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PREFACE

Der Beweis muss
ubersehbar sein.

(L. Wittgenstein)

In this work we shall study expansive flows defined on a closed manifold of dimension
3, from the point of wiew of the topological equivalence. Expansive flows were introduced
in the 70’s, their definition being motivated by the theory of Anosov flows: expansive
flows may be seen as the topological counterpart of Anosov flows, which belong to the
domain of differentiable dynamics. Recent results (Lewowicz, Hiraide, Paternain, Inaba
- Matsumoto,...) show that expansive flows, at least in the smallest nontrivial dimension
(=3), are in fact a “slight” generalization of Anosov flows: as the latter, the former posses
stable and unstable foliations, but now these foliations may have singularities. Expansive
flows on 3-manifolds could be appropriately renamed Pseudo-Anosov flows.

It follows that an analysis of expansive flows may use (and must use) the theory of
foliations. In dimension 3 this theory is a well developed subject (Novikov, Roussarie,
Thurston, Ghys,...), and it allows to prove nontrivial results when applied to dynamical
systems.

Hence our work belongs to the intersection of two rather classical domains: hyperbolic
dynamical systems and foliations on 3-manifolds. We shall assume that the reader is
acquainted with both these domains.

We now give a short outline of what is written in the following pages. After recalling
in chapter 1 the above recent results about expansive flows in dimension 3, we extend in
chapter 2 the theorem of Fried about surfaces of section for Anosov flows to cover the
case of expansive flows. This fact has some consequences (ergodic theory, smooth models,
pseudo-Anosov flows...) and it is also a justification for the next results.

Chapter 3 is the central one. There is proven a theorem which gives a sufficient
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condition for the topological equivalence of two expansive flows. This condition involves
surfaces of section (of one of the two flows) and homotopic properties of the singular sets of
the stable and unstable foliations (of both the two flows). We remark that such a theorem
is new and nontrivial even in the case of Anosov flows. A first corollary is drawn at the
end of chapter 3, a second one at the end of chapter 4, where we study what happens if
the 3-manifold supporting the expansive flow is a Seifert fibration.

The methods of chapter 3 and 4 have a foliated flavour (in fact, we shall forget
frequently the flows and we shall consider only their stable foliations), whereas chapter
2 belongs mainly to the hyperbolic world. The last chapter, in which we will study only
Anosov flows and we will be concerned with the problem of transitivity, mixes hyperbolic
arguments with topological and foliated aspects.

Acknowledgements: I wish to thank Alberto Verjovsky, who introduced me to the

fields of foliation theory and of topology of 3-manifolds, and with which I discussed almost
all the parts of this thesis.




PRELIMINARIES

We recall some basic definitions and results about expansive homeomorphisms and
flows, with emphasis on the low-dimensional cases and on the relations with (pseudo-)
Anosov diffeomorphisms and flows. We assume some familiarity with the theory of Anosov
systems ([Ano], [A-A], [Sma], [Fral], [Plal]) and with the qualitative theory of foliations
([C-L], [God], [Nov]).

Let M be a compact manifold, possibly with boundary, and let d(-,-) be the distance
on M induced by any riemannian metric.

Definition 1.1 ([B-W]). A homeomorphism f : M — M is ezpansive if 3§ > 0 such
that d(f"(z),f*(y)) < § Vn € Z implies = y. A continuous flow ¢; : M — M is
ezpansive if it is without singularities and Ve > 0 36 > 0 such that d(¢:(z), dn(s)(y)) < 6
V¢t € R and for some homeomorphism k : (R,0) — (R,0) implies y = ¢,(z) for some
5 € (—¢,€).

The most classical and interesting examples of expansive homeomorphisms and flows
are Anosov diffeomorphisms and flows ([Ano]); the above definition of expansiveness was
motivated by that examples.

If f: M - M is an Anosov diffeomorphism, we denote by F*, F* its stable and un-
stable foliations. The leaves of these foliations are smooth, and diffeomorphic to euclidean
spaces. The foliations themselves are only of class C*, Va € (0,1). If f is transitive (an
old conjecture, still open, says that any Anosov diffeomorphism is transitive) then every
leaf of 7%, F* is dense in M ([Fral]).

If ¢ : M — M is an Anosov flow, we denote by F*, F* its (weak) stable and unstable
foliations, and by F**, F“* the strong ones. The leaves of F*, F" are smooth and are
diffeomorphic either to R**? or to S! x R¥ or to S « R x R*¥~? (for the appropriate k),
where S! < R denotes the (open) Moebius strip. F* and F* are, in general, only of class

C*,Va € (0,1). If the flow is transitive the leaves of F*, F" are dense in M ([Plal]), but
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now there are examples ([F-W]) of nontransitive Anosov flows.

If ¢ or F* is a codimension-one foliation, then it is of class C* ([HPS]); and in the
case of Anosov diffeomorphisms on 2-manifolds and Anosov flows on 3-manifolds F* and
F* are of class C'**, Vo € (0,1) ([H-K]).

The existence of F*, F° implies that the only surface which admits Anosov diffeomor-
phisms is the torus. On compact surfaces different from T2, and possibly with boundary,
it is possible to consider a class of diffeomorphisms whose properties are very near to those
enjoied by Anosov ones on T?. These maps, introduced by Thurston in his work on map-
ping class groups under the name pseudo-Anosov, still have stable and unstable foliations,
but now these foliations may have singularities.

Let ¥ be a compact surface, possibly with boundary.

We will consider on D? = {z € C| |z| < 1} the (singular) foliations M}, H}, k <
N\ {2}, given by

U= {d(Rez¥) =0},  HY={d(Smz?) =0},
and on SD? = {z € C| |z| < 1,Rez > 0} the (singular) foliation K® given by

K" = {d(Rez - Smz) = 0}.

g R K3

Definition 1.2 ([FLP], [Thu]). A foliation with prongs on ¥ is a C"-foliation with

singularities F such that if ¢ € Sing(F) then F is topologically equivalent in a neighbor-
hood of z to K" (if z € OX) or to HY (if z € intX), for some k € N\ {2}. Two foliations
with prongs F and G are transverse if Sing(F) N Sing(G) N 09X = 0, Sing(F) N intE =
Sing(G) N intX, they are transverse in intX \ Sing(F), and if z € intX N Sing(F) then
the pair (F,G) is topologically equivalent in a neighborhood of = to (M}, H}), for some
ke N\ {2}.

The integer k is called number of prongs of the singularity.
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The usual definition of measured foliation ([God]), or foliation with a transverse mea-
sure, extends naturally to foliations with prongs.

Definition 1.3 ([FLP], [Thu]). A homeomorphism f : ¥ — X is pseudo-Anosov if

there exist two measured foliations with prongs (F*,p®), (F*,u") and a constant A > 1
such that:
i) F*, F* are transverse and every singularity in intX has at least 3 prongs

ii) u®, p* are without atoms and positive on nonempty open sets

ili) f preserves F*, F* and
1
flp®) = 5p° fu(p®) = Ap™.

The meaning of the condition f.(p®) = $p" is that f expands uniformly (w.r. to pu")
the leaves of F*: if [ is a segment contained in a leaf of ", then [ is transverse to F* and
its length can be measured with p®; f(l) is also a segment contained in a leaf of F", and
the above condition shows that p®(f(!)) = Ap*({). Similar interpretation for f.(p") = Au".

If in 1.3 we don’t require the restriction on the number of prongs, then we obtain the
so called generalized pseudo-Anosov homeomorphisms.

Remark: the definition given in [FLP] is more restrictive: foliations and measures are
assumed to be smooth, and f is smooth outside Sing(F*) and Sing(F*). But, using the
“coordinates charts” given by the measures p°, p*, it is easy to verify that a pseudo-Anosov
homeomorphism in the sense of 1.3 is C’-conjugate to a pseudo-Anosov diffeomorphism in
the sense of [FLP], unique up to smooth conjugation.

An Anosov diffeomorphism on T? is an example of pseudo-Anosov homeomorphism;
the existence of the transverse measures p® and p* is a particular case of a result of Sinai
([Sin], it is also a consequence of [Man]). Conversely, any pseudo-Anosov homeomorphism
of T? is C'-conjugate to a (linear) Anosov diffeomorphism.

The foliations F*, F* (called, naturally, stable and unstable foliations) enjoy many
properties of the stable and unstable foliations of a toral Anosov diffeomorphism. Every
leaf of F*, F*, different from a leaf contained in 9%, is homeomorphic to R and is dense
in ¥. Every pseudo-Anosov homeomorphism is transitive, and its periodic points form a
dense subset of T.

The following “rigidity theorem” is a central result in the theory of pseudo-Anosov

homeomorphisms.



Theorem 1.4 ([FLP], [Thu]). Let f,g: X — X be pseudo-Anosov homeomorphisms.
If f and g are homotopic, then they are C'-conjugate, through a homeomorphism isotopic
to the identity.

Pseudo-Anosov homeomorphisms on closed surfaces are expansive (but not the gen-
eralized ones). A deep theorem of Lewowicz and Hiraide shows that the converse is also

true.

Theorem 1.5 ([Lewl], [Hir]). Every ezpansive homeomorphism f of a closed surface

Y is pseudo-Anosov.
Remark that every orientable closed surface of positive genus admits expansive home-
omorphisms ([O-R]); the requirement of orientability seems inessential ([Pen]).

The main step in the proof of theorem 1.5 is to show that the stable and unstable sets
We(e) = {y € B|d(f*(z), f*(y)) < e Vn >0}

W (z) = {y € Z|d(f"(z), f"(y)) < e Vn <0}

“glue” together giving origin to two transverse foliations with prongs F*, F". This step
has been carried out also in the case of expansive flows on closed 3-manifolds.
Let M be a compact three-manifold, possibly with boundary.
We will consider on D2 x(0,1) and SD?x(0,1) the singular codimension-one foliations
given by
He = H) x (0,1),  Hp=Hy x(0,1), K=K"x(0,1).

%K /—jf-ex X

Definition 1.6 ([I-M], [Patl]). A foliation with circle-prongs on M is a C"-foliation

with singularities F such that if ¢ € Sing(F) then F is topologically equivalent in a
neighborhood of  to X (if ¢ € OM) or to Hy (if ¢ € intM), for some k € N\ {2}.
Two foliations with circle-prongs F and G are transverse if Sing(F)N Sing(G)NIM =0,
Sing(F) NintM = Sing(G) N intM, they are transverse in intM \ Sing(F), and if z €
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intM N Sing(F) then the pair (F,G) is topologically equivalent in a neighborhood of z to
(Hy,Hy), for some k € N\ {2}.

In other words, a foliation with circle-prongs is locally the product of a foliation with
prongs with the interval (0,1). From the compactness of M we deduce that Sing(F) is
union of a finite number of circles. If § C Sing(F) is a singular circle, the integer k which
appears in 1.6 is called number of prongs at §. Remark that the number of prongs at S
may be strictly greater then the number of separatrices: the foliation F may be twisted
around S. If we glue together a singular circle § and all the separatrices at S, we obtain
a new decomposition of M, whose pieces are called eztended leaves.

Assume now that M is closed, and let ¢; : M — M be an expansive flow. For any

z € M and any € > 0 define
Wi(z) = {y € M|3h € Homeo([0,+00))s.t. d(d¢(z), dn(z)(y)) < € Vt € [0, +00)}

Wl (z) = {y € M|3h € Homeo((—o0,0])s.t. d(¢s(z), dn(r)(y)) < € Vt € (—00,0}}.

The following result of Inaba - Ma.tsumofo and Paternain must be compared with
theorem 1.5.

Theorem 1.7 ([I-M], [Patl]). Let ¢; : M — M be an ezpansive flow on a closed
J3-manifold. Then there ezist two foliations with circle-prongs F°, F* on M such that:

i) F*, F" are transverse and every singular circle has at least three prongs

it) F°, F* are invariant by ¢,

ii1) for € > 0 sufficiently small and for any © € M, the stable set W2(z) (the unstable
set Wk(z)) is a neighborhood of « in the eztended leaf of F* (F*) through z.

As an example, suppose that ¢; : M — M has a global cross-section ¥ C M. Then
the first return map f : ¥ — ¥ is expansive, hence by Lewowicz - Hiraide theorem there
are f-invariant foliations Fj, ' on ¥. The ¢;-invariant foliations in the theorem of Inaba
- Matsumoto - Paternain are obtained by suspending F¢ and Fj via f.

Let us observe that the circles that compose the singular set Sing(F*) = Sing(F")
are closed orbits of ¢;. They are called singular closed orbits. If v is such an orbit, then
the number of prongs (> 3) of F* (or F*) at 4 will be denoted by np(v). If v is a regular
(= non singular) closed orbit of ¢;, we define np(y) = 2. The irregularity of a singular

closed orbit is the positive number irr(y) = np(y) — 2.
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We now state some properties of 7, F*. These properties are proved in [[-M], [Pat1],
[K-S], or may be proved along the same lines as in the hyperbolic (Anosov) context ([Ano],
[Plal]).

First of all, these foliations are dynamically characterized: two points z,y € M belong
to the same extended leaf of F° (F*) if and only if d(¢:(z), dnt)(y)) — 0 as t — +oo
(t - —o0), for some h € Homeo([0,+00)) (h € Homeo((—o0,0])). Every leaf is a plane,
or an open cylinder, or an open Moebius strip. If L € F* is a plane then ¢;|; is C"-
equivalent to a translation. If L is a Moebius strip then ¢;|; has one and only one closed
orbit, which attracts every other trajectory. If L is a cylinder then ¢;|; has again one
and only one attracting closed orbit, except in the case where L is a separatrix of some
singular closed orbit 4: in this case every trajectory of ¢:|r tends to 4 (which is the limit
set of one end of L). An important related property is that there are not connections
between singular closed orbits: if one end of L € F° abuts on a singular circle v (i.e., L

is a separatrix at ) then the other end of L cannot abuts on another (or on the same)

singular circle.

