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Introduction

Since its first appearance in the mid 60s, Density Functional Theory (DFT) [1, 2]
has demonstrated a strong predictive power in the study of ground-state properties
and its popularity has grown largely in the years both in the condensed matter
physics and in the quantum chemistry communities. This success is due to the
good compromise between low computational cost and fair accuracy. The first
is achieved by mapping the quantum many-body problem onto an independent
electron one; the second is due to the success of simple approximations, such
as Local Density Approximation (LDA), which work well beyond the range of
validity originally foreseen on pure theoretical grounds. Nevertheless the broad
class of problems related to excited states cannot be addressed by standard DFT.
This field basically includes the study of all optical properties of molecules and
solids, both in the linear or non-linear regimes.

The extension of DFT to deal with the time-dependent Schrédinger equation
and excited-state properties has been achieved with the formulation of Time-
Dependent Density Functional Theory (TDDFT) [3], a theory which has been
mathematically established by the theorem of Runge and Gross [4]. In this ap-
proach the complex many-body time-dependent Schrodinger equation is replaced
by a set of (coupled) time-dependent single-particle equations. For this reason
this method is computationally much more suitable than cumbersome many body
techniques to calculate optical spectra [S] and, in practice, it is the only possible
choice in order to treat strongly non-linear phenomena in realistic systems. Fur-
thermore, for many applications, very simple approximations to TDDFT, such as
the adiabatic LDA (ALDA) [6], have shown an unexpected accuracy. These fea-
tures have led to an incredibly rapid growth of this field in the last few years, as
shown in Fig. 1.

The range of applications of TDDFT is wide but the greatest part of them
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Figure 1: Publications per year based on TDDFT. These data have been obtained
by searching the ISI Web of Science database with the “Time dependent density
functional theory” and “TDDFT” keywords.

concerns the calculation of optical spectra of molecules and solids in the dipole
approximation. Because of the huge dimension of this research area, we can
only give a flavor of the problems addressed. There are applications to biochro-
mophores, such as chlorophyll, the molecule responsible for the photosynthetic
process [7, 8, 9, 10], the green fluorescent protein chromophore, which is an im-
portant molecular marker [11], and retinal, the molecule responsible for vision
[12]. Still in the biological area there are studies of DNA bases [13] and of ruthe-
nium complexes used as spectroscopic probes for DNA [14]. Much interest has
been attracted by the optical properties of fullerenes, both in the spherical and
nanotube form [15, 16, 17, 18, 12, 19, 20, 21] and of nanoclusters, both metallic
and covalent [22, 23, 24, 25, 26, 27, 28, 29]. TDDEFT can also be useful to address
problems of strong applicative interest, such as dye-sensitized solar cells [30, 31].
The methodology has been extended in order to deal with circular dichroism as
well [32, 33].

For what concerns the photo-absorption spectra of solids or low dimensional
extended systems, such as nanostructures or long polymers, the predictive power
of TDDFT is not as established. Indeed, for these systems the ALDA in general
is no longer adequate. One of the most evident failures concerns its application to
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semiconductors and insulators, since there is not a significant correction over the
random-phase approximation results and excitonic effects are totally missed. An-
other well-known failure is the overestimate of polarizability in long conjugated
molecules. Research to improve upon the limitations of ALDA (but also of other
common local adiabatic approximations) to treat extended systems is extremely
active and functionals derived from many-body theory have shown promising re-
sults [5, 34, 35, 36, 37, 38, 39, 40].

Besides the problem of excitons in solids, there are other well-known failures
of TDDFT in the adiabatic approximation. In atom and molecules, Rydberg series
are not reproduced since the corresponding states are usually unbound; this is due
to the incorrect asymptotic behavior of the ALDA exchange-correlation poten-
tial, which does not describe properly the electron-hole interaction. Another well
known failure concerns the charge transfer excitations, which are typically pre-
dicted too low in energy (sometimes by more than 1 eV). This problem is partic-
ularly dramatic when these transitions take place between weakly bound systems.
Multiple excitations are completely missed in linear-response adiabatic TDDFT.
The known failures of TDDFT and the attempts to solve them are reviewed in
[41].

We finally mention that linear-response TDDFT can be used to approximate
the exchange-correlation energy of the ground-state DFT problem, using the adia-
batic-connection fluctuation-dissipation formula [42, 43]. In this framework prop-
erties such as van der Waals interactions, missed by standard ground-state func-
tionals, are naturally included [44]. This methodology has been applied to cal-
culate the correlation energy of the uniform electron gas [45], to reproduce the
dissociation curve of small dimers [46], and to describe layered materials [47].

To cope with such a wide range of applications, different practical implemen-
tations of linear response TDDFT are available. In its most general form, the
TDDFT linear response problem can be expressed in terms of a Dyson-like equa-
tion [48]. This equation allows to compute a generalized susceptibility, whose
poles are excitation energies of the system under investigation. Through this re-
sponse function it is possible to calculate the linear response of any local observ-
able to any local external perturbation. The polarizability, which gives the optical
absorption spectra, can also be obtained in this way. Nevertheless, since in gen-
eral the computational cost of constructing and solving the Dyson-like problem is
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very high, there are more efficient and widespread ways to solve TDDFT equa-
tions when only optical properties are required.

The Dyson-like equation for susceptibility has been reformulated by Casida
[49] into an eigenvalue problem, whose eigenvalues and eigenvectors are used
to build the optical absorption spectra. The construction of Casida’s equations
requires the prior diagonalization of the full ground-state problem; this operation
may be very demanding, especially for large basis sets. The eigenvalue problem
is then efficiently solved by iterative techniques [50, 51]. Nevertheless, within
this approach only a limited number of the low-lying eigenvalues can be obtained.
This leads to a limitation of the energy range accessible. Furthermore, the density
of excitation energies in a given energy range increases linearly with the system
size, thus making it difficult if not impossible to calculate them individually for
very large systems.

Some of the drawbacks of Casida’s approach have been overcome by directly
solving the TDDFT equations in the time domain. For linear response purposes it
is necessary to integrate this equations by adding a properly chosen small exter-
nal perturbing potential [18, 12]. This method is suitable to calculate the optical
spectra in a large energy range and the full diagonalization of the ground-state
Hamiltonian is completely avoided, since it is necessary to propagate the occu-
pied states only. The basic operations required to integrate TDDFT equations are
the same as an iterative ground-state calculation; unfortunately they have to be
performed many more times. For this reason the overall scalability of this method
is basically the same as that of a ground-state calculation, but the prefactor is much
larger.

From this general overview of TDDFT it results that there are two main open
issues for a wide applicability of this methodology. One is related to the accu-
racy of the available xc functionals, which has to be improved in order to treat,
e.g., excitons in solids or Rydberg states in finite systems. The other concerns the
enhancement of the algorithmic performance of the method, which is essential
for the application of TDDFT to realistic systems; indeed we need to build large
models to simulate, e. g., biochromophores embedded in their biological environ-
ment or dye-sensitized solar cells, just to mention two important examples. In this
thesis we will deal with this second issue. We will introduce a new approach to
solve TDDFT equations in the linear regime, which can reach a performance com-
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parable with ground-state calculations and which improves substantially upon the
already good scalability of the real-time approach. This result will be achieved
through the introduction of a formalism borrowed from time-independent den-
sity functional perturbation theory [52, 53, 54]. The resulting equations will then
be solved using the Lanczos algorithm and an efficient extrapolation scheme to
accelerate its convergence. After testing the method against molecular systems
of increasing dimension (benzene, fullerene, and chlorophyll) we will address a
problem of paramount current interest: dye-sensitized solar cells (DSSC’s) [55].
These devices represent a particularly promising approach to the direct conversion
of light into electrical energy at low cost and with high efficiency. In DSSC’s, a
dye sensitizer absorbs the solar radiation and transfers the photoexcited electron
to a wide band-gap semiconductor electrode, while the concomitant hole is trans-
ferred to an electrolyte. Various ruthenium complexes have been successfully
applied as sensitizers, obtaining efficiencies of about 10%. Research to further
improve over such performance is extremely active. For this purpose it is neces-
sary to find dyes with an absorption band that fit better to the solar spectrum or
to apply different molecules as cosensitizers. In this thesis we will consider the
specific case of a squaraine dye, which is a promising candidate for the red/near
infrared sensitization. We will analyze the optical properties of a DSSC built with
such molecule and we will investigate the mechanism ruling the functioning of
the device.

This thesis is organized as follows. In Chapter 1 we will illustrate the basic
concepts of DFT and TDDFT; the most common computational approaches will
be also considered. In Chapter 2 our new formalism will be introduced together
with the numerical algorithm and a first application to benzene. In chapter 3 we
will illustrate a technique for extrapolating the Lanczos coefficients and to accel-
erate the convergence of the method. The resulting methodology will be applied to
more challenging problems, such as fullerene and chlorophyll spectra. In Chapter
4 the method will be applied to the study of dye-sensitized solar cells. In appendix
A and B we will give the technical details of our specific implementation in the

plane-wave pseudopotential framework.






Chapter 1

Time-Dependent Density Functional
Theory

In this chapter we will illustrate the theoretical background that underlies the
work presented in this thesis. We will start by a short review of ground-state
DFT and then introduce the basics of Time-Dependent Density Functional Theory

(TDDFT) and its common practical implementation schemes.

1.1 Density Functional Theory

Density Functional Theory (DFT) is remarkably widespread in the condensed
matter physics and quantum chemistry communities because of its good balance
between accuracy and computational cost. The main (formidable) achievement
of this approach is the mapping of a many-body electronic problem onto a non-
interacting one. DFT was developed in the work of Hohenberg and Kohn [1] and
in the work of Kohn and Sham [2]. Hohenberg and Kohn (HK) established the

two theorems which constitute the theoretical foundation of DFT:

e Theorem I: For any system of interacting electrons in an external potential
Vest (1), there is a one-to-one (apart from an irrelevant additive constant) cor-

respondence between v, (r) and the ground-state particle density, no(r);

e Theorem II: The energy of an interacting-electron system in an external
potential v.,;(r) can be expressed as a functional of the electronic density,

7
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n(r), of the form
Eyk[n] = Fuyk[n] + /vm(r)n(r)dr, (1.1)

where Fpx[n] is a universal functional of the density which does not de-
pend on v, (r). Furthermore, F i [n] is minimal at the exact ground-state
density no(r), and its minimum gives the exact ground-state energy of the

system.

The meaning of the first theorem is that the density completely determines all
the properties of a given many body system. The second theorem is simply a
corollary of the first and of the variational principle of quantum mechanics. The
HK theorems provide a quite general theoretical result but they do not contain any
recipe about how to solve the quantum many-body problem in practice.

A practical formulation of DFT is provided by the Kohn-Sham (KS) ansatz,
which results in rewriting Eq. (1.1) as:

Eukln| = To[n] + Egn| + Eun] + /vewt(r)n(r)dr. (1.2)

In Eq. (1.2) Ty is the Fyi functional for a system of non-interacting electrons,
coinciding therefore with its kinetic energy; the Hartree energy, Ey[n], is the

electrostatic self-energy of a classical charge-density distribution, n(r):
1 /
Eyn] = —//Mdrdr/; (1.3)
2 |r — 1|

E,. is finally defined by Eq. (1.2) as the difference Fyx[n| — To[n] — Egxln].
In order to apply DFT in practice, a good approximation for £, is necessary;
this problem will be addressed in the next section. By applying the variational
principle of Theorem II to the HK energy functional in the form of Eq. (1.2) we

obtain the Euler equation

ST,
5n0([:)] +urcs(r) = p, (1.4)
where
vks(r) = 0 (r) + Vae(r) + Ve (1) (1.5)
_ n(r') ,  6E.[n]
a /|I'—I'/|dr+ on(r) + Veat (1), (1.6)
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and p 1s a Lagrange multiplier that enforces the conservation of the total number
of particles. The same equation (1.4) can be obtained by applying the variational
principle to a system of non-interacting electrons in an external potential v g(r).
For this reason the ground-state density of the interacting-electron system, ng(r),
can be obtained by solving the Schrodinger equation of a fictitious non-interacting

system:
[—%VQ + 'UKS(I')} $i(r) = €i4(x). (L.7)

The one-particle orbitals ¢; can be then used to construct the density

() = 3 1616 (0) (8)

where NV, is the number of occupied states. Eq. (1.7) is named Kohn-Sham equa-
tion. Since vk g is a functional of the exact ground-state density, Eq. (1.7) has to
be solved self-consistently. It is worth to note that, strictly speaking, the eigen-
values ¢; and eigenvectors ¢; do not have any physical meaning, but they are just
mathematical devices used to obtain the ground-state energy and charge density of
the full many-body system. Within this approach it is possible to calculate many
ground-state properties; among them we mention atomic forces, equilibrium ge-

ometries, stress tensors and phonon dispersion curves.

1.2 Approximations for the exchange-correlation

functional

The KS equation holds independently of any approximation on the functional
E,.[n], thus it would give the exact ground-state properties of an interacting sys-
tem if the exact functional was known. In practice the success of DFT is due
to the fact that F,.[n] can be reasonably approximated by a local or nearly local
functional of the density. The first and most widespread approximation to F,.[n]
is the Local Density Approximation (LDA), which assumes that the xc energy of
a real system behaves locally as that of a uniform electron gas. The xc functional
in this case can be expressed as

ELPAly] = / £hom () )n(x) (1.9)
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hom

nom(n) is the xc energy per electron of the homogeneous electron gas at

where ¢
density n. The exchange contribution can be evaluated analytically [56], while the
correlation part has been obtained by parameterizing the results of Monte Carlo
simulations [57, 58, 59]. The LDA is exact in the limit of high density or of slowly
varying density distributions; in fact experience has shown that accurate results
are obtained well beyond this theoretical range of validity. Typically LDA yields
a good accuracy in reproducing experimental structural and vibrational properties
of strongly bound systems; it usually overestimates bonding energies and under-
estimates bond lengths. As a first improvement beyond LDA, the Generalized

Gradient Approximation (GGA) has been introduced:

xc

ECGA[] — / <GGA(n(r), V(x| )n(r)dr, (1.10)

which depends also on the norm of the local density gradient, |Vn(r)|. Several
expressions for €94 have been considered. The three most popular parametriza-
tions are that of Becke (B88) [60], Perdew and Wang (PW91) [61], and Perdew,
Burke, and Enzerhof (PBE) [62]. GGA significantly improves upon LDA to pre-
dict the binding energies of real materials.

