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Chapter 1

Introduction

The recent experimental observation [1, 2, 3, 4, 5] of Bose-Einstein Conden-
sation (BEC) in dilute Bose gas of alkali atoms can be considered amilestone
in the history of the BEC. For the first time, evidences of the BEC, have been
obtained in simple and direct ways. Vapors of rubidium and sodium were con-
fined in magnetic (harmonic) traps and cooled down to temperatures of the order
of the nanokelvin. Below the critical temperature a sharp peak in thevelocity
distribution was observed, after switching off the confining potential [6]. Such
anisotropic velocity distribution cannot be interpreted as a thermal distribution,
providing therefore a clear signature of BEC.

The peculiarity of these trapped alkali vapors is that their densitiesare suf-
ficiently low so that such gases can be realistically treated in the framework of
the theory of the weakly interacting Bose gas, which is well established. At the
same time the interaction is effective on many relevant properties of the system
and its strength is sufficient to allow for the condensation in a finite time. This
feature makes the Bose Einstein condensation not only very interesting, from an
experimental point of view, but also a very challenging theoreticalproblem.

A very attractive aspect, from the theoretical point of view, is that alkali
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vapors are inhomogeneous and interacting systems. In fact, a very complex
and rich phenomenology is expected, as a consequence of the interplay between
inhomogeneity and interaction. For example, the shape and the spatial extension
of the trapped condensate can be strongly modified by the two body interaction1

A striking feature of a BEC is its coherent nature, which is related to the
macroscopic quantum phaseof the system. An important consequence of this is
the possibility of interference phenomena. Such phenomenahave been already
observed in dilute alkali condensates, proving the coherent nature of these sys-
tems over a macroscopic scale. In a beautiful experiment, performed at MIT [7],
two independentcondensates were created in a double well potential, obtained
by focusing a off-resonant laser light into the center of the magnetic trap. After
switching off the confining potential and the laser, the Bose Einstein conden-
sates expanded and successively overlapped. Clean atomic interference patterns
have been observed in the overlapping region.

Recently the JILA group [8], using an interferometric technique, has mea-
sured the relative phase between two trapped condensates in different hyperfine
states and its subsequent time-evolution. Contrary to the MIT experiment [7],
the initial state is, from the beginning, a coherent superposition of two con-
densates; the JILA group was also able to show that each realization ofthe
experiment reproduces the same evolution for the relative phase.

A classical experiment that investigates the role of the macroscopicquantum
phase difference on the evolution of two coupled macroscopic quantum systems
is the Josephson-junction experiment. The Josephson experiment represents the
usual way to detect the phase of the order parameter in superconductors, through
the observation of coherent oscillations of Cooper-pairs. In the context of alkali
gases an advantage of the Josephson experiment is that, differing from the inter-
ference experiment, it does not destroy the sample. In particular,Josephson ex-
periment allows for a continuous measurement of the phase difference, through
the monitoring of the population difference, e.g. by phase-contrast microscopy
[9].

Arguments first proposed over thirty year ago by Josephson, Anderson and
Feynman [10, 11, 12], based on fundamental quantum-mechanicalprinciples,
lead to the prediction that if two macroscopic quantum systems are weakly cou-

1The spatial extension of the condensate can be orders of magnitude bigger than that of the ideal
condensate gas.
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pled together, particle currents should oscillate between the two systems. If the
two systems have a quantum phase difference, a supercurrent must flow from
one system to the other. The currentI is related to the phase difference�� by
the equationI = Ic sin (��), whereIc is the critical current of the link. If the two
systems have a chemical potential difference��, the phase difference evolves
with time t according to the equation@ (��) =@t = ���=�h.

Josephson effects have been searched experimentally in weak links between
neutral superfluid systems, such as4He-2 and3He-B (systems of bosons and
fermions respectively). Only very recently it has been observed an oscillating
mass current in a weak link between two superfluid3He-B reservoirs [13, 14,
15].

The main subject of this thesis are Josephson-like effects in a weak link be-
tween two trapped alkali BEC gases. The time rate of change of the relative
population, is the BEC analog of the supercurrent in the usual Superconductor
Josephson Junction (SJJ). The interest in this system arises from theexpecta-
tion of new dynamical regimes, which are not experimentally accessible in SJJ,
since macroscopic changes in density are forbidden for a SJJ. A further motiva-
tion to investigate this system comes from the absence of noisedue to external
experimental apparatus. For instance, in a SJJ the external electrical circuits is
a source of noise.

The Josephson dynamics between two weakly linked BECs of alkali gases
has been already a source of several theoretical investigations [16,17, 18, 19, 20,
21, 22]. At least two different experiments can be suggested in order to obtain
a weak link between two BECs of alkali gases. In a setup similar to that of
MIT, one can imagine to lower the width of the laser to allow coupling between
the condensates; the coupling arises from quantum tunneling [17]. This kind of
setup will be the object of a detailed discussion in chapter4. A different kind of
weak link can be obtained by considering two trapped condensates indifferent
hyperfine states, like that proposed by JILA group [22]. In thiscase the role of
tunneling is played by a weak driving field that couples these hyperfine states.

An other important reason to study BEC of alkali gases is that the system
can be realistically described, at low temperature, by the theoryof weakly in-
teracting Bose gas, as developed by E. Gross and L. Pitaevskii [23]. The mean
field analysis, for alkali BECs, provides an accurate realistic description of the
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non-linear dynamics and provides a simple language to understand the system
in terms of few physical quantities. At zero temperature the condensate is de-
scribed by aone-body wave functionand its time evolution satisfies a non linear
Schr̈odinger equation (the Gross-Pitaevskii equation). In the inhomogeneous
case the exact solution of this equation requires a numerical approach that will
be the object of Chapters 5 and 7.

In the physics of SJJ, the low energy dynamical behaviour is well described,
both phenomenologically and microscopically, in terms of the current I and the
phase difference� between the two superconductors. In a similar way, in neutral
superfluid systems, as4He-2 and3He-B, the low energy dynamical behaviour is
described in terms of an effective free energyF (�; �N), where the relative phase� and the relative number�N can be treated as canonically conjugate variables.

Our starting point has been to extend the SJJ language to the case of weakly
linked BECs. The approach used for this reason is the time dependentvaria-
tional approximation (or Dirac action principle) applied to the full mean field
equation (chapter 4). In our variational Ansatz the order parameter is written as
a superposition of two time-independent wave functions. In such a way a formal
description in terms of the relative phase� and the relative number�N can be
obtained. These variables are canonically conjugate and satisfy twocoupled non
linear equations (that we refer to TMA) in terms of few static properties, that in
some limit can identified as the Josephson coupling energy, and the Josephson
capacitative energy.

Such approach has enabled the investigation of interesting non linear ef-
fects. We have found that new effects can arise due to the interaction and/or
to the particular initial condition of the BECs. One of these is the socalled
self-locked population imbalance: for instance, in the case of a double well
symmetric potential, two condensates, prepared with an initial imbalance above
a critical value, cannot evolve with a dynamics with zero average population
imbalance, but the population of the two states make small and fastoscillations
near the initial condition. This effect is analogous to the AC effect observed in
SJJ.

In TMA equations the dynamics depends, a part from a time scale factor,
only on the ratio of the Josephson capacitative energy and the Josephson cou-
pling energy. If this ratio is very large, a behaviour similar to the SJJ is observed;
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if the ratio is close to zero, Rabi-like oscillations are obtained.
Another important result, obtained by TMA equations, is that undercertain

circumstances, a quantum phase difference of� between the two trapped Bose
gas, can be maintained. This will be discussed in chapter 4. Very recently, a
similar phenomena, was observed in a weak link between two superfluid 3He-B
reservoirs [24].

In chapter 5 we have gone beyond the TMA by integrating the full GPE.
There are at least two important reasons to do this: first, to check the limit of
validity of the TMA, second, to look for new effects, which cannot be described
by the TMA, as, for instance, the relaxation phenomena. Furthermore, in a
very inhomogeneous Bose gas, we expect that non trivial effects can occur, due
to the coupling between intrawell collective motions and interwell Josephson
dynamics.

The results obtained by the full integration of GPE can be used to develope
an ”effective” TMA, as we will show in chapters 5 and 7. In this approach the
Josephson coupling energy and the Josephson capacitative energy, appearing
in the TMA equations, are treated as ”phenomenological” inputs. Aneffective
description of the numerical results in terms of the formal equations of the TMA
model is obtained [25].

These numerical methods (second part of chapter 4) can providethe exper-
imentalists with accurate values for the laser parameters that should be used in
order to observe these effects.

An open problem is the actual experimental observation of Josephson os-
cillations as well as the measure of both the plasma frequency and the critical
current. One of the limiting factors is that the amplitude of Josephson oscil-
lations can be too low for the present resolution of the available experimental
setups2. In chapter 7 it will be proposed a strategy to improve the observability
of Josephson-like effects. This strategy leads to a measure of thecritical current
and the Josephson frequency, even in the case in which the Josephson oscilla-
tions cannot be directly observed [26]. We suggest to investigateexperimentally
a phenomenon that is the close analog of what occurs in a single SJJunder the
action of an external dc current source. The dcI � V curve,V = V (I) ; can be
explored and the analog of the dc and ac effects can be formally recovered. The

2The frequency of Josephson oscillations can be a fraction not neccessarily small of those of the
trap.
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role of the external electric circuits with a current source is played by a slow
relative motion of trapping potential with respect to the laser sheet,where the
relative velocity corresponds to the intensity of the external appliedcurrent in
SJJ. The existence of the critical current manifest itself in the occurrence of a
critical value of the relative velocity.



Chapter 2

Bose-Einstein Condensation

2.1 Bose-Einstein Condensation in dilute trapped al-
kali gas

The Bose-Einstein condensation (BEC) has been the source forseveral stud-
ies and debates, leading to the development of continuously novel technics for
the investigation of different physical systems [27]. In this context, the recent
experimental observation of Bose-Einstein condensation, in dilute Bose gas of
alkali atoms [1, 2, 3, 4, 5], has to be considered as fundamental achievement.

Previous investigations of BEC have been mostly limited to superfluid4He,
namely liquid4He below the critical temperature (Tc = 2:3 oK) [28]. Since early
stages, superfluidity was considered as a manifestation of BEC. This is an issue
which is still very much debated. Then, some more direct observations of BEC
came from the deep inelastic neutron scattering experiments on4He, which, at
high momentum transfer, provide a measure of the momentum distributionn (k)
[29]. The Bose condensate should appear as a delta function singularity of n (k)
atk = 0. However, due to final state interactions of the knock out atom with the
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bulk and to experimental broadening effects, the delta function is not directly
observable. Making use of theoretical models, based on microscopic calcula-
tions [30], the fraction of Bose condensation in4He has been estimated to be7:3%. Therefore, due to the strong short-range correlations the fractionof the
condensate is very small. This makes very difficult to quantitatively study the
dynamical behaviour of such condensate, both experimentally and theoretically.
Other investigations of the BEC properties have been done in other many-body
systems, such as the gas of excitons in semiconductor [31], the pairsin super-
conductor materials and the superfluid3He.

The remarkable experiments leading to Bose-Einstein condensation in alkali
gas have been performed by combining sophisticated non linear optical tech-
niques. Atoms were confined in harmonically magneto-optical traps and cooled
down with laser cooling and evaporative cooling techniques [32].In this way
it has been possible to reach the temperature and density values necessary to
observe the phenomenon of Bose-Einstein condensation1. In this conditions the
equilibrium configuration of the system would be the solid phase. Since three-
body collisions are rare events in dilute and cooled gases, the metastable gas
phase has a sufficiently long lifetime2 and the BEC can be observed. The first
evidence for condensation emerged from the free expansion of the condensate
after switching off the confining trap: a sharp peak in the velocity distribution
appeared below a critical temperature.

The dilute nature of these gas allows one to describe the two body interaction
with a single parameter, the s-wave scattering length (Born approximation). The
static and dynamical properties of the Bose-Einstein condensate can be realis-
tically studied within the theory of weakly interacting Bose gas,mainly devel-
oped by Gross and Pitaevskii [23] (see next section). Standard methods, used
for homogeneous dilute Bose gas, have been extended to the inhomogeneous
and finite number of atoms case, and new techniques have been developed to
investigate static and dynamics properties of the BEC, as well as itstemperature
dependence [?].

Condensate alkali atoms constitute a nearly ideal system (condensate frac-

1For a homogeneous gas the condition for BEC is(�DB)3 � > 2:612, where�DB = �hmkBT is the
De Broglie wave length and� is the density of the systems.

2The observed lifetime of the condensate depends also on other different scattering mechanisms with
incoherent photons and impurity atoms.
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Figure 2.1:The MIT condensate.

tion� 100%), in which short-range correlations can be neglected and the mutual
interaction can be treated in	4 theory (mean field theory). Despite such sys-
tems can be considered as a weakly interacting Bose gas, one should not have
the impression that, the two body interaction plays a minor role. In fact, the
interaction, in addition to be crucial for the actual realization ofBEC3, it is also
very effective on various of their relevant properties4. For instance, the non
linear effects, due to two body interactions, raise the most important physical
problems in this field of research.

3The intensity of the interaction gives the rate of termalization processes.
4such as the spatial extension of the BEC and non linear dynamical effects
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Bose-Einstein condensation in alkali gas is quickly developing as a broad
interdisciplinary field, where concepts coming from differentareas of physics,
such as quantum optics, statistical mechanics and condensed matterphysics,
can be encountered. Among the several theoretical perspectives,in this thesis
we will focus on the non linear dynamics behaviour of the condensate and its
coherence effects at zero temperature.

