply formula (31) in the context of a spinless Luttinger liquid, which
is equivalent to a c= 1 compactified boson CFT parameterised by a coupling constantK called
‘Luttinger parameter’ see e.g. [79, 80]. Crucially, in the Luttinger liquid, the U(1) symmetry
is generated by Q=

√
K

2π

´∞
−∞ dx∂φ(x), where φ(x) is the boson field. Then when the charge

operator is restricted to the interval A= [x1,x2], the operators eiQAα appearing in equation (31)
can be written as

eiQAα = ei
α
√
K

2π

´ x2
x1
dx∂φ(x)

= ei
α
√
K

2π (φ(x2)−φ(x1)), (32)

which is a product of two vertex operators Vα(x2)V−α(x1) with Vα(x) = ei
α
√
K

2π φ(x). The ver-
tex operator V−α(x1) can be fused with the twist field Tσ−1(x1) into a single ‘charged twist
field’, T −α

σ−1 (x1)≡ Tσ−1(x1)V−α(x1) [42]. In other words, when one turns around the operator
T −α
σ−1 (x1) on the Riemann sheet, one goes from replica j to replica σ( j) and one also picks up

a phase α when going through the first replica. The scaling dimension of the composite (or
charged) twist fields reads [42]

∆T α
σ
=

1
12

(
n− 1

n

)
+
K
n

( α
2π

)2
. (33)

In section 3 we will apply formulas (31)–(33) to compute the SROE of the thermal density
matrix.

2.3. Computing the SROE in free fermion chains

It is well established that, for the eigenstates of quadratic Hamiltonians, the entanglement
entropies can be efficiently computed in terms of the eigenvalues of the correlation matrix of
the subsystem [81–83]. As pointed out in [41], this strategy can be adapted to compute the
charged moments of the OE, see equation (23). Let us briefly review the resulting formal-
ism here. The operator O that we are interested in is the Gaussian density matrix ρ of a free
fermionic chain of length L. The density matrix can be diagonalised and be put in the form
ρ∝ e−

∑
kλkc

†
k ck , where e−λk = nk

1−nk
with nk the occupation number of the orbital k= 1, . . . ,L.

Here c†k (ck) creates (annihilates) a fermion in the orbital k; the creation/annihilation operators
satisfy {ck,c†k ′}= δkk ′ .

8
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For our purposes it is convenient to write the density matrix ρ as

ρ=
L⊗

k=1

|0〉k〈0|k+ e−λk |1〉k〈1|k
1+ e−λk

=
L⊗

k=1

[(1− nk) |0〉k〈0|k+ nk|1〉k〈1|k] , (34)

where |0|k (resp. |1|k) are states where the orbital k is empty (resp. filled), so that by applying
the vectorization trick in equation (1) for ρ, we get

|ρ〉√
Tr [ρ2]

=
L⊗

k=1

[
(1− nk) |0〉k|0〉k̃+ nk|1〉k|1〉k̃

]√
n2k +(1− nk)

2
=

L⊗
k=1

[
1− nk+ nkc

†
k c̃

†
k

]
|0〉√

n2k +(1− nk)
2

, (35)

where the c̃k operators are copies of the ck’s introduced in the vectorization process, and |0〉 is
the vacuum annihilated by all the ck’s and c̃k’s. From this pure state, we can build the super-
reduced-density-matrix TrB⊗B(|ρ〉〈ρ|). The correlation matrix of the state |ρ〉 reads [41, 84]

Ckk ′ = 〈ρ|
(
c†k
c̃k

)(
ck ′ c̃

†
k ′
)
|ρ〉= δkk ′

n2k +(1− nk)
2

(
n2k nk (1− nk)

nk (1− nk) (1− nk)
2

)
. (36)

In the basis of ck, c̃k’s, the supercharge operator takes the form

Q=

(∑
k

c†kck

)
⊗1−1⊗

(∑
k

c̃†k c̃k

)T

. (37)

At this point, we can compute the 2L× 2L correlation matrix as

C=
L⊕

k=1

Ckk, (38)

and by doing a Fourier transform, we can write C in the spatial basis. To evaluate the charged
moments in equation (23), we have to restrict the supercharge operator toQA and do the Fourier
transform of the correlation matrix in equation (38) to the subspace corresponding to the sub-
system A, of size LA. Diagonalizing the latter matrix, we get 2LA real eigenvalues ξi between
0 and 1.

Therefore, one can compute the charged moments of the reduced density matrix built from
|ρ〉 in terms of the eigenvalues ξi as [41, 83]

Zn (α) = e−iα(LA)
2LA∏
a=1

(
ξnae

iα +(1− ξa)
n)
. (39)

Using equation (24), we can compute exactly the SROE for the reduced density matrix of a
free fermionic chain. We will use similar techniques to compute the SROE of an operator in
Heisenberg picture in section 4.

9
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Figure 1. Left panel: the replicated surface that is used to calculate the chargedmoments
in the setup of [42] on a cylinder of circumference βv. The two twist fields T −α

σ−1 and
T α
σ are located at the endpoints of the interval A. Right panel: for the charged moments

of the OE, there are four twist fields acting at the endpoint of the interval in HA⊗H̄A.

3. SROE of a thermal density matrix

In this section we focus on the thermal density matrix, ρβ = e−βH, where β is the inverse
temperature. The densitymatrix is vectorised, ρβ → |ρβ〉 ∈ H⊗H̄. For concreteness, consider
for instance the free fermion chain (equivalent to the spin-1/2 XX spin chain via a Jordan–
Wigner transformation)

H=−1
2

∑
i

c†i+1ci + h.c., Q=
∑
i

c†i ci, [H,Q] = 0. (40)

Then the charge operator Q can be promoted to a ‘charge super-operator’ Q= Q⊗1−1⊗
QT. Notice that Q|ρβ〉= 0. In this section we compute the SROE of ρβ , relying on the fact
that, at low energy, the Hamiltonian (40) corresponds to a free fermionic CFT with c= 1, or
equivalently a Luttinger liquid with Luttinger parameter K= 1. We first evaluate the charged
moments for the c= 1 free fermion CFT (or Luttinger liquid with K= 1), then extend the
results to the case of interacting fermions (i.e. to Luttinger liquid with K 6= 1), and use the
results to compute the SROE. We then benchmark our analytical results against numerics.

3.1. Charged moments for free fermion CFT

As reviewed in the previous section, in CFT the charged moments can be computed as

Zn (α) =
Tr
(
ρ⊗nβ T −α

σ−1 (x1)T α
σ (x1)ρ

⊗n
β T α

σ (x2)T −α
σ−1 (x2)

)
[
Trρ⊗2

β

]n , (41)

where we have used the charged twist fields T α
σ (x1) that cyclically permute the replicas of the

subsystem A, leaving B untouched as in equation (30), and are simultaneously the end points
of the charge operator QA =

´ x2
x1
dx∂φ(x) as in equation (32). If we view the ratio (41) as a

correlation function of twist operators living on an infinitely long cylinder of circumference
2βv, parametrised by the complex coordinate x+ iy with (x,y) ∈ R× [0,2βv], then the four
charged twist operators are located at the points 0,LA, iβv and LA+ iβv, where LA is the size
of the subsystem A (see figure 1).

10
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Therefore, the four-point function we need to calculate reads

Zn (α) = 〈T −α
σ−1 (0)T α

σ (iβv)T α
σ (LA)T −α

σ−1 (iβv+LA)〉, (42)

where σ = (1,2, . . . ,n) is a cyclic permutation. The scaling dimension of the composite twist
field is given by equation (33) with K= 1. For free fermions, this object corresponds to the
evaluation of the four-point function of charged twist fields on the cylinder of circumference
2βv. The result is given in [22] for α= 0, and it can be generalised straightforwardly to α 6= 0
by replacing the scaling dimension (26) by (33), leading to

logZn (α) =−
[
n2 − 1
3n

+
α2

π2n

]
log

(
2βv
π

tanh

(
πLA
2βv

))
+ logcn,α, (43)

with cn,α a non-universal constant which depends on the microscopic details of the model, and
that we will discuss in more detail below. We implicitly assume that the lattice spacing is set
equal to 1. We use this result to compute the SROE in section 3.3.

