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Chapter 1

Introduction

The recent experimental observation [1, 2, 3, 4, 5] of Boset&imonden-
sation (BEC) in dilute Bose gas of alkali atoms can be consideradestone
in the history of the BEC. For the first time, evidences of the BE@ghzeen
obtained in simple and direct ways. Vapors of rubidium and soduere con-
fined in magnetic (harmonic) traps and cooled down to tempeatfiteée order
of the nanokelvin. Below the critical temperature a sharp peak iveleity

distribution was observed, after switching off the confining ptoéti6]. Such

anisotropic velocity distribution cannot be interpreted asearttal distribution,
providing therefore a clear signature of BEC.

The peculiarity of these trapped alkali vapors is that their denstesuf-
ficiently low so that such gases can be realistically treated in the fvarkeof
the theory of the weakly interacting Bose gas, which is well estadaisAt the
same time the interaction is effective on many relevant pitaseof the system
and its strength is sufficient to allow for the condensation in a finite tifirhis
feature makes the Bose Einstein condensation not only very stitegefrom an
experimental point of view, but also a very challenging theorepoalblem.

A very attractive aspect, from the theoretical point of view, is tHiala
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vapors are inhomogeneous and interacting systems. In fact, a oBrglex
and rich phenomenology is expected, as a consequence of theagteetween
inhomogeneity and interaction. For example, the shape anp#tialextension
of the trapped condensate can be strongly modified by the two bodgdtitat

A striking feature of a BEC is its coherent nature, which is related ¢o th
macroscopic quantum phaséthe system. An important consequence of this is
the possibility of interference phenomena. Such phenorhawa been already
observed in dilute alkali condensates, proving the coherdgntenaf these sys-
tems over a macroscopic scale. In a beautiful experiment, pestbatMIT [7],
two independentondensates were created in a double well potential, obtained
by focusing a off-resonant laser light into the center of the magnefic fter
switching off the confining potential and the laser, the Bose Einstamaden-
sates expanded and successively overlapped. Clean atomic eedgratterns
have been observed in the overlapping region.

Recently the JILA group [8], using an interferometric techniques, inea-
sured the relative phase between two trapped condensates newliffigperfine
states and its subsequent time-evolution. Contrary to the MITrarpat [7],
the initial state is, from the beginning, a coherent superpasibiotwo con-
densates; the JILA group was also able to show that each realizatithe of
experiment reproduces the same evolution for the relative phase.

A classical experiment that investigates the role of the macrosgojpictum
phase difference on the evolution of two coupled macroscopictqoasystems
Is the Josephson-junction experiment. The Josephson expe:repeesents the
usual way to detect the phase of the order parameter in supeicions], through
the observation of coherent oscillations of Cooper-pairs. In théssod of alkali
gases an advantage of the Josephson experiment is that, difienngfe inter-
ference experiment, it does not destroy the sample. In partidasephson ex-
periment allows for a continuous measurement of the phasseiifte, through
the monitoring of the population difference, e.g. by phasdreshmicroscopy
[9].

Arguments first proposed over thirty year ago by Josephson,raadend
Feynman [10, 11, 12], based on fundamental quantum-mechaaminalples,
lead to the prediction that if two macroscopic quantum systemw/aakly cou-

1The spatial extension of the condensate can be orders ofitndgrbigger than that of the ideal
condensate gas.



pled together, particle currents should oscillate between the tatersg. If the
two systems have a quantum phase difference, a supercurushiflow from
one system to the other. The currdns related to the phase difference by
the equatio = I.sin (A¢), wherel., is the critical current of the link. If the two
systems have a chemical potential differenge the phase difference evolves
with time ¢ according to the equatiah(A¢) /ot = —Ap/h.

Josephson effects have been searched experimentally in weakéinksan
neutral superfluid systems, such‘#e-2 and*He-B (systems of bosons and
fermions respectively). Only very recently it has been obskare oscillating
mass current in a weak link between two superfithitk-B reservoirs [13, 14,
15].

The main subject of this thesis are Josephson-like effects in & kvdabe-
tween two trapped alkali BEC gases. The time rate of change ofethave
population, is the BEC analog of the supercurrent in the usuya¢iSonductor
Josephson Junction (SJJ). The interest in this system arises froemgheta-
tion of new dynamical regimes, which are not experimentally asibksin SJJ,
since macroscopic changes in density are forbidden for a Sdithhef motiva-
tion to investigate this system comes from the absence of doisdo external
experimental apparatus. For instance, in a SJJ the externaiagécircuits is
a source of noise.

