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Abstract

In this thesis, we studied a new two-parametric class of Kähler-Einstein surfaces

M[λ1,λ2] with explicit KE metrics with SU(2)× U(1) isometries, and have conical

singularities. Topologically, every M[λ1,λ2] is homeomorphic to F2, the second

Hirzebruch surface, but are different as complex manifolds. We studied their

differential geometry in detail regarding the behavior of the associated Riemannian

curvature, geodesics, contact structure, and the nature of singularities. We used

Calabi’s ansatz to put explicit Ricci-flat metrics on tot(K
[λ1,λ2]
M ). These Ricci-flat

metrics are D3-brane solutions of type IIB supergravity theories.
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Chapter 1

Introduction

In a series of papers [6, 7, 5], the gauge/gravity correspondence was studied by con-

sidering the quiver gauge theories associated with McKay quivers and the generalized

Kronheimer construction of the resolution of C3/Γ singularities. McKay quivers are

certain kinds of quivers that are associated with the resolutions of Cn/Γ quotient

singularities where Γ ⊂ SU(n) is a finite subgroup. J. McKay [39] proved a corre-

spondence between ADE-type quivers and the resolutions of du-Val singularities in

dimension two.

In [37], Kronheimer constructed the resolutions of du-Val singularities by using

the Kähler quotient data associated with ADE-type quivers and found hyperKähler

metrics on all resolutions.

In general, if we consider a finite subgroup Γ ⊂ SU(n) with an action on Cn, the

quotient space Cn/Γ has singularities and resolving those singularities can lead to

a special kind of resolutions called ”crepant”, which means the resolution space is

a noncompact Calabi-Yau manifold. These crepant resolutions do not always exist

in dimensions greater than three. In dimension two, they exist and are unique. In

dimension three, they exist but they may not be unique.

In [33, 32, 36, 18, 19, 20, 45, 46, 47], the three dimensional McKay correspon-

dence was studied. It provides a group theoretical prediction of the structure of the

cohomological ring H∗(YΓ,Z) in terms of irreducible representations of Γ, where YΓ
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is a crepant resolution of C3/Γ.

Since these crepant resolutions are noncompact Calabi-Yau’s, one might expect

Ricci-flat metrics on them. Indeed, in [34, 35], the existence of Ricci flat metrics

on YΓ was proven by D. Joyce in every class of ALE or Quasi − ALE Kähler two

forms depending upon the nature of the quotient singularity C3/Γ being isolated or

non-isolated respectively.

From the differential geometric viewpoint, the crepant resolutions are constructed

via generalized Kronheimer construction. In [6], the classical Kronheimer construc-

tion was generalized to the case of C3/Γ quotient singularities via the McKay quiver

associated with Γ. A Kähler metric was also associated via this construction to the

crepant resolution YΓ. In [7], the case of C3/Z4 quotient singularity was considered,

where the crepant resolution is unique, and it is the total space of the canonical

bundle of the second Hirzebruch surface. The Kronheimer Kähler metric on the

resolution YZ4 coming from the generalized Kronheimer construction turns out to be

not Ricci flat. On the other hand, in order to establish the gauge/gravity correspon-

dence, we need a Ricci-flat metric on the YZ4 . A quest to find Ricci-flat metric on

the crepant resolution of C3/Z4 began in this regard.

Although the Kronheimer metric on the resolved space of C3/Z4 is not Ricci flat

its restriction to the second Hirzebruch surface provided a one-parametric family of

Kähler metrics parameterized by α ∈ R+, and with SU(2)× U(1) isometry.

In general, whenever Γ is abelian, the quotient variety C3/Γ and their resolutions

are toric varieties. In some cases, like C3/Z4, there may exist a crepant resolution

which is the total space of the canonical bundle of a compact toric divisor of the

resolution ϕ : YΓ −→ C3/Γ. In [10], Calabi provided an ansatz to construct Kähler-

Einstein metrics on the total space of a holomorphic vector bundle over a compact

Kähler-Einstein manifold. In particular, Calabi’s ansatz provides explicit Ricci flat

metrics on the total space of canonical bundle over compact Kähler-Einstein mani-

folds.

In [10], Calabi provides a recipe to construct a Kähler metric gE on the total

space of a holomorphic vector bundle E → M in the standard complex formalism,

where M is a compact Kähler manifold, satisfying the following conditions:
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C1: the restriction of gE to the space tangent to the zero section of E coincides

with a given Kähler-Einstein (KE) metric gM on M;

C2: the horizontal spaces given by the Chern connection of the metric gE are the

orthogonal complement of the tangent spaces to the fibers of E with respect

to gE;

C3: gE restricts on every fiber of E to a hermitian metric on the fiber (as a vector

space).

In the case of C3/Z4, the resolved variety is the total space of the canonical bundle

of the second Hirzebruch surface F2, and since F2 admits no KE metric, the Calabi

ansatz does not work.

In [21, 1, 30, 29], the study of symplectic geometry on the compact toric varieties

was established. In [21], Delzant proved a one-to-one correspondence between com-

pact connected symplectic toric manifolds and so-called Delzant polytopes. In [30],

Guillemin provided a canonical symplectic potential on toric manifoldMP associated

with the Delzant polytope P .

In this thesis, we explore the possibility of finding a new class of Kähler-Einstein

metrics, with isometries SU(2)×U(1), such that the corresponding KE manifolds are

topologically homeomorphic to F2 but have singularities in their differential struc-

tures.

To get these manifolds, we start from the fact that Kronheimer Kähler potential

KF2 on F2 found in [7] depends upon a single real variable

ϖ = (1 + |u|2)2|v|2,

which insures SU(2)× U(1) isometry. We consider a generic Kähler potential KMB

which only depends upon ϖ. Furthermore, ϖ depends on the modules of the two

complex variables u and v on MB. Using so-called AMSY(Abreu-Martilli-Sparks-

Yau) formalism [1, 38], we were able to find an entire 2-parametric family of Kähler-

Einstein metrics.

Furthermore, we transform Calabi’s ansatz, originally formulated in standard

11



complex formalism, into the AMSY formalism which yields a simple and elegant

transcription. Using this, we are able to find a general expression for the Ricci

flat metrics on the total spaces of canonical bundles of the 2-parameter class of KE

manifolds M[λ1,λ2]
B , each of which we label with two real numbers:

0 ≤ λ1 < λ2 < ∞

.

The geometry of the 4-folds. From a geometric point of view, it should be

stressed that all 4-manifolds we find via AMSY formalism in our analysis are homeo-

morphic to the product S2×S2. Concerning the complex structure, for some choices

of the potential KMB
we obtain the second Hirzebruch surface F2; for other choices,

we obtain a large family of KE manifolds, which of course must be singular. Our

analysis in Section 4.6 shows indeed that they have conical singularities which we

studied in detail.

Gauge/gravity correspondence. The Ricci-flat metric on the total space of

canonical bundle of M[λ1,λ2]
B allows us to write explicit exact D3-brane solution of

Type IIB supergravity for each chosen manifold M[λ1,λ2]
B (see Appendix A5.2.1).

The problem of the dual pair of theories is now reversed. We have, by construc-

tion, the exact classical solution of supergravity based on the Ricci flat metric. In

order to find the other member of the pair, namely the corresponding 4-dimensional

gauge theory, we should be able to find the corresponding quotient singularity C3/Γ

or its mass-deformation so as to derive the spectrum of the theory from a suitable

quiver. This part of the problem is still unexplored.

Structure of the thesis. In the first part of the chapter 2, we begin by revising

quotient singularities and the McKay correspondence in dimension three. We re-

strict ourselves to the case of abelian quotient singularities, which are toric singular

varieties, and their crepant resolutions are toric Calabi-Yau manifolds. In subsec-
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tion 2.3.2, we recalled the well-known toric description of Hirzebruch surfaces and

specialized it to the case of the second Hirzebruch surface.

In the second part of chapter 2, we recall the Generalized Kronheimer construc-

tion. The McKay quiver associated with finite group Γ ⊂ SU(3) singles out:

1. the gauge group FΓ,

2. The moment maps µI corresponding to each non-trivial irreducible representa-

tion,

3. the so-called level sets denoted by µ−1(ζ) for a vector ζ,

4. The crepant resolution Mζ for a genric ζ defined via the Kähler quotient.

5. A Kähler potential KMζ
on Mζ .

In chapter 3, we recall the toric symplectic geometry, formulated by Abreu,

Delzant, and Guillemin. We calculated a one-parametric family of Guillemin’s sym-

plectic potentials for Delzant polytopes Pa,a+2 associated with F2, where every given

Pa,a+2 provides an embedding of F2 in CP2a+2.

chapter 4 and chapter 5 are based on [8].

Structure of chapter 4. We start by considering a generic Kähler potential

KMB
(ϖ) on 4D compact Kähler manifolds MB with isometry SU(2)×U(1). Using

AMSY formalism, we get a generic symplectic potential of the form:

GMB
= G0(u, v) + D(v)

where

G0 (u, v) =
(
v− u

2

)
log(2v− u) +

1

2
u log(u)− 1

2
v log(v)

and D(v) is an arbitrary smooth function. We established the fact that the corre-

sponding general form of the Riemannian metric is given by:

ds2MB
= F (v) [dϕ(1− cos θ) + dτ ]2 +

dv2

F (v)
+ v

(
dϕ2 sin2 θ + dθ2

)︸ ︷︷ ︸
S2 metric
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These metrics are parameterized by choosing a function F (v), and for a finite interval

of v, this class of metrics represents metrics on S2×S2. These metrics also contain the

Kronheimer metrics on F2 and the metric on the weighted projective planeWP[1, 1, 2]
found in [7]. Using the KE condition, we find a 2-parametric class of functions F (v)

such that the corresponding manifolds MB are Kähler-Einstein. We summarize our

findings in 1.1.

From subsection 4.5.1, we study the nature of the metrics given by the different

choices of F (v). To do so, we first find the expressions for the Riemann tensor

constructed in terms of three functions:

CF1(v) = F ′′(v) ;

CF2(v) =
(vF ′(v)− F (v))

v2
;

CF3(v) =
(v− F (v))

v2

If these functions are regular in the interval [vmin, vmax], the Riemann tensor is well-

defined and finite, and the manifoldMB is a smooth compact manifold. Our analysis

of the above functions for different choices of F (v) shows that the 2-parametric family

of metrics in the KE case have conical singularities.

In subsection 4.5.2, we establish the complex structures on KE manifolds and

the homeomorphism of these manifolds with S2 × S2. In section 4.8, we describe

the contact structure on 3-dimensional submanifold M3 by fixing v = const. and

choosing a Liouville vector field L to which all M3 are transversal for every fixed

value of v.

We conclude chapter 4 by calculating different Geodesics for the family of mani-

folds MB.

Structure of chapter 5. Once we have found a new class of KE manifolds in

chapter 4, our next step is to find the Ricci-flat metrics on tot(KM[λ1,λ2]
B

) by using

Calabi’s ansatz. This is done in chapter 5. We started by describing Calabi’s ansatz

for the 4D KE manifolds with SU(2)×U(1) isometries, and we found the consistency
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<
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<
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>
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=
∞

Table 1.1: Different possibilities for the function F .
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conditions for the ansatz. Then we calculated the generalized form of the symplectic

potential on tot(KM[λ1,λ2]
B

) with SU(2)×U(1)×U(1) isometry via AMSY formulation.

The generic form of the symplectic potential is:

G (u, v,w) =
(
v− u

2

)
log(2v− u) +

1

2
u log(u) − 1

2
v log(v)︸ ︷︷ ︸

universal part G0(u, v)

+ G(v,w)︸ ︷︷ ︸
variable part

where G(v,w) is a function of two variables that encode the specific structure of the

metric. We write down an explicit expression in the case of our 4D KE manifolds,

which takes the following form:

GMKE
T

(u, v,w) = G0 (u, v) + GKE (v,w)

G0 (u, v) =
(
v− u

2

)
log[2v− u] + 1

2
u log[u]− 1

2
v log[v]

GKE (v,w) =
(
κw
2
+ 1
)
DKE

(
2v

κw+2

)
− 1

2
v log

(
κw
2
+ 1
)
+ 1

2
w log(w)

+
(κw+ 3) log(κw(κw+ 6) + 12)

2κ
+

√
3 arctan

(
κw+3√

3

)
κ

Some future directions. As in general, Calabi’s ansatz only works when the

base manifold is KE, a generalization of it is needed. There are different approaches

adopted in [26, 31, 41] to study different specialized metrics on the vector bundles.

But little is known to find the Ricci flat metrics explicitly beyond Calabi’s ansatz.

On the other hand, tot(KM) is always a noncompact Calabi-Yau manifold, hence

one must be able to generalize Calabi’s ansatz by considering nonKähler-Einstein

metrics on M. Calabi’s potential

KE = π∗(KM) + U(λ)

will always provide a Kähler metric on the total space tot(E −→ M), and one needs

to understand what other kinds of Kähler metrics on M would bring us to a nice

Monge-Amperè equation. This has proven to be a hard problem as it is evident

from the case of tot(KF2). But it is essential for example to establish gauge/gravity

correspondence in quiver gauge theories.
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A possible direction is replacing KE metrics with extremal metrics introduced by

Calabi[11, 12].

Sasakian structure. Sasakian geometry [48] (seeAppendix B5.2.1) is a powerful

tool to get explicit examples of Ricci-flat metrics. A Sasakian manifold S is an odd-

dimensional Riemannian manifold with a given metric g such that the manifold

C(S) = R+ × S together with the metric ḡ = dr2 + r2g is Kähler. A well-known

result in Sasakian geometry says that (C(S), ḡ) is Calabi-Yau if and only if (S, g) is

Einstein.

Given a holomorphic line bundle L −→ M where M is Kähler, we can always

consider a U(1)-principal bundle overM inside L. The total space of such a principal

bundle is an odd-dimensional Riemannian manifold. We can try to find an Einstein

metric on it so that tot(L) minus the zero section corresponds to the Sasakian cone

over the odd-dimensional manifold with Ricci-flat metrics.

Appropriate Quiver Gauge theory for the class of 4D KE manifolds To

complete gauge/gravity correspondence, we need the field contents on the gauge side

of the theory. The generalized Kronheimer construction is a powerful tool to get

those fields. It is not clear to us yet what kind of quivers we can associate with our

manifolds to apply the generalized Kronheimer construction. Remember, away from

the singularities both tot(KF2) and tot(KM[λ1,λ2]) are the same.
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Chapter 2

Preliminaries

This chapter deals with the basic mathematical tools available in the literature upon

which I am relying throughout this thesis.

2.1 Quotient Singularities

Quotient singularities are being studied since the 19th century in different aspects.

Here we are interested in a very special kind of quotient singularity, namely, given

a finite subgroup Γ ⊂ SU(n), we consider the corresponding quotient variety Cn/Γ

with an appropriate Γ-action on Cn.

2.1.1 du Val Singularities

For n = 2, these singularities are classified and known as the du Val singularities or

ADE-type of singularities. They were first studied by Felix Klein in the late 19th

century and then by Patrick du Val in mid 20th century [22]. A modern treatment

of du Val singularities can be seen in [42]. The purpose of this thesis is to study the

nature of Kähler metrics on the resolved spaces of such singularities, hence I will just

borrow the classification table in [42] and for more details, the reader is encouraged

to have a look at Reid’s article.

All the du Val singularities listed in the table 2.1 have only one isolated singularity
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Name Equation Group Dynkin Diagrams
Ar x2 + y2 + zr+1 = 0 Cyclic Z/(r + 1) Ar

Dr x2 + y2z + zr−1 = 0 Binary dihedral BD4(r−2) Dr

E6 x2 + y3 + z4 = 0 Binary tetrahedral E6

E7 x2 + y3 + yz3 = 0 Binary octahedral E7

E8 x2 + y3 + z5 = 0 Binary icosahedral E8

Table 2.1: du Val singularities

at the origin and a blow-up at the origin provides a resolution of singularities.

The key fact about du Val singularities is the existence of crepant resolutions (the

word was introduced by M. Reid, as resolution has no discrepancy). The crepant

resolution φ : Y → X is such that KY = φ∗KX . For further details, we refer to

[42, 43].

2.1.2 Canonical singularities

Before going into the higher dimensional version of du Val singularities, I think it

is important to introduce the nature of singularities we are dealing with, namely

the canonical singularities of a normal variety X. We say a normal variety X has

canonical singularities if the canonical divisor KX has an integral multiple mKX

for some positive integer m such that mKX is Cartier and it has a resolution φ :

Y → X with the family of exceptional divisors {Ei} such that:

m KY = φ∗(m KX) +
∑

ai Ei with ai ≥ 0 (2.1.1)

The singularities are further called terminal if all ai’s are positive.

A very nice introduction to such singularities is given in [43]. The Q-divisor D =

1/m
∑

ai Ei is called the discrepancy of the resolution, and a resolution φ : Y → X

is called crepant if D = 0, in which case KY = φ∗KX . It means the resolved space

Y is a Calabi-Yau variety. For the rest of this thesis, we will only be interested in
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the crepant resolutions of normal varieties with canonical singularities.

In dimension 2, all the canonical singularities are classified and they are exactly du

Val singularities listed in 2.1.

2.1.3 Canonical singularities in Higher dimensions:

The case of surface canonical singularities has been under the microscope for almost

two centuries and they are well understood. The higher dimensional case is nowadays

a very active field of research from both algebraic and differential geometric points

of view. From the algebraic point of view, we now know that even the existence of

crepant resolutions of quotient singularities Cn/Γ is not guaranteed for n ≥ 4. In

dimension 3, the crepant resolutions do exist thanks to the case-by-case analysis, but

they need not be unique.

In this thesis, we will be interested in rather a very special kind of quotient

singularities known as abelian quotient singularities in dimension 3. Here, the finite

group Γ ⊂ SU(3) is abelian. It has been known that all abelian quotient singular

spaces for Γ ⊂ SU(n) are toric varieties. Thanks to this, the study of the nature

of such varieties becomes much simpler than the non-abelian cases because of the

associated toric data which encodes the information of all geometric properties of

the varieties. Before going to a brief introduction to toric varieties, we would like to

describe a useful correspondence between the representation of the group Γ and the

homology of the crepant resolutions.

2.2 McKay-Correspondence:

In 1980, John McKay [39] identified a correspondence between the McKay quiver

associated with a finite subgroup Γ ⊂ SU(2) and the extended Dynkin diagram

associated with the root system of ADE-type. This led to the discovery of McKay-

correspondence between the homology of the crepant resolution Y and the irreducible

representations of the group Γ in higher dimensions, studied by A. Craw, Y. Ito, M.

Ried, and many others (see [33, 44, 18]). It is appropriate to introduce McKay quiv-
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ers here before describing the McKay-correspondence.

Let Γ be a finite group and V be an n-dimensional complex vector space. Let

ρ : Γ → GL(n, V ) be a given representation of Γ. Further, let {ρi} be the irreducible

representations of Γ. The tensor product of the representation ρ with irreducible

representations satisfies the following decomposition

V ⊗ Vi
∼=
⊕
j

aij · Vj (2.2.1)

for each i and aij ∈ N. Here Vi is the respected vector space for the irreducible

representation ρi for every i. The McKay quiver associated with Γ is a quiver that

consists of the following data:

Vertices: Irreducible representations ρi

Edges: aij edges between ith and jth vertex

McKay in [39] gave a correspondence between the McKay quiver associated with

finite subgroup Γ ⊂ SU(2) with its natural representation V ∼= C2 and the ex-

tended ADE-Dynkin diagrams including the trivial representation, which provides

the following one-to-one correspondence

{irreducible representations of Γ} ↔ basis of H∗(Y,Z) (2.2.2)

where Y is the crepant resolution of C2/Γ. This led to the following conjecture in

every dimension back in the mid-’90s by Ito and Reid [33].