3.2. Generalization to K ̸=1

The result (43) for the charged moments can be generalised to a Luttinger liquid—or equival-
ently a compactified boson CFT—with a Luttinger parameterK 6= 1, corresponding to interact-
ing fermions. The scaling dimension of the composite twist field in this case changes according
to equation (33).

We are interested in computing 〈T −α
σ−1 (u1)T α

σ (v1)T α
σ (u2)T −α

σ−1 (v2)〉, with u1 = 0,v1 =
LA,u2 = iβv,v2 = iβv+LA. The calculation of that four-point function is much more com-
plicated for K 6= 1 than for K= 1, as it involves more data from the underlying CFT, including
operator content and OPE coefficients (see e.g. [85–88]). Here we exploit the result of the cal-
culation for two intervals on the infinite line from [89] (see also [90]), andwe use the conformal
transformation w→ z= βv/π logw that maps each sheet in the w-plane into an infinitely long
cylinder of circumference 2βv, to obtain the result that we need. It is convenient to introduce
the cross-ratio

x=
sinh

(
π (v1−u1)

2βv

)
sinh

(
π (u2−v2)

2βv

)
sinh

(
π (v2−u1)

2βv

)
sinh

(
π (u2−v1)

2βv

) =

[
tanh

πLA
2βv

]2
. (44)

Then the four-point function of the charged twist fields splits into a product of the four-point
function of the twist fields in the plane, times the four-point function of vertex operators in the
n-sheeted Riemann surfaceRn [89],

Zn (α) = 〈T −α
σ−1 (u1)T α

σ (v1)T α
σ (u2)T −α

σ−1 (v2)〉

=
cn,α
cn,0

〈Tσ−1 (u1)Tσ (v1)Tσ (u2)Tσ−1 (v2)〉〈V−α (u1)Vα (v1)

×Vα (u2)V−α (v2)〉Rn . (45)

Here cn,α denotes again ultra-violet non-universal constant. The factor 〈Tσ−1(u1)Tσ(v1)Tσ(u2)
Tσ−1(v2)〉 is the partition function (41) atα= 0, while the product of vertex operators is readily
evaluated [89], leading finally to

11
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〈T −α
σ−1 (u1)T α

σ (v1)T α
σ (u2)T −α

σ−1 (v2)〉

= cn,α
Zn (0)
cn,0

[
4β2v2

π 2
sinh

(
π (v1 − u1)

2βv

)
sinh

(
π (v2 − u2)

2βv

)

×
sinh

(
π (u2−u1)

2βv

)
sinh

(
π (v2−v1)

2βv

)
sinh

(
π (v2−u1)

2βv

)
sinh

(
π (u2−v1)

2βv

)
− α2K

2π2n

= cn,α
Zn (0)
cn,0

[
2βv
π

tanh

(
LAπ
2βv

)]− Kα2

π2n

. (46)

The partition function Zn(0) defined in equation (41) with α= 0 can be computed by combin-
ing the expression for the OE in [22] with the result for the four-point function of twist fields
in [86]. The result is

Zn (0) = cn,0

[
2βv
π

tanh

(
LAπ
2βv

)]− n2−1
3n

Fn (x) , (47)

where Fn(x) is the conformal block of twist fields [86],

Fn (x) =
Θ(0|Γ(x)/K)Θ(0|Γ(x)K)

[Θ(0|Γ(x))]2
. (48)

Here Θ(u|Ω) is the Riemann–Siegel Theta function defined for an (n− 1)× (n− 1) complex
matrix Ω and an (n− 1)-dimensional vector u:

Θ(u|Ω)≡
∑

m∈Zn−1

eiπm
t·Ω·m+2π i mt·u. (49)

The matrix Γ(x) in equation (48) has entries given by [86]

Γrs (x) =
2i
n

n−1∑
l=1

cos

[
2π l(r− s)

n

]
sin

(
π l
n

)
βl/n (x) , r,s= 1, . . . ,n− 1, (50)

and

βp (x) =
Ip (1− x)
Ip (x)

, (51)

with Ip(x)≡ 2F1(p,1− p,1,1− x). The conformal block Fn(x) is invariant under x 7→ 1− x
and it is normalised such that Fn(0) = Fn(1) = 1.

Our final result for the charged moment is then

Zn (α) = cn,α

[
2βv
π

tanh

(
LAπ
2βv

)]− n2−1
3n − Kα2

π2n

Fn (x) . (52)

In the two limiting cases LA � βv and LA � βv, where the four-point function factorises into
a product of two two-point functions, we see that the result reduces to the expected one,

12
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LA � βv : 〈T −α
σ−1 (0)T α

σ (iβv)T α
σ (LA)T −α

σ−1 (iβv+LA)〉

'〈T −α
σ−1 (0)T α

σ (LA)〉〈T −α
σ−1 (iβv+LA)T α

σ (iβv)〉 ∝ 1

L
4∆T α

σ

A

,

LA � βv : 〈T −α
σ−1 (0)T α

σ (iβv)T α
σ (LA)T −α

σ−1 (iβv+LA)〉

'〈T −α
σ−1 (0)T α

σ (iβv)〉〈T −α
σ−1 (iβv+LA)T α

σ (LA)〉 ∝
1[

2βv
π

]4∆T α
σ

. (53)

These results for the charged moments have the same dependence on the parameters βv,LA
as the one of the OE found in [22], with the scaling dimension ∆Tσ

replaced by ∆T α
σ
.

Moreover, when K= 1, Fn(x) = 1 for all x and the logarithm of equation (46) coincides with
equation (43).

3.3. Symmetry resolution

To go from the charged moment (52) to the SROE, we need to take the Fourier transform with
respect to α. To do this, it is important to know the non-universal constant cn,α. We start from
the free fermion chain (40), where cn,α is known analytically, and later turn to the interacting
case.

3.3.1. SROE in the free fermion chain. The constant cn,α is known in the free fermion
chain (40) from the charged moments of the reduced density matrix computed in [69]. The
ratio cn,α/cn,0 behaves quadratically at small α as [69]

cn,α
cn,0

'
α→0

eα
2(2γ(n)− log 2

π2n
), (54)

where

γ (n) =
n
4

ˆ ∞

−∞
dw
[
tanh3 (πnw)− tanh(πnw)

]
i log

Γ
(
1
2 + iw

)
Γ
(
1
2 − iw

) . (55)

(This expression is real, as can be checked easily.) For later convenience, we define hn =

4γ(n)− 2 log2
π2n so that cn,α/cn,0 ' e

α2

2 hn . The constant cn,0 was computed by Korepin and Jin
in [91]:

cn,0 = e2Υn+
1−n2

3n log2

Υn = n
ˆ ∞

−∞
dw [tanh(πw)− tanh(πnw)] i log

Γ
(
1
2 + iw

)
Γ
(
1
2 − iw

) . (56)

This leads to the following result for the charged moments in the free fermion chain:

Zn (α) = cn,0

[
2βv
π

tanh

(
LAπ
2βv

)]− n2−1
3n − α2

π2n

e
α2

2 hn . (57)

We check the result (57) against numerics in figure 2. The symbols represent the numer-
ical data obtained through exact lattice computations, using the expression for the charged

13
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Figure 2. Numerical check of formula (57) for free fermions on the lattice with disper-
sion ε(k) =−cosk, for two different values of n. The Fermi velocity is v= 1. We take
a chain of L sites at inverse temperature β and cut an interval of length LA. The black
symbols represent the extrapolated data for fixed LA/β = 0.5.

moments described in section 2.3. The data present finite size corrections, which become lar-
ger as n and α increase. In the right panel, in order to achieve the correct scaling limit, we
have computed logZn(α) at fixed α,n= 2 and for fixed LA/β = 0.5. The leading corrections
to the scaling behave as L−2(1−α/π)/n

A , L−2(1+α/π)/n
A , L−2/n

A , L−2/n(2−α/π)
A (see also [92] for

a similar analysis). We then perform a fit of the finite LA data (fox fixed α, n= 2), keeping
the first two power-law corrections and extrapolating at LA →∞. The data obtained following
this procedure are reported as black symbols in the right panel of figure 2.