Inaba and Matsumoto proved a Novikov-type theorem for foliations with circle-prongs,
from which one deduces that every leaf of F° and F* injects its fundamental group in
71(M) and there are not closed transversals to F° or F* homotopic to zero. Moreover,

M must be irreducible (every embedded sphere in M bounds an embedded 3-disk , see
[Hem]).

More precisely, the universal covering M of M is the euclidean space R®. This is a
consequence of Palmeira’s theorem ([Pal]) and of the fact that the 1-dimensional foliation
given by the flow ¢, lifts on M to a foliation by lines (because every leaf injects its
fundamental group), whose space of leaves is Hausdorff and hence homeomorphic to R?
(because of the expansiveness). Another way to prove M = R? is the following: we may
construct on M, starting from F*, an “essential lamination” ([G-0O]), and theorem 6.1 of

[G-O] tell us that the universal covering of M is the euclidean space.

Animportant property of a 3-manifold admitting an expansive flow has been proved by

Paternain: the fundamental group of the manifold must have exponential growth ([Pat]).

From the existence of stable and unstable foliations, working as in the Anosov or

Axiom A case ([Sma], [Shu]), it is immediate to prove a spectral decomposition theorem:
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the nonwandering set {2(¢;) is union of a finite number of pairwise disjoint basic sets 0,
j =1,...,N. Every basic set is closed, ¢;-invariant, transitive, and the closed orbits are
dense in (¢:). If the flow is transitive, then every leaf of * and F* is dense in M (proof:
as in [Plal]).

All these properties suggest that the theory of expansive flows on 3-manifolds is com-
pletely parallel to the theory of Anosov flows, in the same sense as the theory of pseudo-
Anosov homeomorphisms is parallel to the theory of toral Anosov diffeomorphisms. The
only “essential” difference is the presence of singularities in the stable and unstable folia-
tions. In the next chapter we develop this parallelism, under the hypothesis of transitivity.

Let us also remark that the expansive property may be seen (at least in low dimen-
sion) as the topological version of the Anosov property. Expansive systems may be only
continuous, and the definition of expansiveness is invariant by C°- equivalence, whereas
Anosovness is not. The structural stability of Anosov systems is replaced in the expansive

context by the persistence property ([Lew2]).



SURFACES OF SECTION

Let ¢; : M — M be a continuous nonsingular flow on a closed connected 3-manifold
M. A surface of section for ¢, ([Bir], [Fril]) is an embedded compact connected surface
¥ < M such that:

i) 0% is union of closed orbits v1,...,yn of ¢;

ii) intX is transverse to ¢; (in the topological sense, [Whil)

iii) every trajectory of ¢, intersects ¥ in a uniformly bounded time: 37 > 0 s.t.
do,1)(z)NE #£0 Ve € M.

If 0¥ = 0, then a surface of section is nothing else that a global cross section for ¢;. In
this case ¢; is topologically equivalent to the suspension of the first return map f : ¥ — X.
In any case, a surface of section ¥ < M induces a first return map f° : intX — intX. We
will require the following property (which is not restrictive, at least if ¢; is C! near 9%,
see [Fril]):

iv) f° extends to a homeomorphism f : ¥ — .

Remark that f preserves the components of the boundary of ¥, and on every such
a component f is an orientation preserving homeomorphism ([Fril]). Remark also that a
surface of section X induces on M an open book decomposition, with pages homeomorphic
to ¥ and with monodromy given by the isotopy class of f. This open book decomposition
is “adapted” to ¢, in the sense that the interiors of the pages are transverse to ¢; and the
binding is a union of closed orbits. The existence of an open book decomposition is not a
restriction on the manifold: by a classical theorem of Alexander, every closed 3-manifold
has such a decomposition.

Consider now the suspension flow ; of f,
Z x[0,1]

(2,0) ~ (f(=),1)
The manifold N is the blow-up of M along the collection of closed curves {7i,..., 7}

"/’t:N—’N, N =

(every point of «; is replaced by a circle), and the blow-down projection p : N — M maps
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the orbits of 9; to the orbits of ¢;. Remark that p restricts to a diffeomorphism between
N\ON and M\ 08X, and maps every component of N to one of the closed orbits v1,...,7x".

We may collapse every component of X to a point, obtaining a closed surface $. The
map f induces a homeomorphism f: ¥ - 3; denote by qASt : M — M the suspension
flow, and by 4i,...,4n the closed orbits of é: which derive from the fixed points of f
corresponding to the collapsed components of 0%. The above manifold N may be again
identified with the blow-up of M along {41, ..., 4~} and the blow-down projection  : N —
M maps orbits of 9, to orbits of ¢;. The map p induces a diffeomorphism between N\ N

and M\ U‘;-\;ﬁj, and maps every component of N to some ¥;.

In other words, both the flows ¢ : M — M and qASt : M — M are obtained from
the flow ¢y : N — N by collapsing the components of N to circles: there are on N
two transverse circle fibrations £ and £, both transverse to Y¢|on, such that if we collapse
every fibre of £ (13) to a point we obtain the manifold M (M) and #; projects to ¢, (¢f) In
the language of three-manifold topology, this may be rephrased by saying that the flow ¢,
is constructed from ¢; with the help of a Dehn surgery along the closed orbits {¥1,...,¥x}.
Hence a flow with a surface of section is a suspension flow “modulo Dehn surgery” ([Fril],
[Fri2]).

Birkhoff proved in [Bir] that the geodesic flow on a closed surface of constant negative
curvature S admits surfaces of section. Moreover, he showed explicitly how to construct
a particular surface of section; we shall use later his construction. Fried ([Fri2]) general-
ized the theorem of Birkhoff to any transitive Anosov flow on a closed 3-manifold. The
first return map f : ¥ — X associated to such a surface of section is a pseudo-Anosov

diffeomorphism, the only singularities of which are on the boundary J0%.

Here we adapt the proof of Fried to extend his result to the expansive case, thanks to

the result of Inaba - Matsumoto - Paternain.

Theorem 2.1. Let ¢; : M — M be a transitive ezxpansive flow on a closed connected
three-manifold M, then there ezists a surface of section ¥ — M, with pseudo-Anosov first

return map f : ¥ — 3.

The requirement of transitivity is necessary: every pseudo-Anosov homeomorphism is

transitive.

We like to think to the above theorem as to an “expansive” version of Alexander
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theorem: every closed 3-manifold equipped with a transitive expansive flow has an open
book decomposition adapted to the flow.

A consequence of theorem 2.1 is that if the stable and unstable foliations of a transitive
expansive flow are without singularities, then the flow is topologically equivalent to an
Anosov flow ([Fri2]). It seems that such a result holds also in the nontransitive case.

After the proof of 2.1 we shall outline some consequences, in two directions: ergodic

theory and construction of smooth models.

Proof of theorem 2.1

Let F*, F* be the stable and unstable foliations with circle-prongs of ¢;, given by
theorem 1.7. Because of the transitivity of ¢;, the set of closed orbits is dense in M, and
every leaf of F* and F" is dense in M. We denote by Cj,...,Cn the closed orbits of ¢,
which form the singular set § = Sing(F*) = Sing(F*), and by np(C;) the number of
prongs at C;.

As in Fried’s proof, the following “local” result is the key for the proof.

Lemma 2.2. For any ¢ € M there ezists an immersion j : D — M of a compaci
surface with boundary D such that:

i) 7(8D) is union of closed orbits of ¢y

i) j(intD) is transverse to ¢;

i11) j|lop is an embedding

i) ¢ € j(intD) \ [j(intD) N j(8D)).

Proof.

Suppose firstly that ¢ € C; C S, and let 7 : D* < M be an embedding of the disk
transverse to ¢, with 2(0) = z. Such an embedding exists, by a result of Whitney ([Whi}).
Choosing 7 with image sufficiently small, we may assume that the pair of singular foliations
i*(F*), i*(F*) is C°- conjugate to the pair Hy, Hy (see chap. 1) for k = np(C;).

The separatrices of H; and H; divide D? in 2k open regions A;, By, ..., A, Bi (fig.
1), with (4; N B;) = a separatrix of Hy, (B; N 4;41) = a separatrix of Hy, Vj = 1,...,k
(k +1 =1). Take points p; € Aj, j = 1...k, such that i(p;) is a point on a closed orbit v;
of ¢ Vj =1,...,k, and assume that v; # v; for j # ¢. Assume also that the leaves H(p;)

and Hi(pj+1) intersect in a point r; € Bj, Vj = 1,...,k. These choices are possible because
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of the transitivity of ¢;.

Fle. 4.

For any j = 1,...,k let P; : D; — D; be the first return map corresponding to the
closed orbit v; and to the transversal ¢ : D? — M; D; and 'Z.)j are subset of D?, D; =
maximal connected domain of definition of P; on which the first return time is continuous,
ﬁj = P;(D;). We may assume that P; preserves the orientations of the si’.able and unstable
1eayes through p;, because the closed orbits with this property are dense in M; we postpone
the verification of this fact to the end of the proof.

Clearly, the segment of Hy(p;) between p; and rj_; is contained in Dj, and thc
segment of Hy(p;) between p; and r; is contained D;. Moreover, 'Pj_l(rj) belongs to 4
(and not to Bj;), since otherwise the point H(p;)N"Hx(0) would belong to D; and would be
mapped by P; to a point in Bj, which is impossible because points of H(0) correspond to
orbits of ¢; positively asimptotic to the closed orbit C; and so the positive semitrajectory
B1o,+00) (4(Hk(p;)N'Hi(0))) intersects i(D?) only in points belonging to i(H«(0)). A similar
argument (with time reversed) show that P;(rj_1) € A;.

We deduce the existence of a “rectangle” R; C D;, bounded by leaves of H; and H,,,
and with rj_1, pj, P; !(r;) as vertices (see fig. 2). Remark that Vj =1,...,k P;(R;)N R},
is a non-empty rectangle.

Define:

Ql = P;l(’Pl(Rl) NR, = {Z S R1|P1(Z) € R2}

andforl=2,...,k—1:
Qi=(PioPi10 ...’Pl)_l((’Pz 0Pi_1 0. P1)(Qi-1) N Riy1) =

= {Z S R1|'P1(Z) € Ry,Py0 rP1(Z) € Rs,...,P10 'Pl(z) € R1+1}
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then Qk_1 is a non-empty subrectangle of R; and Pk o ...P; is defined on it. Moreover,
(Pro..P1)(Qk-1) is a subrectangle of Pr{Ry) which intersects Q1 along a subrectangle
Q of Pr(Rx)N Ry, as in fig. 3.

We deduce the existence in @ of a fixed point ¢; of Py o...Py, from the usual “hy-
perbolic fixed point argument”. Let us remark that ¢; = (Pj~; o ...P1)(q1) belongs to
RjNP;j_1(Rj—1) Vj =1,...,k and so, intuitively, the closed orbit v of ¢; that corresponds
to ¢ “follows” cyclically 1, ..., vk-

Now, as in [Fri2], we consider segments I; C D? joining ¢; with p;, transverse to H,
Hi, such that I, UP;(l1) U ...l UPx(lx) bounds a 2k-gon D, C D? (fig. 4). The union of
i(Dy) and the segments of trajectories of ¢; from y € i(l;) to i(P;(y)) € i(P;(l;)) may be
deformed to an immersed surface D — M with the required properties ([Fri2]). Observe

that 8D = {v1,...,7k,7} and D is a disk with k holes.

This complete the proof in the case ¢ € S; the case z € M \ S is completely similar

(in fact, simpler), and formally corresponds to the case k = 2.

It remains only to prove the above statement about the density of closed orbits with
first return map which preserves the orientations of the stable and unstable leaves. We
repeat the above construction with only the following changement: if P; : D; — i)j does
not preserve the orientations of Hy(p;) and Hy(p;), then we substitute it with P? (which
preserves the orientations). Then we obtain again a closed orbit v for ¢;, which “follows”
71, ---,Yk but some «; are now “followed” two times; this orbit 4 has first return map with
the desired property, and the arbitrarity in the choice of the initial embedding ¢ : D? — Al
shows the density of the orbits of this type. A

The proof of the existence of a surface of section is achieved as in [Fri2]: we take,

by compactness, a finite union of immersed surfaces Dy,...,D,, as in the lemma, such
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that {0D;} are pairwise disjoint and every flowline of ¢, intersects U7, D; in a uniformly
bounded time; UJL, D; is then an “immersed surface of section”, and a surgery along its
self-intersections produces an embedded surface of section ¥ for ¢;. The local structure
of an expansive flow near a closed orbit garantees that the first return map int¥ — intZ

extends to X.

Let us remark that the above construction gives a lot of surfaces of section: the proof
of lemma 2.2 shows that any closed orbit, which is nonsingular and with orientable stable
and unstable leaves, may be a component of the boundary of a surface of section. On the
other hand, if ¥ — M is a surface of section then 0% has orientable tubular neighborhood;
this implies that (at least on nonorientable manifolds) not every closed orbit can belong to
the boundary of a surface of section. Remark also that if {v1,...,75} is any collection of

closed orbits, then there exists a surface of section whose boundary is disjoint from U‘j\':l'yj.

We have constructed a surface of section ¥ such that 82X NS = 0; however, it is clearly
possible that an expansive flow admits surfaces of section whose boundary contains some
singular closed orbit (take a flow obtained by Dehn surgery along a singular closed orbit

of the suspension of a pseudo-Anosov homeomorphism).

