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Abstract

The central problem studied in this thesis is, broadly speaking, the issue of coarse-
graining in GR approximations, and the effect of averaging on the field equations. The
important observation made is that there are some smoothing procedures implicit in the
standard, homogeneous and isotropic Friedman-Lemaitre-Robertson-Walker cosmological
models. The point is that if such effects are not allowed for, we may actually be using
the wrong field equations in cosmology. There has been recently an increased effort in
this direction with some interesting results, as for example that the coarse-graining effects
could be non-negligible in the context of affecting the age of the universe.

The central idea explored at length in this thesis (see chapter three) is the possibility
of applying the Renormalization Group (RG) concepts in gravitation to tackle the avera-
ging problem. Research presented in this thesis produced results as follows: In section 3.6
an explicit smoothing-out procedure for inhomogeneous cosmologies is introduced. This
approach is implemented in a “3 + 1” formalism and invokes the coarse-graining argu;
ments, provided and supported by the real-space RG methods in an analogy with lattice
models of Statistical Mechanics. One of the results obtained is a re-interpretation of the
Ricci-Hamilton flow in terms of a RG flow, thereby providing the Ricci-Hamilton flow
with a physical meaning and showing how the averaging problem is rooted in the geom-
etry. Moreover, block variables are introduced and the recursion relations written down
explicitly, making thus possible a study of the system’s critical behaviour. The criticality
is discussed and it is argued that it may be related to the formation of sheet-like structures
in the universe. Moreover, the explicit expression for the renormalized Hubble constant
is proposed. A discussion follows of the consequences of this approach in cosmology and
astrophysics.

Finally in chapter four the evolution of perturbations is studied in the dust-radiation
FLRW universe model. This is done in the framework of dynamical systems theory which
seems well suited to this purpose. The evolution of density perturbations is presented in
the form of phase diagrams. Some scales are discovered that are over-damped.

A number of ideas of relevance for future research are summarized in chapter five.
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1 Introduction

1.1 Theoretical foundations of Cosmology

The aim of cosmology is an investigation of the structure of space-time in the largest
possible scale. One can think of two different directions of doing this [133]:

— “top-down” way, whereby one assumes a priori some postulates about the large scale
of the universe and tries to deduce local physics (Milne, Bondi and Gold); and

— “bottom-up” way, whereby one extrapolates the accepted local physics as far as
possible, in order to guess the global structure of space-time. This is indeed the present
paradigm and it also involves some, more or less, aprioristic assumptions about the Uni-
verse as a whole, or cosmology itself.

In order that cosmology can be concerned with the global structure of space-time
one has to make some non-empirical assumptions. In fact, it turns out that non-local
assumptions are involved in every empirical prediction of standard physics. From the
point of view of field theory, local extrapolations into the future can be valid only under
the so-called no-interference assumption (see e.g. [91]), that there are no signals generated
by a distant event which at the next moment could affect the system under investigation. If
one wants to interpret modern cosmological observations a theory of space-time is needed.
The conclusions one arrives at about the properties of the universe, essentially depend on
an integration of some differential equations over a “large scale” domain of the space-time
manifold. Usually, as a rule it is the simplest cosmological models that are implicitly used

in practice (highly symmetrical), which obscure the above fact.

General Relativity (GR henceforth) is the best classical theory of gravitation we have.
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The field equations of GR are correct to a high order of accuracy for the solar system
(see e.g. [252]) and relatively small binary systems (PSR 1913+16, 4U1820-30 and PSR
0655+64) [137, 260, 15, 65], i.e. to the distance scales less than 50 AU. Nevertheless,
GR is applied to cosmic structures such as galaxies, clusters of galaxies, superclusters
and ultimately the whole universe, which are typically 10% + 10'® times larger than the
distances over which the theory has been tested with a high accuracy. In the theoretical
studies of gravitational lensing [32] GR is assumed to be the correct theory of gravity, but
doing so GR is not being tested explicitly. In fact, some authors questioned the validity of
GR over large distances in the context of dark matter problem [223]'. As far as cosmology
is concerned, the most significant result obtained with the help of classical tests is the
support given to the standard model against the steady-state cosmology.

The whole subject of experimental gravitation is rather subtle. This is so finally due
to the fact that GR is a general covariant theory, and due to this the very concept of
observables is quite involved (see e.g. [24] for still excellent review). The strategy that has
to be employed in all the measurements is to use concrete physical objects as clocks and
spatial references, and these objects cannot be taken as independent from the dynamics
of the system. The importance of the Lorentz metric is not to be underestimated as it
is its existence that makes it possible to perform space and time measurements in differ-
ent reference frames. The geometry of space-time determines the laws of measurement.
The Lorentz metric further allows us to construct relativistic mechanics and relativistic

electrodynamics.

In GR the space-time manifold, formally determined by the matter content and bound-
ary conditions, with its various geometric structures has a very special status as a “prim-
itive element” of the theory. It has to be a differentiable, at least class C* [64], Hausdorff
and connected manifold, if it is to model a physical world. Locally the manifold is (pseudo-
Jeuclidean - concept not directly related to the curvature - in the sense that every point
of it lies in a neighbourhood which can be coordinated. Moreover different points of it

have coordinates (four real numbers) related in a continuous way. At every point of the

! One can have doubts about the validity of GR when spatial separations are of the order of lpianck, but
that would be relevant to the very early stages of the standard model with which we are not concerned in
the present thesis.
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manifold there is a rich algebraic structure (vectors, tensors, etc.) representing various
physical fields, which otherwise is introduced quite arbitrarily. This structure is built using
the local differentiable properties of the manifold. Apart from the differential one there is
also a geometric structure. The pseudo-riemannian manifold is in effect taken to model
the space-time in the relativistic theory of gravitation. It is only through the Einstein

equations that the physical fields acquire a non-local character.

The space-time evolves during the evolution of the universe and the mathematical
structure of GR space-time at different times should reflect the changes. Possibly we should
even allow for a breakdown of the smoothness of the manifold. In the early universe close to
the initial singularity, each physical property implied global consequences, the distinction
between local and non-local ceases to be clear-cut. The singularity itself (initial) is related
to the space-time being geodesically incomplete. The singularity theorems [131] show
that geodesic incompleteness of the considered space-time cannot coexist with some of
its properties, like e.g. compactness, non-existence of closed time-like curves, existence
of Cauchy hypersurface, which are non-local ones. Every physically acceptable model of
the universe can and should contain singularities [131] (e.g. the Schwarzschild solution),
they had bettér constitute a set of measure zero! (for a comprehensive treatment of
the mathematical structure of space-time, see e.g. [95]). There are different kinds of

singularities and some are “more global” then others.

The principle of equivalence identifies a riemannian space-time with the gravitational
field. Einstein’s equations provide a relation between the sources of the gravitational field
and that field itself. They are the prescription of how matter and any energy-carrying field
determines the geometry of space-time and, a fortiori the gravitational field. The gravita-
tional field is represented by the space-time metric g, which becomes a dynamical field
coupled to matter, through the field equations. In this sense the gravitational field is con-
tained in the geometry, as knowledge of the metric is sufficient (for the pseudo-riemannian
manifold) for the determination of all properties of our manifold. The information about
the sources of the gravitational field is contained in the energy-momentum tensor Tps. In

order to specify it we should know in advance the space-time structure of the manifold



4 § 1. Introduction

itself, which we cannot, until we have solved the Einstein equations?

1
Eap = Bap — 9B = Tap. (1.1)

GR contains in fact no general recipe of how the energy-momentum tensor should be
constructed, given a particular physical situation. Indeed, it can only be “constructed” on
the basis of pre-relativistic physics with no account, consequently, of the geometrization
view. The generally adopted procedure in GR is to resort to field theories, covariant in the
sense of restricted relativity (special). A covariant form of the tensor is then brought up by
taking ordinary derivatives into covariant derivatives. Notwithstanding, the requirement
of covariance alone is not enough to construct T,g.

The energy-momentum tensor is postulated as a functional of the metric tensor and
other relevant state variables. For example, in the case of a perfect-fluid, the energy-

momentum functional has the form

Taﬁ = (/J' + p)uauﬁ + Pgops (1'2)

where, p is the scalar pressure, u the (proper) energy density and the velocity field u, of
the fluid is normalized, u,u® = —1. Usually the barotropic equation of state f(u,p) =0
is taken to hold.

By solving the Einstein equations we come up explicitly with the energy-momentum
tensor and, obviously, the components of the metric tensor. The mathematical problem
is complete if we take into account the constitutive equations from outside the theory
itself, e.g. the equation of state mentioned above. However, with the Bianchi identities

(contracted)

Taﬁ;ﬁ =0, (1.3)

we can reduce the number of independent equations from ten to six. The remaining four
degrees of freedom correspond to the freedom we have in selecting a coordinate system in
advance of solving Einstein’s equations. (In some special situations the number of coordi-
nate conditions may be more.) The components of the energy-momentum tensor are not

independent of this choice, and it is these components that are identified with physically

2Natural units are chosen unless evident otherwise; the signature (— + ++) is adopted throughout.
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measurable quantities. Here we meet again very important problem of measurability. For
example, Eddington [75] has emphasized the distinction, very important in cosmology, be-
tween the invariant and relative mass, whose (or rather its associated mass density) value
determines in the GR models whether the universe is closed or open. Therefore, when we
talk about mass density we have to be careful whether we mean an abstract invariant or

a measurable, but coordinate dependent, relative density.

Any theory of gravitation must of course be germane to cosmology and the models of
the universe provided by GR have to be consistent (in some sense) with the observational
data. Now, one of the biggest difficulties of cosmology is that most of the observational
data are theory-dependent, i.e., their meaning can be interpreted by assuming certain
theoretical explanations. We interpret what we see in terms of the laws we know, extrap-
olating them far into the universe - this cannot be avoided. We encounter here a subtle
matter of verifiability of the field equations. As far as a theory (any) is concerned, it is
clear that evidence whose meaningful interpretation involves its assumptions cannot be
used for its verification. Therefore, cosmological solutions should not be considered as
large scale verifications of the theory of gravitation, due to the number of other assump-
tions invoked from outside the theory itself. This also can be looked at as one of the needs
calling for a fitting (discussed at some depth later on) between the GR-models and the
observations.

Most of the current cosmologies employ GR® and as a rule the relativistic cosmologies®
rely on some form of Cosmological Principle®, which is usually a smoothing-out hypothesis
imposed a priori on the distribution of matter in the universe. A well known example is
provided by the Friedmann-Lemaitre-Robertson-Walker (FLRW henceforth) metric which
is usually assumed to describe the real universe. Specifying a restricted family of geome-
tries (e.g. FLRW) and physical behaviour serves to “reduce” the fully general equations
of GR, too difficult to handle, into say, a manageable set of differential equations. In this

3We are not interested in any other theory of gravitation than GR in this thesis, neither models other
than the standard one which by itself assumes the validity of GR.

*With a possible exception of the De Sitter model which does not describe the real universe anyway.

5 A cosmological principle can also be looked at as the criterion of choice by which a certain solution to
the field equations is asserted to be a model of the universe.
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view, Cosmological Principle is just a working hypothesis leading to the simplest models
that are yet acceptable and at the same time operationally functioning. It is fair to say
that there is really no alternative since we do not know any solution of Einstein’s equations
capable of describing a clumpy universe. But one can ask questions about the limits of
validity and meaning of FLRW models, since the universe around us is not any ideal, in
the sense of being homogeneous and isotropic. This question was our main objective for

research pursued in this thests.

The above problem can be posed in terms of the so-called fitting problem, namely, the
question of how best to fit 2 smooth FLRW universe to a lumpy reality. This way we
recognize that the FLRW description can be valid only in some averaged sense. In fact the
problem of construction of a physically reliable stress-energy tensor is closely related to the
fitting problem. Looked at this way, there is a feedback from the observational cosmology
side as our observations are ever more accurate and further reaching. In effect, the whole
procedure of confronting the theory and observations,’and fitting in particular, could
proceed in iterative steps. But the point is still more complicated. Considering a particular
solution with a non-vanishing energy-momentum tensor, we can always ask whether the
energy-momentum tensor has been correctly constructed or not. It seems that this question
on its own is extremely difficult to answer experimentally, if not in principle impossible.
This is because, due to the principle of equivalence, GR is a theory of gravitational field
and has been empirically confirmed only in this réle (and as far as solutions of the empty
field equations are concerned). Consequently it is not possible to circumscribe the domain
of validity of GR from within, because of the non-geometrization of anything other than
gravitation. The ideal solution would be to calculate T,3 once the field equations are
solved, instead of postulating it before attempting to solve the equations. In other words,
the Einstein field equations only determine the gravitational field corresponding to a given
energy distribution and by doing so, they do not provide us with a theoretical description
of non-gravitational fields. Certainly, even if the resulting geometrical structure were
observed, the question whether the equations have been correctly applied or not, would
still be an open question. This disadvantage was already recognised by Einstein himself

[80]. He emphasized the non-relativistic nature of any assumed form of T,5 rather than
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the possible non-verifiability of the resulting theory. This was one of the reasons that in
fact prompted him to work on his unified theory.

With these remarks in mind, it is a matter of great importance to make every effort
in order that the foundations from which a cosmological model is obtained are as sound
as possible and free from assumptions that may not be warranted. Let us stress at this
point that we are obviously not going to be concerned with what might be regarded as a
completion of GR in this respect, in the sense of meaningful incorporation of fields into
a continuous picture of reality®, but we will rather try to follow a way enabling to clarify
the relation between the homogeneous and isotropic “background” models of the universe

and the more detailed fine-grained ones and to extract such a background model.

Having chosen the model, we have in practice at our disposal a procedure for testing
the cosmological models. Let us reiterate again the facts that must be kept in mind when
we are discussing the universe at large. Cosmological information is obtained along the
null geodesics of a pseudo-riemannian space-time, which represent light rays and the very
understanding of what is happening is always, to a certain degree, theory-dependent in the
sense that the interpretation of cosmological observations is impossible without assuming a
working model of space-time. The choice for this model (or a class of models) is eventually
made on the basis of postulates, principles, and even philosophical tastes.

The comparison is then made between the relations amongst observables in the model
and these same relations implied by observations. This line of approach was paved by a
beautiful paper of Kristian and Sachs [163]. Worth mentioning is Kristian’s [162] attempt
to measure the distortion of images of clusters due to conformal curvature of the universe.
This effect is very important, since it is in principle capable of detecting departures from
the FLRW geometry in the real universe (it is zero in conformally flat models). The idea
is that in a galaxy cluster, the angular distribution of galaxies of each shape should be
random, and the anisotropy in their observed images would be determined by the magnetic
part of the Weyl tensor.

Further, the problem of the observational basis of cosmology was treated in a series of

®In any case, a description of the fields related to the weak and strong interactions would have to be
left aside within this approach, since their current description involves ideas which cannot be meaningfully
incorporated into the continuous picture.
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papers by G. Ellis and collaborators (see [85] and references therein), who discussed in de-
tails such problems as: what quantities can be estimated and how from observations, how
could observations imply that our universe is FLRW, the practical limitations of observa-
tions. The lack of well-defined criteria for acceptance or rejection of the FLRW models was
emphasized. In particular, the near-isotropy of the cosmic microwave background (CMB)
radiation does not prove the near-isotropy of the matter distribution nor that of the space-
time. The general conclusion of Ellis’ programme was that the ideal observations on our
past light cone are not sufficient to uniquely construct its space-time geometry. In other
words, without dynamical equations (field equations) we can only reach a conclusion of
consistency of many different cosmological models with the observations. If we take into
account the field equations the situation gets much more involved. However, it is possible
to ascertain that the maximal observable data set, D(w,,2*), is at the same time, the
minimal one needed to uniquely determine the geometry of our light cone up to z* (the
redshift of the last scattering surface) [85]. In reality however observations can never be

made precise and this aggravates even more the whole problem of fitting.

Clearly the standard cosmological model, the FLRW one, used to describe the real
inhomogeneous universe is a very special one and very unlikely at the same time. Inter-
esting, though not surprising, is the fact that the FLRW solutions make up in fact only a
set of measure zero in the space of solutions of the Einstein field equations. To ask, how
well and how bad [206] describe they the real universe is a sound attitude and should be
a matter of temperate and balanced evaluation, and in particular, the question whether
the FLRW line element is a good representation of the geometry of the universe should be
asked and embarked to answer quantitatively. Only recently, as new observational data
is coming to the fore, the importance of this issue has begun being realised. New more
precise data are expected to make the issue of fitting more conspicuous and urgent to
address in any cosmological considerations. Current observational information does not

exclusively mandate the standard theory.

Interestingly, many cosmologists and physicists appreciated that the FLRW models
are an oversimplification of Nature. Below, we quote several of them, but a great merit,

it should be said, of the standard model is the absence of any ad hoc modification of
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prevalent theoretical ideas [207].

...the grounds on which homogeneity is generally assumed appearing to be
those of convenience rather than generality. (...) We must categorically dissent
from the extreme idea (...) that homogeneity is included in the definition of
the universe (...) We hold that the assumption of spatial homogeneity is (...)
a working hypothesis, valid so long as it does not conflict with observation or
with theoretical probability, and justifiable during that time as a restriction

on arbitrary speculation. (Dingle, 1933)

The foregoing results demonstrate the lack of existence of any general kind
of gravitational action which would necessarily lead to the disappearance of
inhomogeneities in cosmological models. (...) it is at least evident from the
results obtained, that we must proceed with caution in applying to the ac-
tual universe any wide extrapolations - either spatial or temporal - of results

deduced from strictly homogeneous models. (Tolman, 1934)

It is often claimed that the universe in the large must be isotropic or homo-
geneous. Certainly this view has immense aesthetic and philosophical appeal,
but is it strongly supported by current observations? Unfortunately, it is not
(...) observations neither confirm nor deny the “cosmological principle” that
the universe is isotropic and homogeneous, or even homogeneous, and (...)
measurements at the present time cannot prove, but can only disprove, that
particular models represent the actual structure of the universe. (...) global
theoretical models that are inhomogeneous should be looked for. (Kristian and
Sachs, 1966)

But this approximation” is a very crude one. The Einstein field equations
are not linear, so that the disturbances in the field produced by the various

stars cannot be just added, or averaged in any way. (Dirac, 1981)

T«This approximation” means replacing the real inhomogeneous distribution of matter in the universe
by a smoothed-out one.
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Yet, it® seems based on absurdly simple assumptions. The universe is
assumed to be spatially homogeneous and isotropic while at first sight it is
remarkably non-homogeneous and anisotropic. True, one talks of a “large

scale” in this connection but that large scale remains beautifully vague and

undefined. (Raychaudhuri, 1988)

A more detailed discussion of the question of modeling of the universe will be given in

the following sections — in fact, the large part of the burden of this thesis is devoted to it.

The question of choice of an appropriate cosmological model is an important one,
but so is the problem of the global understanding of Einstein’s equations which can be
gained by studying the space of their solutions, the so-called ensemble of universes®. The
field equations are defined on and at the same time determine the space-time manifold.
This is what the comstruction of cosmological models refers to, and this is the point of
view of observational cosmology. One simply assumes that each solution to the Einstein
field equations describes a universe, and cosmology should but specify boundary or initial
conditions relevant to the universe resulting from the astronomical observations.

The observations are never precise, consequently, a cosmological model can describe the
real universe only within some limits of accura-cy. It is usually assumed that there exists a
one-to-one correspondence between the observations of a real system and a mathematical
model. Assuming Einstein’s fleld equations to be an appropriate mathematical model
one is allowed to predict the evolution of the system. We are already aware that this
picture is too idealistic. Even more, the model is usually assumed to have the property of
structural stability [245], in the sense that the single exact solutions upon which the whole
modeling rests are assumed to be in some sense representative, implying that our inherent
inability to specify the model precisely would not have significant effects on the qualitative

dynamical outcome. But as shown in [245] such a framework cannot be assumed a priori*

81.e. the standard model.

°F.g., the Cauchy problem in a cosmological context naturally leads to the ensemble of possible uni-
verses: the set of all admissible kinds of initial data (on a space-like hypersurface) is equivalent to the set
of universes evolving from it. :

19This argument is essentially based on a number of theorems in dynamical systems theory which show
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and in fact it might be that the appropriate theoretical framework turns out to be that of
structural fragility.

Given these caveats the progress in cosmology can be considered amazing.

This thesis is organized as follows:

In chapter one, apart from rewieving the standard cosmological model, we introduce
the problem of fitting and of averaging. A discussion of them follows in physical and
cosmological contexts.

In chapter two, a classification and discussion of (some of) the approaches attempting
the averaging of the small-scale (microscopic) Einstein equations to obtain the large scale
cosmological field equations is given.

Chapter three is concerned with the Renormalization Group (RG) approach in gravity.
The main ideas of RG theory and its application for studying critical phenomena in statis-
tical mechanical models are discussed. Recently discovered numerically critical phenomena
in GR. gravitational collapse are reviewed in section 3.4.1. In section 3.4.2 some, rather
radical, conclusions are offered pertaining to critical phenomena in gravitational collapse
and the significance of the critical exponent close to 0.37. For example, in [60] a point is
made of the fact that 0.37 ~ %, while in our opinion it has no significance. Section 3.6
contains original material (work done in collaboration with M. Carfora), dealing explicitly
with a smoothing procedure for inhomogeneous cosmologies based on RG approach [57].
This approach employs the arguments and methods paradigmatic of the real-space RG
theory. The system’s critical behaviour is studied and the significance of criticality in the
aniverse is discussed. This point of view may have far-reaching impact on the study of
structure formation and clustering in the universe, though we are well aware that a lot is
to be done along this line of approach.

Chapter four contains original material (work done jointly with M. Bruni), a descrip-
tion of the evolution of perturbations in form of phase diagrams in the dust-radiation
FLRW universe from the viewpoint of dynamical systems theory [47]. (As such this con-
tribution is not directly related to the rest of the thesis.)

that structurally stable systems are not dense in the space of all systems.
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Finally, chapter five contains conclusions and some indications for future research.

The bibliography at the end is arranged in the alphabetical order.

1.2 Meaning of cosmological models
1.2.1 Standard cosmological solution

In this section a standard material is overwied and references may not be given explicitly

each time; for pertinent references see e.g. [192] or [82].

The assumptions of the standard model are the validity of GR and Cosmological Prin-
ciple. The classical term “cosmological model” usually means a geometrical description
of the space-time structure and the smoothed-out matter and radiation content of an ex-
panding universe, upon adopting GR as a fundamental theory of gravity. In cosmology,
in order to handle the Einstein equations one introduces simplifications, better or less
founded, dealing necessarily with models which by virtue of their building tend to eschew
detailed realism.

To make the above assumptions more explicit we will spell out hypotheses that have
been introduced, namely, the isotropy hypothesis - motivated by the fact that from our
observation point space appears to be nearly isotropic with no indication of noticeable
anisotropy. What is assumed is that on a sufficiently large averaging scale (~ 500 Mpc,
say) there exists a mean motion of matter and radiation in the universe with respect to
which all (averaged) observable properties are isotropic (i.e. independent of direction).
Indeed, the counts of galaxies and radio-sources give near the same results for all parts of
the sky; the cosmological expansion seems to follow the same pattern in various directions
and the cosmic microwave background (CMB) radiation is very nearly isotropic. In this
respect, (taken on its face value) there exist direct observational evidence favouring the
isotropy of the universe, namely, the COBE data [233].

The second hypothesis is to assume the homogeneity, namely, all fundamental observers
(following the mean motion) endowed with clocks experience the same history of the

universe and the same observable properties, i.e. the universe is observer-homogeneous.

With these premises along, basically under the assumption about the symmetry of the
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space-like hypersurfaces, it is possible to arrive at a metric element known as the FLRW
metric. In other words, a system of coordinates can always be found in which the line
element can be written in one of its standard FLRW form

dr? + r2dQ?

ds?® = —dt* + R*(t)————
° Qe
: 2 2 2

d? = —d? 4 R T T A= (1.4)

(1+ §br?)’

where, 7° = 2% + y® + 2% or
o dr?
ds® = —dt*+ RQ(t)[l —at r2d0?]
o d 2 2 d 2 d 2

ds? = —dt? + R2(t)[— r(da”+ dy’) (1.5)

1— kr? 1+%(m2+y2)’
where the function R(t) is unknown before solving the Einstein equations; k is an arbitrary

. constant and where r is a radial coordinate measured from the Earth and d? is the angular

. element corresponding to the angular coordinates 8 and ¢ (i.e. d2? = d#? + sin?0d¢?);

{ denotes a cosmic time which coincides for each fundamental observer r = const. with
the proper time, for neighboring observers the same values of ¢ correspond to events

. simultaneous in the Einstein sense.

FLRW models have exact spherical symmetry about every point, i.e. space-time is
spatially homogeneous and admits a 6-parameter group of isometries, whose orbits are
space-like 3-surfaces of constant curvature (Minkowski and De Sitter space are examples
of FLRW space-times with additional higher symmetry). The groups are direct products
B3 ® O(3), where Bj is one of the Bianchi groups [118].

Upon assuming the metric in the form of (1.5) it defines automatically a perfect fluid
energy momentum tensor. R(t) can be constrained only by an equation of state.

It is further taken that the universe is filled with a perfect fluid. It is justified assuming
that one considers galaxies as the molecules of a gas that fills the space. Likewise, at the
epoch when galaxies would not have existed and the universe would have been filled with
a photon gas, it would behaved like a perfect fluid, as well. This particular form of the

energy-momentum tensor is given by (1.2).

The necessary and sufficient conditions for a space-time to be FLRW are the following:
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(1) the metric obeys Einstein equations with a perfect fluid source;

(2) the source velocity field has zero vorticity, shear and acceleration.

The necessity of these conditions can be ascertained by a direct computation. The
sufficiency follows from the evolution equations for vorticity weg, shear o,5 and acceler-
ation ©* [82], which imply that a perfect fluid solution with ¢ = w = 0 = 4* must be
conformally flat. All such solutions were found by Stephani, in general they have 4* # 0,
by requiring 4% = 0 we get FLRW models (e.g. [160]).

Another invariant definition of the FLRW space-times which makes no use of the field
equations is the following:

(1) the space-time admits a foliation into spacelike hypersurfaces of constant curvature;

(2') the congruence orthogonal to the leaves of foliation are shear-free geodesics;

(3") the expansion scalar of the geodesic congruence has its gradient tangent to the

geodesics.

Another often met representation of FLRW metric is the following
ds? = —dt® + R*(t)(dr? + F3(r)dQ?), (1.6)

where
sint fork >0
f(ry=<r for k=0
sinhr for k<0

All three cases are covered by
ds? = —dt® + R2(t)(dr? + k™' sin?(k/2r)d03). (1.7)

The range of 7 is finite or infinite depending on the sign of k and coordinates used.

A few points are worth recalling, namely:

1. FLRW metric (or element) is a very particular solution of the Einstein equations.

2. For the time variable ¢ fixed (dt = 0), the ds® is that of a 3-space with constant
riemannian curvature at every point of the space and therefore the space is spherical,
euclidean or hyperbolic, for k = 1,0 or —1, respectively. When k = 0, the group Bj can
be of Bianchi type I or V.II,; for k¥ < 0 (open FLRW models) its B3 can be of Bianchi
type V or VII; and for k > 0 (closed FLRW models) its B is of type I.X.
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3. The FLRW metric leads to homogeneous model universes, through the assumption
of isotropy with respect to the Earth, which leads to a space of constant curvature and,
consequently, to a space that is isotropic with respect to all other points. One should not
forget, however, that the near-isotropy with respect to the Earth is valid within certain
limits: redshifts up to 0.5 for galaxies, 5 for radio-sources, 7 for the CMB, and in any case

all observations of this kind are limited by the cosmological horizon.

4. We are dealing with uniform model universes, that is to say for t fixed, the density

4 and pressure p each have the same values at every point in the space.

5. The worldlines r = const.,§ = const., ¢ = const. are geodesics of the space-time.
What this means is that the worldlines in question are possible solutions of the equations
of GR and they thus represent possible motions, e.g. of field galaxies (after correcting for
random motions) or galaxy clusters, which in this picture have fixed coordinates r, 6, @,

termed as comoving coordinates.

6. R(t) appears as a scaling parameter for the universe, if it is an increasing function
of t we are then led to an expansion of the universe. It gives the rate at which two points

at fixed comoving coordinates increase their mutual physical distance as R(t) increases.

The time t (cosmic time) is the proper time at every point fixed in the comoving
coordinates, in particular, it would be shown by clocks in various galaxies synchronized
by exchanging light signals.

The comoving coordinates r, 8, ¢ owe their properties to the fact that effectively the
distribution of mass in the universe may be described by masses having fixed comoving

coordinates!!.

To completely solve the cosmological problem, the two Einstein equations together
with the equation of state for the perfect fluid p = p(p), we have to determine the three
functions: R(t), u(t) and p(t). If we consider only the case in which the cosmological
constant A = 0, we have then the simplest family of relativistic models, the FLRW mo-
dels. These models are necessarily an approximation to the real universe, due to various

simplifying assumptions employed in their derivation.

''The comoving distance is not an observable, unlike e.g. the luminosity distance.
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In the case of FLRW model the Einstein equations reduce to a system of two equations

.\ 2
R . _ 8%G k&
R 4n G
-5 = 3 (k+3p) (1.9)

Heuristically, these equations can be seen as the equivalent of the energy conservation
and the second dynamics law of classical (non-relativistic) mechanics. We see that two
points at a distance d = R(t)r move apart with velocity v = Hd. The Hubble constant
determinations at the present epoch give H = 100 hkm s~! Mpc™! with 0.4 < h < 1. The

large uncertainty is mainly due to the discrepancies between different distance estimators.

A standard model - one of the homogeneous, isotropic FLRW model (and the present
epoch (t,)) can be determined by the measurement of two dimensionless numbers: the
deceleration parameter q, = —R,/(RoH?), the density parameter Q, = i,/ erit, and
a scale constant H, (A = 0 is equivalent to 2¢, = Q,). The critical density peri =
3H2/(87G) = 1.9 x 1072 h=2 g cm~3; present density values of p, above, below or equal
to peri correspond to closed, open or flat geometries, respectively. Current limits on
Q, are, 0.2 < , < 1. The limit of Q, = 1 is usually preferred on the grounds of the
standard inflationary universe scenario. Standard cosmology puts forward the equation
47Gp/3 = qH?. If and when the precise value of y,, g, and H, are available, the decision
about the standard model will be easy to reach.

At present the cosmological observables include also: the age of the universe, compo-
sition of the universe, CMB radiation and other cosmological background radiation, the
abundance of light elements, the baryon number of the universe (quantified as the baryon-
to-photon ratio), and the distribution of galaxies and larger structures. Observations of
the universe on scales similar to the size of a galaxy ~ 10 kpc display significant inhomo-
geneities, but the current interpretation is that below such scales non-gravitational forces
are dynamically dominant. On the other hand, scales > 10 kpc are considered relevant to
the large scale structure. In any case, non-negligible anisotropies were never observed at
scales comparable to the horizon scale dgy ~ (cHo)*1 = 3000 A~ Mpc. Therefore the cos-

mological framework of the hot Big Bang in a spatially homogeneous and isotropic universe
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- the Standard Model - is taken to be experimentally vindicated, through the successful
prediction of primeval element abundance and the observations of relic radiation in the

form of CMB radiation [252]12.

However, from observational point of view the standard models have currently some
problems. Some of them were listed in [23]'%.

1. Dark matter not visible, but revealed through non-Keplerian motions of galaxies
and stars in galaxies. _

2. Streaming motions of galaxies with velocities v < 5000 km/s towards invisible
attractors.

3. Sponge-like large scale structure and possibly spatial periodicity in the distribution
of galaxies.

There seems to exist observational evidence in favour of larger and larger structures
(e.g. [61] recently), nevertheless, [37] indicate that there is a tendency to homogeneity at
large scales, although it is difficult to point out the scale at which homogeneity is reached,
due to the small size of present redshift surveys. The striking feature of the (luminous)
matter distribution is the existence of voids (in the scales probed so far, up to a few
hundred Mpc) surrounded by sheet-like structures containing galaxies (e.g. [111]), with a
typical size of voids 50 — 60 h~! Mpe. Also, larger underdense regions of ~ 130 A~! Mpc
probably exist [42]. Interestingly, dynamical estimates of FLRW demnsity parameter {1, give
different results on different scales. Observations of galactic haloes on scales 10 — 30 Mpc
give 2 ~ 0.2 + 0.1 [220], whereas smoothing the observations over scales ~ 100 Mpc
indicates the existence of a less clustered component with a contribution probably as high
as 0.8 4 0.2 [76]. Hopes have been raised that new inputs like the inflationary scenario
and cosmic strings may solve the problem.

4. According to the present evidence quasars must contain large magnitude density
concentrations (especially if they accrete black holes), but matter distribution at the last
scattering should be nearly isotropic, as confirmed by the very high degree of isotropy
of the CMB radiation. The question therefore is, how such density contrasts might have

2Doubts still persist, e.g. regarding the exact primordial abundance of helium.

!38everal objections can be accommodated within either the Lemaitre-Tolman [167, 248] or Szekeres
[244] models with a non-simultaneous Big Bang.
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evolved from such a homogeneous initial state in the time implied by the standard model.

Generally, the problem of structure formation in spatially homogeneous models is an
important problem of principle. “Statistical fluctuations in FRW models cannot collapse
fast enough to form the observed galazies. This suggests that there must be real inhomo-
geneities at all stages in the universe. Moreover, some perturbations of FRW models are
decaying modes which would have been more important in the past.” (MacCallum, 1979).
(Cf. point 3.)

5. Astronomical observations contradicting the Hubble law [10].

The linear velocity distance relation was questioned in [198]. Their conclusion about
the quadratic relation between velocity and distance did not gain an acceptance!*.

McCrea in 1939 [190] on the basis of Milne’s result, that any cloud of particles with
different velocities and initially being confined to a finite space volume will disperse and
eventually obey the Hubble law in the first approximation, concluded that in order to
infer matter distribution in the universe from the observed motion of galaxies, a higher
approximation is needed than the Hubble law.

6. The quadrupole anisotropy in the CMB radiation on large angular scales ~ 80°
[99].

The quadrupole anisotropy could serve as a test of the anisotropic expansion of the
universe at the last scattering epoch since it is due to the non-vanishing vorticity of the
universe; its matter is rather subtle!® and still disputable.

7. Anomalous redshifts and “quantization” of redshifts.

The so-called anomalous redshifts refer to objects which are presumably close together
and show significantly different redshifts. There is also the curious quantization of red-
shifts, with Az multiples of Az, corresponding to a velocity of 72 km s~! [11]. Both of
these cast doubt on the idea of redshift being only due to universal expansion.

8. Still controversial interpretations on the observations of radio sources, like the

angular size — flux density relations.

All the above facts cause problems with fitting, however not only the data but also

"1t was shown later that even such a relation may be accommodated in the standard model [208].

131t might be seen as contradicting Mach’s Principle; attempts are therefore advanced to attribute it
rather to local causes, like the non-homogeneity in the mass distributions of galactic clusters.
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the logic of the standard approach make the fitting problem particularly urgent (cf. next

section).

1.2.2 Modeling of the real universe

A standard way to analyze a real system is to make a mathematical model, which can
then be studied analytically or numerically. The relation between the real system and its

model should be properly assessed, though quite often it remains obscure.

On local scales, like the scale of planetary systems, we can safely assume GR to hold,
but there the space-time geometry determined by Einstein’s equations should be very
complex. In fact, a mathematical model of the matter distribution going down to these
small scales is almost impossible to obtain, as there is no observational data on which it
could be based. Therefore, when considering the kinematics and dynamics of the universe
as a whole, one usually ignores the fine-graining due to the local inhomogeneities and deals
with the simpler structure of space-time geometry which is more illuminating from the
point of view of cosmology.

As we have already seen, the standard FLRW universe models are perfectly homo-
geneous and isotropic. Therefore one can question their applicability for modeling the
universe accurately, as it is manifestly not a FLRW universe (on at least some scales).
But, these standard models are usually taken to represent the real universe in some vague
“average sense”, or on some averaged scale. This implied averaging procedure should be of
great importance in cosmology, especially in terms of interpreting the meaning of FLRW
models. However, it hardly ever receives a due attention, even though it underlies the
geometric and physical applications of FLRW metrics to describing the real universe, and
even though it has been posed by a number of authors [229, 227, 83]. Shirokov and Fisher
[229] seem to have been the first to consider it in 1962. Recently, this problem has been
brought to general attention by G.Ellis.

Problems arise when we start to relate the realistic inhomogeneous universe models
to these idealised, smoothed-out models. The very relation between them is not clear,

in particular, it is not quite obvious how the galaxies or clusters of galaxies are related



20 § 1. Introduction

to the comoving coordinates of the averaged idealised models, nor how particular light
rays correspond to the idealised geodesics of these models, etc. The standard approach in
this respect is a theory of the perturbed FLRW models (see e.g. [18]) and their relation
to observations of galaxies and background radiation [150, 218] which is still a matter of

investigation (see e.g. [239, 46, 215]).

In observational cosmology it is standard to follow this scheme: firstly - to observe the
distribution, masses and velocities relative to us of neighbouring galaxies; secondly - to
calculate the averaged quantities assuming the Hubble law, i.e., the isotropy (on average)
of the relative velocity field, and homogeneity of the distribution of galaxies; thirdly - to
compare these mean properties with those of FLRW models, having the same density as
that of the total mass of the galaxies uniformly distributed in the observed region. This
procedure basically means that the FLRW models are assumed instead of deduced from
observations. But in principle, what one could hope to get in this way, are the best-fit pa-
rameters of the FLRW models. Unfortunately, the discrepancy between the observational
data and the properties of FLRW models is such that it is usually necessary to introduce
an additional matter contents besides that estimated from the visible matter (dark mat-
ter), or even a cosmological constant (see e.g. [151] and [225]). However, in effect, even
without the benefit of a sound theory as to how to obtain the best-fit of idealised model
universes to reality, the observers are already “fitting” the observed velocity patterns to a
hypothetical FLRW velocity field (e.g. in the efforts to determine the velocity of the local
supercluster relative to a FLRW background).

An attempt to translate the mathematical prescriptions into practical observational
procedure, unfortunately seems to be a very difficult issue with various problems, con-
cerning in particular, the determination of the average density and velocity of matter at a
given distance down the past null cone [81, 83]. Other alternative analyses of homogeneity,
based on “almost Killing vectors” [189] or “observational homogeneity” [35], do not yet

seem able fo resolve these issues as well.

But a reliable description of the inhomogeneities in the expanding universe is wanting
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above all. Clumpiness obviously affects the analysis of observations in an inhomogeneous
universe model, by affecting the dynamics of phofons in the universe altering the shear
and the convergence of null rays. This has its effect on the cosmological area-distance
relation and in consequence on apparent sizes and luminosities (see e.g. [26]).

It is possible to take this effect into account, but the form of the focusing depends
sensitively on how strongly the matter is clumped. A useful idealization is the Dyer-
Roeder formula (see e.g. [226]) valid for universes “not too much filled with clumps”, it
represents the largest possible angular diameters distance (for a given redshift) for light
bundles which have not yet passed through a caustic.

The effect of clumpiness on geodesics paths can change the relations adopted in stan-
dard model, but that strongly depends on the clustering of matter in the universe. The
same applies to the issue of ,. The underlying assumption is that there is a good limit
to £, if we take large enough averaging volumes, but it is not so if we live in a hierarchical
universe [251], where there is no non-zero limit to Q, as we use larger and larger averaging

volumes16.

The transition from an inhomogeneous model to an averaged (or smoothed) standard
model is of fundamental importance, also in the context of structure formation and the

interpretation of distance measurements.

In practical terms the heuristical justification for using FLRW models asserts that
for them to hold the matter inhomogeneities have to be averaged (or smoothed-out) and
redistributed homogeneously (e.g. in the form of a perfect fluid). A series of related math-
ematical problems arise. First of all, let us notice that we are using continuous functions
in modeling the universe (matter density, pressure or kinematical scalars of the velocity
field), assuming that they represent “volume averages” of the corresponding fine-scale
quantities. The results of such averaging in an inhomogeneous medium depend on the
scale, but this scale (of averaging) was never explicitly agreed upon. Additional problem
is that a volume average for tensors is a non-covariant quantity (unlike for scalars), so a
more sophisticated definition is required. The basic and tacit assumption which underlies

this whole procedure is that a smoothed-out universe and the actual, inhomogeneous one,

'8Suggestions that the universe might have a fractal structure [36] might support this argument.
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behave identically under their own gravitation. Or, to be more precise, almost identically
on some scales of interest, e.g. the ones that are much greater than a characteristic scale
of the local inhomogeneities and much smaller than a characteristic length of the universe
model under study. This assumption is usually taken for granted, but does by no means
need to be true. Indeed, the non-commutativity of averaging of the metric and calculat-
ing the Einstein tensor (highly non-linear in the metric) is a severe problem (this will be

discussed in more detail in section 1.2.2.2).

1.2.2.1 The “fitting” problem in cosmology

The basic idea here is that we do not a priori assume that the universe is necessarily well
described at all times by the FLRW model, but nevertheless decide to use such a model
for, say, pragmatic reasons [92].

The problem is then how to determine a best-fit between a clumpy cosmological model
U, which is supposed to give a realistic representation of the universe including all inho-
mogeneities down to some specified length scale, and a smoothed-out, idealised FLRW
model U’. The focus in this approach is on the relation between the idealised model and
more realistic descriptions of reality. Therefore, one should also be able to specify details
of that fitting, including the issue of how good the fit is. Basically, one could aim at the
repeated use of the smoothing procedure, i.e., to consider a best fit between any lumpy
universe model and a model {” which gives an even better description of the real universe
than U, by describing the inhomogeneities at an even more detailed level.

In principle, this process would allow one to determine the best description at any

prescribed level of detail.

The above task can be approached in many ways, based on:
(1) the space of space-times,

(ii) initial data for space-times,

(iii) the “gauges” adopted in perturbation studies,

(iv) near equivalence,

(v) average behaviour,
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(vi) null data,

(vii) normal coordinates.

The (i) approach gives a useful concept of the fitting idea, but it does not take into
account the dynamics of GR. In this approach, the lumpy model I/ and the ideal one
(FLRW) U’ are represented by points P, P’ in the space of space-times 5, and the point
P’ is constrained to lie in the hypersurface of FLRW space-times. If a suitable distance
function on S is known then, given i/, U’ is chosen in such a way as to minimize the distance
between P and P’. Unfortunately, no natural positive definite metric on § exists. Also
to be able to distinguish whether two different points in S represent the same space-time
or not, one would need to factor out the coordinate freedom (the diffeomorphism group)
which seems also to be problematic, unless one could find the best fit in some specific and
operationally defined coordinate system rather than the general one. Moreover, matter
distributions would need to be fitted as well. Most likely this approach cannot be easily

related to an observational procedure on the past null cone.

Instead, in the (ii) approach we consider the space 5~ of initial data for space-times
(the phase space of a cosmological model in GR), with initial data given on a spacelike
hypersurface ¥ : (gab,K“b, K, q%), where, gqp is the 3-metric on X, K@ its second funda-
mental form, p the matter energy density, ¢° a 3-momentum relative to X. Given this,
each point Q in §~ will correspond to a specification of all of these quantities at each point
on the initial hypersurface ¥, chosen so as to satisfy the Einstein constraints on X.

The problem then is stated similarly as in the (i) approach. Thus the difficulties of
(i) remain. Omne has to take into account, here as well, the fact that different data can
represent the same cosmology U (e.g., choose two different spacelike slicing’ Y ofU to
get two different 3-space metrics gqp). However, involved here is rather the hamiltonian
structure of GR, and roughly speaking, the symplectic form of that structure gives a way of
comparing metrics on two different spacelike hypersurfaces, to see if they represent slicings
of the same space-time. Therefore in principle, once the fit of 3-metrics is determined, the
4-dimensional fit would be as well, even if not explicitly known [113].