Conjecture 2.2.1. Let Γ ⊂ SL(n,C) is a finite subgroup and X = Cn/Γ the quo-

tient space. Let φ : Y → X be a crepant resolution of X then there is a bijective

correspondence

{algebraic basis of H∗(Y,Q)} ↔ {Conjugacy classes of Γ} (2.2.3)

They proved the conjecture for n = 3. A stronger version of the conjecture was
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given by Batyrev and Dais in [2] soon after the Ito-Reid conjecture. This new version

is now known as strong McKay correspondence. We first define here the notion of

age associated with every element g ∈ Γ introduced by Reid.

Since every g ∈ Γ is conjugate to a diagonal matrix

g =


e2πia1(g)/o(g) . . . 0

...
. . .

...

0 . . . e2πian(g)/o(g)


where o(g) is the order of g and 0 ≤ aj(g) < o(g). Then the age of g ∈ Γ is

age(g) =
1

o(g)

n∑
j=1

aj(g) (2.2.4)

Age 1 elements of Γ are called the junior elements and the conjugacy classes

associated with them are called the junior conjugacy classes.

Conjecture 2.2.2. Let φ : Y → X a crepant resolution, then

dimCH
2k(Y,C) = #{age k conjugacy classes of Γ} (2.2.5)

Batyrev and Dais proved this in the abelian case. In particular, in abelian case,

we have the following very useful corollary:

Corollary 2.2.3.

dimCH
2(Y,C) = #{junior conjugacy classes of Γ} (2.2.6)

{exceptional divisors of φ : Y → X} ↔ {junior conjugacy classes of Γ} (2.2.7)

Since this thesis deals with differential geometric questions associated with crepant

resolutions, we do not dig deeply into the beautiful algebraic geometric side, which

on its own, is a very much active field of research.
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2.3 Toric Calabi-Yau manifolds

We are interested in studying the abelian quotient spaces and their crepant resolu-

tions, which are all toric spaces. So we give below a brief introduction to the toric

varieties. A very beautiful treatment of the subject is given in Cox-Little-Schenck’s

book [17].

2.3.1 Toric Recipe

Definition 2.3.1. An affine variety X is called toric if there exists a dense open

subset T ⊆ X which is isomorphic to algebraic torus (C∗)n and the action of the

torus on itself can be extended to an action on the entire affine variety X.

Normal Toric varieties can be studied by associating combinatorial data encoded

in a ”fan” which consists of ”strongly convex rational polyhedral cones” in NR ∼=
N ⊗Z R. Here the lattice N ∼= Zn is the family of one-parameter subgroups of

the algebraic torus T ⊆ X. Its dual is denoted by M and it consists of characters

associated with T i.e. group morphisms χ : T → C∗. In practice, to create toric

varieties we start by fixing a lattice and then associate with it some combinatorial

data which leads us to a variety or vice versa.

Definition 2.3.2. Let N ∼= Zn be a lattice than a rational polyhedral cone is a

convex hull of a finite set S ⊂ N , i.e

σ = cone(S) = {
∑

λiui|ui ∈ S, λi ≥ 0} ⊆ NR = N ⊗ R ∼= Rn

We call M = Hom(N,Z) ∼= Zn the dual lattice of N and we define the dual

cone of σ in the following way

σ∨ = {m ∈ MR|⟨m,u⟩ ≥ 0 ∀ u ∈ σ} ⊆ MR = M ⊗ R ∼= Rn

where ⟨·, ·⟩ is the natural bilinear pairing.

The dimension of the cone σ is equal to the dimension of the real vector space
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spanned by σ. We say a rational polyhedral cone σ is strongly convex if the

dimension of σ∨ is n.

Given a strongly convex rational polyhedral cone σ, C[σ∨ ∩ M ] happens to be a

finitely generated C−algebra.

Definition 2.3.3. Let σ be a strongly convex rational polyhedral cone, then an affine

toric variety Xσ is defined as

Xσ = Spec(C[∨∩M ]) (2.3.1)

The fact that σ is strongly convex implies that the corresponding affine toric

variety Xσ is normal. Since we are only concerned with normal toric varieties, for

us σ will always be strongly convex, and from now on we refer to it just as a cone.

Definition 2.3.4. A fan Σ ⊂ NR is a finite collection of cones such that:

a) the intersection σ1 ∩ σ2 of two cones in Σ is a face of both cones, and Σ is

closed under the intersection operation;

b) every face of σ ∈ Σ is also in Σ.

Given a fan Σ we construct an abstract normal toric variety XΣ in the following

way: To every cone σ ∈ Σ we consider the affine normal piece Xσ and if τ = σ1 ∩ σ2

is a common face then we glue the two affine pieces Xσ1 and Xσ2 by identifying along

subvariety Xτ .

The smoothness of the variety Xσ (or XΣ) comes from the fact whether the

generating vectors of σ form part of an integral basis for the lattice N or not. If they

do thenXσ is smooth. Otherwise in order to resolve the singularity we perform a well-

known surgical technique in toric geometry called the barycentric subdivision,

where we add a new ray generated by an integral point in such a way that the new

fan Σres consists of new cones which are smooth and so is the variety XΣres . This

technique of resolving the toric singularities makes the study of toric varieties very

useful.
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The dense open subset T in the toric variety X is a group and the group action

extends to the whole X which allows us to look for the orbits under this action. A

well-known result in toric geometry gives a one-to-one correspondence between the

cones in the toric fan Σ and the orbits.

{r − dim cones σ ∈ Σ} ↔ {(n− r)− dim orbits in X} (2.3.2)

This correspondence is called ”Orbit-Cone correspondence”. In particular, one-

dimensional cones called edges give us codimension 1 orbit. Their closures are called

the toric divisors. n−dimensional cones correspond to zero-dimensional orbits and

we call them toric points of X.

Theorem 2.3.1. Let XΣ be a toric variety with fan Σ. The canonical divisor of

XΣ is given by

KXΣ
= −

∑
ρ∈Σ(1)

Dρ (2.3.3)

where Σ(1) consists of all one-dimensional cones in Σ.

The total space of the canonical bundle over a toric variety is itself a toric variety

and the fan Σcan associated with Lcan = tot(KXΣ
→ XΣ) is defined in the following

way:

Let Σ(n) be the set of n−dim cones in Σ. We define new cones σcan = span(σ(1)×
{1}, (0, 0, · · · , 1)) corresponding to each σ ∈ Σ(n). Then Σcan is the fan associated

with Lcan whose (n+ 1)−dim cones are σcan.

Let HΣ be the set of ray generators of Σ, i.e. for every ρ ∈ Σ(1) there exists a u ∈ HΣ

such that ρ = span(u). The Calabi-Yau condition on toric varieties is given as:

Theorem 2.3.2. A toric variety XΣ is Calabi-Yau if HΣ is contained in a hyper-

plane in Rn.

Remark 2.3.3. Note that Lcan is Calabi-Yau.
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2.3.2 Toric description of Hirzebruch Surfaces

One of the important classes of toric surfaces is Hirzebruch surfaces denoted by Fr

for r ∈ N. The following result about toric surfaces in [17] classifies all possible

smooth compact toric surfaces.

Theorem 2.3.4. Every smooth compact toric surface XΣ is obtained from one of

the following

P2,P1 × P1 or Fr for r ≥ 2

by a finite sequence of blowups at fixed points of the torus action.

In order to study the geometry of smooth compact toric surfaces it is enough to

understand the toric data associated with the toric surfaces in the list above theorem.

For the purpose of this thesis, we are mainly interested in Hirzebruch surfaces. So it

is only appropriate to describe the toric geometry of such surfaces.

The fan Σr associated with Fr is shown below. Note that the fan consists of four

(−1, r)

(0, 1)

(1, 0)

(0,−1)

σ1

σ2

σ3

σ4

Figure 2.1: Σr associated with Fr
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2−dim cones σ1, σ2, σ3 and σ4 and four 1−dim edges generated by the integral vectors

u1 = (1, 0), u2 = (0, 1), u3 = (−1, r) and u4 = (0,−1). By orbit-cone correspondence,

we can associate toric divisors D1, D2, D3 and D4 corresponding to each ui. An

elementary calculation shows us that the class group of Fr is isomorphic to Z2 and it

is generated by the classes [D2] and [D3]. Since Fr are smooth toric varieties hence

the class group is also the Picard group of Fr. The canonical divisor associated with

Fr is then −(D1 +D2 +D3 +D4).

2.3.3 Second Hirzebruch surface

If we take r = 2, the corresponding Hirzebruch surface F2 is called the second

Hirzebruch surface. The toric fan consists of four two-dimensional cones as shown in

figure 2.1. The generators of the corresponding cones are

u1 = (1, 0), u2 = (0, 1), u3 = (−1, 2) and u4 = (0,−1)

Among these generators note that u1, u2, and u3 lie on the same line. This fact

implies that the corresponding 3-dimensional fan for the canonical bundle can be

described as a planar triangular graph 2.2 An interesting fact about the crepant

resolutions discovered by Craw [18] is that only those smooth toric varieties can

be crepant resolutions of some abelian quotient singularities in dimension three,

whose three-dimensional fan can be described as a planar triangulated graph. F2

is the only Hirzebruch surface whose corresponding fan for the canonical bundle

can be described as a triangulated graph. All the other fans of canonical bundles

of Hirzebruch surfaces can only be described by quadrilateral planar graphs. This

makes F2 more interesting at least in this setup.

In fact, it has been shown in [7] that the total space of the canonical bundle of F2

is the unique crepant resolution of C3/Z4 quotient singular variety, where the action

of Z4 on C3 is given by:

ω · (z1, z2, z3) = (ω z1, ω z2, ω
2z3) for ω ∈ Z4 (2.3.4)
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(1, 0, 1) (0, 1, 1) (−1, 2, 1)

(0,−1, 1)

(0, 0, 1)

σ̃1 σ̃2

σ̃3
σ̃4

Figure 2.2: Planar triangulated graph of the fan of Canonical bundle of F2

In this thesis, we were initially interested in a Ricci-flat metric on the total space of

the canonical bundle of F2. In chapter 4 we will describe a new family of Kähler-

Einstein spaces which topologically are homeomorphic to F2 and in chapter 5 we

will describe a way to put Ricci-flat metrics on the canonical bundle of those spaces.

This is mainly because the only known ansatz to do so as far I know is due to

Calabi [10]. In Calabi’s ansatz, whenever the base manifold is Kähler-Einstein, the

Monge-Ampère equation for the Ricci-flat metric becomes an ODE with constant

coefficients. On the other hand, It is a well-known fact due to Tian that F2 is not

Kähler-Einstein, and the Ricci-flat condition on the total space of canonical bundle

of F2 happens to be a non-linear second-order PDE with coefficients depending upon

a real variable coming from F2.

2.4 Generalized Kronheimer Construction:

In 1989, Kronheimer in [37] developed an ansatz to find explicit ALE (asymptotically

locally euclidean)-hyperKähler metrics on the resolution of du Val singular varieties.
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This ansatz is known as the Kronheimer construction. In [7], a generalized version

of Kronheimer construction was described in an attempt to find the Ricci-flat metric

on the crepant resolution in dimension three. It turns out that the generalized

Kronheimer construction fails to provide a canonical Ricci-flat metric impose by

the ansatz. Nevertheless, the construction is still vital to understand the kind of

isometries we want to impose on our required metric. As will be the case in our

situation, where we are looking at Ricci-flat metrics on the canonical bundles of two

complex dimensional Kähler manifolds MB with isometry SU(2)× U(1)× U(1).

It turns out that the Kronheimer construction provides one parametric family of

Kähler metrics on F2 with the isometry SU(2)× U(1) in the case of C3/Z4 singular

variety. This one-parametric family comes by restricting the Kronheimer metric on

the total space of the canonical bundle of F2 to F2 (see [7]). We will come to this

point later. First, let me start by defining ALE and QALE-metrics first.

Definition 2.4.1. Let (M, g) be a non-compact Riemannian manifold of dimension

n. Let Γ ⊂ SO(n) be a finite subgroup that acts freely on Rn \ {0}. We say (M, g)

is an ALE-manifold asymptotic to Rn/Γ if

i) there ∃ a compact subset Dc ⊂ M, a map π : M \ Dc −→ Rn/Γ and a map

r : Rn/Γ −→ R+ such that

M\Dc ≃diff {x ∈ Rn/Γ | r(x) > R} (2.4.1)

for some fixed R > 0;

ii) The push-forward metric π∗(g) satisfies

∇k(π∗(g)− h) = O(r−m−k) (2.4.2)

where k≥ 0.

Here ∇ is the Levi-Civita connection of Euclidean metric h on Rn.

The Eguchi-Hanson metric [23] on the resolution of the A1 du Val singular variety

is among the first examples of Ricci-flat ALE -metric. Kronheimer metrics on the
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resolution spaces of all du Val singular spaces are also ALE. In [34], Joyce proved the

existence of Ricci-flat ALE metrics on the crepant resolutions of isolated quotient

singularities. In [35], he confirmed the existence of Ricci-flat metrics on the crepant

resolutions of non-isolated quotient singularities. Although Joyce has proved its

existence, there is no proper technique to get explicit metrics other than Calabi’s

ansatz. The precise definition of QALE -metrics is a bit longer and we refer the

reader to [35].

2.4.1 Generalized Kronheimer Construction of Crepant res-

olutions:

To describe the generalized Kronheimer construction (see for more details [6, 7]) we

follow the following steps:

McKay quiver associated with Γ ⊂ SU(n): We start by associating McKay

quiver QΓ:

• Let N be the n−dimensional complex representation of Γ ⊂ SU(n);

• Let
{
Ni

}s+1

i=1
be the s+ 1 irreducible representations of Γ associated with each

conjugacy class;

• Define

N ⊗Ni =
s+1⊕
j=1

QijNj for each i = 1, · · · , s+ 1 (2.4.3)

via the Schur lemma;

• each vertex of Q is labeled by Ni and a number ni, where ni is the dimension

of the irreducible representation Ni. Qij is the number of arrows from vertex i

to j.

By this, we can associate a McKay quiver to any Γ ⊂ SU(n). When Γ is abelian,

we have exactly | Γ | 1−dimensional irreducible representations and we drop the
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integers ni to each vertex with the understanding that it is 1 at every vertex. Figure

2.3 is the McKay quiver associated with Z4. Note that

Q =


0 2 1 0

0 0 2 1

1 0 0 2

2 1 0 0


is the matrix of (2.4.3)

Figure 2.3: McKay quiver QZ4 associated to Z4. Here the central vertex N1 denotes
the trivial representation.

Generalized Kronheimer construction in dimension three: The detailed

description of generalized Kronheimer construction is a bit longer (see [6]). Here I

will try to summarize the key ingredients without much explanation. We need the

following data to get the crepant resolution Y corresponding to quotient singular

space C3/Γ with a bonafide Kähler metric gY :

• Let R be the regular representation of Γ and define

PΓ = Hom(R,N ⊗R) = N ⊗ Hom(R,R) (2.4.4)
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an element p ∈ PΓ is given by

p =

A1

A2

A3

 (2.4.5)

where Ai is | Γ | × | Γ | matrix for i = 1, 2, 3;

• The group Γ acts on PΓ in the following way

∀ γ ∈ Γ : γ · p = N (γ)

R(γ)A1R(γ−1)

R(γ)A2R(γ−1)

R(γ)A3R(γ−1)

 (2.4.6)

and consider

PΓ
Γ =

{
p ∈ PΓ | ∀ γ ∈ Γ, γ · p = p

}
(2.4.7)

be the invariant subspace of PΓ. It has a complex dimension 3 | Γ |. In

the generalized Kronheimer construction, we are mainly interested in different

subspaces within PΓ
Γ ;

• A | Γ | × | Γ | matrix A which commutes with R(γ) for every γ ∈ Γ gives us an

automorphism of PΓ
Γ and we denote by GΓ the group of such automorphisms

of PΓ
Γ . It can also be realized as

GΓ =
s+1⊗
i=1

GL(ni,C)
⋂

SL(| Γ |,C) (2.4.8)

;

• We are interested in Kähler structures so we can further restrict ourselves to

the possible group of isometries of the Kähler structure on PΓ
Γ , i.e.

FΓ =
s+1⊗
i=1

U(ni)
⋂

SU(|Γ|) ⊂ GΓ (2.4.9)
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• We associate two subspaces denoted by DΓ and LΓ in PΓ
Γ as following

DΓ =
{
p ∈ PΓ

Γ | [A1,A2] = [A2,A3] = [A3,A1] = 0
}

(2.4.10)

LΓ =
{
p ∈ PΓ

Γ | Ai for every i = 1, 2, 3 is diagonal

in the natural basis ofR
} (2.4.11)

In fact, LΓ is isomorphic to the singular variety C3/Γ and DΓ is invariant under

the action of FΓ ;

• We define a Kähler potential on PΓ
Γ by

KPΓ
Γ
= Tr(A∗

1A1) + Tr(A∗
2A2) + Tr(A∗

3A3) (2.4.12)

where A∗ is the conjugate transpose of the matrix A;

• Corresponding to the action of FΓ on DΓ, we can associate s number of real

moment maps µI corresponding to each non-trivial irreducible representation

of Γ and we can define level sets denoted by µ−1(ζ) ⊂ DΓ for any vector

ζ = (ζ2, · · · , ζs+1);

• We define the spaces

Mζ = µ−1(ζ)//FΓ (2.4.13)

via the Kähler quotient construction. For generic values of ζ, Mζ are smooth

3-complex dimensional manifolds and for ζ = 0 we get our singular variety

back, i.e. for a generic value we can regard Mζ as a crepant resolution of our

quotient singular variety C3/Γ. Furthermore, under this quotient construction,

note that µ−1(ζ) −→ Mζ can be regarded as FΓ principal line bundle;

• The FΓ principal line bundle µ−1(ζ) −→ Mζ induces holomorphic vector bun-

dles of rank ni for i = 2, · · · , s+1, and one can associate hermitian fiber metrics
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hi for every bundle and we define a Kähler potential on Mζ as

KMζ
= KPΓ

Γ
|µ−1(ζ) +ζ iMijlog

(
Det[hj]

)
(2.4.14)

where M is a constant s× s matrix.

For a much more detailed description see [6, 7]. In [7], following the generalized

Kronheimer construction, the authors found a Kähler metric on the crepant resolu-

tion of X = C3/Z4 quotient space. It turns out that the metric was not the desired

Ricci-flat as was the case in classical Kronheimer construction but still it provided

two fruitful results namely:

a) The process provided a Ricci-flat metric on a partial resolution of X;

b) Since the full resolution of X is the total space of the canonical bundle of

the second Hirzebruch surface, the Kronheimer metric when restricted to F2

provided a one-parametric family of potentials on F2.

I will come to these last two findings in chapter 4.
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Chapter 3

Toric Symplectic Geometry

In this chapter, we will review the symplectic geometry of the toric manifolds devel-

oped by Delzant, Guillemin, and Abreu in [1, 21, 30]. In the last section, we describe

Guillemins’s symplectic potential on the second Hirzebruch surface.