In this work we will use only LDA and GGA functionals. There are other types
of xc functionals which are explicitly orbital-dependent; among them we mention
the self-interaction correction (SIC) methods, the Optimized Effective Potential
(OEP), the Exact Exchange (EXX) and hybrid functionals such as B3LYP (for a
review see [56]). Some of these functionals provide a remarkable improvement
of the accuracy for some systems, but in general they also introduce a significant

increase of the computational cost.

1.3 Time-Dependent Density Functional Theory

The main limit of standard DFT is that it is a ground-state theory, thus not strictly
applicable to the calculation of excitation energies or other excited-state proper-
ties. A quite general and powerful method that avoids this difficulty in a DFT-
like framework is Time-Dependent Density Functional Theory (TDDFT). This
approach is basically an extension of the standard ground-state DFT to deal with
time-dependent external perturbations. Clearly, the solution of this problem is re-
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lated to the calculation of excitations, since the presence of a time-dependent ex-
ternal potential drives the system away from its stationary ground-state to higher
energy levels. Individual excitation energies can be computed using TDDFT to-
gether with linear response theory (see Secs. 1.5 and 1.6). The rigorous math-
ematical foundation of TDDFT dates back to the work of Runge and Gross [4].
Here we summarize their results in a way that emphasizes the similarity with the

conceptual structure of ground-state DFT:

e Theorem I: For any system of interacting electrons in an external time-
dependent potential v..(r, t), which can be expanded in Taylor series with
respect to time, and given an initial state W(¢y) = W, there is a one to
one (apart from a trivial function of time only) correspondence between
Vet (T, t) and the time dependent particle density n(r, t);

e Theorem II: If we define the action integral

a= (Wi A0, (1.1

then A can be expressed as a functional of the density

Aln] = S[n] - /t ! / Rt )0 (r, 1) b, (1.12)

where S[n| is a universal functional of the time-dependent density (namely
it does not depend on the external potential) and A[n]| is stationary for vari-

ations around the exact density of the system.

Similarly to ground-state DFT, the first theorem states that we can consider the
electronic density (which is in this case time-dependent) as the fundamental vari-
able that determines all the properties of the system. It is important to notice that,
differently from DFT, in this case it is necessary to set an initial condition, since
we are following an evolution in time. In TDDFT the variational principle can-
not be formulated in terms of the energy as in Eq. (1.1), but it is necessary to
introduce the action functional A[n] (Theorem II). It can be easily shown that Eq.
(1.11) is stationary in correspondence with the exact solution of the many-body
time-dependent Schrodinger equation; for this reason the functional of Eq. (1.12)
is stationary for the exact time-dependent density.
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If we call Sy[n] the S functional for non-interacting electrons, we can write

Aln] = So[n] + Sg[n] + See[n / / ) Vet (1, t)dtdr (1.13)

:——/ // dtdrdr (1.14)
r—r\

and S,., analogously to ground-state DFT, contains all the missing contributions

where

to the functional A[n]. The stationary action principle leads to the equation

565(;[??) — vks(r,t) =0, (1.15)

where
vks(t.t) = )+vxc( )+ Ve (1, 1) (1.16)
B |r—r'\ Y ?ﬁfﬁfﬁi F Veat(r 1) (L.17)

Eq. (1.15) is precisely the Euler equation of a system of independent electrons
moving in a time-dependent potential equal to vig(r,t). Therefore, the exact
density of the many-body system can be obtained from the set of fictitious one-

particle time-dependent Schrodinger equations:

z%gf)i(r, t) = [—%V2 + va(r,t)} b (r, 1), (1.18)

called time-dependent Kohn-Sham (TDKS) equations. From the orbitals ¢; the
density can be build simply through the relation

Ny
=G )ei(r.t), (1.19)

where the sum is over the occupied states. In the following sections we will an-
alyze suitable approximations for v,. and practical schemes to solve the TDDFT

problem.

1.4 Adiabatic approximation

As ground-state DFT, the TDKS equations (1.18) require a suitable approximation
for the xc potential in order to be applied in practice. The exact v,. depends
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non-locally on the density both in the spatial and in the time variables (memory
dependence). Fortunately, by disregarding memory dependence, we obtain an
approximation which is not too bad and that has been successfully applied in many
cases. This approach, called the adiabatic exchange-correlation approximation
(AXCA), can be written formally as

v ln) (r, t) = v58 [n(t)](r), (1.20)

xc xc

GS

xc

sity, n(t). Each ground-state functional such as LDA, GGA or hybrid can yield

a corresponding adiabatic approximation. In the limit of an external potential

where v’” is the ground-state xc functional calculated at the instantaneous den-

that varies slowly in time, the AXCA becomes exact if the true xc ground-state
functional is known. In practice the results are also affected by the faults of the
ground-state approximations, such as the lack of spatial non-locality of LDA or
GGA. Nevertheless, despite the crudeness of AXCA, optical spectra calculated
within this approach are sometimes as accurate as the results of more demanding
many-body approaches [5].

There are several known failures of the AXCA, due to either lack of memory or
spatial non-locality. Among them we mention the optical properties of solids and
long conjugated molecules, double excitations, and charge-transfer excitations.
These faults of AXCA and the attempts to solve them are reviewed in [41].

All applications of TDDFT in this thesis will use AXCA.

1.5 Linear response theory and optical properties

The majority of applications of TDDFT concerns the calculation of optical ab-
sorption spectra in the linear regime using the dipole approximation. The results
of such calculations can be compared with the findings of standard spectroscopic
experiments, where the external perturbing field is weak. In this section we will
summarize the general results of linear response theory, with emphasis on its ap-
plication to optical absorption spectra. Linear response theory is a straightfor-
ward consequence of the time-dependent Schrodinger equation in a perturbative
treatment. For convenience, the equations will be considered in the frequency
representation, obtained by Fourier transforming time-dependent quantities.
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Given a many-particle system, the purpose of linear response theory is to study
the variation of a given physical observable due to the application of a weak exter-
nal perturbation. As it is usual in quantum mechanics, both the observable and the
perturbation are represented by Hermitian operators. The fundamental quantity in
time-dependent linear response theory is the generalized susceptibility which in

the frequency domain (Lehmann representation) can be written [63]

, (Wo| ! (1) () [) (W[ (x) b (1) | W)
x(r.r,w) = Z{ w— (B, — Ey) +1in
(Do ¢! (r') 2 (1) [ W) (|00 ()80 () [ )

- a2l
w+ (B, — Ey) +1in (1.21)

n

where 7) 1s an infinitesimal positive number, W and W, are respectively the ground-
state and excited-state wave functions corresponding to the energies £ and I,
and +!(r) and ¢ (r) are field operators. The operator ¢/ (r)i(r) is the second-
quantized version of the density operator n(r) = Zf\i 1 0(r —r;), where N is the
number of electrons. The poles of Eq. (1.21) correspond to the excitation ener-
gies of the system. Using Eq. (1.21) the Fourier transform of the response of the
expectation value of a local operator, A, to a local time-dependent perturbation
vl (r,t) reads:

ext

Allw) = /A(r)x(r,r',w)v;ﬁ(r’,w)drdr’. (1.22)

In case of an independent-particle system ¥, and ¥,, become Slater determinants
of single-particle orbitals, ¢;(r), corresponding to the energies ¢; and Eq. (1.21)

can be written as

X(I‘7 r’,w) = Z(n] - nl)

ij

¢ (r)di(r) 97 (r')d; (')
€j— & +w+in

: (1.23)

where n; and n; are the occupation numbers; this equation is particularly useful
in TDDFT since it is used to calculate the KS susceptibility.
A particularly important specific linear response function is polarizability

azj(w) = /Tix(r,r/,w)r;drdr’, (1.24)

where r; and r’; are the components of the position operators r and r’ in the first-
quantized form. If we indicate with d’(w) the linear response of the dipole to the
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external perturbation v/, (r,w) = —E(w) - r (where E(w) is a weak electric field),

we can write polarizability as

~ di(w)
i) = Ej(w)’

(1.25)

namely the response tensor of the dipole to an external electric field. Usually, in

the case of unpolarized radiation, the mean polarizability is written in the form

1 n
a(w) = 3Tra(w) = > o éo)Q — (1.26)

where we defined the spectroscopic oscillator strengths

2
fo = 5(En = Bo) (Lol a) [ + [ (Lolg Ta) [ + [( Lol 2 L)), (1:27)

and 7, ¢ and 2 are the components of the position operator. Eq. (1.26) is a straight-
forward consequence of Eq. (1.21) and of Eq. (1.24). Polarizability is particularly
important since it is strictly related to the absorption of electromagnetic radiation
in the dipole approximation. Indeed for a molecular system we can write the
absorption coefficient as

I(w) x wim (a(w)). (1.28)

This relation can be obtained in the context of the semi-classical theory of the
interaction radiation-matter using the dipole approximation and Fermi’s golden
rule. Since this result has been used extensively in the thesis we will sketch
here the demonstration. First of all we remind that the absorption coefficient /
is defined by the relation F'(z) = Fye~!?, where I indicates the intensity of an
electromagnetic beam propagating along z. We also remind that the density of the
energy of radiation is given by p = g—j, where F is the norm of the electric field
associated with the wave. The intensity F' is provided by the product cp where c
is the speed of light. Using these relations, the energy per unit of time which is

provided to the system under investigation by the light beam can be written as

dU AU VedE: Ve

— = =——=——[F? 1.2
at ~ “dz St dz  &x (129)
where V' denotes the volume. This equation can be inverted to obtain
8r dU
j— (1.30)

CVeE? dt
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In order to establish a connection with microscopic theory we rewrite Eq. (1.29)

as
dU
= > wpWiy, (1.31)
if

where i and f indicate occupied and empty energy levels, wy; is their difference
in energy, and IW;; is the transition probability per unit of time between levels ¢
and f. To go further we have now to evaluate W, using quantum mechanics. We
will consider the simple case of a single electron subject to an external potential
Vest(r) and to electromagnetic radiation. The Hamiltonian for this system can be
expressed as
1, A

H = 5(—zv — ?)2 + Vegt (T) (1.32)
where A is the vector potential associated with the electromagnetic wave. Using
the Coulomb gauge V - A = 0 and discarding the quadratic term in the vector

potential, Eq. (1.32) can be simplified as
1_, l
H = _§V + Uext(r> + EA ’ v? (133)

where the last term of the Hamiltonian can be treated perturbatively. For an elec-
tromagnetic wave propagating along z, the vector potential can be chosen to be

Az, t) = Agel®==t) (1.34)

where k is the wave number and w is the frequency. In general, if the wavelength
A of the radiation is large if compared with the dimension of the system under

investigation, the vector potential can be expanded in powers of kz = 27%:

, 1
A(z,t) = Age ™1 +ikz — 5(l.c,z)2 +..] (1.35)

By limiting the expansion to the first term, namely by discarding the dependence
on the position, we obtain the dipole approximation. Using Fermi’s golden rule,
the transition probability per unit of time between two levels ¢ (occupied) and f
(unoccupied) is given by

2
Wiy = C—Z[AO UV TN (wp — w). (1.36)
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Through the identity [r, H] = V, the term (¥ ¢|V|U;) can be expressed as
(U |V|T;) = —wpi (T |r| ), (1.37)
and Eq. (1.36) can be finally written as
Wip = 2n[Eq - (¥ f|r|¥,)]?6 (wpi — w), (1.38)

where we used the relation Ey = w—cﬁAo. Now W;; is ready to be inserted in
Eq. (1.31) to obtain the absorption coefficient through Eq. (1.30). It is now
straightforward to note the equivalence of Eq. (1.28) and Eq. (1.30).

1.6 Linear response TDDFT and Dyson-like equa-
tion

According to Eq. (1.22), the perturbation v/, introduces a first-order change in
the electronic density that can be expressed for an interacting system as

n'(r,w) :/X(r,r’,w)v;ﬁ(r’,w)dr', (1.39)

where Y is the generalized susceptibility defined in Eq. (1.21). By construction,
the non interacting Kohn-Sham equations (1.18) have the same time-dependent
density as the many-body problem. For this reason, the response of the density
n'(r,w) is also the same. In this case the equations are a bit more subtle, since the
effective potential also depends on the internal variables. Indeed the response of

the density can be written as

n'(r,w) = /XKs(I‘, v’ W) e(r, w)dr’, (1.40)
where
U}(S(I',W) = U;ast(r7w) +U}{(r7w) +U§:c(r7w>7 (141)

and Y k¢ is the KS susceptibility

¢; (1) di(r) 97 (r') ¢, (r')
gj— & tw+in

Xrs(r, v’ w) = Z(nj —n;)

]

, (1.42)
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with ¢; and ¢; denoting the ground-state KS orbitals corresponding to the eigen-
values ¢; and ¢;. It is important to notice that, if 7 an j are both occupied or empty
levels, the corresponding contribution to y vanishes. In Eq. (1.41) we have intro-

duced the first-order response of the Hartree+xc correlation potential induced by

!
ext

the application of v
Vige(T,w) = vy (v, w) + 0 4e(r,w) = /K,(L v’ w)n' (v’ w)dr’; (1.43)

the kernel « is defined by

1
k(r, v’ w) = Oae(r, w)

= 1.44
r—r'|  on(r,w) (1.44)

n=ng

where the second term is a functional of ground-state density only. In the AXCA
Eq. (1.44) does not depend explicitly on frequency because the xc contribution to

the kernel is local in time:

Ve (1)
on(r’)

adic(p v/t — 1) =

5t —t'). (1.45)

n=ng

By equating the density response in Eq. (1.39) and Eq. (1.40) and by using Eq.
(1.43), we obtain the Dyson-like equation of TDDFT linear response:

X(r, v w) = xgs(r, v’ w) + //XKs(r,rl,u)>1€(r1,I'2,C())X(I'2,I',,W)dr1dr2.
(1.46)
The poles of the response function x are excitation energies of the interacting
system and the residues are the corresponding oscillator strength. The kernel «
is responsible for the corrections to the non interacting KS susceptibility (1.42).
Indeed if we set kK = 0 we obtain exactly x = xxg. The optical spectra can be
obtained from the Dyson-like equation through Eq. (1.24).

