
Ronconi, T., et al.: A&A, 685, A161 (2024)

Fig. 27. Relative difference of photometric redshift estimated with
GalaPy against the real spectroscopic values for the four dusty star-
forming galaxies of the Pantoni et al. (2021) sample (green squares),
the three quiescent galaxies of the Donevski et al. (2023) sample (blue
circles), and the lensed galaxy with upper limits from (Giulietti et al.
2023, red triangle). Markers with error bars trace the median and 68%
credible interval of the samples.

terms of age (Table 3) and stellar mass content (Table 4). In the
original work, the authors used a truncated delayed SFH which,
in case after truncation the star formation drops to zero, has a
functional form which can be easily emulated by our quenched
In situ shape, as also anticipated in Sect. 4.2.2.

4.2.6. Photometric redshift

We performed a final validation test on our machinery by infer-
ring an estimate for the photometric redshift of real sources. We
selected the sources from Sects. 4.2.1, 4.2.5, and 4.2.3, for which
a measurement of the spectroscopic redshift is available. We
then sampled again the parameter space by letting the redshift
parameter vary along with the other free parameters.

In Fig. 27, we compare the photometric redshift prediction to
the real value measured spectroscopically, in terms of the relative
redshift difference between estimated (zphot) and fiducial value
(zspec). We use coloured markers with error bars for the median
value and 68% credible interval of the samples. The dashed grey
line marks the real spectroscopic value.

For all the sources, the median values show at most a 2-σ
difference with respect to the spectroscopic measurement (i.e.
the fiducial value is within the 95% credible interval). Apart
from the low redshift sources and most of the P21 sources, the
photometric prediction of the J1135 redshift from Giulietti et al.
(2023) is extremely close to the expected value (order of percent
relative difference). This is a remarkable result, considering the
large number of fluxes for which only upper limits are available,
especially in the UV/optical part of the spectrum. The reason for
this agreement lays on the interplay between the thorough sam-
pling of the dust peak and the precision modelling allowed by
our two-component, age-dependent dust model.

These results confirm the reliability of photometric redshift
estimates obtained with GalaPy on real sources, as had already
been demonstrated on mock sources. This is an asset that will
prove powerful for future observational campaingns targeting
distant sources (e.g. JWST). In the next future, we also plan to
further test the photometric redshift determination capabilities
of GalaPy against large datasets up to the highest redshifts cur-
rently available, for instance, A3COSMOS (Liu et al. 2019a,b;
Fudamoto et al. 2020) and COSMOS-Web (Casey et al. 2023).

5. Summary

We present GalaPy, a highly optimised, open-source, hybrid
library for parameterised fitting of the spectral energy distribu-
tions (SEDs) of galaxies. The tool currently focuses on photo-
metric SED fitting from galaxies, but future versions will extend
its functionalities to include spectroscopic fitting at variable

resolutions and AGN modelling. The API is readily available
through terminal entry-points or by importing modules from the
galapy package. The full documentation, including examples
and API usage manual, is available on ReadTheDocs and the
code is available on GitHub.

In Sect. 2, we provide a detailed description of the physi-
cal models implemented in GalaPy, with a particular focus on
the in situ star formation histories and the two-component age-
dependent dust model. The former provides a model for the
evolution of the extended structure components of a galaxy that
depends on both the infall of material in the DM halo and on
the evolution of the nuclear regions, driven by the central black
hole (Lapi et al. 2018, 2020; Pantoni et al. 2019). The latter, pro-
vides a physically motivated model of the time evolution of dust,
with overall attenuation directly derived by the contribution of
each single simple stellar population hosted in the galaxy. Addi-
tionally, GalaPy uses an age-dependent, energy-conservation
scheme to derive the evolution of dust temperatures in an
analytic way.

In Sect. 3, we describe the statistical tools used to obtain
parameter posteriors. The parameter space sampling is based on
Bayesian inference methods and we provide interfaces to two
samplers, emcee and dynesty. In Sect. 4, we demonstrate the
efficacy of GalaPy by testing it on various cases, including dusty
star-forming galaxies at high redshift, local late-type, and early-
type galaxies, along with a NIR-dark, lensed high-redshift galaxy
with mostly upper limits. We have demonstrated that GalaPy
can be used to study the main physical characteristics of galax-
ies, such as their star formation histories, matter content, and
physical parameters.

Future extensions of GalaPy include spectroscopic fitting
and Hamiltonian parameter space sampling, as well as a hier-
archical Bayesian scheme for modelling datasets from large
catalogues with correlated systematic errors (see e.g. Kelly et al.
2012; Galliano 2018). Additionally, a consistent modelling of
the AGN within the BH-galaxy co-evolution In situ scenario
will be introduced soon. Finally, we plan to accelerate posterior
inference using active learning techniques.

In conclusion, GalaPy is a timely and valuable tool for the
astrophysical community that offers a powerful, self-consistent
framework for modelling the SED of galaxies, based on
physically-motivated models and a Bayesian statistical approach
(in Appendix C.3, we provide recommendations on how to prop-
erly acknowledge usage of the library). The physical models
implemented in GalaPy, together with the optimisations made
to the fitting algorithms, enable the tool to provide robust and
accurate parameter estimates for a wide range of astrophysical
applications. The main characterising features of GalaPy are

– self-consistent modelling of the SFH and derived physical
properties that not only reduces the size of the parame-
ter space, but it also allows for a straightforward derivation
of the physical properties characterising the galaxy and is
specifically designed to follow the evolution of high redshift
progenitors up to their quiescence, leading to the formation
of local early type galaxies;

– two component time-dependent energy-conserving treat-
ment of dust attenuation and re-radiation that allows
for both a physical treatment of the process without
assuming unknown physics of the dust-grain and for a
computationally-efficient balancing of energy;

– high resolution integration of stellar populations for the
study of primordial galaxies that does not burden the compu-
tation, thanks to a memory-efficient caching of the SSP grid
(thoroughly treated in Appendix A.1.1);

A161, page 31 of 41

Ronconi, T., et al.: A&A, 685, A161 (2024)

– easily extensible database of cosmological models, SSP
libraries, and photometric band-pass filters;

– user-friendly API and extensive documentation, allowing for
high level of customisation;

– state-of-the-art hybrid C++/Python implementation, reach-
ing high performances with minimal memory consumption;

– Bayesian framework for the inference of posteriors in the
parameter space.

As current and upcoming observational campaigns (e.g. JWST,
LSST, SKAO) continue to generate ever-increasing amounts
of data, the capabilities of GalaPy will become increasingly
important for understanding the physical properties of galaxies,
especially in the high-redshift Universe, and their evolution over
cosmic time.

Acknowledgements. The authors are grateful to the anonymous referee for the
detailed and thorough comments that contributed to improve substantially the
present work. The authors are grateful to Nicoletta Krachmalnicoff for the exten-
sive and patient discussion on statistical inference and for her useful suggestions
that improved the readability of the software-related sections of this work. The
authors also thank Stephàn Charlot for stimulating discussion and for his sup-
port to the project. This paper is supported by: “Data Science methods for
MultiMessenger Astrophysics & Multi-Survey Cosmology” funded by the Ital-
ian Ministry of University and Research, Programmazione triennale 2021/2023
(DM n.2503 dd. 9 December 2019), Programma Congiunto Scuole; EU H2020-
MSCA-ITN-2019 no. 860744 BiD4BESt: Big Data applications for black hole
Evolution STudies; Italian Research Center on High Performance Computing
Big Data and Quantum Computing (ICSC), project funded by European Union
– NextGenerationEU – and National Recovery and Resilience Plan (NRRP) –
Mission 4 Component 2 within the activities of Spoke 3 (Astrophysics and
Cosmos Observations); PRIN MUR 2022 project no. 20224JR28W “Charting
unexplored avenues in Dark Matter”; INAF Large Grant 2022 funding scheme
with the project “MeerKAT and LOFAR Team up: a Unique Radio Window on
Galaxy/AGN co-Evolution; INAF GO-GTO Normal 2023 funding scheme with
the project “Serendipitous H-ATLAS-fields Observations of Radio Extragalactic
Sources (SHORES)”. DD acknowledges support from the National Science Cen-
ter (NCN) grant SONATA (UMO-2020/39/D/ST9/00720). This work made use
of the C++ (Stroustrup 2013) and Python (Van Rossum et al. 2007) programming
languages, and of the following software: Astropy (The Astropy Collaboration
2013), NumPy (Harris et al. 2020), SciPy (Virtanen et al. 2020), Matplotlib
(Hunter 2007), Emcee (Foreman-Mackey et al. 2013), dynesty (Speagle 2020),
GetDist (Lewis 2019), pybind11 (Jakob et al. 2017), HDF5 (Folk et al. 2011),
h5py (Collette et al. 2021).