We now have to prove the statement about the pseudo-Anosov character of the first
return map. So, let £ «— M be any surface of section for ¢; (not necessarily the one
above constructed), and let f : ¥ — X be the first return map. We may assume, up to
topological equivalence, that the stable and unstable manifolds of the closed orbits in ¥
are smooth near 0¥ and their different branches intersect transversally, and that the angle
of incidence between ¥ and these branches varies with non-zero velocity along these closed
orbits. Then the foliations with circle-prongs F*, F" restricted to ¥ give foliations with
prongs G°, G*, transverse and invariant by f. Any component of 0% contains at least onc
prong of G® and of G"; it may happen the case where there is only one prong, if the stable
and unstable manifolds of the corresponding closed orbit are Moebius strips. Observe that
flintz is expansive with respect to a distance which degenerates on 9%, but recall that
Lewowicz - Hiraide theorem has been proved only for closed surfaces. We have to construct

transverse measures p°, u" as in the definition of pseudo-Anosov homeomorphism.

We first prove by a classical argument ([Fral]) that G* and G* are minimal, in the

sense that every leaf in intZ is dense in X. Let L, € G" be a the unstable leaf through a
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periodic point of period k and let L; = f/(Lo), L = U;:(}Lj. Take z € L regular point and
let U C intX be a product neighborhood for G*, G*; if y € U is [-periodic then its stable
leaf G°(y) intersects G¥(z) C L in a point z € U and the f-invariance of L, together with
the property fl”(z) — y as n — 400, implies that y € L; the density of periodic orbits
and the closeness of L imply that U C L, hence L NintE is open, i.e. L = T. This means
that every L; is also dense in ¥, i.e. the leaves of G* through periodic points are dense in
3. Similarly, the leaves of G® through periodic points are dense in ¥.

Let now V C intX be any open set and take y € V k-periodic; let I C G*(y) NV be
a segment containing y. Then for N sufficiently large f~*(l) is a segment in G*(y) with
the property that every leaf of G¥|;,,;x intersects f_kN(l) (because G*(y) is dense in ¥ and
G*(y) = UPZ f~*(1)). If z € intX is any point, then G*(f~*N(z)) intersects f~*™(I) and
hence G*(z) intersects [, i.e. G*(2) NV # 0. This shows that every leaf of G*|;,+s is dense
in ¥, and G* is minimal. Similarly, G® is minimal.

Let now X' denote the closed surface obtained from X by collapsing to a point every
component of 8, let f' : ¥’ — ¥’ be the homeomorphism naturally induced by f, and let
G*', G*' be the f'-invariant foliations induced by G*, G*. Clearly every leaf of G*', G"’ is
dense in ¥'. Let # : ¥ — X' be the natural projection.

Remark that f’ is not necessarily expansive, because G*' and G*' may have mono-
prong singularities in points of ¥’ arising from components of 0¥ which contain a single
prong; however, proposition B of [Hir] applies also to this situation and gives two transverse
Borel measures p®', u*' on G*', G*', which are non-atomic, positive on open non-empty

sets, and such that for some A > 1:

FUG ) = (@ ) AG ) = (A7)

de d
pt <f m*(¢*') and p* ef n*(u®') are then transverse Borel measures on G*, G", non-

atomic, positive on open non-empty sets, and such that:
f*(gu,#u):(gu,A#u) f*(gs’#ﬁ) :(gﬂ’A_luﬂ)

this means that f is a pseudo-Anosov homeomorphism, and the proof of theorem 2.1 is

now complete.\

Ergodic theory of expansive flows
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Bowen and Walters ([B-W]) proved that any transitive expansive flow (on any compact
metric space) is semi-conjugate with the suspension of some subshift. We show here that,
under the hypotheses of theorem 2.1, this result may be refined, and an ergodic theory
similar to that of Anosov flows may be developed.

The key fact is that any transitive expansive flow in dimension 3 has Markov partitions.
Such a property may be directly verified, following the same arguments as in the hyperbolic
case ([Bowl], [Rat]), but it seems convenient to give a proof using the existence of surfaces
of sections and the corresponding result for pseudo-Anosov homeomorphisms ([F-S]).

Let ¢¢+ : M — M be an expansive flow on a closed 3-manifold, with stable and unstable
foliations F*, F*. The following definitions are given in analogy with [F-S] and [Bowl1].

Definition 2.3. A rectangle is a closed subset R C M, contained in the image

of an embedding D? — M transverse to ¢, such that there exists a homeomorphism
h:[0,1] x [0,1] —» R mapping {0} x (0,1), {1} x (0,1), {s} x [0,1] Vs € (0,1) to leaves of
F*,and (0,1) x {0}, (0,1) x {1}, [0,1] x {t} Vt € (0,1) to leaves of F*".

If R = h([0,1] x [0,1]) is a rectangle, define R= h((0,1)x(0,1)), and if z = h(s,t) € It
define W*(z, R) = h({s} x [0,1]), W*(z, R) = h([0,1] x {t}).

Definition 2.4: a Markov partition is a finite union of disjoint rectangles R =
{Ry, ..., Rm} such that for some a > 0:
1) ¢po,a)(Uj Rj) = @-ao)(UjR;) = M
2)if z EIOZj and y = ¢4(z) 6}02,- for some ¢ > 0, then there exists a continuous function
B : W*(z,R;) — R, B(z) = t, such that ¢g(,)(z) € W*(y,R;) V2 € W*(z,R;); and
there exists a continuous function v : W*(y, R;) — R, v(y) = —t, such that ¢,(,)(z) €
W*(z,R;) Vz € W*(y, Ri).

Proposition 2.5. Any transitive ezpansive flow ¢; on a closed 3-manifold M has a

Markov partition.

Proof.

Let ¥ 2, M be a surface of section and let f : ¥ — X be the first return map. Becausc
f is a pseudo-Anosov homeomorphism, it admits thanks to [F-S] a Markov partition R —
{Ri1,...,Rn} (see [F-L-P], éxposé 11, the modifications needed for the case of surfaces
with boundary). This Markov partition is formed by rectangles in int% and pentagons

intersecting 0Y along one of their sides. Let R; be one of such pentagons, then the
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embedding j : ¥ — M induces an embedding j; : R; — M, which maps one side of R; to
a segment of a closed orbit v and the two adiacent sides to two segments contained in the
stable and the unstable leaf through v; moreover, j;(R;) is transverse to ¢; except along

v. Clearly, we may move j;(R;) along the flowlines of ¢; in order to produce a rectangle

[d,cl<unstable leaf
[c, &l <stable leaf

M TE ¥

If, on the contrary, R; is a rectangle, then its image in M is also a rectangle R;.
Deforming along the flowlines all the rectangles so obtained from R we obtain a disjoint
collection of rectangles, which is the desired Markov partition.A

Let now R = {Ry,..., R,y } be a Markov partition for ¢; and let us consider the matrix
A = (aij)1<i,j<m defined by

1if 3o €R; s.t. ¢o(c) ER; for some ¢ > 0 and $,(z) ¢ U;R; Vs € (0,1)

a;; =
0 otherwise
Let 04 : ¥4 — X4 be the subshift of finite type associated to A: ¥ 4 is the set of sequences
{ea}nez C {1,2,...,m}% such that ac,c,,, = 1 Vn, equipped with the product topology,
and o4 is defined by o.4({cn}) = {c,}, ¢, = ¢n41. fw: £y — R is a continuous positive

function let 9, : E(04,w) — X(0.4,w) be the suspension of o4 with first return time w,

where X(o.4,w) = 7 t):(fj();)Rpw(z)) with the usual metric, see [Bowl] or [B-W]. Then the
usual arguments ([Bowl], [B-W], [F-S]) give:

Corollary 2.6. There exists for an appropriate w a continuous, surjective, finite-to-
one map h: ¥(oc4,w) > M such that hot, = pso0h Vi€ R. A

Starting from this corollary we may repeat in our context the same results obtained
by Bowen, Sinai and others in the hyperbolic context.

For example, we may construct on M a ¢;-invariant probability measure which is,

roughly speaking, the limit of measures concentrated on T-periodic orbits, as T — +oc
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([Bowl]). Then the above semiconjugacy h becomes a measure theoretic isomorphism
between ¥ 4 and M, if we put on X 4 the (natural) measure described in [Bowl].

On the other hand, a Dehn surgery on a flow is an operation with no essential influence
on the measure-theoretic properties of the flow. Hence it is not surprising that ergodic
properties of pseudo-Anosov homeomorphisms ([F-S]) can be translated in the context of

transitive expansive flows.

Smooth models

In [G-K], [Ger], [L-L] it is proved that any expansive homeomorphism of a surface
is topologically conjugate a smooth (or even analytic) one, which moreover preserves a s-
mooth measure (= measure given by a smooth everywhere positive density). Using surfaces
of section, such a result may be extended to transitive expansive flows on 3-manifolds.

Proposition 2.7. Any transitive ezpansive flow ¢; on a closed three-manifold M is

topologically equivalent to a smooth flow, which preserves a smooth measure.

Proof.

The flow is obtained by Dehn surgery along closed orbits 1, ...,y of the suspension
P : N - Nofa generalized‘pseudo-Anosov homeomorphism f : ¥ — Z, £ a closed
surface. By [G-K], [Ger], [L-L], we may assume that f is smooth and preserves a smooth
measure w; hence 9, also is smooth and preserves a smooth measure §2. After the surgery,
the orbits 41,...,7n of ¥; become closed orbits 41,...,9n of ¢, and the measure  trans-
forms to a ¢s-invariant measure 2. But ¢; and  are not smooth along U;¥;.

Consider now a smooth surface of section Xy — M for ¢¢, such that
Ty N {¥1y v} =10

(X, exists, see proof of 2.1). The first return map fy : £, — X, is smooth outside the
periodic points corresponding to the closed orbits {41,...,¥n}; moreover f preserves a
measure & (induced by Q) which is smooth outside the same set of periodic points.
Because the smoothing technique of [G-K] and [L-L] is local, we may perturb f, in a
neighborhood of these points in order to produce a map f(, : Yy — Xy which is smooth,
preserves a smooth measure, and is C'-conjugate to f,. To such a perturbation there
corresponds on M a smoothing of ¢; and Q along {41, ...,9n'}, and the flow so obtained is

topologically equivalent to ¢;. A
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Remark: these smooth models are conditionally stable ([Ger]), i.e. they are structurally
stable with respect to perturbations whose k-jets vanish along the singular closed orbits (&

depending on the closed orbit). It follows the existence of analytic models ([Ger], [L-L]).
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A CRITERION FOR THE TOPOLOGICAL
EQUIVALENCE OF EXPANSIVE FLOWS

Let ¢; : M — M be a transitive expansive flow on a closed connected 3-manifold A/,
and let ¥ — M be a surface of section, with (pseudo-Anosov) first return map f : M — M.

Recall that there exists a natural fibration

%o M5 s,
where M is the blow-up of M along 8L = {71,...,7~}, and that ¢, lifts to a flow ¢, : M —
M which is transverse to the fibration and may by identified, modulo reparametrization,
to the suspension of f.
If vy C M\ 8% is a closed orbit of ¢; and if ¥ C M \ M denotes the corresponding
closed orbit of J’t’ then the map p|; : ¥ — S! (which is a covering) has a well defined
degree, whose absolute value coincides with the period of the orbit of f corresponding to

7. We define
deg(v; X) = deg(pl4).

Let now {¥1,...,7%} be the collection of all singular closed orbits of ¢; which are disjoint

from 0X. The total irregularity of ¢: with respect to ¥ is the natural number

k

I(¢5;3) = ) _ |deg(7;; )| - irr(%;)-

j=1

Suppose that ¥; : M — M is another transitive expansive flow on the same manifold M.
Suppose that there exists a neighborhood U of 8% such that ; and ¢; define on U the
same 1-dimensional oriented foliation (in particular, 71,...,7n are closed orbits also for
;). Then 1, lifts to a flow ¥ : M — M, equal to ¢; on a neighborhood of OM.

If ¥/ ¢ M\ 8% is a closed orbit of ¢, and 5’ denotes its lifting to M \ OM, then it
makes sense to set deg(y';X) = deg(p|5') and to define the total irregularity of 3y with
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respect to ¥ as
h
I($;5) = ) | |deg(3}; B)| - irr(})
i=1
where {71, ...,7,} are the singular closed orbits of %, disjoint from 9%.
Our main result is the following.
Theorem 3.1. Let ¢; : M — M be a transitive ezpansive flow on a closed connected

3-manifold M and let ¥ < M be a surface of section, 80X # 0. Let ¢, : M — Al be

another transitive ezpansive flow on the same manifold M, such that:
i) there ezists a neighborhood U of 0T such that ¢; and ¢; define on U the same
1-dimensional oriented foliation;
i)
I(%4; %) 2 I(¢; X).

Then ¢; and ; are topologically equivalent.

This theorem (but not its proof) may be seen as a generalization of a theorem of Plante
([Pla2], see also [Pla3], {G-S], [Arm)] for related results), asserting that any Anosov flow on
a 3-manifold which is a torus bundle over S! is topologically equivalent to the suspension
of a toral Anosov diffeomorphism A. In this case the “model flow” ¢; is the suspension of
A, that is a flow with a surface of section with empty boundary (¥ ~ T?). We shall return
on that at the end of the chapter, where we will comment also the hypothesis 0¥ = 0: if
¥ is a surface of section without boundary (i.e., a global cross section) then the theorem
is still true modulo reversing of the time (v is topologically equivalent either to ¢; or to
¢—t)

Let us comment a little the hypotheses i) and ii).