We will limit ourself to a mean-field description of the behaviour ofthese
systems, which is adequate enough, given the accuracy of the present experi-
mental data. This theory has been already tested with excellent success in the
description of various fundamental properties of these systems indifferent phys-
ical regimes [?]. It can also be the starting point for the investigation of novel
phenomena.

This chapter will introduce the Gross-Pitaevskii equation, the Thomas-Fermi
approximation, the Bogoliubov theory for the collective excitationsand the non
linear dynamical aspects for BEC.

2.2 The Gross-Pitaevskii Theory

The theory of the condensate of a weakly interacting Bose gas was developed by
E. P. Gross and L. L. Pitaevskii [23]. Although Gross-Pitaevskii and Bogoliubov
[33] theories are not realistic theories to study the physical properties of4He at
low temperature, they are very well suited for condensed low density alkali gas.
Such theories have been generalized to the inhomogeneous case [34], as needed
for trapped condensates.

The problem ofN interacting bosons is in general a very complicated one.
The dynamical evolution of the systems is described by aN body wave func-
tion. In the case of a weakly interacting Bose gas, however, strongsimplifica-
tions occur in the description of the system under the occurrence of the BEC
phenomenon. In fact, the system is sufficiently dilute, the interaction potential
fulfils the conditions of applicability of Born approximation, and it can be rep-
resented by ag j	j4 term, where the coupling constantg is directly related to thes-wave scattering length. The condensate is described by a”one body” wave
function normalized to the number of particles5 (of the condensate). The collec-

5in chapters 4,5,6 we use another choice of normalization associated with a particular choice of unit
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tive dynamics of a dilute Bose gas at zero temperature is therefore described by
a ”macroscopic wave function”	(r; t), which obeys a nonlinear Schrödinger,
or Gross-Pitaevskii equation (GPE) [23]:i�h @@t	(r; t) = � �h22mr2	(r; t) + hVext (r; t) + g j	(r; t) j2i	(r; t) (2.1)

whereVext (r; t) is the external confining potential and the coupling constantg
is given byg = 4��h2a=m, wherea is the atomics-wave scattering length andm the atomic mass. In this non linear Schrödinger equation, the non linearity
comes from the interaction in the form of a self-consistent fieldg j	(r)j2. The
static (ground state) solution obeys the GP equation� �h22mr2	(r) + hVext (r) + g j	(r) j2i	(r) = �	(r) : (2.2)

where the eigenvalue� is the chemical potential� = E (N)� E (N � 1).
The main feature of eq.s. 2.1 and 2.2 is the competition between the kinetic

energy and the mean field. One limiting case is to neglect the kinetic energyin
eq. 2.2. This correspond to the Thomas-Fermi approximation; in such approxi-
mation the static solution is given by	(r) = 1pgq�� Vext (r)� (�� Vext (r)) ; (2.3)

(where� is the unit step function). The Thomas-Fermi approximation can be
used when the mean field is much bigger than the kinetic energy and it is a
particularly suited to analyze the effect of the interactions. The Thomas-Fermi
approximation leads to a rather simplified treatment of the low energy dynami-
cal behaviour6 [35].

The effect of the interaction termg j	j2 can lead to drastic changes in static
and also dynamics properties of the BEC. The shape and in particular the spatial
size of the condensate can change significantly with respect to the noninteract-
ing ground state (gaussian shaped). This effect is particularly large when the
Thomas-Fermi approximation is valid, as can be seen from eq. 2.3. Since the
stationary solution of 2.2 follows from a variational principle, virial relations
can be obtained. One of these relations is the followingTx � V hox + 12Uint = 0 ; (2.4)

length:
R dr j	j2 = 1, and consequentlyg ! Ng, whereN is the number of condensate atoms.

6this treatment in some cases leads to analitycal solutions
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whereT x = h� �h22m @2@x2 i andV hox = h12m!2xx2i are the kinetic energy and the
harmonic potential energy corresponding to thex axis, andUint = h12g j	j2i is
the internal energy (two similar equations hold for they andz components).

In the following we sketch one of the possible derivation of the GPE.In the
formalism of second quantization, a system ofN interacting bosons of massm,
interacting through a two body potentialV and confined by an external potentialVext, is described by the following general Hamiltonian:H = �h22m Z r	̂yr	̂ + Z Vext (r) 	̂y	̂ (2.5)+12 Z 	̂y (r) 	̂y �r0�Vint �r� r0� 	̂ (r) 	̂ �r0� dr0 dr ;
where	̂y (r), 	̂ (r) are field operators satisfying the Bose commutation rulesh	̂y (r) ; 	̂ �r0�i = � �r� r0� ; h	̂ (r) ; 	̂ �r0�i = 0; h	̂y (r) ; 	̂y �r0�i = 0: (2.6)

The dynamics follow from the Heisenberg equation of motion for the timede-
pendent operatorŝ	y (r; t), 	̂ (r; t)i�h @@t	̂ (r; t) = 24 � �h22mr2 + Vext (r)+ R 	̂y (r0; t)Vint (r� r0) 	̂ (r0; t) dr0 35 	̂ (r; t) (2.7)

If the interaction potentialVint (r� r0) fulfils the conditions of applicability of
the Born approximation, then it can be substituted by an effective contact inter-
actiona � � (r� r0) wherea is proportional to the scattering length; this is also
equivalent to neglect short range correlations. The Gross-Pitaevskii equation
(GPE) follows from the semiclassical theory obtained by replacing thecom-
mutation rules for	̂y (r), 	̂ (r) with classical Poisson Bracket relations. The
Heisenberg equation of motion becomes a non linear integrodifferential equa-
tion governing a classical field.

An alternative derivation of GPE follows from the Bogoliubov prescription,
in which the field operator is shifted by a c-number� (r; t)	̂ (r; t) = � (r; t) + 	̂0 (r; t) ; (2.8)

where� (r; t) is a scalar complex function defined as the expectation value of the
field operator in the Gran canonical ensemble� (r; t) = h	̂ (r; t)i. The function� (r; t) has the physical meaning of an order parameter and it is also called”con-

densate wave function”, emphasizing the existence of a macroscopic number of
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bosons in the condensate. It is possible to obtain the equation for the conden-
sate wave function, namely the GPE, by replacing in the Heisenbergequation
of motion 2.7 the field operator̂	(r; t) with the expression in the eq. 2.8 and
requiring that the first order in̂	0 (r; t) is identically zero.

In an inhomogeneous and finite system the condensate wave function has
the following clear meaning: it can be determined through the diagonalization
of the one-body density matrixh	̂y �r0; t� ; 	̂ (r; t)i and corresponds to the eigen-
function with the largest eigenvalue, namely directly related to the condensate
fractionn0 [36].

2.2.1 Linearized GPE or Bogoliubov approximation

An appropriate description of the low energy elementary excitations at zero tem-
perature in the condensate alkali gas can be obtained from the GPE. Elementary
excitations can be viewed as small oscillations around the ground state. Their
frequency can then be obtained by linearizing the GPE. To this purpose we write	(r; t) in the form of	(r; t) = exp (�i�0t=�h) [	0 (r) + �	(r; t)] : (2.9)

This is still a solution of the GPE to first order in�	 if �	 satisfies the equationi�h @@t�	(r; t) = � �h22mr2	(r; t) + (Vext (r)� �0) �	(r; t) (2.10)+2g j	0 (r) j2�	(r; t) + g j	0 (r) j2�	� (r; t) :
The solution of this equation can be written in the form�	(r; t) = u (r) exp (�i!t)� v� (r) exp (+i!t) ; (2.11)

and equation 2.10 becomes�h! u (r) = hH0 � �0 + 2g j	0 (r) j2i u (r)� g j	0 (r) j2v (r) ; (2.12)��h! v (r) = hH0 � �0 + 2g j	0 (r) j2i v (r)� g j	0 (r) j2u (r) ;
whereH0 = � ��h2=2m�r2 + Vext (r). The energy� associated to each elemen-
tary excitations corresponds to the frequency! of the relative small oscillations
around the ground state � = �h! : (2.13)
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This procedure is equivalent to the diagonalization of the many body Hamilto-
nian in the Bogoliubov approximation. For most recent reviews see A. Fetter
[34], and Gardiner [37].

2.2.2 non linear dynamics

In order to study the non-linear dynamics of finite size systems one needs to
numerically integrate the GPE. Based on the experimental resultsor on the nu-
merical solutions, one can try to find approximate solutions for such dynamics,
that may lead to a more intuitive picture of the system properties. To this aim
a powerful approach is the time dependent variational principle. This approach
applied to the collective motions leads to an excellent determination of their
frequency [38].



Chapter 3

Aim and plan of the work

3.1 The weak link between two BECs

A striking feature of a Bose Einstein Condensate is its coherent nature. An im-
portant consequence of this is the possibility of interference phenomena. Such
phenomena have been already observed in a dilute alkali condensates, proving
the coherent nature of these systems over a macroscopic scale. In this beautiful
experiment, performed at MIT [7], two condensates were createdin a double
well potential, obtained by focusing a blue-detuned far-off-resonant laser light
into the center of the magnetic trap. After switching off the confining potential
and the laser, the Bose Einstein condensates expanded and successively over-
lapped. Clean atomic interference patterns have been observed in the overlap-
ping region (see fig. 3.1).

It is important to stress that this interference phenomenon was observed be-
tween twoindependentBose Einstein Condensates. This experiment should be
considered as equivalent to the Anderson’s gedanken experiment (”What is the
relative phase of two buckets of liquid helium”) [11] and also to the interference
experiment between two independent sources of coherent light[39] (a remark-
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Figure 3.1:A striking feature of a Bose Einstein Condensate is its coherent nature.
The first evidence, that clearly proves phase coherence over a macroscopic scale in
dilute alkali condensate, have been obtained through the observation of interference
phenomena. Two independent Bose Einstein Condensates were obtained in a double
well potential in a recent experiment at MIT [7].Switching off the confining potential,
the condensates expanded and successively overlapped. Clean atomic interference
patterns have been observed in the overlapping region.

able experiment in non linear optics, that disproved a famous statement of Dirac
[40] ”...each photon interferes only with itself. Interference between different
photons never occurs.”).

Recently the JILA group [8] using an interferometric technique havemea-
sured the relative phase between two trapped condensates in different hyperfine
states and its subsequent time-evolution. A Condensate of87Rb atoms, initially
in the jf = 1; mf = �1i hyperfine state, is driven, through a two-photon tran-
sition. After a�=2 pulse the condensate becomes a superposition of the two
hyperfine states,jf = 1; mf = �1i andjf = 1; mf = 1i, with equal population.
Contrary to the MIT experiment [7], the initial state is, from the beginning, a co-
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herent superposition of two condensates; the JILA group was also able to show
that each realization of the experiment reproduces the same evolution for the
relative phase.

A classical experiment that investigates the role of themacroscopic quan-

tum phase (difference)on the evolution of two coupled macroscopic quantum
systems is the Josephson-junction experiment. The Josephson experiment rep-
resents the usual way to detect the phase of the order parameter insupercon-
ductors, through the observation of coherent oscillations of Cooper-pairs. There
have been several proposals [16, 17, 18, 19, 20, 21] suggestingan analogous
experiment in the context of BEC of trapped alkali gases. In a setup similar to
that of MIT, one can imagine to lower the intensity of the laser (or/and itswidth
if it is possible) to allow coupling between condensates arising from quantum
tunneling. One could observe the time rate of change of the relative population,
which is the analog of the supercurrent in the usual Superconductor Josephson
Junction (SJJ). This should enable the investigation of interesting nonlinear
effects, due to two-body interaction.

A different type of weak link experiment, based on the work, done by the
JILA group [8], with two trapped condensates in different hyperfine states, has
also been recently proposed [22], in which, the role of tunneling is substituted
by a weak driving field that couples these internal states1.

Both the two weak-link BEC experiments proposed (the first with a double-
well potential created by a laser sheet, and the second using a twocomponent
condensates coupled by a driving field) have the lifetime of the condensate as a
possible experimental limitation. We assume in the following thatthe lifetime
of the condensate is sufficiently long so that macroscopic quantumtunneling
phenomena can be observed.

The Josephson effects and related features which can be explored with a
trapped Bose gas, has been theoretically studied, within the so called two mode
approximation, in a number of recent papers [16, 17, 18, 19, 20, 21, 25, 26]. In
this thesis, we investigate the occurrence of Josephson like effects in a weak link
between two trapped BECs. The principal part of this work is directly related to
the double potential case.

The Mean field Theory is a powerful tool to qualitatively and quantitatively

1(with a Rabi period longer than the typical time scale of internal motions)
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understand the dynamical behaviour of the Condensate. The Gross-Pitaevskii
theory is in a good quantitative agreement with the data from interference ex-
periments. This is very important because it reveals that the concept of phase
coherence, as assumed in GP theory, is a very sound one, and suggests that it
can be a remarkable starting point to investigate Josephson like effects in weak
links. However, it is not a priori obvious that GP theory provides good quanti-
tative description of the weak link physics. It is then imperative to test quantita-
tively such mean field theory and check whether it can be considered as a basis
for more sophisticate treatments.

Assuming that the GP mean field is appropriate, We will compare the physics
of SJJ and TMA, looking for dynamical regimes not observable in SJJ. These
are the main goals of this work.