References
Adams, N. J., Conselice, C. J., Ferreira, L., et al. 2023, MNRAS, 518, 4755
Amendola, L., Appleby, S., Avgoustidis, A., et al. 2018, Living Rev. Relativ., 21,

2
Atek, H., Shuntov, M., Furtak, L. J., et al. 2023, MNRAS, 519, 1201
Battisti, A. J., da Cunha, E., Grasha, K., et al. 2019, ApJ, 882, 61
Beckwith, S. V. W., Stiavelli, M., Koekemoer, A. M., et al. 2006, AJ, 132, 1729
Behiri, M., Talia, M., Cimatti, A., et al. 2023, ApJ, 957, 63
Bianchi, S., De Vis, P., Viaene, S., et al. 2018, A&A, 620, A112
Bischetti, M., Maiolino, R., Carniani, S., et al. 2019, A&A, 630, A59
Blyth, S., van der Hulst, T. M., Verheijen, M. A. W., et al. 2015, in Advancing

Astrophysics with the Square Kilometre Array (AASKA14), 128
Booth, R. S., & Jonas, J. L. 2012, Afr. Skies, 16, 101
Boquien, Burgarella, D., Roehlly, Y., et al. 2019, A&A, 622, A103
Bressan, A., Chiosi, C., & Fagotto, F. 1994, ApJS, 94, 63
Bressan, A., Granato, G. L., & Silva, L. 1998, A&A, 332, 135
Bressan, A., Silva, L., & Granato, G. L. 2002, A&A, 392, 377
Bressan, A., Marigo, P., Girardi, L., et al. 2012, MNRAS, 427, 127
Brisbin, D., Miettinen, O., Aravena, M., et al. 2017, A&A, 608, A15
Bruzual, G., & Charlot, S. 2003, MNRAS, 344, 1000
Calzetti, D., Armus, L., Bohlin, R. C., et al. 2000, ApJ, 533, 682
Camps, P., & Baes, M. 2020, Astron. Comput., 31, 100381
Carnall, A. C., McLure, R. J., Dunlop, J. S., & Davé, R. 2018, MNRAS, 480,

4379
Casasola, V., Bianchi, S., De Vis, P., et al. 2020, A&A, 633, A100
Casey, C. M., Kartaltepe, J. S., Drakos, N. E., et al. 2023, ApJ, 954, 31
Castellano, M., Fontana, A., Treu, T., et al. 2022, ApJ, 938, L15

Chabrier, G. 2003, PASP, 115, 763
Charlot, S., & Fall, S. M. 2000, ApJ, 539, 718
Chen, Y., Girardi, L., Bressan, A., et al. 2014, MNRAS, 444, 2525
Chen, Y., Bressan, A., Girardi, L., et al. 2015, MNRAS, 452, 1068
Chevallard, J., & Charlot, S. 2016, MNRAS, 462, 1415
Cimatti, A., Fraternali, F., & Nipoti, C. 2020, Introduction to Galaxy Forma-

tion and Evolution: From Primordial Gas to Present-day Galaxies (Cambridge
University Press)

Clark, C. J. R., Verstocken, S., Bianchi, S., et al. 2018, A&A, 609, A37
Collette, A., Kluyver, T., Caswell, T. A., et al. 2021, https://doi.org/10.
5281/zenodo.5585380

Cropper, M., Pottinger, S., Niemi, S., et al. 2016, SPIE Conf. Ser., 9904, 99040Q
Da Cunha, E., Charlot, S., & Elbaz, D. 2008, MNRAS, 388, 1595
Davies, J. I., Baes, M., Bianchi, S., et al. 2017, PASP, 129, 044102
De Vis, P., Jones, A., Viaene, S., et al. 2019, A&A, 623, A5
DESI Collaboration 2016, arXiv e-prints [arXiv:1611.00036]
Donevski, D., Damjanov, I., Nanni, A., et al. 2023, A&A, 678, A35
Doore, K., Monson, E. B., Eufrasio, R. T., et al. 2023, ApJS, 266, 39
Draine, B. T. 2011, Physics of the Interstellar and Intergalactic Medium

(Princeton University Press)
Draine, B. T., & Li, A. 2001, ApJ, 551, 807
Draine, B. T., & Li, A. 2007, ApJ, 657, 810
Dudzevičiūtė, U., Smail, I., Swinbank, A. M., et al. 2020, MNRAS, 494, 3828
Dunlop, J. S., McLure, R. J., Biggs, A. D., et al. 2017, MNRAS, 466, 861
Duras, F., Bongiorno, A., Ricci, F., et al. 2020, A&A, 636, A73
Eales, S., Dunne, L., Clements, D., et al. 2010, PASP, 122, 499
Enia, A., Talia, M., Pozzi, F., et al. 2022, ApJ, 927, 204
Fabbiano, G. 2006, ARA&A, 44, 323
Ferland, G. J., Korista, K. T., Verner, D. A., et al. 1998, PASP, 110, 761
Ferland, G. J., Porter, R. L., van Hoof, P. A. M., et al. 2013, Rev. Mex. Astron.

Astrofis., 49, 137
Ferland, G. J., Chatzikos, M., Guzmán, F., et al. 2017, Rev. Mex. Astron. Astrofis.,

53, 385
Feroz, F., Hobson, M. P., & Bridges, M. 2009, MNRAS, 398, 1601
Ferrara, A., Sommovigo, L., Dayal, P., et al. 2022, MNRAS, 512, 58
Finkelstein, S. L., Bagley, M. B., Haro, P. A., et al. 2022, ApJ, 940, L55
Finkelstein, S. L., Bagley, M. B., Ferguson, H. C., et al. 2023, ApJ, 946, L13
Folk, M., Heber, G., Koziol, Q., Pourmal, E., & Robinson, D. 2011, in Proceed-

ings of the EDBT/ICDT 2011 Workshop on Array Databases, 36
Fontanot, F., La Barbera, F., De Lucia, G., Pasquali, A., & Vazdekis, A. 2018,

MNRAS, 479, 5678
Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASP, 125,

306
Förster Schreiber, N. M., & Wuyts, S. 2020, ARA&A, 58, 661
Fragos, T., Lehmer, B. D., Naoz, S., Zezas, A., & Basu-Zych, A. 2013, ApJ, 776,

L31
Franco, M., Elbaz, D., Béthermin, M., et al. 2018, A&A, 620, A152
Fritz, J., Franceschini, A., & Hatziminaoglou, E. 2006, MNRAS, 366, 767
Fudamoto, Y., Oesch, P. A., Magnelli, B., et al. 2020, MNRAS, 491, 4724
Galliano, F. 2018, MNRAS, 476, 1445
Giavalisco, M., Ferguson, H. C., Koekemoer, A. M., et al. 2004, ApJ, 600, L93
Giulietti, M., Lapi, A., Massardi, M., et al. 2023, ApJ, 943, 151
González-López, J., Bauer, F. E., Romero-Cañizales, C., et al. 2017, A&A, 597,

A41
Goodman, J., & Weare, J. 2010, Commun. Appl. Math. Comput. Sci., 5, 65
Gruppioni, C., Béthermin, M., Loiacono, F., et al. 2020, A&A, 643, A8
Hamed, M., Małek, K., Buat, V., et al. 2023, A&A, 674, A99
Harikane, Y., Ouchi, M., Oguri, M., et al. 2023, ApJS, 265, 5
Harris, A. I., Baker, A. J., Frayer, D. T., et al. 2012, ApJ, 752, 152
Harris, C. R., Millman, K. J., Van Der Walt, S. J., et al. 2020, Nature, 585, 357
Higson, E., Handley, W., Hobson, M., & Lasenby, A. 2019, Stat. Comput., 29,

891
Hodge, J. A., & da Cunha, E. 2020, Roy. Soc. Open Sci., 7, 200556
Hopkins, P. F., Quataert, E., & Murray, N. 2012, MNRAS, 421, 3522
Hotan, A. W., Bunton, J. D., Chippendale, A. P., et al. 2021, PASA, 38, e009
Hunt, L. K., De Looze, I., Boquien, M., et al. 2019, A&A, 621, A51
Hunter, J. D. 2007, Comput. Sci. Eng., 9, 90
Inoue, A. K., Shimizu, I., Iwata, I., & Tanaka, M. 2014, MNRAS, 442, 1805
Isobe, T., & Feigelson, E. D. 1986, Bull. Inform. Centre Données Stellaires, 31,

209
Jakob, W., Rhinelander, J., & Moldovan, D. 2017, pybind11 – Seamless operabil-

ity between C++11 and Python, https://github.com/pybind/pybind11
Jarvis, M., Taylor, R., Agudo, I., et al. 2016, in MeerKAT Science: On the