Clearly, the (ii) approach originates from the ensemble viewpoint. To understand the

equivalence of models and the “distance” between them calls for the introduction of the
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appropriate topology and metric structure on the ensemble which is a difficult and, up to
now, an open problem.

Usually, one starts with Lor(M), the space of all Lorentz metrics on the manifold
M. This space admits infinitely many topologies, none of which is “natural”. However,
what one is really interested in is a subset of Lor(M), namely, those metrics that are
the solutions of Einstein’s equations. Fortunately, this set usually is a smooth manifold,
with a local representation in the space of four functions of three variables, and Einstein’s
equations acting as a hamiltonian system. Further, the space of linearized solutions of
the Einstein equations is tangent to it (this is so only, if our set of metrics is a smooth
manifold in the neighborhood of a given solution) and in this region Einstein’s equations
are stable with respect to the linearization!'”. This approach can be helpful for the global
analysis of the solutions to Einstein’s equations.

In fact the averaging procedure advocated in section 3.6 takes on just this viewpoint.

The point of view of approach (iii) is quite useful since when describing perturbations
of FLRW universe we need to choose a gauge, which is essentially a question of fitting
a FLRW universe I/’ to a lumpy one U/ [18, 237]. The choice of a gauge in a perturbed
universe model U is equivalent to choosing a point identification between the FLRW model
U' and U. Given a choice of local coordinates in U’ and in U, the above correspondence
can be expressed in terms of a relation between these coordinates. But instead this is
usually taken to be the identity, i.e. the coordinates of the corresponding points are taken
to be the same.

A specific gauge can be characterized in terms of a choice of “hypersurfaces of simul-
taneity in the physical space-time” [18], which is actually the choice of a mapping of the
FLRW surfaces (¢ = const.) in U’ into the lumpy model Z{. Once a point correspondence
between space-times is set up one can then look for the parameters H, and ¢, giving the

best fit. Seen this way the problem of fitting is the problem of choice of gauge in disguise.

The classic equivalence problem of GR (see [77] for a review) is much of relevance for

the fitting problem - (iv) approach. However, a direct approach by comparison of curvature

'"In general, this is not true for space-times with Killing vectors.
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invariants of two space-times is problematic because the metric tensors are indefinite. But
to prove an equivalence of two space-times it is sufficient to have the equivalence of the
curvature tensors and their covariant derivatives, evaluated in orthonormal frames [148].
Using a procedure of this kind would allow to determine if two cosmologies are almost
equivalent. There is also here the question of how to choose which pairs of points p, p’ to
try to identify in the two cosmologies. Secondly, the idea of almost equivalence is more
complex in the context of specific choices of tetrad canonically related to particular Petrov
types. An extended algebraic classification of the curvature tensor and its derivatives
should make possible determination of near-equivalence of space-times by extending the
methods used to examine exact equivalence. Moreover, the problem would be simplified in
the cosmological context. Thus this is a promising approach though its relation to possible

observational procedure seems obscure.

i The (v) approach, based on the concept that the smoothed-out model U4’ should ac-
curately represent the average behaviour of the more realistic model U, is going to be
discussed at length in the next section. The important issue to address here is what is
plrecisely meant by the “average” model which is also what most of this thesis is devoted

to. This line of approach to fitting is also made use of in section 3.6.

The null data approach (vi) [92] is a specific observational prescription to best-fit
null data to obtain optimal, i.e. best fit parameters describing FLRW universe, given an
optimal correspondence between any FLRW model and lumpy universe. This approach
is in practice similar to what is done at present by observers (as it extends the approach
of Kristian and Sachs [163]), but it can further be related to the averaging approach and

suggests moreover the nature of possible criteria of acceptable fit.

Finally the (vii) approach, closely related to the nature of local physics in a lumpy
universe, is in fact a local almost equjvalénce approach. This is so since in the analytic
case, one can examine the curvature near any space-time point by using normal coordinates
about that point. Different space-times can be locally compared by writing each of them
in such coordinate systems centered on points p, p’, and directly comparing the metric

components up to some required order of accuracy. As before, the choice of correspondence
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of points p, p’ to make in the two space-times is a problem. This approach can nevertheless
be related to the question of a best fit to astronomical observations by an appropriate
adaptation of [163], whereas carrying out the analysis in a non-local way ends up in (vi)

approach [92].

The implications of fitting can be analysed in terms of Traschen integral constraints
[249]. In an almost homogeneous universe model with inhomogeneities due to local physical
processes, the local energy and momentum conservation imply the existence of conserved
quantities expressing the conservation of monopole and dipole terms. In such models, the
Sachs-Wolfe effect is reduced with respect to the ones where the effect is ignored [249]'8.

According to [250] this argument would not apply to matter perturbations created by
quantum fluctuations in the inflationary epoch because of their non-local size, in terms
of today’s scales. Nevertheless, the constraints can be thought of as the fitting conditions
required to be satisfied, if the chosen FLRW background model has the right monopole
and dipole terms corresponding correctly to the real universe [89)].

For example, the very definition of (), refers always to an idealised background model
which cannot be determined without simultaneously solving for its perturbations.

We can start with a uniform universe model A and model high deusity regions in it by
adding some over-densities here and there, resulting in a non-uniform model B. Obviously,
the average density (g in B is greater than the background density {14 of A, thus using
model B means also changing the background model to, now A’, which has the density
Q.4 = Qp and different dynamics from the initial model considered. If we use the same
background density value (£24) in the lumpy universe model, model B has to be replaced
by model C, say, in which the high density regions are surrounded by void regions, in

order that the average density {0¢c = 4. This is basically Traschen’s condition [89].

1.2.2.2 The “averaging” problem in cosmology

One important way of thinking of the use of a smoothed-out model is that it represents the

average properties of an inhomogeneous model. If I{~ is the smoothed-out model universe,

130ther dynamic relations are affected as well.
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obtained form a clumpy one U by an averaging procedure, then it represents the nature
of U{ when described over some averaging length scale L. The best-fit FLRW model U/’
should be the same as the averaged model U/, if one can indeed describe the large scale

nature of i by a FLRW space-time [92]'°.

In standard cosmology to describe the discrete matter distribution in the universe we
use a continuously distributed stress tensor, most often the so-called perfect fluid form of
it. But strictly speaking using the Einstein equations in this situation is not well-founded.
What it means is that an effective averaging of real inhomégeneities has by this been
carried out while, at the same time, the unchanged left hand side of Einstein’s equations
is tacitly assumed to describe the “averaged” gravitational field. However, we should bear
in mind that the Einstein equations are highly non-linear, which is why any averaging
process on them is far from trivial in general?’. In other words, the averaging process may
change their structure and consequently the geometric and physical meaning of the very
gravitational field would be changed.

In particular, Ellis conjectured [83] that, upon smoothing-out the space-time geometry
there would appear geometric correction terms in the sources to Einstein equations. They
may have influence on the dynamics of the universe. In general, there would always be a
non-zero backreaction of inhomogeneities on the dynamic behaviour at the smoothed-out

scales affecting the expansion rate and the estimate of age for the universe.

To put it differently, if we calculate the Einstein tensor E,w from an “averaged” (what-
ever this means) metric §,,, it will not be equal to the Einstein tensor E,w which was
first calculated from the fine-scale metric g,, and then averaged. As a consequence, the
Einstein equations seem not to hold on scales where averaging is required if they hold on,
say, planetary scale. Most probably, the Einstein tensor Euu determined by the smoothed-
out metric §,, will be related to E,, by a map §” distinct from the smoothing operator

S’ acting on the matter tensor 7,,,. However in cosmology the following is assumed: one

19 An intriguing possibility one can think of is that one could construct clumpy Small Universe [84]
models which look like the perturbed FLRW models, but for which the smoothed-out (large scale) version
is not a FLRW universe. They would appear approximately homogeneous, but their topology would be
incompatible with the symmetry of exactly homogeneous universes.

29Unilike in electrodynamics, where the macroscopic Maxwell equations can be derived by averaging out
the microscopic Maxwell-Lorentz equations over 4-regions in Minkowski space-time (see e.g. [120]).
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calculates the Einstein tensor from a metric that is supposed to be already averaged and
equates it to an energy momentum tensor — already averaged as well.

Let us now introduce a tensor II,, to represent the difference between the Einstein
tensor E,w, obtained from the smoothed-out metric §,,, and the smoothed-out matter
tensor T, [83]. The point is that the Einstein equations should in fact be “corrected”, so

that the difference II,, = EW - E,w is compensated, namely,
By — T, = T, _ (1.10)

Writing the term II,, on the right hand side of (1.10), we can interpret it as a cor-
rection to the source resulting from averaging out the small scale inhomogeneities of the
gravitational field. This brings back the equations again to their familiar form, but with

the effective source term,

Eu = kT + 1. (1.11)

This correction term is to be added to the field equations at scales other than the scale
at which they are verified and which is therefore the scale on which they are supposed
to hold. If we assume that the averaged metric is the FLRW metric and that T, has
the perfect fluid form (homogeneous and isotropic), the correction II,, will perturb the
energy density and pressure of the source, invalidating the FLRW relation between the

sign of spatial curvature, on the one hand, and the size and lifetime of the universe, on

the other?!,

A correct and consistent treatment of this problem would require one to average the
geometry and matter present, i.e. a microscopic matter distribution and the Einstein field
operator, to determine both sides of the averaged Einstein field equations. Considering the
above kind of averaging, one has to determine a relation between the manifold structures
and corresponding points in the two models that we deal with at each step of averaging.
Finally, this would allow us to explicitly determine the averaged field equations responsible
for the large-scale, average dynamics and study the observational properties of the average

universes, and the relation between more detailed and the averaged behaviour in them.

2Tt holds anyway only for dust without a cosmological constant.
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In the weak-field or almost FLRW cases one can use direct methods to define the ave-
raging (see chapter two for a review of some approaches); in the full theory the situation

is more involved.

It is probably worth stressing at this point that speaking of averaging of the Einstein
equations requires an utmost care and one has to clearly state what this means, since
by themselves the Einstein equations (as any differential equations) do not contain any
in-built fundamental length, so that they can be used a priori to describe cosmoses of any
size. It should be emphasized that while doing this, these different metric and matter
tensors used are intended to describe the same physical system, i.e. the same space-time,

but at different scales of description enabling one to resolve less or more details??.

22Posing the problem this way turns out to be very useful from the Renormalization Group approach
viewpoint which we are going to propose in chapter three.



2 A survey of approaches for ave-
raging

In this chapter we shall review some of the approaches for constructing the relativistic
cosmological models via averaging out inhomogeneities of geometfy and matter. A helpful

reference on the subject is [161] listing many of the relevant papers.

We do not adopt a unique notational convention in this chapter. This was mainly
dictated by the fact that there are various conventions adopted by various authors and
for the reader’s convenience (who might wish to consult the original papers) we decided

to maintain the notation of each reviewed paper unchanged.

2.1 Averaging within approximation schemes

The definition of averaging can be based on or coupled with approximation schemes.

In the first attempt of this kind [243] (not meant to be applied to cosmology) Szekeres
showed that linearized Einstein equations, i.e. when the metric is assumed to be a small
correction superposed on the Minkowski background, are formally similar to the Maxwell
equations. As a consequence of this, a macroscopic theory for gravitation could be formu-
lated in analogy with Lorentz’s theory in electrodynamics. In particular, estimates of the

terms II in equations (1.11) have been given

Hab = Q,ade,cdv (21)

with I, determined as the double divergence of an effective quadrupole gravitational

polarization tensor Q’, , with suitable symmetries Ql; 4 = Ql[ab]cd = Q;b[a{] = Qluab

30
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(Qabea incorporates also any dipole polarization effects that may occur). Such models
might cover the larger-scale transitions.

This approach does not invoke any specific kind of averaging. It was applied to the
propagation of gravitational waves through a medium whose molecules were supposed to
be harmonic oscillators. The result obtained was that gravitational waves slow down in

such kind of a medium.

Another approach is the one due to Sibgatullin [231]. He does not give a definition of
averaging either. The Einstein equations are averaged after the metric was decomposed
into a “background” and a “fluctuation”. No criterion to separate the metric into the
background and fluctuation was provided. With the assumption that the characteristic
scale of correlations between matter and geometry is small, with respect to the scale of
variation of the smoothed-out geometry, the result was calculated approximately that
fluctuations in matter do not influence the equations of zero-th and first order in the small

parameter.

Independent considerations on the subject was presented by Bialko [28]. In this ap-
proach the metric was developed into a FLRW background and a high frequency pertur-
bation. The Einstein equations were averaged over spatial volumes, under the assumption
that the characteristic wavelength of the perturbation is small as compared to the curva-
ture radius. Further, the equations governing the evolution of the averaged perturbation
were found to differ from those for linearized perturbations by a logarithmically varying

factor.

Another approach is due to Noonan [199]. He showed within the weak field slow
motion approximation that when the Einstein equations are averaged by volume, the
energy momentum tensor splits into three parts. The interpretation of the first part is
kinematical due to averaged microscopic motions. The second contribution is mechanical
due to averaged microscopic stresses, and the third one - gravitational, due to averaged
small scale variations in the gravitational field. In [200] the author showed in addition,
that the time-space components of the above macroscopic energy momentum tensor can

be interpreted as the flux of gravitational energy of the microscopic field.
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In the recent approach developed by Futamase [104, 105], the averaging is performed
in the perturbation framework (see section 2.1.2 for details). The components of tensors
are averaged over the spatial volume. In [107] the author considered inhomogeneous
space-times with preferred slicings. Assuming that in the limit of zero perturbation, the
preferred slicings go over into the homogeneous spaces of the FLRW models, the effect on
the Friedmann equation of averaging by 3—dimensional volumes within the preferred slices
was calculated. In [30] in the same approximation, the backreaction of inhomogeneities
on the evolution was calculated, the result being that inhomogeneities slow down the
expansion as compared to the standard Friedmann equation. Therefore the age of the
Universe calculated from the Hubble law should be underestimated.

Another option mentioned in [106] could be statistical kind of averaging. Suppose that
we have a statistical ensemble containing all possible density and velocity distribution
of fluid elements (representing galaxies) with some constraints which characterize the
universe we wish to approximate. Choosing a particular ensemble in which the density
and velocity distribution satisfy the condition < §u >=< v* >= 0, and the averaging of

any quantity with spatial derivative vanishes, then the averaging procedure obtained could

be also appropriate to treat the situation where there are singularities, unlike within the
spatial averaging concept [106].

2.1.1 Perturbation approaches

There is the “usual” perturbation approach, by which we mean here that one first in-
troduces a fixed, i.e., unaffected by the perturbations background space-time, e.g. the
FLRW metric, and assumes that the perturbation variables in the given background are
small. With this assumption, one can expand these variables to higher orders, keeping only
the zero and first order terms. This allows to tackle only weakly non-linear situations.
The important fact is ignored in this approach, namely, that the material distribution
itself determines the geometry, and in the presence of inhomogeneities one cannot really
specify the background metric independently from the inhomogeneities - the backreaction

problem.

The study of perturbations of the Einstein equations in the cosmological context started
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with the pioneering work of Lifshitz [169]. Of particular interest are the scalar perturba-
tions since they are directly related to density fluctuations in the early universe and are
thus relevant to the structure formation. Lifshitz’s theory is however not easy to interpret
due to its gauge ambiguity. This ambiguity is eliminated in the theory of gauge invariant
perturbations due to Bardeen [18]. Both approaches are in reality valid only in the linear
regime.

In principle, there exists a general method of determining the equations for any order
of perturbations, but in practice the generalization of these schemes to the non-linear

situations is not straightforward.

Recently, a new gauge invariant version of perturbation theory has been given [86, 88]
(henceforth we call it EBH scheme) and we review it below (see also [44]). The standard
§u/p approach compares two evolutions (the actual one and a fictitious comparison one)
along a world line. The covariant and gauge-invariant EBH scheme compares evolutions
along neighbouring worldlines in the actual universe reflecting thus the spatial density
variation in the fluid.

The advantages of this scheme are, firstly, that it does not necessarily assume the
background geometry a priori as exact equations are given governing the evolution of
density inhomogeneities in arbitrary space-time, without any reference to a background
space-time. Secondly, it deals with exact quantities, like e.g. the comoving fractional
gradient of the energy density orthogonal to the fluid flow (spatial projection of the energy
density gradient). These are both directly observable and gauge invariant in the case
of linear perturbations about FLRW universe. It has been shown that the linearized
EBH equations are equivalent to the Bardeen gauge invariant equations [138]. The EBH

equations are not however restricted only to the linear casel.

We comnsider the exact covariant fluid equations for a general fluid flow in a curved
space-time [82]. The 4-velocity vector tangent to the flow lines (the world-lines of funda-
mental observers in the universe which are at rest with respect to our volume element of

fluid) is u® = de®/dr, (u®u, = —1), where 7 is the proper time along the fluid flow lines.

!An extension of EBH scheme, combined with the spatial averaging, to tackle non-linear case can be
also developed (see [108] for a sketch of the scheme).
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The projection tensor into the tangent 3-spaces orthogonal to u?® (into the local rest frame

of a comoving observer) is

hab = Jab + Ug Up, (22)

and hy®hb = k%, hobuy = 0.
The time derivative of any tensor 7%y along the fluid flow lines is Tab_, = T“bcd;eue,

the covariant derivative along u® (the rate of change of T as measured by a fundamental

observer).

The first covariant derivative of the 4-velocity vector is
1 .
Ugp = Wap + Oap + é'@hab — UgUp, (23)

where ©® = u®, is the expansion, wap = wy) is the vorticity tensor (wapr® = 0), and
Oab = O(qp) is the shear tensor (0apu® = 0, 0% = 0). A representative length scale S along

the flow lines is defined by

s 1
3 = —3—@. (2.4)
The vorticity and shear magnitudes are defined by w? = %wabw“b, o2 = —é—aabaab.

As we restrict our attention to the case of a perfect fluid, the matter stress tensor takes

the form

Tap = pugup +phab7 (25)

where 1 is the energy density, p = Thpu®ub, and the pressure p = %h“bTab (in the local rest
frame of a comoving observer). In general, 1 and p will be related through an equation of
state.

In a FLRW universe model the shear, vorticity, acceleration, and Weyl tensor vanish,
and the energy density y, the pressure p and expansion © are functions of the cosmic time
t only. Three simple gauge invariant quantities give us the information we need to discuss

the time evolution of density fluctuations.

The first is the comnoving fractional density gradient

D, = Shab%’b—b, (2.6)
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which is gauge-invariant and dimensionless, and represents the spatial density variation
over a fixed comoving scale [86]. Note that S, and so D,, is defined only up to a constant
along each world-line by equation (2.6); this allows it to represent the density variation
between any neighbouring world-lines. The time variation of this quantity precisely reflects
the relative growth of density in neighbouring fluid comoving volumes.

The second is the pressure gradient
Va = ha’pyp . | (2.7)
The third is the comoving ezpansion gradient
2, = ShtOy . (2.8)

We can determine exact propagation equations along the fluid flow lines for these quanti-
ties, and then linearize these to the almost-FLRW case. The linearized equations are those

given in [130] (see equations (13) to (19) there) plus the linearized propagation equations
for the gauge-invariant spatial gradients defined above (see [86, 88] and [44]).

The basic equations are: the energy and momentum conservation equations (the time

and space components of the 4-dimensional equation T, = 0)

£+ (p+p)0 =0, (2.9)
(1 + p)ita + Va = 05 (2.10)
the Raychaudhuri equation
.1 1
®+§®2 +2(0® —w?) + §H(u+3p)—iﬂ;a =0, (2.11)

where 4%, is the acceleration divergence; and the propagation equations for the gauge-

invariant variables D,, Z,:

h8(Dy) = —Da(wle + 0%) + %@DC 1+ %)zc, (2.12)

1 1
h(2,)" = —-0OZ.+ hc“(§®za — 5##Da — 25(0?) 4 +285(w?) o +
Sﬂb;ba) - Zb(o-bc + wbc) + i"cSR’ (2.13)
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where R = %@2 — 9202 + 202 + Kp -+ 0% .

In the above, @’ 4, stands for the gradient of the acceleration divergence, and x = 87 G.
Once the equation of state of the fluid is known the evolution of Y, will follow from that
for D,.

For completeness, we give also the propagation equation for the acceleration a. = u.:

: dp 1 b<dp)
hac c)] = Uqg - - ha - — Q¢ Ca ca 2.14
(0:) = 2@~ 5) +he?(310) ~ oeluta %) (2.14)

g—f—‘ is taken along the fluid flow lines).

Further equations can be used as the basis of various systematic approximation schemes.
The major point to notice is that in using equations (2.12) and (2.13) in an approximation
scheme, to determine propagation of density inhomogeneities to the nth. order, we only
need to solve the other equations of the model to the (n —1)th. order [108]. This gives the
behaviour of the coefficients in these equations (and the Christoffel terms implied in the
covariant derivatives on the left) to that order; then they directly determine the behaviour

of inhomogeneities at the nth. order.

As equations (2.12) and (2.13) are gauge-invariant as well as covariant, we can use
any coordinates and any convenient choice of background FLRW model in their further
investigation. However equations (2.9) and (2.11) are not; we can e.g. deal with them
by using an averaging procedure to determine a background model (see footnote® in this

chapter).

2.1.2 Approaches of Futamase and Kasai

Futamase’s approach

In a series of papers [104, 105, 106] Futamase developed an approximation scheme for
describing an inhomogeneous universe, valid in non-linear case, basically with an arbitrary
density contrast. This is a perturbative approach and the averaging introduced gives a
clean separation between the global and local quantities.

The aim is to construct the approximate, reliable metric representing the real, clumpy
universe in General Relativity. Obviously, the averaged, smooth metric coincides nowhere

with the real inhomogeneous metric, but we know that the FLRW description is valid
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only in some averaged sense (if so). It seems then natural, to suppose that the space-time
is close to a FLRW space-time, i.e., the inhomogeneous space-time is in a sense a small

deviation away from the averaged smooth space-time which is not a prior: given.

The crucial observation is the fact that the size of the metric perturbation and that
of the density contrast are independent of each other in the exact theory, as well as in
post-Newtonian approximations. For example, in the Solar System the metric coeflicients
in nearly orthonormal coordinates deviate, from their special relativistic values, by no
more than ~ 2GMg/c?Rg ~ 1075, whereas the density contrast between the interior of

the Sun, planets and interplanetary space is > 10%°.

The ansaiz for the metric is taken as:

Juv = az(n)(ﬁff’u) + ), (2.15)
vhere h,, are generated by local matter inhomogeneities and the gravitational waves
(we neglect the latter), assumed to be small; this does not imply the smallness of density
contrast. The scale factor a(7) describes, as usual, the global FLRW expansion (averaged).
In other words, g,,, is the standard FLRW metric when A, = 0, with g,(fi,) = —dn?4+d03i(k),
where dﬂg(k)'kis the standard metric on §3if k =1 and on R? if k = 0, —1.

The ansai;z for the metric is such that the deviations from the FLRW models are small,
but this does not imply that the zero-th order space-time is the FLRW one. It depends on
the approximation chosen, e.g., within the linear approximation the zero-th order space-
time is indeed taken to be the FLRW space-time. The approximation chosen depends on
the kind of physical situation that one deals with, for the case at hand, what we have
in mind is the matter clumps of various scales interacting gravitationally with each other
and the density contrast between them and the mean density is > 1.

Above all, we have to restrict our space-times to those in which there is a well-defined
meaning of the spatial average. The spatial averaging is therefore defined in a family of
geometrically preferred slices, i.e., such that the metric deviation away from the FLRW

metric is small everywhere on them.

The scheme is worked out in harmonic gauge:

ki, =0, (2.16)

1
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where | stands for covariant derivation with respect to §®), and _ﬁ,_w =h, — % g‘(f,',)h, with

h= _(j(b)“”h,_,,,, is the so-called trace reversed perturbation.

The equations are derived under the assumption that A is small and that the scale
on which h varies is small compared to that of ¢ and §(). The above ansatz is used to
calculate the Einstein equations as follows (a prime stands for the derivative with respect
to the conformal time 7)

(%)2(4g(b)ung(b)vn _ g(b)nng(b)#n) — le(g(b)ung(b)un _ g(b)flng(b)uU) + AP 1

a

2 (R _ BN _ geinGp) 4 1wy 1Y grgre,  (2.17)

where A" is the background spatial curvature term given by A™ = -3k gl = 3k, AV =
—kg®)i and AT = 0. 7 = a'T* + t* may be regarded as the effective (total)
stress-energy tensor, i.e., material stress-energy tensor T plus gravitational stress-energy

pseudotensor t#¥ consisting of terms quadratic in A.

Effectively, this means that the Einstein equations are expanded in terms of two small

parameters, € and &, whose meaning is the following:

o ¢is the size (amplitude) of the metric perturbation h and it is assumed that h, hy, =~
O(€?), huyp =~ O(€%/1); € defined this way is also an amplitude of the peculiar grav-
itational potential ®, the gravitational potential generated by the inhomogeneous

distribution of matter, where & ~ O(¢?), as well.

¢ K = % is the ratio between the scale of the variation of A and that of a and §(®),

where for I we can take the present horizon size ~ 10* Mpc, and for ! the typical
scale of inhomogeneities; note that & € [0,1], with small « indicating condensed

density contrast, large & - diffused density contrast.

The relative size of k and € depends on the physical system considered. It is straight-
forward to see that the density contrast is of the order of €?/xk?, and consequently the
linear stage is characterised by k& >> ¢, and in the non-linear stage we have € > . For

galaxies we typically have € > k, and the ratio e/ increases when we consider smaller
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regions. Basically, if the typical size of inhomogeneities is larger than a galactic scale, the

approximation is valid in the parameter range € < k.2

In deriving (2.17), terms like &~k ~ O(e?/L?), £h),h =~ O(e*/IL), R ki h =~ O(¢/1?)
and of higher orders, were neglected, whereby it was taken that %’ ~ O(1/L) and Qaﬁ o~
O(1/L?). Physically, it means that the effect of the self-gravity of clumps on their dynamics
is more important than the expansion of the universe. The neglected terms are negligible

as far as ¢,k € 1 and & > €.

A perfect fluid is taken for the material source which is characterized by the density

field p, its peculiar velocity ¥, and peculiar gravitational potential ®;

T = [p + p(p)lw/'v” + p(p)g™". (2.18)

One works with conformally rescaled variables: ## = au¥, §*¥ = a’g#”. Then 7# =

aTH 4 t, where TH = [p + plara” + pgt = a®TH.

On very large scales the universe is assumed to be homogeneous in space. In the
next step the spatial averaging is applied to the truncated Einstein field equations (2.17),
assuming spaiﬁal periodicity of the material initial data® (as well as that of the free data
for the gravitational field) and no coherent motion over the volume to be averaged®.

The spatial average over a volume V is defined as:
! 50)d3
<@ >= v . Qv 3 d’e, (219)

where §(®) is the determinant of the spatial part of the background metric _(j,(fi,) and \/g_('5 d3z
is the invariant volume element in the background space, and for the density we have
< p >= p (background density). The only property used in a calculation is < Q; >= 0,
which is implied by the spatial periodicity. Also, < 77 >= 0, which just means no

?In [108] an approximate metric is constructed in the situation with strong gravity and/or smaller
regions of inhomogeneity, where €” 3> &, but we will not discuss this case here.

3Space-time averaging is another possibility; in [139] temporal periodicity for the inhomogeneities had
to be assumed in order to get a separation between global and local evolution.

*This is almost always safe, i.e. with large enough averaging volumes and randomly distributed
perturbations.
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coherent motion over the averaging volume. The spatial average of (2.17), under the
above requirements, implies < I >= 0, and of (2.16) < h,, >= const. which under a
redefinition of the time variable and scale factor can be put to zero. Also, < _Ekk > can
be put to zero, since it expresses an additional isotropic expansion which can be absorbed

into the scale factor upon its redefinition.

The averaged sources are used to calculate the global expansion and the following
averaged Einstein equations are obtained from (2.17) to the first non-trivial order, (by non-
trivial order we mean the order at which the first backreaction effect due to inhomogeneities

on the expansion of the universe appears),

!

(£) = &‘B—Q <7 > —k

ol — 4G o pm 7k > —k (2.20)

L(a? < B >, = 167G < 74 >,

a

where 77 = 77 — %ﬁ(b)”ﬁ'kk is the trace free part of 7.

The averaged line element,
< ds? >= ag(n)(—dnz + (6i;+ < —H,'j >)dmidzj), (2.21)

tells us that the averaged space-time expands anisotropically, except when < h;; > vanishes
identically, since < ﬁ,‘j > expresses the deviation from the isotropic expansion due to the
inhomogeneities < 77 >. Note that the first two equations of (2.20) are the Friedmann
equations with source terms replaced by the effective stress-energy tensor, thus the effect of
the local inhomogeneities on the global expansion can be partly expressed by the effective

density and pressure pes; = a? < 71 >, peps = 3a° < kL >.

One can integrate the last equation of the system (2.20) to obtain the expression for
<R > (1), and see that a sufficient condition for global isotropic expansion is given by
<h7 > (1) = 0 and < 79 >= 0. The equations determining the evolution of the local
inhomogeneities are derived by substituting the above equations into (2.17), additionally
we have also the equations of motion (derived from the conservation of the stress-energy

tensor).
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Now, we can employ a particular approximation scheme. The evolution of the density
perturbations in our picture is sufficiently well described by means of a post-Newtonian
approximation. The post-Newtonian approximation is characterized by small parameter ¢,
of the order of a typical peculiar velocity divided by the speed of light. It is introduced by
a coordinate transformation ny = €7, 7y is the Newtonian time which means physically

that a typical time scale gets longer as ¢!

as the velocity goes to zero. This parameter
is identified with the already introduced €. The orders for material variables are assumed
to be py = (=2p, vjv = (=o', py = e(~Yp. The other small parameter, & is associated
with global cosmic expansion (when & — 0, the expansion of the universe slows down).

€ and k are our order parameters, in the sense, that they parameterize a sequence of

space-times and we study the Newtonian limit on that sequence.

The evolution equations for the local inhomogeneities are then solved perturbatively
up to the first non-trivial order.

An interesting outcome of the application of this approximation scheme is that the
backreaction leads to an underestimation of the age of the universe, as inferred from a
measurement of today’s Hubble constant [30] (also see [29]). For a simple model within
the framework of pancake theory for structure formation on a flat expanding background,
it is shown in [30] that the age problem (severe in view of the recent determinations of
globular cluster ages) may be solved by taking into account the backreaction of inhomo-
geneities in an averaged sense. This scheme can also be used for the correct interpretation

of observations of gravitational lenses.

Kasai’s approach

Kasai’s scheme [149] to construct inhomogeneous relativistic universes which are ho-
mogeneous and isotropic on average, goes further than Futamase’s approach. It is not
assumed here that the deviations from a FLRW model are small to acquire FLRW-like
behaviour on average.

Here also, spatial averaging is introduced, but the description is based on the deforma-
tion tensor and can give yet another possibility to obtain solutions to describe more real-

istic situations, and on the other hand, to formulate a relativistic version of the Zel’dovich
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approximation used to handle the evolution of the large scale structure in Newtonian

cosmology.

In [149] the inhomogeneous irrotational dust universe models are constructed in the
framework of General Relativity, with the property of being homogeneous an isotropic on
average. The averaging is introduced for matter only, on the hypersurfaces X; orthogonal
to dust motion, and the mean (“background”) density for the inhomogeneous universe
model is written as

P =< p>= Vlim ! 72
—Te Ji- [det(gij)] /" dPa

for V C 3, (assuming that this limit exists).

/‘ pldet(gi))]' /2=, (2.22)

The “scale factor” (averaged) is then defined by
; a
fo+3(2)py = 0. (2.23)
The peculiar deformation tensor is introduced as

i i Gy

This quantity describes the deviation from a uniform Hubble expansion. As usual, u* is a
4-velocity and comoving coordinates are used. The deformation tensor u; = ufj, describing
the change of the relative position X' between the world lines of neighbouring “particles”
(galaxies), X = u}XJ is at the same time, the extrinsic curvature of the ¢ = const.

hypersurfaces %;.

Another quantity introduced is a density contrast®

A=2"P (2.25)
p
Given this, the Einstein equations are the following:
A+r(1-M)Vi=0 (2.26)
a 2 8rG Pb 1 3) 24 i 1 N2 ivrj
Sy 2= A ~28vi _ Z(vH? — ViV 2.2
Gy = TE P L OR -y (i - Vi) (2:27)

3Note that it diffexs form the conventionally adopted § = -‘-’l’fﬂ.
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A+2(2)A - 47Gp = ~(1 - A)(V)? - ViV{], (2.28)

where '= 2, C)R = G)Rl and 1,7 = 1,2, 3.

FLRW model (with p, and a) is the background model. Note that (2.27) reduces to

the Friedmann equation, (%)2 = S%C—;pb — ;’%, when there are no inhomogeneities if and

only if the condition

8 A

——3 Pb

1 k 2a.. 1 . .
_Llogp B 285 Ligwe oy .
S 2 ORy o 2 (V) - Vi = 0 (2:29)

holds.
On the other hand, when the left hand side of (2.28) is zero, one gets the evolution

equation for § = E—;bﬂ in the linear perturbation theory.

The nice property of this approach is the fact that equations similar to (2.26) and
(2.28) appear in Newtonian cosmology in the context of extending the Zel’dovich-type
approximations, with VJ’ spatial gradient of peculiar velocity vfj. In particular, when
(Vi)? - VJ-"V,-j = 2(A1A2 + A2A3 + A3zA;) = 0, where J; are eigenvalues of Vf, A obeys the
same equation as § and the solutions can be extrapolated from the results of the linear
perturbation theory. Thus the present construction can represent “relativistic pancake

solutions” analogous to those in Newtonian cosmology.

2.2 Exact non-covariant averaging

Despite the fact that quite often the averaging procedure is applied on top of a perturbative
scheme, we will review in this chapter approaches in which the averaging (by volume in
all cases) is defined (non-covariantly) without any recourse to approximations. There is

no covariant definition of spatial averaging available in a general space-time.

The earliest attempt is due to Shirokov and Fisher [229], where they proposed to
define the components of the averaged (macroscopic) metric as the volume averages of
the corresponding components of the small scale (microscopic) metric. This procedure is
explicitly non-covariant (volume integrals of tensor components do not constitute a tensor!)

and has no geometrical interpretation. It is therefore not clear what is actually represented
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by a volume average of a metric component. Nevertheless, this definition was applied to
metrics which are small perturbations of the FLRW models and from them the Einstein
tensor was calculated, as well as the averages of all its components. They were then
equated to the averages of the appropriate components of the energy momentum tensor.
Terms non-linear in the small quantities were neglected. The result they obtained was a
generalization of the FLRW solutions, with a repulsive term preventing the singularity for
all three curvatures. At a maximal crunch, each particle fills the interior of a sphere of a
radius equal to that of the particle’s own gravitational radius.

Further in [230] (which is really only a short conference report on work in progress),
the author considered the following deformation of the FLRW metrics:

ds? = dt? — (1+ iwrzcz(y)f(t, 2,9, 2)(de’ + dy” + d2°), (2.30)

where G(y) and f(t,%,y, z) are unknown functions. The consequences of averaging of the
Einstein tensor (calculated from an “averaged” metric), with the assumption that it obeys
Cosmological Principle, are calculated exactly without approximations. The term due to
averaging was interpreted as a negative contribution to pressure capable of preventing the

Big Bang.

In a series of papers, Saar [217] considered the influence of averaged rapid fluctuations
on a slowly changing background metric. The metric (without considering any explicit
form of it) was split into the background and a fluctuation times a small parameter.
Einstein equations were then developed to the second order in the small parameter and
averaged by volume. As a result, the contribution of averaged fluctuations can be inter-
preted as a negative pressure in the background and cosmological expansion can proceed

slower, with more time available for structure formation.

The result of Nelson [197], on the other hand, seems to contradict the others. The met-
ric was split into smooth background and small perturbations describing lumps, and then
averaged by integrating metric components over volume. The background was obtained
to be approximately equal to the average of the whole metric, with the average obeying
“the usual set of cosmological equations”. The corrections to the average obey equations

“equivalent to instability equations. The large scale development of such a Universe is
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therefore shown to be almost independent of the formation of condensations provided the
average of the energy-stress tensor is unaffected by the condensations”. The relevant as-
sumptions were that the averaging volume contains many condensations, the number of
condensations is big, they are evenly distributed in space and their radii large with respect

to the Schwarzschild radius.

Interesting approach was put forward in [181]. A series of following papers by Marochnik
and co-workers, initiated in fact properly a direction of research taking into account the
small scale inhomogeneities. |

The metric, the density and the velocity field were taken to be sums of an average
(background) and a correction (called turbulence) whose average is zero. The following
equalities were assumed to hold

M < L* < 1/R, (2.31)

where A7 is the characteristic scale of the turbulence, L the averaging scale, and R the
background curvature. The effect of averaging in terms of volume integrals on the Einstein
equations was examined. They claimed that corrections to energy and pressure (due
to averaging out small scale inhomogeneities) do not need to be positive and may be
interpreted formally as antigravitation. This can further lead, for example, to a situation
where perturbations of a FLRW background can yield a non-expanding, static universe;
or the corrections due to averaging might prevent the Big Bang singularity.

Further on, in [182] the results of averaging on linearized perturbations of the FLRW

models were calculated and it turns out that:

1. © For p = p/3 (valid in the FLRW background)

e if the potential turbulence exceeds the vortical one [170], then the perturba-
tions decelerate the expansion and the initial singularity can be avoided. (The
authors notice however that before the minimal radius is approached the linear

approximation is invalidated.)

e if the vortical turbulence dominates the expansion is accelerated (the singularity

remains).

1t was noted in [182] that this result is in contradiction to [28], where the main reason for deviation
from the Friedmann equation was attributed to the gravitational waves.



46 § 2. Survey of approaches ...

2. For other equations of state, the turbulence could modify the evolution of the uni-
verse when p > p/3. In this regime (p > p/3) however, the linear approximation

does not hold any more.

In [183] the influence of long-wave turbulence on the background expansion was exam-
ined, taking into account only those modes of turbulence that remain finite when close
to singularity. It turned out that they influence the expansion in the same way as in the
perturbative solution of Lifshitz and Khalatnikov [171].

In [184] the equations of [182] were written up to the second approximation in the
turbulent perturbation and solved in [185], where also the effects of the perturbations on
the background were studied. No pronounced qualitative effects were found though.

In [186] the changes in the most important cosmological parameters due to averaged
out small scale inhomogeneities were calculated and the author found that this affects the
transition moment between the hadron and lepton eras (by a factor of up to 1.4); the

temperature in the transition moment (by a factor of 0.88); and the helium abundance’.

One of the most recent papers considering the effect of averaging over spatial volumes
on the Einstein equations is the one due to Zotov and Stoeger [266]. They simply compare
an exact FLRW model with the one where galaxies, represented by a Schwarzschild metric,
are superposed on the FLRW background with a constant number density. They find that
upon averaging the metric components, the background FLRW model with the scale factor

R(t) changes to another FLRW model with the scale factor §(t), and
5%(t) = R*(t)(1 — K), (2.32)

where K = NVy/V,, N is the number density of galaxies, V; the averaging volume, V5
the volume per one galaxy in the space. The effect of matter, as calculated through the
average values of metric components, is therefore to squeeze the space volume. If calculated
through substituting the new average density in the Einstein equations the effect is the
same, but now the dependence of R(t) on the density parameter o, is given in the form

of parametric equations

Ri(t) = H,o,(1 - 20,)"%/?(cosh2y — 1),

"It may remain unchanged if the energy density of short wave fluctuations is smaller than 1.55 (where
p is the large scale average energy demsity).
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et = Hoo(1— 20,)"/?(sinh 2¢ — 24).

The authors do not calculate nor discuss in their paper the terms due to averaging in the

Finstein equations.

2.3 Exact covariant averaging

Isaacson was the first to consider the problem of covariant averaging involved in “coarse-
grain” viewpoint. In [139] he considered the vacuum Einstein equations in the short-wave
approximation, assuming that the metric of a gravitational wave space-time can be split
into a low frequency background and high frequency wave, namely, g, = g;(f) +h,. High
frequency means small wavelength with respect to the curvature radius of the background,
the smallness of the waves’ amplitude was assumed. The Einstein equations were then
linearized with respect to the high frequency correction and the waves were shown to obey
a covariant geﬁéralization of the equation of massless spin 2 fields in flat background. They
were shown to travel on null geodesics of the background, their amplitude, frequency and
polarization modified by the background curvature.

Further in [140] the same considerations were carried out to a higher order of approxi-
mation. The author showed that the corrections of the first non-linear order to the vacuum
Einstein equations provide a term (“stress-energy” tensor) that can be interpreted as the
effective energy of the gravitational waves. It was then used to define the total energy and
momentum carried off to infinity by the waves. The stress-energy tensor of gravitational
waves was shown to be well defined only in a smeared out sense (cf. also [192]).

The energy momentum tensor of the gravitational waves arises once the metric is
averaged. The average is defined by parallel-transporting the tensors from the point z’ to
the representative point z, along the geodesic between z’ and z, and then integrating the
resulting object with respect to 2’ with a weighting function f(z,z’) (this function was
not defined explicitly):

< Tp(z) >= / G;fl(:c,w')GEl(m,m')Ta/ﬁ:(z')f(z,z')d“‘m', (2.33)
all space
where G g" are the propagators of parallel displacement. From the weighting function it

was demanded that:
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1. f(z,2z') — 0, when the distance d(z, z’) obeys A < d <« L, where A is the wavelength
of (high frequency) waves and L is the wavelength of the low frequency background.

2. fallspace f((l:, z,)d_lm, = 1.

This definition was applied within a perturbative scheme but it is perfectly covariant.
The evaluation of the effective stress-energy tensor for the gravitational waves requires
averaging of various quantities over several wavelengths. From (2.33) one can derive

Isaacson’s averaging rules (he names the averaging scheme used as “Brill-Hartle averaging”

after [41]) which are the following:

e covariant derivatives commute, e.g. < hhyog >=< hh,|go >, Where | stands for

the covariant derivative with respect to g,(fg);
e gradients average out to zero, e.g. < (highu)|s >= 0;

e one can integrate by parts flipping derivatives from one A to the other, < Ak, o5 >=<
~—h|ﬂ hl—‘”[& >.

In harmonic gauge, f_lu"‘la = h = 0, the stress-energy for the gravitational waves was shown
to have the following form
7o = L g e 2.34
wo = gop < el Ty > (2.34)
where i-zw, =hy — %hgff).
Further improvement was due to Matzner. In [188] he does not need the assumption
that the wave is of high frequency in order to identify the background. Moreover, he
gives another definition of averaging the geometry, namely, a metric is Lie-dragged along

a specific vector field, defined by
£ 5 4 A = 0 (2.35)

to a chosen point, averaged there over all points and then Lie-dragged back. Equation
(2.35) is in fact a generalization of the Killing equation. The above definition was applied
to the t = const. sections of the Taub-NUT space (space of finite volume). It turned out,
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that the averaged metric has the FLRW algebraic form, however it is not in any simple
way related to the original metric (e.g. the volume of the averaged space is different from
the initial volume).

In [189] a measure of symmetry in a riemannian manifold with a positive-definite metric
was put forward. Namely, it was defined as the minimum value of the functional:

AE) = ( 0B 5 dv) [(£#€udv), (2.36)

all space

where ¢ is a vector field, dv = ,/gd"z. For compact space, or when the integral over
the boundary at infinity is zero, the minima of A[{] obey (2.35); on a positive-definite
manifold A = 0 in (2.35) implies Killing equation. The above definition was applied to
some space-times and the parameters A, defined by (2.35), could be interpreted as averaged

energy-density and averaged stresses of gravitational waves.