3.1 Delzant Correspondence

Delzant in [21] provided a wonderful one-to-one correspondence between symplectic

toric manifolds and so-called Delzant polytopes up to symplectomorphisms, i.e.{
Compact toric symplectic manifolds up to symplectomorphisms

}
↕{

Delzant polytopes
}

Definition 3.1.1. A symplectic toric manifold of real 2n dimension is a symplectic

manifold (M2n, ω) together with an effective Hamiltonian action

• : T n ×M −→ M (3.1.1)

of the real torus T n = Rn/2πZn.

Definition 3.1.2. A convex polytope P ⊂ Rn is called Delzant if:
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I) at each vertex v of P exactly n edges meet;

II) every edge meeting at vertex v is rational in the sense that the line containing

the edge and passing through v has the form v + t ui for some ui ∈ Zn and

t ∈ [0,∞);

III) the vectors u1, · · · , un in (II) form a basis of Zn.

Delzant associated with every such polytope P a closed connected symplectic

manifold (MP , ωP , •P ) of dimension 2n together with a Hamiltonian T n-action de-

noted by •P , and proved the following:

Theorem 3.1.1. Let (M2n, ω) be a compact, connected symplectic manifold along

with an effective torus action of real torus T n. Let µ : M −→ Rn be the corresponding

moment map then:

• the image of µ is a Delzant polytope denoted by P , i.e.

µ(M) = P

• (M, ω, •) is equivariantly symplectomorphic to (MP , ωP , •P ).

3.2 Kähler and symplectic geometry

Let

M◦ =
{
x ∈ M | the T n − action is free at x

}
It is a dense open subset of M. Let us consider the complex holomorphic coordinates

on M◦ in action-angle form:

zj = euj+iΘj , for j = 1, · · · , n (3.2.1)

we can realize M◦ as Rn × iT n space. The action of T n on M◦ is given by

g • z = (eu1+i(Θ1+ϕ1), · · · , eun+i(Θn+ϕn))
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where g = (eiϕ1 , · · · , eiϕn) ∈ T n.

T n-invariant Kähler potential. Let KM be a Kähler potential on M◦ such that

ω = i∂∂̄KM. We need ω to be invariant under the T n action so the Kähler potential

KM must only depend on the real coordinates u = {u1, · · · , un}. We denote by

F = Hess(KM) (3.2.2)

the Hessian of KM with respect to the coordinates u. The corresponding Riemannian

metric is given by:

g =

(
F 0
0 F

)
(3.2.3)

Legendre transform and symplectic potential. The moment map µ : M −→
Rn is of the form (µ1, · · · , µn), where,

µj =
∂KM

∂uj

(3.2.4)

Via Delzant correspondence theorem, we have µ(M) = P and we have the following

identification:

M◦ ∼= P ◦ × T n (3.2.5)

Here, P ◦ is the interior of the Delzant polytope P . Geometrically, every point in

the interior of the Delzant polytope can be thought of as a copy of the torus T n.

In general, a point in the interior of an r-dimensional face of the polytope can be

thought of as a copy of r dimensional orbit under T n action. Vertices of P are

regarded as the fixed points under T n action (see figure 3.1).

Via the Legendre transform we consider the symplectic coordinates

{u1, · · · , un; Θ1, · · · ,Θn}, where we set:

uj =
∂KM

∂uj

(3.2.6)
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Figure 3.1: A generic Delzant polytope in dimension 2.

Under this change of coordinates, the Kähler form ω = i∂∂̄KM becomes

ω = duj ∧ dΘj (3.2.7)

The Riemannian metric g takes the form

g =

(
G 0
0 G−1

)
(3.2.8)

where G = Hess(GM) with respect to the real coordinates u for a smooth function

GM defined on P ◦, and we call GM the symplectic potential.

The Kähler and symplectic potentials are in fact Legendre dual to each other,

i.e.

KM + GM =
n∑

j=1

∂KM

∂uj

∂GM

∂uj
(3.2.9)

and the corresponding Hessians F at u and G at u are inverse to each other.
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3.3 Guillemin’s symplectic potential

V. Guillemin in [30] found a canonical expression for the symplectic potential asso-

ciated with a given Delzant polytope P by associating affine functions lα : P◦ −→ R
to every (n− 1)−dimensional face α, defined as:

lα(u) = ⟨u, να⟩ − λα (3.3.1)

where να ∈ Zn is a primitive inward normal vector to the face α for every α and λα

is a constant. Furthermore, the set of inequalities {lα ≥ 0} defines the polytope P .

The canonical symplectic potential GP : P ◦ −→ R defined by Guillemin is:

GP =
1

2

r∑
α=1

lα(u)Log[lα(u)] (3.3.2)

Transforming from the complex holomorphic coordinates (u,Θ) to symplectic coor-

dinates (u,Θ) via the Legendre transform often requires solving the system (3.2.6)

for uj. This might prove to be a difficult step in general but once we get past

this and transform our Kähler potential into symplectic potential, the further cal-

culations turn out to be much simpler. On the other hand, one can always start

from a Delzant polytope associated with any compact toric variety and we consider

Guillemin’s symplectic potential.

Remark 3.3.1. Remember that to every toric fan Σ of a compact toric variety we

can associate a polytope such that the maximal cones in Σ are generated by the inward

normals of the edges meeting at each vertex. This dual description of a compact toric

variety is very useful in toric geometry. In fact, given a toric divisor D on a toric

variety X, we can always associate a polytope, so in a way, Delzant polytope also

comes equipped with a bonafide toric divisor.
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Figure 3.2: Two polytopes P2,4 and P1,3 with r = 2 and their corresponding toric fan
Σ2

3.4 Generic Delzant polytope associated with F2

Let us consider a generic polytope of the form

Pa,b = Conv(0, a e1, e2, b e1 + e2) ⊂ R2 (3.4.1)

where a, b ∈ N satisfy 1 ≤ a ≤ b. Let Σa,b be the normal fan associated with Pa,b

and Xa,b be the normal toric variety associated with Σa,b. Note that the polytope

Pa,b has only one slanted edge joining the vertices (a, 0) and (b, 1). The difference

r = b−a determines the slope of this slanted edge. Furthermore, the polytopes Pa,a+r

correspond to the same normal fan denoted by Σr, and consequently the same toric

variety Xr. A simple calculation reveals that the variety Xr is the rth− Hirzebruch

surface Fr.

In figure 3.2, we showed two polytopes P2,4 and P1,3. Their normal fan is Σ2, which
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is the fan of the second Hirzebruch surface F2. P2,4 describes F2 as an embedded

surface in CP7, while P1,3 describe it as an embedded surface in CP5. Furthermore,

every Pa,2+a is a Delzant polytope.

A generic polytope Pa,2+a associated with second Hirzebruch surface F2, in this ter-

minology, is defined by the following inequalities:

a− u+ 2v ≥ 0; v ≥ 0; 1− v ≥ 0 and u ≥ 0 (3.4.2)

Guillemin’s symplectic potential associated with Pa,2+a is of the form:

GF2 =
1

2

(
(a−u+2v)log(a−u+2v)+ulog(u)+vlog(v)+(1−v)log(1−v)

)
(3.4.3)

Note that, by fixing the slope of the slanted edge we always get a unique Hirzebruch

surface. In chapter 4, we will fix the slope of the slanted edge equal to the slope of

the Delzant polytopes associated with F2 and we will vary the edge opposite to the

slanted one. This variation turns out to be a very productive technique to create

different classes of Kähler manifolds which are homeomorphic to F2 but are different

as complex manifolds.
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Chapter 4

New Kähler-Einstein Manifolds

In this chapter, we will restrict ourselves to the case of two-dimensional toric compact

Kähler manifolds which we will denote by MB. Furthermore, we want to study

Kähler metrics gMB
on MB with SU(2)× U(1) isometries. We will use the AMSY

formulation developed by Abreu, Martelli, Sparks and Yau (AMSY) in [1, 38, 9]

to transform the Kähler potential K corresponding to gMB
to get the symplectic

potential G. First, we recall the AMSY formulation in general.

4.1 The AMSY symplectic formulation

Given a Kähler potential K(|z1|, .., |zn|) on a toric complex n-dimensional Kähler

manifold, where zi = xi + iΘi are the complex coordinates. The dependence of K on

the modules of the complex coordinates z is due to the fact that K must be invariant

under the U(1)n action. Introducing the moment variables

µi = ∂xi
K (4.1.1)

we can obtain the symplectic potential by means of the Legendre transform:

G (µi) =
n∑
i

xi µ
i − K(|z1|, .., |zn|) (4.1.2)
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The main issue involved in the use of eqn. (4.1.2) is the inverse transformation that

expresses the coordinates xi in terms of the moments µi. Once this is done one can

calculate the metric in moment variables utilizing the Hessian:

Gij =
∂2

∂µi∂µj
G (µ) (4.1.3)

and its matrix inverse. Complex coordinates better adapted to the complex structure

tensor can be defined as

ui = ezi = exp[xi + iΘi] (4.1.4)

The Kähler 2-form has the following universal structure:

K =
n∑

i=1

dµi ∧ dΘi (4.1.5)

and the metric is expressed as

ds2symp = Gijdµ
i dµj + G−1

ij dΘ
i dΘj (4.1.6)

4.2 Kähler metrics with SU(2)× U(1) isometry

In [7],[5], it was remarked that in order to study two complex dimensional compact

toric Kähler manifoldMB equipped with a Kähler metric gMB
with isometry SU(2)×

U(1), the Kähler potential K0(ϖ) depends only on the real combination,

ϖ =
(
1+ | u |2

)2 | v |2, (4.2.1)

where u and v are the complex coordinates, which guarantees invariance under

SU(2)× U(1) transformations realized as

if g =

(
a b

c d

)
∈ SU(2) then g (u, v) =

(
a u+b
c u+d

, v (c u+ d)2
)
;

if g = exp(i θ1) ∈ U(1) then g (u, v) = (u, exp(i θ1) v) .

(4.2.2)
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The above realization of the isometry captures the idea that, at least topologically,

the manifold is an S2 fibration over S2 (u being a coordinate on the base and v a

fiber coordinate). Even a posteriori, MB will be an S2 fibration over S2, but only

topologically, with possible singularities in the differential structures(in fact, this

will be the case for the new class of Kähler-Einstein manifolds discussed later in this

chapter).

Within such a framework, in [7],[5] two cases are discussed in detail, namely

a) the singular weighted projective plane WP[1, 1, 2];

b) the second Hirzebruch surface F2.

In the case of the singular variety WP[1, 1, 2] there is a nonKähler–Einstein metric

that emerges from a partial resolution of the C3/Z4 singularity within the generalized

Kronheimer construction, whose explicit Kähler potential is the following one:

KKr
0 (ϖ) =

9

4

(
3ϖ +

√
ϖ(ϖ + 8)

ϖ +
√

ϖ(ϖ + 8)
+ log

(
ϖ +

√
ϖ(ϖ + 8) + 4

))
(4.2.3)

On the other hand the Kähler potential (4.2.3) is the particular case α = 0 of a one-

parameter family of Kähler potentials obtained from the Kronheimer construction:

KKr[ϖ,α] = − 9

16

(
− 4(α + 1) log

[√
α2 + 6αϖ +ϖ2 + 8ϖ + 3α +ϖ + 4

]
−F [ϖ,α] + 4α log

√√
α2 + 6αϖ +ϖ(ϖ + 8) + α +ϖ√

ϖ

) (4.2.4)

where

F [ϖ,α] =
F1(ϖ,α)√

α2 + 6αϖ +ϖ(ϖ + 8) + α +ϖ

and

F1(ϖ,α) = 4
(
α
(√

α2 + 6αϖ +ϖ(ϖ + 8) + 2ϖ + 1
)
+√

α2 + 6αϖ +ϖ(ϖ + 8) + α2 + 3ϖ
)
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that, for α > 0 generate bona fide Kähler metrics on the second Hirzebruch surface

F2.

4.2.1 A family of 4D Kähler metrics

In this thesis, we extend the work presented in [7],[5] further by restricting ourselves

within the same framework presented there and by using the AMSY formalism we

will find a new class of Kähler-Einstein manifolds MB. These are endowed with a

metric invariant under the SU(2)× U(1) isometry group acting as in eqn. (4.2.2).

The class of these manifolds is singled out by the above assumption that, in the

complex formalism, their Kähler potential K0(ϖ) is a function only of the invariant

ϖ defined in eqn. (4.2.1).

Via the Legendre transform we can associate a symplectic potential G0 using

the dependence of the Kähler potential K0(ϖ) but the explicit form of the Kähler

potential K0(ϖ) cannot be worked out analytically in all cases since the inverse Leg-

endre transform involves the roots of higher-order algebraic equations; yet, using the

ϖ-dependence assumption, the Kähler metric can be explicitly worked out in the

symplectic coordinates and has a simple and very elegant form – actually the metric

depends on a single function of one variable F (v) which encodes all the geometric

properties and substitutes K0(ϖ). Posing all the questions in this symplectic lan-

guage allow one to calculate all the geometric properties of the spaces in the class

under consideration and leads also to some new intriguing results. We choose to treat

the matter in general, by utilizing a local approach where we discuss the differential

equations in a given open dense coordinate patch u, v, and we address the question

of its global topological and algebraic structure only a posteriori, once the metric

has been found in the considered chart.

In order to get the symplectic structure of the metric on MB we would like

to start with the toric data associated with these manifolds. Following the AMSY

formulation of toric manifolds and keeping in mind that we want manifolds MB

topologically homeomorphic to S2 × S2 and the metric should have SU(2) × U(1)

isometry, we get the following general ansatz:
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The symplectic structure of the metric on MB is exhibited in the following way:

ds2MB
= gMB |µν dq

µ dqν ; qµ = {u, v, ϕ, τ} ;

gMB
=

(
GMB

02×2

02×2 G−1
MB

)
(4.2.5)

where the Hessian GMB
is defined by:

GMB
= ∂µi ∂µj GMB

; µi = {u, v} (4.2.6)

and

GMB
= G0(u, v) + D(v) (4.2.7)

G0 (u, v) =
(
v− u

2

)
log(2v− u) +

1

2
u log(u)− 1

2
v log(v) (4.2.8)

The specific structure (4.2.7),(4.2.8) is the counterpart within the symplectic for-

malism, via Legendre transform, of the assumption that the Kähler potential K0(ϖ)

depends only on the ϖ variable.

After noting this important point, we go back to the discussion of MB geometry

and stress that with the given isometries its Riemannian structure is completely

encoded in the boundary function D(v). All the other items in the construction are

as follows. For the Kähler form we have

KMB = 2 ( du ∧ dϕ+ dv ∧ dτ) = KMB
µν dqµ ∧ dqν ;

KMB =

(
02×2 12×2

−12×2 02×2

)
(4.2.9)

and for the complex structure, we obtain

JMB = KMB g−1
MB

=

(
02×2 GMB

−G−1
MB

02×2

)
(4.2.10)
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Explicitly the 2× 2 Hessian is the following:

GMB
=

(
− v

u2−2uv
1

u−2v
1

u−2v
−2v(u−2v)D′′(v)+u+2v

2v(2v−u)

)

G−1
MB

=

(
u(−2v(u−2v)D′′(v)+u+2v)

v(2vD′′(v)+1)
2u

2vD′′(v)+1
2u

2vD′′(v)+1
2v

2vD′′(v)+1

) (4.2.11)

The family of metrics (4.2.5) is parameterized by the choice of a unique one-variable

function:

f (v) = D′′(v) (4.2.12)

and is worth being considered in its own right.

4.2.2 The inverse Legendre transform

Before proceeding further with the analysis of this class of metrics, it is convenient

to consider the inverse Legendre transform and see how one reconstructs the Kähler

potential on MB. The inverse Legendre transform provides the Kähler potential

through the formula:

K0 = xu u + xv v − GMB
(u, v) (4.2.13)

where GMB
(u, v) is the symplectic potential on the MB defined in eqn. (4.2.7), and

xu = ∂u GMB
(u, v) ; xv = ∂v GMB

(u, v) (4.2.14)

which explicitly yields:

xu =
1

2
(log (u)− log (2v− u)) ;

xv = D′ (v) + log (2v− u)− 1

2
log (v) +

1

2

(4.2.15)
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Using eqn. (4.2.15)) in eqn. (4.2.13) we immediately obtain the explicit form of the

Kähler potential on MB as a function of the moment v:

K0 = K0 (v) = v

(
D′ (v) +

1

2

)
−D (v) (4.2.16)

The problem is that we need the Kähler potential K0 as a function of the invariant

ϖ. Utilizing eqn. (4.2.15) it is fairly easy to obtain the expression of ϖ in terms

of the moment v for a generic function D(v) that codifies the geometry of the base

manifold, obtaining

ϖ = (1 + exp [2xu])
2 exp [2xu] = Ω (v) = 4v exp [ 2 ∂vD (v) + 1] (4.2.17)

If one is able to invert the function Ω (v), the original Kähler potential of the base

manifold can be written as:

K0 (ϖ) = K0 ◦ Ω−1 (ϖ) (4.2.18)

The inverse function Ω−1 (ϖ) can be written explicitly in some simple cases, but

not always, and this inverse is the main reason why certain Kähler metrics can be

much more easily found in the AMSY symplectic formalism which deals only with

real variables than in complex formalism. Since nothing good comes without paying

a price, the metrics found in the symplectic approach requires that the ranges of

the variables u and v should be determined, since it is just in those ranges that the

topology and algebraic structure of the underlying manifold is hidden; indeed the

ranges of u and v define a convex closed polytope in the R2 plane that encodes very

precious information about the structure of the underlying manifold.
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4.3 Conversion rules from Kähler to Symplectic

geometry

Before we start calculating the different tensors related to the family of metrics

(4.2.5) it is appropriate to translate some basic operators in complex geometry to

symplectic geometry. In general, let M be a toric compact Kähler manifold of

complex dimension n and K(x1, · · · , xn) be a Kähler potential on M which depends

on real variables xi. Let us consider the complex coordinates given as in (4.1.4).

In general, in complex geometry we have

∂

∂zi
=

1

2

(
∂

∂x̃i

− i
∂

∂ỹi

)
∂

∂z̄i
=

1

2

(
∂

∂x̃i

+ i
∂

∂ỹi

) (4.3.1)

where zi = x̃α + iỹα. In our action-angle coordinates (4.1.4) we have:

x̃i = exicos(Θi)

ỹi = exisin(Θi)
(4.3.2)

and

xi = log(x̃2
i + ỹ2i )

Θı = arctan
( ỹi
x̃i

) (4.3.3)

First, we convert (4.3.1) into the action-angle coordinates and we get:

∂

∂zi
=

1

2
e−xi−iΘi

(
∂

∂xi

− i
∂

∂Θi

)
∂

∂z̄i
=

1

2
e−xi+iΘi

(
∂

∂xi

+ i
∂

∂Θi

) (4.3.4)

Now to translate from Kähler to symplectic geometry via AMSY formulation, we
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introduced new coordinates called {u1, · · · , un; Θ1, · · · ,Θn} where the relationship

between xi’s and ui’s is defined as

ui =
∂K
∂xi

and xi =
∂G
∂ui

where G(u1, · · · , un) is the corresponding symplectic potential. In these symplectic

coordinates (4.3.4) converts as

∂

∂zi
=

1

2
e−xi−iΘi

(∑
j

(
∂uj
∂xi

∂

∂uj

)
− i

∂

∂Θi

)
∂

∂z̄i
=

1

2
e−xi+iΘi

(∑
j

(
∂uj
∂xi

∂

∂uj

)
+ i

∂

∂Θi

) (4.3.5)

To get the final expression one needs to find the inverse relationships between xi’s

and ui’s using the above expressions. As we can guess easily that providing either a

Kähler potential or symplectic potential we can use ASMY formulation to go from

one side to another. But as we have mentioned earlier, every time we use the AMSY

formulation one needs to write down the coordinates of one side in the form of the

other side, which often poses a significant challenge.