Pathway to the SKA, 6
Jin, S., Daddi, E., Liu, D., et al. 2018, ApJ, 864, 56
Jin, S., Daddi, E., Magdis, G. E., et al. 2022, A&A, 665, A3
Johnson, B. D., Leja, J., Conroy, C., & Speagle, J. S. 2021, ApJS, 254, 22
Johnston, S., Bailes, M., Bartel, N., et al. 2007, PASA, 24, 174

A161, page 32 of 41

http://linker.aanda.org/10.1051/0004-6361/202346978/1
http://linker.aanda.org/10.1051/0004-6361/202346978/2
http://linker.aanda.org/10.1051/0004-6361/202346978/2
http://linker.aanda.org/10.1051/0004-6361/202346978/3
http://linker.aanda.org/10.1051/0004-6361/202346978/4
http://linker.aanda.org/10.1051/0004-6361/202346978/5
http://linker.aanda.org/10.1051/0004-6361/202346978/6
http://linker.aanda.org/10.1051/0004-6361/202346978/7
http://linker.aanda.org/10.1051/0004-6361/202346978/8
http://linker.aanda.org/10.1051/0004-6361/202346978/9
http://linker.aanda.org/10.1051/0004-6361/202346978/9
http://linker.aanda.org/10.1051/0004-6361/202346978/10
http://linker.aanda.org/10.1051/0004-6361/202346978/11
http://linker.aanda.org/10.1051/0004-6361/202346978/12
http://linker.aanda.org/10.1051/0004-6361/202346978/13
http://linker.aanda.org/10.1051/0004-6361/202346978/14
http://linker.aanda.org/10.1051/0004-6361/202346978/15
http://linker.aanda.org/10.1051/0004-6361/202346978/16
http://linker.aanda.org/10.1051/0004-6361/202346978/17
http://linker.aanda.org/10.1051/0004-6361/202346978/18
http://linker.aanda.org/10.1051/0004-6361/202346978/19
http://linker.aanda.org/10.1051/0004-6361/202346978/20
http://linker.aanda.org/10.1051/0004-6361/202346978/20
http://linker.aanda.org/10.1051/0004-6361/202346978/21
http://linker.aanda.org/10.1051/0004-6361/202346978/22
http://linker.aanda.org/10.1051/0004-6361/202346978/23
http://linker.aanda.org/10.1051/0004-6361/202346978/24
http://linker.aanda.org/10.1051/0004-6361/202346978/25
http://linker.aanda.org/10.1051/0004-6361/202346978/26
http://linker.aanda.org/10.1051/0004-6361/202346978/27
http://linker.aanda.org/10.1051/0004-6361/202346978/28
http://linker.aanda.org/10.1051/0004-6361/202346978/29
http://linker.aanda.org/10.1051/0004-6361/202346978/29
http://linker.aanda.org/10.1051/0004-6361/202346978/30
https://doi.org/10.5281/zenodo.5585380
https://doi.org/10.5281/zenodo.5585380
http://linker.aanda.org/10.1051/0004-6361/202346978/32
http://linker.aanda.org/10.1051/0004-6361/202346978/33
http://linker.aanda.org/10.1051/0004-6361/202346978/34
http://linker.aanda.org/10.1051/0004-6361/202346978/35
https://arxiv.org/abs/1611.00036
http://linker.aanda.org/10.1051/0004-6361/202346978/37
http://linker.aanda.org/10.1051/0004-6361/202346978/38
http://linker.aanda.org/10.1051/0004-6361/202346978/39
http://linker.aanda.org/10.1051/0004-6361/202346978/40
http://linker.aanda.org/10.1051/0004-6361/202346978/41
http://linker.aanda.org/10.1051/0004-6361/202346978/42
http://linker.aanda.org/10.1051/0004-6361/202346978/43
http://linker.aanda.org/10.1051/0004-6361/202346978/44
http://linker.aanda.org/10.1051/0004-6361/202346978/45
http://linker.aanda.org/10.1051/0004-6361/202346978/46
http://linker.aanda.org/10.1051/0004-6361/202346978/47
http://linker.aanda.org/10.1051/0004-6361/202346978/48
http://linker.aanda.org/10.1051/0004-6361/202346978/49
http://linker.aanda.org/10.1051/0004-6361/202346978/49
http://linker.aanda.org/10.1051/0004-6361/202346978/50
http://linker.aanda.org/10.1051/0004-6361/202346978/50
http://linker.aanda.org/10.1051/0004-6361/202346978/51
http://linker.aanda.org/10.1051/0004-6361/202346978/52
http://linker.aanda.org/10.1051/0004-6361/202346978/53
http://linker.aanda.org/10.1051/0004-6361/202346978/54
http://linker.aanda.org/10.1051/0004-6361/202346978/55
http://linker.aanda.org/10.1051/0004-6361/202346978/55
http://linker.aanda.org/10.1051/0004-6361/202346978/56
http://linker.aanda.org/10.1051/0004-6361/202346978/57
http://linker.aanda.org/10.1051/0004-6361/202346978/57
http://linker.aanda.org/10.1051/0004-6361/202346978/58
http://linker.aanda.org/10.1051/0004-6361/202346978/59
http://linker.aanda.org/10.1051/0004-6361/202346978/59
http://linker.aanda.org/10.1051/0004-6361/202346978/60
http://linker.aanda.org/10.1051/0004-6361/202346978/61
http://linker.aanda.org/10.1051/0004-6361/202346978/62
http://linker.aanda.org/10.1051/0004-6361/202346978/63
http://linker.aanda.org/10.1051/0004-6361/202346978/64
http://linker.aanda.org/10.1051/0004-6361/202346978/65
http://linker.aanda.org/10.1051/0004-6361/202346978/66
http://linker.aanda.org/10.1051/0004-6361/202346978/66
http://linker.aanda.org/10.1051/0004-6361/202346978/67
http://linker.aanda.org/10.1051/0004-6361/202346978/68
http://linker.aanda.org/10.1051/0004-6361/202346978/69
http://linker.aanda.org/10.1051/0004-6361/202346978/70
http://linker.aanda.org/10.1051/0004-6361/202346978/71
http://linker.aanda.org/10.1051/0004-6361/202346978/72
http://linker.aanda.org/10.1051/0004-6361/202346978/73
http://linker.aanda.org/10.1051/0004-6361/202346978/73
http://linker.aanda.org/10.1051/0004-6361/202346978/74
http://linker.aanda.org/10.1051/0004-6361/202346978/75
http://linker.aanda.org/10.1051/0004-6361/202346978/76
http://linker.aanda.org/10.1051/0004-6361/202346978/77
http://linker.aanda.org/10.1051/0004-6361/202346978/78
http://linker.aanda.org/10.1051/0004-6361/202346978/79
http://linker.aanda.org/10.1051/0004-6361/202346978/80
http://linker.aanda.org/10.1051/0004-6361/202346978/80
https://github.com/pybind/pybind11
http://linker.aanda.org/10.1051/0004-6361/202346978/82
http://linker.aanda.org/10.1051/0004-6361/202346978/82
http://linker.aanda.org/10.1051/0004-6361/202346978/83
http://linker.aanda.org/10.1051/0004-6361/202346978/84
http://linker.aanda.org/10.1051/0004-6361/202346978/85
http://linker.aanda.org/10.1051/0004-6361/202346978/86

Ronconi, T., et al.: A&A, 685, A161 (2024)

Johnston, S., Taylor, R., Bailes, M., et al. 2008, Exp. Astron., 22, 151
Jonas, J., & MeerKAT Team 2016, in MeerKAT Science: On the Pathway to the

SKA, 1
Kelly, B. C., Shetty, R., Stutz, A. M., et al. 2012, ApJ, 752, 55
Koposov, S., Speagle, J., Barbary, K., et al. 2023, https://doi.org/10.
5281/zenodo.7600689

Kroupa, P., Weidner, C., Pflamm-Altenburg, J., et al. 2013, in Planets, Stars
and Stellar Systems, 5: Galactic Structure and Stellar Populations, eds. T. D.
Oswalt, & G. Gilmore (Springer), 115