In the physics of Superconductor Josephson Junction, the low energy dynam-
ical behaviour is well described (both phenomenologically and microscopically)
in terms of the currentI and the phase difference� between two superconduc-
tors. Since a long time Josephson like effects have been theoretically predicted
in a weak link between superfluids as4He-2 and3He-B. In such neutral systems
the low energy dynamical behaviour is described in terms of an effective free
energyF (�; �N), where the relative phase� and the relative number�N can be
treated as canonically conjugate variables. It is only recently thatJosephson like
effects have been explicitly observed experimentally in a weak linkbetween two
superfluid3He-B reservoir [13, 14, 15].

Our starting point is to establish such language in the context of weak links
in condensation of alkali atoms. The simplest and still realistic scheme that
we have used is the Two Mode Approximation (TMA) model, which is based
on the Dirac action principle [41], or time dependent variational method. The
approximate initial Ansatz is that the order parameter is written as asuperpo-
sition of two static spatial dependent wave functions. In sucha way a formal
description in terms of the relative phase� and the relative number�N can be
obtained. These variables are canonically conjugate and satisfy twocoupled
non linear equations in terms of few static properties. One should underline that
the problem of finding good variational time independent wave function is not
at all trivial.

It is however necessary to go beyond the TMA and to investigate the full
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GPE for at least two important reasons:� 1) a comparison with the TMA to check its limit of applications;� 2) the occurrence of possible new effects, not present in the TMA, as for
instance the damping. In fact, in such inhomogeneous Bose gas, we ex-
pect that non trivial effects can occur, from the strong coupling between
intrawell collective motions and interwell Josephson dynamics.

In section 2 the plan of the work is summarized, whereas the time dependent
variational method and the numerical solution of GPE are briefly discussed in
section 3.

3.2 Plan of the work� A general analytical description of the non linear tunneling dynamics of
a weak link between two trapped BECs within TMA (based to the time
dependent variational principle).� A comparison with SJJ and a search for new dynamical regimes.� An analysis of a possible choice of the two effective order parameters,
which is not based on the usual perturbation scheme.� The full numerical integration of the Gross-Pitaevskii equations (which
goes beyond the TMA).� A comparison between the numerical results and those obtained in the
TMA.� An effective ”phenomenological” description of the numerical resultsin
terms of the formal equations of the TMA model.� The investigation of possible effects due to the coupling with interwell
collective excitations.� A search for the best geometry and experimental setup to observe Joseph-
son like effects.
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3.3 Methods

3.3.1 The Time-Dependent Variational Principle

Some general properties

Any variational approximation to the dynamics of a quantum system based on
the Dirac action principle [41] leads to a classical Hamiltonian dynamics for the
variational parameters. The starting point for a variational calculation is Dirac’s
action principle which can be used to derive the Gross-Pitaevskiiequation as
shown below. We begin by defining the Gross-Pitaevskii action functional (not
normalized): S = Z 21 dt h	 j i @@t �H � U ! j	i ; (3.1)

whereH0 = � �h22mr2 + V (r;t) andU = 12g j	(r;t)j2. From the variational prin-
ciple �S = 0, along with the boundary conditions�j	(t1)i = 0; �j	(t2)i = 0
we get �S = 2 Z 21 dt Reh �	 j i @@t �H � 2U j	i ; (3.2)

which leads (the variationh �	 j is arbitrary) to the time-dependent GPE (or
non-linear Schr̈odinger equation) i @@t �H � 2U ! j	i = 0 : (3.3)

Most of the analytical studies are based on the variational method,in which
the (approximate) solutionj	T i is restricted to same trial manifolds. In this case
the variationj�	i is not fully arbitrary. The trial wave function is determined by
a set ofn time-dependent variational parameters of the formqi (t) ; i = 1; n; and
written formally as 	( x; t) = 	T ( x; qi (t)) :
The actionS calculated along the trial wave functions is given byST [q] = Z 21 dt h	T j i @@t �H � U ! j	T i= Z 21 dt L (q; _q) ;
where the LagrangianL is always given by functions of the form,L (q; _q) = �i (q) _qi �H (q)� U (q) ;
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where �i (q) = i h	T j @	T@qi i ;
Extremization of the action via�S [q] = 0 yields the dynamical equations obeyed
by the variational parametersqi (t)Mij (q) _qj = @@qi (H (q) + U (q)) ; (3.4)

whereM is an anti-symmetric matrix given byMij (q) = @�i (q)@qj � @�j (q)@qi ;= 2 Imh @@qj	T j @@qi	T i :
If the inverse ofM exists, the equations of motion can be written in the form:_qj = M �1ji (q) @@qi (H (q) + U (q)) :
SinceM�1 is also antisymmetric,H (q) + U (q) is a conserved quantity (_H +_U = @@qj (H + U)M �1ji @@qi (H + U) = 0). F. Cooper et al. [42] showed that any
variational approximation to the dynamics of a quantum system based on Dirac
action principle leads to a classical Hamiltonian dynamics for the variational
parameters. Following Das [43], F. Cooper et al. introduced Poisson brackets
by: fA;Bg = @A (q)@qi M �1ij @B (q)@qj :
They must obey Jacobi’s identity:fqi fqk; qlgg+ fql fqi; qkgg+ fqk fql; qigg = 0 ;
which is satisfied becauseMi;j obeys Bianchi’s identity:@Mkl@qi + @Mik@ql + @Mli@qk = 0 :
Another interesting property is that eq.s. 3.4 are equivalentto the equationRe h �	T j i @@t �H � 2U! j	T i! = 0 ; (3.5)

where the variationj �	T i is done on the variational parameters, namelyj �	T i = �qi j@	T@qi i : (3.6)
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3.3.2 Beyond the variational method

The Gross-Pitaevskii equation (GPE) can be numerically integrated, at least in
simple geometries. We have developed a numerical scheme to solveGPE in one
dimension and in tree dimensions with cylindrically symmetry. A fourthorder
Runge-Kutta method is used for the time integration.

We have found convenient to perform the numerical integration in realcoor-
dinate space (discretization of the spatial derivative) to reduce the computational
effort. In fact, in such a way the GPE is reduced to a matrix form in which the
self consistent field is diagonal (and then easily to numerically calculate)2.

For each choice of the step length, we have a well defined ”two well po-
tential” tunneling problem which can be analyzed either by directnumerical
integration or by the time dependent variational approach. Then the comparison
between the two mode approximation has been done for each choice of the step
length.

2The discretization in space breaks the global Galilean invariance and may introduces finite size
spurious effect in the dynamics, if the velocity fields have aDeBroglie length of the order of the step
length, which however can be easily controlled. Reducing the step length overcome the discretization
problem. One could have used a set of basis functions to integrate the GPE. This would have the
advantage to overcome the discretization problem, with a number of these functions less than the number
of point in the grid, but the long CPU time needed to calculatethe self consistent field could drastically
reduce such advantages. (This would have overcome the discretization problem, but the number of these
functions has to be finite in any numerical calculation, and this implies a cutoff in the kinetic energy.)



Chapter 4

The two mode approximation

4.1 Introduction

The time dependent variational two mode approximation (TMA) is a powerful
tool to understand the low energy non linear dynamical behaviourof two weakly
coupled Bose condensates. We consider a weak link between two BoseEinstein
condensates, that can be realized in a two wells potential as described in the
chapter3. The external harmonic trap potential is assumed to be cylindrically
symmetric (with a longitudinal frequency!0 and a radial frequency!r) and
described by Vtrap (r) = 12m!2r �x2 + y2�+ 12m!20 z2 : (4.1)

The double well potential is obtained by focusing an off-resonant laser sheet in
the center of the trap (see also fig. 4.1). The laser barrier is assumed to be of
gaussian shape Vlaser (z) = V 0laser exp �z2l2 ! ; (4.2)

whereV 0laser is proportional to the laser intensity. The dynamics of the ”two”
Bose Einstein condensates is described by the Gross-Pitaevskii equation (GPE)
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Figure 4.1: A double well potential can be created by focising a off-resonant laser
sheet into the center of the magnetic (harmonic) trap.

2.1. We assumeV 0laser > � where� is the chemical potential at equilibrium
(tunneling regime).

Now we suppose that Josephson-like tunneling through the barrier is thelow
energy dynamics of the GPE; in other words, the tunneling frequencyis small as
the lowest of the all possible intrawell frequency (� min (!0; !r)); we will return
later to this point when we will consider the full time-dependent integrations of
the GPE in chapter5.

In the next section we describe the time dependent variational two-mode
approximation (TMA) applied to the two well potential system [17, 25].Our
approach is based on the time-dependent variational principle andwe consider
the Ansatz in which the trial macroscopic wave function is given by a super-
position of two time-independent wave functions	1 and	2. Such functions	1 and	2 can be viewed as the lowest energy ”stationary solution” of the left
and right well respectively. In such a way a formal description interms of the
relative phase� and the relative number�N can be obtained. These variables
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are canonically conjugate and satisfy two coupled non linear eq.s.in terms of
few static properties. It has to be noted that, although TMA is not expected to
be a fully realistic approximation, nevertheless its formal scheme can be used
as a guide of semiphenomenological treatments. We will show that, considering
the various quantities appearing in the TMA equations as ”effective” quantities,
one can indeed obtain a very satisfactory description of the non lineartunneling
dynamics.

In the third section we consider the problem of finding good trial wave func-
tion.

4.2 TMA: equations

In the time dependent variational two-mode approximation (TMA), the dynam-
ics of the two coupled systems is constrained to a subspace spanned by two trial
real wave functions	1 and	2.	 = c1	1 + c2	2 whereh	1;	2i = 0 ; (4.3)

where the normalization are fixed byh	;	i = h	1;	1i = h	2;	2i = 1. There-
fore the amplitudesc1, c2 of the two wave functions are the unique dynam-
ical amplitude to be determined. The physical meaning ofjc1j2 is the frac-
tion of atoms in the left wellNL=N . Symmetry arguments lead to the choice	1 (x; y; z) = 	2 (x; y;�z). The reduced Lagrangian of the TMA isL = 12�h ( ic�1 _c1 + ic�2 _c2 + h:c:)� E0 (c�1c1 + c�2c2)� h (c�1c2 + c�2c1) (4.4)�12U0 �jc1j4 + jc2j4�� 12U12 �4jc1j2jc2j2 + (c�2c1)2 + (c�1c2)2��U3 �jc1j2c1c�2 + jc1j2c�1c2 + jc2j2c1c�2 + jc2j2c�1c2� ;
whereE0 and h are the diagonal and the out of diagonal matrix element of
the single particle Hamiltonian (kinetic plus external potential energy), respec-
tively: E0 = Z dr 	1(r) "� �h22mr2 + Vext(r)#	1(r) ; (4.5)h = Z dr 	1(r) "� �h22mr2 + Vext(r)#	2(r) ; (4.6)
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and U0 = g Z dr 	1(r)4 ; (4.7)U12 = g Z dr 	1(r)2	2(r)2 ; (4.8)U3 = g Z dr 	1(r)3	2(r) ; (4.9)

are the interaction terms. For repulsive interaction (g > 0) U0; U12 > 0, whereas(h + U3) < 0. The equations of motions follow from the standard Eulero La-
grange equation starting from the Lagrangian 4.4. The normalization jc1j2 +jc2j2 = 1 is a conserved quantity. Introducing the polar coordinateci = pni exp (�i�i) ; (4.10)

one recovers that the fundamental variables of the problem are the phase differ-
ence� = �1��2 and the fractional1 population imbalance�1 < z = n1�n2 < 1.
After some algebra one gets the following equations forz and��h _z = 2 (h + U3)q1� z2 sin (�) + U12 �1� z2� sin (2�) ; (4.11)�h _� = �2 (h+ U3) zp1� z2 cos (�) + (U0 � U12 (2 + cos (2�))) z : (4.12)

The energy per particle is conserved by the dynamics described by the above
eq.s.. We note that thez and� variables are canonically conjugated, namely_� = @@z �H2 � ; (4.13)_z = � @@� �H2 � ;
where the Hamiltonian2 is given byH ( z; �) = E0 � EJq1� z2 cos (�) (4.14)+14U0 �1 + z2�+ 14U12 �1� z2� (2 + cos (2�)) :
In the above equation, EJ � � (h+ U3) ; (4.15)

1the wave function is normalized to one, thenn1 � N1=N whereN ,N1 are the total number of
atoms and the number of atoms in the left well respectively.

2If the termU12 can be neglected,H describes, in a simple mechanical analogy, a nonrigid pendu-
lum, of tilt angle� and a length proportional to

p1� z2, that decreases with the ”angular momentum”z .
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is called the Josephson coupling energy (which is positive definiteconsistently
with a ground state solution of the GPE without node) in closed analogy with
Josephson coupling energy in Superconductor Josephson Junction. A physical
interpretation of the Josephson coupling energy is also given in [19], where it is
shown that it must depend only from the chemical potential and fromthe barrier
potential.