The practical solution of Eq. (1.46) is an expensive operation both from a
computational and a memory-requirement points of view. The first expensive
task is the calculation of the empty states of the ground-state KS Hamiltonian,
an operation which scales as the third power of the dimension of the basis set;
in practice a smaller number of states is calculated thus limiting the applicability
to a lower energy range. The next step consists in constructing the independent-
particle susceptibility x gg; in order to perform this operation in real space or
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reciprocal space, we have a computational effort of the order N, N,V gQM-d (N, and
N, are the number of occupied states and of empty states respectively and N4
is the dimension of the grid) and a storage amount of NV, 927,2» 4 complex numbers. At
this point we are ready to solve the Dyson-like equation, which requires dense-
matrix multiplications and inversions, whose cost is proportional to /V, 5Tid. This
procedure, apart from the calculation of empty states, has to be repeated for each
frequency. In practice, because of its unfavorable scaling, this approach is feasible
only for systems consisting of a small number of atoms. As we will see in the next
sections and in Chapter 2, there are more efficient ways to cope with the problem

of optical properties.

1.7 Casida’s equations

For frequency-independent kernels, Casida has reformulated the calculation of the
poles (namely the transition energies) of the response function  into a generalized
Hermitian eigenvalue problem [49]. This approach is the most widespread in the
quantum chemistry community and is implemented in many ab initio codes. It is
particularly suitable to calculate optical properties, although it is not possible to
access broad energy ranges.

The starting point to derive Casida’s equations is Eq. (1.40) where v}, in
turn depends linearly upon the response of the density through Eq. (1.43). By
explicitly substituting the KS susceptibility (1.42) in Eq. (1.40), we notice that the
factorization allows for a direct integration of the product of the response function
and of the first order change in the potential. The induced density change can then

be written as

n(r,w) =Y PLei(r)eir), (1.47)

in which the expansion coefficients are given by

nj—ni

Plw) = — [ 148)

€j—& tw

These coefficients are different from zero only if they connect virtual states with
occupied states and vice versa. By inserting explicitly n’ in the form of Eq. (1.47)
in Eq. (1.43) and by using this last equation to evaluate Eq. (1.48), we obtain the
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linear system

Z{W% ’f} Puw) = [ 6100 anlr0)os(e)dr, (149

kl gt

where

/ / 61 (1), (0)w(r, ¥, w) L) du(x') (150)

is the coupling matrix and x(r,r’, w) is the exchange-correlation kernel given by
Eq. (1.44). With some more algebra and by setting v, = 0, Eq. (1.49) can be

written in the final form of Casida’s equations
OF; = wiFy, (1.51)

where

Qijr = (51_5k>26ik6jl+2\/(ni —n;)(e; — €i)/<&z‘j,kl\/(nk —ny) (e —ex) (1.52)

is a Hermitian matrix. The eigenvalues of Eq. (1.51) provide the excitation en-
ergies of the system; the eigenvectors, instead, can be used to obtain the spectro-
scopic oscillator strengths and to assign the symmetry of each transition.

First of all, in order to solve Casida’s equations, it is necessary to diagonal-
ize the ground-state Hamiltonian in order to obtain all (or at least many of) the
empty KS states. This operation has an unfavorable scaling, which makes this ap-
proach not particularly appropriate for large basis sets, such as plane-waves. The
most straightforward (and naive) way to proceed is to calculate the NV, N. dimen-
sional matrix €2;; »; explicitly and to store it. The most computational demanding
task is to calculate the coupling matrix in Eq. (1.50); indeed, if we suppose to
calculate it in real space, the computational cost amounts to N7, N?NZ, but it
usually decreases for the xc part since this term is local (at least in ALDA). This
rough estimation shows a really unfavorable scaling as the 6th power of the sys-
tem dimension. Once the matrix is constructed we have to diagonalize it and this
requires a cost that scales as N2N3. In practice this is never done. It is possi-
ble to take advantage of iterative techniques [64] that do not require the explicit
calculation and storage of the full matrix ). Indeed the coupling matrix can be
evaluated using techniques, which are already well established for ground-state
calculations, such as the auxiliary function expansion method for localized basis
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sets [65] or fast Fourier transforms in plane-wave implementations [Appendix A].
In this scheme the computational cost is significantly reduced. The real drawback
of this approach is that iterative techniques allow for the calculation of only a lim-
ited number of the lowest eigenvalues. Furthermore serious problems can arise
when particularly large systems have to be treated. Indeed, by increasing the size

of the system, the density of transitions in a given energy range increases as well.

1.8 Real-time propagation

In this section we will present a further practical method to solve TDDFT equa-
tions. As a starting point for our calculation, we can choose the time-dependent
KS equations (1.18) and directly integrate them. Besides displaying better nu-
merical properties than the previous methods, the real-time propagation of KS
equations also allows to account for non-linear effects. Starting from a system
which is initially in its ground-state at ¢ = 0, we can calculate the density at a
time ¢t = t/, n(r, '), by propagating the occupied ground-state KS orbitals

¢, (r,t') = U(t',0)¢,(r), (1.53)
where U is the time evolution operator

A

t,
U(t’,o):fexp{—z'/ H(r)dr}, (1.54)
0

and 7 is the time ordering operator. Within this approach the density at a time ¢’
can be written as n(r, ') = >~ |#,(r,t’)|?. For practical purposes the propagation
problem is performed by splitting the time interval from ¢ = 0 to ¢ = ¢’ in small
steps At using the well-known property U (t, 1) = Ul(ta, t5)U (t3, t1):

Go(r,t + 6t) = U(t 4 0L, )¢y (r, 1). (1.55)

In real calculations it is necessary to choose particularly suitable approximations
for the time evolution operator U (t 4 dt,t) both from the point of view of com-
putational cost and numerical accuracy. A review of the many different practical
methods is given in [66]. In general these approximations should reproduce in
a sufficiently accurate way the exact properties of U, such as unitarity, which is
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essential to ensure the conservation of the total charge during the propagation. A
particularly simple approach is the midpoint rule, which consists in approximating
the propagator by the exponential of the Hamiltonian calculated at time ¢ + 6¢/2,
namely

Ut + 6t,t) = exp{—iH (t + %)&} (1.56)

where H (t+ %) is obtained self-consistently using a predictor corrector method
[18]. The exponential, in order to be evaluated, is expanded in Taylor series to a
given order and Eq. (1.55) becomes

do(r,t+0t) = [1 —iH(t + %)(St - %H% + %)&2 + . Jéu(r,t);  (1.57)

this equation shows that the calculation can be carried out by repeated applications
of the Hamiltonian H to an orbital. This same operation is required for iterative
ground-state DFT calculations and thus TDDFT can take advantage of techniques
already developed for standard static DFT (see appendix A for the case of plane-
wave basis set).

In the specific case of the calculation of linear response spectra, an exter-
nal time-dependent potential v’_,(r,t) = —FE4§(¢)r is introduced in Eq. (1.18),
where E is a parameter which has to be small enough to ensure the linear re-
sponse regime. From a physical point of view we are basically applying an ex-
ternal homogeneous electric field £ to the system at the initial time ¢ = 0. This
perturbation excites all the frequencies with the same weight. Soon after ¢ = 0 we
turn off this perturbation and let the system evolve. It is important to note that the
Hamiltonian in Eq. (1.18) 1s still time-dependent for ¢ > 0, since it depends on
the density n(r, t) which changes in time. We can now calculate the polarizability
a;j(w) = di(w)/E;(w) by Fourier transforming the time-dependent dipole

dl(t) = / ran (o, ) = 3 (6u(0) 4]0 () (1.58)

v

to obtain -~
dj(w) = / et (1) dt (1.59)
0

and dividing it by E;(w) = E. In order to make the integral converge, in Eq.
(1.59) a damping factor e~ has been introduced; the effect of this term is to
broaden the final spectrum.
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The first advantage of this method is that it is sufficient to calculate the occu-
pied states of the ground-state KS Hamiltonian and this is essential when a large
basis set is used. The second important point is that it is possible to calculate the
response function in a wide range of frequencies with a single propagation. In
practice there is a connection between the time step used and the maximum fre-
quency that we can calculate, namely w4, = 1/0t,4.- The choice of the time
step is mainly determined by numerical stability problems.

The computational cost of this method is related to the implementation of
the time propagation operator U and to the total number of steps necessary to
reach the final result. As Eq. (1.57) shows for a specific case, each step of the
evolution requires several applications (depending on the algorithm used) of the
Hamiltonian to a number of orbitals equal to the number of occupied states; this
is the same kind of operation required to solve the ground-state problem by using
iterative techniques, such as Davidson [64] or to perform first-principles molecular
dynamics [67]. For this reason the numerical scalability of this method is the
same as the ground-state problem; the prefactor, instead, is less favorable, since
the Hamiltonian has to be applied many more times at each iterative step and
since the total number of steps is larger. Despite this relatively large prefactor,
the properties of this method make it particularly suitable for applications to large

systems.






Chapter 2
The Liouville-Lanczos approach

In this chapter we will introduce a new approach to solve TDDFT equations which
is particularly suitable to calculate spectra of molecules or extended systems in a
very large energy range and with a computational scaling equal to that of stan-
dard ground-state applications. The starting point is the linearization of TDDFT
equations, which has already been considered in Chapter 1. In this chapter for
our purposes we choose an elegant approach based on density matrices and super-
operators. Within this formulation we are able to express the molecular polariz-
ability (but also other response functions) as an off diagonal element of the re-
solvent of the Liouvillian super-operator. Through an explicit representation of
density matrices borrowed from time-independent density functional perturbation
theory we can avoid the calculation of KS empty states and we can evaluate the
polarizability using a newly developed Lanczos algorithm. Finally, to prove its re-
liability, we proceed to test the new method against the benchmark case of benzene

absorption spectrum.

2.1 Density matrix formulation of linear response
TDDFT

In this section we will consider the linearization of TDKS equations in quite the
same spirit as Chapter 1 but we will use a slightly different formalism. We start

25
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from the quantum Liouville equation

D _ i), pt0)]. @.1)

which rules the time evolution of the reduced one-electron KS density matrix p(t)
whose kernel reads:

p(r, ' t) Z¢v ) (2.2)

where ¢, are the occupied KS orbitals. In Eq. (2.1) square brackets indicate a

commutator and
Hys(t) = ——v + Veat (T, 1) + Vpge(r, 1) (2.3)

is the time-dependent KS Hamiltonian. In the above equation, as well as in the

2

following, quantum-mechanical operators are denoted by a hat, “ " ”’; when no
confusion can arise, local operators, such as one-electron potentials, ©, will be
indicated by the diagonal of their real-space representation, v(r), as in Eq. (2.3).
For our purposes we could have started directly from TDKS equations (1.18) but
we have chosen this formulation for its simplicity and elegance. Let us suppose

now that the external potential v..(r,?) is composed by a time-independent part
as

ext

part v, ,(r,t), which can be treated perturbatively. To solve the quantum Liouville

ve2 (r) (namely the ground-state external potential) plus a small time-dependent

equation let us set the initial condition p(0) = gy, where py is the ground-state
density matrix. Linearization of Eq. (2.1) with respect to the external perturbation

idﬁo/lit) - [ﬁ%’f"(ﬂ] + [Bg0e(t), o) + [0t (), o] 2.4)

where ' (t) is the first order response of the density matrix, ]:Igg is the time-

leads to:

independent ground-state Hamiltonian, ¢’ is the perturbing external potential, and

U4 18 the time domain representation of Eq. (1.43):

Vpge(T: 1) = / R, x b — )0/ (e, 1) dr'dt, (2.5)

where n'(r,t) = p/(r,r,t). By inserting this expression into Eq. (2.4), one sees
that the linearized Liouville equation can be cast into the form:

L4P(2)
dt

= L p/() + [0 (t), po] (2.6)
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where the action of the Liouvillian super-operator, L, onto p', L -/, is defined as:

L0 = [HEH) + 1m0, ). X

where we have explicitly written the (linear) functional dependence of v, on p'.
By Fourier analyzing Eq. (2.6) we obtain:

(w=L)-p(w) = [Oem(w), o] - (2.8)

In the absence of any external perturbation (v, ,(r,w) = 0), Eq. (2.8) becomes
an eigenvalue equation for p/, whose eigenpairs describe free oscillations of the
system, i.e. excited states [49]. Eigenvalues correspond to excitation energies,
whereas eigenvectors can be used to calculate transition oscillator strengths, and/or
the response of system properties to external perturbations.

One is hardly interested in the response of the most general property of a
system to the most general perturbation. When simulating the results of a specific
spectroscopy experiment, in fact, one is usually interested in the response of a
specific observable to a specific perturbation. The expectation value of any one-
electron operator can be expressed as the trace of its product with the one-electron
density matrix. As shown in Chapter 1, a particularly important response function
is polarizability, namely the response of the dipole to an external electric field.

In our formalism the frequency domain response of the dipole induced by the

/
ext

perturbing potential v/, (r,w) can be expressed as

d(w) = Tr (9 (w))., 2.9)

where T is the position operator, and ﬁ/ (w) is the solution to Eq. (2.8). If we write

the perturbation explicitly in terms of an external homogeneous electric field
vl (r,w)=—-E(w) -r. (2.10)

ext

the dipole given by Eq. (2.9) can be expressed as
di(w) =) ay(w)Ej(w), (2.11)
J

where the dynamical polarizability, a;;(w), is defined by

al-j(w) = —Tr (721((4) — E)il . [fj,ﬁo]) . (212)
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Traces of products of operators can be seen as scalar products defined on the linear
space of operators. Let A and B be two general one-electron operators. We define

their scalar product as:

(AIB) = Tr (AU%) . 2.13)
Eq. (2.12) can therefore be formally written as:
aij(w) == (Fillw—L)7" - 55), (2.14)
where
85 = 75, po] (2.15)

is the commutator between the position operator and the unperturbed one-electron
density matrix. The results obtained so far and embodied in Eq. (2.14) can be
summarized by saying that within TDDFT the dynamical polarizability can be
expressed as an appropriate off-diagonal matrix element of the resolvent of the
Liowvillian super-operator. A similar conclusion was reached in Ref. [68] in the
context of a localized basis set formalism. This statement can be extended in a
straightforward way to the dynamic linear response of any observable to any lo-
cal one-electron perturbation. It is worth noticing that the operators that enter the
definition of the scalar product in Eq. (2.14) are orthogonal because 7; is Her-
mitian and 5; anti-Hermitian (being the commutator of two Hermitian operators),
and the trace of the product of one Hermitian operator and one anti-Hermitian

operator vanishes.