Labbé, I., van Dokkum, P., Nelson, E., et al. 2023, Nature, 616, 266
Lacey, C. G., Baugh, C. M., Frenk, C. S., et al. 2016, MNRAS, 462, 3854
Lapi, A., González-Nuevo, J., Fan, L., et al. 2011, ApJ, 742, 24
Lapi, A., Pantoni, L., Zanisi, L., et al. 2018, ApJ, 857, 22
Lapi, A., Pantoni, L., Boco, L., & Danese, L. 2020, ApJ, 897, 81
Lewis, A. 2019, arXiv e-prints [arXiv:1910.13970]
Liu, D., Lang, P., Magnelli, B., et al. 2019a, ApJS, 244, 40
Liu, D., Schinnerer, E., Groves, B., et al. 2019b, ApJ, 887, 235
LSST Science Collaboration 2009, arXiv e-prints [arXiv:0912.0201]
Lutz, D., Poglitsch, A., Altieri, B., et al. 2011, A&A, 532, A90
Mancuso, C., Lapi, A., Prandoni, I., et al. 2017, ApJ, 842, 95
Massardi, M., Stoehr, F., Bendo, G. J., et al. 2021, PASP, 133, 085001
Mayya, Y. D., Bressan, A., Rodríguez, M., Valdes, J. R., & Chavez, M. 2004,

ApJ, 600, 188
McConnell, D., Allison, J. R., Bannister, K., et al. 2016, PASA, 33, e042
Murphy, E. J., Bremseth, J., Mason, B. S., et al. 2012, ApJ, 761, 97
Nagao, T., Maiolino, R., & Marconi, A. 2006, A&A, 459, 85
Naidu, R. P., Oesch, P. A., Setton, D. J., et al. 2022, ApJ, submitted

[arXiv:2208.02794]
Negrello, M., Amber, S., Amvrosiadis, A., et al. 2016, MNRAS, 465, 3558
Noll, S., Burgarella, D., Giovannoli, E., et al. 2009, A&A, 507, 1793
Norris, R. P., Marvil, J., Collier, J. D., et al. 2021, PASA, 38, e046
Novak, M., Smolčić, V., Delhaize, J., et al. 2017, A&A, 602, A5
Oliver, S. J., Bock, J., Altieri, B., et al. 2012, MNRAS, 424, 1614
Pantoni, L., Lapi, A., Massardi, M., Goswami, S., & Danese, L. 2019, ApJ, 880,

129
Pantoni, L., Lapi, A., Massardi, M., et al. 2021, MNRAS, 504, 928
Pensabene, A., Carniani, S., Perna, M., et al. 2020, A&A, 637, A84
Pensabene, A., Decarli, R., Bañados, E., et al. 2021, A&A, 652, A66

Planck Collaboration VI. 2020, A&A, 641, A6
Rodighiero, G., Bisigello, L., Iani, E., et al. 2022, MNRAS, 518, L19
Salim, S., & Narayanan, D. 2020, ARA&A, 58, 529
Sawicki, M. 2012, PASP, 124, 1208
Schweitzer, M., Bender, R., Katterloher, R., et al. 2010, SPIE Conf. Ser., 7731,

77311K
Scoville, N., Aussel, H., Brusa, M., et al. 2007, ApJS, 172, 1
Scoville, N., Lee, N., Bout, P. V., et al. 2017, ApJ, 837, 150
Shapley, A. E. 2011, ARA&A, 49, 525
Shirley, R., Roehlly, Y., Hurley, P. D., et al. 2019, MNRAS, 490, 634
Shirley, R., Duncan, K., Campos Varillas, M. C., et al. 2021, MNRAS, 507, 129
Silva, L., Granato, G. L., Bressan, A., & Danese, L. 1998, ApJ, 509, 103
Simpson, J. M., Swinbank, A. M., Smail, I., et al. 2014, ApJ, 788, 125
Simpson, J. M., Smail, I., Swinbank, A. M., et al. 2017, ApJ, 839, 58
Simpson, J. M., Smail, I., Dudzevičiūtė, U., et al. 2020, MNRAS, 495, 3409
Skilling, J. 2004, AIP Conf. Ser., 735 395
Skilling, J. 2006, Bayesian Anal., 1, 833
Smail, I., Dudzevičiūtė, U., Stach, S. M., et al. 2021, MNRAS, 502, 3426
Smolčić, V., Delvecchio, I., Zamorani, G., et al. 2017, A&A, 602, A2
Speagle, J. S. 2020, MNRAS, 493, 3132
Stroustrup, B. 2013, The C++ Programming Language (Pearson Education)
Tacconi, L. J., Genzel, R., Saintonge, A., et al. 2018, ApJ, 853, 179
Tacconi, L. J., Genzel, R., & Sternberg, A. 2020, ARA&A, 58, 157
Talia, M., Cimatti, A., Giulietti, M., et al. 2021, ApJ, 909, 23
Targett, T. A., Dunlop, J. S., Cirasuolo, M., et al. 2013, MNRAS, 432, 2012
Taylor, A. R., & Jarvis, M. 2017, in Materials Science and Engineering Confer-

ence Series, 198, 012014
The Astropy Collaboration (Robitaille, T. P., et al.) 2013, A&A, 558, A33
Van Rossum, G. 2007, in USENIX annual technical conference, Python Program-

ming Language, 41, 1
Vega, O., Clemens, M. S., Bressan, A., et al. 2008, A&A, 484, 631
Vidal-García, A., Plat, A., Curtis-Lake, E., et al. 2024, MNRAS, 527, 7217
Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020, Nature Methods, 17,

261
Walter, F., Decarli, R., Carilli, C., et al. 2012, Nature, 486, 233
Wang, T., Schreiber, C., Elbaz, D., et al. 2019, Nature, 572, 211
Yan, H., Ma, Z., Ling, C., Cheng, C., & Huang, J.-S. 2023, ApJ, 942, L9
Yun, M. S., Scott, K. S., Guo, Y., et al. 2012, MNRAS, 420, 957

A161, page 33 of 41

http://linker.aanda.org/10.1051/0004-6361/202346978/87
http://linker.aanda.org/10.1051/0004-6361/202346978/88
http://linker.aanda.org/10.1051/0004-6361/202346978/88
http://linker.aanda.org/10.1051/0004-6361/202346978/89
https://doi.org/10.5281/zenodo.7600689
https://doi.org/10.5281/zenodo.7600689
http://linker.aanda.org/10.1051/0004-6361/202346978/91
http://linker.aanda.org/10.1051/0004-6361/202346978/91
http://linker.aanda.org/10.1051/0004-6361/202346978/92
http://linker.aanda.org/10.1051/0004-6361/202346978/93
http://linker.aanda.org/10.1051/0004-6361/202346978/94
http://linker.aanda.org/10.1051/0004-6361/202346978/95
http://linker.aanda.org/10.1051/0004-6361/202346978/96
https://arxiv.org/abs/1910.13970
http://linker.aanda.org/10.1051/0004-6361/202346978/98
http://linker.aanda.org/10.1051/0004-6361/202346978/99
https://arxiv.org/abs/0912.0201
http://linker.aanda.org/10.1051/0004-6361/202346978/101
http://linker.aanda.org/10.1051/0004-6361/202346978/102
http://linker.aanda.org/10.1051/0004-6361/202346978/103
http://linker.aanda.org/10.1051/0004-6361/202346978/104
http://linker.aanda.org/10.1051/0004-6361/202346978/105
http://linker.aanda.org/10.1051/0004-6361/202346978/106
http://linker.aanda.org/10.1051/0004-6361/202346978/107
https://arxiv.org/abs/2208.02794
http://linker.aanda.org/10.1051/0004-6361/202346978/109
http://linker.aanda.org/10.1051/0004-6361/202346978/110
http://linker.aanda.org/10.1051/0004-6361/202346978/111
http://linker.aanda.org/10.1051/0004-6361/202346978/112
http://linker.aanda.org/10.1051/0004-6361/202346978/113
http://linker.aanda.org/10.1051/0004-6361/202346978/114
http://linker.aanda.org/10.1051/0004-6361/202346978/114
http://linker.aanda.org/10.1051/0004-6361/202346978/115
http://linker.aanda.org/10.1051/0004-6361/202346978/116
http://linker.aanda.org/10.1051/0004-6361/202346978/117
http://linker.aanda.org/10.1051/0004-6361/202346978/118
http://linker.aanda.org/10.1051/0004-6361/202346978/119
http://linker.aanda.org/10.1051/0004-6361/202346978/120
http://linker.aanda.org/10.1051/0004-6361/202346978/121
http://linker.aanda.org/10.1051/0004-6361/202346978/122
http://linker.aanda.org/10.1051/0004-6361/202346978/122
http://linker.aanda.org/10.1051/0004-6361/202346978/123
http://linker.aanda.org/10.1051/0004-6361/202346978/124
http://linker.aanda.org/10.1051/0004-6361/202346978/125
http://linker.aanda.org/10.1051/0004-6361/202346978/126
http://linker.aanda.org/10.1051/0004-6361/202346978/127
http://linker.aanda.org/10.1051/0004-6361/202346978/128
http://linker.aanda.org/10.1051/0004-6361/202346978/129
http://linker.aanda.org/10.1051/0004-6361/202346978/130
http://linker.aanda.org/10.1051/0004-6361/202346978/131
http://linker.aanda.org/10.1051/0004-6361/202346978/132
http://linker.aanda.org/10.1051/0004-6361/202346978/133
http://linker.aanda.org/10.1051/0004-6361/202346978/134
http://linker.aanda.org/10.1051/0004-6361/202346978/135
http://linker.aanda.org/10.1051/0004-6361/202346978/136
http://linker.aanda.org/10.1051/0004-6361/202346978/137
http://linker.aanda.org/10.1051/0004-6361/202346978/138
http://linker.aanda.org/10.1051/0004-6361/202346978/139
http://linker.aanda.org/10.1051/0004-6361/202346978/140
http://linker.aanda.org/10.1051/0004-6361/202346978/141
http://linker.aanda.org/10.1051/0004-6361/202346978/142
http://linker.aanda.org/10.1051/0004-6361/202346978/142
http://linker.aanda.org/10.1051/0004-6361/202346978/143
http://linker.aanda.org/10.1051/0004-6361/202346978/144
http://linker.aanda.org/10.1051/0004-6361/202346978/144
http://linker.aanda.org/10.1051/0004-6361/202346978/145
http://linker.aanda.org/10.1051/0004-6361/202346978/146
http://linker.aanda.org/10.1051/0004-6361/202346978/147
http://linker.aanda.org/10.1051/0004-6361/202346978/147
http://linker.aanda.org/10.1051/0004-6361/202346978/148
http://linker.aanda.org/10.1051/0004-6361/202346978/149
http://linker.aanda.org/10.1051/0004-6361/202346978/150
http://linker.aanda.org/10.1051/0004-6361/202346978/151