4.2.1 The current-phase relation

It will be shown in the following that eq. 4.11 can be compared with the current-
phase relation. If the solution of the GPE is a superposition of the two wave
functions	1 and	2, as assumed in the Ansatz 4.3, the fractional atomic current
flowing in the planez = 0 is asinusoidalcurrent-phase relationI = �h2mq1� z2 sin (�) Z +1�1 dx Z +1�1 dy  	1 (r) @@z	2 (r)� 	2 (r) @@z	1 (r)!z=0 :

(4.16)
This equation is obtained from the ”microscopic” definition of current density
and it is exact within the validity of the Ansatz 4.3. On the other hand, the
fractional atomic currentI must be also equal to the time derivative of the mod-
ulus square of the wave function integrated in the half spacez < 0 (the local
continuity equation is integrated in the half space)I = _n1 ; (4.17)

where n1 = Z 0�1 dz Z +1�1 dx Z +1�1 dy j	(x; y; z)j2 ; (4.18)

represents the fraction of atoms in the left well;n1 is also related to the frac-
tional population imbalancez byn1 = 12 + �12 �R� z whereR = R 0�1 dz j	2j2
is typically very small. Hence, using 4.17, the currentI is related to the time
derivative of the fractional population imbalancez byI = �12 � R� _z : (4.19)

Inserting eq. 4.11 in the above equation one gets the resultI = (1� 2R) (h+ U3)�h q1� z2 sin (�) + U122�h �1� z2� sin (2�)! : (4.20)
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The comparison between this equation and eq. 4.16 suggests that the TMA
approximation can be applicable in the following case:

1. if U12 � � (h + U3),for each value of the phase difference� andI = (1� 2R) (h + U3)�h q1� z2 sin (�) : (4.21)

2. otherwise, ifU12 � � (h+ U3), this relation holds only for� � 1.
Therefore, since we are interested in the non linear dynamics, in which each

value of the phase difference� can occur, we assume that the termU12 is negli-
gible.

Note also that eq. 4.21 differs from Cooper-pair SJJ tunneling current in its
nonlinearity inz.

The detailed analysis of eq.s. 4.11 and 4.12 with exact analyticalsolutions
in terms of Jacobian and Weierstrassian elliptic functions can be foundin [18].
Here we describe only the main physical results (see also [17]).

4.2.2 Non-interacting limit case

For symmetric wells and negligible interatomic interactions (U0; U3; U12 � h),
eq.s. 4.11 4.12 can be solved exactly, yielding Rabi-like oscillations with fre-
quency !R = 2jhj : (4.22)

Note that the eq.s. 4.11 and 4.12 in this case become�h _z = 2hq1� z2 sin (�) ; (4.23)�h _� = �2h zp1� z2 cos (�) ;
and their solution is not trivial, unless one writes such equations interms of the
amplitudesc1 , c2.
4.2.3 Linear regime: Josephson plasma frequency

For symmetric wells the equilibrium value of the fractional population imbal-
ancez0 is equal to0. Also the equilibrium value of the phase difference�0 = 0.
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The equations of motions 4.11 and 4.12 after linearization in�z = z � z0 and�� = � � �0 become�h � _z = � (�2h� 2U3 � 2U12 ) �� ; (4.24)�h � _� = (�2h� 2U3 + U0 � 3U12) �z ;
and the dispersion relation3 takes the form:�h! = q(�2h� 2U3 � 2U12 ) (�2h� 2U3 + U0 � 3U12) : (4.25)

4.2.4 *The homogeneous limit case

The time dependent variational TMA, can be understood as an alternative way
to perform an approximate description of the low energy dynamics and fre-
quency. It can be applied not only to the double well potential (the casethat it
is considered in this chapter) but also to the study of each normalmode. Let
me recall, that in the usual linearization of the GPE (as in the Bogoliubov ap-
proximation) theU (1) symmetry is broken and the various observables4 (except
the energy) are not well defined to quadratic order in the displacements fields�	 (see subsection 3 chapter 2 for the linearized GPE). In this sense it does not
give a good description of the dynamics, although it gives the exact frequency
of the small amplitude oscillations around the ground state (calculated with the
GPE). In contrast TMA provides only an approximate value of this frequency,
but theU (1) symmetry is preserved and the various observables are well defined
up to quadratic order in the displacement fields. In this sense it provides a good
description of the dynamics.

It follows that, the TMA, with the appropriate choice of the trial wave func-
tion, can be used to describe low energy dynamics. It is worth mentioning an
interesting work by Gardiner [37] in which a particle-number-conserving Bo-
goliubov method to describe low energy excitations is derived.

In the following, the linearized expression 4.25 is used for the calculation
of the dispersion relations! (k) in the homogeneous system; choosing	1(r) =1=p2 + sin (kx) and	2(r) = 1=p2� sin (kx) as variational wave functions, the
integrals that appear in the Eq. 4.25 take the valuesh = ��h2k24m , U0 = 178 gn0,

3This result has been obtained for an Hamiltonian that commutes with the axial symmetryz ! �z;
the more general expression can be obtained by simple algebra.

4as for an example inteference between different mode.



30 The two mode approximationU12 = 18gn0, U3 = �18gn0, wheren0 is the density. Using Eq. 4.25 the dispersion
relation takes the form of the Bogoliubov result [33] for superfluidHe4�h! (k) = vuut�h2 k22m  �h2 k22m + 2gn0! ; (4.26)

which, in the long wavelength limit gives the linear dispersion! (k) = qgn0m k
(sound mode).

It is very important to note that the termsU0, U12, U3, cannot be neglected. In
particular, just neglecting the termU12 leads to a unphysical gap in the spectrum
(see the previous discussion about the current phase relation in subsection4:2:1).
4.2.5 Non linear effects: self-trapped effect

A full solution of eq.s. 4.11 and 4.12 yields nonsinusoidal oscillations, that are
the anharmonic generalization of the sinusoidal Josephson effect. Moreover, an
additional novel nonlinear effect occurs in this model: a self-locked population
imbalance [17]. Following the discussion about the current phase relation in
subsection4:2:1, let us neglect the termU12 and rewrite eq.s. 4.11 and 4.12
using the time scale5 �2 (h+ U3) = �h:_z = �q1� z2 sin (�) ; (4.27)_� = � z + zp1� z2 cos (�) ; (4.28)

where� = �U0= (2h+ 2U3) > 0. We recall that the reduced energyH = �12q1� z2 cos (�) + 14� z2 (4.29)

is integral of motion. General solution of eq.s. 4.11 and 4.12 can be obtained by
quadrature and can be found in [17][18]. Using the integral of motionto reduce
the number of equations cos (�) = 12�z2 � 2Hp1� z2 ; (4.30)

we get the following equation forj _zjj _zj = s1� 4H2 + (2�H � 1) z2 � 14�2z4 : (4.31)

5this combination of energy integrals must be positive and corresponds to have a ground state solu-
tion without node.
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Figure 4.2:Fractional population imbalance z(t) versus rescaled time, with the initial
conditions z(0) = 0:6, �(0) = 0, and � = 1 (a), and � = 8 (b), and � = 9:99 (c), and� = 10 (dashed line, d), and � = 11 (solid line, d).

From this equation follows thatz (t) = 0 for some values oft if and only ifH � 12 . Now looking this expression, it is evident that we have two types of
solutions:� 1) for H < 12 solutions inz are symmetric and periodic around the equi-

librium valuez0 = 0 ;� 2) for H > 12 solutions are not symmetric; i.e. the system dynamically
breaks the symmetry; we refer to this non-linear effect as a self-locked
population imbalance.

In the nonrigid pendulum analogy, this corresponds to an initial angular mo-
mentumz (0) sufficiently large to swing the pendulum bob over the� = � ver-
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tical orientation, with a non zerohz (t)i time-average angular momentum corre-
sponding to the rotatory motion.

The self-trapping of an initial BEC population imbalance is due to the atom-
atom interactions in the Bose gas (non linear self-interaction in the GPE). It has
a quantum nature, because it involves the coherence of a macroscopic number
of atoms.

For H = 12 we have a critical solution. We have also a critical fractional
population differencezc that represents also the maximal amplitude that can be
supported by a generalized Josephson plasma oscillation (in the case� > 1)zc = 2s 1� � 1�2 : (4.32)

For an initial conditionz (0) > zc, we have the self-locked population imbalance.
For an initial conditionz (0) � zc (� � 1), we have small oscillations of the
differential population imbalancez (t) aroundz (0) with frequency�z (0) and

amplitude6
p1�z(0)2�z(0) .

In the case�� 1 andz � 1 eq.s. 4.27 and 4.28 can be rewritten_z = � sin (�) ; (4.33)_� = � z ;
and can take the equivalent form1!2L �� = � dd�V (�) ; (4.34)

where the ”potential” is given byV (�) � 1� cos (�) : (4.35)

Fig. 4.2 shows solutions of eq.s 4.27 and 4.28 with the particular initial con-
ditionsz(0) = 0:6, �(0) = 0, and with the parameter� = 1; 8; 9:99; 10; and11.
The sinusoidal oscillations aroundz = 0 became anharmonic as� increases, fig.
4.2 (a), (b), and (c); in terms of energy these oscillations correspond to the value
of H = �0:31; 0:32; 0:4991. The fractional population evolutionz (t) with the
parameter� = 10 (fig. 4.2 (d, dashed line)) corresponds to the critical energy

6except around fixed point solution, in which the amplitude isnot fixed, as we show in the following
subsection.
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valueH = 0:5. For� = 11 (fig. 4.2 (d, solid line)) the population in each trap
oscillates around a non-zero time average (hz (t)i 6= 0); in terms of energy this
corresponds to the valueH = 0:59.

Figure 4.3:Constant energy lines in a phase-space plot of population imbalance z
versus phase difference �. Bold solid line: z(0) = 0:6, �(0) = 0, � = 1; 8; 10; 11; and20.
Solid line: z(0) = 0:6, �(0) = 0, � = 0; 1; 1:2; 1:5; and 2.

The full dynamical behaviour of eq.s 4.27 and 4.28 is summarized in fig. 4.3,
that shows thez-� phase portrait with constant energy lines for different value
of �, with initial conditions�(0) = 0 and�(0) = �, bold solid line and solid line,
respectively. The bold solid line that cross the points( z; �) = ( 0; (2n+ 1)�)
corresponds to the critical energy valueH = 12 .
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4.2.6 Fixed points and�-state

Let us expand the reduced Hamiltonian around the stable fixed point. Aroundz = z0 the energy is given byH � �12q1� z20 cos (�) + 14� z20 (4.36)+0@12 z0q1� z20 cos (�) + 12� z01A �z+14 1�q1� z20�3 �z2 cos (�) + 14� �z2 ;
where�z = z � z0. The linear term in�z is equal to zero only if�0 = (2n+ 1) �
andz20 = 1� 1�2 (for � > 1). With this choiceH = 12 � 1� + ��+ 14 ��3 � �� �z2 + 14 1��2 ; (4.37)

using _� = 2@zH = ��3 � �� �z and � _z = �2@�H = � 1�� we obtain the fre-
quency of the small oscillations!2� = ��2 � 1� : (4.38)

Solutions having� as a fixed point are denoted as�-states. In fig. 4.3 there
is some example of solutions around� (solid line). The symmetrical solutions
around the equilibrium positionz = 0 correspond to� < 1, while self trapped
solutions (around�) correspond to� > 1: The occurrence of similar solutions
(also denoted�-states) have been recently observed in the Berkeley weak link
experiments on superfluid3He-B [24].

The other fixed point withz0 = 0 and�0 = 2n � and� > 0 corresponds to
the usual Josephson plasma oscillation.

4.2.7 *TMA: non symmetric case

In the non symmetric case the equations of motions corresponding toeq.s. 4.11
and 4.12 become�h _z = 2 (h+ U3m +�U3 z)q1� z2 sin (�) ; (4.39)�h _� = �U +�E � 2 (h+ U3m +�U3 z) zp1� z2 cos (�) + Um z ; (4.40)
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where �E = E1 � E2 ; (4.41)�U = U1 � U22 ; (4.42)Um = U1 + U22 ; (4.43)�U3 = U31 � U322 ; (4.44)U3m = U31 + U322 : (4.45)

The termsE1, E2 andU1, U2 andU31, U32 are obvious extensions of the integralsE0, U0, andU3; whereU1 = g R dr 	1(r)4, andU31 = g R dr 	1(r)3	2(r).
4.2.8 TMA versus an ”effective” TMA

The analysis of the previous section has also a semiphenomenological charac-
ter. The behaviour of the two coupled Bose gases is described in terms of a
macroscopic phase difference� and a fractional population differencez; whose
equations of motion are given by eq.s 4.27 and 4.28, that depend parametrically
on the ratio between the energy termsU0 and(h+ U3). We have discussed the
dynamics without knowing the exact values of such energy terms. Such terms
are geometry dependent:E0 is a zero point energy of the single well,U0 is pro-
portional7 to the mean field energy at equilibrium, and(h + U3) represents the
critical current through the two wells.E0, U0 are bulk terms, whereas(h+ U3)
should depend only on the chemical potential� and on the details of the barrier.

Hence the TMA can have a semiphenomenological meaning, and we will
show that using proper ”effective” values forU0, (h + U3) one can get a reason-
able agreement with the numerical solutions of the GPE.

