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Abstract

We obtain analytical results for the time evolution of local observables in systems undergoing quantum 
quenches in d spatial dimensions. For homogeneous systems we show that oscillations undamped in time 
occur when the state produced by the quench includes single-quasiparticle modes and the observable cou-
ples to those modes. In particular, a quench of the transverse field within the ferromagnetic phase of the 
Ising model produces undamped oscillations of the order parameter when d > 1. For the more general case 
in which the quench is performed only in a subregion of the whole d-dimensional space occupied by the sys-
tem, the time evolution occurs inside a light cone spreading away from the boundary of the quenched region 
as time increases. The additional condition for undamped oscillations is that the volume of the quenched 
region is extensive in all dimensions.
© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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1. Introduction

A main question for the nonequilibrium dynamics of extended quantum systems is whether 
time evolution eventually leads to some form of relaxation [1] or can produce a different behavior. 
The difficulty of the question calls for analytical study in the basic nonequilibrium setting, which 
corresponds to quantum quenches.1 Here an isolated extended system is in the ground state |0〉
of its Hamiltonian H0 until the time t = 0, when the instantaneous change of an interaction pa-
rameter leads to the new Hamiltonian H that rules the unitary evolution for t > 0. The procedure 
dynamically generates the post-quench state and leaves no ambiguities in the initialization of the 
nonequilibrium evolution.

The way to analytically study the quench dynamics on general grounds was found in [4], 
where the case of translation invariant one-dimensional systems was considered. The theory is 
perturbative in the quench size λ, and crucially incorporates the fact that normally the quasipar-
ticle modes interact (even at equilibrium, namely at λ = 0). In particular, it was found that, under 
conditions determined by the theory and including quasiparticle interaction, local observables 
(e.g. the order parameter) exhibit oscillations undamped in time. It was argued in [5] that these 
oscillations appearing at leading order in λ are not washed out by higher orders and stay un-
damped also when λ is not small. Undamped oscillations were then numerically observed over 
hundreds of periods within the time scale accessible to the simulation of a large quench of the 
longitudinal magnetic field in the Ising chain [6], a basic candidate discussed in [4,7].

In this paper we consider the case of d spatial dimensions. We show that for a translation 
invariant system with post-quench Hamiltonian H = H0 + λ 

∫
dx �(x), the large time limit of 

the one-point function of an operator � takes the form

〈�(x, t)〉 = 〈�〉eq
λ + λ

[
2

M2 F�
1 F�

1 cosMt + O(t−α)

]
+ O(λ2) , (1)

where 〈�〉eq
λ is the equilibrium expectation value in the theory with the Hamiltonian H , M > 0

the quasiparticle mass, FO
1 the matrix element of O between |0〉 and the single-quasiparticle 

state, and

α ≥ d/2 . (2)

Throughout the paper we adopt natural units in which the maximal velocity of the quasiparticles 
is vmax = 1. In case of systems possessing several quasiparticle species the term in the square 
bracket is summed over the species. (1) shows, in particular, the presence of undamped oscilla-
tions under the same conditions determined in [4] for the case d = 1 (for which α is generically 

1 See [2,3] for early applications of this terminology inspired by thermal quenches in classical statistical systems.
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3/2), namely when the excitations produced by the quench include a single-quasiparticle mode2

(F�
1 �= 0) and the observable couples to this mode (F�

1 �= 0).
In turn, (1) is a particular case (D = Rd ) of the more general situation that we are going 

to consider, namely that of a quench performed only in a subregion D of the full space Rd

occupied by the system. For such an inhomogeneous quench, corresponding to the post-quench 
Hamiltonian

H = H0 + λ

∫
D

dx�(x) , (3)

we show that the large time limit (1) generalizes to

〈�(x, t)〉 = 〈�(x)〉eq
λ (4)

+ λ

⎡
⎣2F�

1 F�
1

(2π)d

∫
D

dy
∫

dp
cos(

√
p2 + M2 t + (x − y) · p)

p2 + M2 + O(t−α−βD )

⎤
⎦

+ O(λ2),

where α is the same entering (1), while

βD ∈ [0, d/2] (5)

rules the large time behavior t−βD of the integral term. If Ld , with L → ∞, is the volume of 
Rd , there are undamped oscillations (βD = 0) when the volume of D, vol(D), is of order Ld , a 
condition weaker than D = Rd . On the other hand, βD = d/2 when vol(D) is finite. Intermediate 
values of βD occur depending on the number of dimensions in which vol(D) is extensive. We 
also show that the effect of the quench is appreciable only inside a light cone that at time t
contains D and the external region within distance t from the boundary ∂D.