The Josephson dynamics between two weakly linked BECs of alkalsgase
has been already a source of several theoretical investigatioris/ 183, 19, 20,
21, 22]. At least two different experiments can be suggestedderdo obtain
a weak link between two BECs of alkali gases. In a setup similar to that o
MIT, one can imagine to lower the width of the laser to allow coupling betwe
the condensates; the coupling arises from quantum tunnelingThi§ kind of
setup will be the object of a detailed discussion in chaptér different kind of
weak link can be obtained by considering two trapped condensatkf$arent
hyperfine states, like that proposed by JILA group [22]. In taise the role of
tunneling is played by a weak driving field that couples these liygestates.

An other important reason to study BEC of alkali gases is that therayste
can be realistically described, at low temperature, by the thebweakly in-
teracting Bose gas, as developed by E. Gross and L. Pitaev3kiiTBe mean
field analysis, for alkali BECs, provides an accurate realisticrifgson of the
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non-linear dynamics and provides a simple language to understarsystem

in terms of few physical quantities. At zero temperature the coradens de-
scribed by aone-body wave functicand its time evolution satisfies a non linear
Schibdinger equation (the Gross-Pitaevskii equation). In the inhomames
case the exact solution of this equation requires a numericabagipithat will
be the object of Chapters 5 and 7.

In the physics of SJJ, the low energy dynamical behaviour is wetirileed,
both phenomenologically and microscopically, in terms of the ctif@nd the
phase difference between the two superconductors. In a similar way, in neutral
superfluid systems, dsle-2 and®He-B, the low energy dynamical behaviour is
described in terms of an effective free energyp, s NV), where the relative phase
¢ and the relative numbe@rV can be treated as canonically conjugate variables.

Our starting point has been to extend the SJJ language to the casaldyw
linked BECs. The approach used for this reason is the time depewalest
tional approximation (or Dirac action principle) applied to the full meeld
equation (chapter 4). In our variational Ansatz the order paranset&itten as
a superposition of two time-independent wave functions. Ih sueay a formal
description in terms of the relative phas@nd the relative numberV can be
obtained. These variables are canonically conjugate and satistowmed non
linear equations (that we refer to TMA) in terms of few static préipsr that in
some limit can identified as the Josephson coupling energy, adbdephson
capacitative energy.

Such approach has enabled the investigation of interesting non linear ef-

fects. We have found that new effects can arise due to the interacttiora

to the particular initial condition of the BECs. One of these is theaéed
self-locked population imbalance: for instance, in the case obuble well
symmetric potential, two condensates, prepared with an initiallemica above

a critical value, cannot evolve with a dynamics with zero averagrijation
imbalance, but the population of the two states make small andgaskations

near the initial condition. This effect is analogous to the ACaftebserved in

SJJ.

In TMA equations the dynamics depends, a part from a time scalerfac
only on the ratio of the Josephson capacitative energy and tle@ldssn cou-
pling energy. If this ratio is very large, a behaviour similar to tdé S observed,



if the ratio is close to zero, Rabi-like oscillations are obtained.

Another important result, obtained by TMA equations, is that uceeiain
circumstances, a quantum phase difference lbétween the two trapped Bose
gas, can be maintained. This will be discussed in chapter 4. Veently, a
similar phenomena, was observed in a weak link between two supetfle-B
reservoirs [24].

In chapter 5 we have gone beyond the TMA by integrating the full GPE.
There are at least two important reasons to do this: first, to chechntlit of
validity of the TMA, second, to look for new effects, which cahbe described
by the TMA, as, for instance, the relaxation phenomena. Furthermo a
very inhomogeneous Bose gas, we expect that non trivial effacteccur, due
to the coupling between intrawell collective motions and interwetlepdison
dynamics.

The results obtained by the full integration of GPE can be used telaley
an "effective” TMA, as we will show in chapters 5 and 7. In this amio the
Josephson coupling energy and the Josephson capacitativey,eagpgaring
in the TMA equations, are treated as "phenomenological” inputseffactive
description of the numerical results in terms of the formal equatidthe TMA
model is obtained [25].

These numerical methods (second part of chapter 4) can prthedexper-
imentalists with accurate values for the laser parameters hioald be used in
order to observe these effects.

An open problem is the actual experimental observation of Josapbs-
cillations as well as the measure of both the plasma frequerctyhencritical
current. One of the limiting factors is that the amplitude of Josepltscil-
lations can be too low for the present resolution of the availableraxental
setup$. In chapter 7 it will be proposed a strategy to improve the obsdityab
of Josephson-like effects. This strategy leads to a measure ofitical current
and the Josephson frequency, even in the case in which the Joseyststa-
tions cannot be directly observed [26]. We suggest to investeggterimentally
a phenomenon that is the close analog of what occurs in a singlen8éd the
action of an external dc current source. TheZdeV curve,V =V (I), can be
explored and the analog of the dc and ac effects can be formatlyeeed. The

2The frequency of Josephson oscillations can be a fractiomeccessarily small of those of the
trap.
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role of the external electric circuits with a current source is pdalyg a slow
relative motion of trapping potential with respect to the laser shvelegre the
relative velocity corresponds to the intensity of the external apgligdent in
SJJ. The existence of the critical current manifest itself in the oenoe of a
critical value of the relative velocity.