4.4 The Ricci tensor and the Ricci form

Now we come back to our problem. Calculating the Ricci tensor for the family of

metrics (4.2.5) we obtain the following structure:

RicMB
µν =

(
PU 02×2

02×2 PD

)
(4.4.1)

The expressions for PU and PD are quite lengthy and we omit them. We rather

consider the Ricci 2-form defined by:

RicMB
= RicMB

µν dqµ ∧ dqν (4.4.2)
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where:

RicMB = RicMB JMB =

(
02×2 R

−RT 02×2

)
(4.4.3)

and

R =

(
r11 r12

r21 r22

)
r11 =

2v(vf ′(v)+2vf (v)2+f (v))−1

2v(2vf (v)+1)2

r12 = 0

r21 =
A

2v2(2vf (v) + 1)3

r22 =
B

(2vf (v) + 1)3

RT = PD G−1
MB

(4.4.4)

where

A = 2uv
(
v2(2vf (v) + 1)f ′′(v)− 4v3f ′(v)2 + 4vf ′(v)−

4v2f (v)3 − 2vf (v)2 + 3f (v) + u

and

B = f (v)
(
2v2 (vf ′′(v) + f ′(v)) + 3

)
+ v (vf ′′(v)−

4v2f ′(v)2 + 5f ′(v) + 2vf (v)2

The last equation is not a definition but rather a consistency constraint (the Ricci

tensor must be skew-symmetric).

4.4.1 A two-parameter family of KE metrics for MB

An interesting and legitimate question is whether this family of metrics contains KE

ones. Quite surprisingly, the answer is positive, and they make up a two-parameter

subfamily. A metric is KE if the Ricci 2-form is proportional to the Kähler 2-form:

RicMB =
k

4
KMB (4.4.5)
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where k is a constant. This amounts to requiring that the 2× 2 matrix R displayed

in eqn. (4.4.4) be proportional via k
4
to the identity matrix 12×2. This condition

implies differential constraints on the function F (v) that are uniquely solved by the

following function:

f (v) =
−3β + kv3 + 3v2

−2kv4 + 6v3 + 6βv
(4.4.6)

the parameter β being the additional integration constant, while k is defined by equa-

tion (4.4.5). To retrieve the original symplectic potential D(v) one has to perform a

double integration in the variable v. The explicit calculation of the integral requires

a summation over the three roots λ1,2,3 of the following cubic polynomial:

P (x) = x3 − 3x2

k
− 3β

k
(4.4.7)

whose main feature is the absence of the linear term. Hence a beautiful way of

parameterizing the family of KE metrics is achieved by using as parameters two of

the three roots of the polynomial (4.4.7). Let us call the independent roots λ1 and

λ2. The polynomial (4.4.7) is reproduced by setting:

k =
3 (λ1 + λ2)

λ2
1 + λ2λ1 + λ2

2

, β = − λ2
1λ

2
2

λ2
1 + λ2λ1 + λ2

2

, λ3 = − λ1λ2

λ1 + λ2

(4.4.8)

Substituting (4.4.8) in eqn. (4.4.6) we obtain

f (v) = −λ1v2(λ2+v)+λ2v2(λ2+v)+λ2
1(λ2

2+v2)
2v(v−λ1)(v−λ2)(λ2v+λ1(λ2+v))

(4.4.9)

which is completely symmetrical in the exchange of the two independent roots λ1, λ2.

Utilizing the expression (4.4.9) the double integration is easily performed, and we

obtain the explicit result, where we omitted irrelevant linear terms:

DKE(v) = −(λ2
1+λ2λ1+λ2

2)(v−λ1) log(v−λ1)

λ2
1+λ2λ1−2λ2

2

−(λ2
1+λ2λ1+λ2

2)(v−λ2) log(v−λ2)

−2λ2
1+λ2λ1+λ2

2

+
(λ2

1+λ2λ1+λ2
2)(λ2v+λ1(λ2+v)) log(λ2v+λ1(λ2+v))

(λ1+λ2)(2λ2
1+5λ2λ1+2λ2

2)
− 1

2
v log(v)

(4.4.10)
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Comparing with the original papers on the AMSY formalism [1, 38], we note that

the full symplectic potential for the 4-manifold MB has precisely the structure of

what is there called natural symplectic potential

Gnatural =
r∑

ℓ=1

cℓ pℓ (u, v)× log [pℓ (u, v)] ;

pℓ (u, v) = linear functions of the moments

(4.4.11)

The only difference is that in [1] the coefficients cℓ are all equal while here they differ

one from the other in a precise way that depends on the parameters λ1, λ2 defining

the metric and the argument of the logarithms. As we are going to discuss later on,

the same thing happens also for the nonKE metric on the second Hirzebruch surface

F2 derived from the Kronheimer construction.

4.5 Properties of the complete family of metrics

In this section, we perform a complete and in-depth study of the considered class

of 4-dimensional metrics. We do not start from a given manifold but rather from a

family of metrics gB parameterized by the choice of a function F (v) of one variable

v, given explicitly in coordinate form.

I) The first tasks we are confronted with are the definition of the maximal extension

of our coordinates, and the search for possible singularities in the metric and/or

in the Riemannian curvature, which happens to be the cleanest probing tool;

II) Secondly, we can calculate integrals of the curvature 2-form, of the Ricci and

Kähler 2-forms, Chern characters and Chern classes. All this information is

easily computed since everything reduces to the evaluation of a few integral-

differential functionals of the function F (v);

III) Thirdly, we can construct geodesics relative to the given metric and try to

explore their behavior. This is probably the finest and most accurate tool to
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visualize the geometry of a manifold and we will pursue it hoping that by this

tool we can finally enucleate the difference between the algebraic manifold F2

and its KE cognates.

We can also integrate the complex structure and find explicitly the complex coordi-

nates.

We begin by observing that all the metrics deriving from the symplectic potential1

GB(u, v) = G0(u, v) +D(v)

G0(u, v) =
(
v− u

2

)
log(2v− u) + 1

2
u log(u)− 1

2
v log(v)

(4.5.1)

admit a general form which we display below:

ds2MB
= F (v) [dϕ(1− cos θ) + dτ ]2 +

dv2

F (v)
+ v

(
dϕ2 sin2 θ + dθ2

)︸ ︷︷ ︸
S2 metric

(4.5.2)

where we have defined

F (v) =
2v

2vD′′(v) + 1
(4.5.3)

This expression for the metric is obtained performing a convenient change of variable:

u → (1− cos θ) v ; θ ∈ [0, π] (4.5.4)

which automatically takes into account that u ≤ 2 v.

Three-dimensional sections. Furthermore, this change of variables clearly

reveals that all the three-dimensional sections of MB obtained by fixing v = const.

are S1 fibrations on S2 which is consistent with the isometry SU(2)× U(1). Indeed

all the spaces MB have cohomogeneity equal to one and the moment variable v is

the only one whose dependence is not fixed by isometries.

The next important point is that the metric (4.5.2) is positive definite only in

the interval of the positive v-axis where F (v) ≥ 0. Let us name the lower and upper

1In this section which deals only with the base manifold MB and where there is no risk of the
confusion we drop the suffix 0 in the moment variables, in order to make formulas simpler.
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vmaxvmin
v

u/2

Figure 4.1: The universal polytope in the v, u
2
plane for all the metrics of the MB

manifolds considered in this paper and defined in equation (4.5.2)

endpoints of such an interval vmin and vmax, respectively. If the interval [vmin, vmax]

is finite, then the space MB is compact and the domain of the coordinates u, v is

provided by the trapezoidal polytope displayed in Figure 4.1.

Our two main examples both correspond to the same universal polytope of Figure

4.1, are provided by the case of a one-parameter family of Kronheimer metrics on the

F2-surface, studied in [5, 7], whose Kähler potential was recalled in eqn. (4.2.4)), and

by the KE metrics discovered in this thesis. In addition, within the first class, we have

the degenerate case where the parameter α goes to zero and the trapezoid degenerates

into a triangle. That case corresponds to the singular space MB = WP[1, 1, 2] (a
weighted projective plane).

Inspecting Table 4.1 we see that the functions F F2(v) and FKE(v) show strict

similarities but also a difference that is expected to account for different topologies.

In both cases the function F (v) is the ratio of a cubic polynomial having three real

roots, two positive and one negative, and of a denominator that has no zeros in the
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<
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<

λ
2

F
0
(v
)

=
v
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v
m
in

=
0

v
m
a
x

=
∞

Table 4.1: Different possibilities for the function F .
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[vmin, vmax] interval. In the KE case there is a simple pole at v = 0 while for F2

(which is not KE) the denominator has two zeros and therefore F (v) has two simple

poles at

vpoles =
9

32

[
(3α + 4)± 2

√
2
√
α2 + 3α + 2

]
(4.5.5)

These poles are out of the interval [vmin, vmax] for any positive α > 0, namely these

poles do not correspond to points of the manifold MB, just as is the case for the

single pole v = 0 in the KE case.

The last case (F (v) = v) corresponds to a metric cone on the 3-sphere, i.e., C2/Z2

with a flat metric. The case F 0 will be discussed in Section 4.6 .

4.5.1 Vielbein formalism and the curvature 2-form of MB

The metric (4.5.2) is in diagonal form so it is easy to write a set of vierbein 1-forms.

Indeed if we set

ei =

{
dv√
F (v)

,
√

F (v) [dϕ(1− cos θ) + dτ ] ,
√
v dθ,

√
v dϕ sin θ

}
(4.5.6)

the line element (4.5.2) reads

ds2B =
4∑

i=1

ei ⊗ ei (4.5.7)
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Furthermore, we can calculate the matrix vielbein and its inverse quite easily, ob-

taining:

ei = Ei
µ dy

µ ; yµ = {v, θ, ϕ, τ}

Ei
µ =


1√
F (v)

0 0 0

0 0
√

F (v)(1− cos θ)
√
F (v)

0
√
v 0 0

0 0
√
v sin θ 0



Eν
j =


√

F (v) 0 0 0

0 0 1√
v

0

0 0 0 csc(θ)√
v

0 1√
F (v)

0 (cos θ−1) csc θ√
v



(4.5.8)

By means of the mathematica package novamanifolda2 we can easily calculate

the Levi-Civita spin connection and the curvature 2-form from the definitions

0 = Ti = dei + ωij ∧ ej ; Rij = dωij + ωik ∧ ωkj = Rij
kℓ e

k ∧ eℓ (4.5.9)

obtaining

R12 = −F ′′(v)
2

e1 ∧ e2 − (vF ′(v)−F (v))
2v2

e3 ∧ e4

R13 = − (vF ′(v)−F (v))
4v2

e1 ∧ e3 − (vF ′(v)−F (v))
4v2

e2 ∧ e4

R14 = (vF ′(v)−F (v))
4v2

e2 ∧ e3 − (vF ′(v)−F (v))
4v2

e1 ∧ e4

R23 = (vF ′(v)−F (v))
4v2

e1 ∧ e4 − (vF ′(v)−F (v))
4v2

e2 ∧ e3

R24 = − (vF ′(v)−F (v))
4v2

e1 ∧ e3 − (vF ′(v)−F (v))
4v2

e2 ∧ e4

R34 = (v−F (v))
v2

e3 ∧ e4 − (vF ′(v)−F (v))
2v2

e1 ∧ e2

(4.5.10)

2NOVAMANIFOLDA is a personal mathematica package of Pietro Fré, which calculates different
tensors of a given Riemannian metric
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Equation (4.5.10) shows that the Riemann tensor Rij
kℓ is constructed in terms of

only three functions:

CF1(v) = F ′′(v) ;

CF2(v) =
(vF ′(v)− F (v))

v2
;

CF3(v) =
(v− F (v))

v2

(4.5.11)

If these functions are regular in the interval [vmin, vmax] the Riemann tensor is well

defined and finite in the entire polytope of Figure 4.1 and MB should be a smooth

compact manifold.

The F2 case. In the F2 case with the “Kronheimer” metric we have:

CFF2
1 (v) =

331776(α+1)(α+2)(729α2(3α+4)+16384v3−3888α2v)
(81α2+1024v2−576(3α+4)v)3

CFF2
2 (v) = − 9

32v2(81α2+1024v2−576(3α+4)v)2
× A

CFF2
3 (v) =

v−B

v2

(4.5.12)

where

A = 6561α4(3α + 4) + 1048576(3α + 4)v4 − 1179648α2v3+

497664α2(3α + 4)v2 − 93312α2(3α + 4)2v

and

B =
(1024v2 − 81α2) (32v− 9(3α + 4))

16 (81α2 + 1024v2 − 576(3α + 4)v)

The three functions CFF2
1,2,3(v) are smooth in the interval

(
9α
32
, 9
32
(3α + 4)

)
and they

are defined at the endpoints: see for instance Figure 4.2.

Indeed the values of the three functions at the endpoints are

CFF2
1,2,3 (vmin) =

{
−128(α+1)

9α(α+2)
, 32
9α
, 32
9α

}
CFF2

1,2,3 (vmax) =
{
− 32(3α+4)

9(α2+3α+2)
,− 32

27α+36
, 32
9(3α+4)

} (4.5.13)
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Figure 4.2: A (left): Plot of the three functions CFF2
1,2,3(v) entering the intrinsic

Riemann curvature tensor for the “Kronheimer” metric on F2 with the choice of the
parameter α = 1. B (right): Plot of the three functions CFWW112

1,2,3 (v) entering the
intrinsic Riemann curvature tensor for the Kronheimer metric on WP[1, 1, 2] with
the choice of the parameter α = 0. Comparing this picture with the one on the
upper we see the discontinuity. In all smooth cases the functions CFF2

2,3 attain the
same value in the lower endpoint of the interval while for the singular case of the
weighted projective space, the initial values of CFWP[1,1,2]

2,3 (v) are different.
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The singularity which might be developed by the space corresponding to the value

α = 0 is evident from eqns. (4.5.13). The intrinsic components of the Riemann

curvature seem to have a singularity in the lower endpoint of the interval, for α = 0.

The case of the singular manifold WP[1, 1, 2]. In the previous section, we

utilized the wording seem to have a singularity for the components of the Riemann

curvature in the case of the of the space WP[1, 1, 2] since such a singularity in the

curvature actually does not exist. The space WP[1, 1, 2] has indeed a singularity at

v = 0 but it is very mild since the intrinsic components of the Riemann curvature

are well-behaved in v = 0 and have a finite limit. It depends on the way one does the

limit α → 0. If we first compute the value of the curvature 2-form at the endpoints

for generic α and then we do the limit α → 0 we see the singularity that is evident

from equations (4.5.13). On the other hands, if we first reduce the function F (v) to

its α = 0 form we obtain:

FWP[1,1,2](v) =
v(8v− 9)

4v− 9
(4.5.14)

and the corresponding functions appearing in the curvature are:

CFWP[1,1,2]
1,2,3 (v) =

{
648

(4v− 9)3
,− 18

(9− 4v)2
,

4

9− 4v

}
(4.5.15)

which are perfectly regular in the interval [0, 9/8] and have finite value at the end-

points (see Figure 4.2B).

The case of the KE manifolds. In the case of the KE metrics the function F (v)

is

FKE(v) = −(v− λ1) (v− λ2) (λ1λ2 + (λ1 + λ2) v)

(λ2
1 + λ2λ1 + λ2

2) v
(4.5.16)
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and the corresponding functions entering the intrinsic components of the Riemann

curvature are

CFKE
1,2,3 (v) =

{
− 2 (λ2

1λ
2
2 + (λ1 + λ2) v

3)

(λ2
1 + λ2λ1 + λ2

2) v
3

,
2λ2

1λ
2
2 − (λ1 + λ2) v

3

2 (λ2
1 + λ2λ1 + λ2

2) v
3
,

λ2
1λ

2
2 + (λ1 + λ2) v

3

(λ2
1 + λ2λ1 + λ2

2) v
3

} (4.5.17)

and the interval of variability of the moment coordinate v is the following v ∈ [λ1, λ2].

Correspondingly the boundary values are

CFKE
1,2,3 (vmin) =

{
− 2

λ1
, 1
λ1

− 3(λ1+λ2)

2(λ2
1+λ2λ1+λ2

2)
, 1
λ1

}
CFKE

1,2,3 (vmax) =

{
− 2

λ2
, 1
λ2

− 3(λ1+λ2)

2(λ2
1+λ2λ1+λ2

2)
, 1
λ2

} (4.5.18)

We can use the case λ1 = 1, λ = 2 as a standard example. In this case, the behavior

of the three functions is displayed in Figure 4.3

4.5.2 The complex structure and its integration

All the metrics in the considered family are of cohomogeneity one and have the same

isometry, furthermore, they are all Kähler and share the same Kähler 2-form that

can be written as it follows:

K = du ∧ dϕ + dv ∧ dτ = e1 ∧ e2 + e3 ∧ e4 =
1

2
Jij e

i ∧ ej (4.5.19)

where:

Ji
j =


0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

 = δik Jkj (4.5.20)
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Figure 4.3: Plot of the three functions CFKE
1,2,3(v) entering the intrinsic Riemann

curvature tensor for the KE metric with the choice of the parameter λ1 = 1, λ2 = 2.

is the complex structure in flat indices. We can easily convert the complex structure

into curved indices using the vierbein and its inverse:

Jµ
ν = Eµ

i J
i
j E

j
ν =


0 0 −F (v) (cos θ + 1) F (v)

0 0 sin θ 0

0 − csc θ 0 0

− 1
F (v)

tan θ
2

0 0

 (4.5.21)

Since J2 = −14×4 the eigenvalues of J are ±i and the eigenvectors are the rows of

the following matrix:

aiµ =


i

F (v)
−i tan θ

2
0 1

0 i csc θ 1 0

− i
F (v)

i tan θ
2

0 1

0 −i csc θ 1 0

 (4.5.22)
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We obtain the eigen-differentials by defining:

dai = i aiµ dx
µ ; dxµ = {dv, dθ, dϕ, dτ} (4.5.23)

The essential thing is that the eigen-differentials are all closed and that the first two

are the complex conjugate of the second two:

ddai = 0 (i = 1, . . . , 4) ; da1 = da3 ; da2 = da4 (4.5.24)

This allows us to define the two complex variables u and v, by setting:

da3 = d log[v]

da4 = d log[u]
(4.5.25)

In this way one obtains the universal result:

u = eiϕ tan
θ

2
; v =

1

2
eiτ (cos θ + 1) H(v) (4.5.26)

where:

H(v) = exp

[∫
1

F (v)
dv

]
(4.5.27)

Hence the whole difference between the various spaces is encoded in the properties

of the function H(v) which is obviously defined up to a multiplicative constant due

to the additive integration constant in the exponential.