2.2 Explicit representation of density matrices

The calculation of polarizability using Eqgs. (2.12) or (2.14) implies that we should
be able to compute (w — L)~ - [}, po], namely to solve a super-operator linear
system. The latter task, in turn, requires an explicit representation for the density-
matrix response, p, for its commutator with the unperturbed Hamiltonian, for
local operators, such as 7*; of v/ g,.(r), for their commutators with the unperturbed
density matrix, as well as for the Liouvillian super-operator, or at least for its
product with any relevant operators, A, suchas £ - A.

A link between the orbital and density-matrix representations of TDDFT can
be obtained by linearizing the expression (2.2) for the time-dependent density
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matrix:
Prrit) =) [ou(r)ds() 1) + ¢ u(x, 1) g5 (r)], (2.16)

whose Fourier transform reads:

e riw) = S [0, m)di 0, —w) + Furw)ei)]. @17
Eq. (2.17) shows that p'(w) is univocally determined by the two sets of orbital
response functions, x’ = {¢! (r,w)} andy’ = {¢'*(r, —w)}. A set of a number of
orbitals equal to the number of occupied states, such as x" or y’, will be nicknamed
a batch of orbitals. We have to note now that p(w) is not Hermitian because the
Fourier transform of a Hermitian operator is not Hermitian, unless the original op-
erator is even with respect to time inversion. Because of the orthogonality between
occupied and response orbitals ({¢,|¢],) = 0), Eq. (2.16) implies that the matrix
elements of p’ between two unperturbed KS orbitals which are both occupied or
both empty vanish (p],, = p.., = 0), as required by the idempotency of density
matrices in DFT. As a consequence, in order to calculate the variation of the ex-
pectation values of a Hermitian operator, A, such as in Eq. (2.9), one only needs
to know and represent the occupied-empty (vc) and empty-occupied (cv) matrix
elements of A, A,. and A,,. In other terms, if we define P = Yo |Pu) (Du] = Po
and Q = 1 — P as the projectors onto the occupied- and empty-state manifolds,
respectively, one has that:

Tr(Ap (w)) = Tr(A (w)), (2.18)

where A’ = PAQ + QAP is the ve-cv component of A, which can be easily and
conveniently represented in terms of batches of orbitals. To this end, let us define
the orbitals:

aj(r) = QAp,(r) = ¢u(r)Ac, (2.19)

a(r) = (Q AT¢U(r))* =3 61(r) Aye. (2.20)

This representation is commonly used for density matrices in standard time-in-

dependent density functional perturbation theory [52, 53] and it has already been
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applied to TDDFT in [54]; this approach is particularly efficient from a computa-
tional point of view because, in order to build a¥(r) and a¥(r), the calculation of

empty states is not required. From Egs. (2.19) and (2.20) one has:

Acv = <¢c‘&i>a (221)

If Egs. (2.21)) and (2.22) are used to represent density matrices instead of Eqs.
(2.19) and (2.20) we obtain exactly Eq. (1.48) and, consequently, we can re-
construct Casida’s formalism. Therefore our formalism is equivalent to Casida’s
equations but differs in the explicit representation of density matrices. For the
sake of simplicity and with no remarkable loss of generality, from now on we will
assume that the unperturbed system is time-reversal invariant, so that the unper-
turbed KS orbitals, ¢, and ¢., can be assumed to be real. The two batches of
orbitals a® = {a?(r)} and a¥ = {a¥(r)} will be named the batch representation
of the A operator, and will be indicated with the notation (a”, a¥) or ({a®}, {a?}).
Scalar products between operators (traces of operator products) can be easily ex-
pressed in terms of their batch representations. Let ({67}, {b}) be the batch rep-
resentation of the operator B. If either of the two operators, Aor B, has vanishing
vv and cc components, one has:

(i)

Tr (ATB)
= ) (A5Bo+ A5By)

= (a2loz) + (at[p2)). (2.23)

v

If A is Hermitian, its batch representation satisfies the relation: a¥(r) = a®(r)*,
whereas anti-Hermiticity would imply: a¥(r) = —a®(r)*. Due to time-reversal
invariance and the consequent reality of the unperturbed KS orbitals, the batch
representation of a real (imaginary) operator is real (imaginary).

In order to solve the super-operator linear system, Eq. (2.8), using the batch
representation, one needs to work out the batch representation of v}, .(r.w) as a

functional of p’, as well as of the various commutators appearing therein. The
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charge-density response to an external perturbation reads:

n'(r) = Zcbu (1, w) + ¢, —w)
— Zcbv r) +y,(r)), (2.24)

where ({2} },{y]}) is the batch representation of the density-matrix response, p'.
The Hartree-plus-xc potential response is:

el )6) = [ s )i = 3 [ o) (2 + ol a0)ar
' (2.25)

By using Egs. (2.19) and (2.20) the batch representation of the Hartree-plus-xc
potential response reads therefore

Fhaes®) = Q3 [ 0o ) (e + 00
- @Z/Kw ) (o () + gl () i’ (2.26)

Ul%$c,v(r) = UH$c,v(r)7 (227)

where:

Ko (r,r") = k(r, "), (1) (). (2.28)
Let ({v'2}, {v'¥}) be the batch representation of a local operator, v(r). The batch
representation of the commutator between v’ and the unperturbed density matrix,

V" = [0, po|, reads:

V"I(r) = Qi po)eu(r)
= V(r) (2.29)

v

V"(r) = —0v"I(r). (2.30)

v (2

The batch representation of the commutator between the unperturbed Hamiltonian

and the density-matrix response, p” = [HS, /'], reads:
Zy(r) = QUHFS, ilou(x)
= (HZ5 — €))7, (r) (2.31)
uo(r) = —(H& — )y (r). (2.32)
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The batch representation of the action of the Liouvillian on the density-matrix

response appearing in Eq. (2.8) reads:

£<X’>:<D+IC K )(x’)) (2.33)
y’ - -D-K y'

where the action of the D and K super-operators on batches of orbitals is defined

D{z,(r)} = {(HZ—e)zo(r)} (2.34)

K{z,(r)} = {QZ / va/(r,r’)xv/(r/)dr/}. (2.35)

Note that, according to Eqgs. (2.33), (2.34), and (2.35), the calculation of the
product of the Liouvillian with a general one-electron operator in the batch repre-
sentation only requires operating on a number of one-electron orbitals equal to the
number of occupied KS states (number of electrons), without the need to calcu-
late any empty states. In particular, the calculation of Eq. (2.35) is best performed
by first calculating the Hxc potential generated by the fictitious charge density
n(r) =Y, z,(r)¢,(r), and then by applying it to each unperturbed occupied KS
orbital, ¢,(r). The projection of the resulting orbitals onto the empty-state mani-
fold implied by the multiplication with Q is easily performed using the identity:

Q=1-3,10u)(e0].

It is convenient to perform a 45° rotation in the space of batches and define:

@(r) = = (2u(r) +yu(r)) (2.36)

po(r) = ($v(r> - yU(I‘)>. (2.37)

N~ DN~

Egs. (2.36) and (2.37) define the standard batch representation (SBR) of the
density-matrix response. The SBR of the response charge density is:

n(r,w) =2 ¢u(r)gu(r,w) (2.38)

The SBR of a general one-electron operator is defined in a similar way. In par-
ticular, the SBR of a real Hermitian operator has zero p component, whereas the
SBR of the commutator of such an operator with the unperturbed density matrix
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has zero ¢ component. The standard batch representation of the TDDFT Liouville

equation, Eq. (2.8), reads:

q w -D q 0
(w - E) / - D , = N , .
P D -2K w p {Qvext (I‘)¢U (I‘)}
(2.39)
If we set v.,, in this equation we obtain an eigenvalue equation whose eigenvalues

are the excitations energies of the system.

It is now straightforward to write explicitly the SBR of polarizability (2.14):

(@) = = ({Qro 1. Ol = 07 (0.{Qrd ), (240)

where we used Eq. (2.39) with v/,, = —FE;(w)r; and Eq. (2.23), where in this

specific case a®(r) = a¥(r) = Qrip,(r). It is evident that the left batch vector
({Qri$y},0) and the right one (0, {Qr;¢, }) are orthogonal.

2.3 Linear response functions from Lanczos recur-

sion chains

According to Eq. (2.40), the polarizability can be expressed as an appropriate oft-
diagonal matrix element of the resolvent of the non-Hermitian Liouvillian (super-)
operator between two orthogonal vectors. The standard way to calculate such a
matrix element is to solve first a linear system whose right-hand side is the ket of
the matrix element. One then calculates the scalar product between the solution of
this linear system and the bra [50, 68]. The main limitation of such an approach
is that a different linear system has to be solved from scratch for each different
value of the frequency. In this thesis we will overcome this difficulty by using the
Lanczos algorithm. Such method is an iterative technique commonly used to solve
eigenvalue problems or linear systems. The Lanczos procedure builds iteratively
a tridiagonal matrix that can give an approximate solution to the full problem;
obviously this method is effective because the desired accuracy is reached for a
number of iterations which is much smaller than the dimension of the full matrix.
Indeed the eigenvalues of relatively small Lanczos tridiagonal matrices can give
an approximation of the smallest and largest eigenvalues of the full matrix; by
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using the iterative vectors as well, it is possible to obtain the solution of a linear
system.

For the sake of clarity, we will start by considering a simplified version of Eq.
(2.40), namely a diagonal element of the resolvent of a Hermitian operator, which
can be solved very efficiently by the symmetric Lanczos algorithm [69], avoiding
the solution of the linear system altogether [70, 71, 72, 73]. The simplified relation
that we want to calculate is written explicitly as

g(w) = (v[(w=H) ), (2.41)

where ‘H is a Hermitian operator and v is a vector of a n-dimensional space that

we suppose to be normalized || v ||= 1. The Lanczos recursive chain is defined in
this way:

Bigo = 0, (2.42)

q =, (2.43)

Bi+10j+1 =H g — a;q; — B¢, (2.44)

where a; = (g;|H|q;) and ;1 have to be chosen in order to ensure that || g;41 ||=
1. This recursion builds a fully orthonormal basis set {¢1, g2, - - - gj, - - - } by simply
enforcing the orthonormality condition of vector ¢, to the vectors ¢; and g;_;.
In the representation of this basis the operator H becomes a tridiagonal matrix

where o; composes the diagonal and 3; composes the upper and lower diagonals:

a; P 0O - 0
B az Pz 0
T'=| 0 g a3 = 0 | (2.45)
: 0o . B
0 - 0 B q

In this form the operator can be easily inverted to give the continued fraction

1
g(w) = 7 (2.46)

W — Qg —

W — 01 — 5

3
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where the Lanczos coefficients o and 3 have to be calculated only once for all dif-
ferent frequencies. As already anticipated, this technique is very powerful, since
the dimension of the iterative space which is necessary to converge to the exact
result is much smaller than the dimension of the full linear space. Unfortunately,
in finite precision arithmetic, the exact orthonormality of ¢ vectors is not usually

preserved and this may lead to instability phenomena.

The generalization of the Lanczos recursion method to non-Hermitian op-
erators is straightforward, based on the Lanczos biorthogonalization algorithm
[74, 69]. In this framework it is natural to express an off diagonal element of
the resolvent in terms of a continued fraction. Unfortunately, this is less evident
in the case in which this element is calculated between two orthogonal vectors.
In Ref. [75] such problem were solved using a block version of the Lanczos bi-
orthogonalization. The drawback of this approach is that a different Lanczos chain
has to be calculated for the response of each different property to a given pertur-
bation (i.e. for each different bra in the matrix element corresponding to a same
ket). Hereafter, we will generalize the recursion method of Haydock, Heine, and
Kelly [70, 71, 72, 73], so as to encompass the case of an off-diagonal element of
the resolvent of a non-Hermitian operator, without using any block variant of the
algorithm and including the case in which the left and the right vectors are orthog-
onal. This will allow us to calculate the full dynamical response of any dynamical

property to a given perturbation, from a single Lanczos chain.

We want to calculate quantities such as:

g(w) = (ul(w —A)"'v), (2.47)

where A is a non-Hermitian matrix defined in some linear space, whose dimen-
sion will be here denoted by n, and u and v are elements of this linear space; for
our purposes we suppose v to be normalized || v ||= 1. For the sake of simplicity,
and without loss of generality in view of applications to time-reversal invariant
quantum-mechanical problems, we will assume that the linear space is defined
over real numbers. To this purpose, let us define a sequence of left and right vec-
tors, {p1,p2, - Pk, -} and {q1,q2, - - g, - - - }, from the following procedure,



36 The Liouville-Lanczos approach

known as the Lanczos bi-orthogonalization algorithm [74, 69]:

7q0 = bipo = 0, (2.48)
i =p1 = U, (2.49)
Birgir1 = A ¢ — g5 — Vg1, (2.50)
Visjr1 = ATpj—ap; — Bipj-1, (2.51)
where:
aj = (plAg), (2.52)

and ;41 and ;4 are scaling factors for the vectors ¢, and p; 1, respectively,
so that they will satisfy:

(@j+1lpj41) = 1. (2.53)
Thus, from an algorithmic point of view, the right-hand sides of Egs. (2.50-2.51)
are evaluated first with «; as in Eq. (2.52). Then, the two scalars 3, and 7,1
are determined so that Eq. (2.53) is satisfied. Eq. (2.53) only gives a condition
on the product of 3;,1 and ~y;,;. If we call g and p the vectors on the right-hand
sides of Egs. (2.50), (2.51) respectively, this condition is that 3;17;+1 = (q|p).
In practice one typically sets

Bivi = VI (2.54)
Vi1 = sign({q|p)) x Bjt1- (2.55)

The resulting algorithm is described in detail, e.g., in Refs. [74, 69]. Let us
define Q7 and P7 as the (n X j) matrices:

Qj = [Q1>C]2,“' >Qj]> (256)
PJ = [php??'” 7pj]7 (257)
and let e} indicate the k-th unit vector in a m-dimensional space (when there is no
ambiguity on the dimensionality of the space, the superscript m will be dropped).