Chapter 2

Bose-Einstein Condensation

2.1 Bose-Einstein Condensation in dilute trapped al-
kali gas

The Bose-Einstein condensation (BEC) has been the sourceveral stud-
les and debates, leading to the development of continuously temhics for
the investigation of different physical systems [27]. In thisitext, the recent
experimental observation of Bose-Einstein condensation, in dilage Bas of
alkali atoms [1, 2, 3, 4, 5], has to be considered as fundamestia\@ement.

Previous investigations of BEC have been mostly limited to superfidé
namely liquid‘He below the critical temperaturé,(= 2.3 °K) [28]. Since early
stages, superfluidity was considered as a manifestation of BE€isTan issue
which is still very much debated. Then, some more direct alasiens of BEC
came from the deep inelastic neutron scattering experimentslenwhich, at
high momentum transfer, provide a measure of the momentum disbrbu( %)

[29]. The Bose condensate should appear as a delta function sihgafar (k)
atk = 0. However, due to final state interactions of the knock out atom with the
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bulk and to experimental broadening effects, the delta functiontislinectly
observable. Making use of theoretical models, based on micrizscajgula-
tions [30], the fraction of Bose condensation*iHe has been estimated to be
7.3%. Therefore, due to the strong short-range correlations the fractitme
condensate is very small. This makes very difficult to quantitativelgysthe
dynamical behaviour of such condensate, both experimentally andetincally.
Other investigations of the BEC properties have been done im othry-body
systems, such as the gas of excitons in semiconductor [31], theipauper-
conductor materials and the superfléide.

The remarkable experiments leading to Bose-Einstein condensatilixain a
gas have been performed by combining sophisticated non linear opttal te
niques. Atoms were confined in harmonically magneto-optical trapsaoled
down with laser cooling and evaporative cooling techniques [82}his way
it has been possible to reach the temperature and density valuessagcto
observe the phenomenon of Bose-Einstein condensgatiothis conditions the
equilibrium configuration of the system would be the solid phaseceSinree-
body collisions are rare events in dilute and cooled gases, the ni¥¢agts
phase has a sufficiently long lifetiiand the BEC can be observed. The first
evidence for condensation emerged from the free expansiore afathdensate
after switching off the confining trap: a sharp peak in the velocityrithstion
appeared below a critical temperature.

The dilute nature of these gas allows one to describe the two bodgatitar
with a single parameter, the s-wave scattering length (Born appation). The
static and dynamical properties of the Bose-Einstein condensateeceealis-
tically studied within the theory of weakly interacting Bose gasinly devel-
oped by Gross and Pitaevskii [23] (see next section). Standattibd®e used
for homogeneous dilute Bose gas, have been extended to the ighoswmus
and finite number of atoms case, and new techniques have beelopy to
investigate static and dynamics properties of the BEC, as well ssmijgerature
dependence?].

Condensate alkali atoms constitute a nearly ideal system (conddresa

1For a homogeneous gas the condition for BEQNs5)® p > 2.612, whereApp = ﬁ is the
De Broglie wave length angdis the density of the systems.

°The observed lifetime of the condensate depends also onditfezent scattering mechanisms with
incoherent photons and impurity atoms.
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Figure 2.1:The MIT condensate.

tion ~ 100%), in which short-range correlations can be neglected and the mutual
interaction can be treated ib** theory (mean field theory). Despite such sys-
tems can be considered as a weakly interacting Bose gas, one sbohlave

the impression that, the two body interaction plays a minor role.at, the
interaction, in addition to be crucial for the actual realizatioBE{CS, it is also

very effective on various of their relevant propertfesFor instance, the non
linear effects, due to two body interactions, raise the most impoptaysical
problems in this field of research.

3The intensity of the interaction gives the rate of termaimaprocesses.
4such as the spatial extension of the BEC and non linear dyraheiffects
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Bose-Einstein condensation in alkali gas is quickly developing as adbro
interdisciplinary field, where concepts coming from differargas of physics,
such as quantum optics, statistical mechanics and condensed pigtsees,
can be encountered. Among the several theoretical perspechvbss thesis
we will focus on the non linear dynamics behaviour of the condtnand its
coherence effects at zero temperature.