The function H(v) for the Kronheimer metric on the smooth F2 surface.

In the case of the metric on F2 we obtain

HF2(v) = i

√
1024v2 − 81α2

−32v+ 9(3α + 4)
(4.5.28)

The factor i can always be reabsorbed into a shift of π/2 of the phase τ and the func-

tion HF2(v) is positive definite in the finite interval
[
9α
32

, 9
32
(3α + 4)

]
and goes from

64



Figure 4.4: Plot of three examples of the HF2(v) function for three different choices
of the parameter α.

0 to +∞ for all positive values of α > 0. See Figure 4.4 for some examples. What is

important is the monotonic behavior of the function HF2(v), which guarantees that

the two coordinates u, v describe a copy of C2 and hence define a dense open chart

in the compact manifold F2.

The function H(v) for the KE metrics. In the case of the KE metrics in an

equally easy way we obtain the following result:

HKE(v) = exp

[
−
(
λ2
1 + λ2λ1 + λ2

2

)( log (v− λ1)

λ2
1 + λ2λ1 − 2λ2

2

+
log (v− λ2)

−2λ2
1 + λ2λ1 + λ2

2

− log (λ2v+ λ1 (λ2 + v))

2λ2
1 + 5λ2λ1 + 2λ2

2

)]
(4.5.29)

The structure of the function is similar to that of the F2 case since there is a zero

of the function in the lower limit v → λ1 and a pole in the upper limit v → λ2, yet

this time the exponents of the pole and of the zero are rational numbers depending
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Figure 4.5: Plot of the H(v) function in the KE case with the choice λ1 = 1, λ2 = 2.

on the choice of the roots λ1,2; similarly, it happens for the third factor associated

with the third root which is located out of the basic polytope (see Figure 4.1). Our

canonical example λ1 = 1, λ2 = 2 helps to illustrate the general case; with this choice

we obtain

HKE(v) |λ1=1,λ2=2=
(v− 1)7/5(3v+ 2)7/20

(v− 2)7/4
= ei

π
4 × (v− 1)7/5(3v+ 2)7/20

(2− v)7/4︸ ︷︷ ︸
HKE(v)

(4.5.30)

where, once again, the constant phase factor can be reabsorbed by a constant shift of

the angular variable τ and what remains of HKE(v) is a positive definite function of v

in the interval [1, 2] that has the same feature of its analogue in the F2 case, namely, it

maps, smoothly and monotonically, the finite interval (1, 2) into the infinite interval

(0,+∞). The behavior of this function is displayed in Figure 4.5.
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4.6 The structure of M3 and the conical singular-

ity

Let us anticipate the main argument which we will develop further on. The two real

manifolds defined by the restriction to the dense chart u, v, ϕ, τ , of the surface F2

and of the manifold MKE
B are fully analogous. Cutting the compact four manifold

into v = const slices we always obtain the same result, namely a three-manifold M3

with the structure of a circle fibration on S2:

MB ⊃ M3
π−→ S2 ; ∀p ∈ S2 π−1(p) ∼ S1 (4.6.1)

The metric on M3 is the standard one for fibrations:

ds2M3
= v

(
dϕ2 sin2 θ + dθ2

)
+ F (v) [dϕ(1− cos θ) + dτ ]2 (4.6.2)

The easiest way to understand M3 is to study its intrinsic curvature by using the

dreibein formalism. Referring to equation (4.6.2) we introduce the following dreiben

1-forms:

ϵϵϵ1 =
√
v dθ ; ϵϵϵ2 =

√
v sin θdϕ ; ϵϵϵ3 =

√
F (v) [dϕ(1− cos θ) + dτ ] (4.6.3)

The fixed parameter v plays the role of the squared radius of the sphere S2 while√
F (v) weights the contribution of the circle fiber defined over each point p ∈ S2.

At the endpoints of the intervals F (vmin) = F (vmax) = 0 the fiber shrinks to zero.

Using the standard formulas of differential geometry and once again the mathe-

matica package novamanifolda we calculate the spin connection and the curva-

ture 2-form. We obtain:

R =

 0 (4v−3F (v))
4v2

ϵϵϵ1 ∧ ϵϵϵ2 F (v)
4v2

ϵϵϵ1 ∧ ϵϵϵ3

− (4v−3F (v))
4v2

ϵϵϵ1 ∧ ϵϵϵ2 0 F (v)
4v2

ϵϵϵ2 ∧ ϵϵϵ3

−F (v)
4v2

ϵϵϵ1 ∧ ϵϵϵ3 −F (v)
4v2

ϵϵϵ2 ∧ ϵϵϵ3 0

 (4.6.4)
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Figure 4.6: A conceptual picture of the MB spaces that include also the second
Hirzebruch surface. The finite blue segment represents the v-variable varying from
its minimum to its maximum value. Over each point of the line, we have a three-
dimensional spaceM3 which is homeomorphic to a 3-sphere but is variously deformed
at each different value v. At the initial and final points of the blue segment the
three dimensional space degenerates into an S2 sphere. Graphically we represent the
deformed 3-sphere as an ellipsoid and the 2-sphere as a flat-filled circle.

The Riemann curvature 2-form in flat indices has constant components and if the co-

efficient (4v−3F (v))
4v2

were equal to the coefficient F (v)
4v2

the 2-form in eqn. (4.6.4) would be

the standard Riemann 2-curvature of the homogeneous space SO(4)/SO(3), namely

the the 3-sphere S3. What we learn from this easy calculation is that every section

v = constant ofMB is homeomorphic to a 3-sphere endowed with a metric that is not

the maximal symmetric one with isometry SU(2)× SU(2) but a slightly deformed

one with isometry SU(2)× U(1): in other words, we deal with a 3-sphere deformed

into the 3-dimensional analog of an ellipsoid. At the endpoints of the v-interval the

ellipsoid degenerates into a sphere since the third dreibein ϵϵϵ vanishes. A conceptual

picture of the full space MB is provided in picture Figure 4.6.
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4.6.1 Global properties of M3

Expanding on the global properties of M3, we describe it as a magnetic monopole

bundle over S2 and prove that the corresponding monopole strength is n = 2. We

start from the definition of the action of the SU(2) isometry (4.2.2) and describe the

2-sphere S2 spanned by θ and ϕ as CP1 with projective coordinates U0, U1:

U0 = r sin

(
θ

2

)
ei

γ+ϕ
2 , U1 = r cos

(
θ

2

)
ei

γ−ϕ
2 (4.6.5)

where 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π, 0 ≤ γ < 4π. In the North patch UN , U
1 ̸= 0 and the

sphere is spanned by the stereographic coordinate uN = U0/U1, while in the south

patch US, U
0 ̸= 0 and the stereographic coordinate uS = U1/U0. The transformation

properties (4.2.2) define a line bundle whose local trivializations about the two poles

are:

ϕ−1
N (UN) = (uN , vN) =

(
U0

U1
, ξ (U1)2

)
, (4.6.6)

ϕ−1
S (US) = (uS, vS) =

(
U1

U0
, ξ (U0)2

)
, (4.6.7)

where ξ is a complex number in the fiber not depending on the patch. As (U0, U1)

transform linearly under the an SU(2)-transformation:(
U0

U1

)
→

(
d c

b a

)(
U0

U1

)
, (4.6.8)

the fiber coordinate v transforms so that (1 + |uN |2)2|vN |2 and (1 + |uS|2)2|vS|2, in
UN and US, respectively, are invariant. The transition function on the fiber reads, at

the equator θ = π/2:

tNS =

(
U1

U0

)2

= e−2iϕ = e−in ϕ , (4.6.9)

implying that the U(1)-bundle associated with the phase of v (i.e. the submanifold

of the Kähler-Einstein space at constant |v|), is a monopole bundle with monopole
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strength n = 2. This has to be contrasted with the Hopf-fiber description of S3,

for which the local trivializations have fiber components U1/|U1| and U0/|U0| in the

two patches, respectively, and tNS at the equator is U1/U0 = e−iϕ. In this case, the

monopole strength is n = 1.We can verify that the manifold at constant |v| is a Lens

space S3/Z2 also by direct inspection of the metric.

4.6.2 Conical singularities and regularity of F2

Let us prove, by focusing on the fiber spanned by v and τ ∈ (0, 2π), that the KE

manifolds feature

ds2 =
dv2

F (v)
+ F (v) dτ 2 . (4.6.10)

Let λ denote one of the two roots λ1, λ2 of F (v). Close to λ, to first order in v, in the

KE case, the metric (4.6.10) is flat and features a deficit angle signaling a conifold

singularity. This singularity is absent in the F2, as expected. To show this let us

Taylor expand F (v) about λ:

F (v) = F ′(λ)(v− λ) +O((v− λ)2). (4.6.11)

We can verify that:

KE : F ′(λ1) =
(λ2 − λ1)(λ1 + 2λ2)

λ2
1 + λ2

2 + λ1λ2

, F ′(λ2) =
(λ1 − λ2)(2λ1 + λ2)

λ2
1 + λ2

2 + λ1λ2

, (4.6.12)

F2 : F
′(λ1) = 2 , F ′(λ2) = −2 . (4.6.13)

Next, we replace the first-order expansion of this function in the fiber metric:

ds2 =
dv2

F ′(λ)(v− λ)
+ F ′(λ)(v− λ) dτ 2 , (4.6.14)

and write it as a flat metric in polar coordinates:

ds2 = dr2 + β2 r2 dτ 2 . (4.6.15)
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One can easily verify that:

r = 2

√
v− λ

F ′(λ)
, β =

|F ′(λ)|
2

. (4.6.16)

Defining φ̃ = β τ , we can write the fiber metric as follows:

ds2 = dr2 + r2 dφ̃2 .

Now the polar angle varies in the range: φ̃ ∈ [0, 2π β]. If β < 1 we have a deficit

angle:

∆ϕ = 2π(1− β) .

Let us see what this implies in the five possible cases of Table 4.1.

1. In the case of the F2 manifold one has |F ′(λ)| = 2 and β = 1, so there is no

conical singularity, as expected.

2. In the case of WP[1, 1, 2] we have

F ′(λ) =
32λ2 − 144λ+ 81

(4λ− 9)2
.

For the limiting value λ = 0 we obtain β = 1
2
, i.e., a C2/Z2 singularity, while

for λ = 9
8
we have β = 1, i.e., no singularity, as we expected as WP[1, 1, 2] is

an orbifold P2/Z2 with one singular point.

3. In the KE manifold case considering λ = λ1, we have:

F ′(λ1) =
(λ2 − λ1)(λ1 + 2λ2)

λ2
1 + λ2

2 + λ1λ2

= −1 +
3λ2

2

λ2
1 + λ2

2 + λ1λ2

< −1 +
3λ2

2

λ2
2

= 2

⇒ β < 1 ,

(4.6.17)

and |F ′(λ2)| < |F ′(λ1)|, so that β < 1 also at λ2. The manifold has two

conical singularities, both in the same fiber of the projection to one of the S2’s.
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One of the singularities will be an orbifold singularity of type C2/Zn if the

corresponding value of β is

β = 1− 1

n
. (4.6.18)

It is interesting to note that when this happens, the form of the function F does

not allow the other singularity to be of this type as well, as the corresponding

integer m should satisfy

m =
4n

2 + 5n±
√
9n2 + 12n− 12

which is not satisfied by any pair (m,n) where both m, and n are integers

greater than 1; so the singular fiber can never be a football or a spindle.

4. We discuss the case λ1 = 0. In this case

F 0(v) =
v(λ2 − v)

λ2

. (4.6.19)

If we focus on the fiber metric:

ds2 =
dv2

F0(v)
+ F0(v) dτ

2 . (4.6.20)

We can easily verify that in the coordinates θ̃ ∈ [0, π] and φ̃ ∈ [0, π) defined by

v(θ̃) = R2 sin2

(
θ̃

2

)
≤ R2 = λ2 , φ̃ =

τ

2
,

where R =
√
λ2, the fiber metric (4.6.20) becomes

ds2 = R2
(
dθ̃2 + sin2(θ̃) dφ̃2

)
. (4.6.21)

Since φ̃ = τ/2 ∈ [0, π), the fiber is the splindle S2/Z2. Topologically, the entire

4-manifold is still S2 × S2.
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5. For F (v) = v we get β = 1
2
, in accordance with the fact that the variety, in

this case, is C2/Z2.

4.7 Complex structures

In this section we study the complex structures corresponding to the KE case, i.e.,

the cases corresponding to the function FKE. These are singular KE manifolds of

complex dimension 2, homeomorphic to S2 × S2. To make the analysis completely

quantitative, let us choose a value of the parameter α and two values of λ1, λ2 so

that the basic polytope becomes exactly identical in the two cases.

We choose the value α = 4
9
so that the endpoints of the interval in the pure F2

case are:

vmin =
1

8
; vmax =

3

2
(4.7.1)

and using the previously discussed procedure we obtain the complex v coordinate for

the F2 pure case:

vF2
= exp

[
i
(
τ +

π

4

)]
× 1 + cos θ

2
×
√

64v2 − 1

3 − 2 v
(4.7.2)

In the same way, we obtain the complex v variable for the Kähler Einstein case:

v
KE

= exp

[
i

(
τ +

157

154
π

)]
× 1 + cos θ

2
×
(
v− 1

8

)157/275 (3v
2
+ 1

8

(
v+ 3

2

))157/350(
3
2
− v
)157/154

(4.7.3)

Obviously there is no holomorphic way of writing v
KE

in terms of vF2
or viceversa.

This can be immediately seen in the following way. Taking the ratio of the two

coordinates v we obtain:

(i)
237
154 ×

vF2

v
KE

= 4× 21877/3850(3− 2v)40/77
√
64v2 − 1

(8v− 1)157/275(26v+ 3)157/350
(4.7.4)
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Moreover, with some manipulations, we can write

v =
1

64

(
−ϖF2

±
√

ϖ2
F2

+ 192ϖF2
+ 64

)
(4.7.5)

Inserting eqn. (4.7.5) into eqn. (4.7.4) we immediately arrive at the conclusion that

the complex coordinate v
KE

is not a holomorphic function of the complex coordinates

uF2
, vF2

.

The argument that we have utilized here can be used for all values of α. We can

always choose the independent roots λ1,2 so that the interval of the moment variable

vmin,vmax coincides in the Kähler Einstein case and in the F2 case. In the dense open

chart that we are using F2 and the manifold that admits a KE metric have different

complex structures. The plot of the two functions H(v) is displayed in Figure 4.7.

The remaining problem is therefore the following. When we utilize the Kron-

heimer metric for F2 written in real variables in the open chart provided by the

coordinates u, v, ϕ, τ we know that the closure of such a dense chart is the second

Hirzebruch surface. In the same open real chart, we have also a KE metric: the

question is, What is the closure of such an open real chart compatible with the KE

metric?. The important point to keep in mind while trying to answer such a question

is that, topologically, the Hirzebruch surface is just S2 × S2. What makes this real

manifold Hirzebruch is the complex structure induced by the holomorphic embedding

in P1 × P2 as an algebraic variety. Yet the complex structure of F2 is different and

incompatible with the complex structure compatible with the KE metric defined in

the same open chart. This must be the guiding principle.

4.7.1 The homeomorphism with S2 × S2

We want to analyze in detail the homeomorphism with the space S2 × S2 in the KE

case. Prior to that let us stress, once again, that all the manifolds we are considering

are KE by construction, as:
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Figure 4.7: Comparison of the plots of HF2(v) for the pure F2 case with HKE(v) for
the KE case, when they are calibrated to insist on the same interval

[
1
8
, 3
2

]
a) There is a candidate Kähler form written as

K = Kije
i ∧ ej (4.7.6)

where the one forms ei are a tetrad representation of the considered metric:

ds2MB
= gµνdx

µ dxν = δij e
iej (4.7.7)

b) The candidate form is closed:

dK = 0 (4.7.8)

c) The component tensor of the Kähler form in flat indicesKij satisfies the condition:

Kij Kjk = − δik (4.7.9)

This guarantees that for each metric we can construct the corresponding com-

plex structure tensor:

J µ
ν = Ei

µKij δ
jk Eν

k ; J2 = − Id (4.7.10)
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and by construction, the metric is hermitian with respect to that contact struc-

ture.

The Kähler form is the same for all the families of metrics (4.5.2) and each metric

chooses the complex structure with respect to which it is hermitian. In principle

these complex structures are all different, yet some of them might be compatible,

as is the case for the one-parameter family of metrics on the Hirzebruch surface,

that share the same complex structure and can be described in terms of the same

complex coordinates. However, in the previous section, we have already shown that

the complex structure selected by one of the KE metrics is certainly incompatible

with that of the Hirzebruch surface and this removes any possible conceptual clash.

On the other hand there is no obstacle to the fact that the underlying real manifold

of the Hirzebruch case and of the (singular) KE case might be homeomorphic and

this is what we want to show.

In the next lines, we argue how to construct explicitly such a homeomorphism.

First of all, by looking at the metric in eqn. (4.5.2) we see that the first 2-sphere is

already singled out in the standard coordinates θ and ϕ. As for the second sphere, the

azimuthal angle is already identified in the coordinate τ . It remains to be seen that

the coordinate v in the finite closed range [vmin , vmax] is in one-to-one continuous

correspondence with a new right ascension angle χ.

Behavior of the function
√

F (v). To this effect the main point is that the

function
√

F (v) should be upper limited by the value 1 in the interval [vmin , vmax],

it should grow monotonically from 0 to a maximum value a0 ≤ 1, attained at v = v0

and then it should decrease monotonically from a0 to 0 in the second part of the

interval [v0 , vmax]. Under such conditions the inverse function arcsin can be applied

unambiguously to
√

F (v) and we can obtain a one-to-one continuous map between

the coordinate v and a new right ascension angle χ. The homeomorphism is encoded

in the following relation where the function h(v) is continuous and monotonous only
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under the above carefully specified conditions.

χ = h(v) =
π arcsin

(√
F (v)

)
2 arcsin (a0)

+ Θ (v− v0) π

1−
arcsin

(√
F (v)

)
arcsin (a0)

 (4.7.11)

In the above formula the symbol Θ(x) denotes the well known Heaviside step function

that vanishes for x < 0 and evaluates to 1 for x > 0.

The relevant fact is that for both the case of the Hirzebruch surface metric and the

KE ones the above specified conditions are verified and the homeomorphism (4.7.11)

can be written. We examine in detail one instance of the first and one instance of

the second case, having verified that in each class the chosen examples represent

the behavior of all members of the same class. For the Hirzebruch case, we set the

parameter α = 1 and we obtain:

F F2 (v) =
(32v− 63) (1024v2 − 81)

16 (1024v2 − 4032v+ 81)
(4.7.12)

For the KE case, we choose as we already did in previous section λ1 = 1, λ2 = 2 and

we obtain:

FKE (v) = −(v− 2)(v− 1)(3v+ 2)

7v
(4.7.13)

The behavior of the function
√
F (v) in the two cases and the associated homeo-

morphism on the right ascension angle is shown in Figure s 4.8,4.9 On the basis

of the above lore, in order to explore the behavior of a function, a vector field, or

whatever different geometric object in the neighborhood of the North pole of the

second sphere, one has at their disposal a well-defined transition function from the

coordinates vN , τN to the coordinates vS, τS:

vS = h−1 (h(vN)− π)

τS = −τN + π
(4.7.14)

The inverse of the function h is highly nontrivial since it is a combination of tran-

scendental and algebraic functions, yet it can always be done numerically if needed.
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Figure 4.8: On the left the plot of the function
√

F F2(v) corresponding to α = 1
and explicitly displayed in eqn. (4.7.12). On the right the corresponding function
h(v) providing the homeomorphism to the right ascension angle.