4.3 TMA: variational functions and numeric implemen-
tation

In this section we discuss our procedure to find good trial functions	1(r) and	2(r) to get realistic estimate of the termsE0,U0, and(h + U3), for some geome-
tries and for different parameters of the laser. In the previous sections we have

7four times in the double well symmetric potential.
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performed a semiphenomenological analysis and now we go into a moremicro-
scopic one. We recall that the Ansatz 4.3 is that the trial wave function moves
in a two dimensional linear (complex) functional space. We need some criteria
to choose such reduced functional space in order to give a realistic estimate of
the dynamics. Such reduced functional space is generated by two vectors, and
it is natural to choose one of them as the ground state solution	0 of the Hartree
equation [44]  � �h22mr2 + Vext (x) + g j	0j2!	0 = �0	0 ; (4.46)

and the other one as a vector	� that must have a node atz = 0. The usual left	1 (r) and right	2 (r) wave functions are given by	1 (r) = 1p2 (	0 (r) + 	� (r)) ; (4.47)	2 (r) = 1p2 (	0 (r)� 	� (r)) : (4.48)

So, the question is what is the best choice of	� in order to better describe the
lower energy tunneling dynamics. We have considered here only two particular
choices for the variational wave function	�:� the first oddeigenstate	H� of the Hartree Hamiltonian[44] � �h22mr2 + Vext (x) + g j	0j2!	H� = �H� 	H� (4.49)� the first oddself-consistent stationary solution	SC� of the GPE � �h22mr2 + Vext (x) + g j	SC� j2!	SC� = �SC� 	SC� : (4.50)	H� is consistent with the Bogoliubov dispersion relations for the homoge-
neous Bose system (see eq. 4.26). In fact the trials wave functions	1 and	2 used to obtain the results 4.26 are linear combinations of Hartree solutions
(plane waves) 	1 (r) = 1p2 �1 +p2 sin (k r)� ; (4.51)	2 (r) = 1p2 �1�p2 sin (k r)� :
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Using the Hartree wave function	H� we have the relation:�2 (h + U3)� 2U12 = �H� � �0 = �h2m R dr 	0 @@x	H�R dr 	0 x	H� : (4.52)

The rationale behind	SC� is that, if !L is sufficiently lower than the bare
harmonic frequency!0, the system is near the equilibrium and, if the phase
difference is just�, 	SC� can be a good approximation for	. Using the Self-
Consistent wave function	SC� we have the relation for the Josephson coupling
energy (per particle) EJ = � (h + U3) = �SC� � �02 ; (4.53)

where�SC� and�0 are the energy (per particle)8 of the stationary solutions	SC�
and	0, respectively.

4.3.1 Numerical scheme for the stationary states of the GPE

The variational wave functions	0 , 	SC� and	H� require only a static calcula-
tion. The first step is to find the total minimum	0 of the GP functionalHGP = Z dr �	�H0	+ 12gj	j4 � ; (4.54)

whereH0 is the non interacting part of the Hamiltonian (kinetic plus external
potential energy). Making use of the symmetry, we can work in the left well
(z < 0) only, imposing for	0 the boundary conditions@	0@z = 0 in the planez = 0 and with the normalization

R j	j2 = 12 . The GP functional has been first
discretized and then	0 has been obtained working in the real space as in the
dynamical case discussed in section3:3:2. We consider a dissipative (or damped)
”dynamics” defined by the equation9_	 = � ��	�HGP + ��	 ; (4.55)�� � 1R dr 	�	 Z dr 	�  ��	�HGP! : (4.56)

These equations have two properties:

8namely � = �� 12 R drg j	j4 .
9Note that the dynamics we are referring to is not the dynamicsof the Bose Condensate.
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fluctuation in the chemical potentialddtHGP = �2 Z dr	� �H0 + gj	j2 �2 	+ 2 ��2 Z dr 	�	 � 0 : (4.57)� 2) the normalization ddt Z dr 	�	 = 0 (4.58)

is conserved.

The same technique is also used to find	SC� with the boundary condition	SC� = 0 in the planez = 0. The dissipative dynamics 4.55 can also be adapted
for the calculation of	H� , starting from the Hartree energy functionalHH = Z dr �	�H0	+ gj	0j2j	j2 � : (4.59)

The ”time” integration has been performed by using the fourth-order Runge-
Kutta method. Working in the real space representation reduces the CPU time
required for a single time iteration. The nonlinear interaction improves very
much the efficiency of the algorithm (calculation of	0 and	SC� ).

Virial relations

We have used a spatial discretization scheme. As a convergency test, we have
used the following virial relations (obtained by the scaling transformationsrl !� rl): U int + Tr = V hor ; (4.60)12U int + Tz + h z2�2V laseri = V hoz ; (4.61)

whereU int is the internal energy,Tz andTr are the longitudinal and radial ki-
netic energy term respectively,V hoz andV hor are the longitudinal and radial har-
monic potential term respectively,V laser the laser potential which is assumed of
gaussian shape with a width� �U int = 12 g Z dr j	j4 ; (4.62)Tx = �h22m Z dr j@x	j2 ; (4.63)



4.3 TMA: variational functions and numeric implementation 39V hox = 12m!2x Z dr x2 j	j2 ; (4.64)Tr = �h22m Z dr �j@y	j2 + j@z	j2� ; (4.65)V hor = 12m!2r Z dr �y2 + z2� j	j2 ; (4.66)V laser � Z dr exp �x2�2! j	j2 ; (4.67)hx2�2V laseri � Z dr x2�2 exp �x2�2! j	j2 : (4.68)

Note that virial relations 4.60 and 4.61 are valid for any self-consistent station-
ary solution of the GPE, therefore also for	SC� .



40 The two mode approximation



Chapter 5

Numerical solution of the GPE

5.1 Introduction

In this chapter the predictions of the variational TMA are tested against a full
numerical integration of the GPE for a double well geometry [25], which is
related to the recent MIT experiments. We have done a few numerical studies
for different values of the laser parameters. Here we limit to discuss the case
of the laser parameters which provide a Josephson plasma frequency!L that
does not satisfy the ideal condition!L � !0 for TMA, but rather!L � 0:15 !0.
Such a choice is due to the fact that in such regime one can expect deviations
from the TMA and, on the other hand, this is a possible important rangeof !L
from the experimental point of view. It is important to find the proper physical
parameters of the laser barrier to reach a Josephson frequency !L of the same
order of!0, so that a very low temperature is not needed for a clear experimental
realization of the Josephson and self-trapped effects.

We have considered104 Na atoms instead of the5 � 106 of the MIT experi-
ments. Calculations performed with5 � 103 atoms have given results very close
to the104 case. One gets qualitative differences only below102 atoms.
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In section 2 the Josephson plasma frequency!L and the critical currentEJ ,
calculated with the time dependent variational schemes, the onebased to the
Hartree Variational Basis (HVB) and the other one based to the SelfConsis-
tent Variational Basis (SCVB), are compared with the numerical results. The
Josephson plasma frequency!L is calculated with the Bogoliubov approxima-
tion, and also by solving numerically the linearized GPE (by simple diagonal-
ization scheme). The critical current is also determined studyingdirectly the
current-phase relation. The self trapping effect is also discussed.

The agreement between a TMA dynamics and the GPE is very good in the
range of the coupling constant relative to the experimental situations and for
Josephson frequency!L � 0:20 !0 a sizeable decoupling from intrawell motions
is observed.

5.2 Preliminary details
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Figure 5.1:Equilibrium longitudinal density (integrated in the radial sections) for 104Na atoms in the MIT trap with a longitudinal frequency 19 Hz and a radial frequency250 Hz. Energy and length scale are that of the longitudinal harmonic oscillator. The
equilibrium density with a full 3D static calculation (solid line) is compared with the 1D
effective calculation (dashed line). The detailed shape of the density is not important
for the dynamics that we will study in this chapter.

We first analyzed to what extent the cigar shape geometry of the MIT exper-
iment can be simulated by an ”effective”1D geometry. This is particularly
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important because working with a1D GPE (discretized) has the advantage that
the Bogoliubov and Hartree diagonalization become accessible anda reasonable
continuum limit can be achieved. With the3D static calculation we found an ef-
fective radial section and from that an effective one-dimensional couplinggeff
has been estimated (geff � 134). Fig. 5.1 shows the longitudinal equilibrium
density1 for 104 atoms in the cigar-shaped trap of MIT (3D-calculation) and that
obtained in the effective1D geometry. One can see from this figure that the1D effective geometry can be safely used to study the GPE dynamics. The 1D
effective couplinggeff calculated in the presence of the laser barrier differs the
previous one only within� 5%.

-7.5 -2.5 2.5 7.5
longitudinal axis [lL]

0.0

0.1

0.2

0.3

0.4

0.5

de
ns

ity
 [l

L-1
]

non interacting equilibrium density
interacting equilibrium density

-7.5 -2.5 2.5 7.5
 

0

20

40

60

80

100

en
er

gy
 [ω

L]

 

external potential
self-consistent Hartree   potential

Figure 5.2:Potential profiles and equilibrium density in the longitudinal direction. A
double-well potential can be created by focusing blue-detuned far-off-resonant laser
light into the center of the magnetic trap (MIT protect[7]). The longitudinal 1=e2 half-
width of the laser barrier is 0:3 �m and its heigth is 85 �h!0. The top figure shows the
external potential (solid line) and the self consistent Hartree potential (long dashed
line), both calculated along the longitudinal line x = 0; y = 0. The bottom figure shows
that the equilibrium density in the interacting case (considered) is strongly modified
by the interaction. Despite the condensate seems well separated into two parts, the
Josephson plasma frequency is � 0:15 �h!0.

1the3D density integrated on the radial sections.
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Results for a particular choice of laser parameter (the longitudinal1=e2 half-
width of the laser barrier is0:3 �m and its height is85 �h!0) are discussed in the
following.

The Josephson plasma frequency!L is approximately0:15 of the bare fre-
quency!0 (longitudinal frequency). Figure 5.2 (a) show the external potential
(harmonic potential plus the laser potential which is assumed gaussian shaped)
and the Hartree self-consistent potential. In figure 5.2 (b) the interacting equi-
librium density is compared with the non interacting one. It is interesting to
note that, despite the fact that the interacting tunneling frequency isnot too
small compared with the bare!0, the condensate appears well separated into
two parts.
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Figure 5.3:Energy level: interacting (squares) versus non interacting (circles). The left
figure is a zoom of that on the right. Hartree energies (diamonds), are showed only for
reference, and must not be confused with that ones calculated with TMA. Energy levels
are ordered as a function of the number of nodes and referred to the ground state
(labeled by 1). Energy levels are naturally grouped in couples of quasi degenerate
energy levels; the small shift (almost not visible) is due to the weak coupling of the
”two” condensates. It is interesting to note that only in the first excited level (labeled
by 2), that correspond to !L, is strongly modified by the interaction.
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The Bogoliubov energy spectrum is given in fig 5.3 together with the corre-
sponding spectrum in the non interacting case. The figure on the leftis a zoom
of the figure on the right. Circles are relative to the non interacting case and
square are relative to the Bogoliubov linearization. Diamonds are theenergy
of the Hartree states, that we show only for reference (energyeigenvalues must
not be confused with the TMA frequency calculated with the Hartree states).
Energy levels are ordered as a function of the number of nodes andreferred to
the ground state (labeled by1). Energy levels are grouped in couples of quasi
degenerate energy levels; the small shift (almost not visible) is due to the weak
coupling of the ”two” condensates. It is interesting to note that only in the first
excited level (labeled by2), the Josephson plasma frequency!L, is strongly
modified by the interaction. Its value differs by several (� 8) orders of magni-
tude with respect to that of the non interacting tunneling case.

5.3 Linearized dynamics and Current-Phase relation

The numerical values of the energy integrals (h, U0, U3, U12 defined in eq.s.
4.6, 4.7, 4.8, and 4.9, respectively) that appear in the TMA, evaluated with
the Hartree variational basis (HVB) and the Self-Consistent variational basis
(SCVB) are compared below

HVB SCVBU0 28:0 28:1U3 138:3 e-4 6:0 e-4� (h+ U3) 8:8 e-4 5:2 e-4U12 3:7 e-4 8:5 e-7
The termU0 is a bulk term and depends very weakly from the choice of the
trial wave function. In the equations of motion the termsh andU3, appear in
the combinationh+ U3; it is worth notice that the mean field termU3 cannot be
neglected in the geometries that we have considered. In the HVBthe termU12 is
not negligible compared toh+U3, while in the SCVB the termU12 is negligible.

The calculation of the Josephson plasma frequency with HVB, SCVB and
linearized GPE (Bogoliubov approximation) gives the following results

HVB SCVB Bogoliubov!L 0:169 0:170 0:15
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Both variational basis, HVB and SCVB, provide similar results for the Joseph-
son plasma frequency, despite the fact that the values of the termU12 are very
different. Both are an upper bound of the exact Bogoliubov result.Fig. 5.4

Figure 5.4:Josephson frequency, calculated with Bogoliubov (1), HFVB (2), SCVB(3),
versus different values of the laser power (arbitrary units). In wide range HFVB, SCVB
agree and approximate the Bogoliubov dispersion a part from a constant shift.

shows the Josephson plasma frequency!L in a wide range of the laser power.
Josephson plasma frequencies are calculated both with Bogoliubov, withthe
SCVB , and with HVB. The calculated!L with SCVB and HVB agree well
each other and differ from the exact linearization by a� 10% quite indepen-
dently from the barrier height (laser power).

Finally fig. 5.5 shows the current-phase relation obtained by integrating nu-
merically the time-dependent GPE. It is almost a sinusoidal function and agrees
very well with the TMA current phase relation given by the SCVB. HVB re-
sults for the current phase relation agree with the numerical results only for
very small phase difference (� � 0:01).

It is important to notice that the main reason why SCVB provides a bet-
ter description of current phase relation is becauseU12 is much smaller than in
HVB. This feature is quite general. TMA fails in the description of the non lin-
ear dynamics when theU12 energy integral is comparable with the combination�(h + U3) (see the discussion on the current phase relation in subsection4:2:1).
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Figure 5.5: Solid line correspond to the numerical integration of the GPE; longh-
dashed line correspond to the sinusoidal current-phase obtained in the TMA.

The small deviations of TMA with respect to the numerical results appear-
ing in fig. 5.5 are not due to numerical errors, but to the coupling withthe
intrawell motions. Such deviations totally disappear in the limit of small Joseph-
son plasma frequency.