About 1): up to topological equivalence, this is equivalent to require that {y1,...,7x} =
0% are closed orbits also for 9, with the same number of prongs and with the same twisting
of the invariant foliations as for ¢;.

About ii): because the total irregularity is always > 0, this hypothesis is trivially
satisfied if I(¢;; ) = 0. This happens if ¢; is an Anosov flow, or if ¥ is choosen so
that 0X contains all the singular closed orbits of ¢;. On the other hand, this hypothesis
seems essential: if it were unnecessary then we would obtain as a corollary that any

oL . dc
transitive expansive flow on X 4 S ﬁ%%ﬁ, f : ¥ — ¥ pseudo-Anosov, would be

22



SRR

topologically equivalent to the suspension of f or f~!. But such a corollary seems false, if
dimH* (X 4,R) > 1 (these problems are related to the Thurston norm, [Fri3]).

Here is a sketch of the proof of theorem 3.1. We take a fibre & — M and, using
the classical method of Roussarie ([Roul], [Rou2]) and following ideas of [G-S], [Pla3], we
isotope T (reldL) to a surface transverse to the stable foliation of ;. It is here that ii)
plays a réle. Next, we cut M along this surface, obtaining a manifold diffeomorphic to
¥ x[0,1] equipped with a foliation induced by the stable foliation of ;. The analysis of this
foliation through Novikov’s theorem ([Nov], [I-M], but we will need a “singular” version
of these results) shows that every closed orbit of b projects by M 2 8! to a nontrivial
element of m;(S*). It is then possible, using a Baire argument ([Ver], [Ful]), to prove that
the fibre T, which is a global cross section for @, is isotopic to a global cross section for
¥;. The rigidity theorem for pseudo-Anosov homeomorphisms shows that the first return
maps of q~5t and 1,51 are C'- conjugate, hence qgt and z/;t are topolegically equivalent. The
proof is completed by showing that this topological equivalence on M “blow-down” to a

topological equivalence between ¢; and ;.

Proof of theorem 3.1. Isotopies of

We denote by F*, F* the stable and unstable foliations with circle-prongs associated
to ¢:, and by G*, G* those associated to ¥;. The lifted flows ¢, 3, : M — M are equal
on a neighborhood of &M and have invariant foliations with circle-prongs F*, F" (for ¢,)
and G*, G* (for ;).

Consider a fibre X C ]\;[, e.g. X is the lift of the surface of section for ¢;. Remark
that 4, is transverse to ¥ near X. The stable foliation G* induces on ¥ a 1-dimensional
foliation with singularities H. A small perturbation ([Soll], [H-H]) ensures that all the
singularities of H belong to one of the following classes:

a) a saddle or a centre in intY, corresponding to a tangency of G* with ¥ of “Morse-
type”;

b) a singularity due to the transverse intersection of £ with a circle-prong of G*; such
a singularity will be called prong if it belongs to int%, and semi-saddle if it belongs to J%.

Lemma 3.2. ¥ is isotopic (rel@X) to a surface ¥’ such that the induced foliation

H' = G®|s' has only generic singularities (of the classes a) and b)) and there are not
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connections between two different singularities nor prong-selfconnections.

Proof.

A connection between two different saddles or a saddle and a prong or a saddle and a
semi-saddle may be removed through a small perturbation of ¥ ([Soll}, [H-H]).

Because G* has no connection between two circle-prongs nor circle-prong selfconnec-
tion, a connection between two singularities of the class b) (possibly coincident) is either
a connection between two semi-saddles on the same connected component of 9%, or a
connection between two different prongs arising from the same circle-prong.

The first case must be excluded for the following argument. If [ C ¥ is a connection
between the semi-saddles p,q € 0%, then any other fibre ¥, near ¥ admits an induced
foliation H. with a connection [, between two semi-saddles p,q. € 9X,, pe near p and
g near q. Glueing together these connections I Ve € [0, €], €y small, we obtain a strip
[0,€y] % (0,1) embedded in a leaf of G*. Projecting on M we find an embedded strip [0, €]
(0,1) contained in G*(y) \ v for some closed orbit v, such that the ends [0,¢,] x {0} and
[0,€] x {1} are on . Moreover, giving to vy any orientation and to [0, €y] x {0}, [0, €] x {1}
the orientations induced by [0, €], the inclusions [0, €] x {0} C v and [0, €] x {1} C v arc
both orientation preserving or orientation reversing.

Co,fo-lx © 1)

G&1X0,1c @S(XJ\Y

This situation is in contradiction with the structure of G*: every connected component
of G°(7) \ v is a cylinder. |

The second case (a connection | C ¥ between two prongs p, ¢ arising from the same
circle-prong C) may be avoided with an isotopy of £ ([I-M]). There exists a disk D em-
bedded in the leaf of G° containing I, bounded by [ and a segment m C C; the “Whitney
trick” allows to remove the connection [, through an isotopy localized around such a disk.
A last perturbation will give ¥’ with the desired properties.A

Consider now the foliation K induced by F* on . It is a foliation with prongs and

semi-saddles, because ¥ is transverse to F*. If P(K) denotes the set of prongs of K, we
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have the relation

I(¢;2) = -2 Z indez(p;)
p; EP(K)
where indez(-) is the Poincare‘-Hopf index. This equality is obtained by recalling that the
Poincare‘-Hopf index of a prong with k separatrices is —1(k — 2), and by observing that a
closed orbit of ¢, with degree h intersects ¥ in |h| points.
Let now ¥ be any surface isotopic to Z(reldZ), such that H = G*|s has only generic
singularities, and let ’P('}'.() be the set of prongs of H. Because a closed orbit of 4, with

degree h intersects T in at least |h| points, we have the inequality

I($E) <=2 > index(g;).

g; €P(H)

Hence the hypothesis I(1:; Z) > I(¢:; L) translates into

_ Z indez(q]-) > — Z zndem(p])

g; EP(H) p; EP(K)

(roughly speaking, H has more prongs then K).

On the other hand, the fact that ¢; = v near M implies that F* and G* are
topologically equivalent (not equal!) near OM , hence K and H are topologically equivalent
near 8% = 0% and, in particular, K and H have the same number of semi-saddles.

Lemma 3.3. ¥' is isotopic (rel0X) to a surface " which is transverse to G*.

Proof.

The above remarks and Poincare‘-Hopf formula show that if we are able to isotope %'
(relAT) to a surface £ such that the induced foliation H" = G®|s« has generic singularities
and no centre, then £ is transverse to G* (H" has more prongs and hence less saddles
then X, but K has no saddle...).

To eliminate the centres we use the method of Roussarie ([Roul], [Rou2]).

Let p € ¥’ be a centre of H', and let E, C X' be the closure of the union of leaves
of H' which are circles bounding on ¥’ a (unique) disk containing p. The properties of &'

stated in lemma 3.2, and the arguments of {Roul], imply that E, is contained in in{X' and
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it is bounded by one or two homoclinic trajectories ending to the same saddle ¢ € int¥':

R
=
type T) type TC)

The embedding &' «— M is incompressible, i.e. it induces an injection m;(Z') —

w1 (M). The manifold M is irreducible, because M is. The foliation G* is without vanishing
cycles ([God], [C-L], [H-H]). These three properties are suflicient to repeat in our (singular)
context the arguments of [Roul,49-52], and to prove that ¥’ is isotopic to a surface (again
denoted X') such that the induced foliation H' satisfies again the conclusions of lemma 3.2
and, moreover, has no centre of type I).

Let now p € ¥’ be a centre of type II). Because there are not centres of type I), the
two homoclinic trajectories ly,l; C ¥’ which bound E, are both noncontractible on the
leaf L € G* which contains them ([Rou2,109]). In particular, L is a leaf with nontrivial
fundamental group, i.e. L ~ cylinder or L ~ Moebius strip. A small perturbation of ¥’
pushes the saddle ¢ € E, to a leaf homeomorphic to R?, because the leaves with this
property are dense in M. Now the centre of type II) has been replaced by a centre of type
I), which is removed through an isotopy as before. After a finite number of steps the proof

of the lemma is completed. A

Again the Poincare’-Hopf formula shows that, now, we must have
I(¢4; ) = I(¢1; X)

and every closed orbit of ¥; with degree h intersects £” in exactly |h| points. However,
there may be, a priori, closed orbits with degree 0 and hence disjoint from X".

Cut M along this surface £”. Because I is isotopic to a fibre of M % S!, the result
of the cutting is a manifold M with boundary and corners diffeomorphic to £ x [0, 1].
The foliation G* induces a foliation G* with circle-prongs and line-prongs (obvious the

definition), transverse to 8, M s x {0,1}.
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It may happen that there exists a continuous map 7 : [0,1] — M with image in a
leaf L € G°® such that 4(0),7(1) belong to the same component of 8, M and v represents
a nontrivial element of m;(L,8L). We shall say that v is an arch map. It will be useful
to choose carefully the surface X" transverse to G*, in such a way that G* does not admit

arch maps.

To this end, recall that an orientable (nonorientable) half Reeb component ({M-R],
[G-S]) of G* is a closed saturated subset Q C (intZ") x [0,1], bounded by a leaf L € G*
homeomorphic to S* x [0,1] (S  [0,1]) and a subset K C (intE") x {0,1} homeomorphic
to S? x [0,1] (S* < [0,1]), such that its double 2 - is an orientable (nonorientable) Reeb

component of 2 - G*.

By a singular half Reeb component of G° we mean a closed saturated subset Q C
(intZ") x [0,1], bounded by a subset K C (intL") x {0,1} homeomorphic to S* x {0, 1],
two leaves L;,Ls € G* homeomorphic to S* x [0,1], and a singular circle C for which L,
and L, are separatrices, such that the restriction of G® to intQd is C'— conjugate to the

restriction to the interior of an orientable half Reeb component.

A cascade of singular half Reeb components is a closed saturated subset £ C (intZ") -
[0,1] bounded by an annulus K C (:ntX"”)x {0,1}, a singular circle C, and two separatrices
Li,L, ~ S! x [0,1] at C, such that L;,L, are in the boundary of singular half Reeh

components {2, ), and every separatrix at C is contained in 2.

/5l Z
singular half Reeb component cascade of 9nhgqlat~ half Reeb
compeonehts

Lemma 3.4. ¥" is isotopic (rel0X) to a surface X" which is again transverse to G*
and moreover, if G° denotes the foliation induced by G* on the manifold M ~ £ x [0,1]
obtained by cutting M along X", then G° has not half Reeb components nor cascades of

singular half Reeb components.

Proof.
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Let Q C M be a cascade of singular half Reeb components for G*, and let Ly, L,
be the corresponding boundary separatrices, {2;,{)s the singular half Reeb components
which contain L;, Ly, C the singular circle, K C 8, M the boundary annulus. Remark

that H"” = G*|g~ has (at least) two parallel planar Reeb components in correspondence of
KN(QUQ).

The “leaf” L; U C U L, has contracting (or repelling) holonomy on the side exterior
to €. This is sufficient to find an isotopy of £ which produces a surface £ equal to X"

outside a small neighborhood of K, disjoint from {2, and still transverse to G

This isotopy “cancels” a cascade of singular half Reeb components. From the point of
view of the foliation ", this corresponds to a transformation H" — ' which eliminates

(at least) two planar Reeb components:

C
\
)y -

)

A similar isotopy cancels a half Reeb component.

It may happen that an elimination of an half Reeb component or of a cascade of
singular half Reeb components produces a new half Reeb component or a new cascade of

singular half Reeb components, because (singular) half Reeb components may be, roughly
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speaking, “enclosed” one inside the other:

>
_ (24 2 ZI/ m %’u

However, limit cycles that bound planar Reeb components cannot accumulate and

hence are finite, so after a finite number of isotopies of the previous type we arrive to a
surface ¥’ satisfying the conclusion of the lemma. To this regard, observe also that the
elimination of planar Reeb components in H" may produce new limit cycles, but these
cycles are surely not in the boundary of half Reeb components, because they admit closed

transversals. A

Proof of theorem 3.1. Closed orbits of ¥;
Let &/ C M be the surface isotopic to £ (reld%) obtained in lemma 3.4: G* has no

half Reeb component and no cascade of half Reeb components. The following lemma may
be seen as a singular (and relative) version of Novikov’s theorem ([Nov], {I-M]).

Lemma 3.5. G* does not admit arch maps.

Proof.

Assume, by contradiction, that there is an arch map
7:[0,1] » M ~ X" x[0,1];

to fix ideas, suppose 7(0),7(1) € £" x {0}, and let L € G* be the leaf containing ([0, 1]).

We collapse every circle ¢ x {t}, ¢ a connected component of §X", ¢t € [0,1], to a
point; then we double the result. We obtain a closed 3-manifold N, diffeomorphic to § x S?
where S is a closed surface. The foliation G* yields a foliation G on N with circle-prongs.
There may be circle-prongs with only 1 prong (they come from connected components
of %" x [0,1]), and there may be connections between two circle-prongs C;,C> (C? is
then the doubling of C;, and the connection is the doubling of a leaf of G* which joins
C: C intM with 8, M = £" x {0,1}). In the following discussion it will be useful to recall
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that every closed orbit of 9, intersects &' in |k| points, where h is the degree of the closed
orbit.

Z’"/%__G}\Zm = %\ >
Q@”’ é’“ﬁ

allowed closed orbits prohibited closed orbil

The arch map 7 generates a continuous map w : S! — N, with image in the leal

2-L € G, which is homotopic to zero in N but not in 2 L.

Let I' : D? —» N be a continuous symmetric extension of w. We may suppose that
I'(D?) does not intersect the (eventual) circle-mono-prongs of G, and (after perturbation)
that I' satisfies the usual general position properties: I'*(G) has only singularities of the
type saddle, prong, centre; there are not connections between two saddles or a saddle and
a prong. We remove through a Whitney disk the eventual connections between two prongs
arising from the same circle-prong. However, there may be “irremovable” connections

between two prongs pi,p2 lying on two different circle-prongs Cy, Cs.