These analytical results – whose degree of generality is uncommon in the framework of 
nonequilibrium quantum dynamics – lead to the following physical deductions. The remainder 
of (1) (terms of order λ2 and higher) has one of the following behaviors for t → ∞: indefinite 
growth in modulus, approach to a constant, or undamped oscillations. Hence, if we exclude that 
〈�(x, t)〉 indefinitely grows in modulus – something that is not expected on physical grounds 
– (1) leads to undamped oscillations also when λ is not small (provided that F�

1 F�
1 �= 0). The 

same applies to (4) when βD = 0. To understand the role of D in this respect, we observe that 
the oscillations propagate inside the light cone, and are sustained by the energy produced in the 
quench and carried by the quasiparticles. In order the oscillations to stay undamped, a nonzero 
energy density inside the light cone is needed at late times (besides F�

1 F�
1 �= 0). Since the energy 

produced by the quench and conserved by the time evolution is proportional to vol(D), and since 
the volume enclosed by the light cone becomes Ld as t → ∞, a nonzero energy density at late 
times requires that vol(D) is of order Ld , and this is the case corresponding to βD = 0.

The paper is organized as follows. The main theoretical results are derived in the next section, 
while in section 3 we illustrate the features of the time evolution also with a number of examples 
of quenched regions D. Section 4 illustrates the role played by internal symmetries through 
the basic example of the quantum Ising model, and the last section contains some concluding 
remarks.

2 This in turn requires interacting quasiparticles, otherwise � creates only quasiparticle pairs.
3
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2. Quenches in d dimensions

2.1. Post-quench state and one-point functions

We consider a d-dimensional system occupying the whole space Rd . Before the quench the 
system is translation invariant and in the ground state |0〉 of the Hamiltonian H0. We perform the 
theoretical analysis exploiting the complete basis of asymptotic quasiparticle states |p1, . . . , pn〉
of the pre-quench theory, with pi denoting the d-dimensional momenta of the quasiparticles. 
The asymptotic states are eigenstates of H0 with eigenvalues equal to the sum of the quasi-

particle energies Epi
=

√
M2 + p2

i . M > 0 is the quasiparticle mass and measures the distance 
from a quantum critical point. In order to simplify the notation we refer to the case of a single 
quasiparticle species; generalizations are straightforward and will be discussed when relevant.

The quench at t = 0 is performed changing the Hamiltonian to (3), and for D �= Rd breaks 
translation invariance. Since the quench excites quasiparticle modes, the pre-quench state |0〉
evolves into the state |ψ0〉 = Sλ|0〉, where

Sλ = T exp

⎛
⎝−iλ

∞∫
0

dt

∫
D

dx�(x, t)

⎞
⎠ (6)

(T denotes chronological ordering) is the operator whose matrix elements 〈n|Sλ|0〉 give the 
probability amplitude that the quench induces the transition from |0〉 to |n〉. Here we adopt the 
compact notation |n〉 = |p1, . . . , pn〉. To first order in the quench parameter λ we have

|ψ0〉 
 |0〉 + λ
∑∫
n,pi

gD(P)

E
[F�

n ]∗|n〉 , (7)

where we defined

E =
n∑

i=1

Epi
, P =

n∑
i=1

pi , (8)

gD(P) =
∫
D

dx eiP·x , (9)

FO
n (p1, ...,pn) = 〈0|O(0,0)|p1, ...,pn〉 , (10)

introduced the notation

∑∫
n,pi

=
∞∑

n=1

1

n!
∞∫

−∞

n∏
i=1

dpi

(2π)dEpi

, (11)

and used

O(x, t) = eiP ·x+iH0t O(0,0) e−iP ·x−iH0t , (12)

with P the momentum operator and O a generic local operator. As usual, an infinitesimal imagi-
nary part is given to the energy to make the time integral in (6) convergent.3 The result (7) shows 

3 The sum in (11) starts from n = 1 rather than from n = 0 because the O(λ) contribution to (7) with n = 0 (corre-
sponding to E = P = 0) diverges and must be subtracted. Such a term corresponds to vacuum energy renormalization 
and can be canceled through a counterterm in the Hamiltonian [4].
4
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that the quench produces excitation modes with any number of quasiparticles and all possible 
momenta. Only when the quasiparticles do not interact, so that H0 and H are quadratic in the 
quasiparticle modes and F�

n ∝ δn,2, a post-quench state with quasiparticles organized in pairs is 
obtained.