Plugging the expression (57) of the charged moments in the Fourier transform (24) and
applying the saddle-point approximation for β,LA � 1, we get

S(n)q (ρβ) = S(n) (ρβ)−
1
2
log

(
4
π
logδn

(
2βv
π

tanh

(
πLA
2βv

)))
+

logn
2(1− n)

− π4n(h1 − nhn)
2

4(1− n)2
(
log
(

2βv
π tanh

(
πLA
2βv

)))2
+ q2nπ4 h1 − nhn

4(1− n)
(
log
(

2βv
π tanh

(
πLA
2βv

))
κn

)2
+ o

(
log−2

(
β tanh

(
πLA
2βv

)))
, (58)

where

logδn =−π
2n(hn− h1)
(1− n)

, logκn =−π2 (h1 + nhn)
2

, (59)

and S(n)(ρβ) is the total OE

S(n) (ρβ) =
n+ 1
3n

log

(
4βv
π

tanh

(
πLA
2βv

))
+

2
1− n

Υn. (60)
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Figure 3. Equation (39) (symbols) vs equation (58) (solid lines) for β = 200,20, n= 1
(upper panel), n= 2 (lower panel). For n= 2, we also check the result for the total OE
(green line). We observe that as the temperature increases, the finite size corrections
become more important.

This formula is also valid for the symmetry resolved von Neumann OE taking properly the
limits of the various pieces when n→ 1. The expression (58) is checked against numerics
in the free fermion chain in figure 3. The small deviations between data and analytics are a
consequence of the finite size corrections already present in the charged moments (figure 2).

3.3.2. Interacting case. For K 6= 1, we do not know a microscopic model where the non-
universal constant cn,α is known. Nevertheless, we can generalise the previous results, assum-
ing that cn,α behaves smoothly as a function of α near α= 0, i.e.

cn,α = cn,0 −
α2

2
cn,0hn+ o

(
α2
)
= cn,0e

α2

2 hn + o
(
α2
)

(61)

for some constants cn,0 and hn that depend on the microscopic model and are, in general, not
equal to the ones in the free fermion chain. By repeating the same steps as before, the SROE
reads

15



J. Phys. A: Math. Theor. 57 (2024) 145002 S Murciano et al

S(n)q (ρβ) = S(n) (ρβ)−
1
2
log

(
4K
π

logδn

(
2βv
π

tanh

(
πLA
2βv

)))
+

logn
2(1− n)

− π4n(h1 − nhn)
2

4K2 (1− n)2
(
log
(

2βv
π tanh

(
πLA
2βv

)))2
+ q2nπ4 h1 − nhn

4K2 (1− n)
(
log
(

2βv
π tanh

(
πLA
2βv

))
κn

)2
+ o

(
log−2

(
β tanh

(
πLA
2βv

)))
. (62)

3.3.3. Discussion. To get insight into the meaning of equations (58) and (62), we study the
following two asymptotic regimes, which are valid for any value of K:

LA � βv : S(n)q (ρβ) =
n+ 1
3n

logLA−
1
2
log(K logLA)+O(1) ,

LA � βv : S(n)q (ρβ) =
n+ 1
3n

log
2βv
π

− 1
2
log

(
K log

2βv
π

)
+O(1) , (63)

We find that the leading order term corresponds to the total OE, which diverges logarithmically
in LA at low temperatures, i.e. when the reduced density matrix ρA is very close to the one of
the ground state, while it is bounded (in LA) at finite temperature β. This is the main striking
difference with respect to the usual entanglement, which at finite temperature has an extensive
behaviour. Indeed, the symmetry resolved Rényi entropy (19) of a thermal state in a bipartition
A= [0,LA], B= (−∞,0)∪ (LA,∞) for a c= 1 CFT is [59, 93]

LA � βv : S(n)q ′ (|ψ〉) =
n+ 1
6n

logLA−
1
2
log(K logLA)+O(1) ,

LA � βv : S(n)q ′ (|ψ〉) =
n+ 1
6n

πLA
βv

− 1
2
log

(
K
LA
βv

)
+O(1) , (64)

where q′ denotes the eigenvalues of the charge operator Q in (40) restricted to the subsystem
A. The expression above displays a logarithmic growth at zero-temperature and an extensive
form in opposite limit; the leading order in both regimes coincides with the total Rényi entrop-
ies [14]. By comparing equations (63) and (64), we observe that, in the low-temperature limit
LA � βv, the only difference is that the leading-order term of the SROE is twice the one of
the symmetry resolved Rényi entropy. This is consistent with the result that, for pure states,
the total OE is exactly twice the entanglement entropy [22]. In fact, we can explain the logar-

ithmic growth of the SROE at low-temperature by observing that ρβ = e−βH β→+∞−−−−−→ |ψ〉〈ψ|,
where |ψ〉 is the pure ground state of H, and since at leading order S(n)q (ρβ)∼ S(n)(ρβ),

S(n)q ′ (|ψ〉)∼ S(n)(|ψ〉), for LA � βv we expect that S(n)q (ρβ)∼ 2S(n)q ′ (|ψ〉). Then, the fact that
|ψ〉 is a critical state justifies the logarithmic behaviour of the entanglement. Conversely,
as highlighted earlier, the the result is completely different at high temperatures: the state
entanglement’s extensive behavior contrasts sharply with the operator area law observed in
the thermal density matrix ρβ . The practical consequence of this result is that ρβ can be effi-
ciently represented by an MPO [22].

16



J. Phys. A: Math. Theor. 57 (2024) 145002 S Murciano et al

Then S(n)q (ρβ) presents a double logarithmic correction in LA at low temperature, while
it remains bounded at finite temperature, with a double logarithmic correction depending on
the inverse temperature β. This behaviour is analogous to the symmetry resolved entangle-
ment only in the LA � βv regime, as we can deduce from equation (64). Finally, the fact that
the leading order term of the SROE coincides with the total OE resembles the entanglement
equipartition for the symmetry resolution of aU(1)−invariant theory [43], and it can be traced
back to the conformal invariance of the system also in this case. A similar result is also shown
in equation (64) for the usual symmetry resolution of the entanglement, since, at leading order,
the formula does not exhibit any dependence on the charge sector q′.

4. SROE of local operators in Heisenberg picture in free fermion chains

The problem of computing the OE of local operators evolving in the Heisenberg picture,ϕ(t) =
eiHtϕe−iHt —also called ‘local operator entanglement’ by Kos, Bertini and Prosen [32]—, has
attracted some attention recently [22, 30–37]. In this section we study the symmetry resolution
of the OE of a local operator in Heisenberg picture in the XX chain with periodic boundary
conditions, which is mapped to the free fermion chain (40) by the Jordan–Wigner transforma-
tion. Following [20–22], we distinguish initial operators that are local in terms of the fermions
(such as c†x or c

†
xcx) from operators that are attached to a Jordan–Wigner string.

4.1. SROE of creation/annihilation operators and other local operators

The goal of this section is to study the SROE of c†x(t),σ
z
x(t). In the former case, we take advant-

age of the form in which equation (6) can be written, while in the latter we exploit the con-
nection between the charged moments of the super-density-matrix and the correlation matrix,
similarly to what has been done in section 2.3.