The arguments of Inaba - Matsumoto ([I-M, 336-337]) work also in our situation: the
only difference is that the vanishing cycle v : S' — D? that we find may be “singular”,
i.e. composed by two connections Il;,l; between two prongs p;,p2 lying on two different

circle-prongs C;,C,. See also [God] and [C-L] about the techniques to find vanishing

cycles.

The foliation G* has no half Reeb component (and, obviously, no Reeb component),
hence G has no Reeb component. The vanishing cycle v generates, as in [I-M, 337-339], a
compact extended leaf which is the boundary of a singular Reeb component (= the double

of a singular half Reeb component). This singular Reeb component is symmetric, hence
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the initial foliation G® on M has a singular half Reeb component {y:
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Briefly, we have relativized Inaba - Matsumoto theorem.

The foliation G* may have several singular half Reeb components Q;, ..., Q; generated
by vanishimg cycles in I'(D?). We remove all these components, “pushing” "’ x {0} insidc

M preserving the transversality (as was done in lemma 3.4):

L ((cXY))

Z“;({o}

Remark that, by hypothesis, there are not cascades of singular half Reeb components,
so any annulus of £" x {0} which has been pushed inside M must intersect at least one
separatrix of a circle-prong. This fact ensures that the map 4 is still an arch map, even after
the pushing of £ x {0}. We repeat the above arguments and we find another (perhaps
singular) half Reeb component. The only possibility is that this component contains as a

leaf one of the above separatrices:

me $07

(in particular, it is a nonsingular half Reeb component).

This new half Reeb component corresponds to a singular half Reeb component of G*,
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and we arrive to a contradiction with the fact that all the singular half Reeb component
were pushed-off M. In conclusion, we arrive to a contradiction with the supposed existence

of an arch map. A
We are finally able to prove the central step of the proof of theorem 3.1.

Proposition 3.8. Every closed orbit v of ¥ projects under M 5 S! to a noncon-

tractible curve.

Proof.

Suppose firstly that v is a regular closed orbit, and let L € G* be the leaf containing 7;
L is either a cylinder or a Moebius strip, but we will consider only the former case because

the latter is completely similar (alternatively: pass to a double covering...).

Consider the intersection L N X" ¢ L. By transversality, it is a closed 1-dimensional

submanifold, consisting of:

i) circles, non homotopic to zero on L (because they are non homotopic to zero in '

and hence in M, being 7, (%") — m (M) injective);
ii) lines from +oo to —oo, where +co denote the two ends of L;

iii) lines from 400 to +oo or from —oo to —oo.

\ine of class & line of class iil)

The transitivity of v, implies that L is dense in M, hence LN L" is dense in X' In

particular, L N X"’ cannot reduce only to circles: every circle in LN X" is a limit cycle for

H”/ = g"ﬂlSlN .

Suppose that there are not lines of class ii). Then there is a connected component ¢

of L\ (L N X") which is not simply connected and is bounded by lines of class iii) and,
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possibly, one circle.

N
A

Cutting M along £, this component C gives origin to a leaf C € G*, with 8C C
&M = =" x {0,1}. We easily find a path « : [0,1] — C such that:

a) 7(0),7(1) are on the same line T' C 8C

b) 7y defines a nontrivial element of m1(C,0C).

This « is an arch map, and we arrive to a contradiction with lemma 3.5. This means
that L N " contains at least one line of class ii) (and, consequently, no circle).

Suppose now that there are lines of class iii). We can find a connected component (
of L\ (L NX") bounded by two lines of class ii) (possibly coincident) and one or more

lines of class iii).

\ _
- C

Let C be the corresponding leaf of G°. Because dC contains at least 3 connected

components, we may find a path v : [0,1] — C such that:

a) 7(0),7(1) are both on £ x {0} or both on T x {1}

b) 4(0),7(1) are on two different lines I';,T'y C 8C.

Again, v is an arch map and we arrive to a contradiction.

We have proved that L N £"” is composed only by lines of class ii), and hence every
connected component of L\ (LNE") gives origin to a leaf of G* homeomorphic to R x [0, 1].
The absence of arch maps shows again that every such leaf has R x {0} on a connected

component of 8M and R x {1} on the other connected component. This implies that v
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intersects £"’ a number of times (> 0) equal to the modulus of the degree of p|, : ¥ — S!,
from which the conclusion of the proposition.

It remains only the case of 4 singular. The remark after the proof of lemma 3.3
reduces the problem only to the case y N "' = ). We take a separatrix L of v (L is dense
in M), then LNE" is formed only by circles and lines from +oo to +o00 (400 is the uniquc
nonsingular end of L), and there is at least one line. We arrive easily to a contradiction

working as in the nonsingular case. A

Proof of theorem 3.1. Conclusion

The only result of the previous work that we need is proposition 3.6.

The fibre ¥ C M represents a cohomology class w € HY(M,Z): if v C M is an
oriented closed curve then w([7]) is the degree of p|, : v — S*. Proposition 3.6 tell us that
for every closed orbit v of 9; the value w([7]) is different from 0. Because closed orbits are
dense, the arguments of [Ver, 74] shows that either w([y]) > 0 for all closed orbits v, or
w([v]) < 0 for all closed orbits v (a closed orbit is oriented by the flow).

Then ([Ful], [Ver], [Fril]) there exists a fibration

q:]\?I—»Sl

homotopic to p and with fibres transverse to J’t-

Lemma 3.7. The fibrations p and q are isotopic.

Proof.

It is a typical (and known) result “homotopy = isotopy”, which may be proved in
several ways ((Wal], [Lau], [Fri3], [K-Q]). First of all, ¢|,;; and ply,; are homotopic and
hence isotopic, so the fibration defined by ¢ is isotopic to the fibration defined by some
g : M — S', with ¢ = p near M. We collapse to a point every fibre of Ploar = 9'loa1s
obtaining a closed 3-manifold M, with two homotopic fibrations py, g, : My, — S?!, equal on
a neighborhood of a closed (perhaps non connected) curve I', transverse to the fibrations.

By [K-Q], there exists an isotopy which transform ¢, to p,. This isotopy, perhaps,
does not preserve I', but maps I’ to some closed curve I, isotopic to I' and transverse to
the fibres of py. It is clear how to produce a second isotopy which preserves p, and maps

[ to I'. The composition is then an isotopy which transforms ¢, to py preserving I'.
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This isotopy on My lifts to M and completes the proof. A

In other words, there exists an isotopy of M which transforms 1/3: to a flow (again
denoted by 1th) transverse to the fibres of p : M- S!, as the flow d.)t. We may assume
that such an isotopy is the identity near dM, and hence blow-down to an isotopy of M.
So, there exists an isotopy of M which transforms 1; to a flow (again denoted by ;) such
that the open book decomposition adapted to ¢; is adapted also to ;.

Let f,g: ¥ — X be the first return maps of ¢.5t, 1[11, relative to a fibre £. Because ¢,
and WZt are transverse to the same fibration, f and g are isotopic homeomorphisms. They
are also pseudo-Anosov, hence by theorem 1.4 they are topologically conjugate through a
homeomorphism h : ¥ — ¥ isotopic to the identity. The homeomorphism h generates a
homeomorphism

H:M—>M

which realizes a topological equivalence between é: and b (maps orbits of é: to orbits of
V).

Recall now the two circle fibrations defined on OM:

1) the fibration £, given by restriction of p; it is preserved by H|,,;, by construction
of H;

2) the fibration £; arising from the blowing up M — M; it is preserved by ¢| oA =
belonr-

Both Ly and L, are transverse to ¢;|,;; = ¥¢|95;, and they are transverse each other.

Hence there exists a continuous function 7' : 8M — R such that, if we define
K(z) = ¥r)(z) VYo € M,

then K is a homeomorphism and K o H|,,; preserves the fibration £, instead Ly. A careful

extension of T to all of M will give a homeomorphism
K(z) =¥j(,)(z) VeeM

which extends the previous K.
The composition KoH is then a homeomorphism, which still realizes a CV- equivalence
between q.St and 1[»,, and moreover preserves £;. Hence we may blow-down K o H and obtain

the required topological equivalence between ¢; and ;. A
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Expansive flows on torus bundles

A consequence of theorem 3.1 is that any transitive expansive flow v¥; on a torus
bundle

T3.l _ T2 X {07 1]

" (z,0) ~ (Az,1)’ A€ GL(2,2)

is C'- equivalent to the suspension of A or A™! (cfr. [Pla2]). Remark that if T? admits
an expansive flow then A is necessarily hyperbolic, because m;(T?) must have exponential
growth ([Patl]). We may take as a model flow ¢; the Anosov flow given by suspending 4,
and a fibre T? — T? as a surface of section ¥. Now 0% = (), but working exactly as in 3.1
we arrive to construct an homeomorphism h of T? which maps orbits of ¢; to orbits of ;.
If h preserves the orientations of the orbits given by the flows then 1, is C"- equivalent to
¢+, otherwise it is C- equivalent to ¢_;, i.e. to the suspension of A~?.

We show here how to remove the hypothesis of transitivity.

Theorem 3.8. Any ezpansive flow on T3 is topologically equivalent to the suspension
of A or A7L.

Proof.

We observe that in the proof of 3.1 the transitivity of 4; was not used until proposition
3.6. Hence, if 9, : T3, — T? is any expansive flow, then we may isotope a fibre T? C T?
to a torus & C T?_l which is transverse to the stable foliation G* of ¥; and, moreover, the
foliation G® on M ~ ¥ x [0,1] obtained by cutting along ¥ is without half Reeb components
and without cascades of half Reeb components.

In fact, the same proof of lemma 3.4 shows that we may obtain a little more: we may
obtain that G* is without quasi-cascades of singular half Reeb components, where with this
term we denote a closed saturated subset 2 C M which is like a cascade except that it is

allowed that the singular circle C C € has one (but only one!) separatrix outside Q:

We want to show that G* is without circle-prongs, i.e. 1, has no singular closed orbit.
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Remark that if there is a singular closed orbit v, then v C T3 \ I, because ¥ is
transverse to G* and it is a torus. Moreover, if L is a separatrix at 4 then LN X is reduced
only to a collection of circles, because G* does not have arch maps (cfr. proof of 3.6).
Because A is hyperbolic and hence cannot fix an integral cohomology class, we deduce
that LN X is either empty or consists of a single circle (if there were two circles then there
would be a cylinder in G* which joins £ x {0} and ¥ x {1}...). Hence a separatrix L at
¥ C M either is completely contained in intM, or it realizes a cobordism between 4 and a

closed curve on M.

So, let 4 be a singular closed orbit of v, and let 4 C M be the corresponding circle-
prong of G*. Because [v] # 0 in Hi(T%,Z), we may find an embedding j of the annulus
A =S! x [0,1] into M, with j(S! x {0}) C £ x {0} and j(S! x {1}) C £ x {1}, such that

the intersection number j(A) -4 is different from zero.

We put A in general position w.r to G* ([Soll]) and we use the Whitney trick ([I-M])
to remove (from the induced foliation on A) connections between two prongs. We obtain

on A a foliation ‘H with the following properties:

i) ‘H has only generic singularities: saddles, centres, prongs in intA, half-saddles and

half-centres on J04;

ii) H has no connection between two prongs, two (half-)saddles, a prong and a (half-)

saddle, nor prong self-connection;
iil) H contains some prongs, because j(4) -4 # 0.
Let us observe also the following property.

Lemma 3.9. Let | ~ [0,1] C A be a segment transverse to H with the eztrema
belonging to some eztended leaf L € H, and letl; C L be a segment with eztrema coinciding

with those of . Then lU!; s not contractible in A.

Proof.
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Assume by contradiction that the lemma is not true: [ Ul; bounds a disk D C 4

= i(5) 0oy

The foliation X = H|p has Poincare’-Hopf index > % If p € D is a centre then (cfr.
lemma 3.3) the boundary of the closure E, of the union of the circles of K surrounding
p must contain a saddle ¢ € D. If p;,p2 € D are two centres associated in this way to
the same saddle g, then we may “continue” the family of circles around E,, U E,,, again

thanks to the absence of vanishing cycles in G*:

ce

This exterior family of circles must “die” on some other saddle. This means that, for

K, § saddles > § centres, and hence the contribute of saddles and centres to the Poincare’-
Hopf index of K is nonpositive.

Because a prong gives a negative contribution to the Poincare’-Hopf index, we arrive
to a contradiction with the fact that the total index of K is positive. A

Lemma 3.9 has the consequence that Poincare’-Bendixson theorem holds also for H,
even when H is not orientable.

Let now p € A be a prong of H (originated from %), with separatrices Iy, ..., I (k > 3).
Every [; either goes to A, or tends to a closed orbit, or to a policycle. This latter case
may be avoided by a perturbation of A.

If all except at most one separatrices go to 04, then all except at most one separatrices
of 4 go to OM. These separatrices bound a saturated subset § C M which is either a

cascade, or a quasi-cascade, or it contains a cascade or a quasi-cascade or a half Reeb
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component. Contradiction with the choice of X.
Hence at least 2 separatrices at p (say, [; and ;) tend to closed orbits v;,7> C 4.
These two closed orbits are not homotopic to zero in A4, and they must be different by

lemma 3.9:

Yes

One sees easily that now there is no room for a third separatrix [3: I3 cannot go to
0A, because p is between v; and <2, and cannot tend to a third closed orbit v;.

Briefly, H has no prong, and G° has no circle-prong.