Figure 4.9: On the left the plot of the function
√

FKE(v) corresponding to λ1 =
1, λ2 = 2 and explicitly displayed in eqn. (4.7.13). On the right the corresponding
function h(v) providing the homeomorphism to the right ascension angle.

78



As for the metric itself, there is no need since the curvature is nonsingular in the

point vmax and the geodesics are also well-behaved in all limits.

The conclusion is that the underlying manifold of the Kähler Einstein metrics is

S2 × S2, as in the case of F2.

4.8 Liouville vector field on MB and the contact

structure on M3

Next we go back to consider general properties of the metric (4.5.2), and using

eqn. (4.5.4) we also rewrite in terms of the coordinates u, v, ϕ, τ :

ds2MB
=

dv2

F (v)
+

u(2v− u)

v
dϕ2 +

(vdu− udv)2

uv(2v− u)
+

F (v)

v2
(u dϕ+ v dτ)2 (4.8.1)

The corresponding Kähler 2-form is provided by the equation (4.5.19) that for

reader’s convenience, we copy here:

K = du ∧ dϕ + dv ∧ dτ (4.8.2)

The pair (MB,K) constitutes a symplectic manifold, independently from the Rie-

mannian structure provided by the metric (4.8.1). For symplectic manifolds there

exists the notion of Liouville vector fields (see for instance [28, 25]) defined as follows.

The vector field L ∈ Γ [TMB,MB] is a Liouville vector field if

LL K = K (4.8.3)

where LV denotes the Lie derivative along the specified vector field V. Utilizing

Cartan’s formula for the Lie derivative, we get:

LLK = iL dK + d (iL K) = d (iLK) = K (4.8.4)
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A very simple Liouville field for the symplectic manifold (MB,K) is the following

one:

L = u
∂

∂u
+ v

∂

∂v
(4.8.5)

as one can immediately verify.

Another result in symplectic geometry, (see [28, 24, 40, 15, 13, 14, 25]) states

that a (2n+1)-submanifold Z ⊂ MB of a (2n+2)-dimensional symplectic manifold

(MB,K) that is transverse to a Liouville field L is a contact manifold with the

contact structure

Ω = iL K (4.8.6)

In view of this theorem, the interpretation of theMv
3 manifolds, extensively discussed

in previous sections, that have the topology of S3 and are all transverse to the

Liouville field since they correspond to fixed values of the coordinate v, becomes

clear. They constitute the leaves of a foliation of the symplectic manifold (MB,K)

in diffeomorphic contact manifolds whose contact form is:

Ω = u dϕ + v dτ (4.8.7)

On each leave v = const we have:

dΩ = du ∧ dϕ ; dΩ ∧ Ω = v du ∧ dϕ ∧ dτ = const× Volv3 (4.8.8)

4.8.1 The Reeb field and Beltrami equation

It is now interesting to calculate the normalized Reeb field associated with the contact

form Ω. This is possible since the symplectic manifold (MB,K) is endowed with the

Riemannian structure provided by the metric (4.6.2). Expanding the one-form Ω

along the coordinate differentials:

Ω = Ωµ dy
µ ; yµ = {θ, ϕ, τ} (4.8.9)
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we find:

Ωµ = {0, v(1− cos(θ)), v} (4.8.10)

Utilizing the inverse of the metric tensor defined by the line element (4.6.2) namely:

gµν =


1
v

0 0

0 csc2(θ)
v

(cos(θ)−1) csc2(θ)
v

0 (cos(θ)−1) csc2(θ)
v

1
F (v)

+
tan2( θ

2)
v

 (4.8.11)

we can raise the index of Ωµ and we obtain the components of a normalized Reeb

vector field:

Uµ = gµνΩν =

{
0, 0,

v

F (v)

}
⇒ U =

v

F (v)
∂τ (4.8.12)

such that:

Ω (U) = 1 ; iU dΩ = 0 (4.8.13)

It is a notable fact that the above The Reeb vector field automatically satisfies the

Beltrami equation. Indeed it is known that every contact structure in 3 dimensions

admits a contact form and an associated Reeb field that satisfies Beltrami equation

(see for instance [24, 25]) yet it is remarkable that the choice of the Liouville vec-

tor field (4.8.3) immediately selects a Beltrami Reeb field. The verification of our

statement is almost immediate if we utilize the formulation of Beltrami equation

introduced in [16] (see also [25]), namely:

dΩU = λ iU Vol3 (4.8.14)

where Vol3 denotes the volume 3-form of the considered 3-manifold, ΩU is the contact

form that admits U as normalized Reeb field and λ ∈ R is the Beltrami eigenvalue.

In our case the volume form is:

Vol3 = ϵϵϵ1 ∧ ϵϵϵ2 ∧ ϵϵϵ3 = v
√

F (v) sin θ dθ ∧ dϕ ∧ dτ (4.8.15)
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and equation (4.8.14) is satisfied with eigenvalue:

λ = −1

v
. (4.8.16)

4.9 Geodesics for the family of manifolds MB

In this section, we study the general problem of calculating the geodesics for the

class of metrics (4.5.2). Sometimes the differential system determining the geodesics

is completely integrable and this allows one to reduce it to first order and to quadra-

tures, obtaining in this way the complete set of all geodesics — leaving apart the

practical problem of inverting transcendental functions, which possibly can be ac-

complished with numerical methods. An example is the Kerr metric where there is

a hidden first integral (the Carter constant) which can be revealed by the use of the

Hamilton-Jacobi formulation, and allows for complete integration.

We show in this section that for any choice of the function F (v) the geodesic

dynamical system associated with the metrics (4.5.2) is fully integrable and admits a

hidden Carter constant, another first integral in addition to the Hamiltonian, which

allows to write the full system of geodesic lines for all the metrics in the class, in

particular for the F2 surface and for the KE manifolds brought to attention in this

thesis.

4.9.1 The geodesic equation

We take for Lagrangian functional the square of the arc length

L =
1

2
F (v)

(
ϕ̇ (1− cos θ) + τ̇

)2
+

v̇2

F (v)
+ v

(
ϕ̇2 sin2 θ + θ̇2

)
. (4.9.1)

As usual, the Euler-Lagrange equations take the standard form if the Lagrangian

satisfies the constraint

L |on geodesics=
k

4
(4.9.2)
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for some k > 0; in this way parameter along the curves is the arc length s. In a

mechanical analogy, k is the energy.

Cyclic variables and conserved momenta. The angles ϕ and τ are cyclic vari-

ables (due to toric symmetry) which leads to two first integrals of the motion, which

we call ℓ, m, and can be represented in a synthetic way:(
ℓ

m

)
=

(
pϕ

pτ

)
= M

(
ϕ̇

τ̇

)
,

M = 1
2

(
8F (v) sin4 θ

2
+ 2v sin2 θ −2F (v)(cos θ − 1)

−2F (v)(cos θ − 1) 2F (v)

) (4.9.3)

The Hamiltonian. We perform the Legendre transform in order to obtain the

Hamiltonian H:

H = ϕ̇ pϕ + τ̇ pτ + θ̇ pθ + v̇pv − L (4.9.4)

getting

H(q, p) =
1

2

(
p2τ

F (v)
+ F (v)p2v +

csc2 θ [(cos θ − 1)pτ + pϕ]
2 + p2θ

v

)
(4.9.5)

where

p = {pϕ, pτ , pθ, pv} ; q = {ϕ, τ, θ, v} (4.9.6)

are the momenta and coordinates.

As it is always the case in the geodesic problem, the Hamiltonian has the structure

H = gij(q) pi pj (4.9.7)

having denoted by gij(q) the inverse metric tensor.

The reduced Lagrangian and the reduced Hamiltonian. Having singled out

two first integrals of the motion ℓ,m, it is convenient to introduce a reduced La-
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grangian for the two residual degrees of freedom v, θ that, geometrically, correspond

to the two angles of right ascension of the 2-spheres composing the underlying differ-

entiable manifold (see section 4.7.1). The reduction of the Lagrangian is obtained by

replacing the velocities of the cyclic coordinates qc with the corresponding momenta

pc that are constant of the motion, namely ℓ,m:

Lred =
F (v)

(
θ̇2 v2 + csc2 θ (m cos θ −m + ℓ)2

)
+ m2v + v v̇2

2vF (v)
(4.9.8)

Performing the Legendre transform we obtain the reduced Hamiltonian

Hred = pv v̇ + pθ θ̇ − Lred

=
1

2

(
− m2

F (v)
+ F (v)p2v −

csc2 θ(m cos θ −m + ℓ)2 − p2θ
v

)
(4.9.9)

where

pv =
v̇

F (v)
, pθ = v θ̇ (4.9.10)

The Carter constant and the reduction to quadratures. Considering now

the reduced system with four Hamiltonian variables we have a nice surprise: there

is an additional function of the q and p that is in involution with the Hamiltonian

and therefore constitutes an additional conserved quantity, yielding in this way the

complete integrability of the system. Since it is the analog of the Carter constant for

the Kerr metric we call it the Carter Hamiltonian and we denote it with the letter

C:
C = csc2 θ (m cos θ −m + ℓ)2 − p2θ (4.9.11)

An immediate calculation shows that the Carter function has vanishing Poisson

bracket with the reduced Hamiltonian:

{C , Hred} =
2∑

i=1

(
∂C
∂qi

∂Hred

∂pi
− ∂C

∂pi

∂Hred

∂qi

)
= 0 (4.9.12)
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Hence on any solution of the equations motion (that is along geodesics) both the prin-

cipal Hamiltonian Hred and C must assume constant values that we call respectively

E (the energy) and K (the Carter constant):

Hred = E ; C = K (4.9.13)

Using equations (4.9.11),(4.9.9) we can solve algebraically eqn. (4.9.13) for the two

momenta pv and pθ and we get the following two first-order differential equations:

dθ
ds

=

√
csc2 θ (cos 2θ (K +m2)−K + 3m2 + 2ℓ2 + 4m cos θ(ℓ−m)− 4mℓ)√

2v

dv
ds

=

√
F (v)(K + 2vE) +m2v√

v
(4.9.14)

Eliminating the derivatives with respect to s we finally obtain the differential equa-

tion of the “orbit”

dθ

dv
=

√
csc2(θ) (cos(2θ) (K +m2)−K + 3m2 + 2ℓ2 + 4m cos(θ)(ℓ−m)− 4mℓ)

√
2
√
v
√

F (v)(K + 2vE) +m2v
(4.9.15)

which can be reduced to quadratures:

Λ (θ) =

∫
dθ

A

Σ (v) =

∫
dv√

2
√
v
√

F (v)(K + 2vE) +m2v

(4.9.16)

where

A =
√
csc2(θ) (cos(2θ) (K +m2)−K + 3m2 + 2ℓ2 + 4m cos(θ)(ℓ−m)− 4mℓ)

The solution to the geodesic problem is provided by giving the dependence of the

variable v on the right ascension angle θ of the first sphere:

v = Σ−1 ◦ Λ (θ) , θ = Λ−1 ◦ Σ (v) (4.9.17)
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Both functions Λ and Σ are transcendental and the inverse problem can be solved

only numerically, except for some special cases as we are going to illustrate in the

next section.

We conclude this section by noting that the existence of the Carter conserved

Hamiltonian is probably an implicit consequence of the larger nonabelian isometry

of the original metric. The two first integrals ℓ, m follow from the toric symmetry

U(1)× U(1). The Carter constant is indirectly linked to the extension to SU(2) of

one of the two U(1)’s. If we had SU(2)× SU(2) isometry, then the metric would

be the direct product of two Fubini-Study metrics. With SU(2)× U(1) isometry we

have the hybrid case where one sphere is the fiber and the other is the base manifold.

4.9.2 Irrotational geodesics

The function Λ(θ) can be calculated explicitly in the general case (ℓ ≤ 0, (m) ≤ 0)

and we obtain:
Λ(θ) = N(θ)

D(θ)

N(θ) = B × C

D(θ) = (cos(θ) + 1)
√
K +m2 D

(4.9.18)

where

B =
√
cos(2θ) (K +m2)−K + 3m2 + 2ℓ2 + 4m cos(θ)(ℓ−m)− 4mℓ

C = − arctan

 sec2
(
θ
2

)
(cos(θ) (K +m2) +m(ℓ−m))

√
K +m2

√
sec4

(
θ
2

)
(m cos(θ)−m + ℓ)2 − 4K tan2

(
θ
2

)


and

D =

√
sec4

(
θ

2

)
(m cos(θ)−m + ℓ)2 − 4K tan2

(
θ

2

)
while the integral defining the function Σ(v) in the general case does not evaluate to

a combination of known special functions — neither for f the F2 metric nor for KE

86



metrics.

Although it can be done, it is rather cumbersome to write explicit computer

codes for the numerical computation of the function Σ in the general case and for the

needed inverse of the function Λ. Hence, at this stage, it is difficult to present explicit

geodesics with trivial angular momenta. The alternative is the numerical integration

of the pair of first-order equations (4.9.14) but also here we meet some difficulties

since the differential system is stiff 3 and without special care and an in-depth study

of the phase space, the standard integration routines run into divergences and fail to

provide solutions both for the KE and the Hirzebruch case. This is not surprising

given the analogy with the Kerr metric. Indeed the study of Kerr geodesics is a

wide field, there is a large variety of types of geodesics and each requires nontrivial

computational efforts to be worked out.

Yet in our case, things enormously simplify if we consider irrotational geodesics

defined as those where ℓ = m = 0 and only the Carter constant C and the energy E
label the curve. Geometrically this corresponds to the fact that the azimuthal angles

ϕ, τ span a two-dimensional torus T2. Pursuing the analogy with General Relativity,

irrotational geodesics are the analogues of the radial geodesics utilized in cosmology

and in the study of the causal structure of spacetimes where one preserves only time

t and radial distance r. The analogues of t and r are in our case the variables v and

θ, namely, the two ascension angles of S2 × S2.

By suppressing angular momenta things simplify drastically. The orbit equation

(4.9.15) reduces to
dθ

dv
=

√
−K

√
v
√

F (v)(K + 2vE)
, (4.9.19)

which implies

θ = FM(v, K, E) =

∫ √
−K

√
v
√

F (v)(K + 2vE)
dv. (4.9.20)

The good news is that in the KE case (with the choice λ1 = 1, λ2 = 2), the integral

3The term “stiff” comes from numerical analysis and denotes a differential equation or differential
system whose numerical solution is unstable unless the step size is taken to be very small.
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of eqn. (4.9.20) can be explicitly evaluated by obtaining

FMKE(v, K, E) = N(v,K,E)
D(v,K,E)

N(v, K, E) =
√
7
√
−K(v− 2)(v− 1)

√
(3v+2)(K+4E)

K+2vE

×F
(
arcsin

(√
− (3K−4E)(v−2)

K+2Ev

2
√
2

)
|8(K+2E)
3K−4E

)

D(v, K, E) =
√
v
√

− (v−2)(3K−4E)
K+2vE

√
(v−1)(K+4E)

K+2vE

×
√
− (3v3−7v2+4)(K+2vE)

v

(4.9.21)

where by F(z|h) we have denoted the F elliptic function.

In the case of the Hirzebruch surface metric, the integral in eqn. (4.9.20) does

not evaluate to known special functions, yet it can be easily computed numerically,

allowing one to to draw the geodesic curves in the u, v-plane: the parametric form is

{(1− cos [FM(v, K, E)]) v , v} (4.9.22)

as follows from eqn. (4.5.4). Choosing various different values of the energy and of

the Carter constant we obtain the curves shown in Figure 4.10. In both cases the

irrotational geodesics are smooth and approach value vmax, that is, the North pole

of the second sphere. The only difference is that in the Hirzebruch case they reach

vmax at various values of the right ascension of the first 2-sphere while in the KE

case they tend to reach the North Pole of the second sphere arriving simultaneously

at the North Pole of the first sphere.
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Figure 4.10: On the left is a plot of some irrotational geodesics for the case of
the Hirzebruch surface. On the right plot of the same type of geodesics for the KE
metric.
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Chapter 5

New Class of Calabi-Yau Metrics

5.1 The Calabi Ansatz and the AMSY symplectic

formalism

Having studied in some detail the KE base manifolds MKE
B , we turn now to the

main issue of this thesis, namely, the construction of a Ricci flat metric on the total

space canonical bundle. We use Calabi’s ansatz, which however only works for KE

base manifolds.

Calabi’s Ansatz Calabi’s paper [10] introduces the following Ansatz for the local

Kähler potential K(z, z̄, w, w̄) of a Kähler metric gE on the total space of a holo-

morphic vector bundle E → M, where M is a compact Kähler manifold satisfying

the conditions already stated in the introduction. In particular, one has a Kähler

potential of the form:

K(z, z̄, w, w̄) = K0(z, z̄) + U(λ) (5.1.1)

where K0(z, z̄) is a Kähler potential for gM, (zi, i = 1, . . . dimCM) being the complex

coordinates of the base manifold) and U is a function of a real variable λ, which we
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shall identify with the function

λ = Hµν̄(z, z̄)w
µwν̄ =∥ w ∥2 (5.1.2)

(the square norm of a section of the bundle with respect to a fiber metric Hµν̄(z, z̄)).

If θ is the Chern connection on E, canonically determined by the Hermitian structure

H and the holomorphic structure of E, its local connections forms can be written as

θ λ
ν =

∑
i

dzi L
λ

i|ν (5.1.3)

where

L
λ

i|ν =
∑
µ̄

Hλµ̄ ∂

∂zi
Hνµ̄ ; [Hλµ̄] = ([Hλµ̄]

−1)T (5.1.4)

The curvature 2-form Θ of the connection θ is given by:

Θ λ
ν =

∑
i,ȷ̄

dzi ∧ dz̄ ȷ̄ S
λ

iȷ̄|ν ; S
λ

iȷ̄|ν =
∂

∂z̄ ȷ̄
L

λ
i|ν (5.1.5)

The Kähler metric gE corresponding to the Kähler potential K can be written as

follows:

∂∂̄K =
∑
i,ȷ̄

[
giȷ̄ + λU ′(λ)

∑
λ,ν,µ̄

Hσµ̄S
σ

iȷ̄|ρ wρw̄µ̄
]
dzidz̄ȷ+

∑
σ,µ̄

[
U ′(λ) + λU ′′(λ)

]
Hσµ̄▽w

σ ▽w̄µ̄. (5.1.6)

If E is a line bundle then the above equation reduces to

∂∂̄K =
∑
i,ȷ̄

[giȷ̄ + λU ′(λ)Siȷ̄]dz
idz̄ ȷ̄ + [U ′(λ) + λU ′′(λ)]H(z, z̄)▽w▽w̄ (5.1.7)

where λ = H(z, z̄)ww̄ is the nonnegative real quantity defined in equation (5.1.2)

and ▽w denotes the covariant derivative of the fiber-coordinate with respect to Chern
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connection θ:

▽w = dw + θ w (5.1.8)

5.1.1 Ricci-flat metrics on canonical bundles

Now we assume that E is the canonical bundleKM of a Kähler surfaceM (dimC M =

2). The total space of KM has vanishing first Chern class, i.e., it is a noncompact

Calabi-Yau manifold, and we may try to construct explicitly a Ricci-flat metric on

it. Actually, following Calabi, we can reduce the condition that gE is Ricci-flat to a

differential equation for the function U(λ) introduced in equation (5.1.1). Note that

under the present assumptions, S is a scalar 2-form on M.