The following Lanczos factorization holds in terms of the quantities calculated

from the recursions equations (2.49-2.51):
AQ = QT +Bigie, (2.58)
ATPT = PITIT 4y piael (2.59)
PiTQi = [, (2.60)
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where [ indicates the (j x 7) unit matrix, and 77 is the (; x j) tridiagonal matrix:

ar y» 0 -+ 0
B2 az vz 0 :

T'=| 0 @ a3 = 0 | 2.61)
L0 oy
0 - 0 B q

In the present case, because of the special block structure of the Liouvillian super-
operator and of the right-hand side appearing in Eq. (2.39), at each step of the
Lanczos recursion one has that Lg; is always orthogonal to p;, so that, according
to Eq. (2.52), a; = 0. Let us now rewrite Eq. (2.58) as:

(w—A)Q =Q(w—T) = Biagine, . (2.62)
By multiplying Eq. (2.62) by u" (w — A)~" on the left and by (w — 77)'e] on
the right, we obtain:
WTQI = T) el = uT(w — A) Qe
Bipiu' (w— A)flqjﬂef(w — T el (2.63)
Taking the relation Qje{ = ¢, = v into account, Eq. (2.63) can be cast as:
g(w) = (z|(w — Tj)_le{> + ¢j(w), (2.64)
where:
2 =0Q (2.65)
is an array of dimension j, and:
€j(w) = B (ul(w — A) " gj11) <e§\(w — Tj)’le{> : (2.66)

is the error made when truncating the Lanczos chain at the j-th step. By neglecting
¢j(w) we arrive at the following approximation to g(w) defined in Eq. (2.47)

gj(w) = <zj|(w — Tj)’lejl'> ) (2.67)

This approximation is the scalar product of two arrays of dimension j: g;(w) =
(27|w7), where w’ is obtained by solving a tridiagonal linear system:

(w—T"w' = ¢, (2.68)
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T7 is the tridiagonal matrix of Eq. (2.61), and 2z’ is given by Eq. (2.65). Two
important practical observations should be made at this point. The first is that
solving tridiagonal systems is extremely inexpensive (its operation count scales
linearly with the system size). The second is that the calculation of the sequence
of vectors z; from Eq. (2.65) does not require the storage of the (); matrix. In
fact, each component of 27 is the scalar product between one known vector (u)
and the Lanczos recursion vector ¢/, and it can therefore be calculated on the fly
along the Lanczos recursion chain.

From the algorithmic point of view, much attention is usually paid in the lit-
erature in finding suitable preconditioning strategies that would allow one to re-
duce the number of steps that are needed to achieve a given accuracy within a
given iterative method [50]. Although preconditioning can certainly help reduce
the number of iterations, in general it destroys the nice structure of the Lanczos
factorization, Eq. (2.58), which is essential in order to avoid repeating the time-
consuming factorization of the Liouvillian for different frequencies. In the next
chapter we will show how the extrapolation of the Lanczos coefficient, rather than
preconditioning the Liouvillian, leads to a substantial reduction in the number of
iterations without affecting (but rather exploiting) the nice structure of the Lanc-
zos factorization, Egs. (2.59) and (2.58).

We conclude that the non-symmetric Lanczos algorithm allows one to easily
calculate a systematic approximation to the off-diagonal matrix elements of the re-
solvent of a non-Hermitian matrix. It is easily seen that, in the case of a diagonal
matrix element, this same algorithm would lead to a continued-fraction represen-
tation of the matrix element. Although the representation of Eq. (2.64), which is
needed in the case of a non-diagonal element, is less elegant than the continued-
fraction one, its actual implementation is in practice no more time-consuming

from the numerical point of view.

2.4 A first application to benzene

In order to demonstrate our methodology, we proceed now to the numerical calcu-
lation of the spectrum of benzene, a benchmark system for which several TDDFT
studies already exist and whose optical spectrum is known to be accurately de-
scribed by the adiabatic approximation [12, 76, 75, 77]. The resolution of the
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Figure 2.1: The structure of benzene and its orientation in the supercell.

Liouville-Lanczos equations has been implemented in a plane-wave pseudopo-
tential framework as described in appendix A. As a starting ingredient of a cal-
culation, only the occupied states are required. The overall numerical scalability
of the algorithm is not different from that of an iterative ground-state calculation,
since the necessary operations (Hamiltonian-vector multiplication and Hartree po-
tential evaluation) are exactly the same. For the simulation of benzene we used a
tetragonal supercell whose dimensions are 30 x 30 x 20 au®. The orientation of
the molecule in the supercell is shown in Fig. 2.1.

Calculations have been performed using the LDA functional as parametrized
by Perdew and Zunger [59]. Norm-conserving pseudopotentials have been used
with a kinetic-energy cutoff of 60 Ry, which corresponds to 70600 PW’s. The
dimension of the Liouvillian superoperator exceeds 2 million. A small imaginary
part has been added to the frequency argument, w — w + 7, in order to solve
the linear system Eq. (2.68). This shift into the complex frequency plane has the
effect of introducing a Lorentzian broadening in the discrete spectral lines. In the
continuous part of the spectrum the truncation of the Lanczos chain introduces a
spurious discretization of the spectrum, which appears then as the superposition
of discrete peaks. The choice of a relatively large (depending on the dimension of
the basis set) value for the broadening 7 has the effect of correcting this feature,
thus re-establishing the continuous character of the spectrum. If the chosen value
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Figure 2.2: Absorption spectrum of benzene between 0 and 30 eV shown for

different numbers of Lanczos recursion steps N.

of 1 is too large, some of the features of the discrete spectrum can be hidden by
the superposition of Lorentzian broadenings. In the next chapter, this problem
is solved using a technique that allows an inexpensive extrapolation of Lanczos
coefficients up to a very large order. In this way a small broadening can be used
avoiding the effect of the finite length of the Lanczos chain in the continuous
spectrum. Throughout this first benchmark we have set = 0.02 Ry in order to

obtain a better comparison with experimental data.

The convergence properties of the algorithm are illustrated in Fig. 2.2, which
shows that about 6000 iterations are necessary to obtain a fully converged spec-
trum between 0 and 30 eV. First of all we note that the low-energy part con-
verges faster than the high-energy part. Secondly, we have found that there is a
dependence between the kinetic energy cutoff and the convergence of the spec-
trum. Namely, the smaller the cutoff the faster the convergence. Therefore the
possibility of using a smaller basis set is crucial in order to broaden the range
of applicability of the method. For this reason our approach has also been im-
plemented in an ultrasoft pseudopotential scheme (details are given in Appendix
B). The convergence of the benzene spectrum in the ultrasoft case is shown in Fig.
2.3. In this case we have used a GGA functional, to be specific the Perdew-Burke-
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Figure 2.3: Absorption spectrum of benzene between 0 and 30 eV calculated using
ultrasoft pseudopotentials. The figure shows the curve for different numbers of
Lanczos recursion steps N.

Ernzerhof (PBE) [62]. A cut-off of 30 Ry (180 Ry for the charge density) has been
used; this corresponds to about 25000 PW’s and to a dimension of the Liouvillian
super-operator that almost reaches 750000. In this case the number of iterations
necessary to converge is substantially smaller compared to the norm-conserving
case and it lies between 2000 and 3000. For this reason, hereafter, we will only
use the ultrasoft approach for our calculations. In the present case the spectrum
does not change significantly if using adiabatic LDA or adiabatic GGA (this is
particularly evident in Fig. 2.4).

A comparison of the performance of our method with Casida’s approach is not
straightforward and meaningful. Indeed, the target of the two methods is differ-
ent. With Casida’s equations it is possible to calculate each individual excitation
and to assign it qualitatively to a specific transition. In general this operation is
feasible only in a restricted energy range, which is not typically larger than 10
eV and which depends also on the density of the excitation energies. Differently,
with our method we can compute the absorption spectrum in a really wide energy
range but we miss a systematic way to assign the transitions. Instead, the compar-
ison with the real-time method is more direct. In our approach, as well as in the
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Figure 2.4: Comparison of the TDDFT absorption spectrum of benzene calculated
with norm-conserving and ultrasoft pseudopotentials with experimental results.
Theoretical results have been scaled so as to obtain the same integrated intensity
as experimental data.

real-time approach, the calculation does not require an explicit diagonalization of
the full ground-state Hamiltonian. Another similarity consists in the fact that both
methods have a numerical scalability comparable to that of ground-state calcula-
tions. Indeed at each iteration the required operations consist in the evaluation of
at least one Hartree potential and in a certain number of Hamiltonian-wave func-
tion (HW¥) products. From this point of view our method requires only two H W
products while in the real-time approach the number is sensibly larger (depend-
ing in any case on the integration scheme adopted). In general also the number
of iterations in real-time applications is larger. To demonstrate this point we can
compare the ultrasoft test on benzene with a similar one performed in a real-time
PW-USPP implementation [77]. In that calculation a smaller kinetic-energy cut-
off was used but a larger number of integration steps was necessary. Each one of
the three initial states (corresponding to different polarizations) was propagated
for 5000 iterations with a Cranck-Nicolson integration scheme. If we consider
that each one of these steps requires several more applications of the Hamiltonian
to a vector than the two used in our method, we conclude that our approach is
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much more efficient in linear response calculations.

The agreement of our results with experimental data is also good, as shown
in Fig. 2.4. This was already known from previous calculations on benzene [12,
76,75, 77]. Indeed the low lying part of the spectrum is characterized by m — 7*
transitions which are slightly affected by the incorrect asymptotic behavior of
AXCA.






Chapter 3

Testing and improving the
numerical efficiency

In this chapter we will analyze the numerical properties of the Liouville-Lanczos
method in detail. This analysis will suggest a suitable extrapolation scheme that
allows for a dramatic decrease in the number of iterations necessary to achieve
convergence. This approach is applied to calculate in a wide energy range the op-

tical properties of large molecular systems, such as fullerene Cgy and chlorophyll.

3.1 Numerical properties of the Liouville-Lanczos
method and extrapolation of the Lanczos coef-

ficients

In this section we come back to the ultrasoft benchmark test of benzene considered
in Sec. 2.4. Our purpose here is to focus more deeply on the numerical properties
of the Liouville-Lanczos equations and to investigate possible improvements in
our methodology. Let us start our analysis by considering the Lanczos coefficients
2z, 3; and ;, as defined by Egs. (2.65), (2.54), and (2.55) respectively. In Fig.
3.1 we report their behavior as functions of the Lanczos iteration count, calculated
when the direction of both the perturbing electric field and the observed molecular
dipole are parallel to each other and aligned along the x direction (this would
correspond to the xz component of the polarizability tensor). We can see that the

45
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Figure 3.1: (a) Numerical behavior of the components of the 2z’ vector given by

Eq. (2.65). Apart from some out of scale oscillations, they tend rapidly to a value

near zero. (b) Numerical behavior of 3; coefficients given by Eq. (2.54). They

tend rapidly to a constant value even if some out of scale oscillation is present.

In the inset the same data are shown on a different scale and with different colors

for odd (green) and even (red) coefficients. (c) The v; coefficients given by Eq.

(2.55), which can assume the value £43;. The plot shows that -, and 3; have a

different sign only in correspondence with few recursion steps.
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2’s rapidly tend towards zero, whereas the (3’s tend to a constant. Closer inspection
of the behavior of the latter actually shows that the values of the 3’s are scattered
around two close, but distinct, values for even and odd iteration counts. This
specific feature is shown in the inset of Fig. 3.1(b). The +’s, which can assume

the value 4-/3, only rarely become negative.

From Fig. 3.1 it is also evident that, in correspondence with some iterative
steps, wild oscillations occur, namely the coefficients move away from their (al-
most) constant value. For the coefficients 7, and (3, this case can be partly ex-
plained by their definitions, namely Eqgs. (2.54) and (2.55). It can be noticed that
there is the possibility for Eq. (2.54) to become zero and this would lead to a
division by zero in the algorithm. The occurrence of a zero scalar product (g|p) is
known as a breakdown. Several situations can take place in this case. For exam-
ple a lucky breakdown occurs when one of the vectors ¢ or p is zero. If ¢ = 0 the
approximate solution of the linear system associated to the non-symmetric matrix
A is exact; this result holds for AT when p = 0. Another well-known situation,
which is more suitable to explain what happens in our case, arises when neither
@ nor p are zero but their inner product is exactly zero. This situation has been
studied extensively in the literature [78, 79, 80]. One of the main results is that
when this kind of breakdown takes place, for example, at step 7, then it is often
possible to continue the algorithm by essentially bypassing step j and by com-
puting gj42, pj+2 Or some g¢j4;, pj4; Where [ > 1 directly. Intermediate vectors
are needed to replace the missing g1, ...qj41—1 and p;i1, ...pj41—1, but these vec-
tors are no longer bi-orthogonal and as a result the tridiagonal matrix will have
“bumps” in its upper part. The class of algorithms devised for this situation are
called “look-ahead Lanczos” algorithms (LALA’s) [78]. Sometimes this LALA
procedures cannot be applied and this situation is defined as incurable break-
down. Note that this type of breakdown does not occur in the Hermitian Lanczos
process. It is a manifestation of the existence of vectors in the right subspace
(vector space spanned of (7) that are orthogonal to all vectors of the left subspace
(vector space spanned of P7), which is impossible when these spaces are the same
(7 = P7 in the Hermitian case). Clearly, in finite precision calculations, exact
breakdowns (inner product (g|p) exactly equal to zero) are extremely rare. Nev-
ertheless, it could be necessary to apply LALA procedures also in the case of a
near-breakdown, namely when (g|p) becomes small.
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In our calculations we never found that (g|p) reaches a value that is really
close to zero, but sometimes it decreases under its (nearly) constant value and,
as a consequence, the norm of Lanczos vectors becomes very large as in a real
break-down situation. The large norm of the new Lanczos vectors is responsible
for the increase of (g|p) in the subsequent iterations (this explains the values of
[ and ~y larger than the constant). We also noted that the occurrence and position
of these instabilities could depend on the details of the calculation (e.g. numeri-
cal routines) but the final spectrum is robust and independent of these details. In
our experience these near-breakdown phenomena do not seem to affect the stabil-
ity properties of our algorithm. Instead, convergence properties are likely to be
slowed down by the loss of information due to the increase of the norm of Lanc-
zos vectors. Nevertheless, there are good reasons not to use LALA techniques to
deal with instabilities. The 77 matrices generated by LALA are not tridiagonal.
Furthermore, a proper implementation of LALA’s would require saving a num-
ber of vectors (the number [ above) which is not known in advance; this could
pose a serious problem because of the large dimension of the linear spaces we
use. Finally, we can note that the components of 2z’ can also show jumps in their
magnitude, since the norm of the Lanczos iterative vectors occasionally display

large variations.