In [211] Rosen pointed out that for a stochastic stress-energy tensor associated with
cosmic turbulence the Einstein equations imply fluctuations in the space-time metric ten-
sor (of a purely classical-statistical character). He then showed that averaging the metric
produces corrections to the energy momentum tensor and calculated them explicitly, as-
suming that: (1) the perturbed metric is conformally equivalent to the background metric,
and (2) the averaged energy-momentum tensor has the algebraic form of a perfect fluid.
The conclusion reached was that fluctuations in the metric always accelerate the expan-
sion in a FLRW background (i.e. increase R/R). However, no definition of averaging was
proposed and the author called his averages “with respect to the statistical ensemble”; the
whole treatment was rather axiomatic. This paper nevertheless appears to be one of the

first tackling the problem from a geometric viewpoint.

Further, there is the approach of Carfora and Marzuoli [61] (which will be reviewed in
section 2.4.1). We will only mention here that they were the first to confirm exactly and
in a covariant manner the result predicted by Shirokov and Fisher [229].

In [152] Khiet, influenced by Shirokov and Fisher paper, studied the results of averaging
microscopic gravitational equations and without any definition of an averaging procedure,

simply guessed the correction term C,g(g) in the macroscopic equations Guog + Cap =
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£Tnp on the basis of covariance requirements. He obtained new, non-linear in curvature,
field equations and studied their exact solutions for a general FLRW metric. These were
however field equations of a new metric gravitation theory, instead of averaged Einstein

equations.

There is yet another approach due to Arifov and Shayn [7] which is similar in spirit to
Khiet’s approach. In this approach it is in fact enough to introduce averages formally.

The average curvature 7,g.5 and metric tensor J,g are no longer the curvature and
metric tensors of the same riemannian manifold. It was proved tﬁat when dim n < 4,
there exists the riemannian manifold with the metric tensor G,g of the same signature as
gop and curvature tensor R,345 = Tapys, Which is not riemannian with g,5. Effectively,
this is a bi-metric gravitation theory. The macroscopic Einstein equations were obtained
upon averaging out of the left hand side of Einstein’s equations and extracting the Einstein

tensor (made up of the averaged curvature tensor), namely,
(03 1 o {23 23
where Dj is defined as
1
Dg = D'ﬁ +65 (H" Ry + :?—H’”H“”Rp,w,) —-H" R}, s—H*R,s—H*H" R,,.8, (2.38)
with further definitions following simply

ﬁ = _53(T - ngg rp;u/a) - (Tﬁ - g g Tppuﬁ) (2-39)

for the correlation tensor, and H®8 = g8 — G=8, > 975 = 63 G"‘EGm@ = 63.

It can be argued whether any real averaging has been achieved this way, in any way
no geometrical considerations were offered. Comnsequently, the correlation tensor could
only be modeled phenomenologically. For example, in the case of gravitational field of
the spherically symmetric source D = ocC**? Cguve, where Cu o is the conformal cur-
vature tensor and ¢ = const. The solution found in this case was argued to yield a
macroscopic metric that has neither an event horizon nor a singularity for certain values

of the parameter ¢ (contrary to the usual Schwarzschild solution).

The problem of averaging is very much related to the issue of approximating a fine-scale

cosmological model with a large-scale model. In [234] Spero and Baierlein proposed an
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independent approach, namely, to define an approximate symmetry of an inhomogeneous
model by “best-fitting” to it a Bianchi-type model. This best-fit was defined in terms of
a minimum of a functional with respect to variations of a triad of orthonormal vectors in
the given space-time and variations of the structure constants, to be found. As shown,
the resulting Bianchi type is not always unique unless it is one of the generic types:
IX,VIII,VII, or VIy. The classification depends on the slicing and is not necessarily
preserved in time. Moreover, the approximating type of space-time is not guaranteed to
obey Einstein equations.

The second paper of the same authors [235] is basically an application of the earlier
ideas to two slicings of the Gowdy solutions [117], providing approximants of Bianchi type
I and V1,, and to Kantowski-Sachs metric with the approximant Bianchi type I.

Another interesting paper is that by Stoeger, Ellis and Hellaby [238], where they
proposed a criterion of continuous homogeneity of the universe, namely, if the mean mass

density® in a sphere of volume V7, centered at the point 7, is given by

—

]_ -
o) =5 [ p() (2.40)
Vi Sy
where V[, is assumed to be small enough so that the curvature inside V7, does not need to

be taken into account. Then we say that the density distribution is spatially homogeneous

on average at the level ¢, on scales larger than L., if and only if, 3 € « 1 and L. such that:
L, (71) — PrL.(72)| < €pr, (1) (2.41)

for all 71, 5 and all Ly, Ly > L.. In principle, this criterion is falsifiable by observations.
As an example, they considered galaxies randomly distributed in space according to Pois-
son distribution, and showed that without further assumptions such a distribution is not
in agreement with (2.41) and so cannot be described by a FLRW model in this sense. In
the observed Universe one probably has L, =~ 200 Mpc and ¢ < 0.01.

2.4 Smoothing of cosmological spacetimes

The task, we are interested in, can be rephrased as setting up a program for approxi-

mating the evolution of cosmological space-time solutions of Einstein’s equations via the

8This criterion applies to any scalar.
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development of a procedure for “smoothing” sets of initial data for such space-times.

Looked at this way, smoothing is equivalent to a physical approximation scheme for
particular space-times. The idea is the following. Given an initial data set: the spatial
metric g, the extrinsic curvature K, and matter fields 1, one would like to build a new
smooth (i.e. spatially homogeneous) initial data set (7, K, %), so that the new initial data
is more easily evolved than the old one, and at the same time the evolution of new initial
data models certain aspects of the evolution of the original initial data.

On the other hand, one can think of smoothing as a mathematical method for making
general statements about a collection of space-times. The smoothing procedure could then
be used as a map from general space-times to the spatially homogeneous ones, in order to
study the space of space-times, in particular, the collection of space-times whose large scale

dynamics are closely represented by the dynamics of spatially homogeneous space-times

[141].

The flows of the metric are an important part of the smoothing we have in mind,
namely, the Ricci-Hamilton flow (facts concerning it are given in Appendix B) and the

Renormalization Group flow (see section 3.6).

General mathematical preliminaries can be found in Appendix A.

2.4.1 Smoothing-out spatially closed cosmologies

In [51] (see also [53]) a specific smoothing-out procedure was put forward, deforming a
family of locally inhomogeneous and anisotropic spatially closed space-times into closed
FLRW universes. These space-times are associated with gravitational configurations which
can be considered near to the standard ones generating closed FLRW cosmological models.
This class is large, it contains solutions to the Einstein field equations that are not just
perturbations of closed FLRW space-times.

The smoothing-out procedure is employed in the full theory, and a precise content
to the averaging hypothesis, by providing explicitly the correction terms to the physical

sources induced upon smoothing-out the space-time geometry, can thus be given.

The idea is the following. We pick up an appropriate initial data set, on a closed
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spacelike hypersurface, which upon the Cauchy evolution is going to be the space-time to
be averaged out. Such data set is then smoothly deformed into a FLRW initial data set, by
the action of parabolic-type operators. This deformation is constructed in such a way as to
make the deformed data satisfy the four constraints associated with Einstein’s equations.
It follows then that the flow of deformed initial data generates a one parameter family of
solutions to the field equations, which interpolates between the original space-time and
a closed FLRW space-time, considered to be the smoothed-out counterpart of the given

universe model.

To make the above precise, let ((4)V g MxI, (4)g) be the space-time manifold, the
Cauchy evolution of a regular initial data set (M, g, K ), where ¢ is a diffeomorphism
mapping )V to M x I (I C R), with M being the (closed) 3-manifold carrier of the
initial data (i.e., a space-like 3-hypersurface in the space-time manifold) and g, K € S52M,
representing in the final space-time the induced riemannian 3-metric on M, and the second
fundamental form of the embedding M — ((V, ()g), respectively. We assume that M is
topologically a 3-sphere S and that the class of initial data supported by M is such that
Ric(g) is a positive definite bilinear form for them (Ric(g) is the Ricci tensor associated
with g).

Due to the results of R. Hamilton, (see Appendix B), (v, Mg) resulting from the
time evolution of data from the above class, can be taken as modeling a locally anisotropic
and inhomogeneous universe not too far from a closed FLRW space-time. A smoothing-out
mapping associates with the given initial data set a one parameter family (M, g(8), K(B))
with 0 < 8 < o0, g(0) = g,K(0) = K, approximating, closer and closer, the standard
initial data set for a closed FLRW model and reaching it uniformly as 8 — oo (f is the
parameter labelling the family (flow) of 3—metrics).

According to Hamilton’s theorem, we can deformn the metric g into the constant-
curvature metric g on S2 by the flow of metrics g(8), 0 < 8 < oo, solution to the non-linear,

weakly parabolic, initial value problem

0

359(6) = 2 < R(8) >5 9as(8) — 2Ras(B), (2.42)

with g45(0) = gab, (a,b = 1,2,3), where < R(B) >p is the average scalar curvature
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over (M, g(B)), and Rq(f), R(B) are the components of the Ricci tensor and the scalar
curvature associated with g(), respectively. We recall here that the family (2.42) has the
following properties (for more details see Appendix B):

1. the volume of M(f) is independent of 3;
2. any symmetries of gqp(8,) are inherited by all g.5(8) with 8 > 8., and
3. the limiting smoothed metric §op = imgs oo gap(B) has positive constant curvature.

Now, gap is the inhomogeneous metric to be smoothed-out. Equation (2.42) (with the
initial condition) defines a smooth family of deformations of the initial manifold, deforming

it into a 3—space of constant curvature and of the same volume as the initial manifold.

In order to smooth-out the whole data set, we need to average out the second funda-
mental form K, as well. Obviously, we have for the smoothed metric §,, = limg_—.co gab(8)
(presuming that the flow converges), where g,5(8) satisfies the Ricci flow equation (2.42).
Given (g, K), let us then define a nearby flow g,p(f; €), with initial condition

Gab(B = 05€) = gap(B = 0) + €K ap(B = 0). (2.43)

These flows evolve with 8 yielding as “connecting vector” the bilinear form

Ko(8) = lim = (3us(55€) — 9a(6)), (2.4
so we can define
Kap = Bu__nolo Ka(8)- (2.45)

The f evolution of K () is found by linearizing (2.42). Formally we define it as
9
ap

2
< Ral)K(6) >) + 2 < R(B) >5 Kar(8) ~ DKat(8) — Lrgas(8),  (2.6)

Ka(B) = 29a(B)(5 < RIOKE(B) >5 =5 < B(B) >5< KE(B) >p -

with Kgp(0) = Kqap, and where Ag denotes the DeRham-Lichnerowicz Laplacian associated
with g(8), AgKap(8) = —V°V Kap+ Rac K§+ Rpc KS— RS, K5, and Ly is the Lie derivative
along the vector field Y.



2.4. Smoothing of cosmological spacetimes 55

It can be shown that the flow K (), solution of (2.46), is such that ;3,%(< K3(B) >p) =
0, i.e., the average over (M, g(8)) of the trace of K is constant during the deformation.

Also, as (2.46) is the formal linearization of (2.42), we have limg o Kap(8) = 3 <
K8 >, . < --->, stands for the space average of the original physical quantity. Thus,
the flow K () deforms the given K by eliminating its shear: Kgp — %K ©gab, and replacing
the original (position-dependent) rate of volume expansion Kg with its average value.

For each 3 the space average of matter density < p(f) >g can be defined analogously

as the average of scalar curvature, namely,

<pl®)>5= (V) [ BV (0) (247)

so then p = limg_,o. < p(B) >p is the matter density in the limiting FLRW model.

The smoothing flow of regular initial data sets has to be such that for each value of

the four constraints of the Einstein equations:

R(B) — Kan(B)K™(8) + (K2(B))" = 2p(B), (2.48)
VoK () - VPKL(B) = I°(B), (2.49)

have to be satisfied; where p(8), J(8) are the mass and momentum density, respectively
(of the external sources as described by a system of observers instantaneously at rest on
M), referred to the 8 dependent measure associated with g(8).

For 8 = 0, (2.48) and (2.49) hold true, since p(8 = 0) = p and J(B = 0) = J are
the physical densities of sources of a given gravitational configuration (M, g, K). The
averaging flows p(83) and J(B3) cannot be defined independently once g and K are given
and deformed, according to (2.42) and (2.46), in order for the constraints (2.48) and
(2.49) to remain valid. In other words, to properly average the sources one has to take

into account the backreaction of the geometry, determined by the constraints.

The constraints are thus interpreted as actually defining p(8) and J(f3). Indeed, then
7 = limg_,, < p(B) >5 and limg_,eo < J(B) >p=J = 0 (from (2.48) and (2.49) and the
properties of the Ricci-Hamilton flow). One can show explicitly that
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- 1 1 c a 1 c_a 1=
p=[<p>, t5 < (Kap — chgab)(K b_ -éch 5>, +-§R(77 + )]/ (1+ %), (2.50)

where 0 = (< (K2)2 >, — < (K2) >2)/ < K¢ >,, 1= (R— < R >,)/R, i.e., o is the
standard deviation describing the fluctuations of the original (position dependent) value
of K2 with respect to its average (conserved) value < K2 >,; 7, 0 < 7 < 1, denotes
the relative function of the physical scalar curvature with respect to the averaged one
R = limg_.o, < R(B) >5. (Kap — %chgab is the traceless part of K,; on the initial
manifold M(0)).

Now, we can build an effective stress tensor modeling the dynamical effects of deviations
from a spatially homogeneous geometry, (also those which are too big to be handled by
perturbation techniques), that have been smoothed-out.

If (M, g;) defines a normal geodesic slicing of (()V, *)g) (for sufficiently small ¢) the

stress tensor enters only into the evolution part of Einstein’s equations,

d 1 1
b‘zKub = Rab + KgKab - QKGCKE - (Tab - iTcCgab) - —2'pgab- (2-51)

The smoothing flow T'(F) of the spatial stress tensor is defined by requiring that for each
t for which the evolution of the data (g(8),K(B)) is defined, the flows (g.(3), K:(5))
(resulting from the evolution equations) are Ricci-Hamilton flows, with initial conditions

9:(0) = g¢, K;(0) = K, respectively.

The physical meaning of the presented results enables us to state precisely what
is meant by the requirement that the original physical model universe and its FLRW
smoothed-out ideal should behave as close as possible under their own gravitation. Namely,
for B — oo, the volume V(53,7,) = V(M,g:); this shows how the dynamics of the
closed FLRW muodel is related to the dynamics of the original space-time. The fact that
V(M,g) = V(M, g(B)) implies that 2(< K2 >,) = 2(< K2(B) >p) along the flow
(9:(8), Ki(B))-
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The smoothed-out pressure p = limg_,oc < p(B) > (in the final FLRW model on the
surface of homogeneity ¢t = 0, §, (as well as p, if the equation of state is known) can be
determined by the evolution equation) is shown to be (taking into account (2.51))

1
3
(< p 507, (252)

D = g T; >0+ < (Kab — chCgab)(Kab _ K(fg“b) >, _502 < Kg >g

with p given by (2.50). We see from (2.50) and (2.52) that 7 > 0 and |p| < p, i.e. the
dominant energy condition is satisfied.

In case when o =~ 0 (homogeneous expansion) and 7 < 1 (fluctuations of the physical
curvature with respect to FLRW background curvature small, on average) the closed
FLRW universe is the proper model, only if we add to the physical sources, < p >, and
< T2 >,, the term: < (Kap— %K(fgab)(K“b - %Kgg“b) >,, taking this way into account the
contribution of cosmological gravitational radiation. This term can influence the dynamics
of the universe, and there is no evidence by now that the relative magnitude of this term

with respect to < p >, is € 1.

Let us note that the smoothed stress tensor is defined by requiring that the smoothing
commutes with the Finstein evolution, i.e., at each stage of this smoothing we, in fact,
appeal to the standard form of Einstein’s equations, though the effect of smoothing on
those equations was being investigated. Therefore in this scheme one cannot say anything
about what the effect of smoothing is on the form of the equations.

Let us also stress that this smoothing program has in general a few unresolved issues,
like e.g. dependence on the spacelike slice chosen, making an identification between hy-
persurfaces of the original space-time and those of the smoothed space-time®. Secondly,
the issue is how to define the smoothed stress tensor T if one uses a more complicated
form for T, than a perfect fluid.

One possible and interesting application of this averaging procedure could be to ex-
amine the conjecture that all cosmological models with §3 spatial topology have a time of

maximum expansion.

®This issue appears in a different light in view of the approach in section 3.6.
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Hemmerich [134] criticized this approach by raising, first of all, the slice dependence
problem, namely, that the space-time metric in the limit # — oo is non-unique as it
depends not only on g,5(c0), but also on the foliation, i.e. the lapse and shift functions in
the ADM formalism. In particular, the limiting 4—metric may not be FLRW one at all.
It was shown in [134] that the lapse and shift can be limited, so that g,(f{,)(oo) is indeed the
FLRW geometry.

The second objection was that the equations of Carfora-Marzuoli approach, among
them (2.50), may be obtained directly from ADM formalism without employing the Ricci-
Hamilton flow (2.42). To answer this, we can point out that equation (2.42) provides
not only a relation between the average values of scalars on the initial manifold M(0)
and the smoothed-out one M(c0), but also a mapping of points of M(0) into points of
M(o0) which is lacking in other approaches. Moreover, with (2.42) one can consider any
intermediate scale smoothing, from § = 0 to 8 = 8, < o0, in addition to global smoothing
from 8 = 0 to co.

The only real limitation of this scheme seems to be the assumption that all M(3) are
closed with their Ricci tensors positive definite.

2.5 Specific exact solutions

An alternative in a situation when there are spherically symmetric inhomogeneities in the
lumpy universe model is to use some exact solutions, e.g. in the form of Swiss Cheese
models. These are made by combining matched sections of the FLRW expanding universe
with spherically symmetric (Schwarzschild) vacuum or Lemaitre-Bondi-Tolman {167, 33,
248] dust solutions!?, to yield an exact inhomogeneous universe model representing growth
of inhomogeneities with a spatially homogeneous and isotropic background.

This kind of treatment, in a certain sense, achieves the goals of averaging without

averaging per se. It is in fact a conceptually different approach to the fitting problem.

The first model is due to Bonnor [34]. He examined the Einstein-Strauss vacuole as

representing a bound cluster of galaxies embedded in a standard pressure free cosmological

'9This solution, though first proposed by Lemaitre, is often called the Tolman-Bondi or just Tolman
model.
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model, using the Darmois junction conditions. The key point of his analysis is that the
average energy density of the whole cluster is not the same as the density of the smoothed-
out model. Therefore the field equations, with the energy density being the average density
over a cluster of galaxies, are not satisfied.

The case when the lumpy universe model is an exact Tolman spherically symmetric
dust universe was considered by Hellaby [132]. The approach taken was that of volume
matching. The idea is that the behaviour of a certain region in space can be found to yield
a particular FLRW model. One can then compare the density and equation of state of the
resulting FLRW model with the matter content of the original volume. The results do not
need to correspond to the mean density and pressure of the region derived by a simple
averaging procedure. And if they do not, then we cannot count on this averaging of data
to provide the parameters of a suitable homogeneous equivalent of our universe. Hellaby
showed that there is a family of parabolic Tolman models in which the volume-averaged
behaviour of the energy density and pressure is identical to that of a & = 0 pressure free
FLRW universe (however local matching over infinitesimal volumes does not satisfy this
condition). But in hyperbolic and elliptic cases, the effective (macroscopic) equation of
state is not the same as the average of the Tolman values, e.g. although the pressure is
zero in the inhomogeneous Tolman models the effective pressure in the FLRW (averaged)

model is non-zero.

Recently, Moffat and Tatarski [193] studied a local void embedded in the globally
FLRW model and discussed observational properties of such a model. The inhomogeneity
was described using the Lemaitre-Bondi-Tolman solution (the same as in [132]) with the
spherically symmetric matter distribution taken to be dust, based on the faint galaxies
number counts. The model has a property of being very similar to the FLRW one at
the beginning of the expansion but becomes observationally different at later times. The
authors studied its effects on the cosmological time scale, the measurement of the Hubble
constant and the redshift-luminosity distance relation, which were shown to be fully com-
patible with cosmological observations. However, if we happened to live in such a void
and insisted on interpreting cosmological observations through the FLRW model, then e.g.

the Hubble constant measurement could give results depending on the separation of the
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source and the observer, and quasars could be younger than we think and also less distant

(consequently less energetic).

Worth mentioning here, for its own sake, is Lindquist and Wheeler approach [174]
where the idea of Schwarzschild—cell method was elaborated. (The method is similar in
spirit to that of Wigner and Seitz in the solid state problem.) A number of mass concen-
trations is considered, such that the zone of influence of each can be approximated by a
sphere. Inside each cell the actual gravitational potential is replaced by the Schwarzschild
expression. Its important feature is that its normal derivative at the boundary of each
lattice cell is non-zero and, moreover, does not go to zero at finite distance. Due to this
fact, the mass concentrations on either side of the cell boundary accelerate towards that
boundary, at such a rate as to nullify the discontinuity in matching of the normal deriva-
tive of the gravitational potentials that would otherwise occur. This feature expresses the
equation of motion of the mass at the center of a cell as a dynamic condition on the bound-
ary of the cell. When applied to the problem of the expanding universe, this idea enables
one to derive the whole of the dynamics of the expansion and subsequent contraction from

the elementary static Schwarzschild solution.

2.6 The Green Function approach

This is a perturbative approach which does not rely on any averaging procedure.

With the aim of studying the effects of a given matter distribution on the metric, and
hence on the radiation, Jacobs and colleagues put forward a new scheme of determining
the realistic metric of our universe {144, 143].

The idea is of solving the field equations through the use of scalar harmonics as spatial
basis functions, while avoiding the use of any averaging procedure for the metric pertur-
bations. Small metric perturbations are assumed (again, this does not restrict the size
of perturbations to the matter variables), and the global expansion rate is that of FLRW
model. Also assumed is the matter distribution and its evolution (known from observa-
tions and/or theory), but the results do not assume a particular model for the formation

of structure in the matter distribution, and are valid everywhere in our universe outside
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of strong field regions.

In the presence of inhomogeneities we have
ds? = ?(){1,u(&) + by (n, 8)lderda”, (2.53)

where h,, describes the metric perturbations. It is assumed that h,, = O(€?) < 1w =
O(1) (background terms are of order 1), then Agh,, ~ O(e?/k).}! Also, ¢ < 1 and
€2 &« k. The latter means that the matter inhomogeneities move non-relativistically and

the effective stress-energy of metric perturbations is small.

Since the background is homogeneous and isotropic one can perform a separation of
space and time dependencies in the field equations, enabling perturbations to be written,

not as functions of h,,, but as harmonic decomposition. The spatial dependence of per-

Ly
turbations is then expanded as eigenfunctions (normal modes) of the covariant Laplacian
3)¥?2 on the 3-dimensional static background ¥ij- The field equations are reduced this
way to the equations for the time dependent amplitudes of the modes.

Only scalar harmonics (scalar modes Q) are considered, in terms of solutions of
BIv?Q(z,7) = -4*Q(5, ) (2.54)

and obviously, @ ~ O(1) and V;Q = O(g) ~ O(x™1).

The metric perturbations (heo, hoi, hij) are then expanded in terms of scalar harmonics
@ [18]. The longitudinal gauge is assumed and the Einstein tensor is written, including
terms linear in h,, and its derivatives. Non-linear terms of O(e*), O(e*/k), O(e*/x?),
or smaller are neglected. With this, we retain non-linear interactions of energy density
of perturbations and their backreaction on the FLRW component. The stress-energy
tensor is constructed in the usual way, taking perfect fluid as the background model, and
perturbations (scalar) to the energy density p, pressure p, and velocity v;. The components

of T, are then written to the first order in the velocity.

By exploiting the harmonic decomposition of the field equations one can solve them

by taking their spatial projections against different scalar modes. The important result is

' The parameters € and & are the same as already described in Futamase’s approach.
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then

ds? = a®[—(1 + 24)dn? + (1 — 2¢)v;;dz' dz), (2.55)

where ¢(1, ) = —3hoo = — [ du(QQ(Z, D H(n, §)+0(€*), and H ~ O(€?) is the amplitude
(dp is the measure associated with the eigenvalue spectrum). ¢(z#) is the effective quasi-
Newtonian potential of the inhomogeneities, characterizing metric perturbations.

In terms of the matter variables the equation for ¢ can be obtained from the following

equation for H:

, :
B(E—)H' + (¢ + 8ma’p — 6k)H = 4dma’pA, (2.56)
a
where A(7n,q) is a suitable density fluctuation variable describing perturbations to the
energy density p, and a prior: |A| > 1; as usual / = a‘in.

To this level of approximation the Friedmann equation holds and there are two addi-
tional equations relating the metric perturbations to the pressure and velocity perturba-

tions.

The estimation of the orders of magnitude of matter variables perturbations allows
us to conclude that in any allowed regime (linear ¢/x < 1, non-linear ¢/k > 1) the
pressure and velocity perturbations are much weaker than the density fluctuations. In
other words, the metric perturbation H(n,q) are determined primarily by A(n,q), i.e.,
hydrodynamically the density fluctuations can be treated as the source.

To any order of magnitude arguments we have to consider effects on the scale factor

a, since it makes an implicit contribution. On physical grounds:
a(n) = arrriwv(l + O(< 64/1‘\32 >, (2.57)

and clearly, O(< €!/k? >) « €!'/k? < 1, so using the background scale factor does not

alter the arguments about the matter variables perturbations.

Solving equation (2.56) for H(7, ) we can obtain the pseudo-Newtonian potential:

47

CL3
s.0) = [ @@ 5NN - T [’ [av(@)

G(u,n, % §) A, §) + O(e"), (2.58)



2.6. The Green Function approach 63

where dV is a coordinate volume element, and G(u,7, &, ¥) is a Green function for metric
perturbations due to the scalar demsity fluctuations in a FLRW background. Formula
(2.58) offers a relativistically correct way of calculating the metric perturbations, tak-
ing into account the cosmological expansion, non-linear density evolution and also, e.g.
deviations from the thin-lens approximation.
In case of flat spatial sections (k = 0) it can be proved that

a(u) 1 exp[- |7 — #]?
a(n) [4xC (u, n)]2 4C(u,n)

Gr=o(u,n,&,%) = 1. (2.59)
The latter gives an interesting analogue with the diffusion [143].

The Green function expression for the potential can be reduced to a Newtonian form

ONewt = — de(gS;(%')z Iy“éfl) ~—f a3dV;|‘;7‘_X—I=[ under appropriate conditions. But more

interesting are situations where the time evolution of density fluctuations makes a signifi-

cant contribution to the metric, e.g. post-Newtonian ones.



3 The Renormalization Group ap-
proach in Gravitation

3.1 Introduction

Many phenomena in Nature are so complicated that they do not succumb to reductionist
approaches. For systems with many (infinitely many) degrees of freedom new types of
collective behaviour emerge and their large-scale behaviour cannot be predicted from their
microscopic origin. The phenomena we have in mind are complex precisely because they

contain events and information over a wide range of length- and time-scales [256].

Luckily, physics is accustomed to ignoring inconvenient details and making use of
large simplifications to get to the heart of issues. For example, in the standard models
of magnetism many details of multi-spin and long range interactions, magneto-elastic
coupling are omitted, as a rule, and yet the theory captures much of the essence of magnetic
phenomena. Usually, a successful theory enables us to isolate some limited range of length-
scales, or select a not too big set of variables, to render the problem tractable and at the
same time preserve its essence. In many circumstances, fortunately, it is not necessary to
resolve the details associated with each scale since generally phenomena at each scale can
be treated independently. For example, in hydrodynamics there is no need to specify the
motion of each water molecule in order to describe waves as a disturbance of a continuous
fluid. However, in the complex phenomena, where each length-scale’s contribution is of
equal importance, one would need to take into account the entire spectrum of length scales,
dealing with fluctuations of practically any wavelengths and consequently many coupled
degrees of freedom. Such problems are thus generally intractable. Examples of t}}is class

of phenomena are critical phenomena, turbulent flow, the internal structure of elementary

64
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particles and confinement in QCD, to name a few.

There exist however a general class of theories (and methods) known as the Renormal-
ization Group (RG) approach, which enabled to make progress in understanding the dy-
namics of complex phenomena. The vahie and significance of RG ideas, that have pervaded
much of today’s Statistical Mechanics and Quantum Field Theory, should not be underes-
timated since not only is the RG approach a method (unlike, e.g. High-Temperature Series
Expansion method to calculate the values of critical exponents), but also a theory with
essential physical ideas behind which can explain phenomena er scaling and universality,
observed in various facets in Nature. From an even more open point of view it is also the
RG philosophy, interpreted broadly to include various kinds of “multi-length-scale” and

“coarse-graining” arguments.

What is the RG then? Usually, when we speak of a group we are thinking of symmetry
operations, i.e. transformations that leave the physics invariant. In particular, this means
that the RG procedure (whatever it means at the moment) can be iterated. Actually,
the RG should be properly called a semi-group, because the inverse of the transformation
is not defined. The RG approach can be very loosely described as follows: our aim is
to study some properties of a certain function H and we perform a change of variables
transforming the initial problem into an identical one in terms of a new function, now
H', such that H' = RH. The transformation R has to be chosen in such a way that
after a few iterations (or at least in the limit n — oo) H(M = R("H becomes tractable
by some other techniques. In the successive changes of coordinates there is some loss
of information, due to the fact that the changes of coordinates will not be one to one
or everywhere defined - as a rule, since otherwise the problem could not really become

simpler in the new coordinates.

Generally, the subject of the RG is then the modification of the fundamental laws
of physics with the change of the observational length scale, and one may probe the
dependence of the effective (RG-improved) couplings on the characteristic length through
the RG flow equation(s). The otherwise complicated flow pattern becomes particularly
simple in the vicinity of the fixed points where the linearized RG flow and scaling holds.
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3.2 A short history of RG

The RG equations were first introduced into particle physics. It was observed that the
conformal invariance, a space-time symmetry of the classical electro-magnetic action!, can
be violated by quantum effects in the energy regime E > 0.5MeV, where the electron
mass can be ignored. In Gell-Mann and Low’s treatment of the short distance behaviour
of QED, the theory is not scale invariant when the electric charge was renormalized at
very large distances. In the seminal papers of [241] and [112], it was shown that quantum
effects induce a scale dependence in the electro-magnetic charge and that the derivative
of the electro-magnetic coupling with respect to the scale is an analytic function of the
coupling itself, the so-called 8 function.

Further, there are physical amplitudes in QFT, which depend on the couplings and
also on points in space, labeled by the coordinates z; (e.g. Cartesian in flat space). In
[48] it was shown that the variation in the couplings under a change of scale (at which
they are defined) can be always compensated for by a rescaling of the coordinates z;,
so that the vacuum amplitudes remain invariant. This results in the RG equations -
an inhomogeneous partial differential equation for the amplitudes, further extended in
(2563, 135] to a homogeneous equation. In QFT the RG is an ezact continuous symmetry

group (of a solution formulated in its natural variables).

The issue of course is that QED or any renormalizable field theory is plagued by “in-
finities” which can be renormalized. This requires an introduction of “bare” couplings
gbare(g, €), which are analytic functions of the renormalized couplings, g;, and a regular-
ization parameter or parameters, ¢, e.g. for a cut-off, A, e = k/A, where & is a renormal-
ization point and for dimensional regularization € = 4 — d, where d is the dimension of
space or space-time. One can prove then that to any given order in perturbation theory
it is possible to choose the couplings in a cut-off dependent way so as to make physics at
momenta much smaller than the cut-off independent of it. As eventually the cut-off is sent
to infinity, the above means physics at any finite momentum. The change in the cut-off
accompanied by a suitable change in the couplings is an invariance of the theory.

These transformations form a group, with the law that changing the cut-off by a factor

! This symmetry is only angles preserving, not lengths.
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s, and then by sg, should be equivalent to a change by a factor s;s,. Writing
_ -t
s=e (3.1)

i.e., A(t) = Aye™* (A, is some fixed number), the above composition rule just means that

when two transformations are implemented in a row, the parameters ¢t add. The S-function

is defined as

dg
= = 3.2
where g stands for the coupling(s).? In the case of Yang-Mills theory we have
dg _ .3 .
il + higher orders, ¢ > 0. (3.3)

Integrating this from ¢ = 0 to ¢ = ¢ (i.e. from A, to A,e™") we find

2
2 g°(0)
=l 3.4
g°(®) 1—2g%(0)ct (3-4)
What this means is that as we send the cut-off to infinity (f — —oc0) we have to reduce

the coupling to zero logarithmically g2(t) ~ 1/|¢|.

In statistical physics the RG equation was raised to central importance through the
work of Kadanoff [147] and Wilson [257] who transferred RG philosophy from the relativis-
tic quantum field to the analysis of phase transition phenomena in spin lattice systems.
There, one contemplates changing the cut-off (and the couplings) even in a problem where
nature provides a natural cut-off, such as the inverse lattice spacing, A ~ 1/a, and there
are no UV infinities. In this view-point, the cut-off is not to be viewed as an artifact to
be sent to infinity, but as the dividing line between the modes we are interested in and
the ones we are not interested in. We may change the cut-off and the couplings without
affecting the slow mode physics (for a clear exposition, see e.g. the introduction to [228]).

This rationale lies behind Kadanoff’s spin blocking (or decimation), with simultaneous
finite renormalization of a coupling constant. Blocking is performed by averaging over the
constituents in such a way that the number of degrees of freedom diminishes, simplifying

the system and preserving, at the same time, its long-range properties. This in fact refers

2There are different conventions - in condensed matter physics increasing ¢ decreases A, opposite to the
field theory convention.
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to the creation of another theoretical model for the same physical phenomena thus RG
is here an approximate, discrete semt group. To get, after averaging, a system formally
similar to the initial one, one neglects some terms, in the new effective Hamiltonian, that
are unimportant for infra-red properties. The new model at the end formally differs by
some elementary scale and the coupling constant value. The blocking operation can be

repeated.

The RG method turned out to be powerful in establishing connections between physics
at different scale levels, understanding universality of various types of critical behaviour
and finding a stable infra-red fixed point. In QFT this same approach was used to discover
a stable ultra-violet fixed point by suppression of irrelevant low energy degrees of freedom.
Further, the RG algorithms were assimilated in the field of polymers, transfer phenomena
and percolation. The physics of renormalization transformation in turbulence is related

to a change of ultra-violet cut-off in the wave number variable.

More recently the idea inspired by O’Connor and Stephens [201] that the RG equations,
from a geometric point of view, should be viewed in terms of a coordinate transformation
on the space of couplings, was further pursued by Dolan [71] who showed that the RG
equations for vacuum amplitudes can be interpreted as a Lie derivative on the space of

couplings.

3.3 Real-space RG and critical phenomena

Critical points (second-order phase transitions) occur in liquid-gas transitions, ferromag-
netic transitions, binary alloys transitions, etc. There are close analogies relating all these
critical points, which is one of the fascinations of the subject.

The critical temperature (Curie temperature) T, of a ferromagnet marks the onset of
spontaneous magnetization in the absence of an external field. Above the critical temper-
ature T, it is zero (the ferromagnet is in a paramagnetic state), below (near) T, varies
as (T. — T)P. The exponent B is an example of a critical exponent. Theory of critical
phenomena should be able to predict the values of the exponents. Other critical exponents

characterize other power laws near the critical point. The critical point of the ferromagnet
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is at zero applied magnetic field H and at T = T,. The derivative of the magnetization
M diverge at T.. The phase transition has no associated latent heat and can be described

as a critical phase transition.

The idea of possible application of RG method in the phase transition context in
Statistical Mechanics is connected with the homogeneity of thermodynamic functions near
the critical temperature, which was first described in [254], and with the behaviour of
correlations functions in the critical region (T' = T.), studied by Kadanoff [147]. The
important idea is that only long wave length fluctuations in the order parameter, are
responsible for the critical singularities. Near to a critical point the correlation length
diverges and because the degrees of freedom are correlated over macroscopic distances,
the system looks very similar under a transformation that divides the lattice into smaller
blocks and replaces the degrees of freedom inside each of them by a block-average. In
fact, Kadanoff has brilliantly hypothesized that if the block lattice is considered, then
at the critical point the block-lattice Hamiltonian may be reduced to the initial lattice
Hamiltonian by scaling transformations. Intuitively, the effects of this kind of averaging
are to cut down the correlation length by the scale factor b, where b is the linear dimension
of the block and the interactions between the new variables will be different. If the blocks
are small then we expect that the interactions between the block variables (spins for a
ferromagnet) will be local if the interactions we started with were local. Notice, that the
correlation length decreases (by a factor of b) since it is measured in lattice units, which
change in our transformation from being the distance between the original lattice points
to that between blocks now.

The RG theory of critical phenomena owes its great success to the remarkable works of
Wilson. His formulation provided a systematic way of implementing the integration over
a finite fraction of degrees of freedom in a system near its critical point, and quantifying
the effect on the remaining variables, providing in this way all the mathematical infra-
structure explaining scaling and universality. More precisely, the effect of the long wave
length fluctuations can be calculated by using self-similarity properties of a critical system
under scale transformations, where scaling amounts to the integration over the short wave

length components and determining the effect on the long wave components. When this
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effect is vanishing the scale transformation has a fixed point, which in fact determines
the critical singularities that are universal, i.e. insensitive to the details of the molecular
interaction. In [259, 258] it was shown how to embody at the microscopic level, Kadanoff’s
hypothesis of universality into precise differential equations and also how to obtain the
explicit block lattice Hamiltonians from initial Ginzburg-Landau Wilson Hamiltonian. He
has also found the recursion relations and utilized the scaling transformation and the fixed

point method to solve them.

In the real space approach the self-similarity is realized for a microscopic Hamiltonian,
and scaling now means that the variables of the system are combined to new similar
variables. For lattice systems (Ising model) this seems possible. Universality emerges
through the properties of the (self similar or) fixed point Hamiltonian. It is attractive in
the irrelevant (or non-singular) directions and a critical fixed point dictates the singular
properties for a whole surface of critical Hamiltonians to be the same.

Generally, some problems appear with the above procedure in the applications, but first
let us remark that according to what was said above, RG transformation is a mapping
from Hamiltonians or actions defined in a certain phase space, to actions in the same
space. More generally, RG map is defined as a rule (deterministic or stochastic) for
generating a configuration w’ of “block spins”, given a configuration w of “original spins”.
In mathematical language this is given by a probability kernel T'(w — w'), with which
one can define a probability distribution p'(w’) of block spins from any given probability
distribution p(w) of original spins [94]

W) = (BT)() = 3 p(@)T(w - '), (3.5)

RG map is therefore defined as a map from measures to measures, in fact in applications
we assume it to be defined from Hamiltonians to Hamiltonians®.

If we represent the initial action as a point in a coupling constant space, it will flow
under RG transformation to another point in the same space, therefore a possibility of a
fized point of the group action exists, that is to say, the action function which reproduces

itself after RG transformation. Geometrically speaking the fixed point does not flow under

SWe will not enter into a discussion of any problems which this assumption can engender; interested
reader can consult [94].



3.3. Real-space RG and critical phenomena 71

RG transformation. The sequence of theories specified by the couplings generated under
successive application of RG is called the RG flow. The critical behaviour of the model
can be gotten from the RG flows [101].

Now, the problems are also, (1) to give the rules relating the new variables to the
old ones, and (2) to work out the properties of the relation between the Hamiltonians
for the new and old variables. Technically, one has problems with determination of the
properties of renormalization transformation. It is hoped that approximations, which fail
at the critical point for the partition function, may be carried out successfully for a renor-
malization transformation. This crucially depends on the choice of the renormalization

transformation. In fact, many aspects of the renormalization procedure are obscure.

In order to highlight the concepts involved, it is useful to consider a simple example,

namely the Ising model. The Hamiltonian can be generally written as
H(s) =D Kasa, (3.6)

where s, stands for a spin function of type a, e.g.

Sh = Z Sty

i
S = Z 5i 55,
(i7)
for the order parameter and for the energy, respectively, where s; is the spin of site ¢ (and
(¢7) nearest neighbour (NN) sites). K, are the coupling constants, namely, Kj is the
magnetic field, K, the NN coupling for the standard Ising model.
The RG transformation is defined as

') = ZP(SI, s)eH(sl) , (3.7)
{s}
where P(s', s) is the weight function satisfying
P(s',s) >0, Y P(s,s)=1. (3.8)
{s'}

Equation (3.7) is the defining relation for the new Hamiltonian and H'(s’) can be written
again in the form (3.6), defining new coupling constants K, such that the relation

K, = K (Kp) (3.9)
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is equivalent with the formal definition (3.7). Many transformations are possible, in fact
(3.8) guarantees only that the K/, are real and the partition functions of H and H' are
the same (of the same functional form).

The derivative matrix
0K,

o (3.10)

Top = 3%,

yields directly the critical exponents.

In the case of an exactly solvable 1d Ising model with NN interactions, the averaging
process is easily defined to consist of exact integration over every other spin in the chain.
This procedure preserves the partition function and the interaction between the thinned-
out degrees of freedom remains NN, and moreover is an analytic function of the original NN
interactions. The integration procedure can be iterated therefore, and new NN couplings
K! obtained in terms of the original coupling K, by the same function as K’/ = R(K).

In the case of 2d Ising model with NN interactions one can integrate over spins, say, on
every even site but this reduction of degrees of freedom induces other types of interactions
between the remaining spins, in addition to renormalizing the original NN coupling. The
new couplings are analytical functions of the original NN coupling but now, the integration
cannot be iterated to yield closed form solutions since at each step longer and longer range
interactions get generated.

Now, in the Wilson’s formulation of the RG one considers from the outset, a general
class of theories defined by the infinite set { K.} of couplings corresponding to interactions
of all possible ranges and Hamiltonian’s complexity. An appropriate scale transformation
Rp, which integrates over a fraction of the original degrees of freedom, maps the theory
into another one with the renormalized couplings: K = Ry(K,). For most models
one cannot find out exactly this relationship and must resort to approximate numerical
methods. When performing the real-space RG procedure one stipulates that the effective
Hamiltonian H("+1) must take the same functional form as H{"), so that the model is
exactly the same at every stage, except for a change in the parameters in the effective

Hamiltonian (this condition is in almost all cases impossible to meet exactly).

A useful RG transformation has to have a number of properties; we will mention just

one, the correlation length decreases under Ry : £ — ¢ = £/b. It is preserved under RG
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transformation if the starting Hamiltonian H* has £ = 0 or £ = co. Theories with £ =0
are trivial, e.g. T = 0 or T' = oo limit of most statistical mechanics models.

Critical Hamiltonian H,, the one with the infinite correlation length, when acted on
with Ry produces another critical Hamiltonian, since obviously &' = £/b = co. The set of
critical points define a hypersurface in the infinite dimensional space {K,}. The RG flow
on this surface can: a) meander randomly, b) go to some limit cycle or strange attractor
or, ¢) converge to a fixed point H*. At the fixed points the renormalized couplings are
exactly equal to the original couplings, K/ = K, and the theory reproduces itself al all
length scales. In the case of critical points only the long distance behaviour is reproduced.
In studying the critical phenomena we are interested in RG transformation which has
a critical fixed point H* = Rp(H*) with £ = oo. Each such fixed point has a basin of
attraction, i.e. the set of H. that converge to it under Ry, which defines the universality
class since the long distance behaviour of all theories corresponding to these . is governed
by the same fixed point. What this means is that the critical (static) exponents are rather
insensitive to fhe details of the system and for a continuous phase transition they depend
only on: the dimensionality of the system d, its symmetry, the dimensionality of the order
parameters, whether the forces are of short or long range. The values of critical exponents
can be obtainéd from the eigenvalue equation for the linearized RG transformation in the

vicinity of the fixed point.