We will limit ourself to a mean-field description of the behaviourtloése
systems, which is adequate enough, given the accuracy of éserdrexperi-
mental data. This theory has been already tested with excellergssutthe
description of various fundamental properties of these systetienent phys-
ical regimes P]. It can also be the starting point for the investigation of novel
phenomena.

This chapter will introduce the Gross-Pitaevskii equation, thenTdms Fermi
approximation, the Bogoliubov theory for the collective excitatiand the non
linear dynamical aspects for BEC.

2.2 The Gross-Pitaevskii Theory

The theory of the condensate of a weakly interacting Bose gas wakged by
E. P. Gross and L. L. Pitaevskii [23]. Although Gross-Pitaevskii Bagoliubov
[33] theories are not realistic theories to study the physicalgntms of'He at
low temperature, they are very well suited for condensed lowitjesigali gas.
Such theories have been generalized to the inhomogeneous chses [3deded
for trapped condensates.

The problem ofV interacting bosons is in general a very complicated one.
The dynamical evolution of the systems is described by laody wave func-
tion. In the case of a weakly interacting Bose gas, however, ssonglifica-
tions occur in the description of the system under the occuerefche BEC
phenomenon. In fact, the system is sufficiently dilute, the interactiompate
fulfils the conditions of applicability of Born approximation, and indae rep-
resented by a|¥|* term, where the coupling constais directly related to the
s-wave scattering length. The condensate is described’bpeabody” wave
function normalized to the number of partick®f the condensate). The collec-

Sin chapters 4,5,6 we use another choice of normalizatiociested with a particular choice of unit
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tive dynamics of a dilute Bose gas at zero temperature is therdéscribed by
a "macroscopic wave function¥'(r, ¢), which obeys a nonlinear Scidinger,
or Gross-Pitaevskii equation (GPE) [23]:

2
m%qf (r,t) = —;—mvw (0,8) + [Vear (6,8) + 9|0 (r,0) P] O (r,1)  (2.1)
whereV,,; (r,t) is the external confining potential and the coupling consjant
is given byg = 4zx%%a/m, whereq is the atomics-wave scattering length and
m the atomic mass. In this non linear Sgtiinger equation, the non linearity
comes from the interaction in the form of a self-consistent figltl(r)|?2. The
static (ground state) solution obeys the GP equation
h2
2m
where the eigenvalueis the chemical potential = F (N) — E (N — 1).
The main feature of eq.s. 2.1 and 2.2 is the competition between thigckine
energy and the mean field. One limiting case is to neglect the kinetic emergy
eq. 2.2. This correspond to the Thomas-Fermi approximatiorych approxi-

mation the static solution is given by

VU (r) + [Veat (1) + g ¥ (1) "] ¥ (x) = ¥ (r) . (2.2)

W (r) = J% i~ Veat (1)O (11— Vs (r)) (2.3)

(where® is the unit step function). The Thomas-Fermi approximation can be
used when the mean field is much bigger than the kinetic energy and it is a
particularly suited to analyze the effect of the interactionse Thomas-Fermi
approximation leads to a rather simplified treatment of the low gndygami-

cal behaviouft [35].

The effect of the interaction terg|¥|* can lead to drastic changes in static
and also dynamics properties of the BEC. The shape and in partibalapatial
size of the condensate can change significantly with respect to thateoact-
ing ground state (gaussian shaped). This effect is particuladyg ahen the
Thomas-Fermi approximation is valid, as can be seen from eq.St®e the
stationary solution of 2.2 follows from a variational principlesial relations
can be obtained. One of these relations is the following

1
T, — Vho 4 §Umt =0, (2.4)

length: [ dr |¥|? = 1, and consequently — Ng, whereN is the number of condensate atoms.
Sthis treatment in some cases leads to analitycal solutions
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whereT , = (—&£ 2y and Vvl = (1mw2s?) are the kinetic energy and the
harmonic potential energy corresponding to thaxis, andU;,; = (g )% is
the internal energy (two similar equations hold for thend> components).

In the following we sketch one of the possible derivation of the GREhe
formalism of second quantization, a system\ointeracting bosons of mass,
interacting through a two body potentialand confined by an external potential
Veut, IS described by the following general Hamiltonian:

h? ci .
_ " } i
H = Qm/v\p v\p+/vm (r) @ (2.5)

7
g () Ve (e ) 0 ) 0 ()

whereUt (r), ¥ (r) are field operators satisfying the Bose commutation rules

{@T (r), (r')] =9 (r — r') : [\il (r),¥ (r')] =0, [\TJT (r), o' (r')} =0. (2.6)
The dynamics follow from the Heisenberg equation of motion for the time
pendent operators! (r,¢), ¥ (r, t)