Ronconi, T., et al.: A&A, 685, A161 (2024)

Appendix A: Code design

In this section we provide insights on the design choices made
both for optimising the performances of the library and with the
intent of keeping the structure modular and user friendly. The
bulk of the library resides in the computation of the parame-
terised models described in Sect. 2. Given that the main (but not
only) purpose of GalaPy is to provide a lightning fast tool for
parameter inference, these functions have been implemented to
reach high performances on a single core. We reach this require-
ment by exploiting different advanced programming techniques,
from register proximity, minimisation of operations and interpo-
lation tactics. A description of the chosen strategies is provided
in Sects. A.1 and A.2 showcases briefly the main modules and
subpackages building up the library, while in Sect. A.3 we show
some loose performance measurements of the main functionali-
ties deployed in GalaPy. All the performance measurements pre-
sented in this Section have been obtained by running on a Intel
i9-10885H CPU @ 2.40GHz personal computer with a x86_64
architecture. The cache available to CPUs is of average size for
modern machines, it has 8 private instances of L1 with 32 KB of
memory per instance, 8 private instances of L2 with 256 KB per
instance and 1 shared instance of L3 with 2 MB of memory.

Appendix A.1. Implementation strategy

GalaPy has a hybrid implementation which allows us to exploit
both the performance efficiency of a compiled language (C++)
as well as the flexibility of an interpreted language (Python). The
Bushido of GalaPy software development can be summarised in
the brief points below:

– compiled Object-Oriented C++ crunches all the modelling
framework, constituted of complex mathematical relations
that burden the computation. The physical components
described in Sect. 2 are implemented as independent classes,
all of which share a common interface for parameter set-
ting and computation of the eventual emission as a function
of wavelength, age and metallicity. At construction time,
all the quantities that do not depend on the free param-
eters of the given component are computed in advance
and cached, therefore minimising the amount of opera-
tions the machine has to perform. Modelling though is
still extremely light on the RAM, as the volatile memory
occupied by this cached information does not go beyond
a few tens of MB, mostly depending on the size of the
SSP library chosen. This choice represents a compromise
between the acceleration provided by SED grid interpola-
tion and the flexibility of on-the-fly model computation. All
of these objects can be serialised (i.e. converted in a sequen-
tial string of bits), allowing them to be picklable, therefore
completely Python-compliant. Besides from physical mod-
els, the compiled sector of the library also implements a
set of data-structures and algorithms for speeding up opera-
tions (in Appendix A.1.2 we describe the linear interpolation
scheme we use in some parts of the library). Finally, the com-
piled sector also manages loading the SSP libraries used to
compute stellar emission, this is done to favour CPU cache
management as described in Appendix A.1.1. The only C++
library used is the STL, therefore minimising the problems
that might arise in the installation of the package on different
systems.

– Python deals with the interplay between all the compo-
nents and modules, internal and external, that build up the
library. It also provides the user-interface and an exten-
sive documentation. Lastly, the terminal commands allowing

for quick-access parameterised SED-fitting that come out-
of-the-box with library installation (e.g. the galapy-fit
command mentioned in Sect. C) are implemented as Python
entry-points. By importing the galapy package and sub-
packages the GalaPy API is exposed, allowing for complete
customisation of the algorithms as well as providing the tools
for astrophysical modelling and analysis of the sampling
results.

– pybind11 is a library to generate Python bindings of
compiled C++ code. We bind compiled classes and expose
our optimised C++ implementation to the Python inter-
face providing access to our functions to users. All the
functions that can be applied to arrays of values are vec-
torised, providing a straightforward integration with the
most common python packages for scientific computing
(e.g. NumPy and SciPy) and therefore allow for array
programming. We have chosen this strategy because, com-
pared to a CPython wrapping layer, it delivers bindings with
negligible latency while providing a more intuitive interface.

The primary purpose of GalaPy is to derive the parameters
that can be inferred from the spectral properties of galaxies. Our
code aims at delivering a high performance serial implemen-
tation of parametric SEDs, so that parallelism is not necessary
in model generation (some performance testing is shown in
Appendix A.3). In this way, the only bottleneck of the work-flow
is parameter-space sampling.

Both emcee and dynesty allow for passing a pool of work-
ers to the functions running the sampling. In GalaPy we generate
pools exploiting the multiprocessing package of the Python
standard library. Because of the structural limits of Python
(i.e. the existence of a Global Interpreter Lock that guarantees
parallel threads are not modifying concurrently the reference
count in the Python interpreter), allocating a pool of parallel
workers, with the intent of speeding-up CPU-bound workflows,
requires us to generate a copy of the environment. Copying the
whole environment though, results in the necessity of generat-
ing deep copies of all the variables that can be referenced in a
given scope. This not only means a larger memory usage, but
it also reduces the effectiveness of shared memory parallelism,
as passing around chunks of memory slows down severely the
computation.

In the entry-point provided for fitting SEDs (i.e.
galapy-fit) the default behaviour tries to reach a com-
promise between memory usage and parallelism. The variables
that require the larger memory budget (e.g. the SSP libraries and
the parametric models) are made global, therefore accessible for
all the workers in the pool. In the meantime, we spawn as many
workers as possible to squeeze all the computing power from the
architecture.

In future extensions of the library we will investigate more
in parallelism and speed-up of the sampling. We are also con-
sidering to implement our own specialised sampler and to test
compiled sampling interfaces, that could possibly provide more
control on the memory management as well as on the parallel
exploitation of CPUs.

Appendix A.1.1. Ordering of the SSP tables and computation
of the intrinsic stellar luminosity

A frequently overlooked aspect in scientific software develop-
ment is the process behind RAM usage and, specifically, the way
chunks of data loaded in the volatile memory reach the CPU
for usage. To simplify, sequential data is cached on a hierar-
chy of memory slots with given size. The hierarchy ladder is set

A161, page 34 of 41

Ronconi, T., et al.: A&A, 685, A161 (2024)

by the physical proximity of the memory slots to the CPU per-
forming the computation, the closer the higher. CPUs can access
directly only the highest levels of this hierarchy, called registers,
which can host a small number of bytes (typically, the amount
corresponding to a few floating point numbers).

Registers tend to remain full-filled all the time, meaning that
if the CPU needs a number from memory which is not already in
one of the registers, this must firstly be emptied and then filled
with the number required together with all the numbers which
are close to it in memory, until complete occupation. This pro-
cess takes also place for the lower levels in the hierarchy ladder,
namely, caches. Tipically, modern computers own three levels of
cache, L1 (tens of kBs) and L2 (hundreads of kBs) are private
to each CPU in the processor, while L3 (tens of MBs) is shared
between all the CPUs. Since the process of moving cached data
from lower to higher levels of cache, up to the registers, is time-
consuming, it is desirable that data used in logically sequential
operations are also stored sequentially in memory.