We would like now to give an example of the scaling hypothesis in the case of a
ferromagnet, represented by Ising model. It says that close to the critical point the singular

part of the Gibbs free energy® is a generalized homogeneous function of its variables
G(A%t, A%rh) = AG(t, h), (3.11)

where a;,a, are two parameters (scaling powers), A is arbitrary and t = T — T.. The
scaling laws (algebraic equalities between the critical exponents) can also be derived in

RG approach. We do not present the details here.

*We refer to H as the effective Hamiltonian. For the starting system, the temperature dependence of
H is through H = SH, B ~ 1/T, where H is independent of temperature.

%The same property holds for all the other thermodynamic potentials.
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For a magnet near its critical point, there are two quantities which measure the devia-
tions from the critical point: a dimension-less magnetic field A and ¢t = T— T, /T, and near
the critical point h,t < 1. The statement of scaling is that the powers of the temperature
deviation provide a characteristic scale of all physical quantities, e.g. the magnetic field
always appears in the theory in the combination h/t® (where A is the critical index for
the magnetic field). Correspondingly, the magnetization appears in the combination m/ t°.
The content of the scaling hypothesis (which after all should not be called a hypothesis

any more) is then that the magnetization appears in the scaling form
B y* h
m(h,t) =t"m (t_A) (3.12)

If h is of the same order of magnitude as t*, then m* is of order one and m is of order ¢°.
Statements like this can be verified experimentally.

More literature on the subject for interested reader can be found in [17, 72, 31, 123],
see also [228].

Before closing this section we offer some comments on the renormalization of fluids.
The fluid is believed to be in the same universality class as the Ising model. Conceptually
the problem is whether a renormalization on a microscopic level is possible and whether
a lattice structure is necessary for a successful renormalization. In [136] a map was con-
structed by which the fluid properties are associated with a (general) Ising model. In fact,
in some respect the fluid is an advantage, as for the fluid the elimination of an infinites-
imal fraction of the particles is achieved most easily. On the other hand, the continuous
potentials are much more difficult to handle than the discrete interaction constants for a

lattice.

3.4 Critical phenomena in Cosmology

In this chapter we review the recently discovered critical behaviour in the gravitational
collapse situations.
We suspect that these are not the only critical phenomena possible on GR grounds.

We will deal with the other possible scenarios in section 3.6 after we develop the necessary
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tools to tackle the problem. All of them borrow from the previously discussed concepts of
RG.

In our opinion, there are at least a few facts—hints, pointing to the broadly understood
criticality in the universe. Firstly the distribution of cosmic structures in the Universe,
galaxies and clusters of galaxies, exhibits certain scaling properties [36, 146}, namely, the
two-point correlation function of galaxies, clusters and quasars has a power law® behaviour
r~7, with 4 ~ 1.8, up to present day scales of about 300 M pc (but with different correlation
lengths for different cosmic structures). This fact seems to be a clear hallmark of the phase

transition underlying the origin of structure formation.

Scaling behaviour is in general common to systems that obey non-linear dynamical
equations with possibly a stochastic driving term, or more generally, even to chaotic sys-
tems and phenomena (see [214] for the excellent review on chaos in the Einstein equations).
In this respect it is interesting to notice that spirals are a dominant type of pattern in
spatio-temporal chaos in non-equilibrium systems [115]. A general explanation of the
phenomenon is lacking, though many examples’ show that pattern formation in spatially
extended non-linear systems near the critical point, specially when chaos is involved, yields
spirals. Depending on the value of parameters, the spiral pattern dominates or not and
the mechanism by which the pattern conversion occurs seems to be through interaction
with defects in the patterns. Their réle in non-equilibrium patterns is by no means clear;
the defect propagation and interaction can be crucial to understanding non-equilibrium
patterns and chaos. We have mentioned this fact due to the spiral galaxies which abound

in the universe; in our opinion this issue deserves further investigation.

No doubt, the universe is an extremely large dynamical system and moreover it is
quite complex, since it contains events and information over a wide range of length- and

time-scales.

Recently, a new approach has emerged, namely, self-organized criticality (SOC), that

SPower laws are essential for scale invariant phenomena since re-scaling of the variables, e.g. z — az,
does not change the shape of the distribution e.g. N{az) = a™?z~".

"E.g. spirals in thermal convection near the critical point of a fluid, Rayleigh-Bénard convection near
the thermodynamic critical point. In this case whether the spiral pattern dominates or not depends on
the Prandtl number (related to the viscosity).
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might be a mechanism leading to complexity®. It is pertinent to systems with many
interacting degrees of freedom which operate presumably far from equilibrium. For them
small increments in energy input can trigger an arbitrarily large avalanches (activity)
with power law spatial and temporal distribution functions limited only by the size of the

system, whereby they self-organize themselves into a critical state® [16].

3.4.1 Critical phenomena in GR gravitational collapse

Recently, Choptuik [60] (see also [59]) and Abrahams & Evans [1] discovered numerically
new solutions of Einstein equations at the threshold of black hole formation, exhibiting
non-linear dynamical behaviour suggestive of critical phenomena. Before going to the
detailed examples we will describe some of their characteristics in general terms.

Critical phenomena become evident as variations in the properties of space-times across
a parameter space of space-times. Suppose that a single parameter p; describes each space-
time. There is then a correspondence between parameter spaces {Gx} and the space-times
{Sk[pk]}. For each Gi a critical value p} of the parameter pi, separates the parameter space
into a half-space g,j describing space-times that contain a black hole and the other that do
not. The parameters py are associated, as can be seen, with the variations in the strength
of the gravitational self-interaction. The critical behaviour occurs in space-times that are
just on the “edge” of forming a black hole, i.e. when |p;—pj| is small. In particular, in gy,
the black hole mass was found to fulfill a power-law dependence |p; — pZIﬁ with a critical
exponent (. For py close to pf each space-time develops a strong field region R, where the
gravitational field (and any coupled field) develops an oscillatory character, revealing the
existence of (discrete) scaling relations due to which the successive oscillations are echoes
of each other on progressively smaller spatial and temporal scales. Also in the case of

[60] the universality was demonstrated. This refers to the fact that in the case of scalar

8Similar ideas built on chaos, scaling, etc. find their way in other branches of science as well, e.g.
economics, biology, environmental sciences (see e.g. [213]), though mostly they are only implemented in
simple numerical toy-models of sandpile type. This situation is similar to the one that regards fractals —
not much is known about the physics of fractal dynamics.

9As an example, we can give pulsar glitches caused by changes in the speed of neutron star rotation
(presumably due to an abrupt change in internal structure). When the changes in frequencies are translated
to changes in rotational energy and the cumulative distribution of that energy plotted, it turns out to be
a power law.
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field collapse the shape of the fields in the critical space-time Si[p}] in the strong field
region, and the value of critical exponent for black hole mass (and the scaling relation) do
not depend on which parameter space, G, is examined. To put it differently, the critical

behaviour is generic and independent of the details of the initial data.

3.4.1.1 Scalar field collapse

For massless scalar field (both minimally coupled ( = 0 and non-minimally coupled)
the critical behaviour was found by computer simulation of the collapse of spherically-
symmetric wave-packets of scalar field.

The equation of motion is
¢;“:IJ = CR¢, (3.13)

and the line element
ds® = —a®(r,t)dt* + a*(r, t)dr® + r?dQ?, (3.14)

where o is the lapse function and a the radial metric function!®. Lapse is fixed by the
polar time slicing condition and the shift vector 8" = 0, fixing the spatial coordinate
trajectories. This gauge generalizes Schwarzschild coordinates for dynamical space-times
as a? = (1 — 2m(r,t)/r)" .

Choptuik introduces auxiliary variables & = ¢/, II = a¢/a and solves the following
equations (¢ = 0):

$ = (emy
1= L(r?28)
o _agl=d g (3.13)
o L a2l orp(@% 4 11%) = 0, (3.16)

where a dot stands for §/0t and a prime for §/8r. The radial coordinate r (covariantly
defined) measures proper surface area; time coordinate ¢ has no relevant geometrical in-

terpretation, except as » — oo where it measures proper time. In fact, though critical

0@ = ¢ = 1 units are used.
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phenomena were discovered via computations in 7, ¢, they are better described in 7, T,
where T is proper time of an observer fixed at 7 = 0, namely, T' = fé a(0,1)dt.
The finite difference code is based upon an adaptive-mesh-refinement algorithm which

is very well able to resolve very fine spatial and temporal features.

The scalar field ¢ has an initial profile
$(r, 0) = gorellrmrel/ A, (3.17)

and a one-parameter space of solutions is generated from this Cauchy data with a condition
on II that initially the scalar radiation is purely ingoing. The initial data are specified if
also the slicing condition (3.15) is solved for o, and Hamiltonian constraint (3.16) for a.
Once 7, A and g are considered fixed then ¢, serves as a single parameter characterizing
the sequence of solutions, and Gx = @, for a particular k. The parameter ¢, is related
to the strength of the field’s self-interaction. For small ¢,, the wave-packet implodes and
disperses to infinity, the scalar and gravitational fields decouple (dynamics is described
by flat space-time solution of the spherically-symmetric wave equation); for large ¢, its
implosion leads to a black hole formation. Black hole is detected by monitoring 27"‘ For
black hole space-times’ -2—;—’1 — 1 (for some specific r = Rpp), and the mass of black
hole mpgy = 2Rpy can be calculated. A critical value of the parameter ¢ separates
supercritical (¢, > ¢%) from subecritical (¢, < ¢}) solutions.

In regions of parameter space close to ¢, Choptuik found that critical features in
solutions (close to the critical point) tend to depend linearly on In |¢o — ¢%| and therefore
exponentially on the initial conditions, and that structures with increasingly finer spatial
and temporal scales develop as ¢, — @¢%. In terms of two new variables X = V2rrd/a
and Y = +/2nrIl/a (they are invariant with respect to rescalings of the length and time
coordinates (r — &7 and t — xt) and hence to rescaling of the mass of the space-time) one
can better describe the echoing and scaling behaviour. This is so because critical dynamics
is most naturally expressed in terms of the variables that are form-invariant with respect to
these rescalings, which on their own, express the absence of any intrinsic mass /length scale
in the model. Obviously, the equations to solve and any solutions thereof are invariant

under these rescalings.
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In solutions close to the critical ones in the strong field region, the scalar field oscillates
and the number of oscillations is proportional to |In|¢, — ¢%||. The conjecture therefore
is that every critical solution contains an infinite number of echoes. Let us introduce the

logarithmic spatial and temporal coordinates p and 7 defined as follows

p=Inr
T =In(T* - T). (3.18)

(The constant T~ is the finite accumulation time of the echoes in the precisely critical
solution and can be determined in solutions close to the critical ones by fitting).

Choptuik finds that approximate scaling relations hold

X(p——A,T-—A) —‘:X(p,’l‘)
Y(p—A,7—A)=Y(p, 7). (3.19)

Critical dynamics is unique (up to trivial rescalings » — k7, ¢ — kt) and invariant under

a discrete scaling symmetry. The scale periodicity is similarly conjectured for all other

dm
dr

form-invariant quantities, including @, r2¢*¢,, &2, m/r. Physically it means that for a
precisely critical configuration, an infinite series of “echoes” is generated from the recur-
rence of strong-field evolution on ever decreasing spatio-temporal scales. The scalar field
oscillations appear as echoes of one another on scales finer by a factor of e™® =~ 1/30.
Critical dynamics “accumulates” at some critical central proper time T*. In other words,
if the radial profiles of X and Y are observed at some time 7;, with a small interval
§Ty = T* — Ty, and again at a second time T,, with even smaller interval 6Ty = e~ 28T
before T*, then a new detail will have appeared in the later profiles on a finer scale, but
upon rescaling radially by a factor of e® the new profiles are in fact identical to the earlier
ones. Note that the scaling relations observed is always approximate because even in the
precisely critical solution the initial oscillations near the outer edge of the strong field
region will contain information on the initial data. With each echo this information is
washed out and scaling relation holds tighter. Besides, any near-critical solution produces

only a finite number of echoes as T* is approached before it “decides” whether to form

a black hole or not. The value of A was found to be universal A ~ 3.4. The profiles
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of X(p,7) and Y (p, T) were also found to be universal, i.e. independent of the family of
initial data.
For solutions in the half-spaces g,j (for which ¢, — ¢} from above) a power law has

been found for the black hole masses

mpp ~ Clgo — ¢%1°, (3.20)

with 8 ~ 0.37 (and C family dependent constant). This power-law behaviour was also
found to be universal, with possibly weak dependence, if any, on thé coupling constant (.
The controversial conjecture one can make based on the above is that a black hole first
appears along any sequence at p = p* with infinitesimal mass, i.e. the black hole transition
point is generically massless. Since the associated oscillations in the scalar field occur on
increasingly finer scales, both the “kinetic energy” of ¢, ¢"*¢,, and the scalar curvature
of the space-time, get driven to infinite values at the critical event r = 0, T = T*. The

precisely critical space-time is necessarily singular and most likely naked.

3.4.1.2 Axisymmetric gravitational wave collapse

The second example of critical phenomena in GR was demonstrated in [1] in the axial
collapse of gravitational wave-packets. This model is source free, T#* = 0, and less
symmetric (one Killing vector) from the Choptuik’s example. A dynamical degree of
freedom of the gravitational field is necessarily involved here.

Abrahams and Evans compute axisymmetric, asymptotically flat vacuum space-times,
using a 3 + 1 formalism. They adopt the maximal time-slicing condition (K} = 0; KJ‘ is
the extrinsic curvature) and the quasi-isotropic spatial gauge, which fix the coordinates.

The line element has the form
ds® = —adt? + ¢*[*"3(dr + B7dt)? + r2e?1/3(dg + B0dt)? + e~ 4/30% sin% 0dp?], (3.21)

where a is the lapse function, 8" and 8¢ are shift vector components, ¢ is the conformal
factor, and 7 is the even-parity “dynamical” metric function. Numerical solutions are

computed to the following set of equations

8:A = D[] — ¢%(D" D,a + 2D¥Da) + ag®(RL + 2RE) + Kj /r[rd:p° — 85(8" /7)),
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8 K7 = Dg[KZ] — ¢°D?D,a + ag®RE,

3t(f{§/r) = D@[I{'(S/r — ¢°D " Dga/r + adSRy /7 + (23 - BK:,’)[ﬁg(ﬁr/r) — aKp/r],

O = B70:n + B0 + 858° — ° cot 6 + al,

1 1 g ooroins
AP = — (AP + Sy e MKIE)),
1 DT i

AP (ay) = — (A - S APKGKY),

r8:(87 /) — 858° = a(2) — 3KY),

r8.8% + 85(B7 /7) = 2aK} /7,
where K;Kf =2)\% — BAKZ + 6(KZ)? + 2(Kj/r)?, and the transport operator is defined
by Dglu] = %0,[r*B] + 7i506(sin08%u]; A = KI + 2K, K} = ¢°K, Dy is the spatial

sinf

covariant derivative, R;- spatial Ricci tensor, A = ¢?e/3, B = ¢2e~27/3, ¢ = BY/? and

AE,B) and A&Z) are the three- and two-dimensional flat space Laplacians, respectively.

To find Cauchy data for the gravitational field, » and K (freely specifiable fields) are
taken in the form of a linear ingoing gravitational wave-packet with quadrupolar (I = 2)
angular dependence. The general linear I = 2 solution is described by a quadrupole
moment I(v) of arbitrary profile in advanced time v (or retarded u). The linear solution
involves I(v), its first two derivatives, I(1)(v) = dI/dv and I(¥)(v), and its integrals,
IE)(v) = [Y dv'I(v') and I(-2)(v).

Appropriate expressions for 17 and K} have been found

(2) (1)
KT 7(2) 7 I -0
o= (G 3 5 + 65— 65 )sin20. (3.25)

These Cauchy data will be at least slightly non-linear (depending on the initial amplitude
and radius), since a wave-packet of finite amplitude confined within a finite radius will
generate a finite mass. In order to find proper data, the exact Hamiltonian and momentum
constraints are solved for ¢, A and K¢, subject to the choice above of 7 and Kj. Nearly
linear Cauchy data are still found to generate ingoing solutions. The form of I(v) is
chosen, such that a wave-packet has polynomial radial dependence of the form I ('2)(v) =
akpL?[1 — (v/L)?, for |v| = |r — 1| < L at t = 0. Here, k, is a constant, a is an

amplitude parameter, L a width parameter and r, a centering parameter. Each of these
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might serve as useful parameters of spaces k. Initially, L and r, have been fixed, while
a was chosen to parameterize the Cauchy data, i.e. the solutions. In the limit a — 0 the
mass of the wave-packet is ]VII’,i"E“’ = a®L/(2r), therefore a strength parameter in the form
f(a) = 2rM,/L ~ a? is a good choice. A wave-packet with § < 1 weakly self-interacts,
escaping to infinity virtually unaffected, but for § > 1 a black hole forms with mpy — M,
as § — oo. The critical value along the sequence was found to be % ~ 0.80 ( a* ~ 0.93).
Here again, supercritical collapse of gravitational wave-packets generates black hole

masses that are found to satisfy a power law
mpy =~ C’(a - a*)ﬁ. (3.24)

The critical exponent value is also 8 =~ 0.37, presently indistinguishable from that seen
in scalar field collapse. Similarly, a scaling relation holds on the gravitational field in the
strong field region R. The gravitational field oscillates on progressively finer spatial and
temporal scales, as is evident from figure (3.1) [96], which shows radial profiles of 7 (along
the equatorial plane § = 7/2). As can be seen, 77 exhibits an echoing in p = Inr of the

form
n(p — B, ta) = 1(p, tnt1)- (8.25)

The times ¢, are found here, by using the central value of the lapse function a(t,r = 0)
as a diagnostic to determine the completion of successive oscillations. The value of the
scaling constant A was found A =~ 0.6, so a radial scale ratio e® ~ 1.8 differs in this
case from the corresponding value e® ~ 30 (A ~ 3.4) in scalar field collapse. This result,
having been obtained in numerical simulations with several different resolutions, appears

to be robust.

3.4.1.3 Other examples

Recently Evans and Coleman [97] reported new research work into critical phenomena in
the gravitational collapse of a relativistic perfect fluid (p = p/3). Their model employs
a radiation fluid (Yadiabatic = %) in the spherical symmetry. In this case some analytic
progress was possible, starting from an ansatz of self-similarity (i.e. scale-invariance rather

than scale-periodicity). In numerical calculations the power law dependence of black hole
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Figure 3.1: Scaling property of a near critical solution of axisymmetric gravitational wave collapse.
Radial profiles of the metric function 5 (along 6 = =/2) plotted at four times corresponding to
alternate maxima of the central value of the lapse function, a.. The upper panel depicts all four
profiles (labelled sequentially n = 0 + 3) plotted versus p = Inr. The two lower panels illustrate
scaling by overlapping profiles that are shifted by p — p’ = p-+nA with A ~ 0.6. Profilesn = 0,1,2
are plotted in the bottom panel and n = 1,2, 3 in the middle panel.
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mass on |p — p*| was obtained again with 8 & 0.36, as well as the evidence for a unique,
self-similar critical solution in near-critical computations.

Also, Choptuik has found the same behaviour for massive scalar field in the spherical
geometry [59].

Garfinkle [110] independently verified Choptuik’s results for the case of a spherically
symmetric scalar field. In the numerical calculations the parameter p has to be tuned to
p* to a great accuracy and the features must be resolved on extremely small scales. One
might thus worry whether the results are not numerical artifacts. .Garﬁnkle’s algorithm
uses the null initial value formulation of the problem (rather than the space-like one as
Choptuik used) without adaptive mesh refinement. He finds results in agreement with
those of Choptuik. In particular, the critical solution was verified to have the property of
periodic self similarity: the scalar field evolves, after a certain amount of time, to a copy

of its profile with the scale of space shrunk. A critical exponent § ~ 0.38 was found.

Strominger and Thorlacius [240] have reported the discovery of universality and mass-
scaling in the context of the 2 dim semiclassical RST [216] model, which employs null
matter as a matter source. This model is used as a simplified model of quantum black
hole evaporation and is exactly soluble. It was analytically demonstrated that the system
exhibits universal power law mass-scaling at the critical point with 8 = % Near critical
scaling solution interpreted to describe the formation and evaporation of an arbitrarily
small black hole was also found. In this model there is no analogue of the self-similar

oscillations.

3.4.2 Discussion and conclusions

The present state of knowledge of critical phenomena in gravitational collapse is rather
rudimentary. However they do indicate a connection between GR and scaling at critical
point in statistical systems. One could ask how close this association really is to standard
critical phenomena and how seriously one should take it. One would like to have analytic
models and more results of numerical simulations of other kinds of space-times, with dif-
ferent symmetries and sources, performed in particular with the adaptive-mesh-refinement

scheme for two and three dimensional cases.
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Some analytic considerations on the subject were attempted, though so far they did
not use any of the insights the above relation might provide. Let us be fair — the problem is
extremely difficult. In [40] a spherically symmetric Einstein equations coupled to a massless
(minimally coupled) scalar field were solved, assuming self-similar collapse (homothetic),
and a self-similar solution with a critical parameter and critical regime was obtained. An
exact one-parameter family of solutions was shown to exhibit a type of critical behaviour
as discussed by Choptuik, though it is not clear that this is the universal strong field
solution. For super-critical evolutions a quantity related to the mass of black hole exhibits
a power law dependence on a parameter a, mpy ~ |a — ac,;t|1/2. The solution supports
the conjecture that black hole formation initially occurs at infinitesimal mass.

The same model is considered in [202], where also Choptuik’s scaling relations were
derived. Critical behaviour was obtained which exhibits mass evolution Mj =~ (E51)1/%y
on the apparent horizon (M}, is the gravitational mass on apparent horizon, v the advanced
time and p is the critical parameter and critical regime occurs for p — 1). This equation
exhibits mass evolution in some dynamical stage of gravitational collapse, instead of the
asymptotic stage (at the future null infinity) v — oo, as evaluated by Choptuik.

If X = v/r the logarithmic evolution

_ = logt —logr
(p—-1)X2
in a neighbourhood of » = 0 was derived. So for the self-similar solution the scaling
relation ¢(logr — A,logt — A) = ¢(logr,logt) clearly holds with a continuous parameter
A. Choptuik however observed A discrete, namely, nA*, A* =~ 3.4,n = 1,2,3,.... But
this is not crucial in the region where logr,logt > A*. The above in fact holds in the
strong field region when p — 1 as then the apparent horizon is arbitrarily close to 7 = 0,
and the spacing of nA* is unimportant to recover approximately self-similarity outside
the apparent horizon near 7 = 0. Generally, it is not clear how a continuous self-similarity
could be at the center of previously obtained results. Both works used the exact self-similar
solution.

The other approach is that of [153]. The analysis there shows that the one-parameter

class of solutions decomposes into the subcritical and supercritical regimes. A proposal

is made to develop a perturbation theory with a dimensionless expansion parameter 1/d
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to tackle the problem in 4d gravity. Critical exponent is found to be 0.5 at the limit of
d = cc.

Results of somewhat different flavour were provided in [157] where a simple model
exhibiting critical behaviour in black hole formation (though not space-time self-similarity)
was studied, namely, that of a thin shell coupled with outgoing null flux. A critical
exponent was found analytically to depend rather strongly on the constants specifying the

system.

As we saw the value of the relevant critical exponent was not obtained as 0.37. The
difference (from 0.5), though small, is of crucial importance since this number, g3, should
reflect a deep property of the gravitational field equations. Suffice it to notice, that the
experimental values for the critical exponent f (its explicit definition depends of course
on the system considered) range from 0.305 + 0.37 for a variety of systems, like binary
fluid, He I - He II transition, S—brass, a magnet (Fe) Ni and fluid (Xe), that are believed
to belong to the same universality class [31]. It might be that the correct values of critical
exponents can only be obtained when RG theory is made use of. This situation parallels
the study of phase transitions in Condensed Matter before RG theory was available, when
the mean field theory calculations were invariably giving critical exponents in form of

rational numbers, in disagreement with experiment.

The results discussed in the previous sections can be described from a point of view
which treats Einstein’s equations as generating a RG flow on the space of initial conditions.
Interestingly, it seems that the black hole mass mpy plays a réle of the order parameter for

these critical phenomena!l, like spontaneous magnetization for ferromagnets (below the

'Note that there also seem to exist phase transitions (of second order) when we cool down black hole
with respect to the corresponding Schwarzschild temperature Ts = (87m)~', by increasing its charge Q
and angular momentum J at fixed total mass. The heat capacity csq passes then from negative (for a
Schwarzschild black hole) to positive values (for Kerr-Newman) through an infinite discontinuity [176].
In [164] a possible second order phase transition of Reissner-Nordstorm black hole was studied, namely,
at the thermally stable phase at which the heat capacity at constant charge is positive, the mean square
fluctuations of mass and entropy of massive RN b. h. are divergent as certain critical temperature is
approached. In the thermally unstable phase at which the heat capacity at constant charge is negative,
the fluctuation probability diverges exponentially as the crit. temp. is approached. It turns out that
the fluctuation-dissipation properties of the b.h. near the crit. temp. bear some resemblance to other
thermodynamical systems. Could it be that the existence of a thermally unstable phases suggest a new
kind of crit. phenomenon peculiar to gravitation?
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Curie temperature) or |p — p.| for liquid-gas transition in the co-existence region. Indeed,
black holes appear only for solutions with p > p* and a black hole of infinitesimal mass
is conjectured to exist at p = p*. This analogy is supported by the fact that in numerical
simulations the solutions approach universal scaling solutions at criticality.

Choptuik demonstrated that details inherent in the original data are “washed out” in
the strong field region R in near critical evolution. With each echo as r — 0 and T — T
information may be steadily lost and its rate per echo may depend on the value of A.
Likewise, an analogue of the correlation length £ in statistical mechanics systems seems to
be now the ratio of the radii of the outer edge of the scaling region, 74, and the inner
edge, 7, of the innermost echo i.e., & ~ Trpaz/Tn ~ €™>. As p — p* an ever larger region
(in terms of the scale r,) becomes “correlated” with self similar echoes and £ — oo, as it

should for “critical” systems.

One can attempt to classify the self-similar (scaling) solutions to Einstein’s equations
by viewing the evolution equations as generating a RG flow on the space of initial condi-
tions. We follow here a general discussion in [6].

If we define the RG transformation with parameter A as (in the scalar field case)

#(r1) = da(rt) = A%eg(-0, S0, (3.26)

the self-similar solutions of the equations would then correspond to a fixed point of this
transformation. E.g. a continuously self-similar solution ¢* satisfies ¢*(r,t) = ¢%(r, 1) for
all A. When the solution is discretely self-similar it would correspond to a limit cycle of
RG flow ¢*(r,t) = Prn (r,t) for all integers n. Only the perfect fluid collapse gives a simple
fixed point; the others have limit cycles.

To obtain the critical exponents one could approach using a linear perturbation theory
around the critical (scaling) solution. So far however it has not been understood however.
Moreover, the critical point is in the strongly coupled regime. This poses additional
problems. One should thus look for a simpler system in the same universality class.

Interesting connections seem to exist between the universality in gravitational collapse

and no-hair behaviour [205].
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3.5 RG in cosmology — motivation

The usual RG transformations invoking averaging over square blocks are designed mostly
having ferromagnetic systems in mind. However, there are many problems suitable for
RG methods but it seems they have not yet been expressed in such a way that they can
be solved. They are amongst the hardest problems known in physics where their difficulty
can be traced to a multiplicity of scales [259, 258]. The important issue in the proper
application of RG theory to a particular problem at hand is the choice of variables of the
model and the RG map. For each new physical situation one has to “custom-make” the

RG map, as Michael Fisher puts it clearly [101]:

For any given Hamiltonian or class of Hamiltonians there is not just one
renormalization group - “the renormalization group” as some people say - but
rather there are many that might be introduced, and one must question, for
example, whether the process is best carried out in real space or momentum
space and so on. A “good” renormalization group must be “apt” or appropriate
for the problem at hand, and it must, in particular, “focus” properly on the

critical phenomena of interest.

Some form of the Renormalization Group is active on any systern where there are
fluctuations present. This is so, because one can integrate the fluctuations out of the
physical quantities of interest, e.g. the partition function, and depending on the “scale” up
to which one is integrating, the same quantities that emerge are different. The functional
relation between them provide recursion relation between the physical parameters, the
coupling constants, which characterize the physics at each scale, and this is precisely the
RG. The nature of the fluctuations does not need to be quantum. For example, they could
be thermal fluctuations as in Statistical Mechanics, or they could be due to collisions as in
many body perturbed motion in GR, such as the ones due to “frictional” processes in the
Universe, be them ones in the epochs of large entropy production [21], or those originating
in dynamical friction, or purely chaotic processes due to the many body nature of the
gravitational system.

If the universe can be considered as a complex general relativistic many body sys-

tem (GRMBS), the question then arises whether one could apply the methods, much as
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in statistical mechanics to understand some of its features and undertake the study of
its collective behaviour, local morphological problems, etc., by taking advantage of their
suitability for the study of this class of problems. A recognition of powerful methods, de-
riving from Renormalization Group, that can be used to study complex systems without
loosing their physical picture encourages us to undertake this task. A common feature of
many-body systems is that (under certain conditions) they may exhibit condensation-like
phenomena (e.g. formation of Cooper pairs in superconductors). One can thus antici-
pate there would be a possibility of forming extended (elementary excitations) as well as

localized states (solitary waves).

In the case of quantum fluctuations we have the Gell-Mann-Low version of the RG,
which for discrete iterations (or blockings) is related to the Wilsonian RG. In field theory
the use of the Gell-Mann-Low version of the RG is based upon perturbation theory, whilst
the Wilson one has a direct geometrical interpretation (as already stressed before) and is
in principle non-perturbative. For thermal fluctuations, we have RG which seems similar
to the encarnation appearing in the Ising model (Heisenberg model, more probably). In

the case of many body perturbed motions we have to develop ideas (see next sections).

3.6 RG approach to averaging in cosmology
Contents of this section is based on [57].

Some notions and facts relevant to the contents of this section are given in Appendix C
(in particular, a definition of the Gromov distance can be found there), which the reader

is encouraged to consult. General mathematical preliminaries can be found in Appendix

A

3.6.1 Coarse-graining in Cosmology

A possible solution to the averaging problem would be to explicitly construct a procedure
for carrying out the smoothing process in the full theory. Almost all existing attempts

were concerned with the linearized theory, with a possible exception of [51] (see also [141]).
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In [51] a covariant smoothing-out procedure was put forward for the space-times as-
sociated with gravitational configurations which may be considered near to the standard
ones, generating closed FLRW universes (see section 2.4.1). The procedure makes use
of Hamilton’s theorem about smooth deformations of three-metrics and is adapted for
smoothing-out an initial data set for cosmological solutions to the Einstein equations.
While interesting in its own right, this approach seemed rather ad hoc and not yet capable
of resolving the issues of actual limits of validity of the FLRW models in cosmology.

Now, our hope is that there is a smart and simpler way to the heart of the problem,
borrowing from the known theories and methods of statistical mechanics, based on the
real-space Renormalization Group (RG) approach to study critical phenomena in lattice
models [147, 257, 259]. The averaging problem in cosmology can be looked at and studied
as belonging to precisely the kind of many length scales problems. These are difficult
problems where the reductionist approach fails and where the effective degrees of freedom
of a physical system are scale dependent. The difficulty of this kind of issues lies, as
already mentioned, in a multiplicity of scales and moreover there can presumably be a
gross mismatch between the largest and smallest scales in the problem.

Often a major step consists in finding a way of looking at things. Therefore we stress
that the problem we face with the averaged description in cosmology is effectively a ques-
tion of how a system behaves under changes of “scales”. As such it is most naturally
addressed using RG approach, understood here as a general strategy to handle problems
of multiple length scales!? which allows us to extract the long distance behaviour of the
system by making the scale successively coarser. In cosmology, we have the curvature in-
homogeneities and to consistently tackle this problem, we will have to consider a procedure

operating on the metric, not only on or apart from the matter present.

To provide even more support in favour of the above idea notice that one can also be
guided by scaling ideas, of which the power law behaviour of the two-point correlation
function for galaxies, clusters and quasars, is a fair example. Scaling, on its own right, is

deeply understood within the underlying mathematical scaffold which is RG. These are

12 Although the renormalization procedure might seem purely formal there are important physical ideas
behind it, namely, that of scaling and universality.
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hints therefore that one can regard the universe as a gravitational dynamical system not
far from criticality (understood intuitively by analogy with e.g. a ferromagnet). Later
one can also try to qualify the precise nature of the critical behaviour within the phase

transition context; for a simple example see section 3.6.3.3.

The real space renormalization techniques are mostly applicable to discretized models,
based on a lattice. Therefore we now turn to describing a suitably discretized manifold

model we are going to work with.

3.6.1.1 Discretized manifold model

The approach taken is that of a (3 4 1) formulation of General Relativity (GR) [9]. Let
us suppose we have a differentiable, compact three-manifold (without a boundary) M.
Generally, in this case we will always assume that these manifolds possess certain natural
constraints on their diameter and a suitably defined notion of curvature. The point of this
requirement is that the manifolds, or more precisely the riemannian structures, can then
be classified according to how they can be covered by small metric balls (to be defined
later). Moreover the space of riemannian structures has some remarkable compactness
properties. This is a classical result obtained by M. Gromov [119] (see also [109]). On a
set of riemannian structures it is possible to introduce a distance function, the Gromov
distance, which roughly speaking enables one to say something about how close particular
manifolds are to each other. For the riemannian manifolds which can be considered close
to each other (in the sense of Gromov distance) it is possible to cover them with the balls

arranged in similar packing configurations [52].

In order to define such coverings [122], let us parameterize the geodesics by arc-length,
and for any point p € M let da(z,p) denotes the distance function of the generic point z
from the chosen one p. Then for any given € > 0 it is always possible to find an ordered

set of points {p1,...,pn} in M, so that [122]

i) the open metric balls (the geodesic balls) Ba((pi,€) = {z € M| dm(z,p;) < €}, i =

1,..., N, cover M; in other words the collection {p;,...,pn} is an e-net in M.
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Figure 3.2: A portion of a minimal geodesic balls covering. Dotted disks are the -balls which
pack a given region. The larger, undotted disks, represent the e-balls which provide the covering.

ii) the open balls Ba((pi,€/2), i = 1,..., N are disjoint, i.e., {p1,...,pn} is a minimal
e-net in M.

It is fair to say that as a consequence of the compactness properties of the set of rie-
mannian structures that we consider, for each “length scale €” there exists a finite number
of “model” geometries which describe with an e—approximation any given riemannian ge-
ometry. Namely given a ball of a certain radius > € in any riemannian manifold (with
suitable restrictions on their volume, diameter and sectional curvature, as we have said
earlier) there exists a ball metrically similar (up to an € scale) in one of the model geome-
tries which does not retain the details of the original manifold on scales smaller than e.
Roughly speaking, € is a measure of the typical curvature inhomogeneity with respect to
the model background. Let us stress that this is a highly non-trivial result, in the sense
that the metrical properties of the manifolds from an infinite dimensional set are, up to an

e scale, described by the metrical properties of just a finite number of model riemannian
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manifolds.

The e—nets underlying the balls-coverings precisely provide the discretized manifold
model. This coarse-graining of a manifold according to Gromov is the most natural coarse-
graining one can think of, pertinent for manifolds with a lower bound to the sectional
curvature. This assumption does not limit the generality of our analysis which is basically
motivated by a concrete physical problem, whose nature allows us to deal from the begin-
ning with manifolds that are already in a certain sense quasi-homogeneous (Cf. comments
on the solvability of the Ricci-Hamilton flow, later on).

In what follows, when speaking of balls we will always mean geodesic balls here.

3.6.1.2 An empirical averaging procedure

We assume that we have chosen a particular space-like hypersurface 3 of the 4—dimensional
manifold, on which the average of a scalar function f : ¥ — E is given as

Js fdug

] (3.27)

<f>s) =

where vol(X,g) = [y dyy and g, is the riemannian measure associated with the three-
metric g of ¥. Since at this stage we simply wish to put forward a few elementary
geometrical considerations, we do not specify yet the choice of the hypersurface ¥ and we

do not attribute any particular physical meaning to the function f.

If the geometry of X is not known on a large scale, we cannot take (3.27) as an
operational way of defining the average of f. From a more pragmatic point of view,
supposing that we can only experience geometry in sufficiently small neighborhoods of a
finite set of instantaneous observers, it makes much more sense to replace (3.27) with a
suitable average based on the geometrical information available on the length scale of such
observers.

For simplicity, given a finite set of instantaneous observers, located at the points
Z1,--+,ZN € X, we may assume that these susceptible to observation regions are suit-
ably small geodesic balls of radius €, scattered over the hypersurface ¥ so as to cover it. In

other words, we assume that {z1,...,zx} is a minimal e—net in X. Further, we denote by
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U, the corresponding set of geodesic balls {Bx(zi,€)},i = 1,..., N. Then we can bound
(3.27) as

Y., vol(Bp, €/2) Y, vol(Bp,€)

< < .
< f >6/2 ’UOlE(g) << f >Z(g) << f e 'UOIE(g) ’ (3 28)
where
i fB; o fdp
<f>= Mz'ioi(%' e)g, (3.29)
and
i i€ fd
<f 2= ZiJ(poern Ts (3.30)

S vol(Bi,€e/2)’
and where we explicitly indicated the dependence of the averages on a particular “cover-
ing”. This suggests the consideration of < f >, as a suitable scale dependent approxima-

tionto < f >.

There are certain problems lurking that we have to clear up. Obviously, there are
“ynwanted” details affecting the average function over the discretized manifold, as given
by its partition with a collection of geodesic balls, the immediate one being the underlying
discretization. The important question to ask is what happens to the average when we
change the length scale. Depending on whether we are actually increasing or decreasing
it, respectively less or more details of the underlying geometry, will be felt by the average
values. The natural philosophy is that over scales big enough no details should be discerned
since the homogeneity and isotropy prevails. This is the reason why on constant curvature
spaces averaging is well defined since there one can move the balls freely and deform them,
but by so doing no new geometric details that measure the inhomogeneities will be felt in
the averaged values of quantities we are interested in.

A natural question to ask now is then how the geometry, specifically curvature inhomo-
geneities, should depend on scale so that the average over the balls is scale independent,
or equivalently, how do we have to deform the geometry in order to achieve the scaling

limit when size of the balls matters no more?
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First, we give some details on how we calculate the averages according to (3.29). In
order to do this, we employ a preferred system of coordinates on {B;} given by the local
diffeomorphism

exp, 1 T, — % (3.31)

i.e., we make use of the exponential mapping
@i = exp |op-1 g,=p, : Di = Bi, (3.32)

where D; = D(z;,¢€) is the ball in T, ,%.13
On D; we use polar coordinates and pull-back the riemannian measure accordingly,

namely,

@i (1g) = 0(t,z;)dt @ daz;, (3.33)

where dz; denotes the canonical measure (euclidean volume form) on the unit sphere
D(z;,1) = §7 C T, and where dt is the Lebesgue measure on E (¢ > 0).

For t small enough one can prove Puiseux’ formula
1
0(t,z) = "1 (1 - gr(a:)zt2 + O(t%)), (3.34)

where n = dim ¥ and r(z) is the Ricci curvature Ric(g) (at the point z).
Using this result we have

—/l;(z;,t) Fdpg = -/Sf fé(t, z)de;dt. (3.35)

Let us consider the asymptotic expansion with respect to ¢ [166]

R(z;)
3

n t?
‘/‘B(I,‘,f) fd'ug = wpt [f(m1) + m(Af(zl) —

where w,, is the volume of the unit ball of B”, R is the scalar curvature at the center of

f(=)) + O], (3.36)

the ball and A the Laplacian operator relative to the manifold.

'3The transition from (X, 9), at a given moment of time ¢,, to a tangent space parallels the prescription in
riemannian geornetry for measuring [219]. Let U be a given neighborhood of an instantaneous observer in &
and suppose it is so small that there is a neighborhood A4 of 0 € T X such that exp, : A(C T-E) — U(C I)
is a diffeomorphism. One can then replace the considerations in (U, g) by those in A (with the riemannian
measure pulled back) via exp_'. Namely, we can say that an instantaneous observer in (X, g) observes the
universe with the help of the exponential mapping, which just means projecting structures from an open
neighborhood U C X of z by exp]' and treating them as structures on T X.
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Substituting f = 1 in the above formula we get the asymptotic expansion of the volume

of a geodesic ball:

vol(B(z;,1)) = wat"(1 - %ﬁ%)?)

These standard formulae are what we need in order to calculate how the average value

2 + O(t)). (3.37)

behaves when we change the scale.
Since we are interested in discussing how < f >, behaves upon changing the radius of
the balls {B(z;, €)}, let us consider the average < f >¢,4n, with 77 a positive number with

n/€; < 1. According to the formulae recalled above, we can write

Silfi + (RLAEEEE (6, + )]
Sill — sy (60 + )2

where we have introduced somewhat simplified but otherwise obvious notation. Upon

< Seotn= + O((& + 77)4)7 (3.38)

expanding this expression in 7, we get to leading order (O(e}) in €,, and O([2]?) in 1),

1 Ui 7

€ -t € NS A 02_ rvEErtY € - R € 02_7

< f >eptn <f>°+n+2< f>c€ eo+3(n+2)[<R>°<f>°° < Rf > e o
(3.39)

where < f >, is the average of the function f over the set of N instantaneous observers
Ue,, (with similar expressions for < R >,, < Rf >, and < Af >,). Thus, under a

change of the cutoff we can write

d 1
60&77< f >ea+r]|n/ea=0 = - Af >eo+ [< R >€a< f >€o -< Rf >€o] (340)

1
n+ 2 3(n+2)

to leading order. In the next sections we will discuss the consequences of these formulae

and the connection of our averaging procedure with the Ricci-Hamilton flow.

3.6.2 The Renormalization Group view
3.6.2.1 Block variables and recursion relations

The real space RG technique is based on the recursive introduction of block variables.

A method of “blocking” is trivial to introduce on regular lattices. In particular, in the
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Figure 3.3: We can approximate the average over & by averaging over euclidean balls whose
Lebesgue measure has been locally weighted through Puiseux’ formula. In this drawing, the
5-geodesic balls are represented by curved disks on ¥, while the corresponding euclidean balls
are correctly depicted as 3-dimensional.
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Figure 3.4: The local average of a function f over a geodesic ball B(z,¢,) feels the underlying
curvature of the manifold through Puiseux’ formula. In particular, in passing from B(z, €,) to the
larger ball B(z, €, +7) we get correction terms which depend on the fluctuations in curvature.

case of the Ising model (2—dim) it consists of a subdivision of the spin system into cells
which supposedly interact in a similar way as the original spins. This can be done by
introducing the block-spin variables via the majority rule or decimation procedure [31].
The behaviour of blocked lattice on large scales is equivalent to the behaviour of the
original lattice corresponding to a different temperature. The slopes of the parameters’

surface close to the critical fized point determine the macroscopic characteristics of the

model (see e.g. [31]).

In the context of the problem we are considering, the application of RG method forces
us to invent some analogue of Kadanoff’s blocking (block-spin transformation) applied to
the geometry itself. This appears to be a difficult problem since in a general case when the
geometry is curved the lattice itself takes on a dynamical réle. Moreover, since the mani-
folds ¥ we are dealing with are compact, (closed, without boundary), we must implement
a Renormalization Group strategy in a finite geometry, and thus the relevant phenomena
are here related to finite size scaling. Roughly speaking, the size of our manifold is char-
acterized by a length scale, say L, (actually the volume, the diameter and possibly bounds
on curvatures), which is large in terms of the microscopic scale (the radius of the typical
geodesic ball coverings we shall use in the blocking procedure). A continuous theory, de-

scribing the (universal) properties of the field f on X, arises when the correlation length
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associated with the distribution of f is large (of the order of L). This being the underlying
rationale, let us proceed and be guided by the formula (3.40).