Since our main target is the construction of a Ricci flat metric on the space

tot(KMKE
B

), where MKE
B denotes any of the KE manifolds discussed at length in

previous sections, we begin precisely with an analysis of that case which will allow

us to drive a general form of U(λ) as a function of the moment w associated with the

U(1) group acting by phase transformations of the fiber coordinate w, and of certain

coefficients A,B, F that are determined in terms of the Kähler potential K0 of the

base manifold M. Consistency of the Calabi Ansatz requires that these coefficients

should be constant, which happens in the case of base manifolds equipped with

Kähler Einstein metrics. KE metrics do not exist on Hirzebruch surfaces and the

Calabi Ansatz is not applicable in this case. As we discuss in the sequel, there exists

a Ricci flat metric on the canonical bundle of a singular blow-down of F2, namely

the weighted projective plane WP[1, 1, 2], which is known in the AMSY symplectic

toric formalism of [1] and [38]. If we were able to invert the Legendre transform we

might reconstruct the so far missing Kähler potential and get inspiration on possible

generalizations of the Calabi Ansatz. Hence we are going to pay attention to both

formulations, the Kähler one and the symplectic one.
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5.1.2 Calabi Ansatz for 4D Kähler metrics with SU(2)×U(1)

isometry

The Calabi Ansatz can be applied with success or not according to the structure of the

Kähler potential K0 for the base manifold M and the algebraic form of the invariant

combination Ω of the complex coordinates u, v which is the only real variable from

which the Kähler potential K0 = K0(Ω) is assumed to depend. On the other hand,

Ω encodes the group of isometries which is imposed on the Kähler metric of M.

In the case of the metrics discussed in section 4.2, having SU(2)×U(1) isometry,

the invariant is chosen to be

Ω = ϖ (5.1.9)

where ϖ was defined in eqn. (4.2.1). This choice guarantees the isometry of the

Kähler metric gM to be the group SU(2)×U(1) with the action described in eqn. (4.2.2).

Hence we focus on such manifolds and we consider a Kähler potential for M that for

the time being is a generic function K0(ϖ) of the invariant variable. In this case, the

determinant of the Kähler metric gM has an explicit expression in terms of K0(ϖ)

det (gM) = 2ϖK0
′(ϖ) (ϖK0

′′(ϖ) +K0
′(ϖ)) (5.1.10)

while the determinant of the Ricci tensor takes the form

det (RicM) = NRic

DRic

NRic = 2
(
ϖ2K0

′′(ϖ)2 +K0
′(ϖ)2 +ϖK0

′(ϖ)
(
ϖK0

(3)(ϖ) + 4K0
′′(ϖ)

))
×

×
(
−ϖ3K0

′′(ϖ)4 +ϖ2K0
′(ϖ)

(
ϖK0

(3)(ϖ)−K0
′′(ϖ)

)
K0

′′(ϖ)2

+ϖK0
′(ϖ)2

(
−ϖ2K0

(3)(ϖ)2 −K0
′′(ϖ)2+

ϖ
(
ϖK0

(4)(ϖ) + 2K0
(3)(ϖ)

)
K0

′′(ϖ)

+K0
′(ϖ)3

(
3K0

′′(ϖ) +ϖ
(
ϖK0

(4)(ϖ) + 5K0
(3)(ϖ)

)))
DRic = K0

′(ϖ)3 (ϖK0
′′(ϖ) +K0

′(ϖ))
3

(5.1.11)
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and the scalar curvature

Rs = Tr
(
RicM g−1

M
)

(5.1.12)

is

Rs = Ns

Ds

Ns = K0
′(ϖ)3 +ϖ3K0

′′(ϖ)2
(
2ϖK0

(3)(ϖ) + 5K0
′′(ϖ)

)
+ϖ2K0

′(ϖ)A+

ϖK0
′(ϖ)2B

Ds = ϖK0
′(ϖ) (ϖK0

′′(ϖ) +K0
′(ϖ))

3

(5.1.13)

where

A = −ϖ2K0
(3)(ϖ)2 + 9K0

′′(ϖ)2 +ϖ
(
ϖK0

(4)(ϖ) + 4K0
(3)(ϖ)

)
K0

′′(ϖ)

and

B = 9K0
′′(ϖ) +ϖ

(
ϖK0

(4)(ϖ) + 6K0
(3)(ϖ)

)
Given these base manifold data, we introduce a Kähler potential for a metric on the

canonical bundle tot(KM) in accordance with the Calabi Ansatz, namely

K (ϖ, λ) = K0(ϖ) + U(λ); λ = exp [P(ϖ)]︸ ︷︷ ︸
fiber metric H(ϖ)

| w |2=∥ w ∥2 (5.1.14)

where λ is the square norm of a section of the canonical bundle and exp [P(ϖ)] is

some fiber metric. The determinant of the corresponding Kähler metric gE on the

total space of the canonical bundle is

detgE = 2ϖΣ(λ)eP(ϖ)Σ′(λ) (ϖK′′
0(ϖ)P ′(ϖ) +K′

0(ϖ) (ϖP ′′(ϖ) + 2P ′(ϖ)))

+2ϖeP(ϖ)Σ′(λ)K′
0(ϖ) (K′

0(ϖ) +ϖK′′
0(ϖ))+

2ϖΣ(λ)2eP(ϖ)Σ′(λ)P ′(ϖ) (ϖP ′′(ϖ) + P ′(ϖ))

(5.1.15)

where we set

Σ(λ) = λU ′(λ) (5.1.16)
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If we impose the Ricci flatness condition, namely, the determinant of the metric gE

is a constant which we can always assume to be one since any other number can be

reabsorbed into the normalization of the fiber coordinate w, by integration we get

λ =
1

48

(
Aw3 + 2Bw2 + 4F w

)
(5.1.17)

where we have set

Σ(λ) = 2w

A = 4ϖeP(ϖ)P ′(ϖ) [ϖP ′′(ϖ) + P ′(ϖ)]

B = 6ϖeP(ϖ) [ϖK′′
0(ϖ)P ′(ϖ) +K′

0(ϖ) (ϖP ′′(ϖ) + 2P ′(ϖ))]

F = 12ϖeP(ϖ)K′
0(ϖ) [K′

0(ϖ) +ϖK′′
0(ϖ)]

(5.1.18)

In our complex three-dimensional case, setting

xu = log | u |, xv = log | v |, xw = log | w |, (5.1.19)

the corresponding three moments can be named with the corresponding gothic letters,

and we have

u = ∂xuK (ϖ, λ) , v = ∂xvK (ϖ, λ) , w = ∂xwK (ϖ, λ) . (5.1.20)

As the fiber coordinate w appears only in the function U(λ) via the squared norm

λ, we have

w = 2λU ′(λ) = Σ(λ) (5.1.21)

and this justifies the position (5.1.18). At this point the function U(λ) can be easily

determined by first observing that, in view of eqn. (5.1.17) we can also set

U(λ) = U (w) (5.1.22)
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and we can use the chain rule

∂w U(w) =
wλ′(w)

2λ(w)
=

3Aw2 + 4Bw+ 4F

2Aw2 + 4Bw+ 8F
(5.1.23)

which by integration yields the universal function

U(w) = −C +D
2A

(5.1.24)

where

C = 2
√
4AF −B2 arctan

(
Aw+B√
4AF −B2

)
and

D = B log
(
Aw2 + 2Bw + 4F

)
− 3Aw

The function U(λ) appearing in the Kähler potential can be obtained by substituting

for the argument w in (5.1.24) the unique real root of the cubic equation (5.1.17),

namely:

w =
B1

3 3
√
2A

+
4 3
√
2 (B2 − 3AF )

3AB1

− 2B

3A
(5.1.25)

where

B1 =
3
√

8B0 + 1296A2λ+ 72ABF − 16B3

and

B0 =

√
(162A2λ+ 9ABF − 2B3)2 − 4 (B2 − 3AF )3

5.1.3 Consistency conditions for the Calabi Ansatz

In order for the Calabi Ansatz to yield a a solution of the Ricci flatness condition,

it is necessary that the universal function U(w) in eqn. (5.1.24) should depend only

on w, which happens if and only if the coefficients A,B, F are constants. In the case

under consideration, where the invariant combination of the complex coordinates

u, v is the one provided by ϖ as defined in eqn. (4.2.1), imposing such a consistency

condition would require the solution of three ordinary differential equations for two
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functions P(ϖ) and K0(ϖ), namely:

k1 = 4ϖeP(ϖ)P ′(ϖ) [ϖP ′′(ϖ) + P ′(ϖ)]

k2 = 6ϖeP(ϖ) [ϖK′′
0(ϖ)P ′(ϖ) +K′

0(ϖ) (ϖP ′′(ϖ) + 2P ′(ϖ))]

k3 = 12ϖeP(ϖ)K′
0(ϖ) [K′

0(ϖ) +ϖK′′
0(ϖ)]

(5.1.26)

where k1,2,3 are three constants. It is clear from their structure that the crucial

differential equation is the first one. If we could find a solution for it then it would

suffice to identify the original Kähler potential K0(ϖ) with a linear function of P(ϖ)

and we could solve the three equations. So far we were not able to find any analytical

solution of these equations but if we could find one, we still should verify that the

Kähler metric following from such K0 is a good metric on the Hirzebruch surface F2.

On the contrary, for the Kähler potentials obtained from the Kronheimer con-

struction that defines a one-parameter family of Kähler metrics on F2 and were

discussed in [6, 7], namely those presented in eqn. (4.2.4), equations (5.1.26) cannot

be solved and no Ricci-flat metric on the canonical bundle can be obtained by means

of the Calabi Ansatz.

The general case with the natural fiber metric H = 1
det(gM)

. If we consider

the general case of a toric two-dimensional compact manifoldM with a Kähler metric

gM derived from a Kähler potential of the form:

K0 = K0

(
|u|2, |v|2

)
(5.1.27)

choosing as fiber metric the natural one for the canonical bundle, namely setting:

λ = H |w|2 =
1

det (gM)
|w|2 (5.1.28)
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and going through the same steps as in section 5.1.2, we arrive at an identical result

for the function U(w) as in equation (5.1.24) but with the following coefficients:

A = 2
det (RicM)

det (gM)
, B = 3Tr

(
RicM g−1

M
)
, F = 6 (5.1.29)

It clearly appears why the Calabi Ansatz works perfectly if the starting metric on

the base manifold is KE. In that case, the Ricci tensor is proportional to the metric

tensor:

Riciȷ̄ = κ giȷ̄ (5.1.30)

and we get:

det (RicM) = κ2 det (gM) , Tr
(
RicM g−1

M
)
= 2κ (5.1.31)

which implies:

A = 2κ2, B = 6κ, F = 6. (5.1.32)

5.1.4 The AMSY symplectic formulation for the Ricci flat

metric on tot(KMB
)

According to the discussion of the AMSY symplectic formalism presented in section

chapter 4, given the Kähler potential of a toric complex three manifold K(|u|, |v|, |w|),
we can define the moments

u = ∂xuK, v = ∂xvK, w = ∂xwK (5.1.33)

and we can obtain the symplectic potential by means of the Legendre transform:

G (u, v,w) = xu u + xv v+ xw w − K(|u|, |v|, |w|) (5.1.34)

The main issue in the use of eqn. (5.1.34) is the inverse transformation that expresses

the coordinates xi = {xu, xv, xw} in terms of the three moments µi = {u, v,w}.
Once this is done one can calculate the metric in moment variables utilizing the

Hessian as explained in section chapter 4. Relying once again on the results of that
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section we know that the Kähler 2-form has the following universal structure:

K = du ∧ dϕ + dv ∧ dτ + dw ∧ dχ (5.1.35)

and the metric is expressed as displayed in eqn. (4.1.6))

The symplectic potential in the case with SU(2)× U(1)× U(1) isometries

In the case where the Kähler potential has the special structure which guarantees an

SU(2) × U(1) × U(1) isometry, namely it depends only on the two variables ϖ (see

eqn. (4.2.1))) and |w|2, also the symplectic potential takes a more restricted form.

Indeed we find

G (u, v,w) =
(
v− u

2

)
log(2v− u) +

1

2
u log(u) − 1

2
v log(v)︸ ︷︷ ︸

universal part G0(u, v)

+ G(v,w)︸ ︷︷ ︸
variable part

(5.1.36)

where G(v,w) is a function of two variables that encode the specific structure of

the metric. Note that when we freeze the fiber moment coordinate w to some fixed

constant value, for instance, 0, the function G(v, 0) = D(v) can be identified with

the boundary function that appears in eqns. (4.2.7),(4.2.8), namely in the symplectic

potential for the Kähler metric of the base manifold.

With the specific structure (5.1.36) of the symplectic potential we obtain the

following form for the Hessian (4.1.3):

G =


− v

u2−2uv
1

u−2v
0

1
u−2v

−2v(u−2v)G(2,0)(v,w)+u+2v
2v(2v−u)

G(1,1)(v,w)

0 G(1,1)(v,w) G(0,2)(v,w)

 (5.1.37)
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5.2 The general form of the symplectic potential

for the Ricci flat metric on tot(MKE
B )

Having seen that KE metrics do indeed exist, in the form described in eqs.(4.2.5),

(4.2.6), it is natural to inquire how we can utilize the Calabi Ansatz to write im-

mediately the symplectic potential for a Ricci-flat metric on the canonical bundle

of MKE
B without going through the process of inverting the Legendre transform.

Namely, we would like to make the back-and-forth trip via inverse and direct Legen-

dre transform only once and in full generality rather than case by case. Our goal is

not only a simplification of the computational steps but also involves a conceptual

issue. Indeed, when we introduce intermediate steps that rely on the variable ϖ

whose range is [0,+∞) we necessarily have to choose a branch of a cubic equation

whose coefficients are determined by the root parameters λ1,2. On the contrary, if

we are able to determine directly the symplectic potential in terms of the symplectic

coordinates, then we can explore the behavior of the metric and of its curvature on

the full available range of variability of these latter and we learn more about the

algebraic and topological structure of the underlying manifold.

So let us anticipate the final result of our general procedure. As we did in the

previous section we assume that the Ricci form of MB is proportional to the Kähler

form via a coefficient

κ =
k

4
(5.2.1)

as in eqs.(4.4.5),(5.1.30). The complete symplectic potential for the Ricci flat metric

on MT = tot(KMB
) has the following structure:

GMKE
T

(u, v,w) = G0 (u, v) + GKE (v,w)

G0 (u, v) =
(
v− u

2

)
log[2v− u] + 1

2
u log[u]− 1

2
v log[v]

GKE (v,w) =
(
κw
2
+ 1
)
DKE

(
2v

κw+2

)
− 1

2
v log

(
κw
2
+ 1
)
+ 1

2
w log(w)

+
(κw+ 3) log(κw(κw+ 6) + 12)

2κ
+

√
3 arctan

(
κw+3√

3

)
κ

(5.2.2)
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where the second equation is a repetition for the reader’s convenience of eqn. (4.2.8)

and DKE (v0) is the boundary function defined in equation (4.4.10); the relation

between the two independent roots λ1,2 and the parameter κ is provided by equations

(4.4.8),(5.2.1). The reason why we have used the argument

v0 =
2v

κw+ 2
(5.2.3)

is that the symplectic variable v0 associated with the base-manifold metric and the

symplectic variable v associated with the metric on the canonical bundle MKE
T are

not the same; their relation is precisely that in eqn. (5.2.3) which is a direct conse-

quence of the Calabi Ansatz as we explain below.

5.2.1 Derivation of the formula for GKE (v,w)

The general formula (5.2.2) is a straightforward yield of the direct Legendre transform

after the Calabi Ansatz:

GMKE
T

(u, v,w) = xu u + xv v + xw w − K0(v0) − U(λ) (5.2.4)

where

λ = w w̄
detgMB

= const × w w̄ exp [κK0(v0)] =

Λ(w) = 1
24
w (κ2w2 + 6κw+ 12)

w

2
= λU ′(λ)

U(λ) = U(w) =
−3 log (2 (κ2w2 + 6κw+ 12)) + 3κw− 2

√
3 arctan

(
κw+3√

3

)
2κ

K0(v0) = v0D′ (v0)−D (v0) +
v0
2

(5.2.5)

The last two lines in eqns. (5.2.5) were derived earlier, respectively in eqns. (5.1.24),(4.2.16).

The explicit form of U(w) follows from eqn. (5.1.24) using the KE condition, namely
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eqn. (5.1.32). From the above relations, one easily obtains the relations

u0 =
2u

kw+ 2
, v0 =

2v

kw+ 2

xw = 1
2
{log [Λ(w)]− κK0(v0)}

(5.2.6)

The first two relations can be understood as follows. The momenta u0, v0 are, by

definition

u0 = ∂xuK0 ; v0 = ∂xvuK0 (5.2.7)

while we have

u = ∂xuK ; v = ∂xvK (5.2.8)

By the Calabi Ansatz we get:

u = u0 + ∂xuU(λ) = u0 + ∂xuλ ∂λU(λ) = u0 + κ∂xuK0 λ∂λU(λ) = u0

(
1 +

κ

2
w
)

(5.2.9)

A completely analogous calculation can be done for the case of v. Finally, let us note

that the coordinates xu, xv were already resolved in terms of u0, v0 in eqns. (4.2.15):

xu = 1
2
(log (u0)− log (2v0 − u0)) ;

xv = D′ (v0) + log (2v0 − u0)− 1
2
log (v0) +

1
2

(5.2.10)

The information provided in the above equations (5.2.5) - 5.2.10 is sufficient to

complete the Legendre transform (5.2.4) and retrieve the very simple and elegant

result encoded in eqn. (5.2.2).

To check the correctness of the general formula (5.2.2) we have explicitly calcu-

lated, by means of the mathematica package metricgrav1, the Ricci tensor for a

few cases of M[λ1,λ2]
T , always finding zero.

The example of the metric [2, 1]. Here we present the explicit form in symplectic

coordinates of the Ricci flat metric on the canonical bundle of the KE manifoldM[1,2]
B ,

1METRICGRAV is a personal package of Pietro Fré which calculates Ricci tensors etc
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namely that determined by the choice: λ1 = 1, λ2 = 2. We get:

ds2
M[1,2]

T

= dϕ2
(
−u2(9w+14)2

343v3
− 16464u2

(9w+14)4
+ 2u

)
+

dv2 (u (2058v3 + (9w+ 14)3)− 686v3(9w+ 14))

v(2v− u)(7v− 9w− 14)(14v− 9w− 14)(21v+ 9w+ 14)

+2dτdϕ

(
−u(9w+ 14)2

343v2
− 16464uv

(9w+ 14)4
+ u

)
+

dudv

u− 2v

+
du(udv− vdu)

u(u− 2v)
+

36uw (27w2 + 126w+ 196) dχdϕ

(9w+ 14)3
+

dτ 2
(
− 16464v2

(9w+ 14)4
− (9w+ 14)2

343v
+ v

)
+

6174v2dvdw

C0

+
dw2C1
C2

+
36vw (27w2 + 126w+ 196) dτdχ

(9w+ 14)3
+

2w (27w2 + 126w+ 196) dχ2

(9w+ 14)2

(5.2.11)

Where

C0 = (7v− 9w− 14)(14v− 9w− 14)(21v+ 9w+ 14)

C1 =
(
5647152v3 − 343v2(9w+ 14)4 + (9w+ 14)6

)
and

C2 = 2w(9w+14)
(
27w2 + 126w+ 196

)
(7v−9w−14)(14v−9w−14)(21v+9w+14)

These Ricci-flat metrics provide D3-brane type IIB supergravity solutions, which

we show in Appendix A5.2.1 . As we know, the generalized Kronheimer construction

captures the field contents on the gauge side of the gauge/gravity correspondence.