5.4 Non linear Josephson-like oscillations

One of the most relevant prediction of the variational TMA is the occurring of
the so called Self-Trapped effect [17], when the initial imbalance islarger than
a critical valuezc (see eq. 4.32). This is confirmed by the numerical solution
of the GPE under the condition!L � 0:20 !0 andU0 z � �h!0. Fig. 5.6 shows
the evolution of the fractional population imbalancez(t) for some initial valuesz (0) chosen around its critical valuezc. Forz � zc Self-Trapping occurs, i.e. the
population in one well oscillates around a value that is not the equilibrium valuez = 0; in figure 5.6 the solution with initial conditionsz (0) � 0:015 and� (0) = 0
is a self trapped one; it oscillates aroundz � 0:010, without passing through
the zero. The critical solution, corresponding to the initial condition z (0) =zc � 0:013 and� (0) = 0, is not a periodical solution. Forz � zc anharmonical
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Figure 5.6:Numerical GPE results for the fractional population imbalance evolutionsz (t) for different values of the initial condition z (0) near the critical value zc, and with� (0) = 0.

oscillations occur while forz � zc one has harmonical oscillations. Self trapped
solutions forz � zc are harmonical.

5.5 Effective TMA

The numerical integrations of the Gross-Pitaevskii equation (GPE) in a one-
dimensional double well potential shows a qualitative agreement withthe self
consistent variational TMA. In particular excellent agreement isobtained for the
critical current (with typical relative precision0:1%) and the current-phase rela-
tion. However, in general one cannot expect an excellent quantitative descrip-
tion of the non linear tunneling dynamics, because the variational two mode
ansatz is only an approximate one. However the variational TMA canbe very
useful to give a semiphenomenological set of equations of motion for the rele-
vant quantities. Let us rewrite the TMA equations (see eq. 6.20 and 6.21) in the
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Figure 5.7:Frequency of the nonlinear Josephson oscillations versus different values
of z in the range of its critical value zc; the initial phase difference is zero.

form �h _z = �2E�Jq1� z2 sin (�) ; (5.1)�h _� = 2E�J zp1� z2 cos (�) + U�0 z ; (5.2)

where the relevant physical quantitiesU�0 , E�J are ”phenomenological” inputs.
In this case these ”phenomenological” inputs are obtained from the numerical
solutions of the GPE:� Josephson energy coupling is obtained analyzing the current phaserelationE�J = �hIc � 5:2 � 10�4 ESCV BJ � 5:2 � 10�4

(where the critical currentIc is the maximal value of the currentIc)
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energy Josephson plasma oscillationU�0 � �h!2L2Ic � 21:9 USCV B0 � 28:1

These values lead to excellent results. The critical value of the population
imbalancezc is reproduced within1%. Both shape and frequency of the non
sinusoidal Josephson oscillations are reproduced with the same accuracy. Fig.
5.7 summarizes these results: the period of oscillation is displayed asa function
of the initial valuez (0) in a range of values around its critical value ofzc (and
with � (0) = 0).
5.6 Discussion

The numerical integration of the Gross-Pitaevskii equation (GPE)in a double
well potential proves that the low energy tunneling dynamics is accurately de-
scribed by an effective two mode approximation. The non-linear dynamical
behaviour of the two weakly coupled BECs can be described in terms of a
macroscopic quantum phase-difference and in terms of the population differ-
ence between the two sub-systems. The macroscopic quantum phase-difference
and the population difference satisfy a nonlinear equation in which only two en-
ergy scale are present, the Josephson coupling energyEJ and a bulk energyEC .
In particular one of these can be used as unit scale reference and the coefficients
in the equations depend only on the ratio between the two energy integrals. The
values of the Josephson coupling energy and the bulk energy can beextracted
studying the current phase relations and the frequency of the low-living excita-
tions (the Josephson plasma frequency) of the GPE. Using these ”phenomeno-
logical” values it is possible to reproduce a large variety of effects typically of
the TMA.

In the last section5:5, we have observed that, despite the self consistent vari-
ational TMA give a systematic error in the calculation of Josephson frequency
the non-linear dynamics is well described. We have proved that the TMA equa-
tions, after the substitutingIc and!L calculated on a variational basis, with those
determined by the mean field dynamics, reproduce with an excellent approxi-
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mation the non linear low energy dynamics. This feature is quite general and
the accuracy increases as!L=!0 decrease.

The bulk energy in the variational TMA is essentially independent from the
choice of the variational function and it is typically an upperbound(10 � 20 %)
with respect to the ”phenomenological” value obtained studying numerically the
GPE. Such energy shift between variational bulk energy and the phenomenolog-
ical value is a clear signature that the exact low energy mean-field dynamics of
the wave function is not well described by an evolution in a two dimensional
(complex) functional space.



52 Numerical solution of the GPE



Chapter 6

An analog of the Josephson effect (dcI � V curve)

6.1 Introduction

One of the proposed way to obtain a BEC weak-link, extensively discussed in
the previous chapters, is based on a double-well potential createdby focusing
an off-resonant laser light into the center of the magnetic trap [17].

Theoretical calculations show that (in a typical experimental setup), despite
the fact that the frequency scale of Josephson plasma oscillation!L can be a
fraction not necessarily small of the typical trapping frequencies, the maximal
amplitude of Josephson population oscillations could be low for the present
resolution of the available experimental setups. Therefore thedirect observation
of Josephson oscillations as well as the measure of both the plasmafrequency!L and the critical currentIc could be difficult.

In this chapter we suggest a strategy to improve the observability of thenon-
linear effects of the interaction [26]. We propose an experiment based on the
possibility of a slow relative motion of the trapping potential with respect to



54 An analog of the Josephson effect (dcI � V curve)

the laser sheet. We will show that if the relative velocityvr is sufficiently slow
(� 0:1 �m=s), no chemical potential difference between the two wells occurs
and a finite superfluid current1 flows through the tunneling barrier to maintain
the chemical potential equilibrium. Then we will see that a critical value of the
relative velocityvcr exists for the occurrence of the critical effects of the interac-
tion (Self Trapping). Under the critical valuevcr a macroscopic and observable
flux of atoms can be produced. We will show that this strategy leads to an indi-
rect measure of the critical currentIc and the Josephson plasma frequency!L,
even in the case in which the Josephson oscillations cannot be directly observed.

We suggest to experimentally investigate a phenomenon that is the close
analog of that occurring in a single Superconductor Josephson Junction (SJJ)
under the action of an external dc current source2 [45]. The role of the external
electric circuits with a current source is played by the relative motion of the laser
and the magnetic trap andthe analog of the dc and ac effectscan be formally
recovered. The relative velocityvr corresponds to the intensity of the external
applied current in SJJ. Thedc I � V curve, V = V (I) can be explored.

To theoretically investigate this ”experiment” we have used methods similar
to those described in the previous two chapters. We will first discuss some
analytical approximations based on the TMA. Then we will substantiate these
approximations showing that results from a numerical integration of the GPE
agree with those from the effective TMA (in chapter7).

The chapter is organized as follows. The underlying physical idea isgiven
in section 2. A semiphenomenological treatment based on an effective time-
dependent TMA is discussed in sections 3 and 4, together with the explanation
of the origin of the critical value for the relative velocityvcr. A relation between
the effective parameters is also discussed in section 4. The last section is devoted
to a summary.

1The superfluid current component is approximatively constant (DC component).
2(or also under the action of a slowly varying current).
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6.2 A moving laser improves the observability

Let us consider the harmonic trapping potential with cylindrical symmetry (with
a longitudinal frequency!0 and with a radial frequency!r) given byVtrap (r) = 12m!2r �x2 + y2�+ 12m!20 z2 : (6.1)

At t � 0 a barrier potential, that can be created by focusing an off-resonant laser
sheet into the center of the trap, is described by the gaussian shaped potential
given by Vlaser (z) = V 0laser exp �z2l2 ! : (6.2)

The laser starts moving att = 0 in the longitudinal direction (thez axis) with
constant velocityvr. It is possible to show (also by the numerical integration
of GPE), that if it is the trap to move instead of the laser, we obtain the same
dynamics3, that we will discuss. The time dependent external potential is then
given by the sum of the trapping potentialVtrap (r) and the laser barrier potentialVlaser (z � vrt) Vext (r; t) = Vtrap (r) + Vlaser (z � vrt) ; (6.3)

where

for t < 0 we assumevr = 0 . (6.4)

We will consider values ofvr much smaller than the maximal sound velocity.
The populationsN1 andN2 of the left and right well, respectively, are defined
by N1 (t) � N Z vrt�1 dz Z Z dxdy j	(r; t) j2 ; (6.5)N2 (t) � N Z 1vrt dz Z Z dxdy j	(r; t) j2 ; (6.6)

(wherevrt is the longitudinal position of the laser sheet). Let us assume that
the system is in the equilibrium configuration fort < 0 and then the initial
conditions are N1 (0) = N2 (0) = N=2: (6.7)

3Moving the trap instead of the laser, due to Galilean invariance, leads to the same equations for the
relevant macroscopic observables. Only the initial condition can change, but for the values of velocities
considered such modifications are negligible.
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We will show with the direct numerical integration of the GPE (chapter7)
that if the velocityvr is smaller than a critical valuevcr the population imbalance�N (t) � N1 (t)�N2 (t) can be estimated by approximating the condensate wave
function	(r; t) by a quasi-stationary solution	0 (r; t) of the GPE given by�0 (t)	0 (r; t) = � �h22mr2	0 (r; t) + hVext (r; t) + g j	0 (r; t) j2i	0 (r; t) : (6.8)

where�0 (t) is weakly time dependent4. We also assume thatVext (r; t) > �0 (t),
i.e. that we are in the tunneling regime. For the laser displacementsa = vrt, that
we will consider,�N is approximately proportional toa. Since the experimental
accuracy in measuring the condensate density with non destructive techniques
is about10%, the laser displacement must be sufficiently large to have a value
for �N which is measurable.

As usual, we assume that the lifetime of the condensate is long compared
to the scale of Josephson oscillations. From the experimental point ofview, the
lifetime of the condensate can be a practical limitation. For this reason it is
better to analyze the dependence of the population on the velocityvr, fixing the
time intervaltf of the laser motion rather then its total displacement. Then�N
is observed after the timetf , and it is a function�N (vr) of the velocityvr.

We will also demonstrate that, above the critical velocityvcr, the approxima-
tion 6.8 breaks abruptly and the flux�N (vr) � 0. The actual experimental
observation of this sudden change in�N gives a measure ofvcr. The strategy
described here improves the observability of the Josephson-like effects since,
although ”plasma” oscillations can be difficult to observe, boththe critical cur-
rent Ic and the Josephson plasma frequency!L can be indirectly determined
from the experimental values ofvcr and�N (vr ' vcr).

In fact, we will show thatIc and!L can be obtained by the following eq.s5Ic ' �N (vcr)tf ; (6.9)

4Although this approximate solution	0 (r; t) is a real function and therefore current density cannot
be calculated directly from it, the time dependence of the population imbalance between the two wells�N (t), can be realistically calculated.

5We have omitted for simplicity a common factor in both the equations. This factor (1=0:72) depends
on the initial condition 6.4 and it will discussed in section6:3:3. In the case in which the laser acquires
its velocity very slowly (in the time scale1=!L) this factor must be omitted. It is possible to show that
also in presence of strong damping this factor must be omitted.
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where the average forceF is given by6F = �m!20 Z dr z j	1j2 : (6.11)

6.2.1 How can the population difference be measured?

Recently a new technique of observing dynamical processes it was used to
study the propagation of sound in elongated cloud of Bose-Einstein conden-
sates [9]. Impressive pictures of moving condensates have been taken using
phase-contrast imaging. This method seems to be within a good approximation
a quantum nondemolition measurement7 (for a recent discussion see [?][46]).
Non-resonant laser light illuminates the sample, travels through,and attains
phase shifts that are proportional to the density of the condensate. The acquired
phase gradient is measured using the non-scattered part of the incident light as
a reference.

This method seems an excellent candidate for monitoring the population dif-
ference in the two well potential. In particular this technique developed for rapid
sequence of imaging of sound propagation can be adapted and improved for the
case in which the time scale of the dynamics is much longer than that of the
sound propagation. For our proposed experiment is necessary and sufficient the
knowledge only of the initial and final population difference (also initial be-
cause is too difficult to cut the condensate exactly in the middle, seethe pictures
in [9]).

6.3 A simple theoretical model

The simplest but still realistic model to study the proposed physical system is
based on the variational TMA, in which the low energy solution of the GPE is
written as a superposition of two static wave functions	1;2 (r) with complex
time dependent amplitude

qn1;2 (t) exp (�i�1;2 (t)). In the previous chapter we

6F is the average force, that the condensate atom in the left well fills, induced by the moving laser
barrier andFvcr t represents the corresponding average work. The condensateatoms, ”localized” in the
left well, are in a quasi stationary state; then the force that the laser barrier played on these atoms is
equal and opposite to the force played by the harmonical trap.

7which means that the measurement does not modify significantly the condensate.
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have shown that a good choice for the variational wave functions	i(r) is given
by the combination even and odd of the low energy self-consistent stationary
solutions8 	� of the time-independent GPE � �h22mr2 + Vext (r;0) + g j	�j2!	� = ��	� ; (6.12)

where
R dr j	�j2 = 1 and	+ = 	0 (the ground state solution of the GPE).

The dynamical behaviour of the fractional population imbalancez = n1 � n2
and the phase difference� = �1 � �2 depends only through few energy inte-
grals: the Josephson coupling energyEJ , the capacitive energyEc, and the
”zero point” energy difference�E (t). We calculate such terms when the laser
is positioned in the middle of the trap (we take advantage from the symmetry
setting	1 (x; y; z) = 	2 (x; y;�z)). We have shown in the previous chapters thatEJ is related to	� by 2EJ = �+ � �� where�� are the respective values of the
energy per particle9 andEc arises from the mean fieldEc = U0 = g R dr 	1(r)4.
Let us consider the case in whichEJ is several orders of magnitude lower thanU0, typically 4 � 6 order of magnitude. Then the maximal amplitude of the
Josephson plasma oscillation (which coincides with the critical value(eq. 4.32)zc = 2q2Ej=U0 � (2Ej=U0)2 ) is of order:02� :002.