4.1.1. SROE of creation operator c†x(t). We start by studying the SROE of a single creation
operator c†x(t) (the analysis for cx(t) can be performed in a similar way). We observe that
[Q,c†x(t)] = c†x(t), with Q=

∑
j c

†
j cj, so qO = 1 in equation (6). We choose x= 0 and we can

use the Fourier transform, for a ring of L sites,

c†0 (t) =
∑
j

U∗
j0 (t)c

†
j , U0j (t) =

1
L

∑
k

eikjeitcos(k). (65)

In the thermodynamic limit, the matrix elements U0m(t) of the unitary evolution operator can
be written in terms of Bessel functions,U0m(t) −→

t→∞
i−mJm(t). We can directly recast c†0(t) into

the form of equation (6), with A= (−∞,0), which reads

c†0 (t) =

∑
m⩽0

Jm (t)

⊗1B+1A⊗

(∑
m>0

Jm (t)

)
. (66)

This implies that there are only two possible charge sectors, q= 1,0 and we can also directly
write down the Schmidt values λm(0) = λm(1) = Jm(t). At large times, the Bessel functions
satisfy ∑

m⩽0

J2m (t) −→t→∞

1
2
. (67)
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Combining equation (16) and (67), we get the following result at large time:

p(0) = p(1) = 1/2, S(n)0

(
c†0 (t)

)
= S(n)1

(
c†0 (t)

)
= 0 (68)

and ∑
q

p(q)Sq
(
c†0 (t)

)
−
∑
q

p(q) logp(q) = 2
log2
2

= log2. (69)

This implies that the SROE vanishes in all the charge sectors and the total OE is given only by
the number/fluctuation entanglement (the second term of equation (15)) i.e. by the probability
of finding q= 1,0 as an outcome of QA.

4.1.2. SROE of local density operator c†x(t)cx(t). We now consider a less trivial example,
which is the symmetry resolution of a pair of creation and annihilation operators. In the spin
language (up to additive constants) this corresponds to

c†xcx ↔ σzx. (70)

Let us focus on σz0(t). From the state-operator correspondence, we want to study the entangle-
ment due to the state c†0(t)c̃

†
0(t)|0〉 [22]. Before reporting the details of the computations, we

report the main result here. We observe that there are 3 non-trivial charge sectors, q= 0,±1,
where

p(0) = 2p(±1) =
1
2

S(n)q=0 (σ
z
0 (t)) = log2, S(n) (q 6= 0) = 0, (71)

and∑
q

p(q)Sq (σ
z
0 (t))−

∑
q

p(q) logp(q) =
log2
2

+
log2
2

+ 2
log4
4

= 2log2, (72)

i.e. equation (15) is satisfied. Therefore, differently from what we found before for one single
creation operator c†0(t), there exists one charge sector q= 0 where the SROE is different from
0 and both terms in equation (15) contribute to the total OE.

Given the simplicity of the result, it might be possible to find it following the logic of the pre-
vious subsection about c†(t). However, as an illustration of the techniques used in section 2.3,
we follow an alternative path. First of all, we need to compute

〈0|c̃0 (t)c0 (t)c†ncmc
†
0 (t) c̃

†
0 (t) |0〉. (73)

Therefore, plugging equation (65) into equation (73), we get

〈0|c̃0 (t)c0 (t)c†ncmc
†
0 (t) c̃

†
0 (t) |0〉= U0n (t)U

∗
m0 (t) . (74)

By repeating the same computations for c†nc̃
†
m, c̃ncm, c̃nc̃

†
m, we can write down the 2LA× 2LA

correlation matrix for a subsystem (−LA+ 1,0) as

CA (t) =

(
C (t) 0LA
0LA 1LA −C (t)

)
, (75)
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where Cnm(t) = im−nJm(t)Jn(t), while 0LA and 1LA denote the LA×LA null and identity matrix,
respectively. In the scaling limit t,LA →∞, we can compute Tr(2CA(t)− 1)j, observing that

Tr(2CA (t)− 1)2j = 2LA− 2, Tr(2CA (t)− 1)0 = 2LA, Tr(2CA (t)− 1)2j−1
= 0. (76)

This can be understood as follows: first of all, because of the construction of CA(t) with the
blocks C(t) and 1−C(t), Tr(2CA(t)− 1)j vanishes for any odd values of j. For the even powers,
we can start by studying the case j= 2. We restrict to the upper LA×LA block and we compute
the following trace (the trace of the square of the lower block is the same)

Tr(2C (t)− 1)2 =
∑
kj

(
2Jk (t)Jj (t) i

k−j− δkj
)(

2Jk (t)Jj (t) i
j−k− δkj

)
. (77)

Therefore, equation (77) and (67) give

4
∑
kj

J2k (t)J
2
j (t)− 4

∑
j

J2j (t)+
∑
j

1= LA− 1. (78)

The generalisation to higher powers of j follows the same logic, since all the powers involving
terms like

∑
j J

2k
j (t) vanish for k> 1 in the scaling limit.

We can now come back to our main focus of the section, i.e. the evaluation of the
charged moments built from σz0(t). The charged moments in equation (39) can be rewritten
using [94, 95]

hn,α (x) = log

[(
1+ x
2

)n

eiα +

(
1− x
2

)n]
=

∞∑
m=0

sn,α (m)x
m,

logZn (α) =− iαLA+
∞∑
m=0

sn,α (m)Tr(2CA (t)− 1)m . (79)

The coefficients sn,α(m) correspond to the function hn,α(x) evaluated in certain simple points:

sn (0) = hn,α (0) = (1− n) log2+ logcos
α

2
+ i

α

2
,

∞∑
m=1

sn,α (2m) =

(
hn,α (1)+ hn,α (−1)

2
− sn,α (0)

)
= (n− 1) log2− logcos

α

2
. (80)

It follows that

logZn (α) =−iαLA+ sn (0)(2LA)+ 2(LA− 1)
∞∑
m=1

sn,α (2m) = 2(1− n) log2+ 2logcos
α

2
.

(81)

In figure 4 we compare the prediction (81) for the logarithm of the charged moments logZn(α)
with the exact lattice computations done using the correlation matrix in equation (75). The
dependence of Zn(α) in t and α is perfectly reproduced by the exact result.

By doing the Fourier transform in equation (24), we can compute

Z(n)
q (σz0 (t)) = 22(1−n)

ˆ π

−π

dα
2π

e−iqαZn (α) = 22(1−n) sin(πq)
2π (q− q3)

. (82)
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Figure 4. Logarithm of the charged moments for the operator σz0(t) in the tight-binding
model (see equation (40)) for a bipartition [−LA,0]∪ [1,LA], LA = 30, with periodic
boundary conditions. The plots are at fixedα as function of time (left) and at fixed time as
function of α (right). The symbols are the numerical data coming from the evaluation of
the eigenvalues of the correlation matrix in equation (75) while the solid line represents
equation (81).

Figure 5. Symmetry resolution of the OE for the operator σz0(t). Left panel: probability
of finding q as an outcome of the measurement ofQA. Right panel: SROE as function of
t at fixed q. From equation (71) only the q= 0 charge sector has a non-vanishing entropy
which saturates to the constant value log2.

We recognise that Z(n)
q=0(σ

z
0(t)) =

22(1−n)

2 , Z(n)
q=±1(σ

z
0(t)) =

22(1−n)

4 , otherwise Z(n)
q (σz0(t)) = 0.

This has been checked in the left panel of figure 5. Finally, we deduce that the SROE behaves as
reported in equation (71): The fact that the OE is different from 0 only in one charge sector is a
strong violation of the equipartition that we have found in section 3. This lack of equipartition
is a direct consequence of the fact that the operator entanglement stays always finite.
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4.2. OE of a Jordan–Wigner string

We now turn to the calculation of the SROE of a Jordan–Wigner string in the tight-binding
chain with periodic boundary conditions, i.e.