This is the reason behind our custom format for storage of
SSP libraries, as the operation in GalaPy that makes the most
massive usage of cached data is integration of SSPs to generate
CSPs (Sect. 2.2). Computing Eq. (16) requires us to perform,
for each wavelength, an integral in time and an interpolation
in metallicity. This can be easily approximated with a linear
integration in time and a linear interpolation in metallicity. The
approximated and implemented version of Eq. (16) is:

LCSP(λi, τGXY) =
∑

∀ j > 0 | τ j ≲ τGXY

τ j − τ j−1

2
×

×

{
ψ(τ j) P(1)

LSSP

[
λi, τ j,Z⋆(τGXY − τ j)

]
+

+ ψ(τ j−1) P(1)
LSSP

[
λi, τ j−1,Z⋆(τGXY − τ j−1)

]}
, (A.1)

where λi is the wavelength, τGXY is the age of the galaxy, τ j is
the indexed SSP age, ψ(τ) is the SFR at given time and P(1)

LSSP

is the first order polynomial interpolating linearly the SSP emis-
sion between its two tabulated metallicities Zk ≤ Z⋆(τGXY−τ j) ≤
Zk+1.

As made evident from Eq. (A.1), for each wavelength we first
perform an interpolation between 2 metallicities, then sum along
the time dimension. Even though it might seem that the most
logical dimension to keep closest in memory is metallicity, by
inspecting Fig. A.1, we can easily see this is not true. In each
panel, along the x-axis, we vary the value of one of the model
parameters that affect the integration of Eq. (A.1) while, along
the y-axis, we show the integration time in milliseconds for the
whole λ-grid. Boxes on the lower right show the fixed value of
the two non-varying parameters. Each different colour marks the
performance of a different ordering of the 3-dimensional matrix
storing the SSP library, as encoded in the Figure’s legend, where
the shaded regions show fluctuations over ten runs and the solid
line marks the mean execution time. It is clear that the most effi-
cient ordering is [Z λ τ] (in purple). The reason for this is found
in the slow variation of the Z-dimension as a function of galaxy
age, which means that the metallicity of SSPs in the highest
cache levels is updated rarely.

SSP tables are objects counting some millions of double
precision floating point numbers and their transposition can
easily slow down the code. For this reason having the SSPs
directly stored with the [Z λ τ] ordering allows to accelerate
the process of building objects that depend on them (i.e. the
class galapy.CompositeStellarPopulation.CSP provides

the most direct user interface to these functionalities). Nonethe-
less, we provide functions in GalaPy for converting eventual
user-defined SSP tables into the format described above, to foster
extensibility and customisation.

Appendix A.1.2. Interpolation technique

Interpolation is used for many different purposes in GalaPy:
from the computation of SSP emission between the tabulated
values of metallicity to the addition of templated emission on the
wavelength grid. While for some of these cases the values over
which to interpolate change with the variation of the model free
parameters, for the majority of the occurrences, the interpola-
tion grid is fixed for all the parameter-space sampling16. We have
developed an interpolator object exploiting this condition to
speed up the computation.

The interface is optimised for computing interpolated val-
ues on 1-dimensional grids with un-evenly spaced values. This
is achieved with a high level of specialisation for the func-
tionalities, making therefore the software tool not flexible but
extremely efficient when used for all the problem sizes coming
up in GalaPy. This results in a smaller efficiency when building
the object itself but, since this operation will be done only once
for each galaxy object built, we can safely give up on it.

The interpolator object is based on an interval binary
search tree (IBST) without overlapping. This data structure
provides access to nodes that perform analytic linear interpo-
lation, integration and derivation on a single interval of the
grid with log N time scaling, where N is the size of the grid.
The find function of the IBST implemented in the core C++
sector of GalaPy is an order of magnitude faster than its C++
STL equivalent (i.e. std::map::find). The interface to the
interpolator available from GalaPy’s Python API is up to
two orders of magnitude faster than NumPy’s linear interpola-
tion module (i.e. scipy.interpolate.interp1d class with
kind=’linear’ which is equivalent to the NumPy function
numpy.interp) on problem sizes comparable to those of inter-
est for our library. It has to be stressed that interpolator
objects from GalaPy are not universally more efficient than
equivalent functions and classes from external, wide spread and
powerful packages such as SciPy and NumPy. We reach bet-
ter performances only when the resolution of the interpolation
grid (order of 103 points) and the number of interpolated points
(order of < 102) is comparable to those arising from the com-
putation of GalaPy models. Our implementation comes with the
additional advantage of being available on both the C++ and the
Python sectors as well as providing a uniformed interface for
interpolation, numerical integration and numerical derivation.

Appendix A.2. Python API structure

A complete description of the classes and functions implemented
in the GalaPy package is available in the on-line documenta-
tion, in the section Python API. We hereby provide just a short
description of the package structure and of the functionalities
provided by each module/sub-package.

GalaPy contains modules in the top-level package and on
sub-packages as well, divided as follows

galapy
|-- galapy.analysis
|-- galapy.configuration

16 E.g. when assuming an interpolated SFH model, see Sect. 2.1.2.

A161, page 35 of 41

Ronconi, T., et al.: A&A, 685, A161 (2024)

Fig. A.1. Dependency of SSP integration performances on the 3-dimensional matrix ordering. Different colours mark different
orderings, as reported in the legend. Each panel shows how the integration time changes as a function of one of the three model
parameters on which Eq. (A.1) depends.

|-- galapy.internal
|-- galapy.io
‘-- galapy.sampling

The content of each sub-package provides different functionali-
ties:

– galapy: the root package contains all the modules providing
access to the models described in Sect. 2. Specifically:
• galapy.StarFormationHistory: contains the class
SFH that can be used to build either empirical, In situ or
the interpolated SFH models of Sect. 2.1.

• galapy.CompositeStellarPopulation: contains
functions for listing and loading SSP libraries and the
CSP class, used to build composite stellar populations
(Sect. 2.2).

• galapy.InterStellarMedium: provides access to the
dust-model described in Sect. 2.3. It defines several
objects: a base ismPhase class, from which two derived
classes inherit, MC and DD, modelling the attenuation and
emission due to the two separate dust components; addi-
tionally, a ISM type is defined, wrapping the other two
components and combining their contributions.

• galapy.NebularFreeFree, galapy.Synchrotron
and galapy.XRayBinaries: these modules implement
(optional) the additional sources of stellar continuum
described in Sect. 2.4. They respectively define the
classes NFF, SNSYN, and XRB.

• galapy.ActiveGalacticNucleus: provides an inter-
face for loading the Fritz et al. (2006) templates and
consistently adding on top of them an eventual X-Ray
contribution, as described in Sect. 2.5. These function-
alities are accessed through the class AGN, defined in this
module.

• galapy.Cosmology and
galapy.InterGalacticMedium, define respectively
the classes CSM and IGM, whose implementation provide
access to the models of Sect. 2.6.1 and Sect. 2.6.2,
respectively.

• galapy.Galaxy and galapy.Handlers define utility
classes and methods designed to ease modelling through
the Python API. In particular, the former defines the
class GXY which wraps up the models implemented in
the other modules, their interplay and parameter settings,
optimising the performances through a minimisation of
the number of operations. By instantiating one of this
objects, i.e.

from galapy.Galaxy import GXY
gxy = GXY(age = 1.e9, redshift = 1.0)

users can easily modify the value of the free-parameters
(e.g. gxy.set_parameters(age = 1.e10), see
Table B.3 for a list of all the tunable parameters), get the
emission or flux (e.g. flux = gxy.SED()), or compute
derived parameters (e.g. Mstar = gxy.sfh.Mstar(
1.e8), for the stellar mass at an age of τ = 108 yr).
We note that all these functionalities are obtained by
a combination of tools implemented in the modules
listed above. The latter, galapy.Handlers module,
is designed for managing the free-parameters when
sampling.

• galapy.PhotometricSystem: implements the class
PMS that can be used to manage band-pass transmis-
sion filters, both loaded from the database or user-defined.

– galapy.sampling: contains sub-modules used for sam-
pling the parameter space, i.e. the two sub-modules
Sampler and Results which unify the interface to the
different sampling algorithms implemented in the library
along with their results (note in particular, the Results
class described in Sect. 3.3), the Observation module
which collects observational datasets and the Statistics
sub-module, defining statistical functions such as likeli-
hoods and estimators.

– galapy.analysis: provides the two sub-modules funcs
and plot, both defining functions that facilitate the analysis
of sampling results. While the former mainly produces
tables with the estimates of several statistics (most of the
tables in Sect. 4 have been produced with these functions),
the latter produces plots of fitted SEDs, residuals and
posteriors (most of the figures in Sect. 4 have been produced
with these functions).

– galapy.io: used to load and store object types defined in
the package.

– galapy.configuration and galapy.internal: are
mainly for internal usage, even though some classes and
functions of galapy.internal might be useful in some
parts of the analysis. An example are the interpolator
objects described in Appendix A.1.2.