The moving laser induces a time-dependent energy (per particle) difference�E (t) = E1 � E2 ; (6.13)

in the two well, whereE1(2) = Z dr	1(2) "� �h22mr2 + Vext (r; t)# 	1(2) : (6.14)

If we linearize�E (t) in the timet aroundt = 0 (i.e. when the laser is in the
middle of the trap), we get �E (t) = 2F vrt ; (6.15)

wherevr is the relative drift velocity and whereF is given byF � Z dr @Vlaser (r)@x j	1j2 = ul  �2 Z dr x�2 exp �x2�2! j	1j2! : (6.16)

8i.e. 	1 = [	+ +	�] =p2 and 	2 = [	+ �	�] =p2 .
9namely �� = �� � 12 R drg j	�j4 .
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and represents the average force per atom in the single left (1) well induced by
the laser barrier. Note that for symmetry reasons this force is equal and opposite
to that one calculated in the right well (2)F � Z dr @Vlaser (r)@z j	1j2 = � Z dr @Vlaser (r)@z j	2j2 : (6.17)

But the same force integralF can be also calculated using the fact that	1 is
quasi-stationary in the sense that	1 must satisfy within a good approximation
the stationary equation Z dr @Vext (r)@z j	1j2 ' 0 : (6.18)

Then the force integralF can be also calculated by using the following expres-
sion F ' �m!20 Z dr z j	1j2 (6.19)

If one approximates the expression 6.16 with 6.19, the relative error introduced
is typically less then0:1%. An important point is that the integral 6.19 does not
depend very much from the details of the laser potential. It can be also evaluated
with the static Thomas-Fermi approximation with only few% of relative error.

6.3.1 The analog of the DC Josephson equations

Within the TMA we obtain the following equations of motion for the relative
populationz = n1 � n2 and the relative phase� = �1 � �2�h _z = �2EJq1� z2 sin (�) ; (6.20)�h _� = �E (t) + 2EJ zp1� z2 cos (�) + U0 z ; (6.21)

where �E (t) = 2F vrt ; (6.22)

Let us consider the caseEJ � U0, namely let us neglect the second term in the
right hand side of Eq. 6.21. To simplify the discussion, we considerz � 1,p1� z2 � 1. From eq.s. 6.20 and 6.21 one gets the result1!2L �� = � dd�V (�) ; (6.23)
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where the effective potentialV (�) is given byV (�) � ~I � + 1� cos (�) ; (6.24)

with ~I � 2F vr=�h!2L. Eq.s. 6.23 and 6.24 are well known equations in the
context of the DC effect in Superconductor Josephson Junctions(SJJ) [45]. In
that context~I = Iext=Ic whereIext is the external current source andIc is the
critical current. In analogy with the Josephson effect in SJJ, wedefineIext = 2F Ic�h!2L vr ; (6.25)

and we will show thatIext can be view as adc external ”current source”.
One can easily verify that the quantityG = 12!�2L _�2 + V (�) : (6.26)

is a conserved quantity.

6.3.2 Critical velocity

Fig. 6.1 shows the potentialV (�) for different values ofIext around the critical
valueIc. If we consider an arbitrary condition�� < � (0) < �, then from the
eq.s. 6.23 and 6.24 follows that

1. for Iext > Ic only not periodic and unbounded solutions exist;

2. for Iext < Ic two types of solution exist: (A) periodic and bounded oscilla-
tions around some local minimum of the potential 6.24; (B) non periodic
and not limited solution;

Not periodic solutions

Not periodic solutions have the asymptotic form fort� 1=!L� (t) � 12 ~I !2Lt2 ; (6.27)z (t) � const+ �hU0 1t sin�12 ~I !2Lt2� : (6.28)

One can see that whereas� (t) increases quadratically witht, z (t) has a weak
oscillating component with a ”frequency” and an amplitude whichrespectively
increases

�� ~I !Lt� and decreases with time
�/ 1t �.
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Figure 6.1:Potential energy V (�) of the driven weak link BEC at various values of the
“external current” Iext.
Periodic solutions

Periodic solutions in the phase� correspond to a finite time averaged drift inz.
In fact, also_� is periodic, and from eq. 6.21 it follows thatz must be of the formz = �Iext t+ zoscil : (6.29)

The fractional population imbalancez is a sum of a drift term�Iext t and a
oscillating (and periodic) termzoscill:
Critical velocity

The existence of a critical relative velocity, is simply related to the existence or
not of a local minimum in the effective potentialV (�) (see also the fig. 6.1). In
particular ifIext > Ic Self-Locking in the population imbalance occurs and we
can define a critical velocityvcr corresponding toIext = Ic, which is given byvcr � �h2m!2L!20 �Z dr z j	2j2��1 : (6.30)
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Then if vr is larger then the critical valuevcr the adiabatic condition 6.8 breaks
and self-locking in the population imbalance occur. Ifvr is less thenvcr the
occurrence of self-locking in the population imbalance depends on the initial
condition.

6.3.3 Initial conditions
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Figure 6.2: Potential energy V (�) of the driven Josephson junction at the paricular
values of the “external current” Iext = 0:7246Ic and Iext = Ic
Let us consider the case �E (t � 0) = 0 ; (6.31)�E (t > 0) = 2F vrt : (6.32)

The conditions under which the system is in equilibrium att = 0 are� (0) = 0 and _� (0) = 0: (6.33)

This is also the case that we will consider later on in the numerical simulation
of the proposed experiment. Then the modulus of the velocity can be calculated
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starting from the conserved quantityG given by eq. 6.26, with the results��� _���� = !Lq�2 ~I � � 2 (1� cos (�)) : (6.34)

We have an inversion point�0 6= 0 if a solution with � 6= 0 of the equation_�0 = 0 exists. If such inversion point�0 exists, then� (t) is a periodic func-
tion. �0 is a function of the external currentIext. In particular there is a max-
imal value�m as a possible inversion point. This maximal value�m is solu-
tion of the trascendental eq.�m sin (�m) = 1 � cos (�m) and takes the value�m = 2:33112 (sin (�m) = 0:724613 ). Correspondingly, we have a maximal
valueImaxext of the ”external current source”Iext (or a maximal valuevmr of the
laser drift velocityvr) Imaxext = sin (�m) Ic ; (6.35)

and vmr = sin (�m) �h2m!2L!20 �Z dr z j	2j2��1 ; (6.36)

and z (vmr ) = 2 sin (�m) Ic tf : (6.37)

From the experimental determination of the critical value ofvmr and of the max-
imum z (vmr ) value ofz, the relevant quantity!L andIc can be indirectly10 de-
termined through !L = !0s vmrsin (�m) 2m�h Z dr z j	2j2 ; (6.38)

and Ic = 12 sin (�m) z (vmr )tf : (6.39)

Fig. 6.2 shows the potentialV (�) corresponding to this particular value of
the external currentImaxext = 0:7246 Ic. From this figure it is also clear that with
the boundary condition� (0) = 0 and _� (0) = 0 we have that

1. for Iext > sin (�m) Ic the solution� (t) is not periodic and unbounded;

2. for Iext < sin (�m) Ic the solution� (t) is periodic and bounded;

10also through the determination of the integral
�R dr z j	2j2� .
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6.3.4 Brief summary

Depending on the initial condition we can have bound solutions around a local
minimum that correspond to a drift in the population imbalancez (t). If we
have as initial condition� (0) = 0 and _� (0) = 0 we have a maximal value of
the laser drift velocityvmr ' 0:7246 vcr and in the small velocity limitjvrj �vcr we have the simple analytical solution for the population imbalancez (t) =EJ vrvcr �t� 1!L sin (!Lt)� :
6.4 Adiabatic condition on the effective TMA

In chapter 5 we have shown that the numerical integrations of the Gross-Pitaevskii
equation (GPE) in a double well potential indicates that the low energy tunnel-
ing dynamics can be accurately described by an effective TMA. Alsoin this
case, in which the external potentialVext (r; t) is time dependent, we may give
an effective description�h _z = �2E�Jq1� z2 sin (�) ; (6.40)�h _� = �E� (t) + 2E�J zp1� z2 cos (�) + U�0 z ; (6.41)

in the form of the variational TMA eq.s. 6.20 and 6.21, in which the rele-
vant physical quantitiesU�0 , E�J , �E� (t) are a ”phenomenological” input. We
recall that from the numerical integrations of the GPE, we can determine di-
rectly the Josephson frequency!L and the critical currentIc. The effective
equations of motion are obtained by substituting the Josephson coupling energyEJ = (h+ U3) (eq.??) and the mean field integralU0 (defined in eq. 4.7) withE�J = �hIc ; (6.42)U�0 = �h!2L2Ic : (6.43)

With these substitutions we have obtained the excellent results forthe time inde-
pendent external potential case showed in section5:5. Now the problem: which
is the way to define the effective ”zero point energy”�E� (t)? In the case in
which�E� (t) changes slowly in time we can give the following answer.
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Adiabatic condition

AssumingU�0 � �hIc, the equations of motion 6.40 and 6.41 read�h _z = �2E�Jq1� z2 sin (�) ; (6.44)�h _� = �E� (t) + U�0 z : (6.45)

If �E� (t) changes sufficiently slowly in time_� (t) � 0 andz (t) � ��E� (t) =U�0 .
On the other hand, within the validity of eq. 6.8z (t) must correspond to the
equilibrium valuehzieq at the timet. Then the effective ”zero point energy”�E� (t) can be estimated by�E� (t) = �U�0 hzieq ; (6.46)

wherehzieq can be determined by solving eq. 6.8. In the case in which the laser
barrier moves with constant velocity (in the small velocity limit) we obtain from
6.46 that �E� (t) = 2F �vrt ; (6.47)F � = �12U�0 @hzieq@a ; (6.48)

wherea = vr t is the position of the laser barrier. Furthermore@hzieq@a can be also
calculated in the framework of the time independent linear response theory11.

Validity limit

We have implicitly assumed that the displacement of the potential is sufficiently
small to use constant values of the Josephson frequency and critical current.

11For a small displacementda of the laser the variation in the external potential is�Vext = @Vlaser@a da.
The variation �	 = �H0 � �0 + 3g j	0j2��1 (�Vext � ��) 	0 ;
where�� is the chemical potential variation. The constraint on the conservation of the norm implies�� = Z �0 (�Vext + g��) :
(in the symmetric double well potential�� is, for symmetry reasons, zero). The variation of the frac-
tional population imbalance�z is by definition a simple function of the variation in the density ��, that
is related with the variation in the ground state wave function�	 through�� = 2	0�	.
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6.5 Conclusion

We have explained that a moving laser in the trap improves the observability of
the Josephson-like effects in the BEC weak-link. In particular we have found
a practical method to obtain an indirect measure of!L andIc through the ex-
perimental determinations of the critical value of the relative velocity vmr and
the maximum value of the functionz (vr) for vr � vmr . We rewrite here the
important eq.s 6.38 and 6.39!L = !0s vmrsin (�m) 2m�h Z dr z j	2j2 ; (6.49)Ic = 12 sin (�m) z (vmr )tf ; (6.50)

where as shown in subsection6:3:3, the numerical factorsin (�m) comes out from
the initial conditions defined in eq.s 6.31, 6.32 and 6.33. Then the presence of
fluctuations of the population imbalance (Josephson ”plasma” oscillations), due
to these initial conditions, reduces the values of the critical velocity and the
maximum value of the functionz (vr). This is also expressed by eq.s 6.36 and
6.37, that we also rewrite for clarity in the followingvmr = sin (�m) �h2m!2L!20 �Z dr z j	2j2��1 ; (6.51)z (vmr ) = 2 sin (�m) Ic tf : (6.52)

Furthermore, in the case in which Josephson oscillations are strongly damped
(in a time scale shorter than1=!L), and therefore difficult to directly observed,
theDC component of the current is preserved, and the factorsin (�m) can be
neglected. It follows that the possibility to detect experimentally the Josephson
effect is not at all reduced (at contrary it is a little improved).

Eq. 6.51 is of practical utility for the precise determination of trap and laser
parameters.



Chapter 7

..numerical results

In this chapter we show the results obtained by solving numerically the GPE for
the experiment proposed in the chapter6 and compare them with those obtained
with an effective TMA. In section 2, we consider a detailed analysis based on
the numerical integration of the standard time dependent GPE in arealistic 3D
trapping potential, referred to the JILA setup [8]. A similar analysis for the MIT
setup is in progress. The numerical results demonstrate that also in the case of
a time-dependent Hamiltonian, an effective TMA can be used to describe the
low energy dynamical behaviour of the two wells system. It is also shown that
it is possible to give an indirect measure of the ”plasma” frequency!L and the
critical currentIc. We will discuss in a subsection an interesting resonance effect
between the longitudinal intrawell dipole mode and the tunneling dynamics, that
cannot be described in terms of the effective TMA. In the following subsection
we show (as a check) that the effective parameters of the TMA haveonly a weak
dependence on the laser position.
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7.1 The proposed experiment for the JILA setup

We have considered the JILA setup withN = 50:000 Rb atoms where a thin
laser barrier cuts the condensate in ”two” parts. The harmonic trapis cylin-
drically symmetric, with a longitudinal frequency!0 of 50:0 Hz and a radial
frequency!r of 17:68 Hz. We have used as scattering length the valuea = 58:19
Angstrom (the more precise actual value isa = 57:7 Angstrom [47]). Using the
longitudinal harmonic oscillator as natural scale of dimensions and energy, we
obtain an adimensional coupling constantgadim = 2396:2. With this adimen-
sional scales, the units length scale isl0 = 1:5256 �m, and the unit time scale
is !�10 = 3:1831 ms. A laser sheet (of longitudinal gaussian shape) is focused
in the center of the trap. We assume that the longitudinal1=e2 half-width of the
laser barrier is3:5 �m. The laser height used is13 �h!0. We have used a grid
of 84 � 77 where84 (77) is the number of longitudinal (radial) discretization
points. This grid leads to an accuracy of� 1% on the critical currentIc and on
the Josephson plasma frequency!L.