JWx (t)≡
∏
y⩽x

(
1− 2c†y (t)cy (t)

)
. (83)

We place the endpoint of the string at the origin without loss of generality. Therefore, we are
interested in the correlation matrix built from

JW0 (t)→ |JW0 (t)〉=
∏
y⩽0

(
1− c†y (t) c̃

†
y (t)

)
|0〉, (84)

by replacing c(t) with c̃†(t) which anticommutes with all the c’s. It is convenient to extract the
time dependence as

|JW0 (t)〉= eit(H⊗1−1⊗H̃)|JW0 (0)〉, (85)

and to perform a Bogoliubov transformation (exactly as done for the total OE in [22]),(
b†x
dx

)
=

1√
5

(
1 −1
1 1

)(
c†x
c̃†x

)
. (86)

Thus, the initial state becomes

|JW0 (t)〉=
1
5

∏
y⩽0

d†yb
†
y |0d,b〉, (87)

where now |0d,b〉 is the vacuum for the d and bmodes. This transformation does not do anything
to the HamiltonianH⊗1−1⊗ H̃ and to the charge operatorQ⊗1−1⊗QT in equation (37),
which already were diagonal. However, due to this simplification on the initial state, we can
compute the correlation matrix as

CA (t) =

(
C (t) 0LA
0LA 1LA −C (t) ,

)
(88)

where Cnm(t) =
∑0

y=−LA
im−nJm−y(t)Jn−y(t) [96]. Rewriting the initial state as in equation (87)

also allows us to have an analytical insight on the time evolution of the SROE, following
the observations done in [22]. Indeed, equation (87) is a product state |DWIS〉b⊗ |DWIS〉d =∏

y⩽0 d
†
y |0d〉⊗

∏
y⩽0 b

†
y |0b〉. The two independent initial states for the b’s and the d’s operators

are domain-wall initial states (DWIS). For a bipartition A∪B= (−LA,0)∪ (0,LA) and in the
scaling limit LA →∞, the charged moments of the JW string are exactly twice the charged
moments of the domain wall computed in [97], i.e.

logZn (α) =−
[
n2 − 1
3n

+
α2

π2n

]
log4t+ 2α2γ (n) . (89)

Let us remark that the knowledge of the non-universal constants from [69] allows us to
benchmark our analytical prediction against the exact lattice computations without fitting any
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Figure 6. Left panel: logarithm of the charged moments for the Jordan–Wigner string
JW0(t) in the tight-binding model for a bipartition [−LA+ 1,0]∪ [1,LA], LA = 30, with
periodic boundary conditions. The solid line is equation (89), which also takes into
account the exact knowledge of the non-universal constants for this system. The SROE
of this operator is studied in the right panel: the comparison between numerics and the
analytical prediction in equation (90) is quite good.

parameter, as we have done in the left panel of figure 6. By doing a Fourier transform and
applying the saddle point approximation in the limit t→∞, we get

S(n)q (JW0 (t)) = S(n) (JW0 (t))−
1
2
log

(
4
π
log(2tδn)

)
+

logn
2(1− n)

− π4n(h1 − nhn)
2

4(1− n)2 (log(2t))2

+ q2nπ4 h1 − nhn

4(1− n)(log(2tκn))
2 + o

(
log−2 t

)
, (90)

where the constants hn, δn, κn have been defined in equation (59) and after equation (54), and

S(n) (JW0 (t)) =
n+ 1
3n

log(4t)+
2

1− n
Υn. (91)

This is just the double of the entanglement entropy following a quench from a domain wall
state [97]. Such a result is not surprising since it was already observed in [22] that the total OE
of the JW string is exactly twice the entanglement entropy of a domain wall [98] and we find
that the same is true in each symmetry sector. Hence, the equipartition of OE in the symmetry
sectors is asymptotically restored with an asymptotic correction of the form q2/ log2(t), with
a non-trivial prefactor depending on non-universal quantities.

The results of this and of the former subsection suggest that the breaking of the equipartition
is a feature directly related to the finiteness of operator entanglement. The latter takes place
for operators with a finite support (like σz, i.e. c†xcx) while extended operators, like the Jordan–
Wigner strings, have diverging (in t) operator entanglement and restore equipartition for large
times.

We conclude this section by commenting that onemay also study the SROE orOE of operat-
ors like Q=

∑
j c

†
j cj or the Hamiltonian itself, like the one in equation (40), even at time t= 0,

i.e. before evolving them in the Heisenberg picture. For instance, we may study the SROE of
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Q by extending the results of section 4.1.2. We expect that, given that the charge is a sum of
local operators, its SROE should satisfy an area law behaviour and a possible equipartition due
to the presence of more charge sectors, and not only 3 as in the example reported here.

5. Conclusions

In the light of the examples studied so far, we can now draw our general conclusions on sym-
metry resolved operator entanglement. We have used the definition of the SROE introduced
in [41], which quantifies the OE of a U(1) symmetric operator in a given charge sector and
we have analysed in detail three operators. The thermal density has been studied with the
twist field formalism and we found that it satisfies the operator area law, i.e. it has a bounded
SROE in every charge sector and it displays equipartition, meaning that at leading order in the
subsystem size it does not depend on the charge. For free fermion Hamiltonians, to evaluate
the SROE of a local operator (in terms of the creation and annihilation operators) evolving in
Heisenberg picture, we have exploited the knowledge of the SROE in terms of the correlation
functions. We found that the local density operator obeys the area law at any time step and
strongly violates the equipartition, while the SROE a Jordan–Wigner string grows logarith-
mically in time and obeys the equipartition of the entanglement. This remarkable difference
between the three operators might be traced back to the fact that the SROE of local operators
remains always finite, contrarily to the Jordan–Wigner string (that diverges for large t) or the
thermal density matrix (that diverges for large β). The rationale appears to be that operators
with a local spatial support have an operator entanglement that does not diverge and cannot
satisfy equipartition.

We can now think of possible future directions that one could investigate about the OE and
its eventual symmetry resolution. In a previous work about the same subject [41], the authors
have studied the SROE of a reduced density matrix after a quantum quench [22, 62, 63], and
it would be interesting to study how the entanglement barrier is affected by a non-unitary time
evolution, due, for example, to the effect of local measurements in the dynamics. Another
possible direction is studying the connection between the OE and the reflected entropy [99,
100], by applying the techniques described in this manuscript to analyse the symmetry resol-
ution also in this context (see also [40] for the first steps towards this direction). This example
would also gain insights about the holographic dual of the SROE whenO=

√
ρ. Similarly one

would like to explore the connection of our results with symmetry resolution of the comput-
able cross norm negativity [40, 101] which is another entanglement witness in mixed states. A
last interesting point concerns the interplay of OE and symmetries when the latter are broken;
this problem can be studied generalising to the operatorial level the recently introduced entan-
glement asymmetry [102–105].

Data availability statement

All data that support the findings of this study are included within the article (and any
supplementary files).
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[21] Pižorn I and Prosen T 2009 Operator space entanglement entropy in XY spin chains Phys. Rev. B

79 184416

24

https://orcid.org/0000-0002-1638-5692
https://orcid.org/0000-0002-1638-5692
https://doi.org/10.1038/ncomms12472
https://doi.org/10.1038/ncomms12472
https://doi.org/10.1103/PhysRevLett.96.181602
https://doi.org/10.1103/PhysRevLett.96.181602
https://doi.org/10.1007/s10714-010-1034-0
https://doi.org/10.1007/s10714-010-1034-0
https://doi.org/10.1002/prop.201300020
https://doi.org/10.1002/prop.201300020
https://doi.org/10.1103/RevModPhys.80.517
https://doi.org/10.1103/RevModPhys.80.517
https://doi.org/10.1088/1751-8121/42/50/500301
https://doi.org/10.1088/1751-8121/42/50/500301
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1016/j.physrep.2016.06.008
https://doi.org/10.1016/j.physrep.2016.06.008
https://doi.org/10.1088/1742-5468/2007/08/P08024
https://doi.org/10.1016/0550-3213(94)90402-2
https://doi.org/10.1016/0550-3213(94)90402-2
https://doi.org/10.1016/0370-2693(94)91007-3
https://doi.org/10.1016/0370-2693(94)91007-3
https://doi.org/10.1103/PhysRevLett.90.227902
https://doi.org/10.1103/PhysRevLett.90.227902
https://doi.org/10.1088/1742-5468/2004/06/P06002
https://doi.org/10.1088/1751-8113/42/50/504005
https://doi.org/10.1088/1751-8113/42/50/504005
https://doi.org/10.1038/s42254-019-0086-7
https://doi.org/10.1038/s42254-019-0086-7
https://doi.org/10.1103/PhysRevLett.93.040502
https://doi.org/10.1103/PhysRevLett.93.040502
https://doi.org/10.1080/14789940801912366
https://doi.org/10.1080/14789940801912366
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.aop.2019.167998
https://doi.org/10.1016/j.aop.2019.167998
https://doi.org/10.1103/PhysRevA.76.032316
https://doi.org/10.1103/PhysRevA.76.032316
https://doi.org/10.1103/PhysRevB.79.184416
https://doi.org/10.1103/PhysRevB.79.184416