A161, page 36 of 41

Ronconi, T., et al.: A&A, 685, A161 (2024)

Fig. A.2. Likelihoods generated per second with GalaPy as a
function of the wavelength grid resolution. The dashed line
marks the average over 1000 measurements and the shaded
region highlights the 1-σ confidence intervals.

Appendix A.3. Insights on performances and scaling

A solid comparison of performances against other libraries
would require a thorough analysis that goes beyond the scope of
this presentation work. We just mention that the computation of
a single model (including parameters setting, computation of the
flux and band-averaging) requires ∼ 10 milliseconds, depending
on the resolution of the wavelength grid over which the flux is
computed.

In our Bayesian framework, the time required for con-
vergence of the free-parameters inference algorithms strongly
depends on the likelihood estimation time (defined as the time
necessary to set a new position in the parameter-space, com-
pute the corresponding flux model, extract the band-averaged
fluxes and compute the likelihood). We therefore measure our
performances in terms of likelihood computations per second,
even though, for how the code is structured and given the sim-
plicity of the likelihood of Eq. (61) and Eq. (66), this interval
of time is obviously dominated by model computation. This is
shown in Fig. A.2 as a function of the wavelength grid thin-
ness for the least optimal model set-up: BC03 SSP libraries with
full modelling from X-ray band to radio including nebular and
synchrotron emission. As the Figure shows, the performance of
the code decreases with wavelength grid size increasing. This
is expected as, the thinner the wavelength grid, the larger the
number of times the code has to compute, for instance: Eq. (A.1).

As a term of comparison, on a similar problem set-up the
Prospector (Johnson et al. 2021) documentation17 declares 25
likelihoods per second, to be compared with our 200 ÷ 300
result shown in Fig. A.2. Additionally and differently from other
libraries, the problem size seems not to affect too much the
computation of likelihoods as we do not measure significant
variations on performances when increasing the number of pho-
tometric bands, or when making the model more complex. This
is mostly due to the highly optimised implementation of GalaPy.
The execution time of most of the components is in fact negligi-
ble with respect to the computation of Eq. (A.1) whose scaling
also affects how the likelihood-per-second execution time scales.

We point out that the measurements provided in this Section
are obtained by running on a single core, as the parallelisation
scheme of GalaPy is still under development and will be in its
final form on future extensions focussed on boosting the perfor-
mances. At current state, we exploit the parallel strategy already
implemented in the samplers available in GalaPy (i.e. emcee and
dynesty) by passing to the sampling algorithm a pool of pro-
cesses obtained with the multiprocessing.Pool method of
17 Specifically at this link: prospect.readthedocs.io/faq section
“How long will it take to fit my data” version v1.2.0.

the Python standard library. This approach may prove not to be
optimal in some cases and we will therefore explore different
strategies in the future.

Appendix B: Additional modelling information

Here, we provide an extension on the description of models
reviewed in Sect. 2 with further details.

Appendix B.1. Difference between CSP emission assuming
different SSP libraries

Stellar emission, as already explained in Sect. 2.2, is computed
by assuming a SFH and integrating SSP emission. In GalaPy
we provide the tabulated emission from 4 main SSP libraries:
the classic Bruzual & Charlot (2003) libraries in both the low
(bc03.basel) and high (bc03.stelib) resolution version, and
two libraries, produced specifically for the publication of this
package, obtained using the PARSEC code (Bressan et al. 2012;
Chen et al. 2014). The latter are delivered in two flavours:

– parsec22.nt contains SSP continuum emission including
the non-thermal low energy contribution produced by SN
synchrotron;

– parsec22.ntl also accounts for the thermal and line emis-
sion produced in ionised nebular regions around young
massive stars.

In Table B.1, we summarise the size of the aforementioned SSP
tables along each of the 3 dimensions: wavelength, age and
metallicity. In BC03 tables the time domain spans from 0 to
2× 1010 yr while PARSEC22 tables go from 0 to 1.4× 1010 yr. In
both the libraries we have extended the wavelength domain from
1 to 1010 Å.

The emission predicted by the models tabulated in the 4
libraries do agree in general even though they show minor dif-
ferences. To highlight how choosing one library over the other
contributes differently to the panchromatic emission from a
galaxy, we compute the total spectrum due to the composite
stellar emission. Fig. B.1 shows the ratio between CSP emis-
sion predicted with the bc03.basel library (left panel) and
with the parsec22.nt library (right panel) with respect to the
parsec22.ntl library. To have a meaningful comparison, we
also include the radio components in the plot, that therefore
spans from 100 Å to 1010 Å. This means that, while CSPs built
with parsec22.ntl self-consistently contain the contribution
from nebular thermal emission and SN synchrotron non thermal
emission, in the other two cases the latter components are added
to the final CSP emission using models described in Sect. 2.4.1
and Sect. 2.4.2. Fig. B.1 shows how the parsec22.ntl library
steals energy from the continuum at the shorter wavelengths
(Optical to UV) and re-emits it in lines mainly in the IR region
of the spectrum. This effect is more relevant for younger galax-
ies (blue and green solid lines) while becoming less important
to irrelevant for older stellar populations (red solid line). In the
radio bands the emission predicted by the models of Sect. 2.4.1
and Sect. 2.4.2 are in good agreement with the one obtained
using the PARSEC library, even though it seems to deviate more
for old stellar populations in the left panel, suggesting that the
synchrotron emission might be slightly over-estimated with the
model of Sect. 2.4.2. In general we suggest, whenever possible,
to use the PARSEC22 libraries as it also provide the additional
advantage of reducing the size of the parameter space.

For reference, we provide the values, entering Eq. (46),
computed for the 7 metallicities available in the BC03 SSP

A161, page 37 of 41

https://prospect.readthedocs.io/en/latest/faq.html

Ronconi, T., et al.: A&A, 685, A161 (2024)

Fig. B.1. Logarithm of the ratio between CSPs obtained with different SSP libraries at fixed SFH and age. The left panel shows the
ratio between PARSEC22 and BC03 while the right panel shows the ratio between PARSEC22 with and without lines.

Table B.1: Main properties of the different SSP tables delivered
with GalaPy.

Library Nλ Nτ NZ Metallicities

BC03
Stelib 7325 221 7 [0.0001, 0.0004, 0.004,
BaSeL 2223 0.008, 0.02, 0.05, 0.1]

PARSEC22
NT 1562 146 6 [0.0001, 0.0005, 0.001,
NTL 0.004, 0.008, 0.02]

Notes. The first column reports the library name, columns from the
second to the fourth list the dimensions of the grids in the wavelength,
age and metallicity domains, respectively. The last column provides a
list of the tabulated metallicities expressed in absolute units.

libraries. The two metallicity-dependent parameters, R0 and R1,
are tabulated in Table B.2.

Appendix B.2. Tunable parameters

In Table B.3 we provide a complete list of the parameters that
can be tuned with GalaPy. All of the parameters are available
from the galapy.Galaxy.GXY object (as well as from derived
objects). We divided the table in sections describing which of the
class-objects they model. The first column contains the API key-
word used to access the parameter, the second column contains
the symbol used in this manuscript to refer that parameter, in the
third column we give a brief description of the parameter and

Table B.2: Tabulated values of the two parameters R0 and
R1 regulating the rate of CCSN in Eq. (46) with metallicity
dependence.

Z⋆ 0.02 0.008 0.004 0.001 0.0005 0.0001
R0 1.5141 1.2679 1.1820 1.0924 1.0692 1.0425
R1 0.5146 0.4454 0.4140 0.3789 0.3673 0.3531

Notes. Metallicity is given in absolute value, parameter R0 is given in
units of [Gyr−1 M−1

⊙] while parameter R1 is adimensional.

the last column contains the eventual Eq.(s) where the parameter
appears.

Each of the tunable parameters can be either fixed or set as
free. In the latter case it will add a dimension to the parame-
ter space explored by the sampler during SED-fitting. Always
remember that, the larger the parameter space (both in terms of
prior volume and dimensionality), the longer it will take for the
sampler to converge. It is therefore always crucial to carefully
select which parameters to sample and which to keep fixed. The
volume, prior shape and fixed value used for each run depends
on several considerations on the dataset that has to be fitted with
GalaPy. The choice of these hyper-parameters is left to the user.

The parameters regulating the shape of the AGN template are
not described in this manuscript and can be found in Fritz et al.
(2006). Since in the current version of GalaPy we do not pro-
vide a template fitting interface yet, we discourage setting them
as free, as it would imply sampling a discrete parameter space.
Nonetheless, this custom behaviour can be achieved by modify-
ing the likelihood in the sampling algorithm through the Python
API of GalaPy.