It is not known yet what kind of quiver gauge models we can associate with our new

class of KE surfaces in order to complete the correspondence. We suspect them to

be closely related to the quiver gauge theory associated with QZ4 .

Also, we started this project to put explicit Ricci-flat metrics with SU(2)×U(1)×
U(1) isometry on tot(KF2) which completes the gauge/gravity correspondence of the

quiver gauge theory associated with QZ4 . In [7], the field contents were found, and if
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we are able to find a Ricci-flat metric then we are done. This has proven to be a hard

nut to crack. A thorough study is needed to understand how to get explicit Ricci-flat

metrics beyond Calabi’s ansatz. That will involve solving some non-linear Monge-

Ampère equations with non-constant coefficients. Perhaps, due to the complexity

of the MA equations, in general, and the lack of explicit techniques to solve PDE’s,

we will not be able to do so. but, at least in cases like canonical bundles over toric

compact surfaces, there might be some improvements that can be made to get results,

due to the presence of combinatorial data associated with toric manifolds.
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Appendix A

For the reader’s convenience in this appendix we concisely collect the main formulas

related with the D3-brane solution of Type IIB supergravity. For more explanations,

the reader is referred to section 2 of [5].

We separate the ten coordinates of space-time into the following subsets:2

xM =

{
xµ, µ = 0, . . . , 3 real coordinates of the 3-brane world volume

yτ , α = 1, 2, 3 complex coordinates of the Y variety
(.0.12)

and we make the following Ansatz for the metric:

ds2[10] = H(yyy, ȳyy)−
1
2 (−ηµν dx

µ ⊗ dxν) +H(yyy, ȳyy)
1
2

(
gRFK
αβ̄ dyα ⊗ dȳβ̄

)
(.0.13)

ds2Y = gRFK
αβ̄ dyα ⊗ dȳβ̄ (.0.14)

ηµν = diag(+,−,−,−) (.0.15)

where gRFK is the Kähler metric of the manifold Y :

gRFK
αβ̄ = ∂α ∂β̄ KRFK (yyy, ȳyy) , (.0.16)

the real function KRFK (yyy, ȳyy) being a suitable Kähler potential. It follows that

det(g[10]) = H(yyy, ȳyy) det(gRFK).

Actually the formalism which is best suited for our aims is the AMSY symplectic

one, rather than using holomorphic coordinates. In terms of the vielbein the Ansatz

2Latin indices are always frame indices referring to the vielbein formalism. Furthermore, we
distinguish the 4 directions of the brane volume by using Latin letters from the beginning of the
alphabet while the 3 complex transversal directions are denoted by Latin letters from the middle
and the end of the alphabet. For the coordinate indices we utilize Greek letters and we do exactly
the reverse: early Greek letters α, β, γ, δ, . . . refer to the 3 complex transverse directions while
Greek letters from the second half of the alphabet µ, ν, ρ, σ, . . . refer to the D3 brane world volume
directions as it is customary in D = 4 field theories.
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(.0.13) corresponds to

V A =

{
V a = H(yyy, ȳyy)−1/4 dxa a = 0, 1, 2, 3

V ℓ = H(yyy, ȳyy)1/4 eℓ ℓ = 4, 5, 6, 7, 8, 9
(.0.17)

where eℓ are the vielbein 1-forms of the manifold Y . The structure equations are

(the hats denote quantities computed without the warp factor, i.e., with H = 1)

0 = d ei − ω̂ij ∧ ek ηjk

R̂ij = dω̂ij − ω̂ik ∧ ω̂ℓj ηkℓ = R̂ij
ℓm eℓ ∧ em.

(.0.18)

The relevant property of the Y metric that we use in solving Einstein’s equation is

that is Ricci-flat:

R̂im
ℓm = 0. (.0.19)

To derive our solution and discuss its supersymmetry properties we need the explicit

form of the spin connection for the full 10-dimensional metric (.0.13) and the cor-

responding Ricci tensor. From the torsion equation one can uniquely determine the

solution:
ωab = 0

ωaℓ = 1
4
H−3/2 dxaηℓk ∂k H

ωℓm = ω̂ℓm +∆ωℓm ; ∆ωℓm = −1
2
H−1 eℓ ηmk ∂kH

(.0.20)

Inserting this result into the definition of the curvature 2-form we obtain

Ra
b = −1

8

[
H−3/22g H −H−5/2 ∂kH∂kH

]
δab

Ra
ℓ = 0

Rm
ℓ = 1

8
H−3/22gHδmℓ − 1

8
H−5/2∂sH∂sHδmℓ + 1

4
H−5/2∂ℓH∂mH

(.0.21)

where for any function f (yyy, ȳyy) on Y the equation

2g f (yyy, ȳyy) =
1√
detg

(
∂α

(√
detg gαβ̄ ∂β̄ f

))
(.0.22)

defines the Laplace–Beltrami operator with respect to the Ricci-flat metric (.0.16);
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we have omitted the superscript RFK just for simplicity — on the supergravity side

of the correspondence we shall only use the Ricci-flat metric and there will be no

ambiguity.

The equations of motion for the scalar fields φ and C[0] and for the 3-form field

strengths FNS
[3] and FRR

[3] can be better analyzed using the complex notation. Defining,

as it is explained in [5] above:

H± = ±2 e−φ/2FNS
[3] + i2 eφ/2 FRR

[3] ⇒ H+ = −H−

P = 1
2
dφ− i1

2
eφ FRR

[1]

(.0.23)

but also setting in our Ansatz

φ = 0 ; C[0] = 0 (.0.24)

we reduce the equations for the complex 3-forms to

H+ ∧ ⋆H+ = 0

d ⋆H+ = i FRR
[5] ∧ H+

(.0.25)

while the equation for the 5-form becomes

d ⋆ FRR
[5] = i

1

8
H+ ∧H− (.0.26)

The Ansatz for the complex 3-forms of type IIB supergravity is given below and is

inspired by what was done in [4, 3] in the case where Y = C× ALEΓ:

H+ = Ω(2,1) (.0.27)

where Ω(2,1) lives on Y and satisfies

⋆g Q
(2,1) = −iQ(2,1) (.0.28)
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As shown in [5] this guarantees that

H+ ∧ ⋆10H+ = 0. (.0.29)

The Ansatz for FRR
[5] is

FRR
[5] = α (U + ⋆10 U)

U = d (H−1VolR(1,3))
(.0.30)

where α is a constant to be determined later. By construction FRR
[5] is self-dual and

its equation of motion is trivially satisfied. What is not guaranteed is that also the

Bianchi identity is fulfilled. Imposing it results into a differential equation for the

function H (yyy, ȳyy). Indeed we obtain

dFRR
[5] = α2g H(yyy, ȳyy) × VolY (.0.31)

where

VolY =
√
detg 1

(3!)2
ϵαβγ dy

α ∧ dyβ ∧ dyγ ∧ ϵᾱβ̄γ̄ dȳ
ᾱ ∧ dȳβ̄ ∧ dȳγ̄ (.0.32)

is the volume form of the transverse six-dimensional manifold i.e. the total space of

the canonical bundle K [MB]. With our Ansatz we obtain

1
8
H+ ∧ H− = J (yyy, ȳyy) × VolY

J (yyy, ȳyy) = − 1

72
√
detg

Ωαβη̄ Ω̄δ̄θ̄γ ϵαβγ ϵη̄δ̄θ̄
(.0.33)

and we conclude that

2g H = − 1

α
J (yyy, ȳyy) (.0.34)

This is the main differential equation to which the entire construction of the D3-brane

solution can be reduced. In [5] it was shown that the parameter α is determined by

Einstein’s equations and is fixed to α = 1. With this value the field equations for the

complex three forms simplify and reduce to the condition that Ω2,1 should be closed,
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and then, being anti-selfdual also co-closed, namely harmonic:

Ω̃(2,1) = ⋆gΩ
(2,1) = − iΩ(2,1) ; d ⋆g Ω

(2,1) = 0 ; dΩ(2,1) = 0 (.0.35)

In other words the solution of type IIB supergravity with 3-form fluxes exists if and

only if the transverse space admits closed and imaginary anti-self-dual forms Ω(2,1),

as we already stated.

Summarizing, in order to construct a D3-brane solution of type IIB supergravity

we need:

a) to find a Ricci flat Kähler metric gRFK on the transverse 6D space Y ;

b) to verify if in the background of the metric gRFK there exists a nonvanishing linear

space of anti-self-dual (2,1)-forms Ω(2,1). In the case of a positive answer, the

3-form H+ will be a linear combination of such forms; otherwise it will be zero.

c) to solve the Laplacian equation for the harmonic function H which is homo-

geneous if there are no 3-form fluxes, otherwise it is inhomogeneous as in

eqn. (.0.34).

The issue of (2,1)-forms We come to the issue of (2,1)-forms, giving a proof

that no (anti)-self-dual (2, 1) forms exist in the KE manifolds previously studied. A

(2,1)-form can be written as

Ωij k̄ (z, z̄) dz
i ∧ dzj ∧ dz̄k̄ (.0.36)

The dual (2,1)-form is

⋆gΩ = Ω̃ℓpq̄ (z, z̄) dz
ℓ ∧ dzp ∧ dz̄q̄ (.0.37)

where:

Ω̃ℓpq̄ (z, z̄) =
1√
detg

gℓm̄ gpn̄ gq̄s ϵ
m̄n̄k̄ϵijsΩij k̄ (z, z̄) (.0.38)
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Hence the (anti)-selfduality condition is expressed by the equation:

± i Ω̃ℓpq̄ (z, z̄) = Ωℓpq̄ (z, z̄) (.0.39)

Given the complex structure tensor J and its eigenvectors one writes the complex

differentials:

dzi = ωi
ℓ(µ)dµ

ℓ + i dΘi ; dz̄i = ωi
ℓ(µ)dµ

ℓ − i dΘi (.0.40)

where the real 1-forms ωi ≡ ωi
ℓ(µ)dµ

ℓ depending only on moment variables are

defined by the complex structure tensor and hence by the explicit form of the metric

in terms of the Hessian. Using this formalism a (2,1)-form is written as

Ω(2,1) = Ωij|k (µ) (ω
i + i dΘi) ∧ (ωj + i dΘj) ∧ (ωk − i dΘk)

= QIJK (µ) dyI ∧ dyJ ∧ dyK
(.0.41)

where yI = {µi,Θj} is the complete set of the 2n real coordinates (moments and an-

gles).The complex functions QIJK (µ) depend on the real variables µ. The (anti)self-

duality condition is most easily written in the symplectic formalism as the determi-

nant of the metric tensor in symplectic coordinates is just 1. One gets

QIJK = ±i ϵIJKPQR QPQR (.0.42)

The original components Ωij|k (µ) are supposed to be complex valued functions of

their real arguments which means that we have a total of 9-complex valued functions,

namely a total of 18 real functions:

r(µ) = {f1(µ), . . . , f9(µ), g1(µ), . . . , g9(µ)} (.0.43)
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Explicitly we obtain

Ω = 2 ((f3 − f5 − f7 + ig3 − ig5 − ig7) dτ ∧ dχ ∧ ω1−
2 (f8 + ig8) dτ ∧ dχ ∧ ω2 − 2 (f9 + ig9) dτ ∧ dχ ∧ ω3+

2 (f1 + ig1) dτ ∧ dϕ ∧ ω1 + 2 (f2 + ig2) dτ ∧ dϕ ∧ ω2

+(f3 + f5 − f7 + ig3 + ig5 − ig7) dτ ∧ dϕ ∧ ω3+

2 (g2 − if2) dτ ∧ ω1 ∧ ω2 + (−if3 − if5 − if7 + g3 + g5 + g7) dτ ∧ ω1 ∧ ω3

+2 (g8 − if8) dτ ∧ ω2 ∧ ω3 + (−if3 − if5 + if7 + g3 + g5 − g7) dχ ∧ ω1 ∧ ω2

+2 (g6 − if6) dχ ∧ ω1 ∧ ω3 + 2 (g9 − if9) dχ ∧ ω2 ∧ ω3

−2 (f4 + ig4) dϕ ∧ dχ ∧ ω1 − (f3 + f5 + f7 + ig3 + ig5 + ig7) dϕ ∧ dχ ∧ ω2

−2 (f6 + ig6) dϕ ∧ dχ ∧ ω3 + 2 (g1 − if1) dϕ ∧ ω1 ∧ ω2+

2 (g4 − if4) dϕ ∧ ω1 ∧ ω3 + (if3 − if5 − if7 − g3 + g5 + g7) dϕ ∧ ω2 ∧ ω3

+(−if3 + if5 − if7 + g3 − g5 + g7) dτ ∧ dϕ ∧ dχ

+ω1 ∧ ω2 ∧ ω3 (f3 − f5 + f7 + ig3 − ig5 + ig7))

(.0.44)

which is the most general expression for a (2,1)-form expressed in the real symplectic

coordinate basis. Expanding each of the closed one-forms in the differentials dµi of

the moments one obtains the explicit form of the 20 components QIJK(µ) mentioned

in (.0.41). For instance in our standard example λ1 = 1, λ2 = 2 we have:

ω1 = dv−vdu
u(u−2v)

ω2 = N2

D2

N2 = 3087v3dw(u− 2v)− udv (2058v3 + (9w+ 14)3) + vdu (2058v3

−343v2(9w+ 14) + (9w+ 14)3) + 686v3(9w+ 14)dv

D2 = v(u− 2v) (2058v3 − 343v2(9w+ 14) + (9w+ 14)3)

ω3 = N3

D3

N3 = 6174v2dv+
dw(5647152v3−343v2(9w+14)4+(9w+14)6)

w(243w3+1512w2+3528w+2744)

D3 = 2 (2058v3 − 343v2(9w+ 14) + (9w+ 14)3)

(.0.45)

and by substitution one straightforwardly obtains the QIJK components whose ex-

pression is too lengthy to be displayed. In general a complex valued 3-form has the
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following structure:

Ω[3] = (X20 + iY20) dτ ∧ dϕ ∧ dχ+ (X10 + iY10) du ∧ dτ ∧ dχ

+(X8 + iY8) du ∧ dτ ∧ dϕ+ (X3 + iY3) du ∧ dv ∧ dτ

+(X1 + iY1) du ∧ dv ∧ dw+ (X4 + iY4) du ∧ dv ∧ dχ

+(X2 + iY2) du ∧ dv ∧ dϕ+ (X6 + iY6) du ∧ dw ∧ dτ

+(X7 + iY7) du ∧ dw ∧ dχ+ (X5 + iY5) du ∧ dw ∧ dϕ

+(X9 + iY9) du ∧ dϕ ∧ dχ+ (X16 + iY16) dv ∧ dτ ∧ dχ

+(X14 + iY14) dv ∧ dτ ∧ dϕ+ (X12 + iY12) dv ∧ dw ∧ dτ

+(X13 + iY13) dv ∧ dw ∧ dχ+ (X11 + iY11) dv ∧ dw ∧ dϕ

+(X15 + iY15) dv ∧ dϕ ∧ dχ+ (X19 + iY19) dw ∧ dτ ∧ dχ

+(X17 + iY17) dw ∧ dτ ∧ dϕ+ (X18 + iY18) dw ∧ dϕ ∧ dχ

(.0.46)

where the Xi and Yi are real functions of the momenta µ. The self-duality condition

(.0.42) reduces to an algebraic relation that expresses all the Yi in terms of the Xi,

precisely:

Y1 = ± X20

Y2 = ± X19

Y3 = ± −X18

Y4 = ± −X17

Y5 = ± −X16

Y6 = ± X15

Y7 = ± X14

Y8 = ± X13

Y9 = ± X12

Y10 = ± −X11

Y11 = ± X10

Y12 = ± −X9

Y13 = ± −X8

Y14 = ± −X7

Y15 = ± −X6

Y16 = ± X5

Y17 = ± X4

Y18 = ± X3

Y19 = ± −X2

Y20 = ± −X1

(.0.47)

The choice of the ± sign corresponding to self/anti-self duality, respectively. Com-

paring eqn. (.0.44) with eqn. (.0.46) and using eqn. (.0.45) one obtains the 20 Xi

and the 20 Yi of a generic (2,1)-form as linear combination of the 18 free parameter

functions (.0.43) with coefficients that are rational functions of the moment µ. The

self-duality constraint is a set of 20 linear equations on the 18 parameters. Obviously
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unless the rank of the 20×18 matrix is less than 18, there are no nontrivial solutions.

We have indeed verified that the 20 equations do not have nontrivial solutions for the

standard case λ1 = 1, λ2 = 2 and for some other choices of the parameters. Hence

no harmonic self-dual (2,1) forms exist on this KE background and we have exact

D3-brane solutions without 3-form fluxes.

Appendix B

Sasakian manifold A (2n− 1)-dimensional Riemannian manifold (S, g) is called

Sasakian if and only if (2n)-dimensional manifold (C(S) = S × R+ , ḡ = dr2 + r2g)

is Kähler. Here r is the radial coordinate.

Given a Sasakian manifold (S, g), we can associate a unique vector field known

as Reeb vector field ξ = r∂r such that Lξḡ = 0. Its dual is called a contact 1-form

η and satisfies:

η(ξ) = 1, iξdη = 0

The existence of contact 1-form allows us to split the tangent bundle TS as:

TS = E ⊕ Lξ

where E = ker η and Lξ is the line tangent to ξ.

ξ and η define a foliation Fξ called the Reeb foliation such that E is the

normal bundle of Fξ. The global properties of Fξ provides classification of Sasakian

manifolds. We have three classifictaions of Sasakian manifolds, namely:

1. if the orbits of ξ are all closed then ξ provides an isometric U(1)-action on

(S, g). If the action is free we say that (S, g) is regular.

2. if the orbits are closed but the action is only locally free then (S, g) is called

quasi-regular.

3. if the orbits are no closed then (S, g) is called irregular.
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A well known result in Sasakian geometry says: (C(S), ḡ) is Calabi-Yau manifold

if and only if (S, g) is Einstein. In the case of regular and quasi-regular Sasakian

manifolds the situation is much nicer as (S, g) happens to be U(1)-bundle over a

Kähler-Einstein manifold in the regular case and over a Kähler-Einstein orbifold in

the case of quasi-regular.

In [27], a class of Sasakian-Einstein manifolds Y (p,q) was found which is diffeomor-

phic to S2×S3. In this class there exists infinitly manly irregular Sasakian manifolds

as well. we suspect in our case the Sasakian manifold which we are looking for is

closely related to these manifolds. This needs to be explored in detail.
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[7] U. Bruzzo, A. Fino, P. Fré, P. A. Grassi, and D. Markushevich, Crepant res-

olutions of C3/Z4 and the generalized Kronheimer construction (in view of

gauge/gravity correspondence), J. Geom. Phys., 145 (2019).
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