J. Phys. A: Math. Theor. 57 (2024) 145002 S Murciano et al

[22] Dubail J 2017 Entanglement scaling of operators: a conformal field theory approach, with a
glimpse of simulability of long-time dynamics in 1+1d J. Phys. A: Math. Theor. 50 234001

[23] Zhou T and Luitz D J 2017 Operator entanglement entropy of the time evolution operator in
chaotic systems Phys. Rev. B 95 094206

[24] Noh K, Jiang L and Fefferman B 2020 Efficient classical simulation of noisy random quantum
circuits in one di- mension Quantum 4 318

[25] Rakovszky T, von Keyserlingk C and Pollmann F 2022 Dissipation-assisted operator evolution
method for capturing hydrodynamic transport Phys. Rev. B 105 075131

[26] Wellnitz D, Preisser G, Alba V, Dubail J and Schachenmayer J 2022 The rise and fall and slow
rise again, of operator entanglement under dephasing Phys. Rev. Lett. 129 170401

[27] Li Y, Sala P and Pollmann F 2023 Hilbert space fragmentation in open quantum systems
(arXiv:2305.06918)

[28] Zanardi P, Zalka C and Faoro L 2000 Entangling power of quantum evolutions Phys. Rev. A
62 030301

[29] Zanardi P 2001 Entanglement of quantum evolutions Phys. Rev. A 63 040304
[30] Jonay C, Huse D and NahumA 2018 Coarse-grained dynamics of operator and state entanglement

(arXiv:1803.00089)
[31] Alba V, Dubail J and Medenjak M 2019 Operator entanglement in interacting integrable quantum

systems: the case of the rule 54 chain Phys. Rev. Lett. 122 250603
[32] Bertini B, Kos P and Prosen T 2020 Operator entanglement in local quantum circuits I: chaotic

dual-unitary circuits SciPost Phys. 8 067
[33] Bertini B, Kos P and Prosen T 2020 Operator entanglement in local quantum circuits II: solitons

in chains of qubits SciPost Phys. 8 068
[34] Alba V 2021 Diffusion and operator entanglement spreading Phys. Rev. B 104 094410
[35] Dowling N, Kos P and Modi K 2023 Scrambling is necessary but not sufficient for chaos

(arXiv:2304.07319)
[36] Carignano S, Marimón C, and Tagliacozzo L 2023 On temporal entropy and the complexity of

computing the expectation value of local operators after a quench (arXiv:2307.11649)
[37] Muth D, Unanyan R and Fleischhauer M 2011 Dynamical simulation of integrable and noninteg-

rable models in the Heisenberg picture Phys. Rev. Lett. 106 077202
[38] Styliaris G, Anand N and Zanardi P 2021 Information scrambling over bipartitions: equilibration,

entropy production and typicality Phys. Rev. Lett. 126 030601
[39] Barch B, Anand N, Marshall J, Rieffel E and Zanardi P 2023 Scrambling and operator entangle-

ment in local non-Hermitian quantum systems (arXiv:2305.12054)
[40] Berthiere C and Parez G 2023 On reflected entropy and computable cross-norm negativity: free

theories and symmetry resolution, (arXiv:2307.11009)
[41] Rath A, Vitale V, Murciano S, Votto M, Dubail J, Kueng R, Branciard C, Calabrese P and

Vermersch B 2023 Entanglement barrier and its symmetry resolution: theory and experiment
PRX Quantum 4 010318

[42] Goldstein M and Sela E 2017 Symmetry-resolved entanglement in many-body systems Phys. Rev.
Lett. 120 200602

[43] Xavier J C, Alcaraz F C and Sierra G 2018 Equipartition of the entanglement entropy Phys. Rev.
B 98 041106

[44] Laflorencie N and Rachel S 2014 Spin-resolved entanglement spectroscopy of critical spin chains
and Luttinger liquids J. Stat. Mech. P 11013

[45] Murciano S, Di Giulio G and Calabrese P 2020 Symmetry resolved entanglement in gapped integ-
rable systems: a corner transfer matrix approach SciPost Phys. 8 046

[46] Turkeshi X, Ruggiero P, Alba V and Calabrese P 2020 Entanglement equipartition in critical
random spin chains Phys. Rev. B 102 014455

[47] Murciano S, Di Giulio G and Calabrese P 2020 Entanglement and symmetry resolution in two
dimensional free quantum field theories J. High Energy Phys. JHEP08(2020)073

[48] Parez G, Bonsignori R and Calabrese P 2021 Quasiparticle dynamics of symmetry resolved entan-
glement after a quench: the examples of conformal field theories and free fermions Phys. Rev.
B 103 041104

[49] Calabrese P, Dubail J and Murciano S 2021 Symmetry-resolved entanglement entropy in Wess-
Zumino-Witten models J. High Energy Phys. JHEP10(2021)067

[50] Horvath D X and Calabrese P 2020 Symmetry resolved entanglement in integrable field theories
via form factor bootstrap J. High Energy Phys. JHEP11(2020)131

25

https://doi.org/10.1088/1751-8121/aa6f38
https://doi.org/10.1088/1751-8121/aa6f38
https://doi.org/10.1103/PhysRevB.95.094206
https://doi.org/10.1103/PhysRevB.95.094206
https://doi.org/10.22331/q-2020-09-11-318
https://doi.org/10.22331/q-2020-09-11-318
https://doi.org/10.1103/PhysRevB.105.075131
https://doi.org/10.1103/PhysRevB.105.075131
https://doi.org/10.1103/PhysRevLett.129.170401
https://doi.org/10.1103/PhysRevLett.129.170401
https://arxiv.org/abs/2305.06918
https://doi.org/10.1103/PhysRevA.62.030301
https://doi.org/10.1103/PhysRevA.62.030301
https://doi.org/10.1103/PhysRevA.63.040304
https://doi.org/10.1103/PhysRevA.63.040304
https://arxiv.org/abs/1803.00089
https://doi.org/10.1103/PhysRevLett.122.250603
https://doi.org/10.1103/PhysRevLett.122.250603
https://doi.org/10.21468/SciPostPhys.8.4.067
https://doi.org/10.21468/SciPostPhys.8.4.067
https://doi.org/10.21468/SciPostPhys.8.4.068
https://doi.org/10.21468/SciPostPhys.8.4.068
https://doi.org/10.1103/PhysRevB.104.094410
https://doi.org/10.1103/PhysRevB.104.094410
https://arxiv.org/abs/2304.07319
https://arxiv.org/abs/2307.11649
https://doi.org/10.1103/PhysRevLett.106.077202
https://doi.org/10.1103/PhysRevLett.106.077202
https://doi.org/10.1103/PhysRevLett.126.030601
https://doi.org/10.1103/PhysRevLett.126.030601
https://arxiv.org/abs/2305.12054
https://arxiv.org/abs/2307.11009
https://doi.org/10.1103/PRXQuantum.4.010318
https://doi.org/10.1103/PRXQuantum.4.010318
https://doi.org/10.1103/PhysRevLett.120.200602
https://doi.org/10.1103/PhysRevLett.120.200602
https://doi.org/10.1103/PhysRevB.98.041106
https://doi.org/10.1103/PhysRevB.98.041106
https://doi.org/10.1088/1742-5468/2014/11/P11013
https://doi.org/10.21468/SciPostPhys.8.3.046
https://doi.org/10.21468/SciPostPhys.8.3.046
https://doi.org/10.1103/PhysRevB.102.014455
https://doi.org/10.1103/PhysRevB.102.014455
https://doi.org/10.1007/JHEP08(2020)073
https://doi.org/10.1103/PhysRevB.103.L041104
https://doi.org/10.1103/PhysRevB.103.L041104
https://doi.org/10.1007/JHEP10(2021)067
https://doi.org/10.1007/JHEP11(2020)131