A161, page 38 of 41

Ronconi, T., et al.: A&A, 685, A161 (2024)

Table B.3: Complete list of the tunable parameters available in GalaPy.

Keyword Symbol in text Description Section ref.

Global
age τ Age of the galaxy 2
redshift z Redshift of the galaxy 2.6.1

Star Formation History
sfh.model — SFH model: one among the keywords listed below 2.1
sfh.tau_quench τquench Age of the abrupt quenching 2.1

Constant (keyword: constant)

sfh.psi ψ0 Value of the constant SFR 2.1
sfh.Mdust Mdust Total dust mass in galaxy at the given age 2.1.1
sfh.Zgxy Zgxy Metallicity of all phases in galaxy at the given age 2.1.1

Delayed Exponential (keyword: delayedexp)

sfh.psi_norm ψnorm Normalisation 2.1
sfh.k_shape κ Shape parameter of the early evolution 2.1
sfh.tau_star τ⋆ Characteristic timescale 2.1
sfh.Mdust Mdust [same as for constant SFH] 2.1.1
sfh.Zgxy Zgxy [same as for constant SFH] 2.1.1

Log-Normal (keyword: lognormal)

sfh.psi_norm ψnorm Normalisation 2.1
sfh.sigma_star σ⋆ Characteristic width 2.1
sfh.tau_star τ⋆ Peak age 2.1
sfh.Mdust Mdust [same as for constant SFH] 2.1.1
sfh.Zgxy Zgxy [same as for constant SFH] 2.1.1

Interpolated (keyword: interpolated)

sfh.Mdust Mdust [same as for constant SFH] 2.1.1
sfh.Zgxy Zgxy [same as for constant SFH] 2.1.1

In situ (keyword: insitu)

sfh.psi_max ψmax Normalisation 2.1
sfh.tau_star τ⋆ Characteristic timescale 2.1

Inter-Stellar Medium
ism.f_MC fMC Fraction of dust in the MC phase 2.3

Molecular Clouds

ism.norm_MC CMC
V Normalisation of the MC extinction in the visible band 2.3

ism.N_MC NMC Number of MCs in the galaxy 2.3
ism.R_MC RMC Average radius of a MC 2.3
ism.tau_esc τesc Time required by stars to start escaping their MC 2.3
ism.dMClow δl

MC Extinction power-law index at wavelength ≲ 100µm (106Å) 2.3
ism.dMCupp δu

MC Extinction power-law index at wavelength ≳ 100µm (106Å) 2.3

Diffuse Dust

ism.norm_DD CDD
V Normalisation of the DD extinction in the visible band 2.3

ism.Rdust RDD Radius of the diffuse dust region embedding stars and MCs 2.3
ism.f_PAH fPAH Fraction of the total DD luminosity radiated by PAH 2.3
ism.dDDlow δl

DD Extinction power-law index at wavelength ≲ 100µm (106Å) 2.3
ism.dDDupp δu

DD Extinction power-law index at wavelength ≳ 100µm (106Å) 2.3

Nebular Free-Free
nff.Zi Zi Average atomic number of ions 2.4.1

Synchrotron
syn.alpha_syn αsyn Spectral index 2.4.2
syn.nu_self_syn νself Self-absorption frequency 2.4.2

A161, page 39 of 41

Ronconi, T., et al.: A&A, 685, A161 (2024)

Table B.3: continued.

Keyword Symbol in text Description Section ref.

Active Galactic Nucleus
agn.fAGN fAGN AGN fraction 2.5

Templates

agn.ct Θ Torus half-aperture angle —
agn.al α Density parameter (exponential part) —
agn.be β Density parameter (power-law part) —
agn.ta τAGN

9.7 Optical depth at 9.7µm —
agn.rm RAGN

torus Radial ratio of the torus —
agn.ia ΨAGN

los Inclination angle —

Notes. Each of the parameters in this Table (except for sfh.model and the Templates parameters of the Active Galactic Nucleus module) can be
set as an additional free dimension for the sampler to explore.

A161, page 40 of 41

Ronconi, T., et al.: A&A, 685, A161 (2024)

Appendix C: Practical information

Appendix C.1. Installation and post-installation operations

GalaPy is available on the Python Package Index (PyPI) and can
be installed by running

$ pip install galapy-fit

on a terminal18. Once the package has been installed, before the
first usage run

$ galapy-download-database

to download on the file-system the database necessary for
running. The database contains the formatted SSP libraries
(Section 2.2), a collection of bandpass transmission filters
(Sect. 2.6.3), the AGN templates (Sect. 2.5) and pre-computed
tables for cosmological calculations (Sect. 2.6.1).

These two steps should be sufficient to obtain a working
installation of GalaPy. For further details on how to install in
developer mode and on the required dependencies of the library,
the user can refer to the installation guide available in the docu-
mentation (galapy.readthedocs.io/en/latest/general/
install_guide.html).

Appendix C.2. Running the automatised sampling script

We provide command-line tools for sampling the parameter
space with our automatised set-up. The automatic fitting requires
us to set up a parameter file that can be generated by calling

$ galapy-genparams [-n/--name NAME]

If the optional argument NAME is not provided, the
generated file will be assigned the default name
galapy_hyper_parameters.py. By modifying this self-
explanatory file the user can set all the relevant information (e.g.
free-parameters and priors, data-set, input/output files) required
for running a sampling. The file is divided in four main sections:

– Loading of the data-set: users can use their preferred
method for loading the data-set (band-pass transmission fil-
ters, either from the data-base or custom, fluxes, errors and
upper-limits). Since the parameter file is effectively a python
script, external libraries (such as NumPy or Pandas) can
be imported to ease the process. We also provide a func-
tion (i.e. galapy.internal.utils.cat_to_dict) for the
conversion of ASCII catalogues19 to dictionaries.

– Galaxy model set-up: here the user chooses their preferred
models among those available in the package. Namely, the
SFH model, the SSP library, whether to include an AGN,
X-ray emission, radio support, cosmology and an eventual
treatment of noise.

– Sampling parameters: for choosing priors on the free
parameters or fixing part of them to values different from
their default values.

– Sampler and output choices: choose the sampler and for-
mat for the sampling output file(s).
Once the parameter file has been set, by calling the command

$ galapy-fit galapy_hyper_parameters.py

18 GalaPy can also be installed from source by cloning the github
repository: github.com/TommasoRonconi/galapy
19 Like those compiled with TopCat
https://www.star.bris.ac.uk/ mbt/topcat/

Fig. C.1. Version 1.0.0 of the GalaPy logo. We encourage
authors presenting results obtained with GalaPy to add their pre-
ferred version of the logo in public presentations. A variety of
formats is available on the website and in the data-base.

the sampling starts on all the available parallel CPUs (see
the documentation for further details on how to customize the
parallel scheme or to run serially on a single CPU).

Besides this terminal entry-points, the GalaPy API is made
available upon installation of the library. On a python script,
shell or notebook the user can import modules, classes and
functions from the galapy Python package. The entry-point
themselves are made available for inspection and customisation
on the sub-module galapy.sampling.Run. For more in-detail
description, please inspect the API documentation20.

Appendix C.3. Acknowledging usage of the library

GalaPy relies on models and samplers that might require addi-
tional references along with this manuscript. We encourage
authors to check the documentation for further instructions on
how to acknowledge the relevant works.

Several data-formats for the GalaPy logo (Fig. C.1) are also
available in the documentation. Even though we do not imprint
the logo on the figures produced by our plotting API, we encour-
age authors in adding it to their presentations if presenting results
obtained using GalaPy.

20 galapy.readthedocs.io/en/latest/index.html

A161, page 41 of 41

https://galapy.readthedocs.io/en/latest/general/install_guide.html
https://galapy.readthedocs.io/en/latest/general/install_guide.html
https://github.com/TommasoRonconi/galapy
https://www.star.bris.ac.uk/~mbt/topcat/
https://galapy.readthedocs.io/en/latest/index.html

	GalaPy: A highly optimised C++/Python spectral modellingtool for galaxies
	4 Validation
	4.2 Test on real sources
	4.2.6 Photometric redshift

	5 Summary
	Acknowledgements
	References
	Appendix A: Code design
	A.1 Implementation strategy
	A.1.1 Ordering of the SSP tables and computation of the intrinsic stellar luminosity
	A.1.2 Interpolation technique

	A.2 Python API structure
	A.3 Insights on performances and scaling

	Appendix B: Additional modelling information
	B.1 Difference between CSP emission assuming different SSP libraries
	B.2 Tunable parameters

	Appendix C: Practical information
	C.1 Installation and post-installation operations
	C.2 Running the automatised sampling script
	C.3 Acknowledging usage of the library