To complete the proof we have several choices:

first) once we know that G° is regular, we may use the theory of holonomy invariant
measures as in [Pla2] to obtain that 4, is transitive; then we apply 3.1, or we reduce
to [Pla2| after recalling that (via surfaces of section) G* regular + 4, transitive = 1 is
topologically conjugate to an Anosov flow.

second) the lifting of G° to the universal covering R? is a trivial foliation by planes
([Sol2]); in the next chaptef we will show that this implies the transitivity; then we conclude
as in first).

third) in the last chapter we shall study nontransitive Anosov flows, but the results
therein are still true in the expansive nonsingular case; those results show that ; is
transitive, and we conclude as before. A

In the next chapter we will see more interesting examples where theorem 3.1 applies.
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EXPANSIVE FLOWS ON SEIFERT MANIFOLDS

In this chapter we concentrate our attention to expansive flows defined on a 3-manifold
M which is a Seifert fibration. We recall that a closed connected 3-manifold M is said to
be a Seifert manifold or Seifert fibration if there exists on M a foliation L by circles, such
that every circle has an orientable tubular neighborhood ([Hem], [Eps]).

We may endow the leaf space B = i‘ﬁ—l with a structure of closed two dimensional
orbifold. The singularities of B are of conical type and they correspond to leaves of £ with
nontrivial holonomy. For many purposes, we may consider M as a circle bundle over the
orbifold B; the fibres over the singularities of B are called singular fibres. In particular,

there exists an exact sequence
1-Z->m(M)->m(B)—1

where Z is the cyclic normal subgroup generated by a regular fibre. A singular fibre with
holonomy of period p represents in m; (M) a p-root of the element represented by a regular
fibre.

An example of Seifert manifold is a 3-manifold which is a circle-bundle, in this case
B is smooth (without singularities).

E. Ghys classified in [Ghyl] Anosov flows on circle-bundles up to topological equiv-
alence and up to finite covering. It seems that his classification extends to the case of
Seifert manifolds: any Anosov flow on a Seifert manifold M with base B is, up to topolog-
ical equivalence, a covering of the geodesic flow on B with respect to a metric of constant
negative curvature (remark: B has singularities, but its unit tangent bundle T} B is smooth,
and the geodesic flow on B is a smooth flow on 71 B, of Anosov type if the curvature is
negative).

Our results allows to extend Ghys’ classification to cover the case of expansive flows.

Theorem 4.1. Let ¢; : M — M be an ezpansive flow on a Seifert manifold M. Then

¢+ 18 topologically equivalent to an Anosov flow.
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As a corollary we obtain the theorem of [Pat2]: a geodesic expansive flow on a surface is
topologically equivalent to the geodesic (Anosov) flow with respect to a metric of constant
negative curvature.

The proof of theorem 4.1 is in two steps. Firstly we show that the stable and unstable
foliations of ¢;, F* and F*, are without singularities and their liftings F*, F" in the
universal covering M ~ R? are product foliations (we follow here some ideas of [Ghy1]).
Secondly we prove that the above fact implies that ¢, is transitive (see [Sol3] for the Anosov
case). The proof of 4.1 is completed by the existence of surfaces of section (chap. 2): a
transitive expansive flow with nonsingular invariant foliations is topologically equivalent
to an Anosov flow.

According to recent developments in the topology of 3-manifolds ([J-S]), the “simplest”
3-manifolds are the so called graph manifolds (introduced by Waldhausen) which are ob-
tained by glueing together Seifert manifolds along boundary tori. Examples of Anosov
flows on graph manifolds (different from Seifert manifolds) were found by Haendel and
Thurston ([H-T]). It would be interesting to extend theorem 4.1 to this class of manifolds,
or at least to prove that an expansive flow on a graph manifold is necessarily transitive.

After the proof of theorem 4.1 we will specialize to the case where M is the unit

tangent bundle of a closed surface.

Structure of the stable and unstable foliations
Let M be a Seifert manifold, with base orbifold B and projection p : M — B. Let
¢:: M — M be an expansive flow, with stable and unstable foliations F*, 7*, and let S

be the singular set of F*, F* (§= union of circles).
Let w : M — M be the universal covering of M, and let

S‘ — 7‘_—1(5), ].:s — 7\'*(‘7:8), J:-u — Tr*(f“).
The set S is a countable and discrete set of lines, closed in M, and F*, F* are foliations
with line-prongs, singular along S. Denote by F, F the (regular) foliations on M\ S
obtained by restriction of F*, F*. Every leaf of ;! or F" is a plane, closed in M \ S (for
Inaba - Matsumoto - Paternain results).

The foliations F; and F? may be not transversely orientable, because there may be
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circle-prongs in S with an odd number of prongs. Hence the following lemma (which does

not use the Seifert structure) is not completely trivial.
Lemma 4.2. Let j : R — M \ S be an embedding transverse to f-()’ Then every leaf
of F} intersects j(R) in no more then one point.

Proof.

Assume that aleaf L intersects j(R) in two points j(q),j(p), ¢ > p, and let v : [0,1] —
L be a curve joining j(q) and j(p). Fix a continuous coorientation of L in M along v, then

there are two possibilities: T( R)
d J(R) L
Q) l—- T(q)

(\a

BI()

i) the coorientations in v(0) and (1) are both compatible or both incompatible with
the coorientations induced by j7(R): then it is easy to perturb the cycle v([0,1]) U 5([p, q])
to obtain a closed curve transverse to F;, but this is absurd because F* does not admit

closed transversals homotopic to zero.

ii) the coorientation in 4(0) is compatible with the one given by j(R) and the coori-
entation in (1) is incompatible (or viceversa): take a disk D? < M with boundary
7([0,1]) U 5([p, g]) such that ([I-M]) F¢ induces on it a foliation G with centres, saddles,
prongs, without connections between two prongs or a saddle and a prong, and without
prong self-connections. Then a Poincaré-Hopf argument shows that G has at least one
prong (with an odd,> 3, number of separatrices), and all the separatrices of this prong
must intersects j([p, g]), because the leaves of G are closed in D? \ Sing(G). Two of these
separatrices separate a sub-disk D? C D? with a piece of boundary on j((p,q)), and we
may repeat the above argument for D2. An iteration of this construction would produce
an infinite number of prongs on D?, which is absurd. A

In particular, F? (and similarly F*) is a simple foliation ([God]). As a consequence,

the leaf spaces
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are one-dimensional connected manifold, with countable base, but perhaps non-Hausdorff.

The fundamental group m;(M) acts on M preserving S and F?, and so there is an
induced action on V*. Fixed points of a € m;(M) on V* correspond to leaves which project
on M to leaves containing a closed orbit representing «, or to separatrices of some singular
closed orbit representing a.

The following lemma also does not use the Seifert structure.

Lemma 4.3. Let § € (M) be a central element, different from the identity, then 6
acts on V* without fized points.

Proof.

It is exactly the same of lemme 2.4 of [Ghyl]: the set

Fiz™(§) = {z € V*|z and §(z) are not separated}

is closed, countable (because Fiz(§) is countable and Fiz=™(§) \ Fiz(6) is contained in
the countable set of vbranching points) and m;(M)- invariant (because § is central), and
if it is not empty then the foliation 7§ = F*|a;\s has a closed saturated set K which
is transversely countable. It is easy to see that if {K,}aer is a collection of closed Fj-
saturated non-empty sets, totally ordered with respect to the inclusion, then N,er K, is
non-empty (in spite of the non-compactness of M \ S: we use here the structure of F)
around the singular set S, in particular the fact that there is a finite number of leaves of
F* with one end on a circle-prong). Hence we may apply Zorn lemma to deduce that KX
contains a minimal set, which is a closed leaf because of the transverse countability. But
this is in contradiction with Inaba-Matsumoto-Paternain theorem, hence Fiz™(§) = 0. A

Clearly lemma 4.3 holds also for roots of central elements: if § € 7 (M) is such that
B* is a nontrivial central element for some k # 0, then 3 has no fixed point on V*.

Remark: if we could know a priori that ¢; is transitive, then lemma 4.3 could be
proven in the following way. If ¥ C M is a closed orbit of ¢;, representing a € 7 (M),
then using the fact that the stable leaf of 4 accumulates on itself it is easy to construct
a closed transversal to F° representing a * 3 x a™! * 7! for some 8 € m (M), and the
nontriviality of this element (by [I-M]) implies that « is not a central element.

Now we start to use the seiferticity of M.

The results of Paternain (7, (M) has exponential growth) and Inaba - Matsumoto (A/
is aspherical) imply that M is the euclidean space (this is, in fact, always true) and that
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the base orbifold B has genus g greater or equal than 2. We want to prove that F*, F" are
without singularities, hence we may work up to finite covering. So we may assume that
M and B are orientable, and in particular that the cyclic subgroup Z C m (M) generated
by a regular fibre of M % B is a central subgroup ([Hem)).

Lemma 4.3 tell us that no closed orbit 4 of ¢; is freely homotopic to a fibre (regular
or singular). In particular, every closed orbit 4 of ¢; projects on B to a curve p(y) which
is not homotopic to zero, thanks to the exact sequence 1 — Z — m(M) — m(B) — 1.

Let w C B be a closed, simple, smooth curve, non homotopic to zero, and let T2 C M
be the incompressible torus 7~ (w).

Lemma 4.4. The torus T2 is isotopic to a torus disjoint from S.

Proof.

We use arguments similar to those of theorem 3.8 (the ubiquitous Poincaré - Hopf
formula...). First of all we put T2 in general position with respect to the foliation F*
([Sol1]): the induced foliation G has only a finite number of centres and saddles due to
tangency points, and a finite number of prongs due to the transverse intersection T2 N S;
there are no connections between two different saddles, and no saddle-prong connections.
An isotopy of T? will ensure that, moreover, there are no connections between two different
prongs and no prong self-connections ([I-M]). We claim that, at this point, we have T2NS =
0.

Consider a centre p € T2 and define (cfr. [Roul], [Rou2]):
E, = closure of LJ{D2 C T%|p € D? and Glpz\, is a foliation by circles}

as in Roussarie’s works, the absence of vanishing cycles in F* implies that 0E, is formed

by one or two separatrices and a saddle point ¢:

>

In this way (cfr. lemma 3.9) we associate to every centre p a saddle g = q(p). It may
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happen that two centres p;,p, are associated to the same saddle ¢:

but the absence of vanishing cycles in F° implies that there exist embeddings D? <y
T2 such that E, U E,, C i(D?) and Glip2)\(E,,UE,,) is a foliation by circles. The union
of all these embeddings is again a region bounded by one or two separatrices and a saddle
point.

In conclusion we see that the number of saddles must be greater or equal then the
number of centres, and the Poincaré-Hopf formula shows that these two numbers are in
fact equal, and the number of prongs is zero, i.e. T2 NS = 0. A

Suppose now by contradiction that S # 0, and let ¥ C S be a singular closed orbit.
The previous lemma, and the arbitrarity of w, shows that p(y) C B is homotopic to a
curve disjoint from w, for any w C B as above. This implies that [p(y)] = 0 in m;(B), and

we arrive to a contradiction with lemma 4.3. Briefly, we must have
S=0.

Finally, we may at this point repeat the proof of Ghys about the triviality of F* and F"
([Ghy1], lemmes 2.4-2.7). We resume these facts in the next proposition.
Proposition 4.5. Let ¢, : M — M be as in theorem {.1. Then F*, F" are regular

Mo MR

foliations and their universal coverings F*, F* are product foliations (i.e., =N

A

Transitivity
The proof of theorem 4.1 is completed by the following result.
Proposition 4.8. Let ¢: : M — M be an ezpansive flow on a closed J-manifold M,

such that F°, F* are reqular and f"", F are product foliations. Then ¢; is transitive.
Proof.
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It is sufficient to prove the transitivity of some finite covering of (M, ¢;), so we may
assume that F*, F* are orientable and transversely orientable. A transverse orientation
of F* allows to distinguish between a “positive side” F:* and a “negative side” F;~
of every leaf F2: F: = F:* U[¢pr(z)] U F2~ (disjoint union). Similarly, we decompose
Fi = FI* U [gm(z)] U F2m.

Define (cfr. [Ver]):

Cy={ze M|F*nF:=10}
C_={zec M|F,” nF, =0}
As in [Ver, 54], C; and C_ are finite unions of closed orbits of ¢;. In particular, if = is
not periodic then
FIrNFr#£0 FI nFy #0.
Remark that every leaf contains nonperiodic points.

Lemma 4.7. Every leaf of F*° intersects every leaf of F".

Proof.

Assume by contradiction that L* € F*, L* € F* do not intersect; then L* and L"
also do not intersect. Let L* ¢ M = R3 be any lifting of L®, and let K = n~!(L")
(m : R®* — M is the universal covering). The leaf L* € F* is a closed plane which divide
R3 into two open subset Oy, Oy: R® = 0, U L* U O, (disjoint union). Because K N L* = 0
and K is closed, the sets A= KN O;, B=KNQO; are closed, disjoint, saturated by F",
and both nonempty. The projections Ay, By, Ky = Ay U By of A, B, K on the leaf space

3

Ve = i_‘— ~ R are closed, disjoint, nonempty. \/ v

—>
L Oy ProTectioh a.

Take a € Ay, b € By, and suppose a < b (the opposite case being completely analo-
gous). Define

ay = Ma.:c{r S A()I'T‘ < b} b() = A’I'I;n{s € BUIS > au}.