Let us consider our system as nearly infinite, i.e. the manifold ¥ divided by the
collection of the geodesic balls of radius €, = (m + 1)¢, for m = 0,1,2,..., and where ¢,,
the chosen cutoff, is much smaller than the typical length scale associated with %, (this
length scale can be identified with the injectivity radius of the manifold). Each ball will
be labelled by k in the sequel and the original geodesic packing-covering is for m = 0.

We can introduce this way a convenient notation for the integral of the generic function

f over the ball B(zg,¢,,) as

nlki )= [ fdu, (3.41)

Thi€m)

which can be seen as the block variable since it allows us to eliminate from the distribution
of the field f all fluctuations on scales smaller than the cutoff distance €,,. We wish to
emphasize that if the geometry of the ball B(zy,¢.,) is not flat, then the definition of

¥m(k; f) can be interpreted as that of a weighted sum over a flat ball, namely,

NCHEN F0(1,2)d © d, (3.42)

exp~ ! B{em

where the weight 6(t, z) is provided by Puiseux’ formula (3.34).

If we consider the covering of B(zg, €m41) induced by the geodesic balls {B(z;, em)},
i.e., the collection of Ny(m,m+ 1) open sets {B(zk, €m+1)} N {B(z;, €m)}, then the above
definition of block variables can be written recursively in terms of the values the function
[ takes correspondingly to balls of larger and larger radii. To this end, let us consider a
partition of unity {€n}n=1,..N,(0,m+1), Subordinated to the covering of the generic enlarged
ball B(zk,é€m+1), induced by the geodesic balls {B(zp,¢,)}. Namely, a set of smooth
functions such that: 0 < £, < 1, for each h; the support of each &5 is contained in the
corresponding B(zp, €,); and Y., €n(p) = 1, for all p € B(zk, €my1)-

Under such assumptions, the block variables )., (k; f) can be written recursively as
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bo(k; f) = L@md&ﬁ%,
Np(m,m+1)
YB3 F) = >, bm(k; f). (3.43)
k
Indeed, we have
Np(0,1)
wf) = [ ey T = 2 /. o Gl
/r(0,1)
= Z d)o(k;f)’ (344)
k
and
N;(1,2)
(i f) = quﬁ@ﬁ:§:AWWEU@g

Nj (1 2) Nn(0,1)

= Z / EkEh fdug

B(zk.€0)
Nh(l,?.)

= Y i), (3.45)
h

where we have exploited the fact that the functions {£xé;} have £éi(p) = 0, except for a
finite number of indices (k, 1), and 3, 3=, &kéi(p) = 1, for all p € Z. The above expressions

readily generalize for every m.

More explicitly, we can write these block variables as

bms1(k; ) = / fdpg =
B(Ik,em_{_l)

Ni(mm-+1) A(F€)(h) — R(R)F(R)En/3Y o 4
. , &+ 0. (3.46
> i+ (FRGEGIEE ) s o ) e

W €
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Figure 3.5: The intricate but symmetrical intersection pattern of an array of £-balls in the
2D-plane. Here, the £-balls are dotted while the overlapping e-balls, providing the covering,
are the dashed circles. The solid circles and the arcs of circles describe the intersection pattern of
a —ge-ball. On a curved manifold of bounded geometry, the pattern is more complicated and not
symmetrical at all. Nonetheless, one may obtain a recursive definition of blocking by exploiting a
partition of unity argument, explained in the text.
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Figure 3.6: The intersection pattern of a 2e-ball B(z;, 2¢) with five e-balls B(zx,€). The 2¢-ball
is represented by a dotted disk, while the e-balls are represented by solid circles. The white disks
represent the packing of B(z;,2¢) with £-balls. The standard representation of the integral Bover
B(zj, 2¢), through the partition of unity subordinated to the B(za, €)-covering, yields the recursive

relation Ymay(5) = 2op ¥m(R).

Notice that in terms of the block variables %,,(k; f) we can rewrite the empirical
averaging (3.29) as
S (ks 1)
ks , (3.47)
2 ™ vol[B(zk, €m)]

where N(€,) denotes the number of distinct B(zk,€m) balls providing a minimal €,,-

<f>em('¢’m =
) 2

covering of the manifold £. Thus, when m is sufficiently large, the variation in < f >,
(¢m) under a block transformation Y (k; f) = Yma1(h; f) is given (to leading order) by

< f >em+1 ('ﬂ["m—‘rl)— < .f >€m (d}m) =~ (348)
1 1
m< A(fgh) >em€m2m+ 1 + 3(n+ 2)[< R e < fEh Zem T < Rfﬁh >em]€m2m+ 1-

The above choice of block variables brings out the coupling between averaging a scalar
field over a manifold and the presence of fluctuations in the curvature of the underlying
geometry.

In order to be more precise, let us assume that the variables f(k) are randomly dis-

tributed according to some probability law P({f(k)}) (later on we shall come back to this
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point with a definite prescription). Upon blocking the system and thus renormalizing the
variables f(k) by increasing the scale size, the probability distribution P({f(k)}) induces
a corresponding probability distribution on the variables v¥,,, viz., P({y(k; f)})-

From equation (18) it is clear that if the geometrical properties of any two balls,
B(zi,em) and B(z;,€em) (with B(z, €x) N B(zj,65) = 0), are not correlated then the
corresponding block variables, ¥ (7; f) and ¥5(7; f), are uncorrelated. Such L = €5
characterizes the correlation (or persistence) length of the manifold (X, g). It is a measure
of the typical linear dimension of the largest ball exhibiting a correlated spatial structures.
This correlation length can be seen in close analogy with the usual correlation length
(usually denoted by £) in condensed matter systems. It depends there upon the coupling
constants in particular upon temperature, and diverges to infinity at the phase transition

point.

Since g plays here the role of a running coupling, or if you prefer, of “temperature”,
the existence of a finite correlation length corresponds to a rather “irregular”, crumpled
geometry (as seen on scales of the order of L), or, equivalently, a high temperature phase

of our system.

According to the central limit theorem it follows, for m large enough, (&, > L), that
the block variables 9,,(k; f), being the sum of uncorrelated random variables, are normally

distributed, (let us say around zero, for simplicity), with a variance

Ep($m(i; f)) = Nmx, (3.49)

where Ep(...) denotes the expectation according to the probability law P({1m}), X is
related to the variance of the variables f(k), R(k), and N(¢™) denotes the number of
¢o-balls in the m-ball B(z;, €,,).

Thus, irrespective of the details of the local distribution of the random variables f(k)
and R(k), we can write for the distribution of {t,,(k; f)}\ over (2, g)
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aP({n)) =TT [ (s 1) (N =mx) ™ exp [0 (ks /2 0mIg] | (850
k

This shows that by rescaling the block variables ¥,,(k; f) according to

bk £) = [Vom] "0 £), (3.51)

we get new block variables with a finite variance as m — oo, and for random metrics (Z,9)

we can write

dP({$n}) = [T [dbm(k; 1)(2m0) ™/ exp [~ 6% (ki £)/2%] ] - (3.52)
k

The above remarks, paradigmatic of the real space Renormalization Group philosophy,
show that the definition of a sensible blocking procedure, in our geometrical setting, con-
sists of a transformation increasing the scale size, realized by passing from the variables
f(k) to the variables ¥, (k; f), (namely by taking the average over all values of f in a
larger and larger ball) followed by a rescaling, obtained by dividing 1 (k; f) by a suitable
power of the number, N{(¢0™), of elementary €,-balls contained in the ey,-ball considered,
(for random geometries this power is 1/2).

Following standard usage, and in order to arrive at an interesting geometrical notion
of blocking, we assume that for a generic metric g, this rescaling follows by dividing
Ym(k; f) by [N(E"’"‘)]wm, where w,, will in general depend on m. Thus, the rescaled

blocked variables of relevance are

G (ks £) = [NC™] ™" g (k; £)- (3.53)

The value of w,, will be fixed by the requirement that, as m — co, and for some
(critical) metric gerit, (in general for an open set of such metrics), such normalized large

scale block variables have a limiting probability distribution with a finite variance. Namely,

Jim Pu({3n(B D) = Pullbe(PD);
Ep (¢5(1) = 1 (3.54)
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Figure 3.7: Even if the function f is constant over X, its average values over the geodesic balls,

B(zy,€) and B(za, €), are generally uncorrelated owing to the random fluctuations in the geometry
of the balls.

Notice that if (X, g) is a nice manifold, e.g. a constant curvature simply connected

three-manifold, we are obviously expecting that the corresponding w,, is

wn(X,9)=1. (3.55)

In general, we can assume that there is a set of critical metrics and a corresponding
w, such that the above requirements (3.54) are satisfied. Such critical metrics are not
necessarily constant curvature metrics and the corresponding w is not necessarily 1, (one
may conjecture that 1/2 < w < 1, as happens in the Renormalization Group analysis
of many magnetic systems). At this stage, this is only a tentative assumption in order
to arrive at an interesting concept of geometric Renormalization Group in our setting.
Later on, we shall see that such assumptions are justified by exhibiting examples of such

non-trivial metrics.

3.6.3 Averaging matter and geometry

Until now, our discussion has addressed mainly geometrical issues and the function f

entering the cut-off dependent averaging < f > was not specified. Now we wish to apply
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the results of the previous paragraph to the averaging of the matter sources, namely, the
matter density p, the spatial stress tensor sqp, and the momentum density J,, entering in
the phenomenological description of the matter energy-momentum tensor with respect to

the instantaneous observers comoving with ¥, viz.
Top = puatp + Jaup + Jptg + Sab, (356)

where, u is a unit, future directed normal to the slice &, (u®uqa = —1).

In fact, since in the present epoch the universe is mainly matter dominated, i.e. the
pressure can be safely neglected, it would in principle be justified to start our analysis
with

Tap = puats + Jatp + Jpta, (3.57)

for the stress-energy tensor. Even the terms involving the momentum density can be
eliminated if we pick up a sensible slicing 3;, (the comoving frame), provided that the
cosmological matter fluid is an irrotational fluid in equilibrium. In any case, wishing to
maintain the following discussion to a sufficient degree of generality, without particular
restrictive assumptions on the matter sources, we assume in our analysis that the matter

energy-momentum tensor has the perfect fluid form
Tap = puatp + Jaup + Jpta + gabPy (358)

with a pressure p which is a priori not-vanishing, and where gqp is the three-metric of %,

namely, gqp = g‘g‘é) + ngnp, g‘(lz) denoting the space-time metric'*.

As argued in the previous paragraphs, smoothing-out the matter sources as described
by a set of instantaneous observers (represented by the three-dimensional hypersurface
¥), means eliminating from the distribution of such sources on ¥ all fluctuations on scales
smaller than the cutoff distance €, leaving an effective probability distribution of fluctu-

ations for the remaining degrees of freedom. The underlying philosophy being that this

14The fact that we are adopting a stress tensor with a non-vanishing energy flux can be traced back to
the observation that even in an exact k = 0 or k = +1 FLRW universe there can be a non-zero particle
flux tilted with respect to the frame of the fundamental observers, even though Tap has the perfect fluid
form. This is possible if the macroscopic quantities (e.g. a particle flux) are derived from kinetic theory
with anisotropic distribution function f (=%, p%) [90].
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effective distribution has the same properties as the original one at distances much larger

than e (i.e. for fluctuations with wavelengths much larger than e).

In order to implement this idea along the geometrical lines discussed in section 3.1, we
first need to better specify what we mean by the assignment of a collection of instantaneous
observers (endowed with clocks) on ¥. Since we are adopting a Hamiltonian point of view,
such observers are specified by the assignment, on the (abstract) three-manifold X, of the
lapse function a and the shift vector field o'. The former provides the local rate of the
coordinate clocks of such observers, while the latter is the three-velocity vector of the

observers with respect to the set of instantaneous observers at rest on X.

The macroscopic variables of interest characterizing the matter sources are in the
present framework, the matter density p, and the momentum density J. Actually, it
would make more sense to consider the cosmological fluid phenomenologically, described
by a pressure p, a baryon number density n,, energy density p, specific entropy s, and

temperature T'; such variables being related by
dp = npdh — npT'ds (3.59)

and

b= , (3.60)

where h is the specific enthalpy. However, for simplicity, we shall in the sequel consider a

barotropic fluid.

Thus, the field f characterizing the matter sources, as described by the instantaneous

observers on X, is given by

f=ap+adl; (8.61)

Notice that 2ap(p) is the hamiltonian density of the fluid in the Hamiltonian formulation
of Taub’s variational principle for relativistic perfect fluids [194]; also we assume that the

dominant energy condition holds.
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The averaging of the matter sources along the lines described in the previous section
would then require considering a finite set of instantaneous observers, {z1,...,zn}, located
on ¥ and setting a standard for the cutoff distance ¢, over which the (experimental)
distribution of matter sources, (i.e. the probability that the matter variables p(7) and J (1)
conform to a given distribution p(é)dp, J(7)dJ), is determined. Then we proceed with
the blocking prescription for eliminating unwanted degrees of freedom and consider the

behaviour as the averaging regions become larger and larger.

We may decide to treat the riemannian geometry of ¥ as uncoupled with the matter
sources if we are simply interested in smoothing-out the sources, or if we wish to consider
fluctuations of the matter as essentially uncoupled to the fluctuations in geometry. Namely,
the curvature fluctuations appearing in the definitions of the block variables, 9., (k; f) and
&m(k; f), can be thought of, under appropriate circumstances, as independent random

variables with a given distribution.

In general, however, the sources are coupled to the gravitational field, and we ought
to treat the full dynamical system, the cosmological fluid plus the geometry of ¥, in the
procedure of blocking. Moreover, we should bear in mind that without taking explicitly
into account the backreaction of the geometry one cannot really provide a reasonable

averaging procedure for the sources.

In order to do so, we consider for a given cutoff distance ¢,, the variables p(k) and J(k)
associated with a minimal geodesic ball covering { B(z, eo)}ﬁ;l. The change of the cutoff
is naturally realized by considering balls {B(zi, €m = (m + 1)¢,)} with m = 0,1,.... The
block variables, ¥,(k; p,J) and ¥m(k; p,J), are defined according to (3.43) with f given
by (3.61). This transformation can be seen as thinning-out the degrees of freedom which

is at the heart of any coarse-graining.

The original cutoff ¢, is chosen to set the scale over which General Relativity is exper-
imentally verified and it can be taken as, say, the scale of planetary systems. We can thus
safely assume that the Einstein field equations hold on that scale. It is however impossible

to provide a mathematical model of the distribution of matter in the universe going down
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to such fine scales; besides this task would be impractical. What one does instead is to use
continuous functions, assuming that they represent appropriately “volume averages”. The
results of such an averaging in an inhomogeneous medium obviously depend on the scale.
The point is that if the Einstein equations hold on the scale where they have been verified
(here taken to be that of the planetary scale), then they do not seem to hold a priori on
larger, cosmological, scales that require averaging. To see this, notice that the Einstein
tensor G uvy calculated from an “averaged” metric g,,, cannot be equal to the Einstein
tensor G, which was first calculated from the fine-scale metric g,, and then averaged.
This is so due to the non-commutativity of “averaging the metric” with calculating the
Einstein tensor being strongly non-linear in the metric components.
Below we shall assume a Hamiltonian point of view. Then the probability P({p(k),J(k)})

that the matter variables, according to the records of the instantaneous observers { B(zx, €); a(zk), &' (a

in ¥, take on some particular set of values, {p(k), J(k)}, is given by the equation

P({8o(k; p, TV h,.) = 5 expl-H({p(k), I(R)}), (3.62)

where Z is a normalization factor, and H ({p(k), J(k)}) is the Hamiltonian associated with

the matter variables p and J. Namely,

exp {— <ap+ally, >50]
Y, exp[— < ap+ ahJy > )

P({o(k; p, I)h,...N) = (3.63)

where 3 ;... denotes summation over all possible configurations of the matter variables,
p and J, that can be experienced by the instantaneous observers {B(zg, €); a(zx), o*(z4)}

n X.

The validity of General Relativity at this scale implies that this Hamiltonian is a part
of Hapar({p(k),J(k)}), the Arnowitt-Deser-Misner Hamiltonian, associated with the data
of the three-geometry g, of X, its conjugate momentum 7, and of the matter variables
p and J, evaluated in correspondence with the {B(zg, €)}-approximation associated with

the net of points {zx}. Namely,

Hapar({p(K), I(k)})]e =< oH(g, 7, G, p) + & Ha(g, 7, G, T) > D vol(B(z:;€)), (3.64)
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where
H(g, 7, G, p) = (det(9)) ™/ *[x%mqs — %(WS)Q] — (det(g))'/*R(g) + 8n(det(9))"/*Gp{3.65)
and
Halg, 7, G,J) = —2n8,, + 167(det(g))'/*G Ja, (3.66)

and where the momentum conjugate to the three-metric gqp is given in terms of the second

fundamental form K, of the embedding of X in the resulting space:time, as

7% = (det(g))/2(K® — Kg°). (3.67)

We wish to recall that the lapse and the shift appear in the Hamiltonian as arbitrary
Lagrange multipliers (their evolution is not specified by the equations of motion), and as

such they enforce the constraints

- a 1 a
H(g, 7, G, p) = (det(g)) ™/ *[nmap — 5(m)?] - (det(9))/*R(g) + Br(det(9))'/*Gp =(3.68)
and

Halg, 7, G, J) = —271'2;,) + 167 (det(g))/*GJ, = 0. (3.69)

Asis well known, these constraints are related to the invariance of the theory under the
(four-dimensional) diffeomorphism group of the space-time resulting from the evolution of
the initial data, satisfying them. The momentum constraint, H,(g, 7, G,J) = 0, generates
the (spatial) diffeomorphisms into X, while the Hamiltonian constraint, H(g,n, G, p) = 0,
generates the deformation of the manifold ¥ in the resulting space-time, i.e. the dynamics.
(Notice that such deformations can be interpreted as four-dimensional diffeomorphisms

only after that space-time has been actually constructed).

The Hamiltonian H 4pas({p(k), J(k)}), apart from the lapse and the shift, depends on
the three-metric g,; on ¥ and its conjugate momentum 7,4, the gravitational coupling G,

and on the configuration which the matter variables, p(k) and J(k), take on the set of
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instantaneous observers, { B(zy, €); a(z1), @'(zk)}, chosen to describe the distribution of

matter at the given length scale e.

The basic question to understand is how the block transformations, {¢m(k; p,J)} —
{®m11(k; p,T)}, followed by rescaling, affect the Hamiltonian associated with the matter
variables p and J, and then discuss how this in turn affects the full Hamiltonian H .ipas.

Starting from the probability distribution P({%,(k;p,J)}1,..~) We can inductively de-
fine the probability distribution PU™1) ({441 (k; p, J)}) of the block variables {thm1(k; p, J)}
(and of the corresponding rescaled variables {¢mn+1(k;p,J)}). Since the block variables
{¥m+1(k; p,J)} are recursively obtained from the knowledge of the block variables at the
mth stage, {t,(k; p,J)}, the distribution P+ ({4 11(k; p,3)}) only depends on the
knowledge of PU™) ({¢(k; p,J)}). We can formally write

PO ((mpa(ksp, DN = > PP ({%m(ks 0, 1)), (3.70)
{¥m(kipd)}
where the sum is over the probabilities of all the configurations {1,,(k; p, J)} consistent
with the configuration {¢,,11(k; p,J)} of the block variables.

As usual, this allows us to define the effective Hamiltonian for the matter variables

after mn iterations of the block transformation, according to

PO ({3 (ks , D)) = iy 50l H ) {5 2, T)D)) (3.11)
where
2= Y el H)({m(ki 0, D)D) (3.72)
{¥m(kip.d)}

Such H(™({4m(k;p,T)}) are defined up to an additive constant term (e.g. [31]). If
we also stipulate, as is standard usage in the Renormalization Group approach, that

the effective Hamiltonian H ™+ ({t;,11(k; p,J)}) takes the same functional form as
H ({ghn (k3 p, I)}), e, i

exp [_ < aplm+1) & ahJ’(lm-H) >6m+1]

(m+1)

P ({Ymi1(k; p,3)h,n) = ,
> p,J €XP [— < aplmtl) 4 ah gy >€m+l]

(3.73)
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then this indeterminacy can be transferred to the effective matter variables p{™+1) and

J(m+1) 'in terms of which H ™) ({tn41(k; p,J)}) is defined.

It is immediately checked that such effective matter variables are defined by (3.71) up

to the transformations
p(m+1) — p(m+1) + f,

where f and v are, respectively, a scalar function (sufficiently regular) and a vector field

defined on ¥.

Among the various normalization conditions that we may adopt in order to avoid the
indeterminacy connected with (3.74), the natural one comes about by requiring the diver-
gence and the Hamiltonian constraints to hold at each stage of the renormalization. This
being the case, upon coupling matter to the geometry, the lapse a and the shift o’ main-
tain their role of Lagrange multipliers enforcing the (four-dimensional) diffeomorphism

invariance of the theory.

Such requirements imply that the full effective Hamiltonian (matter plus geometry),
takes on the standard ADM form pertaining to gravity interacting with a barotropic fluid
at every stage of the renormalization.

According to the remarks above, we can consider as an independent parameter in
the (effective) fluid Hamiltonian H (™) ({t,,(k; p,J)}) the three-metric g((l?) of the three-

manifold 3, whereas the matter density p{™) and the current density J(™) are at each stage

(

a

connected to g Zl) and K ‘EZ") by the Hamiltonian and divergence constraints that hold at
each stage. Then the effect of the renormalization induced by the blocking procedure
{¥m(k;p,3)} — {¥m+1(k; p,I)} and the corresponding rescaling, can be symbolized as a

non-linear operation acting on the metric (glgzl)) so as to produce the metric (g£?+1)), i.e.
1 m
(o5 ) = RAoii”), (3.75)

whereas the renormalization of the second fundamental form K,; is generated by the

linearization of (3.75), as is discussed in section 5.
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Figure 3.8: Given a probability law according to which matter is distributed at a given length
scale (say, the planetary scale), we can get the corresponding probability distributions obtained
by averaging the matter variables over regions of ever increasing scales. The resulting effective
Hamiltonians are defined up to additive constants which affect the renormalized mass density and
the renormalized momentum density. Such indeterminacy can be naturally removed by enforcing
the Hamiltonian and diverence constraints at each step of the renormalization procedure.
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This way, this renormalization transformation R defines a trajectory in the space of
riemannian metrics of £. One moves on such trajectory by discrete jumps. However,
in what follows we shall replace such discrete dynamical system by a smooth dynamical

system, describing renormalizations of the parameters (gap), and (Kap)-

The deformation of the initial data set for the Einstein field equations, symbolically
denoted by R above in (3.75), realizes in fact a formal, (at least at this stage), map-
ping between the initial data sets for the field equations. As we have seen above, this
renormalization acts in such a way that at each its step the deformed data satisfy the
constraints. The time evolution, in turn, of any such data set generates a one-parameter
family of solutions to the field equations which interpolates between the initial inhomoge-

neous space-time to be averaged-out and its renormalized (deformed) counterpart.

3.6.3.1 The Ricci~-Hamilton flow

In order to replace the discrete operator R, describing the effect of renormalization of
gab With a continuous flow, we can start by discussing some geometrical implications of
equation (3.40). According to the Renormalization Group analysis of the previous section,
they follow by considering the average < f >, as a functional of the metric and thinking of
the metric gqp as a running coupling constant, depending on the cut-off. In this connection,
it can be verified that we can equivalently interpret (3.40) as obtained by considering the
variation of < f >, under a suitable smooth deformation of the background metric gqp,

rather than by deforming the (euclidean) radius of the balls {B(z;,¢€)}.

As a matter of fact, we can equivalently rewrite the second term on the right hand

side of (3.40) as

agab
an’

where, D < f >. -0gap/ 07 denotes the formal linearization of the functional < f > in

<R><f>—-<Rf>=-D<f>-

(3.76)

the direction of the symmetric 2—tensor 8gq,/07, and where

8g°a"rfn) = % < R(n) > gav(n) — 2Ras(7), (3.77)
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Rap(n) being the components of the Ricci tensor Ric(g(n)), and < R(n) > is the average

scalar curvature given by

< Bn) >= sy [, Blndm (3.78)

Indeed, the linearization of < f >. in the direction of the generic 2—tensor Ogq./07 is
provided by

5.%{; 1 b 6 1 : ab 6
il = g, —= —Ja 3.79
an 2<fg angb>e 2<f>e<g 3ngb>ea (3.79)

o (3.76) follows, given the expression (3.77) for 8gaqp/07.

D < f>,

According to what has been said in the previous paragraphs, the effective distribution
of matter sources, according to a set of instantaneous observers {B(z;, €)}, is characterized
by the underlying three-geometry thought of as an effective parameter depending on the
cutoff €. Since the Hamiltonian and the divergence constraints hold at each stage of the
renormalization procedure, (they fix the effective Hamiltonians which otherwise are unde-
termined up to a constant factor), the renormalization of the matter fields is intrinsically

tied with the renormalization of the three-metric.

The invariance of the long distance properties of the matter distribution, under simul-
taneous change of the cutoff € and the parameter gqp, can be expressed as a differential
equation for the effective Hamiltonian H(p,J), (actually for the partition function associ-

ated with this effective Hamiltonian), namely,

[- a+ﬂab g)(9 ZGXP H(p,J)] = (3.80)

Recall that H(p, J) is explicitly provided by (in the given approximation)
H(p,I) =< ap(p) + a'J; >. > vol(B(zh,€)), (3.81)
h

where the average < ap(p) + a'J; >, is a functional of the three-metric gq, here thought

of as the running coupling constant.
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Figure 3.9: If we enlarge the ball from € to e7¢, while deforming the metric according to the
Ricci-Hamilton flow (3.77), (for a parameter time n = 7), then the average value remains as constant
as it can be since (3.77) smoothes the curvature fluctuations in the annulus B(z, e7¢)\B(z, €).

Thus, in order that the equation (3.80) is satisfied, it is sufficient that

8 0 ;
[~eg. + Parl9) 5.~ < aplp) + & Ti >= 0. (3.82)

The Renormalization Group equation (3.82) states that increasing the cutoff length
(i.e., the radius of the averaging balls) from € to e7¢, while deforming the metric gqp by
flowing along the beta function SB,(g) for a parameter-time 7, has no net effect on the
long distance properties of the considered system.

According to the above remarks and equation (20), it can be verified that the beta
function yielding for (3.82), defined by

e gos = Ba(9), (3.83)
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is exactly provided by (3.77), namely,

ﬂab(g) = aggl;gn)

where the parameter 7 is the logarithmic change of the cutoff length e.

= 2 < Rn) > gasln) — 2Ran(n), (3.84)

Since the manifold ¥ is compact, (3.77) has to be interpreted as a Renormalization
Group equation in a finite geometry, and thus the relevant phenomena are here related to
finite size scaling (see e.g. [50]). A continuous theory, describing the (universal) proper-
ties of the cosmological sources and of the corresponding geometry, may arise when the
correlation length associated with the distribution of cosmological matter is of the order

of the size of the underlying manifold.

The metric flow (3.77) is known as the Ricci-Hamilton flow [124], studied in connection
with the quasi-parabolic flows on manifolds; quite independently it has been discussed
in investigating the Renormalization Group flow for general o-models (see e.g. [175] and
references quoted therein). The Ricci-Hamilton flow is always solvable [124] for sufficiently
small 7 and has a number of useful properties, (apart from being volume preserving which
is simply a consequence of the normalization chosen), namely, any symmetries of g,(7,) are
preserved along the gqp(n) flow for all > 7,, and the limiting metric (if attained) g, =
lim,, o0 gab(n) has constant sectional curvature. Thus equation (3.77), with the initial
condition gqp(0) = gap, defines (when globally solvable) a smooth family of deformations

of the initial three-manifold, deforming it into a three-space of constant curvature.

3.6.3.2 Fixed points and basins of attraction

Thus the point of the above discussion is that in order to arrive at a fized point of the
RG equation (3.40), the geometry has to be deformed according to the Ricci-Hamilton
flow (3.77). In this setting of the problem, the Ricci-Hamilton equations appear naturally
and in fact the approach proposed, enables us to attach a physical meaning to them
within the coarse-graining picture. This element was lacking in [61] where Hamilton’s

theorem appeared rather ad hoc. On the other hand, our approach demonstrates that the
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smoothing issue is deeply connected with the geometry and exhibits how this relationship

works. First some general remarks.

A fixed point is a point in the coupling constants space that satisfies

gab = R(93s), (3.85)

i.e. it is mapped onto itself by RG transformation.

Under RG transformation length scales are reduced by a factor m+ 1. Namely, for the
block variables, the correlation length measured in units appropriate for them, Ly (€m), is
smaller than the correlation length L, of the initial systemn measured in units of ¢,. The

actual physical value of the correlation length L is of course unchanged by the process of

blocking, thus L = L,,(€m) = Lo€o, 50O

L
Ly = ——. 3.86
1 (3.86)

Since L,, < Lo, the system with Hamiltonian H(™) must be further from criticality than
the original system. Thus, we conclude that the system is at a new effective reduced
“temperature” ggzn). At a fixed point (3.85), L* can be only zero or infinity since then
L*=L*/(m+1).

As is standard in RG analysis, we will refer to a fixed point with L = co as a critical -
fized point, when L = 0 we will call it trivial. Each fixed point has its domain or basin of
attraction, namely, the points in the coupling constants space in such a basin necessarily

flow towards and end up at the fixed point, after an infinite number of iterations of RG

transformation.

Let us, for the purpose of clarity, employ for a moment the ferromagnetic analogy. In
this case, for a system exhibiting a phase transition, there are two attractive fixed points.
One is the high-temperature fixed point which attracts each point with T' > Ty in the
coupling constants space, and it corresponds to the effective Hamiltonian for the system
as T — co. In this phase the variables assume random values and are uncorrelated. Upon
a sensible blocking of such a system the probability distribution of the block variables

remains unchanged.
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The second fixed point is the low-temperature fixed point which is the effective Hamil-
tonian for the system when T — 0. This corresponds to a system in a complete spins aline-
ment and the block variables are ordered then. Every point corresponding to T < Ty is
eventually attracted to this fixed point.

Across the Hamiltonian space there should exist then a surface, the so-called critical
surface, which separates the effective Hamiltonians flowing to the high-temperature fixed
point from those flowing to the low-temperature fixed point. Notice that the word surface
her‘e has rather a heuristic meaning. Indeed, the set of metrics, separating those flowing
towards a “low-temperature” fixed points from those flowing towards a “high-temperature”
fixed point, has quite a complex structure whose understanding is deeply connected with

some, yet unsolved, conjectures in 3D-manifold topology, (see below for more details).

If we now choose to start with a point on the critical surface, then upon RG transfor-
mation it will stay within the critical surface. There is a possibility that, as the number of
iterations of RG goes to infinity, the Hamiltonian will tend to a finite limnit 7£*. This point
is the critical fixed point and within the critical surface it is attractive (this is roughly
speaking the basic mechanism for universality), along the direction out of the critical sur-
face it is repulsive. This fixed point is related to the singular critical behaviour of the
system due to the fact that all points in its basin of attraction have infinite correlation
length. The simplest case is when the fixed points are isolated points, but it is also possible

to have lines or surfaces of fixed points.

With these preliminary remarks along the way, let us discuss how some of the above
general characteristic of Renormalization Group flows find their proper counterpart in the

particular situation we are analysing.

In the previous paragraph we showed that it was possible to replace the discrete opera-
tion of increasing the scale size of the observational averaging region by a “transformation”,
smoothly deforming the background metric ggp, which turned out to be the Ricci-Hamilton
flow. In this setting, following the example above, we would like to adopt the fundamental

hypothesis linking RG to the critical phenomena, namely, the existence of a “critical”
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metric (on the critical surface) g<7*, and of a “fixed point” metric g%, such that
ab ab

lim RU™(g5") = gl (3.87)

m-—oC

In (3.87) g%, is a mathematical object invariant under RG and we assume that gopit
represents the physics (in a sense to be clarified further) of curvature fluctuations of a
manifold at its critical point (“critical manifold”). Since the Ricci-Hamilton flow can be
interpreted as a dynamical system on a set of closed riemannian manifolds, we can adopt
the following interpretation of (3.87). Suppose, that we look at our manifold through
a “microscope” and are able to discern the curvature fluctuations down to a size €.
R(™) then represents the operation of decreasing the magnification factor, by m say, i.e.
the sample seen appears to shrink by this factor. We have to assume that the system is
sufficiently large so that the edges of the sample will not appear in the view. The hypothesis
(3.87) states that if we decrease the magnification by a sufficiently large amount, we shall

not see any change if we decrease it even further.
We are going to describe to what extent such hypothesis holds.

We already said that the Ricci-Hamilton flow (3.77), while always solvable for suffi-
ciently small 7 [124], may not yield for a non-singular solution as 7 increases. Hamilton
noticed that there are patterns in the kind of singularities that may develop. Typically
the curvature blows up, but in a very regular way (e.g. for §! x §% with the standard
symmetric metric). This has led him to a research program which, roughly speaking,
amounts to saying that any three-manifold can be decomposed into pieces on which the
Ricci-Hamilton flow is global and thereby, each of these pieces can be smoothly deformed
into a locally homogeneous three-manifold. Singularities may develop in the regions con-
necting the smooth-able pieces, but such singularities should be of a finite number of
types and all of a rather symmetric nature (namely, if they are blown up, they should be

associated with symmetric manifolds as e.g. S x S? [56, 142]).

It may be said that Hamilton’s program is an analytic approach to prove Thurston’s

conjecture, which claims that any closed three-manifold can be cut into pieces such that
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each of them admits a locally homogeneous geometry (e.g. [246]). The rationale, un-
derlying this analytical program towards Thurston’s geometrization conjecture, lies in the
above nice structural properties of the Ricci-Hamilton flow. Several steps are involved in
this program. Let us briefly recall them since, even if some of them are yet unproven, they
shed light on the assumption (3.87) and on (3.77) when interpreted as a Renormalization
Group flow.

The first step is the assignment of an arbitrary metric g on the three-manifold 2. In the
Renormalization Group approach, this corresponds to picking up a vastly inhomogeneous
and anisotropic geometry for the physical space, (here equivalent to the high-temperature
phase). Such a choice may not conform to the actual quasi-homogeneous three-geometry of
the physical space as is experienced now. However this quasi-homogeneity, in our opinion,
may be related to the possibility that the actual universe is near criticality, a circumstance

that we want to discuss rather than assume from the outset.

The second step is to deform this metric g via the Ricci-Hamilton flow (3.77). In
general, this flow develops local singularities which should be related to the manifold
decomposition in Thurston’s conjecture. Away from each of the local singularities it is
conjectured (but not yet proved) that the Ricci-Hamilton flow approaches that of a locally

homogeneous geometry in each disconnected piece.

This picture may be consistent with our blocking procedure yielding for (3.77) as the
Renormalization Group flow. According to the analysis carried out in section 3.1, a highly
inhomogeneous and anisotropic geometry (X, g) can be characterized by minimal geodesic
ball coverings {B(z;,¢,)}, whose balls are to a good approximation largely uncorrelated
when seen on a suitable scale. This means that the values of the scalar curvatures, R(7),
evaluated at the centers of the balls of the covering, are random variables. Upon enlarging
the balls and rescaling, certain regions of the manifold might be such that correlations
develop among the corresponding R(%), whereas in other regions, no matter how we enlarge
the balls and rescale, the R(¢) will remain independently distributed random variables.

The former regions, exhibiting a persistence length, are those that should approach a
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locally homogeneous geometry under blocking and rescaling (i.e., under the flow (3.77)).
The latter regions should rather develop singularities under (3.77), since no matter how

much we block and rescale, the curvature will maintain its white noise character.

The third step is to study the behavior of (3.77) for the locally homogeneous geometries,
for this accounts for the structure of the critical set of (3.77). This has been accomplished
[142], and one finds that, depending on the initial locally homogeneous geometry, the Ricci-
Hamilton flows either, (i) converges to a constant curvature metric, (47) asymptotically
approaches (as 7 — oo0) a flat degenerate geometry, of either two or one dimensions
(pancake or cigar degeneracy), with the curvature decaying at the rate 1/7, or, (441) hits a
curvature singularity in finite time, with this singularity being that of the Ricci-Hamilton
flow for the standard metric on §? x §'. Note that constant curvature geometries always
occur whenever the manifold can support them, (in dimension three, constant curvature
manifolds and Einstein manifolds are synonyms). It is also quite interesting to note that
the Ricci-Hamilton flow of homogeneous metrics usually (with a few exceptions) tends
to approach or converge to the maximally symmetric homogeneous metric in the class

considered (see [142] for details).

Interpreting (3.77) as the Renormalization Group flow, it follows that locally homoge-
neous geometries evolving under (3.77) towards an isolated constant curvature manifold,
are sinks describing a stable phase of the corresponding cosmological model. For instance
a FLRW model (with closed spatial sections) characterizes such a phase. Non-isolated
constant curvature manifolds, (e.g. flat three-tori) provide less trivial examples of limiting
behaviour of (3.77), (see e.g. [125, 56]). The locally homogeneous manifolds non-admitting
Einstein manifolds (i.e. there are no left-invariant Einstein metrics on the group SL(2, E)),
provide even more interesting behavior. In this case, a metric renormalized under the ac-
tion of (3.77) develops degeneracies, and one gets, in our setting an effective cosmological

model with spatial sections of lower dimensionality.

All these limit points of (3.77), either fixed or not, have their own basins of attrac-
tion. Rigorously speaking, they are the sets of three-metrics flowing under (3.77) to the
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respective limit points, briefly discussed above. There are nine such basins of attrac-
tion, corresponding to the nine classes of homogeneous geometries that can be used to
model (by passing to the universal cover) the local inhomogeneous geometries on closed
three-manifolds. By labelling these classes according to the minimal isometry group of
the geometries considered we distinguish the following basins (here we follow closely the

exposition in [142}):

(i): The E3-Basin. It contains all three-metrics flowing towards the homogeneous flat
E3 metrics. This basin is eventually attracted by flat space, (flat tori, when reverting to

the original manifold rather than to its universal cover).

(it): The SU(2)-Basin. It contains all three-metrics flowing towards the three-parameter
family of homogeneous SU(2) metrics. This class admits Einstein metrics, in particular
the round metrics on the three sphere. This basin is exponentially attracted to the round
three-sphere, (modulo identifications). It is the basin of attraction yielding for closed
FLRW cosmological models.

(iii): The SL(2,E)-Basin. It contains all three-metrics flowing towards the three-
parameter family of homogeneous SL(2,E) metrics. This class does not admit Einstein
metrics. This basin goes degenerate, yielding for a pancake degeneracy whereby a two-

dimensional geometry survives: two of the components of the metric increase without

bound while the other shrinks to zero.

(iv): The Heisenberg-Basin. It contains all three-metrics flowing towards the three-
parameter family of homogeneous Nil-metrics. Again, this class does not contain any

Einstein metrics. This basin too undergoes a pancake degeneracy.

(v): The E(1,1)-Basin, where E(1,1) is the group of isometries of the plane with flat
Lorentz metric. It contains all three-metrics flowing towards the three-parameter family
of homogeneous Solv-metrics. Also this basin fails to contain Einstein metrics. This basin
eventually exhibits a cigar degeneracy: the curvature dies away, and while one diameter

expands without bound, the other two diameters shrink to zero.
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(vi): The E(2)-Basin, where E(2) is the group of isometries of the euclidean plane.
It contains all three-metrics flowing towards the three-parameters family of homogeneous
Solv-metrics containing the flat geometry. This basin is eventually attracted by flat met-

rics.

(vii): The H(3)-Basin, where H(3) is the group of isometries of hyperbolic three-space.
It contains all three-metrics flowing towards the one-parameter family of homogeneous
metrics constant multiples of the standard hyperbolic metric. This basin is attracted to

hyperbolic space.

(viii): The SO(3) x ®!-Basin. It contains all three-metrics flowing towards the two-
parameter family of homogeneous metrics obtained by rescaling the standard product
metric on §? x B!, It does not contain Einstein metrics. This is a singular basin, it is
attracted towards a curvature singularity: the round two-sphere shrinks, while the scale

on B!, (or if you prefer, the S! factor in the original manifold), expands.

(iz): The H? x E!-Basin, where H(2) is the group of isometries of the hyperbolic plane.
It contains all three-metrics flowing towards the two-parameter family of homogeneous
metrics obtained by rescaling the product metric on the product manifold, B! x H 2. Again,
this basin does not contain Einstein manifolds, and it is attracted towards a pancake

degeneracy.

The basins of attraction just described, and in particular those yielding for fixed points
(Einstein manifolds), are relatively uninteresting in connection with the Renormalization
Group interpretation of (3.77). Such fixed points, e.g. the round three-sphere, or the flat
three-tori, are all totally attractive. As already recalled they can be thought of as distinct
stable phases yielding for distinct cosmological models, characterized by the nature of
the metric (and of its infinitesimal deformations) at the fixed point. For instance, the
5U(2)-Basin characterizes FLRW models with closed spatial sections, and the related

homogeneous anisotropic models, (see section 6 for more details).
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3.6.3.3 Critical fixed points: an example

The existence of critical fixed points, (critical in the sense of (3.87)), characterizing the
(universal) properties of (continuous) phase transitions between two different cosmological
regimes, cannot be immediately read off from the above analysis. It is rather the conse-
quence of the (conjectured) existence of the decomposition of a manifold into pieces that
is associated, according to Hamilton, to the local singularities of the flow (3.77), (see the
second step of Hamilton-Thurston geometrization program). The origin of this connection
between critical behavior of (3.77) in the sense of Renormalization Group, and Hamilton’s

program, can be seen by considering the following detailed example.

Let us assume that topologically ¥ is a three-sphere, ¥ ~ §3. We shall consider on ¥
a metric g, obtained by glueing through a smooth connected sum two copies of a round

three-sphere
P S?l)ﬁSf’z), (3.88)
and endowing each 58), i = 1,2, factor with a round metric of volume v; = 1, and the
joining tube
5% x ([0,1] c BY), (3.89)

-3T

with the standard product metric of volume const.e™>7, (7 is a suitable parameter, see

below}), for T > 1.

To explicitly construct this latter metric we can proceed as follows:

Let y; and y, respectively denote two chosen points in both factor copies, 5(31) and
5(32). Let h¢y: 3 — Sa.), i=1,2, be two imbeddings given by the exponential mappings

exp,, TyLS&) ~ B — 5?1),
exp,, : Ty, 5?2) ~ B - 5?,_,). (3.90)
We assume that h(;) preserves the orientation while h(2) Teverses it.

Let a:(0,00) — (0,00) denote an orientation reversing diffeomorphism, and define

az:B3/{0} — ®3/{0} by the map a3(v) = a(|v[)l—z—| for every vector v € E3/{0}. For every
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point £; = hi(v) in the geodesic ball B(y;,r)/{0} C 5(3‘1), with 0 < » < %, (with 7/2
the injectivity radius of the unit three-sphere S?i))? we identify hq(v) with hy(as(v)) €

B(y2,7)/{0} C 5?2).
The space obtained in this way

5(31)ﬁ5?2) = (5?1) -{n}) Uh(z)ashal) (5?2) = {v2}) (3.91)

is a particular realization of the connected sum [159] of two copies of unit three-spheres.

In order to give to the neck, joining the two Sf’i), a cylindrical shape we blow up [103]
the metrics of the three-spheres in the neighborhoods of the points y; and y,;. Consider,

for simplicity, only the S?l) factor since the argument goes in an analogous way also for
3
the 5(2) factor.

Exploiting the exponential mapping the round metric of § ?1)’ (actually any sufficiently

smooth metric), can be written in a neighborhood of y; in geodesic polar coordinates as
g(z) = dr? + v2h;;d6'd67 + O(r?), (3.92)

where 7 = dist(z, 1) is the distance between y; and the point considered, h;;d6"d6” is the
metric on the two-dimensional unit sphere S2, and as usual, the higher order correction

terms involve the curvature.