The starting point of our numerical analysis has been to find (usingthe self
consistent variational TMA discussed in the previous chapter) a good set of
physical parameters, to achieve a good compromise between different experi-
mental needs, such as the choice of time scale, the dimension scale of the con-
densate, and laser sheet parameters. We have first estimated!L and Ic, and
subsequently the critical population imbalancezc. Then we have computed the
exact value of!L, by solving numerically GPE with an initial imbalancez � zc.
Once the exact valuezc is found, the current-phase relations is obtained starting
from an initial imbalancez � zc. From this relation the critical currentIc is
finally determined1.

We report in the following the results about the numerical simulation of the
proposed experiment. The population imbalance is ”measured” afterthe timetf = 1 s. This time was chosen requiring thatz �t = tf� is of the order� 0:4
(value that is clearly observable). The fig. 7.1 shows the resultsfor z at t =1s, versus different values of the laser velocityvr. Crosses are calculated with
the full numerical integration of the GPE and the solid line corresponds to the
effective TMA.

1The exact value ofIc is in good agreement with that obtained in the SCVTMA (withinan accuracy
of � 1%).
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Figure 7.1:JILA setup: numerical results evidentiate a critical behaviour of the popu-
lation imbalance. z is calculated after 1 s versus different laser velocities. Crosses and
solid line correspond to the results of the GPE and of the effective TMA, respectively.
Dashed line represents the equilibrium value zeq in the ”final” position vr tf of the laser
barrier (time independent GPE). Note that for vr > 0:00042 �m=ms the differences be-
tween the numerical results for z and the equilibrium values zeq become immediately
very large.

Analyzing the population imbalance versusvr, a critical behaviour appears.
Such effects manifest itself in a jump of the curvez (vr) in correspondence to
the valuevr � 0:00042 �m. This critical value agrees well with the valuevmr
estimated with eq. 6.36. Also the maximum of the curvez (vr) � 0:35 agrees
well with the valuez (vmr ) of eq. 6.37. Therefore using the numerical resultsvr � 0:00042 �m and z (vr) � 0:35 one can verify that bothIc given in eq.
6.39and!L given in eq. 6.38 can be indirectly measured with a relative error of
few %.

Dashed line (fig. 7.1) represents the equilibrium valueszeq of z calculated
with the eq. 6.8 (stationary GPE) when the laser barrier is in the ”final” position
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Figure 7.2:JILA setup: vr < vmr . Fractional population imbalances evolution z (t) for0 < t < tf = 1 sec for the velocity values of the first eight crosses of the fig. 7.1, below
the critical velocity. Solid line is the numerical integration of the GPE and long dashed
line correspond to the effective TMA. z (t) decomposes exactly in a DC componentdz (t) =dt � Iext and an oscillating part. The DC component of z (t) increases both
with the time and velocity vr.vr � tf (along thez-axis). Note that forvr < vmr the numerical results forz agree
well with the equilibrium valueszeq and forvr > vmr the difference between the
numerical results forz and the equilibrium valueszeq become immediately very
large. We have observed two separate regions, which can be called the ”DC”
and the ”AC” regions, because of the formal similarity of the eq.s. 6.23 and 6.24
with the SJJ equations in the presence of adc current source.� for vr < vmr we have a ”DC” region, namely a DC supercurrent flow of

atoms between the two wells (or superconducting region). The flow of
atoms is approximately proportional to the timetf andz � zeq. (see also
fig. 7.2)� for vr > vmr we have an ”AC” region. In this region a difference in the
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Figure 7.3:JILA setup: vr > vmr . Fractional population imbalance evolution for 0 <t < 1s with velocity values corresponding to the 11th and 13th cross of fig. 7.1.
Note the agreement for the frequency of the AC oscillations between effective TMA
calculations and GPE. The first small deviations appear as the frequency reaches that
of the lowest radial intrawell mode: a small resonance effect appear. In the casev = 0:00060 �m=ms we have for t > 900 ms a strong resonance effect between the
dipole intrawell mode.

chemical potential occurs (Self Trapped or insulator region). The super-
current oscillates at a frequency approximately proportional toz� zeq and
increases with the timetf .

Let us discuss separately the ”DC” regionvr < vmr , the ”AC” regionvr > vmr
and the transition regionvr � vmr . For each of these regions we show the time
evolutionz (t) for 0 < t < tf = 1 sec.

In fig. 7.2 we show forvr < vmr the fractional population imbalancez (t)
evolution for the values of the laser velocityvr corresponding to the first eighth
crosses of fig. 7.1. For small displacement of the laservrtf and for velocity
smaller than the critical velocity the agreement between GPE (solid line) and
effective TMA (dotted line) is extremely good. The evolutionz (t) consists of
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Figure 7.4:JILA setup: vr � vmr . Fractional population imbalance evolution during1s with velocity values correspondingly to the 9th and 10th cross of fig. 7.1. Solid
line is the numerical integration of the GPE and long dashed line corresponds to the
effective TMA.Solid line is the numerical integration of the GPE and long dashed line
corresponds to the effective TMA. For laser velocity near its critical value vmr the ef-
fective TMA cannot fit well the numerical results, because of the sharp incline of the
curve z (vr) in fig. 7.1. In fact a small error in vr causes a large indetermination in z.

a mean atom flux through the barrier proportional toIext (DC regime), plus a
Josephson plasma oscillation with amplitude and frequency depending on the
laser velocity2. The Josephson oscillations are due to the fact that we start to
move the laser abruptly att = 0 with the constant valuevr for t > 0. If the
velocity vr is reached in a time large compared to1=!L, the DC component is
the only appreciable.

In conclusion, although Josephson oscillations can be difficult to observe,
the mean average of the population imbalance is observable and the occurrence
of a sudden jump inz �tf ; vr� as a function ofvr, will be a clear evidence of
Josephson-like effects in a BEC Weak-Link.

2more in general they must depend also on the initial conditions.
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In fig. 7.3 we show the evolutionz (t) for 0 < t < tf = 1 sec for vr > vmr
corresponding to the11th and13th crosses of the fig. 7.1. The numerical results
(solid line) show a small deviations from the effective TMA (dotted line); a brief
discussion of such deviations is given in the following subsection.

In fig. 7.4 we show the evolutionz (t) for 0 < t < tf = 1 sec for vr � vmr
corresponding to the9th and10th crosses of fig. 7.1. Solid line is the numerical
integration of the GPE and long dashed line corresponds to the effective TMA.
For laser velocity near its critical valuevmr the effective TMA cannot fit well the
numerical results, because of the jump of the curvez (vr) (see fig. 7.1). In fact
a small error invr causes a large indetermination inz.
7.1.1 Breakdown of the effective TMA and resonance effects

0 500 1000 1500
time [ms]

0.0

0.1

z

TMA

GPEresonances with the intrawell
collective motions

radial
monopole
frequency

intrawell
dipole
frequency

Figure 7.5:JILA setup: fractional population imbalance evolution z (t) for 0 < t < 1900
ms with the velocity that correspond to the 13th cross of fig. 7.1. Solid line is the
numerical integration of the GPE and thin line correspond to the effective TMA.

Non trivial dynamical behaviour can take place because of the coupling between
intrawell motions and interwell dynamics, when the Josephsonfrequency in the
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Figure 7.6:JILA setup: Top: dipole moment. Middle: longitudinal monopole moment.
Bottom: solid (dotted) line correspond to the right (left) well radial monopole moment.
These data correspond to the same calculation of previous fig. 7.5

self trapping regime (AC-like) is comparable to the frequency ofsome intrawell
mode. In fig. 7.5 we display, as an example, the fractional populationevolutionz (t) for 0 < t < 1900ms in correspondence to the laser velocity of the13th
cross of fig. 7.1 (vr � 0:0006 �m/ms). Notice that the frequency of Josephson
oscillations increases in time in accord with the effective TMA for t < 900 ms.
When this frequency becomes comparable with the longitudinal dipole intrawell
frequency (� !0), the population of the second well changes to another value
(approximately the double of the TMA prediction).

This effect can be qualitatively understood by using an effectivethree level
system model, in which in addition to the left and right states,	1 and	2, an
effective dipole mode	d2 is included on the right well. The effective TMA
equations, expressed in terms of the amplitudesc1 andc2 can be written asi �h @@t 0@ c1c2 1A = 0@ U�0 jc1j2 +�E� (t) E�JE�J U�0 jc2j2 1A0@ c1c2 1A : (7.1)
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If one includes the dipole mode, the equations becomei �h @@t 0BBB@ c1c2cd2 1CCCA = 0BBB@ U�0 jc1j2 +�E� (t) E�J E�JdE�J U�0 jc2j2 0E�Jd 0 U�0djcd2j2 + !d 1CCCA0BBB@ c1c2cd2 1CCCA (7.2)

wherecd2 is the amplitude corresponding to	d2, !d � !0 is the dipole frequency,U�0d is an effective capacitive energy (referred to the occupation ofthe dipole
mode	d2) andE�Jd is an effective off-diagonal term between	1 and	d2. This
equations is able to explain qualitatively the jump in population observed in 7.1
after900ms if U�0d � U�0 andE�Jd � E�J : In fact, in that case, after some time, the
system occupies the	d2 state. This explains the jump in the population of the
second well, and the amplitude of the jump is comparable to the TMA predic-
tion. When this transition occurs, dipole oscillations of amplitude proportional
to Re �c�2cd2h	1j z j	d2i� can be observed.

While it is not difficult to understand whyU�02 � U�0 (these are bulk terms),
we don’t have any microscopic explanation of the reason whyE�J2 should be
almost equal toE�J .

Fig. 7.6 provides more direct information about this feature. The intrawell
dipole mode manifests both in the dipole momentd1 = Z dr z j	j2 ; (7.3)

and in the longitudinal monopole momentmz = Z dr z2 j	j2 : (7.4)

Direct integration of the GPE shows that also the low energy radialmonopole
mode is excited, as it can be seen from the radial monopole momentmr = Z dr �x2 + y2� j	j2 (7.5)

shown in fig. 7.6. Note that the effect is smaller than in the case regarding the
dipole mode.

7.1.2 *A test on the effective parameters

A more sophisticate description of the moving laser dynamics as that provided
by the effective TMA introduced in section6:3, requires the use of effective
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Figure 7.7:(A): equilibrium value of z versus the laser position a. (B): longitudinal equi-
librium density for the maximum displacement of the laser considered in the simulationa = 0:9 �m.

energy parameters which depend on the laser positionaU�0 = U�0 (a) ; E�J = E�J (a) and�E� = �E� (a) : (7.6)

Such functions must be calculated to reproduce within the effective TMA, the
GPE numerical results at each laser positiona. This approximation has not been
considered here in a detailed way and it is beyond the scope of the present work.
We limit to observe that, for symmetry reasons, one gets the relations@ (U�0 )@a ja=0 = 0 ,

@ (E�J )@a ja=0 = 0 ; (7.7)@ (�E�)@a ja=0 = 2F and
@ (�E�)@2a ja=0 = 0 : (7.8)

We have checked that@(U�0 )@2a ja=0 , @(E�J)@2a ja=0 give negligible corrections for our
purpose, and most of the discrepancy comes out from the couplingwith others
collective motions. We have checked that the values of the most relevant phys-
ical quantities are all almost independent on the laser position in the region of
interest0 < a < 0:4�m (values that correspond to the region0 < vr < vmr in fig.
7.1).

Fig. 7.7A shows the equilibrium values of fractional population imbalancezeq (a) versus the laser positiona. In our effective TMA we have linearizedzeq (a) � @(zeq)@a ja=0 a. Fig. 7.7B shows the equilibrium longitudinal density
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Figure 7.8: Left: U�0 versus the laser position a. Right: normalized critical currentIcp1�z2eq versus the laser position a.

profile calculated at the maximum value of the laser displacement considereda = 0:9 �m. Note that, despite of the fact thata is less then1�m and the longi-
tudinal extent of the condensates is about6 �m, the fractional population equi-
librium imbalance is higher then0:7.

Fig. 7.8A shows the value ofU�0 versus the laser positiona. Fig. 7.8B shows
the valueE�J normalized by the factor

q1� hzi2eq. In the region of interest the
effective energy integralsU�0 andE�J change only of5%.

7.2 Summary

The numerical results (GPE) demonstrate that the low energy tunneling dynam-
ics can be accurately described by an effective TMA, also in the case in which
the external potential is time dependent. The non-linear dynamical behaviour
of the two weakly coupled BECs can be described in terms of a macroscopic
quantum phase-difference� and in terms of the fractional population differencez between the two sub-systems. We have showed that the relevant variables�
andz satisfy a non linear equation depending parametrically only through tree
energy terms: the Josephson frequency!L, the critical currentIc, and the dif-
ference in the ”zero point energy”�E (t) (or equivalently through the average
forceF ).
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