Because Ay, B, are closed and disjoint, we have ay < by, and (ay,by) N K = 0. Let L
be the leaf of F" corresponding to ay and let Z € L be a point such that ¢ = (&) is
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S

not periodic. The above remarks about C means that F:* (obviously defined) intersects

m (M)(LY), because F2% intersects F* = w(L¥). Hence there exists ¢y € K, ¢y > ay, such

that F2* intersects the leaf L% of F* corresponding to cy. Because (ag,by) N K =0, we

r

must have ¢y > b, and so .7:';+ intersects the leaf L.i‘ of Fu corresponding to by.
& AV
~v VR

L. 2 / - LC::>
T —_ b,

But L* separates A and B, and hence every other leaf of F* cannot intersect both A
and B. This contradiction shows that L* N L* # 0. A

The proof of 4.6 can be completed with the spectral decomposition theorem (see

introduction): if ¢; were not transitive, then among the basic sets {QJ}? ; there would
be an attractor ), (Uzeq; F; = §;,) and a repellor Qj, (Uzeq;, F; = Q;,), in particular
FinFy =0if z € Qj,, y € Qj,. But this is in contradiction with lemma 4.7. A

Anosov flows on unit tangent bundles

Let M = T1S be the unit tangent bundle of a closed orientable surface S and let
¢: : M — M be an Anosov flow. The exponential growth of m;(M) implies that the
genus g of § is greater or equal than two; we may put on S a metric of constant negative
curvature and we may consider on M the corresponding geodesic flow ¥, : M — M, which
is of Anosov type.

Theorem 4.8. The flows ¢: and ; are topologically equivalent.

Using theorem 4.1 we obtain that the same conclusion holds even if ¢; is supposed
only expansive.

Theorem 4.8 is not new. It may be deduced from Ghys’ classification ([Ghyl]) by
observing that any covering 715 — T1 S is in fact a diffeomorphism (why?). It may be also
deduced from the results of Matsumoto in [Mat]. However we like to give a direct proof of

4.8, using theorem 3.1. Our method is very near to that of Matsumoto.

First of all we recall Birkhoff’s construction of surfaces of section for the geodesic flow

47



[

¥ ([Bir], [Fri2]). We take 2g + 2 closed, simple geodesics on §, such that the complement.

is simply connected (four disks):

Two “opposite” disks Dy, D5 in the complement are foliated by circles, with a singu-
larity of type centre, such that every circle is strictly convex. Let X be the surface in 775
constructed taking the closure of all the unit tangent vectors to the leaves of these folia-
tions. This surface ¥ has boundary composed by 4g + 4 closed orbits of ¥; (corresponding
to the initial 2g + 2 closed geodesics: every geodesic may be percorred in two directions),
and intY is transverse to ¥; because the circles on D, D; are strictly convex. It is not

difficult to see that ¥ is, in fact, a surface of section for ;.

The stable foliation G* of 7, is transverse to the fibres of T}.§ % § and hence ([God],

[C-L]) is given by a suspension of a representation of 71(S) into Homeo, (S?):

T : 1 (S) —» Homeo(S?).

We may assume ([Ghyl]) that also the stable foliation F* of ¢; is transverse to the fibres

and hence given by a suspension of a representation ®:

® : m (S) — Homeo,(S?).

The representations ® and ¥ contain all the information that we need about the flows ¢,

and ’(bf,.
Fix a base point ©y € S and consider oriented closed curves 71,...,724+2 as in the
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following -picture:

Every ¥([v;]) € Homeo(S') has exactly two fixed points mj',:cj_ € S? (:nj' is attrac-
tive, z; is repulsive), which correspond to two closed orbits 7;',7]-_ € 0% whose projections
on S are homotopic to «;.

The conclusion of the following proposition is a sort of translation of hypotheses of
theorem 3.1 from the language of flows ¢;, ¥: to the language of representations P, 0.

Proposition 4.9. The representation ® is topologically conjugate to a representation

& such that Vj = 1,...,29 + 2 the point :cj’ (z; ) is an attractive (repulsive) fized point of
&([;1)-

From this proposition it follows that, up to C’-equivalence, the closed orbits 7‘;ft,
7 =1,...,29 + 2, of ¥, are closed orbits also for ¢;. Moreover, because F7* and G* are both
transverse to the fibres of 71 S — 5, the twisting of 7* and G* around each 'y;t is the same.
So, we may assume that ¢, is equal to 9 in a neighborhood of U?”:l'z('yf Uy ) = 0%, and
theorem 3.1 says that ¢; and 1; are topologically equivalent.

Proof of proposition 4.9

To prove proposition 4.9 we need some facts about the Euler class ([Ghy2], [Mat]).

Let Sy be a compact, connected, orientable surface, possibly with boundary, and let
@U : 71'1(50) - Homeo+(Sl)

be a representation such that Ya € m(Sy) representing a boundary component the home-
omorphism ®,(a) has rotation number equal to zero (i.e., ®y(a) has fixed points). Then

it is possible to define the Euler class
Eu(@()) € HZ(SU, 85’0; Z) ~7
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([Ghy2]): the suspension of ® gives rise to a circle-bundle over S, together with a section
over 05, and eu(®) is the obstruction to extend this section to all of Sy.

There is the Milnor - Wood inequality:

lew(®o)] < [x(So)l-

Let Cy,...,Cr C Sy be simple closed curves, pairwise disjoint, and let Sy i,..., 5, be the
closures of the connected components of Sy \ Uj_,;C;. Suppose that every @,([C;]) has
rotation number zero, then it is possible to consider the Euler classes eu(®y ;), j = 1,...,1,

of the restricted representations
& ;: m(Sy,;) — Homeoi(S?).

Then the following localization formula holds ([Ghy2]):

l

eu(®y) = E eu(®y ;).

i=1
Our representations ® and ¥ originates from foliations on 71 .5, hence they satisfy |eu(®)]| =

lew(¥)| = |x(S)|. We may assume, without loss of generality, that
eu(®) = eu(¥) = x(S5).

It was remarked by Matsumoto ([Mat, 346-347]) that if ®, is a representation of m;(S)
such that eu(®,) = x(Sy), then every ®;(a) has rotation number zero, and hence we may
define without problems eu(®|) for every connected subsurface S, C S,. The Milnor -
Wood inequality and the localization formula imply that eu(®|) = x(S}).

In particular, let §' C S be a subsurface diffeomorphic to the torus with one hole,
and let ®' : 71(S') —» Homeo,(S') be the restriction of &, so that eu(®') = —~1. Let
a,B € m(S') as follows:

C___ D S
(d-p=1)

Define f = ®'(a), g = ®'(8), and let f,§ € Homeo,(R) be liftings of f,g with the

property that Fiz(f) # 0, Fiz(g) # 0 (it is possible, because Fiz(f) # 0, Fiz(g) # 0).
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Define b = @'([a,8]71) = [f,9]7! ([f,9]h = id) and let A € Homeo+(R) be a lifting
with fixed points. The Milnor algorithm ([Ghy2], [Mat]) implies: [f,glh = T_;, where
Tw(z) = ¢ + m, m € Z. Starting from this relation (i.e., [f,3](z) = A~!(z) — 1, where
f,3,h have fixed points) a straightforward analysis shows:

Lemma 4.10. We may decompose S* as union of four consecutive intervals

I; UIQUI:;UI4

such that:
ii) Fiz(g) C I UI,, g(I,) C intl,, g(intly) D I, Y,

7
I L. f//
7 ¥

/

///
I3 L,

—

It T. Ip T,
Similarly, let S C S be a subsurface diffeomorphic to the disk with two holes, and
let " : 71(S") — Homeoi(S') be the restriction of ®, so that eu(®”) = —1. Let

a',f' € m(S") as follows:

Define f' = ®"(a'), ¢' = ®"(B'), then we have (again starting from Milnor’s algo-
rithm):

Lemma 4.11. We may decompose S* as union of four consecutive intervals
JiUJ,UJ3 U Jy

such that:
1) Fzz(f’) CcJ1u Jg, fI(Jl) C intJl, f'(inth) D Js
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i) Fiz(g') C J3 U Jy, ¢'(J3) C intds, g'(intJy) D Jy }
L/

%
/

Ja Jz B Iy
Finally, let S"" C S be a subsurface diffeomorphic to the torus with two holes, let " :

71(S"") — Homeo(S') be the restriction of ® (eu(®") = —-2), let «”,8",4" € m(S§")

as follows:

(':L“-X“ =4
X“’F’“ 24)

and let F' = ®"'(a"), G = ®"(8"), H = ®"(4"). From lemmata 4.10, 4.11 onc
obtains:

Lemma 4.12. We may decompose S' as union of eight consecutive intervals
A UA2UA3UALUA;UAgU A7 U A

such that:
i) Fiz(F) C A2 U Ay, F(Az) CintA,, F(intAy) D Ay
i) Fiz(G) C Ag U As, G(Ag) C intAg, G(intds) D As
i) Fiz(H) C A1 U A3 U A5 U A7, H(A;) Cintds, H(intA7) 3 A;

‘ .

/)

i

1)

[

/

At A2 A3 Ay As Ac Aw As

We return now to the curves <1, ...,72542 initially choosen on S. Take 3 consecutive
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curves vi—1,7i,%Yi+1 (29 + 3 = 1) and take a tubular neighborhood V of ~v;_; U7; U~it1
diffeomorphic to the torus with two holes. We may apply 4.12 to S =V, &" = [yi_1],
B" = [yit1], 7" = [v:). It follows that we may find two fixed points y;",y; € S of ®([vi])
(= H in the lemma) such that y; is attractive and belongs to As, y; is repulsive and
belongs to A;. Remark that every connected component of S \ {y,3"} contains fixed
points of ®([vi—1]) and ®([vyi+1])-

We repeat this construction for all ¢ = 1,...,2¢g+2, so that we find points {y;",%; }
on S! such that:

2q+2
i=1

a) yF € Fiz®([vi]), v} is attractive, y is repulsive;

b) the relative positions of yil,y?,yﬁ_l are

2g+2
=1

The property b) implies that the relative positions of {vF} are uniquely defined.

For example, for ¢ = 2 we must have

But this is also the relative disposition of the fixed points {zF}321? of the homeomor-

phisms {¥([yF])}?27? (remark that every ¥([y:]) has exactly two fixed points, and that
we may repeat the previous considerations for ¥ instead of ®).
Hence we may take a homeomorphism w : S! — S! such that
w(zl) =y, w(z) =y; Vi=1,..,29 + 2.
This homeomorphism conjugate ® to a representation & with the properties required in

proposition 4.9. A
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In

Remark: the result of Matsumoto ([Mat]) shows directly that & is topologically con-
jugate to ¥. But his proof is far from being elementary, because it relies on deep theorems

of Ghys, Matsumoto and others about “Euler class and bounded cohomology”.
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NONTRANSITIVE ANOSOV FLOWS

Examples of Anosov flows on a 3-manifold with nonwandering set different from all
of the manifold were found by J. Franks and R. Williams in 1979 ([F-W]), answering
negatively to an old conjecture.

We recall that a basic set {2 of a nonsingular smooth flow ¢; : M — M on a 3-manifold
M belongs necessarily to one of the following four classes:

i) expanding attractor: dim§Ql = 2, U,eqFy = §1;

i1) contracting repellor: dimQ = 2, UzeaF. = Q;

iil) cantorian saddle: dimQ =1, Q different from a single closed orbit;
iv) hyperbolic closed orbit.

Using a sort of “connected sum” of (transitive) Anosov flows, Franks and Williams
constructed an Anosov flow with two basic sets {1; and {23, 2; an expanding attractor, {2,
a contracting repellor. Then they showed that it may happen that an Anosov flow has a
basic set reduced to a single hyperbolic closed orbit (necessarily of saddle type). We will
show later how to construct an Anosov flow with a basic set of the type cantorian saddle,
more precisely a basic set isomorphic to the suspension of Smale’s horseshoe.

In all these examples the basic sets of the flow are separated by incompressible tori.
This is a general fact.

Theorem 5.1. Let M be a closed orientable 3-manifold and let ¢+ : M — M be a
nontransitive Anosov flow, with basic sets ,...,0n. Then there ezist embedded, pairwise
disjoint tori Ty, ...,Tr C M such that:

i) the nonwandering set Q($:) = Uj-\-zlﬂj is disjoint from UX_ | T;

ii) each connected component of M\ [UX_| T}] contains one and only one basic set of
e

iii) each T; is incompressible in M (w1 (T;) — m (M) is injective) and T;,T; are nol

isotopic for j # 1.
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The requirement of orientability of M is not essential (otherwise, there would be Klein
bottles among the {T}}...).

Recall that a 3-manifold supporting an Anosov flow is irreducible ([Pal]). Using Dehn
lemma and other standard tools of three-dimensional topology ([Lau]), it is not difficult to
see that two embedded, disjoint, incompressible, isotopic tori in an irreducible 3-manifold
M are also parallel, i.e. they bound in M an embedded copy of T? x [0,1]. A theorem
of W. Haken ([Hem)|, page 140) asserts that, given a closed irreducible 3-manifold A7,
there exists a natural number h(M) such that if T1,..., T} are embedded, incompressible,
pairwise disjoint and nonisotopic tori in M then k < h(M). It follows that there exists
hy(M) € N, hy(M) < h(M) + 1, such that if Ty, ..., Ty are as before then M \ [Ur_, T}]
has at most hy(M) connected components.

Hence theorem 5.1 has the following consequence.

Corollary 5.2. Let ¢; be a nontransitive Anosov flow on the closed orientable 3-

manifold M. Then the number of basic sets of ¢; is at most hy(M).

Ezample 1: if M is atoroidal then h(M) = 0 and hence M cannot support a nontran-
sitive Anosov flow. On the other hand, S. Goodman constructed in [Gool} examples of
transitive Anosov flows on atoroidal 3-manifolds.