In general the algorithm we use does not seem significantly affected by the loss
of orthogonality (more properly biorthogonality) of the iterative vectors. This is
a well-known problem, which strongly limits the applicability of Lanczos tech-
niques in the solution of eigenvalue problems. In fact, by using our method, we
are not really solving an eigenvalue problem; rather, we use the Lanczos recursion
to implicitly solve a linear system. The fact that the solution of linear systems
is not sensitively affected by the loss of orthogonality has not been understood
completely but it is already well-known for the Bi-conjugate gradient algorithm
(BiCG), which is mathematically equivalent [69] to the Lanczos procedure we
use. In BiCG the underlying vectors loose their theoretical orthogonality and the
scalars used for the recurrences may undergo very large oscillations; nevertheless
the iterates generated to solve the linear system usually converge quite well.

The fast decrease in the components of z7 implies that the quality of the cal-

culated spectrum only depends on the first few hundreds of them. Namely, if we
set the components of the 2/ vector equal to zero in Eq. (2.64) after, say, 300-400
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Figure 3.2: Convergence of the absorption spectrum of benzene using the extrap-
olation procedure described in the text. After IV iterations the components of 27
are set to zero and the [3’s are extrapolated.

iterations, but we keep the dimension of the tridiagonal matrix, T7, on the order
of 2-3000, the resulting spectrum still appears to be perfectly converged. Unfor-
tunately, a relatively large number of iterations seems to be necessary to calculate
a tridiagonal matrix of adequate dimensions. The regular behavior of the (3’s for
large iteration counts suggests an inexpensive strategy to extrapolate the Lanc-
zos recursion. Let us fix the dimension of the tridiagonal matrix in Eq. (2.64)
to some very high value (say, 5 = 10000), and define an effective 27 vector, z?v,
and 77 matrix, T]{,, by setting the k-th component of zfv equal to zero for & > N,
and the k-th component of  equal to the appropriate estimate of the asymptotic
value for odd or even iteration counts, obtained from iterations up to N. In gen-
eral there are only a few iterative steps where ~y; has a sign different from that of
B;; therefore we use the same extrapolation for both coefficients. In Fig. 3.2 we
display the spectra, Iy(w), obtained from the extrapolation procedure which has
just been outlined. One sees that the extrapolated spectrum is already at perfect
convergence for a modest value of NV in between N = 500 and N = 1000; this is
a substantial improvement with respect to the results shown in Fig. 2.3. Note that
this extrapolation procedure, apart from the enhancement of convergence, also of-
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fers an efficient solution to the problem of recovering a continuous spectrum from
a limited number of recursion steps. As the dimension of the tridiagonal matrix
appearing in Eq. (2.64) can be increased arbitrarily at a very small cost, the dis-
tance between neighboring pseudo-discrete eigenvalues in the continuous part of
the spectrum can be reduced correspondingly; as a consequence, the imaginary
part of the frequency can be basically chosen as small as wanted.

A qualitative insight into the asymptotic behavior of the Lanczos recursion co-
efficients can be obtained from the analogy with the continued-fraction expansion
of the local density of states (LDOS) for tight-binding Hamiltonians, a problem
that has been the breeding ground of the application of Lanczos recursion meth-
ods to electronic-structure theory. It has been known since the late seventies that
the coefficients of the continued-fraction expansion of a connected LDOS asymp-
totically tend to a constant (which equals one fourth of the band width) whereas
they oscillate between two values in the presence of a gap: in the latter case the
average of the two limits equals one fourth of the total band width, whereas their
difference equals one half of the energy gap [81]. These results can be easily
verified in the case of a continued fraction with constant hopping parameter, (3

W = 2
Y 5}
w— “ ..
:t 2 _ 4 2
_ Y 2“;2 s , (3.2)

where the sign has to be chosen so as to make the Green’s function have the proper
imaginary part. In this case, one sees that the imaginary part of the Green’s func-
tion (which equals the LDOS) is non-vanishing over a band that extends between
—2( and 2(5. In the case in which consecutive hopping parameters of the recur-
sion chain oscillate between two values, (3; and (35, the resulting Green’s function

reads:

1
g(w) = 63 (3.3)

B

W— DR
w2+ 7 — B3 £ V(W + BT — B3)% — 4w
2wt ’

(3.4)
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Figure 3.3: (a) Behavior of (3’s coefficients for different values of the kinetic en-
ergy cut-off. (b) The asymptotic values (., plotted as a function of the kinetic
energy cut-off; the figure shows that they can be connected by a straight line with
a slope of about 0.5.

in this case we obtain two bands between |3; — (35| and (3; + (3> and between

—(B1 + B2) and —[B; — Bal.

In our case, the band width of the Liouvillian super-operator extends from
minus to plus the maximum excitation energy, which is of the order of the PW
kinetic-energy cutoff E.,;. The gap, instead, is of the order of twice the optical
gap A. Because of Eq. (3.4), we expect that the asymptotic values of the 3 (and
similarly ~y) coefficients of the Liouville Lanczos chain qualitatively satisfy the
relations 3994 + 3een = 23, & E.,; and |39 — 3%"| ~ A. In Fig. 3.3(a) we
report the behavior of the values of the /3 coefficients of the Lanczos chain calcu-
lated for benzene, vs. the iteration count, for different kinetic energy cut-off. In
Fig. 3.3(b) the average asymptotic value (3, is plotted as a function of the kinetic
1FE. .+, in remark-

2
able agreement with the above-mentioned prediction. The difference between the

energy cut-off, thus demonstrating a linear dependence 3., ~

asymptotic values of odd and even coefficients |39 — peven| ~ 0.46Ry is also in
qualitative agreement with the optical gap which we have found to be 0.38Ry.
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Figure 3.4: The structure of fullerene Cg, and its orientation in the supercell.

3.2 Application to fullerene

In this section we apply our method to a much more challenging problem such
as the spectrum of fullerene Cgp. Here, and in the next section, we show that our
approach, despite the large dimension of the basis set, is able to calculate spectra
on a wide range of energies and the results compare well with other theoretical
and experimental data.

Fullerene Cg, has already been the subject of experimental [17, 82] and theo-
retical [15, 16, 17, 18, 12, 19] studies; therefore, it is a good benchmark for our
method. The molecule has been placed in a cubic supercell with a side length
of 35 au and the calculation has been performed using the PBE functional [62]
and ultrasoft pseudopotentials with a kinetic energy cut-off of 30 Ry and with a
charge density cut-off of 180 Ry. The dimension of the basis set reaches almost
60000 PW’s and the dimension of the full Liouvillian exceeds 14 million. As in
the previous calculations, a Lorentzian broadening of 0.02 Ry is added to solve
the linear system. In Fig. 3.5(a) the absorption spectrum between 0 and 40 eV
is shown. The Lanczos recursion is explicitly computed up to some order N and
extrapolated, afterwards, up to 20000. This specific value has been chosen rather
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Figure 3.5: (a) Convergence properties of the absorption spectrum of fullerene
calculated between 0 and 40 eV using the Lanczos extrapolation technique. (b)
The same spectrum as above obtained without the extrapolation scheme. Small
ripples are still present even after 3000 iterations. (c) The fully converged absorp-
tion spectrum of fullerene compared with experimental results [17] in the energy
range between 2 and 7 eV. TDDFT results are scaled so as to obtain the same

integrated intensity as the experiment.
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arbitrarily to ensure full convergence. The results are already qualitatively good
after only N=500 and practically perfect after N=1500. If we do not use this Lanc-
zos coefficients extrapolation, as in Fig. 3.5(b), after 500 iterations we have huge
oscillations in the spectrum and small ripples are still present after 3000 iterations.
For this reason the use of the bi-constant terminator is of formidable importance
to reach convergence.

The overall shape of the spectrum is in substantial agreement with the spec-
tra calculated in a wide energy range in Ref. [16, 12, 18]. In that calculations
the spectrum is obtained using real-time propagations of the TDDFT equations;
within this approach the possibility of extending the calculation to a wide energy
range is due to the use of a smaller integration time step (with an evident increase
in computational cost); in our case, by using the termination of the Lanczos chain,
this problem is not relevant at all. A direct comparison with the performance of
Ref. [16, 12, 18] is not possible since in Yabana and Bertsch a real grid imple-
mentation is used and in Tsolakidis et al. equations are expanded on a basis of
numerical orbitals. However, the fact that in the first case 30-40000 iterations are
used and in the second more than 6000 seems to suggest, again, that the number
of the expensive Hamiltonian-wave function multiplications is largely smaller in
our approach.

The main features of the Cg, spectrum are the low-energy part of the spectrum
characterized by the transitions of 7 electrons and the broad region between 14 eV
and 27 eV where transitions come from ¢ and 7 electrons. The low frequency part
of the spectrum is explicitly compared with the experimental results of Bauern-
schmitt ef al. [17] in Fig. 3.5(c). The intensities are not perfectly reproduced, but
the main transitions compare well, apart from a slight redshift, as already found
in Ref. [17].

3.3 Application to chlorophyll a

An even more challenging test is chlorophyll, a molecule which is of fundamental
importance for life on Earth since it is responsible for the photosynthetic process.
There are several different forms of this molecule but we will focus on chlorophyll
a. Historically the interpretation of the visible spectrum of chlorophyll relies on
the 4-orbital Gouterman model of porphyrins [83] in which only the two highest
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Figure 3.6: The structure of chlorophyll a and its orientation in the supercell.

occupied molecular orbitals and the two lowest unoccupied molecular orbitals are
considered. In the last few years there have been several calculations of its low
energy spectrum relying on different ab initio techniques [7, 8, 84, 9, 10, 85].
Despite the fact that adiabatic TDDFT seems to produce spurious charge transfer
states in the visible region [9], we will see that in our application the overall shape
of the low energy spectrum seems to be substantially correct. For our calculations
we have placed the molecule in a super-cell of the following dimensions: 35 x
45 x 55 au®; the PW91 functional [61] has been used together with ultrasoft
pseudopotentials with a kinetic energy cut-off of 30 Ry and a charge density cut-
off of 180 Ry. The KS orbitals are expanded over more than 120000 PW’s and
the dimension of the Liouvillian super-operator exceeds 40 million. In this case
a Lorentzian broadening of 0.002 Ry has been added to the transition energies to
obtain a better comparison between our results and experiments. In Fig. 3.7(a)
the convergence of the spectrum calculated in a wide range of energy between O
and 40 eV is shown; the usual bi-constant termination is added. In this case we
notice that convergence requires a larger number of iterations in order to reproduce
the detailed features of the spectrum. This is connected to the use of a smaller
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Figure 3.7: (a) Convergence of the chlorophyll absorption spectrum between 0
and 40 eV using the Lanczos chain extrapolation. (b) Convergence without ex-
trapolation. (c) Chlorophyll absorption spectrum in the visible region between
400 and 700 nm compared with the experimental data in diethyl ether of Ref.
[86]. As usual the computational results have been scaled in order to obtain the

same integrated intensity as experimental results.
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Lorentzian broadening. In Fig. 3.7(b) the same results are shown without adding
the extrapolation of the Lanczos coefficients. In this case the overall convergence
is insufficient, even after N=3800. The lack of states in the continuous part of
the spectrum is particularly evident since it causes a pseudo-discretization of the
excitations evident in the plot. This lack is easily compensated by the use of the
Lanczos chain termination. In Fig. 3.7(c) we compare the visible part of the
spectrum calculated in this work with the experimental results obtained in diethyl
ether solution in Ref. [86]. A good agreement with the experiment is clearly
observed but the Soret (B) band located at 430 nm in the experiment is slightly
red-shifted in the calculation and the red band (Q) has an opposite behavior. How
much of this discrepancy has to be attributed to the limitations of the AXCA alone,
or to a combination of them with the neglect of solvation effects remains to be
ascertained. The experimental weak transitions between the two main peaks are
not well reproduced; in that energy range other TDDFT calculations have found
very small oscillator strengths, which, in our case, are most probably hidden by

the Lorentzian broadening.






Chapter 4

TDDFT study of squaraine
dye-sensitized solar cells

In this chapter we will apply the Liouville-Lanczos method to the study of dye-
sensitized solar cells, which are very promising devices to exploit the energy of
solar light. As an example, we will consider TiOy,—supported squaraine dyes,
which are interesting candidates to broaden sensitization in the red spectral re-
gion, and we will discuss the underlying mechanisms that rule the functioning of

these devices.

4.1 Dye-sensitized solar cells

In a world where the energetic problem is increasingly important, research on al-
ternative energy sources has become of fundamental value. One of the most inter-
esting renewable sources of energy is represented by solar light. A breakthrough
in its exploitation was the introduction of Dye Sensitized Solar Cells (DSSC’s)
[55], which have attracted considerable interest since they combine a relatively
high efficiency with very low production costs. DSSC’s consist of dye molecules
adsorbed on the surface of a film or of nanoparticles composed of a large gap
semiconductor, such as TiO, (the most widespread support and the one we will
consider hereafter). The key process in the functioning of DSSC’s is the injection
of light-excited electrons from the dye into the conduction band of the semicon-
ductor. This process depends on the structure of the dye/semiconductor interface,
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Semiconductor Dye Semiconductor Dye

Figure 4.1: Sketch of the alignment of the energy levels of the dye and of the
semiconducting substrate in a DSSC. (a) Direct transition mechanism in DSSC’s;

(b) indirect mechanism (see text).

and on the precise nature of the involved electronic excited states.

In Fig. 4.1 the alignment of the dye and of substrate energy levels which oc-
curs in a typical DSSC is shown qualitatively. In general, the HOMO (highest
occupied molecular orbital) of the DSSC system corresponds to a molecular state
and the LUMO (lowest unoccupied molecular orbital) to an electronic state of the
substrate; the net effect is a lowering of the energy gap of the overall system with
respect to that of the semiconductor substrate. Given this alignment of the energy
levels, the injection of one electron into the substrate can have different underly-
ing mechanisms. Indeed, we can have a direct transition from the occupied levels
of the dye to the conduction band of the TiO, substrate (direct mechanism), or
the absorption of a photon from within the dye, followed by the transfer of the
photo-excited electron into the semiconductor conduction band (indirect mecha-
nism). This mechanism is in general more efficient since it can involve more than
one final state in the TiO- conduction band. In this case, in order to achieve high
electron transfer quantum yields, the dye needs to be strongly coupled to the semi-
conductor and it has to produce long-lived excited states with energies that almost
match those of the TiO, conduction band. After injection, it is necessary to close
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the circuit in order to generate a current. This is achieved through an electrolyte
(which can be also substituted by a p-type semiconductor) and a counter-electrode
(the electrode, instead, is the TiO, substrate). When an electron is injected from
the dye into the semiconductor, a new electron is provided by the electrolyte, thus
closing the circuit. This process takes place without any chemical transformation
of the dye.