0 = o { _%V2+Vezt (I‘) -| \if

hgt (e:) = [ + LU (1) Vi (r — 1) U (¢, 8) dr’ J (. 1) (2.7)

ot

If the interaction potential;,; (r — r’) fulfils the conditions of applicability of
the Born approximation, then it can be substituted by an effectméact inter-
actiona - ¢ (r — r’') whereq is proportional to the scattering length; this is also
equivalent to neglect short range correlations. The GrossvBkaequation
(GPE) follows from the semiclassical theory obtained by replacingctme-
mutation rules fordt (r), ¥ (r) with classical Poisson Bracket relations. The
Heisenberg equation of motion becomes a non linear integrodiffalegua-
tion governing a classical field.

An alternative derivation of GPE follows from the Bogoliubov prestion,
in which the field operator is shifted by a c-numide(r, ¢)

A

U (r,t) = ®(r,t) + ¥ (r,1) , (2.8)

where® (r, ¢) is a scalar complex function defined as the expectation value of the
field operator in the Gran canonical ensemble, t) = (¥ (r, t)). The function
® (r, t) has the physical meaning of an order parameter and it is also tedled

densate wave functionemphasizing the existence of a macroscopic number of
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bosons in the condensate. It is possible to obtain the equation footiueio-
sate wave function, namely the GPE, by replacing in the Heiserdzprgtion
of motion 2.7 the field operatob (r, #) with the expression in the eq. 2.8 and
requiring that the first order ia’ (r, t) is identically zero.

In an inhomogeneous and finite system the condensate wave functon ha
the following clear meaning: it can be determined through the dialigation
of the one-body density matrix:f (r', t) . (r,t)) and corresponds to the eigen-
function with the largest eigenvalue, namely directly related to trelensate
fractionn [36].

2.2.1 Linearized GPE or Bogoliubov approximation

An appropriate description of the low energy elementary excitazero tem-
perature in the condensate alkali gas can be obtained from theEktRentary
excitations can be viewed as small oscillations around the groutel Stheir

frequency can then be obtained by linearizing the GPE. To this peinpesvrite

U (r,t) in the form of

W (r,1) = exp (—ipot/h) [Tg (r) + 0% (r,1)] . (2.9)
This is still a solution of the GPE to first orderd@ if /¥ satisfies the equation

L 0 B -
IS (1) == DU (0 0) 4 (Vere (1) — o) Y (e,1) (210)

+2g W (r) [0 (x,8) + g [Wo (r) 269" (r,1) .
The solution of this equation can be written in the form
6 (r,t) = u (r) exp (—iwt) — v* (r) exp (+iwt) , (2.11)
and equation 2.10 becomes

fiwu(r) = [HO — po + 29|y (r) |2] u(r) —g|T(r)|?v(r), (2.12)
—hwu(r) = [Ho—po+29o(r)[*] v(r) = g|To(r) [Pulr) ,

whereHy = — (h*/2m) V? + Vout (r). The energy associated to each elemen-
tary excitations corresponds to the frequenayf the relative small oscillations
around the ground state

e=hw . (2.13)
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This procedure is equivalent to the diagonalization of the many bayiltb-
nian in the Bogoliubov approximation. For most recent revieves AeFetter
[34], and Gardiner [37].

2.2.2 non linear dynamics

In order to study the non-linear dynamics of finite size systems eeelsito
numerically integrate the GPE. Based on the experimental resubtis the nu-
merical solutions, one can try to find approximate solutions foh slymamics,
that may lead to a more intuitive picture of the system properties. i$atn
a powerful approach is the time dependent variational principles dpproach
applied to the collective motions leads to an excellent determinafiahedar
frequency [38].



Chapter 3

Aim and plan of the work

3.1 The weak link between two BECs

A striking feature of a Bose Einstein Condensate is its coherentenaum im-
portant consequence of this is the possibility of interference phena. Such
phenomena have been already observed in a dilute alkali condenzatgaag
the coherent nature of these systems over a macroscopic stéies beautiful
experiment, performed at MIT [7], two condensates were creataddouble
well potential, obtained by focusing a blue-detuned far-effemant laser light
into the center of the magnetic trap. After switching off the confjrpotential
and the laser, the Bose Einstein condensates expanded amssuely over-
lapped. Clean atomic interference patterns have been obsiertiee overlap-
ping region (see fig. 3.1).