The one-point function of a local observable � is given by the expectation value 〈�(x, t)〉
on the post-quench state (7). In the formalism of asymptotic states the space-time dependence is 
carried by the operator and is extracted exploiting (12). The variation δ〈�(x, t)〉 of the one-point 
function of a hermitian observable with respect to the pre-quench value is given, at first order in 
λ, by

δ〈�(x, t)〉 = 〈ψ0|�(x, t)|ψ0〉 − 〈0|�(0,0)|0〉 + C�(x)


 2λ
∑∫
n,pi

1

E
Re

{
gD(P) [F�

n ]∗F�
n e−i(Et+P·x)

}
+ C�(x) , (13)

where we took into account that normalizing by 〈ψ0|ψ0〉 = 1 +O(λ2) is immaterial at first order, 
and added the term

C�(x) 
 −2λ
∑∫
n,pi

1

E
Re

{
gD(P) [F�

n ]∗F�
n e−iP·x} (14)

to ensure continuity at t = 0, namely the condition δ〈�(x, 0)〉 = 0, which has no reason to be 
automatically satisfied.

2.2. Light cone from the quenched domain and behavior at large times

We can use (9) to rewrite (13) as

δ〈�(x, t)〉 
 2λ
∑∫
n,pi

∫
D

dy
1

E
Re

{
[F�

n ]∗F�
n e−i[Et+P·(x−y)]} + C�(x) .

For t large the rapid oscillation of the exponential suppresses the integrals over momenta unless 
the phase is stationary, namely unless

∇pi
[Epi

t + pi · (x − y)] = vi t + x − y = 0 , i = 1,2, . . . , n , (15)

where we introduced the quasiparticle velocities

vi = ∇pi
Epi

= pi√
M2 + p2

i

. (16)

Since |vi | < 1, the stationarity condition (15) is satisfied when

|x − y| < t . (17)

This means that, for any point y ∈D, the effect of the quench is appreciable only within a distance 
t from y, namely the maximal distance that the quasiparticles excited by the quench at the point 
y could reach at time t . Hence, the time evolution takes place inside a light cone4 containing D
and the external region within distance t from ∂D (Fig. 1).

4 See [8] for the derivation of the light cone associated to the spreading of two-point correlations in the translation 
invariant case, which involves the connectedness properties of matrix elements as an additional ingredient.
5
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Fig. 1. Implications of the stationarity condition (15) for a quench in a region D of the space Rd occupied by the system.
Left: The quench operator � acting at a point y ∈ D creates excitations that at time t have spread inside a sphere of radius 
t . Right: Since � acts at all points of D, the effect of the quench is appreciable only inside the light cone containing D
and the region within distance t from its boundary.

For D finite, x fixed and t large enough, the stationarity condition vi = (y − x)/t implies 
that the time dependence in (13) receives a significant contribution only when all momenta pi

are small, and then can be evaluated with gD → vol(D) and Epi
→ M + p2

i /2M . The matrix 
elements (10) do not diverge at small momenta (see e.g. [9]), and in such a limit [F�

n ]∗F�
n will 

behave as momentum to a power 2αn ≥ 0. In particular α1 = 0, since FO
1 is a real constant for 

the scalar hermitian operators that we consider. With this information, it is easy to rescale the mo-
menta and see that the n-quasiparticle contribution in (13) behaves at large times as t−(nd/2+αn).

More generally, suppose that D goes from −∞ to +∞ in k of the d spatial dimensions (say 
x1, x2, . . . , xk). Now gD ∝ δ(P1) · · · δ(Pk), and this gives an extra contribution −k to the count-
ing of the powers of momentum, so that the large time behavior is modified to t−[(nd−k)/2+αn]. 
As long as F�

1 F�
1 �= 0 the leading contribution comes from the single-quasiparticle mode n = 1

and goes as t−(d−k)/2. For an homogeneous quench (D = Rd , i.e. k = d) we have undamped 
oscillations and the result in the square bracket of (1), with the lower bound (2) coming from 
n = 2. A generic k gives the time dependence in the square bracket of (4), behaving as t−βD , 
with βD = (d − k)/2 that satisfies (5).