A breakthrough in the DSSC’s technology has been determined by the ex-
traordinary performance of cis-di(thiocyanato)bis(2,2’-bipyridyl-4,4’-dicarboxy-
late)ruthenium(II) sensitizer (N3) attached to nanocrystalline TiO- films [55, 87,
88]. Indeed this system has a 10% solar-to-electric power conversion under AM
1.5 (AM indicates the Air Mass.). Ruthenium complexes are still the most wides-
pread dyes in this kind of application, but research to optimize the dye is extremely
active. Ruthenium complexes absorb visible light mainly around 2.3 eV. For this
reason, in order to further improve the performance of DSSC’s, it is necessary to
fit better the absorption band of the dye with the solar spectrum. The introduc-
tion of dyes that enhance absorption in the red/near infrared region is, therefore,
of fundamental importance. From this point of view squaraines are good can-
didates for their strong absorption in that energy range. Different experimental
applications already exist [89, 90, 91, 92, 93, 94]. In [94] a new asymmetrical
squaraine was introduced, with a carboxilic acid group to anchor the molecule to
a4 pum TiO4 film. Under standard solar conditions AM 1.5, the solar cell built
this way has reached an overall efficiency of 4.5%. The importance of studying
these molecules is also connected with the possibility of cosensitization of differ-
ent dyes with a different spectral response. Indeed in [95] a series of squaraines
have been applied together with ruthenium complexes to obtain a substantial im-

provement of the photon-current conversion efficiency.

The main theoretical challenge concerning DSSC'’s is to understand the mech-
anisms that rule their functioning at the atomic scale, with the final purpose of
engineering new dyes with custom-tailored optimal properties. As we have al-
ready remarked, a fundamental characteristic of DSSC’s is the proper alignment
of the energy levels of the dye with the substrate levels. TDDFT can be a suit-
able approach to address this problem and applications to DSSC’s already exist
[30, 31]. In the next section we will apply the Liouville-Lanczos method to a
model of the squaraine-based DSSC considered in [94]. We will also address the
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Figure 4.2: Translational unit of the squaraine DSSC model, consisting of the
molecule adsorbed on a two-layer slab. The system is oriented with the z axis

perpendicular to the slab surface.

problem of the assignment of a transition mechanism.

4.2 A numerical study of a squaraine DSSC

In this section we will consider the computational study of squaraine dye-sensiti-
zed solar cells. Squaraines are a class of organic dyes with intense absorption of
radiation in the red/near infrared energy range. Such molecules are characterized
by a squaric acid core; this acid has the chemical formula C4H,0,, with the four
carbon atoms forming a square. The specific dye we consider is 5-Carboxy-2-[[3-
[(1,3-dihydro-3,3-dimethyl-1-ethyl-2H-indol-2-ylidene)methyl]-2-hydroxy-4-oxo-
2-cyclobuten-1-ylidene]methyl]-3,3-trimethyl-1-octyl-3H-indolium, which has be-
en introduced in Ref. [94]. The carboxylic group (-COOH) is used to anchor
the molecule to the TiO, substrate. In general TiOs can crystallize in three
different forms, namely anatase, rutile, and brookite; the first of these is the
most widespread in DSSC’s applications, since it has shown a better performance
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Figure 4.3: Absorption spectrum of the TiO, slab, as calculated from TDDFT
between 0 and 10 eV.

[96, 97].

Our model consists of the molecule adsorbed on a two-layers periodically re-
peated TiO, slab; the translational unit is shown in Fig. 4.2. The structure of the
squaraine has been simplified by replacing the octyl substituents with methyls.
The exposed surface of the slab is the (101) of the anatase structure, using a
(1 x 4) primitive cell. The dimension of the cell containing the system is 19.35 x
28.61 x 54.28 au®. We also performed the simulation of the isolated slab and
of the isolated molecule in cells of dimension 19.35 x 28.61 x 45.66 au® and
52.91 x 26.46 x 23.62 au® respectively. The calculations have been performed
considering only the I' point in the first Brillouin zone. We used the Perdew-
Burke-Ernzerhof (PBE) [62] xc functional, ultra-soft pseudopotentials and a PW
basis set, up to a kinetic energy cut-off of 25 Ry and 200 Ry for the charge den-
sity. An imaginary part of 0.002 Ry has been added to the frequency. To calculate
the spectra we used the extrapolation of Lanczos coefficients illustrated in the

previous chapter.

First of all we have to consider the reliability of the optical properties of the
model used for the TiO4 substrate. Indeed the slab must not absorb in the vis-
ible region in order to reproduce the characteristics of the real system. The KS
HOMO-LUMO gap of the slab is equal to 2.5 eV and remains substantially un-
affected in the TDDFT calculation; even smaller is the gap of the anatase bulk,
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Figure 4.4: Electronic density of states of our DSSC model, as projected on the

TiOs slab and on the squaraine molecule.

equal to 2.16 eV. Both this values are sensibly lower than the experimental value
of 3.2 eV for the bulk. This is a manifestation of the well-known gap problem of
GGA functionals [98]. Nevertheless, the calculated absorption spectrum in Fig.
4.3 shows a very low intensity in the visible region, and we thus consider our slab
an acceptable model for the substrate.

In order to ascertain the proper alignment of the molecular electronic states
with those of the substrate, we calculate the density of Kohn-Sham states for the
full DSSC system, projected onto the dye and the substrate components (PDOS),
as shown in Fig. 4.4. We obtain the expected behavior for a DSSC, since the
HOMO is a purely molecular state while the LUMO is an electronic state of the
slab. It is also important to note that the unoccupied molecular states lie in a
region where the states of the slab are dense, thus tending to hybridize with the
latter. This feature is also evident in the visualization of the isosurfaces of the KS
orbitals, which has not revealed the presence of purely molecular orbital in the
conduction band.

We are now ready to move on to the optical properties of the squaraine DSSC.
Before considering the TDDFT results, let us describe some experimental find-
ings. Fig. 4.5(a) shows that, in the visible region, squaraine presents a strong
absorption peak around 1.94 eV, which corresponds to a m — 7* transition. When
the molecule is adsorbed on a 4 ym TiO, film the main features do not signifi-
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Figure 4.5: (a) Experimental absorption spectrum of squaraine in ethanol and
adsorbed on a 4 ym TiO, film. (b) TDDFT results for the absorption spectrum of
squaraine in gas-phase and adsorbed on a TiO, slab. The two curves have been
rescaled in order to be compared.

cantly change but the main peak is broadened and the maximum in the absorption
is slightly red-shifted by about 0.02 eV, due to the interaction of the anchoring
group with the surface. The “shoulder” of the main peak is probably due to
vibronic transitions [93]. In Fig. 4.5(b) the TDDFT results are shown for the
gas-phase squaraine and for the dye+slab system models. The main transition of
squaraine has been found at 2.08 eV, shifted by 0.14 eV compared to experimental
results. When the molecule is adsorbed on the surface, a small red-shift of about
0.03 eV occurs, in agreement with experimental results. The “shoulder” observed
in the experimental spectra is not present in our results due to our neglect of vi-
bronic effects.

We have seen that theoretical and experimental results in the visible range are
in satisfactory agreement. Both seem to suggest an indirect transition mechanism
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Figure 4.6: Imaginary part of the zz component of the polarizability in the energy
range between 0 and 3 eV.

in the solar cell, since there is no significant change between the spectrum of free-
standing and adsorbed molecules. Nevertheless we have found some weak ab-
sorption in the infrared region, namely for energies lower than the main transition
peak. There is no experimental evidence of such transitions, since such energy
regions have not been investigated. These transitions are showed in the zz com-
ponent of the absorption (see Fig. 4.6), but they are present with smaller intensity
in the yy component as well. Although the presence of these excitations does not
change the prediction of the dominant transition mechanism significantly, further

investigation is required to fully understand their nature.

In order to gain a better insight into the mechanism of the transition (direct or
indirect), we have considered the response of the charge density to the application
of a unitary external electric field along the j axis, £/;, in linear response regime:
ng, (r,w). The standard batch representation of n'; (r,w) is (see Eq. (2.38)) :

g, (r,w) =2 Z G (1) (1, w) 4.1)

where ¢, is obtained by solving the linear system (2.39) with v,y = —E;(w)r;.
Since we are interested in the transitions appearing in the zz component of the
polarizability, it is enough to compute the integral of n’Ej (r,w) in the planes or-



4.2 A numerical study of a squaraine DSSC 67

thogonal to the z direction, namely

1
by

ng. (z,w) =

/n’EZ (r,w)dzdy. 4.2)

Ty
where X, is the area of the zy base. In Fig. 4.7 we show the values of Im 7, (z,w)
for the four transitions displayed in Fig. 4.6 as a function of the z coordinate; the
region of space occupied by the molecule and by the slab are delimited by green
and red lines respectively. In the frame (a) of Fig. 4.6 we see a strong response
of the molecule, which is very similar to the free-molecule response (blue line),
and almost no response in the region of the slab, but for a charge accumulation on
the surface opposite to the one where the dye is anchored. In the other frames of
Fig. 4.6 the charge response function is shown for ws, w3, and w,. Especially con-
sidering the plots in (c) and (d), it is evident that the low energy peaks are mainly
associated to a molecule-slab transition. For example in the frame (c), the density
response is almost exclusively negative in the squaraine region, thus forming a net
dipole between the molecule and the slab. This transition corresponds to a direct
injection mechanism.

In all the response functions in Fig. 4.7, a charge accumulation in the lower
surface of the slab is present. A possible explanation of such behavior is based
on a classical model. Indeed we can suppose the slab to behave as a capicitor in
which the dielectric material uniformly polarizes under an external electric field.
In this case the external field is given by the dipole within the molecule in the
frame (a) and between the molecule and the upper surface in (b), (c) and (d). The
uniform polarization cancel out inside the slab but manifest itself in the lower
surface.

The TDDFT analysis of the optical spectra and of the charge response func-
tions indicates that the functioning of the squaraine solar cell, although dominated
by an indirect transition, also seems to involve some weaker direct transition.
This feature cannot be verified, because of the lack of experimental results in the
infrared energy region. Further work is necessary to improve the reliability of
TDDFT calculations on DSSC systems, especially concerning the description of
the substrate. First of all a more realistic model with many layers would bring to
a more appropriate description of such system; but the most important problem
concern the correction of gap of TiO,, that we have underestimated in our calcu-
lations. To this purpose, hybrid functionals, despite a large computational cost,
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Figure 4.7: (a) Imaginary part of the charge response (4.2) for the DSSC system
as a function of the z coordinate in correspondence to the energy w;. In blue
the same quantity is shown in correspondence of the main peak (2.08 eV) of the
molecule alone. The charge response for the transitions ws, w3 and wy 1s shown in

the frames (b), (c¢) and (d) (see Fig. 4.6). The curves have been rescaled in order
to be compared.
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are a suitable method to correct both the KS gap and the TDDFT optical gap of
the substrate [30].






Conclusions

In this thesis a new computational approach has been introduced to solve the lin-
earized TDDFT equations in the frequency domain. This new formulation allows
one to overcome some of the drawbacks of traditional approaches, such as real-
time propagations or Casida’s equations. By using a super-operator formulation
of linearized TDDFT, we have first represented the dynamical polarizability (but
also other specific response functions) of an interacting electronic system as an
off-diagonal matrix element of the resolvent of the Liouvillian super-operator. To
solve the problem in practice we have used a representation for density matrices
which has been borrowed from density functional perturbation theory. In this way
it is possible to avoid the calculation of KS empty states, which, instead, is nec-
essary in Casida’s implementation. We have then calculated the resolvent using
a newly developed algorithm based on the non-symmetric Lanczos method. The
already good convergence properties of this approach have been further improved
by the introduction of an inexpensive extrapolation scheme. In this way the num-
ber of iterations necessary to reach convergence ranges from few hundreds to few
thousands. For this reason the numerical workload of this method is only few
times larger than that needed by typical ground-state calculations for the same
system. Because of the favorable computational charge, this method is particu-
larly suitable to treat large systems, and to calculate the absorption spectrum in
a wide energy range. Its reliability has been explicitly demonstrated on systems
of increasing dimensions such as benzene, fullerene and chlorophyll a, obtain-
ing optical spectra in good agreement with experiments and with more traditional
TDDFT schemes. Whenever possible, comparison has shown that our approach
is much more efficient than the real-time propagation of TDKS equations to cal-
culate linear response spectra. The main advantage of our method with respect
to Casida’s is the possibility of calculating absorption spectra (or other dynamical
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response functions) on a much broader energy range, an advantage that is shared
by real-time approaches, which are however more demanding computationally.

We have also applied the newly introduced approach to a problem of remark-
able applicative importance, a squaraine dye-sensitized solar cell. The results
obtained are in good agreement with experiments, and it is also possible to infer
the mechanism ruling the functioning of such device qualitatively.

Despite the satisfactory accuracy of the results obtained in this thesis, the main
limit of our approach resides in the approximation of the xc functional used to
implement it. Devising new xc functionals capable of properly describing the
electron-hole interaction responsible, e.g., of Rydberg and excitonic effects in the
low-lying portion of the spectrum of molecular and extended systems respectively
remains a major problem to be addressed and solved.

Further work is necessary in many different directions. First of all we mention
the efficiency issues related to the ultrasoft implementation, particularly crucial
for TDDFT applications. The computational workload of the usual reciprocal
space implementation of ultrasoft pseudopotentials can be reduced of some order
of magnitude by performing the same operations in real space; although this issue
does not change the overall numerical scalability, it has to be addressed in order
to broaden the range of applicability of the method. Secondly the method should
be extended to deal with a larger range of problems, such as electron energy loss
spectra and circular dichroism; in the second case it is necessary to overcome
the conceptual difficulties in the definition of the angular momentum operator in
periodic boundary conditions. Last but not least, new functionals should be im-
plemented in order to overcome problems such as, e. g., the gap underestimation.
Hybrids are a widespread and accurate class of functionals that improves over
some of the limitations of LDA or GGA; nevertheless their use brings to imple-

mentative complications and to a larger computational workload.