Now, if we blow up this metric by rescaling it through r? we get, up to curvature
corrections, a distorted cylindrical metric

o) = L2 - &

+ h;;d6'd67 + O(r?). (3.93)

In order to eliminate the axial distortion due to ‘i’; , we substitute for the radial variable

7, introducing a new coordinate 7 defined as
r = exp[—T]. (3.94)
When expressed in terms of 7 we get that the blown up metric §(z) reduces to

§(z) = dr? + hi;d8'd6? + O(e™?7). (3.95)
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Thus, the blown up metric approaches the cylindrical metric exponentially fast as
7 — 0o. In order to introduce smoothly such a metric on the neck of S?I)HS?Z) we can

proceed as follows.

Choose smooth functions §(;)(r), ¢ = 1,2, satisfying

1 T
6(1')(7‘,') = ’—"—2—, 0<’I’,'Sz,

3

5(,’)(”':’) = (%, decreasing, —Z <r < P

biy(ri) = 1, m 2 z

5 (3.96)

where r; = dist(z, Y(i))- Also, let us introduce the following inclusion maps

Xy  Sgy—Anm}— (8% —{wn}) Ungayesh, (5 — {v21),
X@) Sty — {2} = (88— {m}) Ungzyaahg, (8¢ — {v2})5 (3.97)
X3y ¢ b1 (Ty, 5(31) —{0}) U ho(Ty, 5?2) -{0}) = ('5?1) —{wn}) Uh(g)ash(‘ll) (ng) —{y2}),

(X(l) and x(z) denote the inclusions of the spheres, minus the points y;, into the connected

sum; X(3) is the inclusion of the neck).

If {£,} is a partition of unity associated with the covering corresponding to the above

inclusions x(4), with @ = 1,2, 3, we can then define the following metric on .S'(sl)ﬁS(B‘Q),
3(2) = D bax(ml9(2) - (s (dist(z, y(i))]- (3.98)

For z not in the geodesic balls (of radius w/2), centered on y; and y,, this is the
standard round metric on the unit three-sphere; for z in the geodesic balls of radius /4,
centered on y; and ys, this is, up to curvature corrections, the cylindrical metric introduced
above. For z in the annuli between such balls § is a smooth interpolating metric joining

the spheres to the cylindrical neck.

By expressing (3.98) in terms of the variable 7, we get the metric on Sg’l)ﬂS&) which
is the round metric on each S?i)/B(yi, e~ 7) factor, and these factors are connected, for 7

large enough, (i.e., nearby y;), by a thin flat cylinder.
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The Ricci-Hamilton evolution of (S ?UL'IS (32), g) can be explicitly constructed as follows.

According to [142] let us write the metric on §% X B! as

g ineckof S3

(1)55(32) = .Dg]P\_l + Egg2, (3.99)

where gp1 is the metric on E!, ge» is the round metric on the unit two-sphere, and D and
E are constants. The Ricci-Hamilton flow (3.77) preserves the structure of this metric and

reduces to the coupled system of ordinary differential equations

d
dp_ 2
dn 3
d 4 (D
p = Z(Z 3.100
which immediately integrate to
2
E = Eo-— 57)7
DoE?

(B~ /3" N

where EZ = E%(n = 0) is the initial radius of the round two-sphere, whereas Dy = D(n =

0) is the scale on R!.

Given this solution of (3.77), we can construct the Ricci-Hamilton evolution of (S ?1)115 6’2), g)
by looking for a solution of (3.77) in the form

§(z3m) = 3 faxay (Mo (2) - 8 (dist(2, 3]s (3.102)

where the inclusion maps x(,) depend now on the deformation parameter 7. We assume
that the metric g(z), (the round metric on the spheres 5'(31.) and the standard product
metric on the neck~ S§? x E!) being locally homogeneous, is preserved by (3.77), since
the Ricci-Hamilton flow preserves isometries. As the plumbing between the spheres and
the neck shrinks as 7 increases, (as the 5?2 factor in the neck), the inclusions X(x) aTe

necessarily 7-dependent. The dynamics of x(,) can be obtained as follows.
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Figure 3.10: If we blow up the metric of two three-spheres 5?1) and S?:,), (here represented as
two-spheres), around the points y; and y; and then join the resulting manifolds, we obtain the
connected sum 5(31)1155‘2). According to this procedure, the neck S$? x E! inherits a cylindrical
metric up to exponentially small correction terms.
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The Ricci-Hamilton flow (3.77) for §(z;n) is given by

{ _‘?ig_béﬂl = % < ‘R(n) > gab(n) - 2Rab(n)7
gab(n = 0) = Jab,

and, in terms of the pulled-back metric it is

2 X ()o(e) St = 5 < Rn) > fey(n)a(2) - ol

— 2R(x{a)(m)9(2) - 6(3))as- (3.103)

The left hand side of (3.103) can be evaluated according to a suggestion first exploited by
D. DeTurck, viz.,

a. . . a
%[X(a)(ﬂ)g-5(i)]ab(w) = X{o)(m) [a—n[g'5(i)]ab(x(ﬂ,m))]

+ Xy [Luml - Slas(x(m2))],  (3.104)

where the Lie derivative Ly (y)[g - §(i)las(x(n,z)) is along the vector field w(n; ) which

generates the 77-evolution of the inclusions x4, viz.,

BX(a)(W)
—"5—1'7—“ = w("];X(a)(n))a
X(a)(n = 0) = X(a) (3105)

Let us denote by < R >(o) the average of the scalar curvature R(X(x)(z)) over the
images of the inclusions x(q), (viz., for @ = 1,2, < R >(q) is the average over 58-), while
for a = 3, the average is over the neck). In terms of these averages, the Ricci-Hamilton

flow (3.103) can be written as

fi

—%[5(0 * gab(X(2)(2))] g < R(7) >(a) 0(i) - 9,,(X(a)(%)) — 2Rab(X(e)(Z))

b8 - 0 0e(@)) [< B > = < R() > ()
Lymlg - 6iylab(x(n, 2))- (3.106)
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As can be checked, the Ricci-Hamilton flow preserves the local homogeneous geometries

over the spheres 58')’ and on the neck, if and only if the vector field w(n; a) satisfies

25(1') “ 9 (X(a)(2)) [< R(n) > — < R(n) >(a)] = Lymlg - 6(iylas(x(m, 2))- (3.107)

By taking the trace of (3.107) with respect to g - §(;), we get

<R>— < R>4=Viu(na), (3.108)

where V denotes the riemannian connection with respect to g - 6(i)-

For oo = 1,2, i.e. for the punctured spheres S?i) — {y;}, the above relation yields upon
integration over Sa.) ~ B(yi,7)

[< R>—-<R >(a)] vol (Sf’i) —B(yi"")) = _/:92(,,

where $?%(n) is the 7-dependent boundary of Sa-) ~ B(yi,7). Since < B > — < R >(4), for

) wi(n; a)do®, (3.109)

a = 1,2, is proportional to the average scalar curvature of the neck, the term on the left
hand side of (3.109) blows up as (Ep — %17)“1 as 77 increases. On the other hand, by the
52(n)- rotational symmetry, the term wy(n; a)do* is spatially constant on the two-sphere
boundary $2%(7) of the punctured three-spheres. Thus, (3.109) implies that as 7 increases,
the surface area of S%(n) shrinks to zero, as (Eo— %7)~!, by moving along the outer normal

direction of §%(n) C (S?i) ~ B(yi,r(n)))-

For a = 3, i.e., for the neck, (3.109) yields

[< B> = < B>y vol (S*(n) x B!) = /

wi(m; a)dak - / wi(n; @)do*,

(3.110)
where 5(22)(77) — Sé)(n) is the oriented boundary of the cylinder §%(5) X E!. Since < R >
— < R >(5=3) is, up to small correction terms (coming from the collars joining the spheres

to the neck), the average curvature over the spheres 5(31.), i =1,2, (3.110) simply tells us
that as the §2(n) factor in the neck shrinks, the scale-length of the B! factor grows, so
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that the volume vol (§%(n) x E!) remains constant during the Ricci-Hamilton evolution,

namely,

Jsz, (o wi(m3@)do* = [ () wi(n; o) dor*

(8% () x ') = 3.111
w< (U)XE) <R>- <R >@u=3 ( )
Notice that by introducing, as above, a new variable
dist,(z, y(;)) = exp[~7(n)], (3.112)
with
r
T(n) = , (3.113)
[1— 7]
and by rescaling the unit two-sphere metric h;; according to
2
hij(n) = [1 = gmlhij, (3.114)

the above analysis of the Ricci-Hamilton flow (3.103) provides on the neck the metric

§(z;n) = dr?(n) + hij(n)d8'ds’ + O(e~*71), (3.115)

and on Sa) the standard round metric.

Notice also that (3.115) goes cylindrical exponentially fast in 7. As 7 increases 0 <
7 < %, the neck becomes longer and longer while getting thinner and thinner. In the limit,

n— %,We get

(5?1)”?2)79) - 5(7'1)1_15?2), (3.116)

where the three-spheres S ?i) carry the round metric of volume 1, while the smooth joining

regions shrink exponentially fast around the points y(;), 1 =1, 2.
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3.6.3.4 Critical surfaces and topological crossover
Let g, be a metric on ¥ with positive Ricci curvature,
Ric(g,) > 0 (3.117)

and with volume vol(%, g,) = 2.
By means of g, and the metric §; introduced in the previous section, we can construct
on X a smooth one-parameter, (0 < t < 1), family of metrics g;, with g;=0 = g, and

§e=1 = g1 by setting

g: = (1 —t)go + tg1,

0<t<1. (3.118)

According to Hamilton’s theorem [124], there is a right-open neighborhood of ¢t = 0
such that all metrics g; in this neighborhood are in SU(2)-Basins and are attracted, under
the action of the Ricci-Hamilton flow (3.77), towards the round metrics on §° with volumes
v¢, (since the volume of g; changes with ¢, we have a family of fixed points, namely, round
three-spheres parameterized by the corresponding volumes v; which are kept constant

under the Ricci-Hamilton flow; thus vi—g = 2).

On the other hand, according to the remarks above, we have an open neighborhood of
t = 1 such that all metrics g; in this neighborhood go singular under the Ricci-Hamilton
flow. Indeed, for ¢ = 1, the Ricci-Hamilton flow of § fixes the round S factors while the
joining tube, §?xE!, is driven towards a curvature singularity. By continuity, this behavior
extends to a left-open neighborhood of t = 1, and a three-sphere in this neighborhood splits

apart into two round spheres.

It follows that there is a neighborhood of the § metric such that some of the metrics
in this neighborhood are driven towards attractive SU(2)-Basins, while others are driven

towards a singular (S?l)ﬁS?z))—Basin.

The set of metrics driven towards this basin defines a critical surface. Below we shall

lefine a critical fixed point. Since the Ricci-Hamilton flow preserves the metric §, up to
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a trivial rescaling of the neck in S?l)ﬁsz), (rigorously speaking this is true only up to
exponentially small correction terms which arise in the regions joining the three-spheres
with the §2 x 2! neck), we can characterize the critical fized point for (3.77), in the example

considered, as the metric on S (al)ﬂS?z) given by

Gerie = {a(aim)l m = 5}, (3.119)

where §(z;7)is the one parameter 7-family of metric solution of the Ricci-Hamilton initial
value problem (3.103). This is a consistent characterization of a critical fixed point for
(3.77), since (3.77) fixes (S(Bl)ﬁSé), Gerit), and as required for (3.87), the correlation length
associated with (5?1)ﬂ5?2)’ Gerit) is L = co. This is so since, roughly speaking, in order to
describe (S?l)ﬂS(BZ), Gerit) we fix any representative (5(31)&5?2)) which is characterized by a
correlation length Ly ~ the length of the neck, and then rescale with the Ricci-Hamilton
flow (3.103) from L, to L = oo.

Notice however that in this particular case, the critical point is not related to a phase
transition. As mentioned before, we are here in presence of significant finite-size effects
which are concerned with a dimensional crossover and they show up, as usual, as an effec-
tive reduction of dimensionality [50]. In this case, the three-dimensional neck of (5?1)H5?2))
goes one-dimensional. This crossover to (quasi-)one-dimensional behavior is not accompa-
nied by a singular behavior in thermodynamical quantities, such as correlation functions,
but nonetheless an anomalous behavior is present. Indeed, geometrically speaking, the
critical fixed point (S fl)ﬂS ?2), Gerit), and the corresponding critical surface, separates two
stable phases under the renormalization generated by (3.77). One is given by the manifolds
eventually evolving towards the round three-sphere of volume 2. The other is generated
by those manifolds which pinch off and eventually evolve towards two round three-spheres,
each of volume 1. The pinching off through thinner and thinner necking is necessary for

such a topological crossover.

From a physical point of view, and as we shall see in section 6, the fixed point described
above separates two possible different closed FLRW regimes. Omne with closed spatial
sections which, at some particular instant, are a three-sphere of volume 2, while in the

other regime, we have two distinct closed FLRW universes having spatial sections, (at a
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given instant), of volume 1. We may have also many different necks corresponding to a
regime whereby the spatial section ¥ yields for many closed FLRW universes.

It is clear that the above explicit construction of a critical fixed point for (3.77) can
in principle be generalized to more general situations. The strategy is to take two or
more trivial fixed points, such as those associated with the SU(2) and H(3)-Basins, and
connect them through the degenerate basins (such as SO(3) X B!, as in the above example,
or through the H(2) x E!-Basin, etc.). In this connection notice that the connected
sum mechanism yielding for the (S (:”l)ﬂSé))-critical fixed point, can be generalized to an
operation of joining two (or more) manifolds (corresponding to stable attractors) along
tubular neighborhoods of surfaces (rather than points, as in the case for the standard

connected sum).

A particularly interesting connecting geometry would be H(2) x E!, (by compactifying
the hyperbolic plane in a closed surface). In this latter case the scale of the hyperbolic
geometry goes to infinity under the Ricci-Hamilton flow (pancake degeneracy [142]). Finite
size effects are again at work, but this time the effective reduction of dimensionality is more
imteresting than the one in the (S?I)HS&), Gerit) case. Indeed, two out of three dimensions
are infinite, and there will be a crossover to a critical behavior with critical exponents

characteristic of a two-dimensional system.

One can consider the analysis presented above as a physically non-trivial application of
Hamilton-Thurston’s geometrization program (cf. [247]). In some of its aspects it is rather
conjectural and speculative, but in our opinion, it is quite intriguing that motivations
coming from geometry and a physical problem, like the one addressed here, namely, the
construction of cosmological models out of a local gravitational theory, go hand in hand

m such a way.

3.6.4 Linearized RG flow

The relative slopes of < f > (g1) and < f >.,. (g2), with f given by equation (3.61),
as m — 00, and for g; in a neighborhood of g,, are of some relevance to our discussion.

[n a standard RG analysis such relative slopes are related to critical exponents. Given
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Figure 3.11: Different deformations of the initial three-manifold ¥ may have quite different fates.
If the waist of I is increased enough by the deformation, (i.e., if it is rounded), the Ricci-Hamilton
flow will evolve & toward the round three-sphere. If the waist is shrinked enough by the initial de-
formation, the Ricci-Hamilton flow will evolve I toward 5?1) I S?z)' The three-manifolds attracted
towards 5?1) I S?Q) define a critical surface.
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the blocking procedure for < f >, (g1) as m — oo, yielding for a g; “renormalized”
according to the Ricci- Hamilton flow (3.77), one can sensibly ask what happens if g is
slightly perturbed, namely, if we replace it by

gab = gab + 8 Kap, (3.120)

where K,p is a symmetric bilinear form (a choice of the symbol is quite intentional, since
later the above consideration will be applied to the second fundamental form). It can
be shown that if g; is scaled, according to the Ricci-Hamilton flow (3.77), then K, gets

renormalized according to the linearized Ricci-Hamilton flow, namely (7 in the brackets

suppressed),
8 2 2 1 1
—Kap = = <R>Kup+-galz <Rg°Kap>—- <R bRy > —
o Rab 3 <E> b+3gb[2< g b>—5 <R><yg b
1
< R%®K a4 >] — ALK gy + 2[div*(div(K — 5(Tr K) 9))lat (3.121)

with the initial data K,(n = 0) = Kg, where K € S?% is a given symmetric bilinear
form, Ay is the Lichnerowicz-DeRham Laplacian on bilinear forms

ArKogp =~V VK + RGSK‘E + Rbus - 2RasbtKSt, (3.122)

and the operators A, div*, div and T'r are considered with respect to the flow of metric
(g,m) — g(n), solution of (3.77). The div (here, minus the usual divergence) is the
divergence operator on S§?3%, div* is the L?- adjoint of div, acting from the space of
vector fields on ¥ to S (it can be identified with }[Lie derivative] of the metric tensor
along a vector field).

Note that K(7) solution of the linear (weakly) parabolic initial value problem (3.121)
always exists and is unique [124], and represents an infinitesimal deformation of metrics
connecting the two neighbouring flows of metrics, g(n) and ¢g’(7n), (obtained as solutions
of problem (3.77) with initial data g(np = 0) = g and ¢'(y = 0) = g(n = 0) + eK(n =
0) + O(€?), respectively). For what concerns the structure of this solution, one can verify
that corresponding to the “trivial” initial datum K (7 =0) = Lyg (where X : ¥ —» TX is
a smooth vector field on X), the solution of (3.121) is provided by

Kap(n) = Lx gas(n)- (3.123)
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This property expresses the Diff(Z) equivariance of the Ricci-Hamilton flow. (Notice
that X is 7-independent).
The above fact follows by noticing that along the trajectories of the flow (77, g9) — g(7),

solution of (3.77), we have

15} o 2
%L.\'gab(ﬂ) = L.\'[%gub(ﬂ)] =3 < R(n) >5 Lxgab(n) — 2L x Rap(n)- (3.124)

But the Diff(X)-equivariance of the Ricci tensor, i.e. the fact that Ric(¢™g) = ¢ Ric(g)
for any smooth diffeomorphism ¢ : ¥ — X, implies that

LxRg = D Ric(g) - Lxgabs (3.125)

where D Ric(g)K is the formal linearization of Ric(g), around g, in the direction K:

d
D Ric(g)- K <[ fie(g + tK)i=o

_ %A LK — div[div(K — -;-(TTK)g)]. (3.126)

Upon introducing (3.125) in (3.124) we get

2

5 < B(1) >n Lxgas(n) - 2D Ric(g(n)) - Lx gab(n)- (3.127)

8
51‘7L.\'gab(77) =

One can check that the right hand side of the above expression coincides with the right
hand side of (3.121), when this latter is evaluated for Kq5(n) = Lx gas(n). Hence Lx gas(n)
solves the partial differential equation (3.121) and, since for 7 = 0, K45 = Lxgab, the
uniqueness of any solution of the initial value problem (3.121) implies that Kap(7) =
L x gap(n), whenever Kyp(n = 0) = Ly gas, as stated.

Moreover, if K(n) is a solution of (3.121), with initial datum K (7 = 0) = K, then the
space average of T'r K (n) over (X, g(n)) is preserved along the flow (7, g) — g(7), namely,

<TrK(n)>,=<TrK >,, 0< 1< co. (3.128)

This property of the solutions of (3.121) is an immediate consequence of the volume-

preserving character of the Ricci-Hamilton flow.

Finally, another relevant property of the initial value problem (3.121) can be stated as
follows. If (1, Kap) — Kab(n) is the flow solution of (3.121), with initial datum Kap(n =
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0) = Kb, then it can always be written as [175]

Kap(1) = Kap(1) + Ly(n)9ab(n); (3.129)
where the bilinear form Kub(n) and the p—dependent vector field v(7n), respectively, are

the solutions of the initial value problems:

8 . 2 X 2 1 . 1 ]
— K= 3 < R>Ku+ ggab[“ < Rg®K,, > —5 < R>< g®Ku > —

On 2
< R%Kop >] — Ap Ko,
Kap(n = 0) = Kap, (3.130)
and
0 cf I 1 T8
—6—”—1}&(77) = —V(Heq — EK grsfca)y v(n=0)=0. (3.131)

To summarize, as 7 — o0, Kg(n) may either approach a Lie derivative term, such
as L,(;)9ab(n), or a non-trivial deformation Kas(n) [175]. The non-trivial deformation
is present only if the corresponding Ricci-Hamilton flow for g,5(n) approach an Einstein
metric on ¥ which is not isolated. In such a case, (e.g. flat tori), there is a finite dimen-
sional set of such Einstein metrics, and the non-trivial K, simply are the infinitesimal
deformations connecting one Einstein metric §; in X and the infinitesimally non-equivalent
one. Also in this case the Lie derivative termmn may be present. What it represents is a
reparameterization of the metric g; (under the action of the infinitesimal group of dif-
feomorphisms generated by v (see equation (3.129)), (“gauge artifact”). This latter Lie
derivative term is the only surviving term when g is isolated (like e.g. in the case of the
round three-sphere. As is known, the round metric § on the three-sphere §3 is isolated,
in the sense that there are not volume-preserving infinitesimal deformations of § mapping

it to another inequivalent constant curvature metric g'.)

To summarize, the flow (3.130), (3.131), tells us how to renormalize the second funda-
mental form in such a way that the blocking prescription < f >, — < f >¢,,, Works

both for the initial metric g as well as for the perturbed metric g + § K gp.
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3.6.4.1 Scaling and critical exponents

From the characterization of critical fixed points g*, for (3.77), (see section 4.2), we can
get information on the critical exponent characterizing critical behavior of the metrics
nearby g%,. This is the content of this section. In particular, we shall discuss the critical
exponents related to the critical fixed point (S?l)HS€2), Gerit). Even if this point is not a
thermodynamically interesting critical point, it exhibits many of the general features of

the more interesting type of singularities.

In order to characterize these critical exponents we can use the linearized Ricci-
Hamilton flow associated with the one-parameter family of metrics (Sf’l)ﬁS?Z), Gerit). In
the following we shall however proceed more directly and examine the properties of the
two-point correlation function associated with (S(B’I)HS?Q), Gerit) and the probability law of

relevance to our analysis.

Let y; € Sa), i = 1,2, be the two points in (S?l)us(?’z),gcr,-t) around which the round
metrics of § ?i) have been blown up. Let f denote a non-negative scalar field on (S a)ﬂS ?2)),

distributed according to the probability law formally defined by

p o 2=, ¢(z)
= Teso[H ()L, df (=)

(3.132)

where the functional integration is over the space of fields f: (5?1){15?2)) — B, equipped
with the L2-inner product

(F15)

i

,/:x , J(@)f(2)dng(z), (3.133)
(S(1)75(2))

and where

#(f) = [ £(2)dpy(=). (3.134)
(5812502 ’

(We could consider f as related to the matter fields, asin f = ap + a'J;, but the following
analysis is quite independent from a particular meaning of f). Notice also that the measure

dpg(z) in the above formulae is the riemannian measure on (S?l)ﬂS&)) associated with the

metric §(z) defined by (3.98).
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Let us now concentrate on the behavior of (3.132) when the neck of (Sa)ﬂSé)) gets
thinner and longer under the action of (3.77).

It can then be checked that along the Ricci-Hamilton flow (3.101) associated with
Flneck, both the L2-inner product (3.133) and the Gibbs factor exp[—H(f)] corresponding
to (3.134), are invariant. Thus it follows that the probability measure (3.132) is invariant
under (3.77), and the correlation function defined by

Eap[f(y1)f(v2)ls | (3.135)

where Eyp denotes the expectation with respect to dP, is well defined over the critical
fixed point Gri;.

In section 4.1 we have interpreted the Ricci-Hamilton flow (3.77) as the RG flow in
a finite geometry, characterized by the length scale L, which is large compared to the
microscopic scale (in particular, it is much larger than the radius of the geodesic ball
coverings used to discretize the theory). The correlation function depends on such a

dimensional parameter. If
v2
L(y1,92) -:—/ VDdz (3.136)
v

denotes the distance between the points y; and y, along the cylindrical neck of (5(31){15?2)),
and if this distance is large (as compared with the radius of geodesic ball coverings), then
the correlation length { associated with the two-point (connected) correlation function can
be read off from

- ~L(y1,92)
—L(y1,y2)>1 ]nEdP(f(yl)f(yZ))conn .

Since the correlation function remains invariant under the Ricci-Hamilton deformation of

(3.137)

the cylindrical neck, we get that along (3.101), £/ L(y1, y2) remains constant which implies
that on (5(31){15(32), Gerit) the correlation length £ behaves as

¢ =~ /DoEo[Eq — %ﬂ]_m- (3.138)

According to standard usage, we can define the critical ezponent v associated with the

correlation length of a finite size system (with typical size L) by the condition
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0 L
5L Pllp=pe = Ly, (3.139)

where p is a parameter driving the system to criticality, and p, is its corresponding critical
value. In our case, it is natural to set p = 7, with p. = 5. = % This immediately yields

for the critical exponent v the value

v =1 : (3.140)

A similar computation for the critical exponent associated with the correlation length
can be carried out when the connecting geometry is H? x B!. This takes place when two
riemannian manifolds M; and M,, which are supposed to evolve nicely under the Ricci-
Hamilton flow, are connected through a tubular neighborhood of a surface S, of genus h,

viz., 0 = Mils, M.
In this case, the metric on the neck can be written as [142]

Oneck = Dg?} -+ EgH'-’, (3141)

where gy is the metric on the hyperbolic plane. The Ricci-Hamilton flow equations take

a form similar to the §2 x B! case, up to a minus (important!) sign, namely,

d 4 (D

which upon integration provide

2
E = EO"”E"I:

DyE2 ‘
P = Gt N
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where E = E?(n = 0) is the initial scale of the hyperbolic geometry, whereas Dy = D(7 =

0) is the scale on E1.

The scale E of the hyperbolic geometry increases linearly with 77, while the scale factor
D on the line B! shrinks. It can be checked [142], that corresponding to this scale dynamics,
the curvature decays according to ||Ric|| = v/2/(Eo + %7), and we get in the limit 7 — oo

a pancake degeneracy.

The relevant correlation function is now Edp(f(yl)f(yg)jconn, with y; and 7, fixed
points in the H? factor, (i.e., on the surface 55). Again, owing to the symmetries of the
geometry involved, it immediately follows that the ratio between the correlation length
¢ and the distance L(y;,y,) must remain constant under the Ricci-Hamilton flow. This

implies that the correlation length behaves as

2
E~4/Ey+ 37 (3.144)

to which corresponds again a critical exponent v = 1, (in this case one cannot apply

(3.139) since the system is actually going to an infinite size).

A striking feature of these topological crossover phenomena associated with the renor-
malization of the cosmological matter distribution, is that their pattern resembles the lin-
ear sheet-like (or honeycomb-like) structure in the distribution of galaxies on large scales
(e.g. [111]). It is evident that if (¥, g, K, p,J), the initial data set for the real universe
(see the next section), is close to criticality, in the sense discussed in the previous section,
then the corresponding averaged model exhibits a tendency to topological crossover in var-
ious regions (the ones where the inhomogeneities are larger). Filament-like and sheet-like
structures would emerge, and the overall situation would be the one where such structures
appear together with regions of high homogeneity and isotropy in some sort of hierarchy.
This situation is akin to that of a ferromagnet nearby its critical temperature, whereby
we have islands of spins up and down in some sort of nested pattern. Even if there is a
tendency to homogeneity at very large scales, the picture just sketched, of the “hierarchy
of structures”, might be qualitatively valid in a good part of the universe; indeed recent

observational data seem to suggest the existence of still larger and larger structures (e.g.
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[61]). Notice that this picture bears some resemblance to the “cascade of fluctuations” in
critical phenomena [255]. Droplet fluctuations nucleated at the lattice scale in the critical
state can grow to the size of the correlation length where the details of the lattice structure
become lost and the scale invariant distributions of the large “droplets” are universal.

A possible connection of this whole picture with the self-organized criticality (S0C)
[16] can be envisaged, whereby the problem of structure formation, in terms of growth
phenomena, could be tackled in the framework of avalanche activity used in SOC [232].
It would be particularly interesting to estimate the scales in the universe, where it is
necessarily critical and trapped into self-organized (critical) states (similar suggestion was

recently posed in [212]).

3.6.5 Effective cosmological models

The results of the previous sections have interesting consequences when applied in a cos-

mological setting.

a cosmological model of our universe is provided by evolving a set of consistent initial data

(Z,9,K,p,J), according to the evolutive part of Einstein’s equations.

The data (%, g, K, p,J) describing the interaction between the actual distribution of
sources and the inhomogeneous geometry of the physical space, (3, g, K'), are required to

satisfy the Hamiltonian and the divergence constraints. Respectively,
87Gp = R(g) — K®Kqp + k?, (3.145)

ViK; — Vik = 167G Jh, (3.146)

where, k = K%, (see also section 4, where they were written in terms of the three-metric

gab and its associated conjugate momentum Tab)-

According to the blocking and renormalization procedure, discussed at length in the

previous sections, we can implement a coarse-graining transformation on this actual data

.=Let us assume that at the scale over Wl'uch General Relat1v1t)1sexper1mentally verified, ~ S
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set by suitably renormalizing the metric and the second fundamental form, whiie retaining

the functional form and the validity of the constraints.

The metric is renormalized according to the Ricci-Hamilton flow (3.77),

{ 5" = 2 < R(n) > gas(n) — 2Ras(n),
gab(1=10) = gas-

The second fundamental form K is being renormalized too according to (3.121), viz.,

2 2 1 1
Ky = 5 < R>Ku+ —?;gab[-é < Rg®* Ko > -5 <R>< 9K > —

1
< R®Kgp > — ALK + 2[div(div(K — (T K) 9))labs (3.147)

with the initial data Ka.(n = 0) = Kgp + Lagas, and where o' is the shift vector. No-
tice that we renormalize the second fundamental form by using as initial condition, not
the actual second fundamental form but rather, the deformation tensor H,, = Kgp +
Lagap. This way we can get rid of the possible Dif f-induced shear which may develop
in lim,,,c0 Kap(n). Indeed, according to equation (3.129), as 7 — oo the solution of this
initial value problem, K(7), approaches a non-trivial deformation lim,_, K(n) plus a
Lie-derivative term, lim, .o Ly(n)gab(7). The former is present only if the Ricci-deformed

metric Jqp = limy, oo gas(7) is not isolated.

Since at this stage we are mainly interested in FLRW space-times, let us assume that gap
is isolated, while in order to take care of the Dif f-induced shear, lim,_. Lv(n)gab(ﬂ), we
can choose the shift vector field o’ in such a way that lim, Lv(,,)gab(ﬂ) is compensated
by Logab. Since L,gqp is a trivial datum for (3.121), it is thus sufficient to choose

o' = lim v(n). (3.148)

n—c0
Notice that o is the three-velocity vector of the chosen instantaneous observers on I,
thus (3.148) provides a map identifying corresponding points between the initial actual

manifold (%, g, K, p,J) and its renormalized counterpart lim, (%, g, K, p, J)(7)-



146 § 3. The Renormalization Group approach in Gravitation

CZ‘jj

Figure 3.12: Two neighbooring three-manifolds (£, g) and (X, g+6 K), with the same volume, evolv-
ing under the Ricci-Hamilton flow toward isometric round three-spheres (53, goan) and (S3,924,)-
In general, geuq and g3, differ by an infinitesimal diffeomorphism ¢ generated by a vector field v,
ie. giun = Gean + 8(LuGean — %gc,mV,-v"). By exploiting the freedom in choosing the shift vector

field &, we can get rid of ¢.



3.6. RG approach to averaging in cosmology 147

In this section, and mainly for actual computational purposes, we assume that the
original inhomogeneous initial data set is such that the Ricci-Hamilion flow is global. As
already mentioned, we are interested in connecting an inhomogeneous cosmological space-
time to its corresponding FLRW model. This is the case, in particular, if we assume
that the original manifold (X, g) has a positive Ricci tensor, (this case is obviously quite
similar to the analysis in [51], there are however important differences that we are going
to emphasize). Or more generally, if we assume that the original manifold (X, g) is in the
SU(2)-Basin of attraction or nearby the critical point [;§ (31.), with i =1,2,..., yielding for
a manifold (%, g), nucleating under the Ricci-Hamilton flow (3.103), (extended to many

connected sums), to disjoint three-spheres 58‘)'

Given this setting, we see that due to the properties of the Ricci-Hamilton flow we
have limy, oo Kap(n) = —é— < k >0 +Gap. The given K is deformed by gradual elimination
of its shear K — %kgab and the original (position dependent) rate of volume expansion k

is being replaced with its corresponding average value.

Since the constraints, (3.145) and (3.146), are required to hold at each step of the

renormalization procedure, we get

8rG(n)p(n) = R(g(n)) — K (n)Kas(n) + £*(n), (3.149)

V(n)'Kin(n) — V(n)ak = 16xG(n) Ju(n), (3.150)

where we have explicitly introduced a possible 7-dependence into the gravitational coupling

G.

Let us now explore the consequences of (3.149) and (3.150). From the stated hypothesis
on the Ricci-Hamilton flow it follows immediately that, K.p(7) — %l?:gab as 17 — oo, thus
(3.150) implies that

r,l-l-»lgo Ju(n) = 0. (3.151)

In order to analyze (3.149), we will make use of a property of the Ricci-Hamilton flow,
namely that the flow K(7), solution of (3.121), is such that a% < k(n) >,= 0, i.e. the
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space average of the trace of the second fundamental form remains constant during the

deformation. This allows us to write
<k >2=k%, (3.152)

since in the limit, the volume expansion is simply a constant, and where < ... >, denotes

the full average of the enclosed quantity with respect to the initial metric.

Equation (3.152) provides the Hubble constant on the FLRW time slice associated
with the smoothed data corresponding to (%, g, K, p, J).

More explicitly, let us write the FLRW metric in the standard form (units ¢ = 1)
ds? = —dt® + §%(t)do?, (3.153)

where do? is the metric of a three-space of constant curvature and it is time independent.

As we are interested in the three-sphere case, the metric do? can be written as
do? = dx? + sin® x(d@? + sin® 0d¢?). (3.154)

Since the volume vol(Z, g) of the original inhomogeneous manifold is preserved by the
Ricci-Hamilton flow, we can relate the factor §%(t), providing the inverse (sectional) cur-

vature of the FLRW slice ¢t = t,, to vol(X, g)

5%(t,) = (1’312(%9))%. (3.155)

Notice in particular that the scalar curvature, towards which R(g(7n)) evolves under the

Ricci-Hamilton flow, is given by

eafra

R = lim R(g(n) = 5 = 3(3’-5’-%;’—9))_ . (3.156)

Having said this, the equation (3.149) becomes in the limit, after extracting a trace
free part of K,

87Gp = R + Zk?, (3.157)

wine
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since no residual shear survives, and where we have introduced the renormalized gravita-

tional coupling

G = lim G(n). (3!158)

n—co
On the other hand (3.149) gives
2 - . -
k() = 87Gp(n) = B(g(m) + K™ (n) Kas(n), (3.159)

where, the shear Kp=Kup— %kgab has been explicitly introduced.

We can rewrite the last equation upon taking the average with respect to the initial
metric, as

2 -
3 < B2 >,=81G < p>,— < B>, + < K%K, >, . (3.160)

Taking into account (3.152), and noticing that the Hubble constant on the FLRW slice,
corresponding via the Ricci-Hamilton flow to (2, g, K), is

1d5\? 2.
2_ (222 = Zp? :
H? <s dt) 7, (3.161)
we get
8 G 1 1 = ab T 2 7.2
H? = __7; <p>o—3 <R>o ity <KUKay >, —5(< k>, —F), (3.162)

which corresponds, through (3.157), to the matter density distribution

) i} o 2 .,
87Gp=81G < p>, +R— < R>, + < KKy >, —3(< k2 >, —k?). (3.163)

We have to consider this expression for G as the renormalized effective sources enter-
ing into the Friedmann equation, if we want to describe the real locally inhomogeneous
universe through a corresponding idealized FLRW model. As expected, the renormal-
ized matter density shows contributions of geometric origin, either coming from the shear

anisotropies or from the local fluctuations in curvature and volume expansion.
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At this stage, few comments are in order, concerning in particular the effective Hubble
constant H, (3.162). First, we wish to emphasize that this is the theoretical expression for
the Hubble constant if one wishes to model the real locally anisotropic and inhomogeneous
universe with a corresponding FLRW one. Expression (3.162) clearly shows that apart
from the expected contributions to the expansion rate coming from matter and curvature,
there is a negative contribution coming from the local fluctuations in the expansion rate,

and a positive contribution coming from the shear term % < K*K ab o -

This term has its origin both in the presence of the gravitational radiation

1 -~ -
3< KK 0 >, (3.164)

where K| is the divergence-free part of the shear K, and in the anisotropies generated by

the motion of matter

1 -z
§< K”bK”ab >o’ (3165)
where K || is the longitudinal part of the shear, obtained as a solution to the equation

. 2
V‘(K”),’h - -?;th = 167G Jp. (3.166)

Notice that
< Kﬂbkab >, =< K?LbR_Lab >, t< f(ﬁbfi’”ab > . (3.167)

The shear < KK >, yields a contribution to H, which can be roughly estimated
by exploiting the anisotropy measurements in the cosmic microwave background (CMB)
radiation, as long as the frame used in averaging (i.e., the lapse  and the shift o) is, on
the average, comoving with the cosmological fluid; this is quite a non-trivial requirement,
since the Ricci-Hamilton flow also prescribes the shift. We also require that the original
locally inhomogeneous manifold (X, g, K') does not differ too much from a standard FLRW
t = const. slice. In such case one can apply the analysis of [178] to conclude that, at the

present epoch, the ratio between shear and expansion is of the order
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(IH“) < 4, (3.168)

where € = max(eq, €2, €3) denotes the upper limit of currently observed anisotropy in the
CMB radiation temperature variation, and where ¢, €2, €3, respectively denote the dipole,
quadrupole, and octopole temperature anisotropies. On choosing ¢ ~ 107, as indicated
by the recent CMB radiation anisotropy measurements, one gets that the shear is at most

about 1072 of the expansion [178].

Thus, as long as we assume that the original locally inhomogeneous manifold (%, g, K')
does not differ too much from a standard FLRW ¢ = const. slice, the contribution to H,
from < KK, >,o is certainly quite small.

However, if we take seriously the possibility that the real universe may be close to
the critical phase, as argued in the previous sections, then the contribution from the
shear is not just of a conceptual value. For example, the original data set (¥,g,K)
may be near the critical surface associated with the ﬂiS?i) critical point. In this case we
may generate, upon smoothing, a whole family of disconnected ¢ = const. FLRW slices,
each one with its own Hubble constant H,(z), and these Hubble constants will be quite
dominated by the large anisotropies < KK, >, of the original manifold. We would not
notice the contribution from the local shear, (since we would have been looking at a rather
homogeneous and isotropic island), the large contribution would come from the regions of

large inhomogeneities and anisotropies which, under the Ricci-Hamilton renormalization,

undergo the topological crossover.

In the above analysis, we also introduced a renormalized gravitational coupling. In a
sense this is superfluous since the three-dimensional metric g of ¥ is acting as the running
coupling constant, and we can always reabsorb G in the definition of g. Nevertheless,
the use of the renormalized coupling G may be helpful if one wishes to use the standard
average of matter < p >, in the Friedmann equation, rather than the effective matter

distribution 5. The explicit expression for G can be easily obtained by setting g =< p >,
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in (3.163)

R— < R>,+ < K®Ku >0 —2(< k2 >, —k?)
< p > )

887G = 87G +

(3.169)

Notice however, that it is G(n)p(n) which is inferred from measurements for different

scales, and thus the use of G is not particularly remarkable.

More interestingly, it is more important in this connection to discuss the dependence of
G(n)p(n) as the local scale is varied, namely as 7 increases, (recall that 7 is the logarithmic
change of the cutoff length associated with the geodesic ball coverings). For simplicity,
we do this only for the case in which no shear is present (K = 0), and the rate of
volume expansion is spatially constant (k = const.). Under such hypothesis, we get for
the scale-dependence of the average < Gp >
2 tsr < Glno(m)>] = - < R(s(n) >=
on an

= 2< R*Ry > +% (< R>% - < R? >) ,  (3.170)

where R;r = Ry — % gir R is the trace-free part of the Ricci tensor. From this expression
we see that not only shear anisotropies but also metric anisotropies favour an increasing
in G(n)p(n) with the scale. To give an explicit example, let us consider as initial metric
to be smoothed-out a locally homogeneous and anisotropic SU(2)-metric g. Following the
notation and the analysis in the paper of Isenberg and Jackson [142], we can write such a
metric and its Ricci-Hamilton evolution, in terms of a left-invariant one-form basis {6},

a=1,2,3,on SU(2) as
g = A(n)(6")* + B(n)(6%)* + C(n)(6°)%, (3.171)

where A, B, C are scale (n)-dependent variables. With respect to this parameterization,

the scalar curvature is given by

R(n) =+ [[47— (B O)] +[B? — (A~ C)]+[C* - (4~ B)].  (3.172)

b=
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While the squared trace-free part of the Ricci tensor is given by

\Bid? = ©[4- (B~ OFP+(B* = (4= OFP+[C" - (4= B)T]  (3179)
- %wv—w—cmwﬁwA—mﬂ+mth—cmw%wA—mﬂ
1

¢ LB - (4-C)C" - (A~ BY

The Ricci-Hamilton flow for this metric g exponentially converges to the fixed point
A= B = C =1, with the normalization ABC = 1, and with A(n) > B(n) > C(n) for all
n [142]. From the above expression for R(n) it follows that R(7) monotonically increases

from its initial value R(n = 0) and exponentially approaches

lim R(n) = . (3.174)

700 2
This increase is generated by the exponential damping of the anisotropic part of the Ricci
tensor (3.174). This part of the Ricci tensor is smoothed by the Ricci-Hamilton flow and,

roughly speaking, is redistributed uniformly in the form of scalar curvature.

Thus, if we smooth out the initial data set (T x~ §3,9,K,p,J), with g the above
SU(2)-metric, Kqp = 3Jabk, With k = const., J = 0, and with the matter density p such
that the Hamiltonian constraint holds, we get that G(n)p(n) monotonically increases as

n — 00, exponentially approaching a fixed value.

As we shall see in the next section, this increase with the scale of the product G(n)p(n)

may be of significance in the correct interpretation of recent cosmological data.

At this stage, we are going to comment on an important point in the interpretation of

the formalism, before turning to a discussion of its physical consequences.

The general picture arising from the above analysis is that we pick up an appropriate
initial data set which, when evolved, gives rise to the real space-time. The description
of this data set and of the resulting space-time is too detailed for being of relevance to
cosmology. Intuitively, one would like to eliminate somehow all the unwanted (coupled)
fluctuations of matter and space-time geometry on small scales, and thus extract the ef-

fective dynamics capturing the global dynamics of the original space-time. The possibility
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of actually implementing such an approach is strongly limited by the fact that we do not
know a priori the structure of the space-time we are dealing with. But we may alterna-
tively decide to handle the unwanted fluctuations at the level of data sets, since the time
evolution of the initial data set for the Einstein equations is actually determined by the
very constraints which that data set has to satisfy. As we have seen above, this can be
done quite effectively in the framework of the Renormalization Group which is naturally
well suited to this purpose. However, and here we come to the point we wish to make
clear, different initial data sets giving rise to the same inhomogeneous and anisotropic
space-time, may yield smoothed data set giving rise to different FLRW space-times. Obvi-
ously, one may have privileged initial data set with respect to which the Renormalization
Group smoothing can be implemented. For instance a suitable slice of a frame comoving
with matter, or of a frame minimizing the anisotropies in the CMB radiation. However
optimal is this choice, it must be stressed that the time evolution of such data does not
commute with the Ricci-Hamilton evolution. In other words, the renormalization pro-
cedure and the dynamics do not commute. The dynamics gives rise to the crossover
between different FLRW space-times, or more generally, between different renormalized

models of the same original irregular space-time.