On the other hand, suppose that D differs from Rd for the subtraction of a finite region, 
namely D ∪ D̃ = Rd with D̃ finite. In this case gD = gRd − gD̃ , and the dependence at large 
times corresponds to the difference of the previous cases k = d and k = 0. Hence, we have 
βD = 0 and undamped oscillations at sufficiently large times produced by the integral in (4). The 
conclusion that in general there are undamped oscillations when

ρD = vol(D)/vol(Rd) (18)

is nonzero corresponds to the physical picture anticipated in the introduction: the energy pro-
duced by the quench is proportional to vol(D) and spreads in time inside the light cone, so that 
the energy density will be asymptotically proportional to ρD; a nonzero ρD is able to keep the 
oscillations undamped. The amplitude of the undamped oscillations goes to zero if ρD goes to 
zero. The condition ρD > 0 amounts to vol(D) extensive in all dimensions.

We finally explain the origin of the time-independent term in (1) and (4). For this purpose 
observe that in the equilibrium theory with Hamiltonian (3) the first order contribution in λ to 
the one-point function 〈�(x)〉eq

λ is5

δ〈�(x)〉eq
λ 
 −iλ

+∞∫
−∞

dt

∫
D

dy 〈0|T �(y, t)�(x,0)|0〉c

5 The subscript c indicates the connected part of the two-point function.
6
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= −2λ
∑∫
n,pi

1

E
Re

⎧⎨
⎩[F�

n ]∗F�
n

∫
D

dy e−iP·(x−y)

⎫⎬
⎭

= C�(x) , (19)

where we used (12), expanded over asymptotic states, and finally compared with (14). Hence, 
recalling what we just concluded about the time-dependent part, we have

lim
t→∞〈�(x, t)〉 = 〈�(x)〉eq

λ + O(λ2) (20)

when βD �= 0. When βD = 0, namely when vol(D) is extensive in all dimensions, the r.h.s. of 
(20) is the value around which the undamped oscillations take place.

3. Following the time evolution

3.1. General features

We rewrite (4) in the form

〈�(x, t)〉 = 〈�(x)〉eq
λ + λ

[
2

M2 F�
1 F�

1 f (x, t) + O(t−(α+βD))

]
+ O(λ2) , (21)

where

f (x, t) = M2

(2π)d

∫
dp

1

p2 + M2 Re
{
gD(p) e−i(

√
p2+M2 t+p·x)

}
(22)

is a dimensionless function. For F�
1 F�

1 �= 0, f (x, t) determines the large time behavior of the 
one-point function for small quenches, until a time scale tλ that goes to infinity as λ is reduced.6

On the other hand, the analysis of section 2.2 does not allow to neglect the terms with n > 1
in (13) when t is not large. However, it is known that in d = 1 [7,5] the contribution of the 
n-quasiparticle state is normally rapidly suppressed as n increases, so that f (x, t) provides a 
good approximation also for short times. If this is true also for d > 1 we should expect, recall-
ing (19) and (14), that the first order contribution to the equilibrium expectation value is well 
approximated as

δ〈�(x)〉eq
λ ≈ −λ

2

M2 F�
1 F�

1 f (x,0) . (23)

We will soon explicitly illustrate that (23) indeed yields the result expected for δ〈�(x)〉eq
λ , namely 

a function that is essentially constant for x ∈ D and zero otherwise. With this anticipation, we 
see that (21) (without the term O(t−α−βD )) can be used not only for large times but, with good 
approximation, also for short times, meaning that the function (22) yields a global view of the 
time evolution for small quenches. We now consider this function for a number of quenching 
domains D.