Appendix A

Plane-wave pseudopotential
implementation

The algorithms introduced in this thesis have been implemented as a standing
alone part of the suite of codes Quantum ESPRESSO (see http://www.quantum-
espresso.org). The TDDFT code works as post-processing application to a stan-
dard ground state calculation performed by PWscf (see http://www.pwsct.org/),
which uses a plane-wave pseudopotential approach. This methodology is partic-
ularly suitable to treat periodic systems, but isolated systems, such as atoms and
molecules, can be addressed as well by using supercells. In the plane-wave for-
mulation the KS orbitals can be expanded as

Pro(r) = (N;)l Z KT (k4 G) (A1)
‘a

where () is the volume of the unit cell, /V is the number of cells, k is a vector in
the first Brillouin zone, G are the reciprocal lattice vectors and ¢, (k + G) are the

expansion coefficients normalized to one
D ek +G)P = 1. (A2)
G
The dimension of the basis set is determined by the condition
1

where FE.,; is the kinetic energy cutoff, which has to be chosen big enough to

ensure accurate results. In general, for supercell calculations, k is set to zero,
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namely only the I' point is considered in the first Brillouin zone. Using the plane-

wave expansion the KS equations can be written as

Z Hk+G,k+G)ey(k+ G) = ek + G) (A.4)
G/

where

H(k+G,k+G) = %\k+G125g,G/ +0i(G = G) £ 02e(G = G 1t (G, G,

(A.S)
It is important to note that the kinetic energy contribution (namely the first term of
the Hamiltonian /1) is diagonal in this representation. For this reason the compu-
tational cost of its application to a given vector scales linearly with the dimension
of the basis set N. Unfortunately the potential terms v of Eq. (A.5) are not di-
agonal in this same representation but they are in the real space representation,
which can be obtained performing a Fast Fourier Transform (FFT). Switching be-
tween reciprocal and real space through FFT’s, the N2 scaling of the matrix-vector
product in Eq. (A.4) can be reduced to /N log /N. Furthermore, in this way the full
matrix H (k + G,k + G’) does not need to be explicitly computed. Another ad-
vantage of the use of plane-waves is the significant simplification in the resolution
of the Poisson equation, namely in the evaluation of the Hartree contribution. In
reciprocal space we have simply

n(G)®

vr(G) =27 ) o (A.6)
G0

which has to be Fourier transformed to real space before the application to a wave
function.

These are the basic technical ingredients for a ground state DFT calculation
on a plane-wave basis set. The Hamiltonian 7/ in Eq. (A.4) is a functional of
the exact ground state density and for this reason the equations have to be solved
self-consistently. The first step of this procedure consists in finding a proper initial
guess for the ground state density that, evaluating vy through Eq. (A.6) and v,.,
can be used to build . Solving Eq. (A.4) we obtain a new guess for the density
from the KS orbitals. The procedure has to be continued until the new guess does
not differ significantly from the previous one. Each self-consistent step requires
the evaluation of the occupied states of /. This goal can be reached using iterative
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techniques that avoid the cumbersome full diagonalization of the Hamiltonian
altogether. These methods only require matrix by vector (namely Hamiltonian by
wavefunction) products, which can be efficiently performed by the FFT approach
described above.

In order to implement the Liouville-Lanczos equations in a plane-wave for-
malism the first issue is related to the evaluation of Qriqbv (r) in Eq. (2.40). Indeed
the position operator is incompatible with the periodic boundary conditions intrin-
sic to the plane-wave basis set and its expectation value on wavefunctions (A.1) is
ill-defined. In a perturbative regime, however, this pathology can be easily solved.
Indeed what is required to calculate Qrigby(r) is the evaluation of the expectation
value of the position operator between an empty KS state ¢.(r) and an occupied
state ¢, (r). This quantity can be expressed in periodic boundary conditions (but
also in general) as

(6ulrl,) = AE o), A7)

Ec— €y
if the potential acting on the electrons is local, the commutator is simply propor-

tional to the i*" component of the momentum operator. Using Eq. (A.7) we can
express our desired quantity as

@(I‘) _ Qri¢u(r> _ Z ¢C(r> <¢c H ,Ti]|¢v>

I (A.8)
€ — &y

which can be numerically evaluated by solving the linear system

(H = e)|}) = QU 1i]| ). (A.9)
This operation has to be performed only once at the beginning of the calculation
(clearly in case of fixed atoms).

In the Liouville-Lanczos approach the iterative procedure requires the repeated
application of the Liouvillian superoperator through Eq. (2.34) and Eq. (2.35) but
there are no significant differences with respect to the ground state implementa-
tion. To evaluate Eq. (2.34) we need to apply the ground state Hamiltonian to
each orbital of the batch. This is exactly the same operation performed in itera-
tive ground state calculations and also in this case we can take advantage of FFT
techniques. The evaluation of Eq. (2.35) that we express here for the LDA case is
a bit more tricky:

K{z,(r)} = Q[/ |n'(r') '+ 0Vsc(T)

r—r| on(r)

n'(r)] (A.10)

n=ng
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where n/(r) = > ¢,(r)z,(r) and ¢,(r) are the occupied KS ground state or-

bitals. In Eq. (A.10) the first term can be evaluated simply by using Eq. (A.6).

Svze(r)
on(r)
TDDFT calculation, since this quantity is a functional of the ground state density

The second term requires the evaluation of only once at the beginning of the

only. This operation can be performed numerically using the formula

0Vze(r)  Vpe[no(r) + eng(r)](r) — vee[no(r) + eng(r)](r)

on(r) 2eng(r) @10

where in the second term we explicitly wrote the functional dependence of v,
on the density and where ¢ is a properly chosen small number. In case of GGA
functionals the same evaluation leads to a more complex formalism that can be
found in [99].

A relevant problem of a direct plane-wave implementation is given by the huge
dimension of the basis set required to treat all the electrons explicitly. Indeed the
low energy orbitals are generally localized near the nuclei; furthermore, due to
the orthogonalization condition, the higher energy orbitals oscillate rapidly in that
region. Fortunately the electrons lying in the inner regions are also the less in-
volved in the chemical properties of an atom. For this reason pseudopotentials
have been introduced in order to treat explicitly only the outer valence electrons
and to consider the inner electrons frozen in their atomic configurations. In this
approach the valence electrons move in an effective potential (the pseudopoten-
tial) which outside the core region (the dimensions have to be established in the
construction of the pseudopotential) match the true potential and inside it is con-
siderably smoother. Outside the core radius the pseudo-wave function (namely
the wavefunction obtained using the pseudopotential) is only proportional to the
true wavefunction. In general they are forced to be the same in the construction
of the pseudopotential, which in such case is called norm-conserving. Inside the
core region, instead, the pseudo-wave function is much smoother than the true
wavefunction, since it is no longer necessary to ensure the orthogonalization with
the core states. For this reason the total amount of required plane-waves is signif-

icantly lower.

The norm-conserving pseudopotentials in their original formulation [100, 101]
are split into a local part (matching the true potential outside the core) and a non
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local part for the angular momentum (vanishing outside the core):

l'm.ar

v(r, 1) = v(r)é(r — 1) +Z|Ylm (1) (Vi (A.12)

where Y}, are the angular momentum eigenfunctions. In order to make the calcu-
lation more efficient, Kleinman and Bylander [102] introduced the separable form

for the non local part

o(r,r') = v'(r )+ Z 90, Snl - (vl g1 | (A.13)
o V701 )
which is non local also in the radial part and which reproduces the same action of
the previous formula on the reference atomic pseudo-wave function ¢!
The method of norm-conserving pseudopotentials has been improved by the
introduction of ultrasoft pseudopotentials [103]. The formalism, which is more

complex, has been considered in Appendix B for the specific case of TDDFT.






Appendix B

Ultrasoft implementation

A crucial parameter for the convergence properties of the Liouville-Lanczos method
is the dimension of the basis set. For this reason to use ultrasoft pseudopoten-
tials 1s fundamental, for it allows a substantial decrease in the number of neces-
sary plane-waves at the price of some complication of the formalism [103]. The
equations developed in Chapter 2 apply to all-electron as well as to calculations
performed using norm-conserving pseudopotentials, which give rise to an ordi-
nary KS ground-state eigenvalue problem. Ultrasoft pseudopotentials (USPP’s),
instead, give rise to a generalized KS ground-state eigenvalue problem and the
TDKS equations have to be modified accordingly [77, 104]. For the sake of com-
pleteness in the following we will give a sketch of the main equations; the details
of the Ultrasoft pseudopotential implementation in TDDFT are given in [77, 104].

In the framework of USPP’s, the charge density is written as a sum n(r,¢) =
nY(r,t) + n™&(r,t). The delocalized contribution, n"®, is represented as the
sum over the squared moduli of the KS orbitals: nUS(r,t) = 3 |¢,(r,t)|*. The
augmentation charge n#, instead, is written in terms of so-called augmentation
functions Q7 (r):

(e t) = 3 S QL) S (O18L) (BLIu(0)). B.1)

v n,m,l
The augmentation functions, as well as the functions 31(r) = 3,(r — R;) are
localized in the core region of atom /. Each [3,, consists of an angular momentum
eigenfunction times a radial function that vanishes outside the core radius. Typi-

cally one or two such functions are used for each angular momentum channel and
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atom type. The indices n and m in Eq. (B.1) run over the total number of such
functions for atom 7. In practice, the functions @,,,(r) and 3,(r) are provided
with the pseudopotential for each type of atom.

The advantage of using USPP’s over standard norm-conserving pseudopo-
tentials comes from this separation of the strongly localized contributions to the
charge density from the more delocalized contributions. The square moduli of the
KS orbitals only represent the latter part of n(r,¢), and therefore lower Fourier
components in the representation of the orbitals are sufficient for a correct rep-
resentation of the charge density. The kinetic energy cutoff that determines the
size of the basis set can therefore be chosen to be much smaller in typical USPP
applications than in corresponding calculations with norm-conserving PP’s. The
smaller basis set not only reduces the dimensions of the matrices during the com-
putation, but it also allows for a faster convergence of spectroscopic quantities
calculated with the Liouville-Lanczos technique.

The generalized expression for the USPP charge density given above entails a
more complicated structure of the KS eigenvalue problem. Instead of the standard

KS eigenvalue equation (1.7), one now has
H50,(x) = €,56,(r), (B.2)
where the overlap operator S is defined as

S=1+ ) ql.180(Bh], (B.3)

n,m,l

with ¢/, = [dr Q! (r) and 1 the identity operator.
Consequently also the TDKS Eq. (1.18) contains the overlap operator in the
USPP formalism:
A0, (1, t A
15%) = Hies(1)o(r. 1), (B.4)
which can be used to modify the corresponding quantum Liouville equation (2.1)
accordingly.
Using a derivation similar to that shown in Chapter 2, we arrive at a standard
batch representation of the TDDFT Liouville equation in the USPP formalism.
It has the same form as Eq. (2.39) above, but with the super-operators D and
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replaced by

D"z, (r)} = {(STHEE — e)a,(r)} (B.5)
KV {z,(r)} = {S_IQZ/va/(r,r’)xv/(r’)dr’}, (B.6)

and the right hand side of Eq. (2.39) by

( Ny A ’ ); (B.7)
{s 1Qveﬂct(r)¢v(r)}

in this case the projector Q onto the empty states manifold is given by Q =S5—
> S|é,) (y|. The inverse overlap operator, S~!, appearing in these expressions

can be cast in the form

Lot 0 A I8, (B.8)

n,m,I,J

which is very similar to the S operator itself, given in Eq. (B.3), except for the
fact that 5~ generally connects J-functions localized on different atoms. The
numbers A2/ can be obtained from the condition SS5~1 = 1. If the atoms are kept
at fixed positions, as this is the case, the overlap operator is independent of time
and the A/ needs to be calculated only once.

In the practical implementation of the USSP method we can take advantage
of the strong spatial localization of the functions Q,,,,,(r) and 3, (r) [105]. This
feature can be exploited by using a real space grid instead of using the reciprocal
space representation (see Appendix A). For example, when we add the augmen-
tation charge Eq. (B.1) to the smoother part, in reciprocal space we have to sum
over all the Fourier components; in real space, instead, we have to sum over only
relatively few grid points, since @, (r) is zero elsewhere. Similarly, to calcu-
late (3 |¢,(t)) in Eq. (B.1), in reciprocal space we have to perform the scalar
product Y, 3! (G)¢,(G,t) between large dimensional reciprocal space vectors;
the same quantity in real space is proportional to Y, 3! (r;)¢,(r;, t), where the
sum has to be performed only on the points in which 3 (r) is non zero. The re-
duction of the computational workload that can be reached in these, as well as in
other USPP operations, is roughly proportional to the ratio between the volume
occupied by the localized functions @,,,,,(r) and (3, (r) and the total volume of the
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simulation cell. Since in a typical PW implementation it is possible to switch from
reciprocal to real space through FFT (see appendix B), ultrasoft pseudopotentials
can be treated on a real space grid. In general, for ground state calculations, this
is not strictly necessary, and indeed in the PWiscf this is not the standard way to
proceed. In the Liouville-Lanczos approach, instead, operations relative to USPP
are much more frequent, and the overall computational time is strongly influenced
by this feature.

We have tested an implementation for the treatment of the augmentation charge
in real space, with the specific purpose of applying this methodology in TDDFT
calculations. For what concerns accuracy, we have found that, in general, the
convergence of ground state total energies requires a larger charge cutoff than in
standard reciprocal space calculations. Nevertheless, even using the same charge
cut-off as in the reciprocal space calculation, the single occupied and empty KS
eigenvalues are not significantly shifted, and the overall TDDFT spectrum con-
verges to the proper final result. Using the real space approach, the computational
cost to treat augmentation charges has decreased by some order of magnitude. For
this reason, the real space technique has become a really powerful tool, which we
have used to address the problem of dye-sensitized solar cells, after the tests on
the previous cases. Further work is necessary to introduce a real space implemen-
tation for /3,,(r).
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