It is important to stress that this interference phenomenon Wwssreed be-
tween twoindependenBose Einstein Condensates. This experiment should be
considered as equivalent to the Anderson’s gedanken expetrifivwhat is the
relative phase of two buckets of liquid helium”) [11] and also to therfetence
experiment between two independent sources of coheren{8§ht{a remark-
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Figure 3.1:A striking feature of a Bose Einstein Condensate is its coherent nature.
The first evidence, that clearly proves phase coherence over a macroscopic scale in
dilute alkali condensate, have been obtained through the observation of interference
phenomena. Two independent Bose Einstein Condensates were obtained in a double
well potential in a recent experiment at MIT [7].Switching off the confining potential,
the condensates expanded and successively overlapped. Clean atomic interference
patterns have been observed in the overlapping region.

able experiment in non linear optics, that disproved a famousséeatieof Dirac
[40] "...each photon interferes only with itself. Interference kesw different
photons never occurs.”).

Recently the JILA group [8] using an interferometric technique haea-
sured the relative phase between two trapped condensates nenliffiyperfine
states and its subsequent time-evolution. A Condensaf&bfatoms, initially
inthe|f = 1,my = —1) hyperfine state, is driven, through a two-photon tran-
sition. After ar/2 pulse the condensate becomes a superposition of the two
hyperfine statesf = 1,my = —1) and|f = 1, my = 1), with equal population.
Contrary to the MIT experiment [7], the initial state is, from the beg@igna co-
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herent superposition of two condensates; the JILA group wasaéle to show
that each realization of the experiment reproduces the saoietiew for the
relative phase.

A classical experiment that investigates the role ofifecroscopic quan-
tum phase (difference)n the evolution of two coupled macroscopic quantum
systems is the Josephson-junction experiment. The Josephsemnneznt rep-
resents the usual way to detect the phase of the order parameigpencon-
ductors, through the observation of coherent oscillations op€ppairs. There
have been several proposals [16, 17, 18, 19, 20, 21] suggestiagalogous
experiment in the context of BEC of trapped alkali gases. In gss&tuilar to
that of MIT, one can imagine to lower the intensity of the laser (or/andidgh
if it is possible) to allow coupling between condensates arisiognfqguantum
tunneling. One could observe the time rate of change of the relatjelation,
which is the analog of the supercurrent in the usual Superadoddosephson
Junction (SJJ). This should enable the investigation of interestindginear
effects, due to two-body interaction.

A different type of weak link experiment, based on the work, doyp¢he
JILA group [8], with two trapped condensates in different hfioerstates, has
also been recently proposed [22], in which, the role of tunnelingbst#uted
by a weak driving field that couples these internal sthtes

Both the two weak-link BEC experiments proposed (the first with btk
well potential created by a laser sheet, and the second using eotwponent
condensates coupled by a driving field) have the lifetime of the caaders a
possible experimental limitation. We assume in the following thatlifetime
of the condensate is sufficiently long so that macroscopic quatianeling
phenomena can be observed.

The Josephson effects and related features which can be expldred w
trapped Bose gas, has been theoretically studied, within the so calleddde m
approximation, in a number of recent papers [16, 17, 18, @922, 25, 26]. In
this thesis, we investigate the occurrence of Josephsorfléa®in a weak link
between two trapped BECs. The principal part of this work is direetlgted to
the double potential case.

The Mean field Theory is a powerful tool to qualitatively and quantitative

L(with a Rabi period longer than the typical time scale ofiingd motions)
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understand the dynamical behaviour of the Condensate. Thes-Britagevskii

theory is in a good quantitative agreement with the data from inmente ex-

periments. This is very important because it reveals that theepdraf phase
coherence, as assumed in GP theory, is a very sound one, aressutiat it

can be a remarkable starting point to investigate Josephson lilessiffeveak

links. However, it is not a priori obvious that GP theory providesd quanti-

tative description of the weak link physics. It is then imperative $b geantita-

tively such mean field theory and check whether it can be coresides a basis
for more sophisticate treatments.

Assuming that the GP mean field is appropriate, We will compare thagsy
of SJJ and TMA, looking for dynamical regimes not observable th $hese
are the main goals of this work.

In the physics of Superconductor Josephson Junction, the logyedgnam-
ical behaviour is well described (both phenomenologically andasmopically)
in terms of the current and the phase differengebetween two superconduc-
tors. Since a long time Josephson like effects have been thedyeticadicted
in a weak link between superfluids #3e-2 and*He-B. In such neutral systems
the low energy dynamical behaviour is described in terms of awccteféefree
energyF (¢,N), where the relative phageand the relative numberV can be
treated as canonically conjugate variables. Itis only recenthyJtegphson like
effects have been explicitly observed experimentally in a wealdetween two
superfluid®He-B reservoir [13, 14, 15].