This situation is in fact not so paradoxical as it may seem. From a thermodynamical
point of view, we have seen that one of the members of the initial data set, namely the
three-metric g, plays the role of a temperature. Thus, by varying the metric, one can move
through the possible pure phases of the thermodynamical system considered. In this sense,
a real, locally inhomogeneous universe, is to be considered as akin to a generic complex
thermodynamjcal’system. The possible locally homogeneous cosmological models, arising
from it by suitable choices of initial data set to smooth-out, correspond to its distinct pure
phases. The resulting dynamics yields, in an analogy with common statistical system, a
dynamical crossover between different pure phases. This makes accessible in cosmology
too, the whole subject of critical phenomena with a plethora of interesting consequences.
Critical phenomena are always manifested macroscopically, as phase transitions are col-
lective phenomena in their nature. This aspect may turn out to be of importance for the

study of structure formation and clustering in the universe (cf. comments at the end of
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the previous section).

3.6.6 Cosmological implications

According to the contents of the previous sections the key idea on which our whole analysis
rests is that of RG, namely, the involved physics is that of the running (scale dependence,
be it energy or momentum scales) of the couplings and the relevant quantities accordingly.
This philosophy is recognized and established in particle physics, e.g. it is well known that
the fine structure constant o measured at low energies is different from the one measured
at the LEP energy scale. In each case it is the presence of “fAuctuations” (of any kind)
that requires a scale dependent redefinition of the physical parameters which can, in turn,
modify them, as well as the very structure of the theory, in a non-trivial way. Applications
of the RG to particle physics have usually been in the ultra-violet limit (e.g. in QED, QCD,
GUT) whereas in condensed matter physics they have been in the infra-red limit, in the
study of critical phenomena and phase transitions.

We have taken this infra-red direction in cosmology. The application of the concept
of running of the physical quantities, motivated by RG, appears to be a new important
feature in a cosmological setting, providing (at least) partial explanation of some contro-
versies of standard cosmology, which we are going to discuss below. Let us first point
out that generally running, also, of cosmological quantities is as such motivated by the
asymptotically free higher derivative quantum gravity, according to which the gravita-
tional constant is asymptotically free [14]. Taking into account this fact, of running G,
one can explore its consequences in the standard FLRW cosmology (cf. [114, 25]).

A word of caution is in order - since we do not have an ultimate theory of quantum
gravity (Q@), such approaches to cosmology are not on a rigorous basis from a theoretical
point of view and should rather be taken as phenomenological. In principle, once we
have a valid QG theory will one be able to directly derive a RG equations for various
cosmological quantities. Although we have taken here a more standard view in which a
split exists between the background (associated with infra-red effects) and renormalization
of fluctuations (usually taken to be associated with ultra-violet effects), there may well be

scales where such a split is not sensible at all. However, a RG capable of interpolating
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between the qualitatively different degrees of freedom in a parameter space of gravity,
remains to be developed which may, after all, as well be possible after QG theory is within

our reach.

One of the major issues in modern cosmology is concerned with the value of the
Hubble constant and the apparent conflict between the observed age of the universe and
the predicted one, in the standard FLRW model, based on the recent measurements of the
Hubble constant. Namely, the recent measurements of the Hubble constant using the Virgo
cluster (distance ~ 15 Mpc) strongly support that the Hubble constént H, has somewhat
larger value A = 0.87 £ .07'5 [204]. At the same time, other distance indicators yield a
systematically smaller value of H,, e.g. around 0.55 + .08 using NGC 5253 at a distance
of 4 Mpc [222], while an analysis of the gravitational lensing of QSO 0957+561 indicates
h = 0.50 + 0.17 [210]. When one calculates now the age of the universe, using the larger
value of H,, in the FLRW model one runs into a serious problem, as the predicted age
turns out to be too small to accomodate the measured ages (~14-18 Gyr) of the globular
clusters in our galaxy [221, 165].

Moreover, typical inferred values of the density parameter Q, = p,/ Pt (p, is the
present value of the total energy demsity of the universe and p¢™ its present critical
energy density, defined as po* = 3H2/(87G) where G is Newton’s gravitational constant)
increase correspondingly with the increasing size of various structures (e.g. [158]). These
measurements can at most account for a fraction of Q, which according to the inflationary
paradigm should be equal to 1. This in turn is one of the reasons for postulating the
existence of non-baryonic Dark Matter (DM) which is also required to explain the structure

formation.

Various people have since then looked at possible theoretical alternatives to these DM
scenarios, such as e.g. introducing a cosmological constant in the Einstein equations or ad
hoc modifications of the usual theory of gravity. The important point in this respect may
as well be the one addressed here. It is usually taken for granted that, on large scales,
the universe is described by the FLRW solution. There is no alternative really since we

do not know any solution of Einstein’s equations capable of describing a clumpy universe.

Y3} is H, measured in units of 100 km/sec/Mpc
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Nevertheless, even in the absence of explicit fine-grained models, we would like to lgnow
how in principle and when one could extract a background model from an inhomogeneous
one, such that (i) they both obey, “approximately”, the Einstein equations despite the
averaging or smoothing involved, and (i1) observational determinations of cosmological
parameters (H,, {,,...) correspond in a sensible way to that mathematical averaging
procedure. Thus an issue of importance for cosmology [187], is the question on what scale
is the FLRW model supposed to describe the universe? Likewise, what averaging scale
are we referring to when we give the value of §),, whose definition necessarily refers to an
idealised, i.e. smoothed background model. There has been recently an increased effort in
this direction with some interesting results, as e.g. that the coarse-graining effects could
be non-negligible in the context of affecting the age of the universe. For example, [242]
considered a model, of locally open (underdense) universe embedded in the spatially flat
universe, in which the expansion rate in our local universe is larger than the global average.
Similar model was considered in [193] where a local void in the global FLRW model was
studied and the inhomogeneity described by the Lemaitre-Tolman-Bondi solution. The
results indicate that if we happened to live in such a veid, but insisted on interpreting
the observations by the FLRW model, the Hubble constant measurements could give
results depending on the separation of the source and the observer, providing a possible
explanation for the wide range of their reported values and capable of resolving the age-
of-universe problem.

On the other hand [114] studied the QG effects at cosmological scales (the phenomenon
in question is exactly that of quantum coherence, known from a laboratory to happen on
macroscopic scales of the order of cm), assuming asymptotic freedom of the gravitational
constant and incorporating running G, according to the appropriate RG equations, into
FLRW model. Such G takes the value of Newton’s constant Gy at short distances but
then slowly rises as distance increases. However, as mentioned in [114], the RG equations
used there might not be applicable in the infra-red regime studied, but these concerns
were put aside having in mind absence of any other available beta functions for QG in the
infra-red regime.

One can also approach the averaging problem, modifying the FLRW metric (or equiv-

alently Cosmological Principle) and the Einstein equations by an introduction of a gen-
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eralized scale factor which depends both on ¢ and the scale » [155]. This introduces the
scale dependence of (Gp) and running of other cosmological quantities such as H,, {1, and

the age of the universe ¢, as functions of distance scales.

Let us notice that this picture of running of cosmological quantities comes about nat-
urally in our approach which is physically motivated by RG, namely, due to increasing of
the gravitational constant with scale (and possibly increasing amount of DM), as shown
in the previous section, {2, has effectively increased too. Moreover, since the scale factor
is governed by the scale dependent (Gp) it now depends on the scale r as well, i.e. it
increases at any fixed time with the increasing distance. Consequently, the value of H, is
not the same everywhere in the observable universe and depends on what scale it is mea-
sured. Moreover, since H, ~ 1/t, the universe becomes older when its age is estimated on
a smaller scale. This is not to be taken as implying that the age depends on where one
calculates (every observer using the same scale r at some time ¢; will obtain the same age).
The key point to emphasize is that, having in mind the RG arguments and interpretation,
a direct comparison of cosmological quantities makes sense only when they are measured
(or calculated) with respect to the same scale, since the same quantity can take different
values at different scales.

Notice that independently, also Quantum Cosmology advocates, though in a different
context of bubble universes, a possibility that we may live in a universe in which the value
of Hubble constant and the measured density are different in different places and in our

local neighborhood (1, may well be less than 1 [173].

Thus the modified Friedmann equations suggested [114, 25, 154] can be written in the
following form (locally k£ = —1)

R = %”,;G(d)lz2 +1, (3.175)
R,1?
Gp = Gp, [——R—] ) (3.176)

G-po _ 87G(d,)po
G'Pgrit - 3H2(d,) ,

Qo(dy) = (3.177)
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where G(d) is the value of G at (proper) distance d which can be interpreted as an inverse
of momentum. | o

(Strictly speaking, one should define the Hubble constant as H(t,r) = D(t,7)/D(t,7)
where D(t,7) = [§ R(t,7')dr’ is the proper distance, but as mentioned in [155] one can
confidently use the usual one, H = R/ R, for small redshifts.)

Some consequences of the above equations were investigated in [114, 25, 154]. Intro-
ducing

G(d) = Gn(1 + 6c(d)), | (3.178)

with d(t,7) = R(t,7)107r/(R(t,,7)3) expressed in units of kpc (25, 154] (r = 1 corresponds
~ to the size of the horizon and 7 = 3-1077 to 1 kpc at present), we encode the variation
of G in some growing function .

An interpretation of (3.177), in [114], enables to arrive at the conclusion of less or no
DM needed in order to explain the observational data on . No distance dependence of
H, was assumed there. An analysis of (3.178) in [25] leads in turn to the conclusion of
increased I;OWEI‘ of the 2—point correlation function at large distances without a help of

DM with {2, = 1.

Tt is worth emphasizing that the running of G basically does not affect the early uni-
verse. If the relevant G calculated at the horizon scale at the time of, say, nucleosynthesis
is close to G (basically the same as d is very small), (this is the case in [114]), the nu-
cleosynthesis proceeds as usual. Likewise, other features of inflationary scenarios are not

affected. This makes this proposal even more promising.

3.7 Concluding remarks

Whenever the macroscopic characteristics of the system which evolves dynamically are
studied, coarse-graining is necessary'® and relevant, when we are interested in its behaviour

over rather short time scales. It basically means some kind of averaging over small but

16 Another possibility can be long-time averaging, which is usually equivalent to statistical averaging over
an ensemble of all possible micro-states that can produce given macroscopic features. This is appropriate
for systems in a quasi-static state.
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finite volumes of phase space. Coarse-graining does not change the original system, but
the coarse grained quantities may behave qualitatively differently from the microscopic
ones.

A particular framework to carry this out is in the Renormalization Group formalism.
RG calculations are concerned with the asymptotic properties of critical systems, in the
sense of (semi-)infinite size and proximity to the critical point and thus, they predict sin-

gular power law behaviour of the systems with universal exponents and scaling functions.

To put things in perspective, what we demonstrated here is that the same theoretical
techniques can be applied to problems in Condensed Matter, Particle Physics and Gravi-
tation theory. Among these, we have concentrated on the applications of Renormalization
Group. On the one hand, there is a typical application of the RG to Condensed Matter
Physics, in the infra-red limit in the description of critical phenomena and second-order
phase transitions, and possibly the quantum Hall effect. On the other hand, in Particle
Physics RG is usually applied in the ultra-violet regime, e.g. in QED to find the Landau
pole, or in QCD - asymptotic freedom, while in the electro-weak sector it is used to ex-
trapolate gauge couplings, measured at LEP, to higher energies to test consistency with
some GUT.

We have put forward an application of the RG in classical relativistic cosmology to
tackle the smoothing problem, which belongs to the various-length-scales class of problems
and due to this, according to K.Wilson [256] can be grasped using RG methods. As such
our theory can be looked at in parallel with Condensed Matter applications of RG since,
also in our case, we were interested in the macroscopic effective characteristics of our
system upon some coarse-graining.

Let us add that another application of RG is of relevance in Quantum Gravity, within
the framework of string theory, to 2—dimensional theories on the world-sheet, where
Zamolodchikov’s c—theorem [264] may give insight into the effective string theory that
hopefully describes this part of the universe.

Further, RG already found its way in the membrane approach to black holes, where

its horizon is described in terms of a dynamical surface. Within path integral approach
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in the presence of this dynamical boundary, RG arguments yield a description of the
dynamics of the horizon by the action of the relativistic bosonic membrane [180]. Also
here a classical description of the state of a black hole (non-rotating) is characterized only
by the “macroscopic” parameters, such as its mass and charge and there is an implicit
coarse-graining over the membrane excitation levels. This membrane approach derived
from a RG procedure gives an effective description valid at distances longer than lpjanck;

the thermodynamic properties derived are in agreement with the standard results.



4 Dynamical systems approach in
Cosmology

A dynamical system consists of a phase space which provides us with a description of the
system’s allowed states and a rule which defines the temporal evolution of those states.
For differential equations the evolution is continuous, it can also be discrete as for a
mapping. Virtually every model of physical phenomena is a dynamical system and, in
fact, most of the models are Hamiltonian dynamical systems; GR belongs to the class
of constrained Hamiltonian systems [127]. Hamiltonian dynamical systems give rise to
symplectic mappings. Also, it is worth stressing the fact that the motion of a fluid particle
in an incompressible fluid is Hamiltonian, no matter if the fluid motion itself is viscous,
or not. Let us add that mappings are in fact more general than differential equations, but
also they are easier to study than differential equations.

Typical questions of physical interest are concerned with the long-time stability of
orbits and the determination of the regions accessible to the motion. Also problems
concerning transport, i.e. the determination of the time for a bunch of trajectories to
move from one region of phase space to another are of interest in physics. Even if the
system were not strictly stable, it could be stable in practice if the transport times were
longer than the lifetime of the system — this is probably the case with the planetary
motions in the solar system, though certainly not so for asteroids.

In practice, the situation is idealized by considering (for positive times) the induced
flow on the tangent bundle of the phase space, which is given by the structure of a smooth

manifold, and by studying the growth of distances between nearby trajectories’.

! This is normally done with respect to some riemannian metric in the tangent space as it moves along
the trajectory.

162
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A number of definitions is in order which will be given while we proceed.

4.1 Stability analysis of dust—radiation universe

The material presented below in this chapter is based on [47].

We consider flat and open universe models containing a mixture of cold matter (dust)
and radiation interacting only through gravity and study their stability with respect to
linear scalar perturbations. To this end the perturbed universe is considered as a dynamical
system, described by coupled differential equations for a gauge-invariant perturbation

variable and a relevant background variable.

4,1.1 Introduction

One of the main goals of present - day cosmology is to understand the formation of the
structures (galaxies, clusters, superclusters) observed in the universe, while trying to ex-
plain why, on large enough scales, this seems to be so well described by the FLRW isotropic
models. Given these latter, most theories of structure formation are based on the grav-
itational instability scenario. At any given epoch, there are perturbations larger than a
certain characteristic - time dependent - scale?; while perturbations much smaller than
this scale oscillate as sound waves, density perturbations on larger scales grow, eventually
entering a non - linear regime during the matter dominated epoch, thus forming the ob-
served structures. The mathematical basis for such scenario is the theory of perturbations

of FLRW models.

In the inflationary scenario, the perturbations were generated from quantum fluctu-
ations within the Hubble horizon H~!, have evolved classically outside the horizon, and
have re-entered it during the radiation or matter dominated epochs (perturbations with
larger wavelength re-entering later). During the last decade, observations of the distri-
bution of matter have shown that the scale at which the background homogeneity seems

to be reached is larger than what was thought before, being of the order of hundreds of

2This can be the Jeans scale, or the Hubble radius (sometimes loosely referred to as horizon); a more
important scale is actually the sound horizon, see [18].
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Mpc3. Consequently, both the inflationary scenario and the large scale observations mo-
tivate the use of a fully relativistic theory of perturbations in FLRW models in order to
study the formations of the larger structures.* Moreover, while the inflationary scenario
seems to favour a flat universe, there is as yet no convincing empirical evidence for a
critical density parameter {}; = 1, while a low density {J; < 1 universe is in fact favoured
by many observations [62]. For this reason, we shall consider perturbations of flat and
open models. The density contrast of the larger structures appears to be small enough
that a linear perturbation analysis still suffices to describe the evolution of perturbations
of the corresponding scale. Even if the density contrast is mildly non-linear, the cur-
vature perturbations are still in the linear regime [19], [100], thus one can imagine the
present universe as well described by a linearly perturbed FLRW model at large scales,
while non - linearities at smaller scales can be considered smoothed-out in this picture.’
Then the question arises if in this respect we live in a special epoch - an epoch in which
large scale perturbations are still in the linear regime - or if this is a natural output in the
theoretical context of perturbed FLRW models. This question is of the same sort as that
posed by the “flatness problem”: if the geometry of the universe is non—flat, then we live
in a special epoch in which the density parameter is still close to unity: {0y ~ 1. It is well
known that in a flat dust model there is a perturbation mode that grows unbounded, while
in an open dust universe there is a mode that freezes in at an epoch z ~ Q1. In both
cases the perturbation equation (4.1) is the same for all modes, because for ¢2 = w = 0
(dust) the coefficient § (4.23) does not depend on the wavenumber k. It is usually said
that in a dust universe each perturbation evolves as a separate FLRW universe. On the

other hand, perturbation scales in a pure radiation model always come within the “sound

3The answer to the question “At which scale in the universe there is a transition to homogeneity?”
depends on how the question is posed, i.e. how such a scale is defined. In a very loose sense we can say
that this scale is measured by the size of the largest structures we see (of the order of 10> Mpc), and in a
strict sense such a scale does not exist at all if there is not a cut-off in the perturbation spectrum. Various
reasonable definitions of such a scale can be given {e.g. specifying a level for the fluctuations, such that we
can say that there is a transition to homogeneity at the scale where the fluctuations fall below the specified
threshold): cf. [224] and [79].

*Newtonian perturbation theory is applicable only for vanishing pressure and at scales much smaller
than the horizon.

3In general, this again raises an issue of defining a proper averaging pracedure — problem considered at
length in this thesis.
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horizon” [18] and oscillate as sound waves.

This simple picture gives however rather little information about the generality of
this behaviour for the perturbations, and on the stability properties of the perturbed
FLRW model. We aim therefore at studying the problem of the stability of FLRW models
following an alternative approach: instead of looking for analytic solutions (either exact
or approximate, see e.g. [203]) of the perturbation equations, we consider the perturbed
universe as a dynamical system, described by coupled differential equations for a gauge-
invariant perturbation variable and a relevant background variable. In this approach, the
evolution of perturbations is represented by the trajectories in the phase space of the
dynamical system, and their final fate is linked to the presence and the nature of the fixed
(or stationary) points of the system.

In a certain sense the present work extends that of [78] to include perturbations,
although we restrict our analysis to open and flat models only, and we take a vanishing
cosmological constant A = 0. Previous works have followed the approach to stability
used here [261], [43], but they only considered either a pure radiation or a pure dust
model. However, since the analysis here is based on the study of the dynamical system
at time- infinity, the pure radiation model does not appear physically significant in this
limit, while the stability properties of the dust model are affected by the simplifying
assumption of the vanishing of the speed of sound. Therefore here we consider a class of
perturbed models containing both dust and radiation as a more realistic description of the
real universe. The dust component can be taken to represent Cold Dark Matter (massive
weekly interacting particles), while the radiation component represents photons and/or
other massless particles such as massless neutrinos, therefore these two fluids interact only
through gravity.

Universe models containing a mixture of dust and radiation interacting only through
gravity were considered before (e.g. in [129]), as well as perturbations of these models (see
e.g. [121] and [203)).

Here, our aim is to study the stability properties of these simple models, considering
only the total density perturbation (the single component perturbations are not directly

relevant to the evolution of curvature perturbations), assuming adiabatic perturbations.
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For the case of flat universe models, as will see, we find that there exists a critical
wavenumber kg, which is an invariant characteristic of the model and is related to the
only scale entering the flat models, i.e. the Hubble radius at equi-density of matter and
radiation H gl. The corresponding critical scale Ag¢c (Ag is the perturbation wavelength
at equi-density), remarks the transition from stability to instability, but in a way which
is more rigorous - from the point of view of the stability analysis - than the Jeans or
the Hubble scale. We find that there are actually three regimes for the evolution of

fluctuations:

(1) growing large scale perturbations (unstable modes);
(ii) overdamped intermediate scale perturbations;

(1i1) damped small scale wave perturbations;

where the transition scale from one regime to another is always of the order of Agc. Also,
we show that Agc is of the order of the Jeans scale Ajg at equi-density in the same
model: however, since Agc ~ 2.2A;gp (today Aoc ~ 67Mpc), our analysis shows that
there are perturbation modes that decay, despite that their scale Ag is larger than A;g
at equi-density. Thus the evolution of perturbations in these models depends on their
scale, in such a way that smaller scales evolve like in a pure radiation model (case (iii))
and larger scales like in a pure dust model (case (i)), while we found a small intermediate
range of scales (case(ii)) for which perturbations are overdamped (critical damping occurs
for the transition scale between cases (ii) and (iii)), which is an original feature of the
dust-radiation models, and to our knowledge was not known before.

For the case of an open dust-radiation model instead, the evolution of perturbations
appears to be dominated by the curvature of the background, and their final state is
similar to that they have in a pure dust model, i.e. all the perturbation scales are frozen—
in to a constant value. These models appear to be marginally stable [13] with respect to

perturbations of any wavelength.

In the following we take ¢ = 1, & = 87 G (G is the gravitational constant), and we

assume a vanishing cosmological constant A = 0.
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4.1.2 The dynamical system

We give below a brief outline of the method used fo study the stability of FLRW models.

In a recent series of papers, Woszczyna and colleagues considered the dynamics of
Newtonian [263] and relativistic [261] linearly perturbed universe models, studying the
stability of these dynamical systems. The analysis of the relativistic case was however
affected by a certain assumption on the allowed range for a scale parameter k (g in [261]
and in [43]) and by a misinterpretation of the perturbation variables, as was shown in [43].

We shall focus now on relativistic perturbations of flat and open FLRW models con-
taining two fluids coupled only through gravity: dust and radiation. Open and flat FLRW
models expand for an infinite amount of time, and therefore one can apply standard sta-
bility criteria (see e.g. [12] and [13], and [8]). Specifically, one can establish if a cosmic
dynamical system, i.e. a perturbed cosmological model, is: stable (in the sense of Lya-
punov) around the unperturbed state, which roughly speaking means that a small change
in the initial conditions do not produce a big change in the following evolution, i.e. in this
context an initial small inhomogeneity do not grow; asymptotically stable, i.e. the unper-
turbed state is stable and the perturbation decay so that the cosmic system returns to
the original homogeneous state; marginally stable, when is stable but not asymptotically
stable; unstable, when the perturbations grow with time.

In general, in the gauge- invariant approach to cosmological perturbations the scalar®
density perturbation variable (we shall consider specific perturbation measures later) sat-
isfy a second order (in some time variable) differential equation. If one restricts the
attention to the harmonic component X of the perturbation, and assumes that this is adi-
abatic (see section 4.1.3.2), its evolution is given by a homogeneous ordinary differential

equation

X+a®)X+pt)X =0, (4.1)

where t here is proper time, and the dot indicates a derivative with respect to t. When

it is not possible to find a simple solution to (4.1), a qualitative analysis of its properties

87t is standard to call scalar perturbations those related with density perturbations describing the
clumping of matter (e.g. see [236]). Here we shall consider only these perturbations, as the only relevant
to the problem of stability of the universe.
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is useful in order to determine the late - time behaviour of ihe perturbations’. The
coeflicients a and 3 are functions given by the background dynamics, but in general their
time dependence cannot be explicitly determined. Therefore, it is useful to think of a and
B as known functions of one or more parameters, and add to (4.1) the evolution equation
for the parameters in order to have an autonomous system. A sensible choice followed in

[261] is given by the density parameter {2, which in a FLRW model satisfies the equation

Q=00-1)1+w)o, : (4.2)
where ® = 3H = 3a/a is the expansion of the cosmic fluid, a is the FLRW scale factor, H
is the Hubble parameter, and w = p/pu is the ratio of the pressure to the energy density.

It is useful to change the independent variable from the proper time ¢ to a function of the

scale factor a; with the choice of 8 7 = Ina3, (%:— = ) equations (4.1) and (4.2) give

X"+ X' +¢X =0, (4.3)
Q=0 -1)(3 +w), (4.4)

and in general
w' = —(1+ w) [cf(w) - w] (4.5)

gives the evolution of w, and in the previous equations the prime refers to the derivative
with respect to 7 = In a®.

In a single fluid FLRW model the dynamics is fixed by an equation of state p = wy,
with w = const. (e.g. w = 0 dust, w = 1/3 radiation), and in this case ¢? = p/p is the
speed of sound, and ¢ = w. In dealing with two or more fluids however, w’ # 0, and
2 # w is no longer a proper speed of sound unless the fluids are coupled, and 1/ and ¢ are
given by _

¥(w, Q) = @G‘)'z‘ + —éa(w,ﬂ) - —é - %(1 + 3w)Q + —é—-a(w,ﬂ) , (4.6)

"One can obviously find numerical solutions, but the study of the phase space allows us to obtain general
conclusions for a generic set of initial conditions.

8There are various typos in [261]: there, the power appearing here in the definition of 7 is missed in
equation (3), and consequently a factor 1/3 is missed in equation (9).
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£(w, 9) = 56w, ), | (1)

while the second step in (4.6) is given by the Raychaudhuri equation
O+ 10%+ Jrp(l +3w) =10, (4.8)

governing the evolution of © (see e.g. [74]). In the simplest case of one single fluid
261], [43] with w = const. we have a third order autonomous system, given by (4.3)
and (4.4) (or a corresponding pair of first order equations);' also, equation (4.4) forms
an autonomous first order subsystem in this case. In the most general case we have a
fourth order autonomous system, with (4.5) as autonomous subsystem (as we shall see in
section 4.1.3.1, ¢2 = c2(w) is fixed once the fluid components are specified). The order
of the system can however be reduced. First, it turns out that in the practical case (see
section 4.1.3.1) either w or ) can be eliminated; second, here we are not really interested
in the evolution-law of X, but rather in its qualitative behavior. Because of this, we can

achieve a further dimensional reduction of the phase space passing to the Riccati equation

corresponding to (4.3). Introducing ¥ = X' and

U = Y/x=X/X, (4.9)

R = VXZ+Y?, (4.10)

we pass in the new phase space {R,U,w, 1}, where

R _ UL € yU)
R Urz+1 !

U = -U* U - ¢, (4.12)

(4.11)

while the evolution of Q and w is still given by (4.4) and (4.5). The variable R represent
an “amplitude” of the perturbation and it is not directly relevant to the present analysis.
Since (4.12) and (4.4), (4.5) form an autonomous subsystem, one can restrict the analysis
to the phase space {U/, w, 1}; moreover, as we said above, in practical cases we can restrict
our attention either to {i/,w} or to {{{,Q}. The relevant variable here is [{: when it is

positive we have either a growing density enhancement or an increasing energy deficit,
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while & < 0 indicates that the inhomogeneity is decreasing (note that from its definition
(4.9) U is a tangent in the original phase space {X,Y}, thus —co < U < o0). One is
therefore interested in the nature of the fixed (or stationary) points (if any) on the 2 = 0
or the w = 0 axis (the final state of the cosmological dynamical system). These correspond
to the real roots of the right hand side of (4.12). A stable node on the &/ > 0 semi-axis will
indicate that the given perturbation mode will indefinitely grow, thus indicating instability
of the underlying cosmic system; a stable node on the I/ < 0 semi-axis will indicate that
the given perturbation mode will finally decay, i.e. the system is asymptotically stable
with respect to that perturbation; a stable node on {{ = 0 means that the perturbation
will asymptotically approach a constant value: the cosmic system is then marginally stable
(see [13]). Finally, if there are no stationary points on the O = 0 (or the w = 0) axis, the
perturbation maintains a sound wave character at any time. This situation corresponds
to complex roots of the right hand side of (4.12) with negative real part, and we shall see
in section 4.1.4.4 that these roots are also the eigenvalues of the system given by (4.12),
(4.5): therefore the cosmic system is stable against these perturbations.

A discussion of the system (4.12), (4.4) can be found in [261] (and reference therein); a
discussion of the flaws of the application of the analysis given in [261] to the perturbation

equations of [18] and [86], [87], [45] (see also [262]) is given in [43].

4.1.3 Dynamics of the dust - radiation models

We shall now apply the general method outlined in the previous section to the case of
uncoupled dust and radiation. In the following, we shall normalize the scale factor at
equi-density of dust and radiation, introducing S = a/ag. An analysis of the phase-
space of FLRW models containing dust and radiation has been recently given in [78] (see
also [129] and [203]); here we simply review well known results, that are needed for the

perturbation analysis, with emphasis on a useful parameterization.

4.1.3.1 The background

Since the two fluids are uncoupled, we have separate energy conservation, with pg =
%,U.ES =3 and pu, = %,U.ES —4, where pug is the total energy density at equi-density. Then
the total energy is also conserved, with density p = Lpg(S~3 4+ S~*), while the total
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pressure is that of the radiation component, p = pr = % Ly = % peS~4; therefore

1

- . (4.1
3(5+1) (4.13)

w

For two non-interacting fluids the quantity ¢ = f:f is only formally the speed of sound: for

dust and radiation we have
2 4
¢l = ———
° 3(4+35)

At equi-density § = 1, w = 1/6, and c? = 4/21. Clearly, (4.13) can be inverted to give

(4.14)

1-3w
3w

S =

(4.15)

b

and then the expansion of the universe model we consider is parameterized by w, with
w (1/3 > w > 0) varying from a pure radiation dominated (¢ — 0) to a pure matter
dominated (¢ — co) phase.

Note that (4.13), with (4.14) is in practice an integral for (4.5); also, given (4.13) we

can integrate (4.2):
B Qe(S+1) )
T Qp(S+1)+2(1-0g)8%]

since today So = ag/ag = 1+ zg > 1, the density parameter at equi-density is Qp =~

Q

(4.16)

-1
(1 + %%2) . Clearly, equation (4.16) can also be inverted to parameterize the expand-

ing model with Q. However in the following we shall find convenient the parameterization

in w, which will allow us to give a unified treatment of flat and open models: from (4.15)

and (4.14) we have
4w

P 4.17
and this with (4.5) give
w=w(w-1), (4.18)
where hereafter the prime stands for the derivative with respect to 7 = In §3.
From (4.18) and (4.4) we get
Q
Sigw (4.19)

Q=
30w + 2(1 - Qp)(1 - 3w)?’
which can be used in expressions for £ and 1 to obtain these coefficients as functions

of w only, thus reducing the effective phase space needed for the stability analysis to
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{U,w}, i.e. that of the plane autonomous system (4.12), (4.18). We note also that the
system (4.18), (4.4) that describes the evolution of the background universe model is a
plane autonomous subsystem in the full space {i/, 2, w}: this will always be a property
of a dynamical system describing a perturbed universe, since the basic assumption of the
perturbation analysis is that of neglecting the backreaction of the perturbations on the
dynamics of the background model.

Finally, the total energy density is given by

27 w3
= —pUE T . 4.20
This obviously also follows from the conservation equation p' = —p(l 4+ w), integrated

using (4.18);and p > 0 as w — 1/3, p — 0 as w — 0.

4.1.3.2 The perturbed model

We shall now consider the dynamics of the perturbed dust - radiation models.

First, we have to specify a perturbation measure X, i.e. the variable appearing in
(4.1) and (4.3). Here, we shall focus on density perturbations, and we shall take A =
a?(®)V2u)/p as our fundamental variable, as was originally defined in [87] (see also [262])
following the covariant approach to perturbation introduced in [86].

This covariant quantity is an exact measure of density inhomogeneity, it is scalar and
locally defined. With respect to a FLRW background A is a gauge - invariant variable that,
once expanded at first order in the perturbations is proportional to the Bardeen variable
€m (see [45]); thus its components with respect to an orthonormal set of scalar harmonic
functions are proportional to the density perturbation in the comoving gauge (see [18]; for
a comprehensive treatment of perturbations in this gauge, see [168], see also [46]).

In the following, we shall restrict our attention to the harmonic components of A,

where the scalar harmonics Q are defined by

3 2 kz
Glv2g = -5Q, (4.21)

(3)¥2 is the Laplace operator in the 3-surface of constant curvature and k > 0 for K = 0,

but k > 1for K = —1 [128], [172]. Thus in the flat case the wavenumber k is simply related
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to the physical scale of the perturbationi.e. its wavelength A = 2wa/k, but this is not the
case for the open models. However k can always be taken as invariantly characterizing the
scale of the perturbation, and we shall do so.

Since the harmonic component A() of A and ¢, are just proportional [45], in the
following the perturbation measure X appearing in (4.1) and (4.3) can be identified either
with A() or with e,,.

In the case of a mixture of dust and radiation, in general the evolution equation for
X is coupled to the evolution equation for an entropy perturbation variable (see [156];
[74]; [177] and also [203]). However the coupling is important only at small scales: here
we shall only focus on perturbations at scales of the order of or larger than the Hubble
radius Hgl at equi-density, thus we shall restrict to purely adiabatic modes, i.e. solutions
of (4.1), neglecting the coupling with the entropy perturbation.

In general the coefficients o and 8 in (4.1) are given by (see [87]; [45]; [203])

a=(2+32-6w)H, (4.22)
K k?
_ 3,2 2 2 2k
B=- [(%+4w—§w —3‘:3) h‘,,u,+12(c3—w)-a—2 +cS;2- ; (4.23)
using (4.17) for the dust - radiation background we get
_ (1-3wt) (4.24)
T +w) )
3 w?(5 — 3w) s w(l—-3w)K 4w k?
__13(4 wiloew) Al W P 4.2
p [2( i (14 w) )QH T4 (1+w) a? +3(1—|—w)a2 (4.25)
From this, we obtain
1 1 — 6w — 15w?
_1 _ 1o bw-— lowr 2
P(w, ) 6(1 +3w)(1 - Q)+ 61tw) (4.26)
1 w?(5 — 3w) 4w(l — 3w)
, Q) =-=11 Q 1-Q+E k 4.27
E(w ) 6<+ 1t w ) 9(1+w) ( )+ K(wa )a ( )
where Ex(w, k) = ﬁli—m;lﬁ}% is a function that takes a different form, as function of w,

depending on the curvature K: in an open universe a?H? = (1 — )71, but in the flat

case we cannot use the Friedmann equation to substitute for a?H?. Rather, we use it to
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substitute for 3H2 = ku, and u is given by (4.20), while here a = Sag and § is given by

(4.15). Thus
_ 1—-3w!2.-_: 2 - _ 8
- 14w Eok”, =0 — 8la%ZHZ ’ (4.28)

K=0
K = -1

[ [

where, 3H% = xpg, and for open models we can substitute for = Q(w) from (4.19) in all
the previous expressions. It is clear from (4.28) that in the space {{/,w, 0} the function
Ek is not continuous (for £ # 0) on the plane = 1, except on the line w = 1/3, 2 = 1;

this discontinuity of Zx will play an important réle in the behaviour of perturbations.

4.1.4 Results

We shall now summarize the results we obtained from the analysis of the dynamical system
given by (4.12), (4.18) and (4.4), with coefficients 1 and £ given by (4.26) and (4.27), first

restricting to the flat models and then considering the open ones.

4.1.4.1 The flat models

The flat perturbed models are described by the subsystem (4.12), (4.18) substituting 2 = 1
in 1 (4.26) and £ (4.27) and using E for K = 0 given in (4.28). From this latter we see
that for flat models there is a characteristic scale that, as we shall see, is related to the
late time behaviour of the perturbations: this is the Hubble radius at equi-density H El.

It is therefore convenient to define

k Hg'
= =27 5
agHE /\E

kE (4.29)

which represents a wavenumber normalized at equi-density: kg = 27 & Ag = H;Jl i.e.
kg = 27 corresponds to a perturbation wavelength that enters the horizon at equivalence
epoch.

Stationary points eventually exist on the w = 1/3 and w = 0 axis, with

Z’{:i: = %("¢w £ vV 'l)bg) - 4’£w) ’ (4'30)

where 1, £, (with w = 0,1/3) correspond to the stationary values of ¢ and &.
The stationary points for the system (4.12), (4.18) are given in Table 4.1.4.1.
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PoINT I: UNSTABLE NODE PoinT II: SADDLE

w=1/3, U.=—-% w=1/3, U =2
Au=1 My =-1
Aw = % Aw = -1?;
Point III: SADDLE Point IV: STABLE Nobpr
w=0, U_= 1)\u w =0, L{+—— 1Au
5 k k2
(21 J‘) "“=*\/§<%3‘?§:)
-3 My = =3

Table 4.1: Flat models: the four stationary points with the corresponding eigenvalues along the
axis U and w and their nature; Point III and IV exist only for kg < -{%kﬁyc.

As we have explained at the end of section 4.1.2, the condition for having growing
perturbations is given by the appearance of a stable node on the positive side of the U/

axis. From (4.30) we see that we need o < 0 in order to have U, > 0, i.e.

3v3
kg < kgc, ke = e (4.31)

Moreover, stationary points only exist for ¢3, — 4¢,, > 0, which is always satisfied only
for w = 1/3. For w = 0 we have i — 46 = 3 53 — k% /k%(), ie. stationary points exist
on this axis for perturbations of wavelength at equivalence Ap > 235@)\5(; < Agc. We
see from Table 4.1.4.1 that this is the same condition for the reality of the eigenvalues, a
tesult that follows from the fact that w’ does not depend on . From the values of these
eigenvalues we have that: Point I is an unstable node, Point II is a saddle, Point III is a
saddle, Point IV is a stable node.

When for this latter we have U4 > 0, i.e. for kg smaller than the critical wavenumber
kgc, generic perturbations with physical wavelength Ag > Agc grow unbounded, with the
critical perturbation scale Ag¢ corresponding to kg¢ in (4.31), given by Agc = %Hgl,
ie. Agc > Hgl: this situation is illustrated in Fig. 4.1. Note in this figure the special
saddle trajectories: the one ending in U{_ represents the purely decaying mode, while

the other (ending in U, as the generic trajectory) represents the purely growing mode®

®The terminology growing and decaying is purely conventional: it is adopted here because it is standard
in the literature to refer in this way to the two modes, as they are effectively growing and decaying e.g. in
a flat pure dust model. We stress again that the “growing” mode is actually growing only when . > 0.
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I W

“. 2 U
Figure 4.1: Flat models: phase space for the evolution of large scales Ag > Agc that grow
unbounded ({4 > 0). Here and in the other figures dots represent the stationary points, while
0<w<1/3and -1 <U < 1.

l W
| U
Figure 4.2: Flat models: phase space for the evolution of the damped wave modes on small scales

Ap < B8 <Ape (Us €9).

|

\

. w. u
Figure 4.3: Flat models: phase space for the overdamped modes ({;+ < 0) on intermediate scales
-2%@&30 <Ag < Agc-
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(the attractor); the generic trajectory represents a linear combination of the two modes
solutions of (4.3). Also, we remind that the variable U is a tangent in the original phase
space {X, X'}, so that the trajectories in the figures that start from Point I and go to the
left of the saddle trajectory exit the figure on the left boundary, and re-enter it from the
right ending in Point IV.

Clearly, when Point IV does not exist, i.e. for perturbations with wavelength at equiv-
alence Ap < 2—‘5@/\150, we are considering perturbations that always oscillate as “sound
waves” (see Fig. 4.2); we have checked through a direct stability analysis of the system
(4.37) below (see section 4.1.4.4) that the amplitude of these modes decay. Again, tra-
jectories that exit from the left re-enter from the right: for Ap < 245@)\15'(; however this
happens many times, and indeed it is this fact that characterizes the oscillatory behaviour
of these modes in the {/, w} plane.

Also, for scales kpe < kg < 2—5*\/570150 we have U, < 0 for Point IV, i.e. the stable
node is located on the negative side of the I/ axis: thus perturbation scales in this range
are overdamped: they decay without oscillating, as it appears from Fig. 4.3. Again, the
saddle trajectories represent the two modes for (4.3), and the trajectories going out from
the left of Fig. 4.3, re-enter from the right, ending in Point IV.

Finally, we point out that for kg = zi\/ékgc the two stationary points on the U axis
(the saddle and the stable node in the second line of Table 4.1.4.1) coincide, i.e. this
is a foldbifurcation point (see e.g. [13]). The corresponding scale Ag = QAE@AEC =
1—%@ng1 ~ 4.TH El is quite larger than the Hubble radius at equi-density; thus we can
consider scales Ap < 2_\5/_5}‘150, as in Fig. 4.2, such that still Ag > Hglz this partially
justifies our assumption of purely adiabatic perturbations (cf. [196]).

Thus we have three different evolution regimes for the adiabatic perturbation modes
of a mixture of uncoupled dust and radiation in a flat universe, depending on their wave-

length:
(i) large scale perturbations that grow unbounded, giving instability;

(ii) intermediate scale perturbations that are overdamped, i.e. decaying without oscillat-

ing;

(iii) small scale damped perturbations which oscillate like sound waves while their am-
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INSTABILITY STABILITY
A> Age —2-35@/\50 <A <Agpc | AE< ZJS@AEC
grow unbounded overdamped damped waves

Table 4.2: Flat models: summary of the three different evolution regimes for different perturbation
wavelengths.

plitude decays;

as summarized in Table 4.2.

4.1.4.2 The open models

The open models are in principle described by the full 3-dimensional system given by
(4.12), (4.18) and (4.4), with trajectories in the {U,w,Q} space. However, given Q =
2w, Qg) (4.19), we can substitute for Q in the expressions for 9 (4.26), £ (4.27) and E
for K = —1 (4.28), and restrict our analysis to the 2-dimensional system (4.12), (4.18). In
doing this, we are selecting one particular open model in the class parameterized by Qg:
there is no loss of generality in doing this, as the dynamical properties of the models in
this class (as specified by the character of the stationary points in the corresponding phase
space) do not depend on Qg, i.e. for a given wavenumber k the phase space evolution of all
the models in the class is qualitatively the same. From the point of view of the geometry
of the phase space {{, w, 1} we are looking at the trajectories in the 2-dimensional surface
specified by {1z in this space: we shall then consider the projection of this surface with
its trajectories in the {U,w} plane, as depicted in Fig. 4.4.

It is clear from this figure and Table 4.3 that, contrary to what we have seen for the
flat models, the existence, position and the nature of Points I-IV do not depend on the
wavenumber &, so that all open models share the same dynamical history. This depends
on the vanishing of the function = in the limit w — 0, which also implies @ — 0 (because
we are moving on the surface specified by (2z). Note however that if we do not substitute
for Q from (4.19) in the 3-dimensional system, and we take the limit {2 — 0, this does
not give the 2-dimensional system for flat models: this fact is due to the discontinuity

(remarked at the end of section 4.1.4.1) of the function = on the surface = 1, where =
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U

Figure 4.4: Open models: the pﬁa.se space topology is independent of the wavelength, and all
perturbations tend to a constant value (I, = 0).

for K = 0 do not vanish in general, except for w = 1/3 or k = 0. Somehow this fact can

be seen as an example of “fragility” in cosmology [63].

From table 4.2 and Fig. 4.4 we see that Point IV is a stable node located at I/ = 0.
The generic trajectory ends up in this point, either directly from Point 1, or first going
out from the left boundary of the picture and then re-entering from the right. Again, the
saddle trajectory starting form Point I and ending in Point III represents the evolution of
the purely decaying mode, and the saddle trajectory starting from Point III and ending
in Point IV represents the purely growing mode (attractor). The fact that Point IV is
located in I/ = 0 means that (by definition of ¢/) all the perturbation modes evolve up to
a constant value, and then freeze-in. Then we can say that open models are stable but
not asymptotically stable, as the generic perturbation modes do not decay, so they are

marginally stable.