6 The expression of tλ was given in [4] for d = 1. Its generalization to the present d-dimensional case is tλ ∼
1/λ1/(d+1−X�) , where X� < d + 1 is the scaling dimension of � at the quantum critical point.
7
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Fig. 2. f (x, t) at different times in the plane Mx1-Mx2 for a quench in d = 2 with D a disk of radius b = 30/M . (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

3.2. Rotationally invariant quenched domains

If D is the d-dimensional sphere of radius b centered in the origin, (9) and (22) yield

gsphere(P) =
(

2πb

|P|
) d

2

Jd
2
(|P|b) , (24)

and
8
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Fig. 3. f (x, t) for a quench in d = 2 with D a disk of radius b = 10/M . Left: Mt = 10. The function is essentially 
zero outside the edges of the light cone located at distance r = b + t from the origin. Right: Mr = 20. Time evolution 
becomes appreciable only after that the light cone is reached at time t = r − b.

Fig. 4. f (0, t) for a quench in d = 2 with D a disk of radius b = 20/M . The oscillations in the origin stay undamped 
until the arrival at time t = b of the modes originating from ∂D. Eventually, the damping factor t−d/2 prescribed by (4)
with D finite sets in for large times.

f (x, t) = M2 b
d
2

r
d
2 −1

∞∫
0

dp Jd
2
(pb)J d

2 −1(pr)
cos(

√
M2 + p2 t)

M2 + p2 , (25)

respectively, with Jα(z) the Bessel function and r = |x|. The function (25) is plotted at different 
times in d = 2 (D = disk) in Fig. 2. The result for t = 0 confirms what we anticipated about 
(23) and the ability of f (x, t) to give an accurate view of the time evolution also for short times. 
As t increases the figure clearly shows the spreading of the light cone located at distance t from 
the boundary of the disk. The boundary modes propagate also inside the disk, but for t < b

they leave unaffected the central region with r < b − t . Here the function essentially behaves as 
for a homogeneous quench, namely is spatially constant with undamped oscillations in time. The 
presence of the light cone is also illustrated in Fig. 3. Fig. 4 shows the damping of the oscillations 
at large times, with the suppression t−d/2 expected for the case D finite.

A straightforward generalization is that of a quench with D the d-dimensional spherical shell 
b1 < r < b2, which yields

f (x, t) = M2

r
d
2 −1

∞∫
0

dp

[
b

d
2
2 Jd

2
(pb2) − b

d
2
1 Jd

2
(pb1)

]
Jd

2 −1(pr)
cos(

√
p2 + M2 t)

p2 + M2 . (26)

The time evolution is illustrated in Figs. 5 and 6 for b2 finite, and in Fig. 7 for b2 infinite.
9
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Fig. 5. f (x, t) at different times in the plane Mx1-Mx2 for a quench in d = 2 with D an annulus occupying the region 
20 < Mr < 40. The initial central gap in the light cone closes when the boundary modes reach r = 0 at Mt = Mb1 = 20. 
See also Fig. 6.

3.3. Quenched domains with corners

If the quenched domain is a d-dimensional box, D = [−b1, b1] × · · · × [−bd, bd ], we have

gbox(P) =
d∏

k=1

2

Pk

sin(Pkbk) . (27)

Fig. 8 shows the corresponding function f (x, t) at different times in d = 2 for a square domain. 
Again, the image at t = 0, with the function essentially constant inside the square and vanishing 
outside, illustrates (through (23)) that the time evolution is described with good approximation 
also at short times. For t > 0, the general result that the light cone is located at distance t from the 
boundary of D leads to a rounding in correspondence of the corners of the square. This example 
gives an idea of the patterns that can be expected when ∂D increasingly deviates from a smooth 
surface.
10
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Fig. 6. f (x, t) for the same quench of Fig. 5.

Fig. 7. f (0, t) for a quench in d = 3 with D extending everywhere except a sphere of radius b = 10/M centered in the 
origin. The time evolution in the origin starts at t = b, with oscillations that become undamped at large time, as for the 
general case of vol(D) extensive in all dimensions.

4. Role of internal symmetries: Ising model

The model-dependent information for the use of (1) and (4) is whether the matrix elements F�
1

and F�
1 vanish or not. They are generically nonzero, unless a symmetry forces them to vanish. In 

this section we illustrate the role of symmetries through the basic example of the d-dimensional 
quantum Ising ferromagnet. This is defined by the Hamiltonian

HIsing = −J
∑
〈i,j〉

σx
i σ x

j − hz

∑
i

σ z
i − hx

∑
i

σ x
i , (28)

where σx,y,z
i are Pauli matrices at site i, 〈i, j 〉 denotes a pair of nearest-neighbor sites, J is 

positive, and hz and hx are the transverse and longitudinal magnetic fields, respectively. For 
hx = 0 and |hz| = hc

z the system possesses a quantum critical point associated to the spontaneous 
breaking of spin reversal (Z2) symmetry in the x direction and belonging to the universality class 
of the classical Ising model in d + 1 dimensions. The operator σz

i (σx
i ) is Z2-even (odd). The 

paramagnetic (ferromagnetic) phase corresponds to hx = 0 and |hz| > hc (|hz| < hc).
z z

11
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Fig. 8. f (x, t) at different times in the plane Mx1-Mx2 for a quench in d = 2 with D a square of side 40/M .