Our starting point is to establish such language in the context ok Virgdes
in condensation of alkali atoms. The simplest and still realistic sehtérat
we have used is the Two Mode Approximation (TMA) model, which is Hase
on the Dirac action principle [41], or time dependent variationathmad. The
approximate initial Ansatz is that the order parameter is written sigparpo-
sition of two static spatial dependent wave functions. In saetay a formal
description in terms of the relative phasand the relative numberV can be
obtained. These variables are canonically conjugate and satisfgdugled
non linear equations in terms of few static properties. One shawddnline that
the problem of finding good variational time independent wave fundsamot
at all trivial.

It is however necessary to go beyond the TMA and to investigate the full
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GPE for at least two important reasons:

e 1) a comparison with the TMA to check its limit of applications;

e 2) the occurrence of possible new effects, not present in the TidAgra
instance the damping. In fact, in such inhomogeneous Bose gasxw
pect that non trivial effects can occur, from the strong couplietyveen
intrawell collective motions and interwell Josephson dynamics

In section 2 the plan of the work is summarized, whereas the timendiemt
variational method and the numerical solution of GPE are brieflgudised in
section 3.

3.2 Plan of the work

e A general analytical description of the non linear tunneling dynamics o
a weak link between two trapped BECs within TMA (based to the time
dependent variational principle).

e A comparison with SJJ and a search for new dynamical regimes.

e An analysis of a possible choice of the two effective order paramete
which is not based on the usual perturbation scheme.

e The full numerical integration of the Gross-Pitaevskii equationsigiv
goes beyond the TMA).

e A comparison between the numerical results and those obtained in the
TMA.

e An effective "phenomenological” description of the numerical resuits
terms of the formal equations of the TMA model.

e The investigation of possible effects due to the coupling with interwell
collective excitations.

e A search for the best geometry and experimental setup to obsessphlo
son like effects.
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3.3 Methods

3.3.1 The Time-Dependent Variational Principle

Some general properties

Any variational approximation to the dynamics of a quantum systasedt on
the Dirac action principle [41] leads to a classical Hamiltonian dyica for the

variational parameters. The starting point for a variational caliculas Dirac’s

action principle which can be used to derive the Gross-Pitaeeskiation as
shown below. We begin by defining the Gross-Pitaevskii action funaligmot

normalized):

S = 12dt (z——H U>|\11>, (3.1)

whereH, = ——V2 +V (rt) andU = 3¢ |V (r, #)]%. From the variational prin-
ciple §S = 0, along with the boundary condition$¥ (1)) = 0; 6| ¥ (t2)) = 0
we get
55 =2 [ dt Re(60 il — H — 20| 0 (3.2)
=2 ["dt Re(60 i — H —2U | 0), .
which leads (the variatiooV | is arbitrary) to the time-dependent GPE (or
non-linear Schidinger equation)

0

(z’a—H—2U>|\II>:O. (3.3)

Most of the analytical studies are based on the variational meihadich
the (approximate) solution¥r) is restricted to same trial manifolds. In this case
the variations ) is not fully arbitrary. The trial wave function is determined by
a set ofn time-dependent variational parameters of the for(n) , i = 1,n, and
written formally as

U(x, t) = (z, ¢ (t)) .
The actionsS calculated along the trial wave functions is given by

srlgl = [ dt<wT|(z3—H U)|\IJT>

= /1 dt L(q,q) ,

where the Lagrangian is always given by functions of the form,

L(q,q) =mi(q) ¢ —H(q) = Ul(q) ,
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where .
mi(a) =i(¥r| 55,
Extremization of the action vi&S [¢] = 0 yields the dynamical equations obeyed
by the variational parametegs(t)
_ 9
dqi
whereM is an anti-symmetric matrix given by

Omi (q)  Omj (q)

Mij () 4 (H(9) +U(a) (3.4)

M (q) = :
(q) 94, D0,
0 0
= 2Im(—Vp | —Up) .
m ag; | 04 7)
If the inverse ofM exists, the equations of motion can be written in the form:
9]

g = Mt (@) 5 H@+U(0)) -

Since M~ is also antisymmetricH (¢) + U (¢) is a conserved quantityf( +
U= a% (H+U) M;;7' & (H +U) = 0). F. Cooper et al. [42] showed that any
variational approximation to the dynamics of a quantum systasedt on Dirac
action principle leads to a classical Hamiltonian dynamics for gn@ational
parameters. Following Das [43], F. Cooper et al. introducedsBaibrackets
4 04 (q) 0B (q)

q) ,, -19B (g

Dy i 1 0qj

{A7 B} =
They must obey Jacobi’s identity:

{ai{ar o}y +H{als, aw}} +H{a{a. 6} =0,

which is satisfied becausé; ; obeys Bianchi’s identity:
oMy,  OMy, — OMy;
+ +
dq; oqp g
Another interesting property is that eq.s. 3.4 are equivatetite equation

=0.