A direct analysis of the system (4.37) below (section 4.1.4.4) shows indeed that the
appearance of a fixed point on U = 0 for the system (4.12), (4.18) corresponds to the
vanishing of one of the eigenvalue for the corresponding fixed point in the phase space
[X,X',w}, while the other two eigenvalues are negative. Thus there is a whole line of
fixed marginally stable points.

While this happens only for kg = kg in flat models, it is a generic characteristic for
any k in open universes. A comparison of Fig. 4.4 and Fig. 1a in [43] shows that open dust-

radiation models and open pure dust models share the same stability properties. It appears
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PoinT I: UnsTABLE NODE Point II: SADDLE
w=1, U =-1 w=1 U =2
Ay=1 Ay = -1
Aw = % Aw = %
Point III: SADDLE Point IV: STABLE NODE
w =0, L{_:—% w=0, U =0
Ay =3 M= —3
Ay = “‘% Aw = —%

Table 4.3: Open models: the four stationary points with the corresponding eigenvalues along the
axis U and w and their nature.

that the curvature of the background dominates also the evolution of the perturbations:
for dust radiation models there is a conspiracy between curvature and pressure, such that
curvature has an opposite effect on small and large scale: with respect to the behaviour
in flat models, it avoids the oscillation of small scales perturbations (Ag < 245@)\ ec) and

damps the growth of those on large scales (Ag > 235@)\3(;).

4.1.4.3 Comparison with Jeans instability

We can apply the Jeans instability criterion directly to equation (4.1): this implies that
gravitational collapse of a given perturbation mode will occur if 8 < 0, i.e. if & < &,

where for the dust-radiation models § is given by (4.25), and the corresponding k; is

B2 3(1+w) |3 w?(5 — 3w) s  4w(l-3w)K
Lo Gl ) A YT ila fold L .
a? 4w 2 1+ 1+w "+ 1+w a2 (4.32)
At equi-density (w = 1/6) this gives
k2. 279 2, 3 2
i = el O H (g — 1)Hg ; 4.33

in the real universe Qg = 1 and the contribution to ksz from the curvature term (the last

in the equation above) is completely negligible. Thus in a flat universe (K = 0) we have

2rag 8T [2 4
Nep=E N lg 4.34
TE=" s  3V31TE (4.34)

for the Jeans scale at equi-density. Then a comparison with the critical scale Agc defined

6
AsE = 1/ —Azgc , 4.35
JB =4/ 3780 (4.35)

in section 4.1.4.1 gives
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i.e. for flat models the stability criteria used in section 4.1.4.1 give a critical scale Agc
for instability which is larger than the corresponding Jeans scale at equi-density by a
factor of 2,i.e. Agc =~ 2.3 Ajg. The fact that the values of these two scales are relatively
close appears physically meaningful, and in a way obvious, since both scales are somehow
defined through the same differential equation. However, a comparison of (4.35) with the
analysis of section 4.1.4.1 shows that there are perturbations with Ag > Asg that decay:
those with wavelength Ajg < Ag < 235@)\5'0 are damped oscillation, while those with
AEc > Ag > AS@AEC are overdamped. It is immediate to show that today the critical

scale corresponding to kgc is

Ar |2
Aoc = —5\/3(1 +zg)"1HFT, (4.36)

i.e. about 67.3 h~'Mpc in a flat universe with 1 + zg ~ 4.3107°h~2 (see e.g. [L58]).
Even if this value may be an artifact of our simplifying assumptions, e.g. the fact that
we have neglected isocurvature modes at all times and we have treated radiation as a
perfect fluid even at small scales, we believe that the discrepancy between our critical
scale and the Jeans scale in the same universe model is a general feature that deserves
further investigation in order to consider possible effects for models of structure formation
in the universe.

Finally, it is interesting to consider the limit w — 0 of k;. For flat models, one gets
from (4.32) that in this limit k; = %@aEHE, i.e. we recover kgc (4.31) in this limit.
However the same limit for open models gives a value for k; that: a) is real only for
Qg > 16/25, a result that, although satisfied in the real universe, appears spurious for the
theory; b) gives the false impression that there could be growing and oscillating modes

also for open models, contrary to what we have shown in the previous section.

4.1.4.4 Metric and curvature perturbations

In the previous sections we have given the results of the analysis of the dynamical system
{U/, w} (4.12), (4.18) for flat and open models, and inferred conclusions on the evolution
of density perturbations, represented by the harmonic component X (see section 4.1.3.2).
As we have already pointed out, there is a particular relation between the location and

character of fixed points in the phase space {i/, w}, and the character of the corresponding
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point in the original phase space {X, X/, w}'°. Indeed, it is immediate that the original
system (¥ = X')

X =Y
V= -4V -&X (4.37)
w = w (w - %)

admits only two fixed points for £ # 0: Point A = {X = 0,Y = 0,w = 1/3} and Point
B={X=10,Y = 0,w = 0}. The first represents an unperturbed pure radiation model,
and the second a pure dust model, while the line connecting them is the mixed background
model we are more interested in here. Then it is easy to see that the eigenvalues at these
points along the principal directions in the {X,Y} planes equate the roots Uy of (4.12),
i.e. Ar = Uy. Point A is the same for flat and open models (A_ = —1/3, A, = 2/3,
Aw = 1/3), while (4.27), (4.28) and the analysis in section 4.1.4.2 shows that for open
models { = 0 for w = 0, and thus Point B degenerates into a line (the ¥ = 0 axis):
A4+ = U4 =0 in this case, so that open models are marginally stable. For flat models, the
same happens for kg = kg, as already pointed out.

Having clarified the relation between the roots U4y of the system (4.12), (4.18) and the
eigenvalues at the fixed points of (4.37), we can now turn to the asymptotic evolution of
X. It is clear from the definition of i/ = ¥/X that around the roots /1 the evolution of
X is given by

X' =Us X, = Xgp~ 85U, (4.38)

When Uy =0 we have X = const. (cf. Table 4.3); for w — 0 we recover the well known
constant mode for matter dominated open models: here the same mode is found for the
critical scale kg = kg¢ in flat models.

In Tables 4.4 and 4.5 we give the asymptotic behaviour for X, for a metric perturbation
@) and a dimensionless curvature perturbation scalar £/@2. In particular, in Table 4.4
we consider flat models in the limit w — 0, giving the asymptotic behaviour of various
variables as functions of the scale factor S and in order of increasing wavelength Ag. In
Table 4.5 we give the asymptotic solutions of open models around Points I-IV: as for
w — 1/3 the universe is radiation dominated and also  — 1, then § ~ £3 in this limit,

and the asymptotic solutions around Points I and II are in common with flat models.

For open models we are using the function (I = 2(w,N) (4.19), so that the further dimension (2 in the
phase space is suppressed.
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QUANTITY | Ag < T‘\%AEC A = Ej\/—gAEC Agc > Ap > _2—\5/5)‘130 AE = AEC AE D> Arc
Xy §-1+Q -5 §-3xP S~% , const.| S7%,S§
Dyt 5'%i‘Q S‘% S‘%ip S_%, §-1 S“‘%, const.

Ey/0? S 51 S—iEP S~%, const.| S7%,8

Table 4.4: Flat models: asymptotic behaviour for w — 0 (i.e. around Points III-1V) of X,
®y and E/©2, in order of increasing wavelengths, as function of the scale factor S (§ ~ i3
for w — 0). The decaying (—, Point III) and growing (+, Point IV) modes are distinguished
either by the + or presented in order: they coincide for the critical damping scale Ag = z_i—\/éA EC-

Q= [ (/b — )17, and P = [§ (33 - kb/kho)] ™

QuaNTITY | POINT I | POINT IT | POINT III | PoinT IV
X Ch S? §-1 const.
Py 53 const. 52 51
E - - -
& S 1 52 S 2 g 1

Table 4.5: Open models: asymptotic behaviour around Points I-IV for X, &y and E/©?, as
function of the scale factor S. For w — 1/3 S ~ t3, and Point I and II are in common with fla
models, while for w — 0 S ~ ¢. Points I and III correspond to the decaying mode, and II and IV
to the growing mode.

Tn the limit w — 0 the universe models are matter dominated, and then in flat models
S~ t%, while in open models S ~ t.

In the following we shall outline the relation between the gauge—invariant metric po-
tential &, the curvature variable E, and the density perturbation A (see section 4.1.3.2):
more details can be found in [45] and references therein. Let Eq be the electric part of
the Weyl tensor'! Coepat Eap = Cachqu‘ul, where u® is the 4-velocity of matter; then to
first order

2OVOEIVeE,, = %A , (4.39)

where ®)V, is a covariant derivative orthogonal to u®. The analogue of E,p in Newtonian
theory is the tidal field Eog = Vap¢, where ¢ is the Newtonian potential and Vopd =
Vigp — %Eaggb. Then it is possible to show that to linear order a similar formula holds in
relativistic perturbation theory, i.e. Eog = Vag®N for the scalar part of Eqp (all the {0,0}

117 atin indices are 4-dimensional (0,1, 2, 3), and greek indices 3-dimensional (1,2,3).




184 § 4. Dynamical systems approach in Cosmology

and {0, a} components are second order). Moreover the field ®,, which play here the rdle
of a gauge-invariant analogue of the Newtonian potential, is just &y = %(@A - &y),
where &4 and ®y are the gauge invariant metric perturbations defined by Bardeen [18]
(84 = —®y for perfect fluids). Then using Eo3 = Vo3®n in (4.39), the harmonic
decomposition (4.21) and A() = —k%¢,,, we get equation (4.3) of Bardeen [18]:

2(3K — k*)®y = wa’pe, - (4.40)

Then this relation can be used to determine the asymptotic evolution of the gauge-
invariant metric potential ®5, and also that of amplitude £ = %\/W of the tidal
field E,p: indeed from a comparison of (4.39) and (4.40) the harmonic components of E
and &y are related by

E= %a”ZkZQN . (4.41)

Then it is usual to consider a dimensionless scalar to measure the relative dynamical
significance of a given field using © to take into account the expansion (see e.g. [116]):
thus in the case of E we consider E/©2, for which we have

E a—2§N Ky

-(:)—2 ~ T ~ ®2€m ~ QEm . (4.42)

Hence, for example for a flat model &5 ~ const. for very large scales, but the relative

amplitude of the tidal field E/©? ~ A ~ a grows unbounded (cf. [73]).

4.1.5 Conclusions

We have considered the stability properties of FLRW models with uncoupled Cold Matter
(dust) and radiation, and the perturbed models were considered as dynamical systems
described by an evolution equation for a gauge-invariant density perturbation variable
coupled with the equations governing the evolution of relevant background variables: the
pressure—energy density ratio w = p/p and the density parameter (. For the subsystem
describing flat models, given by 2 = 1, we deal with a planar autonomous system, and for
the open models we have shown that we can also restrict the analysis to a planar system
for each particular value of the density parameter at equi-density g.

The analysis of flat and open models gives different results: flat models admit unstable

perturbation modes, while open models are marginally stable with respect to perturba-
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tions, irrespective of their scale, ie. the perturbations freeze—in at a constant value. Qual-
itatively, both results can be expected on the basis of the results of a more traditional
study of the behaviour of the perturbations in simple models. The final fate of the per-
turbations in open models appears to be dominated by the background curvature, which
governs the background expansion at late times: therefore the stability properties of the
dust-radiation models are the same as those of a pure dust model, irrespective of the size
of the perturbation and of the radiation content of the given model.

Instead, we find more interesting features for flat models: in this case each model has
a characteristic critical invariant wavenumber kgc which depends on the proportion of
matter and radiation (e.g. at present), and the corresponding scale Agc determines the
transition from stable to unstable modes. The scale Agc is of the order of the Hubble
radius H;l at the equi-density of matter and radiation, H}T;l being the only scale entering
the background model. The present value of this transition scale is doc = (1 + ZE)AEC
and depends on the actual present proportion of matter and radiation, for which it is of
the order of 67Mpc. Therefore the stability properties of dust-radiation flat models are a
mixture of the properties of pure dust and pure radiation models, being well known that
perturbations in a flat dust models grow unbounded irrespective of their size, while all
perturbation scales in a radiation model always enter an oscillatory (sound waves) regime
after they enter the sound horizon (e.g. see [18]).

However, we actually find a structure in the stability properties of flat dust-radiation
models which is more interesting than expected, because we find three different regimes
for the evolution of the perturbations. Perturbations on scales Ag > Agc grow unbounded
(unstable modes), while perturbations in the range MSGAEc( AE < Agc are overdamped;
finally, perturbations on scales Ap < b{)@}\EC are damped, i.e. they oscillate as “sound
waves” while decaying.

The stability properties of perturbed FLRW models that we have found, should be
taken cum grano salis with respect to the problem of structure formation in the universe.
For example, it is clear that the marginal stability we have found for open models should
not be taken as implying that structures cannot form in an open universe: in fact it can be
expected that this stability could be broken by non-linearity. In other words, here we have

found that open models (see also [43]) are marginally stable against linear perturbations;
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in going beyond this level of approximation we can expect that instability will be switched
on by non-linearity.

Also, we have assumed adiabatic perturbations at all times, neglecting isocurvature
modes that are in principle important at small scales and late times, and we have ne-
glected photon diffusion, treating radiation as a perfect fluid irrespective of the scale of
the perturbation (in particular, the oscillatory behaviour of small scales in flat models
is probably an artifact of this assumption). However, we believe that these assumptions
should not question the validity of our main results for flat models: a) in a given flat
universe model (including the assumptions about the matter content and how to treat it)
there are perturbations that decay despite the fact that their wavelength at equi-density
Ag is larger than the Jeans scale Ajg; b) the today size of the critical scale we have found
is of the order of 67 Mpc, a fact that perhaps deserves further investigation regarding its
implication for structure formation in the universe. Also, while in standard flat CDM mo-
dels the fluctuations stop to oscillate when the universe enters the matter dominated era,
we have found that small scale fluctuations continue to be damped even at late times. It
will be therefore interesting to make a proper comparison between the power spectrum of
standard CDM and the one that could be derived from the analysis given here (normaliz-
ing the spectrum at large scales), eventually considering also the isocurvature modes that,
as said above, are expected to modify the small scale fluctuations behaviour. This sort of
analysis could lead to interesting results, giving less power at small scales in comparison
with the standard CDM results. However we cannot go beyond this speculative level at
this stage, and we leave this for a future work.

Finally, we remark that a comparison of the stability properties of dust-radiation
models with the observed small amplitude of the large scale density fluctuations seems
to suggest that if the spatial curvature of the universe vanishes, then we live in a special
epoch in which these perturbations are still in a linear regime of growth, while if we live
in a universe with negative spatial curvature the smallness of the large scale perturbations
is a characteristic of the model at all times and the description of the universe as an open
FLRW model is appropriate at any epoch.

Thus open models are special (at a given time) on average, because the density pa-

rameter {2 depends on time (this is the flatness problem), but not from the local point of
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view, because large scale structures are frozen-in, while the reverse is true for flat models,

because ) = 1 at all times, but large scale perturbations grow unbounded in these models.



5 Outlook and directions for future
research

Following the conclusions of chapter three we would like to advocate that the application
of RG in cosmology is a line of research worth pursuing. It seems at the end to be
connected with critical phenomena, chaos, self-organized criticality (SOC), fractals, flicker
noise, and in particular, the notion of entropy for gravitational systems and complexity.
The interconnections are not yet understood nor appreciated, and many issues are not
understood, e.g. the flicker noise (“1/f”) (e.g. [195]) is still one of the great mysteries of
physics and only now have some models displaying SOC been shown to exhibit this kind
of noise.

Particularly interesting are, in our opinion, critical phenomena. Critical phenomena
are after all always manifested macroscopically since phase transitions are collective phe-
nomena (arising from interactions between quasi-particles of the system), with the presence
of non-linearities of great importance. It would therefore be very interesting and valuable
to study further critical phenomena and the Renormalization Group in a cosmological
setting, and in particular, the relevance of these to the structure formation and clustering

in the universe.

This is an important point to understand how things become organized into complex
structures in the universe. We can conjecture that some “laws” of organization (self-
organization)! or information-processing are necessary to describe not only the quantity,
but also the organization of the information within a system. As proposed in [58], one

could describe complexity of a state by the running-time or entropy production of the

'L. Smolin, private communication.
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shortest possible program needed to compute the state. These ideas, relevant to a defini-
tjon of randomness and chaos, in general, have not yet played any important réle in the

understanding of cosmology.

Expanding further these considerations, and having in mind RG, let us notice a useful
connection between gravitation and turbulence at high Reynolds number, statistical field
theory and critical phenomena. Firstly, there is an analogue between classical gravitation,
turbulence and field theories with an infra-red attractive RG fixed point. This is the
situation for field theories corresponding to critical lattice spin systems, and in particular

the Ising model. The following list can be drawn up:

Turbulence Critical Phenomena  Gravitation

space separation wavenumber separation (geodesic)

viscosity temperature 3—metric

energetic length-scale UV cut-off (or, inverse coarse-graining scale
lattice-spacing)

dissipation wavenumber correlation length correlation length

velocity correlation function spin correlation function two-point correlation fn, etc.

intermittency exponent correlation exponent correlation exponent

The analogies between turbulence and critical phenomena have been pointed out e.g. in
[67] (see also [98] recently) and we will not discuss them here. The analogy with gravitation
has not been, to our knowledge, spelled out. Above, the roles of space and wavenumber
for turbulence and critical phenomena are interchanged, because turbulence as opposed to
critical phenomena, exhibits short distance scaling believed to be generic and essentially

independent of the large scale statistics or driving mechanisms.

Secondly, let us point out for completeness, an analogy that can be made between
turbulence and field theories with an ultra-violet attractive fixed point [98], and Quantum

Gravity:
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Turbulence Field Theory Quantum Gravity
space separation space separation separation
viscosity (or Kolmogorov scale) lattice-spacing “discretization”-spacing?
energetic length-scale correlation length correlation length ~ —Clj
Kolmogorov wavenumber UV cut-off = inverse UV cut-off
lattice spacing
velocity correlation function field-theoretic Green correlation function on
function the lattice

Let us remark that field theories such as UV asymptotically free QCD exhibits scaling
at short distances, just as turbulence does. Likewise, QG models studied so far (mainly
numerically studied dynamically triangulated QG models), exhibit similar finite-size scal-
ing, and in dim= 4 a second order phase transition, most probably, takes place from
the “smooth” to the “crumpled” phase [126, 4, 5, 2, 3, 54] (the last one is an analytical
approach)3.

Let us also remark that in the first analogy the inverse role of large and small scales
arises from the different character of “cascade” in the two cases. In the cascade picture,
there is a transfer of excitation on the average from the large turbulent eddies to the
small ones by a stepwise process, which is chaotic in nature and entails a loss of memory
of the large-scale statistics. Wilson has emphasized [255] that there is also a “cascade
of fluctuations” in critical phenomena. Droplet fluctuations nucleated at the lattice-scale
in the critical state can grow to the size of the correlation length. But now the details
of the lattice structure are lost instead and the scale-invariant distributions of the large
“droplets” are universal. In this connection, let us notice that interestingly enough there
is a “hierarchy of structures” in the universe that is governed by relativistic gravitation

field theory, which in certain sense has in it a cascade picture too.

Now the challenge would be to really understand these analogies (and differences).
While concrete problems may be highly non-trivial, e.g. how to define a suitable analog
of the Migdal decimation or Kadanoff block-spin transformation for curved dynamical
lattices (see [145] for an attempt in 2 dimensions). In any case, the overall conceptual

picture sketched here could be, we hope, of help for further research. It is after all one

?E.g. size of simplicial complexes in triangulations or edge links as in Regge calculus [209].

3For a good introduction to this subject see [66] (cf. also [39]).
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more example of the great unity and pluralism in theoretical physics [93], and this is what

makes it even more interesting.

An alternative way to perform the averaging was recently put forward by Zeeman
(265], who adopted the e—smoothing in applying the related Fokker-Planck equations as
a way to “stabilize” the resultant dynamical system. It would therefore be interesting to

compare the outcomes of this approach with the others.
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Appendix A
Some useful notions from Rieman-
nian Geometry

We recall here some basic concepts in Riemannian Geometry [27, 109] (see also [20] for a

concise overview).

Let M be a smooth C*, Hausdorff, connected, oriented, compact n-dimensional ma-
nifold without boundary and let g be a riemannian metric on M, i.e., a smoothly varying

family of inner products G on the tangent spaces T, M, z € M.

A metric g on M is called an FEinstein metric if the Ricci curvature Ric(g) = Ag for
some constant A. By normalization, one can always assume to be in one of the three cases:
Ric(g) = g (when X > 0), Ric(g) = 0 (A = 0) or Ric(g) = —g (when A < 0). We use the

term “Einstein manifolds” for riemannian manifolds of constant Ricci curvature.

Let ¢: [0,a] —» M be a curve, and 0 = a, < a3 < ... < a, = a be a partition of [0, a]

such that ¢|4;q;,,] is of class C'. The length of c is defined by
n—1 ait1 ,
L)=Y / ()] dt, (A.1)
i=0 v &i

where, |c/(t)] = /g(c/(t), ¢/(1))-

The length of a curve does not depend on the choice of a regular parameterization.

The riemannian distance between two points z and y in M is defined to be the infimum
of the length (with respect to g) of the curves from « to y. The diameter D of (M, g) is

the diameter of M for the riemannian distance.
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The geodesics are the curves which satisfy the Euler-Lagrange equation of the problem
of minimization of the energy of a curve. In particular, given any point ¢ in M and any
unit vector u € T M, there is (locally) one and only one geodesic ¢, , parameterized by
arc length ¢, such that ¢; ,(0) = = and é;,(0) = u (such a geodesic is defined for all values
of t when M is closed).

We define the ezponential map exp, : T,M — M, by exp_(tu) = cz4(t), for any
t > 0 and any unit tangent vector u. The exponential map is a local diffeomorphism from
a neighbourhood of 0 in T, M to a neighbourhood of z in M, its derivative at 0 is the

identity map.

An isometry f between two riemannian manifolds (M, g) and (N, k) is a smooth map
f: M — N whose derivative induces isometries between the tangent spaces, with respect
to the inner products g and h, respectively. In particular, the two riemannian manifolds

are isometric if there exists some diffeomorphism f : M — N, which transfers A into g,

ie., f*fh=g.

A riemannian structure is a class of isometric riemannian manifolds. In other words, if
Riem(M) denotes the set of riemannian metrics on M, the set of riemannian structures on
M is the quotient Riem(M)/Dif f(M) of M by the group of diffeomorphisms Dif f(M)
of M.

The various notions of curvature measure how the exponential maps differ from being
isometries (at least locally). Let P be a 2-plane in Ty M. Given a small enough r, consider
the image under the exponential map exp, of a circle of radius » and centre 0 in the plane

P. This is a closed curve in M with length L(r). When r — 0 we have Puiseux’ formula:
L(r) = 2mr(1 - %a(m,P)rZ + 0(%)). (A.2)

The number o(z, P) is called the sectional curvature of the 2-plane P at z (see [102] for

a lucid exposition).

An oriented riemannian manifold is also equipped with a natural riemannian measure

vg, Whose expression in a local coordinate system {z;} is det(g,‘j)%dz, where dz is the
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Lebesgue measure and where g;; = g(gg—{, 5—%). The volume of (M, g) is denoted by
V(9) = [pq dvg.

We can write the pull-back exp vy of the riemannian measure v, by the exponential
map in polar coordinates in T, M by expiv, = O.(t, u)didu, where t > 0, di is the
Lebesgue measure on IR, u is a unit vector and du is the canonical measure on the unit
sphere.

When t — 0, we have

0. (t,u) = "1 (1 - %px(u)t2 + O(#)). (A.3)

The number p.(u) is a quadratic form on T M which defines a symmetric bilinear
form called the Ricci curvature, Ric(g) of M at the point z.

If {u,es,...,e,} is an orthonormal basis in T; M and if P; is the 2-plane spanned by
z and e;, we have the formula

n

Ric(g)(u,u) = Z o(z, Pi), (A.4)

1=2

so the Ricci quadratic form is essentially a sum of sectional curvatures.

A riemannian metric g on a compact 3-manifold M is defined to be locally homoge-
reous, if and only if for every pair (z,y) of points of M, there exist neighbourhoods Uy
of z and V,, of y, such that there is an isometry % : Uy — V,, with P(z) = y.

Generally, these local isometries do not extend to isometries of the whole space (M, g).
H the local isometries do extend, then the geometry is defined to be homogeneous, i.e.,
(M, g) is homogeneous if for every pair of points z,y in M, there exists an isometry
6: M — M with ¢(z) = y. In this case the group of isometries of M acts transitively.
For every locally homogeneous geometry the universal cover is homogeneous. We say then

that the locally homogeneous geometry is modeled by the homogeneous geometry.
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Appendix B
The Ricci-Hamilton Flow

The dimensionality n = 3, unless explicitly stated otherwise.

Let Riem(M) denote the space (infinite dimensional) of smooth riemannian metrics
on M (this set has a natural structure of Fréchet manifold); and S*M the set of smooth
bilinear forms on M.

The diffeomorphisms act by pull-back, i.e., Dif f(M) : S?M — SZM.

The riemannian structure underlying (M, g) is described by the orbit O, of metric g,

in Riem(M) under the action of Dif f(M), it is defined as
Oy = {¢' € Riem(M)|g' = ¢"g forsome ¢ € Dif f(M)}. (B.5)

The tangent space to Riem(M) at a given g, i.e., TyRiem(M) is interpreted as the set
of infinitesimal deformations of the given g, and is isomorphic to S2M. In particular, it
contains as the subspace a tangent space to the orbit O,, which is an image in S*M of
the linear differential operator L : £ — 5?M, X — Lxg, where Ly is Lie differentiation
along the vector field X, and Z the space of vector fields on M (Z has an interpretation

of the Lie algebra of Dif f(M)).

One can show (using the decomposition theorems [22], see also [49] for a clear account),

that we have the L?—orthogonal splitting

TyRiem(M) ~ImL @ Ker L™, (B.6)
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where @ stands for the orthogonal sum with respect to the global scalar product on M,
defined by

(h, 1)y = /M hixhl, gl g™ dvg, (B.7)
for each h, k' € S2M.
Formula (B.6) can be rewritten as

TyRiem(M) ~ Im div* @ Ker div, (B.8)

where, (div §); = —g* V. S;;, (div z);; =
of L with respect to (, )y, L™ : S’ M —
S2M.

(Viz;+V,z;), because the formal L?—adjoint

1
2

is (minus) twice the divergence operator on

The geometrical interpretation of (B.8) tells us that any infinitesimal deformation
h € S?M, can be decomposed into a longitudinal deformation Ay, € I'm div*, mapping g
into, say, g’ within the same orbit, i.e., g — g’ € Oy, and a transversal one hrqn € Ker div,
g — 9" ¢ Og, which takes g to the other orbit and provides thus an infinitesimally deformed
new riemannian structure on M.

On Riem(M) there is a naturally defined Ric(g)—generated field of non-trivial in-
finitesimal deformations provided by associating with the given metric g, the tensor field
[Ric(g) — kgR(g)], where k is any real number. This follows by noticing that for any k,
[Ric(g) — kgR(g)] is never tangent, at g, to the orbit Oy, unless it vanishes*. In other
words, the deformation Ric(g) — kgR(g) mapping g — ¢’, such that infinitesimaly close
riemannian metric ¢’ = g — £[Ric(g) — kgR(g)] + O(¢?), defines a new riemannian structure

on M, since such g’ € O, (for a proof of this fact see [38]).

Now one can investigate the question of existence and behaviour of the integral curves
(if any) of this vector field®.

The answer was given by R. Hamilton [124], who showed that the flow associated with
the Riem(M) vector field g — —2Ric(g) is the local flow of metrics in Riem(M) and

*Ricci tensor Ric(g) : Riem(M) — S* M; R(g) stands for the scalar curvature.

®It is not evident a priori that this Ric(g)—generated deformations patch together to define a local (or
possibly global) flow of metrics in Riem(AM) due to the Fréchet structure of Riem(M).
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moreover it is global, on condition the Ricci tensor associated with the metric is a positive

bilinear form.

By deforming or smoothing flow of metrics, we mean a curve gq(3), such that g.;(0)
is the original given metric, and g,,(f) becomes smooth for § — oco. To see how it comes

about, consider the general infinitesimal deformation of a metric

gab —* gab + A:Bhaba (Bg)

where, hq, is any symmetric rank two tensor. Since, in appropriate coordinates, the leading

term in the Ricci curvature Ric(g) is V°V gap, a natural choice for hqp is
hay = —2Ric(g). (B.10)

Writing this in the form of a differential equation, and adding a term responsible for pre-
serving the volume of (M, g,p) along the flow, results in the Ricci-Hamilton flow equation

(B.11).

Theorem 1 Let (M, g) be a closed (compact and without boundary) riemannian 3-manifold,
such that its Ricci tensor, Ric(g), is a positive definite bilinear form (i.e., [Ric(g)]apv®v® >
0 Yv # 0 vector field), then the given metric g can be uniformly deformed into a consiant
curvature metric g.

In this case, the universal simply connected cover of M is the 3-sphere S3 and the pull

back of G to S° via the covering map §3 — M is the standard metric®.

The one-parameter flow of metrics on M (g,8) — g(B) (with § > 0 the deformation
parameter) realizing the above deformation is the unique solution to the weakly parabolic

initial value problem

55956(8) = 5< R(8) >55:0(6) ~ 2Ren(6), (B.11)

with the initial data g.p(8 = 0) = gab (a,b = 1,2, 3), where Rqp(3) are the components of
the Ricci tensor Ric(g(8)), and < R(B) >, denotes the average scalar curvature

1
R ) /M R(B)dvs (B.12)

5The theorem in fact, forces M to be topologically S°/T, i.e., S° possibly quotiented by a discrete
group.

< R(B) >4
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The Ricci-Hamilton flow equation is a heat-like equation (weakly parabolic) and results
in a smoothing deformation of the initial data g(z, 8 = 0) = g(z).

Before examining some of the properties of the Ricci-Hamilton flow we would like to
recall the strategy underlying the proof of Hamilton’s theorem.

In fact, one can equivalently deal with a simpler initial value problem than (B.11)
for what concerns most of the analysis involved in proving theorem 1. Equation (B.11)
is not strictly parabolic since the Ricci tensor (thought of as a second order differen-
tial operator) is not elliptic. This is a consequence of its Diff(M) equivariance, i.e.
Ric(p*g) = ¢~ Ric(g), for any smooth diffeomorphism ¢ : M — M. There is also as-
sociated with (B.11) a natural integrability condition in the form of contracted Bianchi
identities, div[Ric(g(B)) — $9(8)R(g(B))] = 0, which has to hold true for any 8 for which
the flow g(f) exists. Up to this integrability condition (B.11) is parabolic and its local
solvability can be handled by means of Nash-Moser implicit function theorem. Accord-
ing to the results of De Turck [68] we can associate with (B.11) a manifestly parabolic
initial value problem at the expense of a clever use of the mentioned above Diff(M)
equivariance, namely

‘a%gab(,g) = _2Rab(ﬂ)a

with the initial condition g,5(8 = 0) = gas. This simplifies the proof of local solvability for
(B.11). Let us remark that the local part of Hamilton’s theorem does not rely either on
the positivity of the Ricci tensor or the three-dimensionality of M. But apparently both
these requirements are needed in order to globalize the local flow (g,8) — g(8). To see
this, notice that the positivity of the Ricci tensor if assumed initially is preserved along
the flow. This fact allows to get a priori estimates showing that the solution of (B.11)
exists for all 0 < # < +oco0. Moreover, the sign restriction on Ric(g) yields a proof that as
B — oo, the three eigenvalues of the Ricci tensor, at the generic point z € M, converge
to a common value. It is then proved that this common value is a constant (positive).
As § — o0, g(B) approaches the constant curvature metric § on §° uniformly, in fact

the convergence is even exponential [124].

Now we will discuss some of the properties of the Ricci-Hamilton flow.

Firstly, the flow (g,8) — g(8) preserves the total volume of (M, g): Vol(M, g(B8)) =
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Vol(M,g)for 0 < 8 < oo.
To prove this, we use the fact that along the trajectories of the flow g(f) solution to
(B.11) we have

0 1 0
% =3 (gabﬁgab) dvg = [< R(B) > —R(B)]dvg,

so that

a )
557 0lMo0(8) = 55 [ v = [ 1< B(B) >5 ~R(B)ldvs = 0.

The second group of properties follow upon examining the formal linearization of (B.11)
around a given solution g(f).

The linearized Ricci-Hamilton flow evolves a given infinitesimal deformation yielding a
B-parameterised family of vectors h(8) € T Riem(M ), connecting two neighbouring flows
of metrics.

Upon the formal linearization of the initial value problem (B.11) around a given solu-

tion g(B), we obtain (the 8’s in the brackets suppressed)

] 2 2 1 1
—hay = =<R>hap+ =gas|= < Rg%®hap > —= <R Bh > —
a5 5 <R> b+3gb[2< 9 hap > —5 < R >< g% hap >
1
< R%hgap >] — Aphgp + 2[div*(div(h — 5(Trh) 9))lat, (B.13)

with the initial data h.(8 = 0) = hap, where, b € §2M is a given symmetric bilinear
form, Ay is the Lichnerowicz-DeRham Laplacian on bilinear forms, and the operators
Ap, div™, div and Tr are considered with respect to the flow of metric (g,8) — g(8),
solution of (B.11). The div (here, minus the usual divergence) is the divergence operator
on §2M, div* is the L? adjoint of div, acting from the space of vector fields on M to
52M (it can be identified with }[Lie derivative] of the metric tensor along a vector field).

Note that a h{3) solution of the initial value problem (B.13) always exists and is
unique, and evolves a given infinitesimal deformation yielding a 8-parameterised family of
vectors A(8) in T Riem(M) connecting two neighbouring flows of metrics g(8) and g'(8)
(obtained as solutions of problem (B.11) with initial data g(8 = 0) = g and ¢'(f = 0) =
9(B8 = 0) + eh(B = 0) + O(e?), respectively).
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The solution to (B.13) has a basic property expressing the Dif f(M) equivariance of
the Ricci-Hamilton flow, namely, a trivial deformation h.p = Ly gas (Where X : M — T M
is a smooth vector field on M) is always mapped by (B.13) into a trivial deformation, in
other words, the solution to the linearized Ricci-Hamilton initial value problem is deter-
mined up to the infinitesimal diffeomorphism.

This result implies that if X is a Killing vector field for the given (M, g), then it remains
so along the trajectories of the flow (3, g) — g(8). In other words, all the symmetries which

the original metric ¢ may be endowed with are preserved by the Ricci-Hamilton flow.

The natural problem to address, would be next that of generalizing Hamilton’s theorem
as much as possible.

At this point we refer the reader to the original literature [124] (see also [52] for a
comprehensive review); for the understanding, why there is a positivity requirement on
the Ricci tensor, and to what extend it can be weakened - from the point of view of
solvability the initial-value problem (B.11), as well as of the topological obstructions to
positive Ricci curvature - see [52] (see also [53]).

Let us stress that the positivity condition on the Ricci tensor apparently is not a
necessary one for the Ricci-Hamilton flow to be global [141, 56]. As explicitly proved in
[56], the 3-torus T° provides a non-trivial example of Ricci-Hamilton flow (with the Ricci
tensor being non-positive), such that Hamilton’s initial-value problem admits a global

solution’.

"The T® cosmology, with a 3-space in form of a 3-torus is the simplest inhomogeneous empty universe
[191]).



Appendix C
Gromov space of bounded geome-
tries

Consider two riemannian manifolds, and let i;(M}y), 12(M3) stand for two isometric em-

beddings of M; and M, respectively, in some metric space (4, d).
A Hausdorff distance in (A, d) between i1(M;) , i3(M3) can be introduced as follows:

di[i (M), ia(M3)] = inf{e> 0] U(i1(M1)) D i2(My),
Ue(i2(M2)) D i1(M1)}, (C.14)

where, the e-neighbourhood U, (;(M;)) of ;(M;), i = 1,2 is defined as
Uc(i:(M;)) = {z € A d(z,1:(M;)) < €} (C.15)

The Hausdorff distance thus defined is the lower bound of the ¢, such that i;(M;) is

contained in the e-neighbourhood of i5(M3), and vice versa.

The Gromov distance dg(M;, My) provides a natural generalization of the Hausdorff
distance, and it is defined as the lower bound of the Hausdorff distances, as A varies in
the set of metric spaces, and iy, 45 vary in the set of all isometric embeddings of M; and

M2 in (A, d)

The Gromov distance provides us with a sense of geometric nearness among riemannian
structures, which is related to a classification of riemannian manifolds, according to how

they can be covered by small geodesic balls. Coverings with the balls packed in similar

203
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configurations are possible for riemannian manifolds that can be considered close to each
other in the sense of Gromov distance.
In particular, the Gromov distance between two compact manifolds is always finite,

and dg(Mi, M3) = 0, when the two manifolds are isometric.

Let us introduce the following class of riemannian structures:

for k € R and D € R, let Ric[n, k, D] denote the space of isometry classes of closed,
connected n-dimensional riemannian manifolds (M, g) (without any pre-assumption on
their topology) with Ricci curvature Ric(g) > (n — 1)kg and diamefer < D.

Recall that if we define

k(z) = inf{inf Ric(u,u)| v € ToM, |uz| = 1}, (C.16)

the lower bound of the Ricci tensor of M is defined as the lower bound of k(z) as z varies
in M.
The best such k = k(g) is just the lowest eigenvalue of the Ricci curvature Ric(g). It

is a fundamental numerical invariant of a compact riemannian manifold.

For any manifold M € Ric[n, k, D], it is possible to introduce the covering by geodesic
balls, providing a coarse classification of riemannian structures occurring in Ric[n, k, D].
For any given € > 0, it is always possible to find an ordered set of points {p1,-..,PN}

in M from the above class, so that:

i) the balls Bu((pi,€) = {z € M| d(z,p:) < €}, i = 1,..., N (where, d(, ) denotes the

distance function of M) cover M, i.e., the collection {p1,...,pn} is an e-net in M.

ii) the open balls Bo((p;,€/2), i = 1,..., N are disjoint, i.e., {p1,-..,pn} is a minimal

e-net in M.

A filling function Ne(o)(M) of the covering is defined as the function, which associates

with M the maximum number of geodesic balls realizing a minimal e-net in M.

Any minimal net is characterized by its intersection pattern, defined as the set of
indices pairs

I(M) = {(3,j)|%i=1,...,N| B(pi,¢) N B(pj,¢€) # 0} (C.17)
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Any two manifolds M, M, € Ric[n,k, D] with minimal e-nets {pi,...,pn}, and
{g15--.,qn}, Tespectively, are said to be equivalent, if and only if N = L and if they

have the same intersection pattern, i.e., if the equivalence relations
NEY (M) = NI (Mz) (C.18)

I(M1) = I (M), (C.19)

are true (up to combinatorial isomorphism).
In fact, the above relations partition Ric[n, k, D] into disjoint equivalence classes, whose

finite number can be estimated in terms of the parameters n, k, D.

Two riemannian manifolds in Ric[n, k, D] get closer and closer to each other in dg,
if we can cover them with finer and finer minimal e-nets of geodesic balls with the same
intersection patterns.

In order to have dg(M;, M2) < ¢, for any two compact riemannian manifolds, it is
sufficient to show that there exist an ¢/2 lattice in M; and an ¢/2 lattice in M, and two
isometric embeddings i; : M; — Z in some metric space (Z, d), such that the distance
between the corresponding points of the embedded lattices is < €/2.

When discussing the convergence of a sequence {M;} of riemannian manifolds with
respect to Gromov distance dg, there is no need to refer to isometric embeddings in metric
spaces. The sequence {M;} admits a convergent subsequence, if and only if Ve > 0, J a
number Nc(o) providing for each i, an upper bound to the maximum number of disjoint
geodesic balls of radius ¢, filling up each M;, i.e., N(M;) < Ne(o), for each 1.

Stated differently, the convergence with respect to dg is related to a uniform control of
the “geometric size” of the manifolds M;, as indicated by the number of balls of a given
radius that is needed to fill up each M; in the considered sequence. For example, in the
case of a sequence of compact surfaces of bounded curvature converging in dg to § 2, each
of them can be filled up by N.(M;) maximum number of disjoint geodesic balls of radius
¢, such that N.(M;) < N(8?) Vi.

A metric space E is said to be precompact, if Ve > 0, 3 a finite (open) covering B; of
E, such that the sets B; have diameter < e. Equivalently, Ve > 0, there exist a finite set
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F C E, such that d(z, F) < ¢,V € E.

A stronger notion is that of compactness, yielded by the closure of the considered space.

Theorem 2 The set Ric[n, k, D] of isometry classes of compact manifolds, with the Ricci
tensor satisfying Ric(g) > (n — 1)kg and diameter < D, (k € R, D € R, ), is precompact

when endowed with the Gromov distance dg.

This theorem, due to M.Gromov, states that in the set of closed riemannian manifolds
(with Ricci curvature bounded below, diameter bounded above) there is a subset, let us
call it Ric, containing for each ¢, a finite number of riemannian manifolds M j» such that
for any M € Ric[n, k, D], we have dg(M, M;) < € for some M,; € Riec.

What this means is that for each “length scale ¢”, there exists a finite number of
“model” geometries, which describes with an e-approximation any given riemannian ge-
ometry. Given a ball of a certain radius > ¢ in any riemannian manifold M in Ric[n, k, D],
there exists a ball metrically similar (up to an € scale) in one of the “model” geometries,
which does not retain the details of the original manifold on scales smaller than e. Roughly
speaking, € is a measure of the typical curvature inhomogeneity with respect to the model-
background.

Let us stress that this is a highly non-trivial result, in the sense that the metrical
properties of the manifolds in the infinite dimensional set Ric[n, k,D]® are up to an €
scale described by the metrical properties of just a finite number of “model” riemannian

manifolds.

However, since Ric[n,k, D] is only precompact, and not compact we can have for
instance a situation where a sequence of manifolds in Ric[n, k, D] converges under dg, to

9 or to a space with singularities®.

a manifold of lower dimension
Therefore below we will limit ourselves to the subset of Ric[n, k, D], generated by those

riemannian manifolds with sectional curvatures bounded in absolute value.

3This set is of infinite dimension because a point M in its interior, remains on the set under small
perturbations of the metric, so locally it is in principle as complicated as the set of all riemannian metrics.

9The dimension of a manifold is not continuous for the topology defined by dg.

'9Phenomena of this kind are, for example the pinching of a geodesic in a torus.
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Theorem 3 The set (];’,z'c[n,k,D],dg) of riemannian structures having diameter < D,

volume >V and sectional curvatures bounded below in absolute value, is compact.

In certain sense, one can think of the “model” manifolds M; € Ric as the “smoothed

out” counterparts of the manifolds in Ric[n, k, D).

A connection can be made between the above theorems (due to M.Gromov) and the
Ricci-Hamilton flow [52].

Hamilton’s flow associated with a 3—geometry satisfying the rather weak conditions
of theorem 2, evolves in a set Ric[n, k, D] which is precompact when endowed with dg.
As is known, precompactness of a set is not a condition strong enough for yielding a glob-
alization of a local (smooth) flow which evolves in it. But if Ric(g) > 0 is required for
a closedb 3—manifold (M, g) then the associated Hamilton’s initial value problem (B.11)
defines a flow (g,8) — 9(8), 0 < B < 00, in the compact set Ric[n, k, D]. The positivity
requirement for Ric(g), needed for the global version of Hamilton’s theorem is a conve-
nient way of controlling the growth of the diameter of the manifolds (M, g(B)), which |
discriminates between the permanence of the Ricci-Hamilton flow in the compact set of
smooth geometries versus the possibility of leaving this set and evolving toward a singular

geometry.

More details can be found in [119], [109] and [54, 55].
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