Erample 2: if M = 5200 A € SL(2,Z) hyperbolic, then h(M) = 1 (every
incompressible torus is isotopic to a fibre) and ho(M) = 1 (a fibre does not separate M );
hence every Anosov flow on M is transitive. This fact was observed also by Plante ([Pla2]),
using the theory of holonomy invariant measures. It can be also deduced from proposition
4.6, via [Sol2] asserting that the liftings of the stable and unstable foliations to the universal
covering R3 are product foliations.

On the other hand, let us observe that the previous “Haken estimate” is not the best
one. For example, we have seen in the last chapter that an Anosov flow on a Seifert
manifold is always transitive, whereas hy(M) can be arbitrarily large for such a manifold

(for example, hy(T1.5) = g, where g is the genus of §).

Embedding the Smale’s horseshoe

The basic set 2,4 defined by suspending the Smale’s horseshoe ([Smal, [Shu]) is topo-

logically equivalent to the suspension of the subshift defined by the matrix < i i)
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Consider the basic set ! defined by the suspension of a map f of the following type:

f(R)

(as usual, f is “hyperbolic and linear” on f~!(f(R) N R), preserves horizontal and
vertical lines, etc., and = N,ezf"(R); see [Sma] or [Shu] for details about these con-

structions). This basic set also is topologically equivalent to the suspension of the subshift

defined by( 1 i

hence © becomes a basic set of a flow 9; : S2 x 8! — 82 x S,

), and hence to ,;. We can extend f to a diffeomorphism of S? and

According to [Bi-W] (see also [Goo2], [Fra2]) there exists a compact neighborhood K
of 2in S§? x S! diffeomorphic to the following set:

where T3 is identified with B; through a diffeomorphism mapping a to a', b to ¥', and
T, is identified with B, through a diffeomorphism mapping ¢ to ¢/, d to d'. The boundary
0K is decomposed in three pieces, 3K = K U dT K U H, where:
~ 07K is the part of 0K where 1,th exits from K, and it is composed by the two “Y” pieces
(front and back) and the bottom arch;
- 8% K is the part of 8K where s enters into K, and it is composed by the two “inverted
Y” pieces (left and right) and the top arch;
— H is the part of 0K where ¥y is tangent to 0K, and it is composed by narrow strips
between 0" K and 7K.
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The sets 8~ K and 87 K are both diffeomorphic to disks with two holes

9t

whereas H is composed by 3 annuli, a “long” one (which is adiacent to the component

of 8(8~ K) intersecting the bottom arch and to the component of (8 K) intersecting the
top arch) and 2 smaller ones. Denote by H, the long annulus, by H;, H, the other two

annuli.

We glue D2 x[0,1] to K by identifying 8D? x[0,1] with H, in such a way that 9D? > {0}
goes to OH,NA(0" K) and D2 x {1} goes to 8H N0~ K). We also glue S* x [0,1] x [0, 1]
to K by identifying S* x {0,1} x [0,1] with H; U H; in such a way that S* x {0,1} x {0}
goes to d(H; U H2)N G(8TK) and S* x {0,1} x {1} goes to 8(H; U H,) N B0~ K):

y

H. K
N

The result is a manifold N = K U (D? x [0,1]) U (S! x [0,1] x [0,1]). The flow ;s

extends naturally to a smooth flow

"»bt:N—)N’

which is transverse to N and for which Q(%:) = Q: ¥1|(D2ust x[0,1])x[v,1] 15 @ translation

along the second component, in the positive direction.

Define 8 N = {z € ON|¢; enters in N through z}, 8N = {z € ON|¢; exits from
N through z}. Then 67N, 8~ N are obtained from % K, 8~ K by glueing a disk and an
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annulus. They are tori, and the inclusions 8t K C 8* N, 8~ K C 8~ N are as follows:

Consider now the unstable lamination F*(§2) associated to the basic set 2 of 1;. Then
FYQ)NETN =0 and F*(Q) NI~ N is a one-dimensional lamination £ whose leaves are
contained in 0~ K and disposed in “longitudinal” way ([Bi-W], [Goo2], [Fra2]); it follows

that there exists a foliation R of 07 N, formed by two Reeb components, transverse to L:

|

£

D))
)

2N @ ) N
Let N’ be the manifold obtained from (zTT;Z(L%,‘ij’ A € SL(2,Z) hyperbolic, by delct-

ing a tubular neighborhood of {0} x [0,1], and let

Yy N — N’
be the DA flow considered in [F-W]: 4, enters in N' through N’ ~ T2, and Q(¢}) is a
single basic set ' of the type expanding attractor. The stable foliation F*(') intersects
ON' along a foliation S by two Reeb components.
We glue (N,:) and (N',;) by identifying (8~ N,R) with (ON',S). The result is an
hyperbolic flow

b NN, ~NYNuNz,

with the following properties:
a) ¥; enters into N through N = §* N;
b) ¥: has two basic sets: a cantorian saddle  and an expanding attractor §';
c) F°(Q') is transverse to F*(f).
The foliation F*(QU') of N intersects the boundary 87 N along a foliation G, which

extends the lamination given by F<(Q) N 8+ N. This lamination is similar to the previous
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lamination £, in particular the extension G is without global cross sections. This means
that G has compact leaves and, consequently, it is structurally stable (by hyperbolicity).
As a consequence, there exists a diffecomorphism ¢ : ¥ N — 8t N such that ¢*(G) is
transverse to G.

We now repeat the construction of [F-W]: we glue (N,v;) with (N,%_;) via the
diffeomorphism ¢. The result is a nontransitive Anosov flow ¢; : M — M with four basic
sets: an expanding attractor, a contracting repellor, and two cantorian saddles, each of

which is isomorphic to the suspension of the subshift defined by ( i })

Remark 1: we don’t know the shape of the previous foliation G on 81 N; if we would
be able to prove that G admits a transverse foliation formed by two Reeb components, then
we could be able to construct a nontransitive Anosov flow with 3 basic sets: an attractor,
a repellor, and a cantorian saddle.

Remark 2: Pugh and Shub showed that any suspension of subshift of finite type may
be realized as a basic set of some flow on a 3-manifold. Is this result still true if we require

that such a flow is Anosov?

Proof of theorem 5.1

Let f : M — R be a Lyapunov function for ¢; ([Shu}, page 18). This means that f is

smooth,

df(z) =0 Vz € Q(¢:),

Do f(oe(@) <0 Ve MAQ().

Because of the transitivity of ¢:|q;, f is constant on every basic set. We denote by c; the
value of f on 2, 7 = 1,..., N; we may assume that cy,...,cx are all distinct and (modulo
a reindexing of the basic sets) ¢; < ¢3 < ... < ¢en.

Take real numbers ry,...,7x_1, with 7; € (cj,cj+1). Denote by X; the surface
f7Y(r;) € M, j =1,..,N —1. The surfaces X; are transverse to the flow, because r;
are regular values, hence they are transverse also to the stable and unstable foliations F*
and F". This fact, together with the orientability of M and the transverse orientability of
¥;, implies that every X; is a union of tori.

Lemma 5.3. ¥; is incompressible in M, Vj =1,...,N —1.

60




Proof.
Define

]VI;- = fﬁl([rj? CZVJ) ]\/Ij_ = f‘_l([cl’rj])'

The foliation F7 i F?|5+ is without Reeb components ([C-L], [Nov]) and without half-
Reeb components. ]

The non-existence of half-Reeb components may be seen as follows. Suppose that H
is a half-Reeb component of 7}, 0H = LUK, L € F; (a cylindrical leaf), K C BJVIJT" =X
(a planar Reeb component for 7°|z;). The flow ¢; is outward I\/IJ-+ through ¥;, hence ¢;|
is outward L ~ S! x [0,1] through 8L ~ S! x {0,1}. This is impossible, because L is a
piece of a stable manifold of ¢;.

Remark that also F} def f“IMJ_+ is without half-Reeb components (and, of course,
without Reeb components): if H C ]Wf is such a component, 0H = LU K, then the samec
argument as before shows that L must contain a closed orbit 4 of ¢;. Moreover, ¢, is

outward H through K, and we arrive to an absurd by considering the a-limits of points

z € intH: a(z) C intH, but intH N Q($:) = 0.

Now we consider the double foliation 2F; on .M]'-*‘ Us; J\/I;'. It is a foliation without

Reeb components, hence by Novikov’s theorem ([Nov], [C-L])
m (M} Us; M) = 0.

It follows that ¥; — JVIJT" induces an injection m;(Z;) — wl(]VIJT"). Similarly, (%)) —
m1(M]) is also injective. The proof of the lemma is completed by the following topological
fact, which seems well known but we have not been able to find a reference and hence we
give a proof. A

Sublemma 5.4. If ¥ is a separating surface in a 3-manifold M, M = M' Ug M"

i
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then the injectivity of m(X) — m(M') and of m1(X) — w1 (M") implies the injectivity of
m(X) -» m(M).

Proof.

Suppose, by contradiction, that m;(X) — m;(M) is not injective; then there exists a
smooth map

j:(D?,8D%) — (M, %)

such that j(0D?) defines a nontrivial element of m (). We may assume, by a general
position argument, that j is transverse to X, and hence j7!(X) is a finite union of disjoint
circles on D?, one of which is D?2.

Let I' C D? be one of these circles, such that j(T') is homotopic to zero in ¥. Let
A C D? be the disk bounded by I', and let h : A — ¥ be a smooth map such that
hlr = jlr. Let j' : D* — M be defined by j'|p2\a = j, j'|a = h. Then j' maps a
neighborhood V of A to one of the two pieces M’ or M", and we may modify j' in V" in
such a way that, denoting with ;" the result of the modification, we have j/(V)NE = ()
and j""}(X) = j71(Z)NV°. After a finite number of these modifications we obtain a map
i : D? — M such that i|sp2 = j|sp2, ¢ is transverse to ¥, and every circle in :7}(X) is
mapped by 7 to a noncontractible circle on X.

Let now I be one of these circles, such that the disk A ¢ D2 bounded by I' does not

contain other circles in :71(X) (clearly, such a r exists). The map
il : (A, T) - (M, 2)

has image entirely contained in M’ or M", and this contradicts the hypotheses on 7;(¥) —
m(M') and m(2) —» m(M"). A

By construction, the surfaces {Z;} have the property that every connected component
of M\ [Uﬁ-v:—ll Ej] contains at most one basic set. Let N be the closure of a component

which contains no basic set. Then
0T N = {z € ON| the trajectory through = enters in N}
is isotopic to

8~ N = {z € ON| the trajectory through z exit from N}
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the isotopy being realized by the flow itself; it follows that N ~ T? x [0, 1]. If we suppress
the torus 8+ N (or 8~ N) we obtain a new collection of tori (u?;;lzj) \ 8" N which still
separate the basic sets of ¢;. Repeating this semplification a finite number of times, we
finally obtain a collection of embedded, disjoint, incompressible tori T1,...,Tx C M, which
satisfy i) and ii) of theorem 5.1.

It remains only to prove that, for j # 7, T} and T; are not isotopic. Because incom-
pressible isotopic tori are parallel, it suffices to prove the following lemma.

Lemma 5.5. Let N C M be a submanifold diffeomorphic to T? x [0,1], such that N
is disjoint from Q(¢;) and transverse to ¢:. Then N N Q(¢:) = 0.

Proof.

A basic set  of a nontransitive Anosov flow on a 3-manifold belongs necessarily to
one of the following classes: a) expanding attractor; b) contracting repellor; ¢) cantorian
saddle; d) hyperbolic closed orbit, of saddle type.

Suppose that N contains an expanding attractor 2. As in lemma 5.3, the foliation

Fll.

N is without Reeb components and half-Reeb components. The unstable leaves of §) are
contained in @ and hence in intN; they have exponential growth ([Pla4]). Passing to the
double N Upn N >~ T® we obtain a foliation without Reeb components, with some leaves
of exponential growth, on a manifold with fundamental group of polynomial growth. This
contradicts a theorem of Plante ([Pla4]), hence N cannot contain expanding attractors
(and, similarly, contracting repellors).

Suppose now that N contains a cantorian saddle 2. Let v+ C Q be a closed orbit,
then there are infinitely many disjoint strips 4; >~ R x [0,1} C F*(y), j € N, such that
04; ~ R x {0,1} is composed by two trajectories of ¢; which remain in N V¢ € R, and

intA; >~ R x (0,1) is composed by trajectories which exit from N in the future.
.‘“\;N c@Aa’ciht N
c Vl‘é&

sk "
R F )

We use here the fact that N does not contain attractors. Passing to the double,

F*(v) becomes a leaf L with non-abelian (in fact, non-finitely generated) fundamental
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group; hence m; (L) — w1 (N Upny N) = Z* is not injective and we arrive to a contradiction
with the theorem of Novikov. This means that N does not contain cantorian saddles.
Finally, suppose that N N Q(¢:) = {71,...,Yn}, 7; = hyperbolic closed orbit. The
“no cycle condition” ([Sma], [Shu]) ensures that at least one of these closed orbits (say,
v1) has the property that Vo € F*(v;) N N there exists ¢ > 0 such that ¢,(z) € ON.
Hence F*(y;) NN =~ S! x [0,1]. Remark that, because N does not contain attractors and
repellors, 3 N and 8~ N are both non empty and consequently diffeomorphic to T?. This
means that F*(y,) N 8N is formed by two parallel circles I';, I'; on 8~ N. Moreover, onc
of the two annuli composing 0~ N \ (I'; UT';) together with F*(y1) N N bound a subsel
H C N homeomorphic to D? x S!. We arrive to a contradiction by considering, as in
lemma 5.3, the a-limits of points in intH. This completes the proof of lemma 5.5 and of

theorem 5.1. A
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