We will consider quenches in which the system, which for t < 0 is in the ground state |0〉 of 
the Hamiltonian H0 given by (28) with hx = 0, evolves for t > 0 with the Hamiltonian (3) with7

λ �(x) equal to δhz σ z(x) (δhz � hz) or to hx σx(x). Depending on the fact that we start from 
the paramagnetic or ferromagnetic phase, we have the four quenches depicted in Fig. 9.

The specialization of (1) and (4) to the different quenches proceeds through symmetry con-
siderations in the pre-quench theory. In the paramagnetic phase, the fundamental quasiparticle 
excitation is created by the order parameter operator σx(x) and then is Z2-odd; it follows that 

7 Our theory is formulated in the continuum, which in the present case is accessed working not too far from the critical 
point.
12
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Fig. 9. The different quenches in the quantum Ising model considered in the text. The critical point is located at (hc
z, 0). 

With reference to the Hamiltonian (28), each arrows goes from the pre-quench to the post-quench values of the parame-
ters.

Table 1
Quenches in the d-dimensional quantum Ising ferromagnet indicated in Fig. 9. The information about F�

1 Fσx

1 deter-
mines the time evolution of the order parameter 〈σx 〉 for homogeneous quenches through (1), and for quenches in the 
subregion D through (4). The peculiarities of the case d = 1 are discussed in the text.

Quench λ � F�
1 Fσx

1

d = 1 d > 1

I δhz σ z 0 0
II hx σx �= 0 �= 0
III hx σx 0 �= 0
IV δhz σ z 0 �= 0

Fσz

1 = 0 and Fσx

1 �= 0. In the ferromagnetic phase the symmetry is spontaneously broken and 
both Fσz

1 and Fσx

1 are nonzero in d > 1. The case d = 1 is special because the excitations in the 
ferromagnetic phase have a topological nature (they are kinks, see [10] for a review) and can cou-
ple to σx and σz only in topologically neutral pairs, with the consequence that Fσz

1 = Fσx

1 = 0.
This information about Fσz

1 and Fσx

1 determines the time evolution of 〈σx〉 and 〈σz〉 through 
(1) when the quenches8 I-IV are performed in the whole space Rd , and through (4) when they 
are performed only in a subregion D. In particular we saw that, if vol(D) is extensive in all di-
mensions, undamped oscillations at large time occur when F�

1 F�
1 �= 0, and we explicitly provide 

this information in Table 1 for the case � = σx . The peculiarity of the cases III and IV in d = 1
follows from the previous observation about kinks.

The topological nature of the excitations of the ferromagnetic phase in d = 1 gives rise to an 
additional caveat about quench III in the Ising chain. While (1) and (4) hold also in this case and 
do not yield undamped oscillations at first order in λ = hx , the longitudinal field makes kinks 
unstable and confines them into topologically neutral pairs [11,12,10], thus generating nonper-
turbatively the single-quasiparticle modes able to produce undamped oscillations of the order 
parameter on a time scale that becomes accessible for hx not too small.9 These oscillations have 
indeed been observed numerically in [16]. Hence, we see that for quench III kink confinement in 

8 For quench I the symmetry implies 〈σx 〉 = 0 at all orders in λ.
9 As recalled above, the results at first order in λ quantitatively hold until a time scale that goes to infinity as λ goes 

to zero. Ref. [7] contains a more detailed discussion of Ising quenches in d = 1, including the agreement with other 
analytical results [13,14] available for quenches I and IV (noninteracting fermions) when D = R. More generally, for 
d = 1 one can exploit the exact knowledge of all matrix elements (10) when the pre-quench theory is integrable [4]. 
Following the suggestion of an anonymous referee, we also mention that it has been argued in [15] that the dynamics 
following a specific initial condition with exponential structure – not originated by a quench – can lead to oscillation 
damping.
13
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d = 1 produces for hx large enough the undamped oscillations that in d > 1 are already present 
at first order in hx . For quench IV, instead, the stability of the kinks precludes10 in d = 1 the 
undamped oscillations that arise in d > 1. It is worth recalling that the presence of kinks in the 
spontaneously broken phase of systems with discrete symmetry, as well as their confinement 
under explicit symmetry breaking, are generic in d = 1 (see [19,20]), so that considerations anal-
ogous to those we made for Ising apply more generally.