J. Phys. A: Math. Theor. 57 (2024) 145002 S Murciano et al

[51] Capizzi L, Castro-Alvaredo OA, De Fazio C,MazzoniM and Santamaría-Sanz L 2022 Symmetry
resolved entanglement of excited states in quantum field theory I: free theories, twist fields and
qubits J. High Energy Phys. JHEP12(2022)127

[52] Zhao S, Northe C and Meyer R 2021 Symmetry-resolved entanglement in AdS3/CFT2 coupled to
U(1) Chern-Simons theory J. High Energy Phys. JHEP07(2021)030

[53] Oblak B, Regnault N and Estienne B 2022 Equipartition of entanglement in quantum hall states
Phys. Rev. B 105 115131

[54] Lukin A, Rispoli M, Schittko R, Tai M E, Kaufman A M, Choi S, Khemani V, Leonard J and
Greiner M 2019 Probing entanglement in a many-body localized system Science 364 6437

[55] Neven A et al 2021 Symmetry-resolved entanglement detection using partial transpose moments
npj Quantum Inf. 7 152

[56] Vitale V, Elben A, Kueng R, Neven A, Carrasco J, Kraus B, Zoller P, Calabrese P, Vermersch B
and Dalmonte M 2022 Symmetry-resolved dynamical purification in synthetic quantum matter
SciPost Phys. 12 106

[57] Capizzi L and Calabrese P 2021 Symmetry resolved relative entropies and distances in conformal
field theory J. High Energy Phys. JHEP10(2021)195

[58] Cornfeld E, Goldstein M and Sela E 2018 Imbalance entanglement: symmetry decomposition of
negativity Phys. Rev. A 98 032302

[59] Murciano S, Bonsignori R and Calabrese P 2021 Symmetry decomposition of negativity of mass-
less free fermions SciPost Phys. 10 111

[60] Parez G 2022 Symmetry-resolved Rényi fidelities and quantum phase transitions Phys. Rev. B
106 235101

[61] Di Giulio G and Erdmenger J 2023 Symmetry-resolved modular correlation functions in free
fermionic theories J. High Energy Phys. JHEP07(2023)058

[62] Wang H and Zhou T 2019 Barrier from chaos: operator entanglement dynamics of the reduced
density matrix J. High Energy Phys. JHEP12(2019)020

[63] Reid I and Bertini B 2021 Entanglement barriers in dual-unitary circuits Phys. Rev. B 104 014301
[64] Jamiołkowski A 1972 Linear transformations which preserve trace and positive semidefiniteness

of operators Rep. Math. Phys. 3 275
[65] Choi M-D 1975 Completely positive linear maps on complex matrices Linear Algebra Appl.

10 285
[66] Wiseman HM and Vaccaro J A 2003 Entanglement of indistinguishable particles shared between

two parties Phys. Rev. Lett. 91 097902
[67] Barghathi H, Herdman CM and DelMaestro A 2018 Rényi generalization of the accessible entan-

glement entropy Phys. Rev. Lett. 121 150501
[68] Barghathi H, Casiano-Diaz E and Del Maestro A 2019 Operationally accessible entanglement of

one dimensional spinless fermions Phys. Rev. A 100 022324
[69] Bonsignori R, Ruggiero P and Calabrese P 2019 Symmetry resolved entanglement in free fermi-

onic systems J. Phys. A: Math. Theor. 52 475302
[70] Kiefer-Emmanouilidis M, Unanyan R, Sirker J and Fleischhauer M 2020 Bounds on the entan-

glement entropy by the number entropy in non-interacting fermionic systems SciPost Phys.
8 083

[71] Kiefer-Emmanouilidis M, Unanyan R, Sirker J and Fleischhauer M 2020 Evidence for unbounded
growth of the number entropy in many-body localized phases Phys. Rev. Lett. 124 243601

[72] Monkman K and Sirker J 2020 Operational entanglement of symmetry-protected topological edge
states Phys. Rev. Res. 2 043191

[73] Belin A, Hung L-Y, Maloney A, Matsuura S, Myers R C and Sierens T 2013 Holographic charged
Rényi entropies J. High Energy Phys. JHEP12(2013)059

[74] Caputa P, Mandal G and Sinha R 2013 Dynamical entanglement entropy with angular momentum
and U(1) charge J. High Energy Phys. JHEP11(2013)052

[75] Caputa P, Nozaki M and Numasawa T 2016 Charged entanglement entropy of local operators
Phys. Rev. D 93 105032

[76] Dowker J S 2016 Conformal weights of charged Rényi entropy twist operators for free scalar
fields in arbitrary dimensions J. Phys. A: Math. Theor. 49 145401

[77] Cardy J L, Castro-Alvaredo O A and Doyon B 2008 Form factors of branch-point twist fields in
quantum integrable models and entanglement entropy J. Stat. Phys. 130 129

[78] Castro-Alvaredo O A and Doyon B 2009 Bi-partite entanglement entropy in massive 1+1-
dimensional quantum field theories J. Phys. A: Math. Theor. 42 504006

26

https://doi.org/10.1007/JHEP12(2022)127
https://doi.org/10.1007/JHEP07(2021)030
https://doi.org/10.1103/PhysRevB.105.115131
https://doi.org/10.1103/PhysRevB.105.115131
https://doi.org/10.1126/science.aau0818
https://doi.org/10.1126/science.aau0818
https://doi.org/10.1038/s41534-021-00487-y
https://doi.org/10.1038/s41534-021-00487-y
https://doi.org/10.21468/SciPostPhys.12.3.106
https://doi.org/10.21468/SciPostPhys.12.3.106
https://doi.org/10.1007/JHEP10(2021)195
https://doi.org/10.1103/PhysRevA.98.032302
https://doi.org/10.1103/PhysRevA.98.032302
https://doi.org/10.21468/SciPostPhys.10.5.111
https://doi.org/10.21468/SciPostPhys.10.5.111
https://doi.org/10.1103/PhysRevB.106.235101
https://doi.org/10.1103/PhysRevB.106.235101
https://doi.org/10.1007/JHEP07(2023)058
https://doi.org/JHEP12(2019)020
https://doi.org/10.1103/PhysRevB.104.014301
https://doi.org/10.1103/PhysRevB.104.014301
https://doi.org/10.1016/0034-4877(72)90011-0
https://doi.org/10.1016/0034-4877(72)90011-0
https://doi.org/10.1016/0024-3795(75)90075-0
https://doi.org/10.1016/0024-3795(75)90075-0
https://doi.org/10.1103/PhysRevLett.91.097902
https://doi.org/10.1103/PhysRevLett.91.097902
https://doi.org/10.1103/PhysRevLett.121.150501
https://doi.org/10.1103/PhysRevLett.121.150501
https://doi.org/10.1103/PhysRevA.100.022324
https://doi.org/10.1103/PhysRevA.100.022324
https://doi.org/10.1088/1751-8121/ab4b77
https://doi.org/10.1088/1751-8121/ab4b77
https://doi.org/10.21468/SciPostPhys.8.6.083
https://doi.org/10.21468/SciPostPhys.8.6.083
https://doi.org/10.1103/PhysRevLett.124.243601
https://doi.org/10.1103/PhysRevLett.124.243601
https://doi.org/10.1103/PhysRevResearch.2.043191
https://doi.org/10.1103/PhysRevResearch.2.043191
https://doi.org/10.1007/JHEP12(2013)059
https://doi.org/10.1007/JHEP11(2013)052
https://doi.org/10.1103/PhysRevD.93.105032
https://doi.org/10.1103/PhysRevD.93.105032
https://doi.org/10.1088/1751-8113/49/14/145401
https://doi.org/10.1088/1751-8113/49/14/145401
https://doi.org/10.1007/s10955-007-9422-x
https://doi.org/10.1007/s10955-007-9422-x
https://doi.org/10.1088/1751-8113/42/50/504006
https://doi.org/10.1088/1751-8113/42/50/504006


J. Phys. A: Math. Theor. 57 (2024) 145002 S Murciano et al

[79] Giamarchi T 2003 Quantum Physics in One Dimension (Clarendon)
[80] Tsvelik A 2007 Quantum Field Theory in Condensed Matter Physics (Cambridge University

Press)
[81] Peschel I and Chung M-C 1999 Density matrices for a chain of oscillators J. Phys. A: Math. Gen.

32 8419
[82] Chung M-C and Peschel I 2001 Density-matrix spectra of solvable fermionic systems Phys. Rev.

B 64 064412
[83] Peschel I 2003 Calculation of reduced density matrices from correlation functions J. Phys. A:

Math. Gen. 36 L205
[84] Siva K, Zou Y, Soejima T, Mong R S K and Zaletel M P 2022 universal tripartite entanglement

signature of ungappable edge states Phys. Rev. B 106 L041107
[85] Ruggiero P, Tonni E and Calabrese P 2018 Entanglement entropy of two disjoint intervals and the

recursion formula for conformal blocks J. Stat. Mech. 113101
[86] Calabrese P, Cardy J and Tonni E 2009 Entanglement entropy of two disjoint intervals in conformal

field theory J. Stat. Mech. P 11001
[87] Rajabpour M A and Gliozzi F 2012 Entanglement entropy of two disjoint intervals from fusion

algebra of twist fields J. Stat. Mech. P 02016
[88] Calabrese P, Cardy J and Tonni E 2011 Entanglement entropy of two disjoint intervals in conformal

field theory II J. Stat. Mech. P 01021
[89] Ares F, Calabrese P, Di Giulio G and Murciano S 2022 Multi-charged moments of two intervals

in conformal field theory J. High Energy Phys. JHEP09(2022)051
[90] Gaur H and Yajnik UA 2023 Charge imbalance resolved Rényi negativity for free compact boson:

two disjoint interval case J. High Energy Phys. JHEP02(2023)118
[91] Jin B-Q and Korepin V E 2004 Quantum spin chain, Toeplitz determinants and Fisher-Hartwig

conjecture J. Stat. Phys. 116 79
[92] Bonsignori R and Calabrese P 2021 Boundary effects on symmetry resolved entanglement J. Phys.

A: Math. Theor. 54 015005
[93] Foligno A, Murciano S and Calabrese P 2023 Entanglement resolution of free Dirac fermions on

a torus J. High Energy Phys. JHEP03(2023)096
[94] Parez G, Bonsignori R and Calabrese P 2021 Exact quench dynamics of symmetry resolved entan-

glement in a free fermion chain J. Stat. Mech. 093102
[95] Fagotti M and Calabrese P 2008 Evolution of entanglement entropy following a quantum quench:

analytic results for the XY chain in a transverse magnetic field Phys. Rev. A 78 010306(R)
[96] Alba V and Heidrich–Meisner F 2014 Entanglement spreading after a geometric quench in

quantum spin chains Phys. Rev. B 90 075144
[97] Scopa S and Horváth D X 2022 Exact hydrodynamic description of symmetry-resolved Rényi

entropies after a quantum quench J. Stat. Mech. 083104
[98] Dubail J, Stéphan J-M, Viti J and Calabrese P 2017 Conformal field theory for inhomogeneous

one-dimensional quantum systems: the example of non-interacting fermi gases SciPost Phys.
2 002

[99] Dutta S and Faulkner T 2021 A canonical purification for the entanglement wedge cross-section
J. High Energy Phys. JHEP03(2021)178

[100] Bueno P and Casini H 2020 Reflected entropy, symmetries and free fermions J. High Energy Phys.
JHEP05(2020)103

[101] Yin C and Liu Z 2023 universal entanglement and correlation measure in two-dimensional con-
formal field theories Phys. Rev. Lett. 130 131601

[102] Ares F, Murciano S and Calabrese P 2023 Entanglement asymmetry as a probe of symmetry
breaking Nat. Commun. 14 2036

[103] Ares F,Murciano S, Vernier E and Calabrese P 2023 Lack of symmetry restoration after a quantum
quench: an entanglement asymmetry study SciPost Phys. 15 089

[104] Bertini B, Klobas K, ColluraM, Calabrese P and Rylands C 2023 Dynamics of charge fluctuations
from asymmetric initial states (arXiv:2306.12404)

[105] Ferro F, Ares F and Calabrese P 2023 Non-equilibrium entanglement asymmetry for discrete
groups: the example of the XY spin chain J. Stat. Mech. 023101

27

https://doi.org/10.1088/0305-4470/32/48/305
https://doi.org/10.1088/0305-4470/32/48/305
https://doi.org/10.1103/PhysRevB.64.064412
https://doi.org/10.1103/PhysRevB.64.064412
https://doi.org/10.1088/0305-4470/36/14/101
https://doi.org/10.1088/0305-4470/36/14/101
https://doi.org/10.1103/PhysRevB.106.L041107
https://doi.org/10.1103/PhysRevB.106.L041107
https://doi.org/10.1088/1742-5468/aae5a8
https://doi.org/10.1088/1742-5468/2009/11/P11001
https://doi.org/10.1088/1742-5468/2012/02/P02016
https://doi.org/10.1088/1742-5468/2011/01/P01021
https://doi.org/10.1007/JHEP09(2022)051
https://doi.org/10.1007/JHEP02(2023)118
https://doi.org/10.1023/B:JOSS.0000037230.37166.42
https://doi.org/10.1023/B:JOSS.0000037230.37166.42
https://doi.org/10.1088/1751-8121/abcc3a
https://doi.org/10.1088/1751-8121/abcc3a
https://doi.org/10.1007/JHEP03(2023)096
https://doi.org/10.1088/1742-5468/ac21d7
https://doi.org/10.1103/PhysRevA.78.010306
https://doi.org/10.1103/PhysRevA.78.010306
https://doi.org/10.1103/PhysRevB.90.075144
https://doi.org/10.1103/PhysRevB.90.075144
https://doi.org/10.1088/1742-5468/ac85eb
https://doi.org/10.21468/SciPostPhys.2.1.002
https://doi.org/10.21468/SciPostPhys.2.1.002
https://doi.org/10.1007/JHEP03(2021)178
https://doi.org/10.1007/JHEP05(2020)103
https://doi.org/10.1103/PhysRevLett.130.131601
https://doi.org/10.1103/PhysRevLett.130.131601
https://doi.org/10.1038/s41467-023-37747-8
https://doi.org/10.1038/s41467-023-37747-8
https://doi.org/10.21468/SciPostPhys.15.3.08
https://doi.org/10.21468/SciPostPhys.15.3.08
https://arxiv.org/abs/2306.12404
https://doi.org/10.1088/1742-5468/ad138f

	More on symmetry resolved operator entanglement
	1. Introduction
	1.1. Definition of operator entanglement
	1.2. U(1) charge and symmetry resolution of OE
	1.3. Organization of the paper

	2. Techniques to compute the SROE
	2.1. U(1) symmetry resolution
	2.2. SROE from the replica trick in conformal field theory (CFT)
	2.2.1. Brief review of the replica trick for the OE in CFT.
	2.2.2. Method for computing the charged moments.

	2.3. Computing the SROE in free fermion chains

	3. SROE of a thermal density matrix
	3.1. Charged moments for free fermion CFT
	3.2. Generalization to K≠1
	3.3. Symmetry resolution
	3.3.1. SROE in the free fermion chain.
	3.3.2. Interacting case.
	3.3.3. Discussion.


	4. SROE of local operators in Heisenberg picture in free fermion chains
	4.1. SROE of creation/annihilation operators and other local operators
	4.1.1. SROE of creation operator cx†(t).
	4.1.2. SROE of local density operator cx†(t) cx(t).

	4.2. OE of a Jordan–Wigner string

	5. Conclusions
	References