In d = 1 the theory (28) possesses a single species of quasiparticles at hx = 0, so that (1)
and (4) hold as they are. In d > 1, on the other hand, more species may be present, in which 
case the term 2M−2F�

1 F�
1 cosMt in (1) is replaced by 

∑
a 2M−2

a F�
1,aF

�
1,a cosMat , where a

labels the different species; a similar generalization occurs in (4). For the ferromagnetic phase in 
d = 2 there is numerical consensus [21–26] about the existence, besides the lightest quasiparticle 
with mass M1, of a second stable quasiparticle with mass M2 ≈ 1.8M1. A spectral analysis of 
the undamped oscillations expected for quench IV should provide an alternative, possibly more 
accurate, way of determining this mass ratio.

It was also observed in [5] that in presence of several quasiparticle species oscillation fre-
quencies Ma − Mb can arise at order λ2. In addition, the comparison performed in [7] with the 
result of [14] for noninteracting fermions indicates that corrections of order λ2 and higher lead to 
the replacement of the pre-quench masses with the post-quench ones, and numerical evidence in 
this sense for interacting quasiparticles was given in [6,27]. By post-quench masses we mean the 
masses of the equilibrium theory with the post-quench values of the couplings; their difference 
from the pre-quench masses is of order λ. The mass ratio M2/M1 to be observed in quench IV 
in d = 2 does not depend on λ in the scaling region.

The time evolution of the order parameter 〈σx〉 (in our notations) following a homogeneous 
quench in the Ising ferromagnetic phase has been numerically investigated in d = 2 in [28,29], for 
a pre-quench value hi

z = 0 that maximizes the distance from the continuum limit of our analytical 
study. Still, confirming a robustness of our results, the plots show undamped oscillations, at 
least for post-quench values hf

z not too close to hc
z. When hf

z approaches hc
z the correlation 

length becomes large, the long cylinder with a six-site circumference used in the simulation no 
longer approximates the plane, and a crossover to one-dimensional behavior (with damping of 
the oscillations) can be expected.11 In perspective, it would be very interesting to have numerical 
results for small quenches to perform the first quantitative comparison with analytical results in 
d = 2.

5. Conclusion

We studied quantum quenches of systems in d spatial dimensions that are initially in the 
ground state of a spatially homogeneous Hamiltonian H0. The quench is performed instanta-
neously changing an interaction parameter inside a spatial region D. The analytical results that 
we derived provide unique benchmarking for numerical and experimental methods, as well as a 
general picture of the time evolution of local observables. In the first place the evolution takes 
place inside a light cone that originates from the boundary of D at the moment of the quench 
and spreads outwards as time increases. Inside the light cone the observable undergoes oscilla-
tions with frequency equal to the quasiparticle mass, which persist undamped at late times under 

10 Another manifestation of the different nature of the excitations in the spontaneously broken phase of the Ising model 
in d = 1 and d > 1 arises in the physics of interfaces [17,18].
11 We thank J.C. Halimeh for pointing out Refs. [28,29] following the appearance of the preprint of this paper.
14
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two types of conditions. The first type, of dynamical nature, requires that the state produced by 
the quench includes single-quasiparticle modes and that the observable couples to them. These 
requirements are generically fulfilled when the quasiparticles interact, unless internal symme-
tries of the system cause the vanishing of some matrix elements, a mechanism that we illustrated 
through the paradigmatic example of the quantum Ising model. The second condition, of geo-
metrical type, is that the energy density does not tend to zero at large times, and is fulfilled when 
the volume of D is extensive in all dimensions. The wavefronts spreading from the boundary 
of D are increasingly structured as the boundary deviates from a smooth surface. Our formulae 
apply to any choice of D, and we provided explicit illustrations of these features through some 
examples.
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