Re ((6\IJT| (i% - H - 2U> |\IJT>> =0, (3.5)
where the variationd W' ) is done on the variational parameters, namely
ov
1007 ) = 0g; | ) - (3.6)

dq;
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3.3.2 Beyond the variational method

The Gross-Pitaevskii equation (GPE) can be numerically integjratdeast in
simple geometries. We have developed a numerical scheme to@Bkén one
dimension and in tree dimensions with cylindrically symmetry. A founttier
Runge-Kutta method is used for the time integration.

We have found convenient to perform the numerical integration inceat
dinate space (discretization of the spatial derivative) to redue computational
effort. In fact, in such a way the GPE is reduced to a matrix form in tvkhe
self consistent field is diagonal (and then easily to numericallyutzie)?.

For each choice of the step length, we have a well defined "two well po-
tential” tunneling problem which can be analyzed either by diresherical
integration or by the time dependent variational approachnTine comparison
between the two mode approximation has been done for each clidieesiep
length.

°The discretization in space breaks the global Galileanriamae and may introduces finite size
spurious effect in the dynamics, if the velocity fields havi@eBroglie length of the order of the step
length, which however can be easily controlled. Reducimgstiep length overcome the discretization
problem. One could have used a set of basis functions torateeghe GPE. This would have the
advantage to overcome the discretization problem, withalrar of these functions less than the number
of point in the grid, but the long CPU time needed to calcullageself consistent field could drastically
reduce such advantages. (This would have overcome thetiistion problem, but the number of these
functions has to be finite in any numerical calculation, drislimplies a cutoff in the kinetic energy.)
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The two mode approximation

4.1 Introduction

The time dependent variational two mode approximation (TMA) i®weyful
tool to understand the low energy non linear dynamical behawibiwro weakly
coupled Bose condensates. We consider a weak link between twdBstein
condensates, that can be realized in a two wells potential as desaniblee
chapter3. The external harmonic trap potential is assumed to be cylindrically
symmetric (with a longitudinal frequency, and a radial frequency,) and
described by

Virap (r) = %mw? (272 + yz) + %mw% 22 (4.1)
The double well potential is obtained by focusing an off-resbteser sheet in
the center of the trap (see also fig. 4.1). The laser barrier isvas to be of
gaussian shape

ZZ
Viaser (2) = ‘/lgser exp <_l_2> ) (4-2)

whereV}? is proportional to the laser intensity. The dynamics of the "two”
Bose Einstein condensates is described by the Gross-Pitaeysé&tien (GPE)
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Figure 4.1: A double well potential can be created by focising a off-resonant laser
sheet into the center of the magnetic (harmonic) trap.

2.1. We assumé? > p wherey is the chemical potential at equilibrium
(tunneling regime).

Now we suppose that Josephson-like tunneling through the barrierl@the
energy dynamics of the GPE; in other words, the tunneling frequerseyall as
the lowest of the all possible intrawell frequeneyfiin (wg, w,)); we will return
later to this point when we will consider the full time-dependent iraggns of
the GPE in chapter.

In the next section we describe the time dependent variational twiemo
approximation (TMA) applied to the two well potential system [17, 26ur
approach is based on the time-dependent variational principlevarabnsider
the Ansatz in which the trial macroscopic wave function is givgralsuper-
position of two time-independent wave functiofis and ¥,. Such functions
¥, and W, can be viewed as the lowest energy "stationary solution” of the left
and right well respectively. In such a way a formal descriptioterms of the
relative phase and the relative numberNV can be obtained. These variables



4.2 TMA: equations

25

are canonically conjugate and satisfy two coupled non linear @gierms of
few static properties. It has to be noted that, although TMA is npeeted to
be a fully realistic approximation, nevertheless its formal sshe€an be used
as a guide of semiphenomenological treatments. We will show thatidsmnng
the various quantities appearing in the TMA equations as "eWettuantities,
one can indeed obtain a very satisfactory description of the non lineaeling
dynamics.

In the third section we consider the problem of finding good trialevawc-
tion.

4.2 TMA: equations

In the time dependent variational two-mode approximation (TMA¢ dynam-
ics of the two coupled systems is constrained to a subspace splayheo trial
real wave functiong; and¥s,.

U =¥y + ¥y Where(qfl, \If2> =0, (43)

where the normalization are fixed by, ¥) = (¥, ¥;) = (U9, Uy) = 1. There-
fore the amplitudesg,, ¢, of the two wave functions are the unique dynam-
ical amplitude to be determined. The physical meaningegf is the frac-
tion of atoms in the left wellv; /N . Symmetry arguments lead to the choice
Uy (z,y,2) = ¥s (z,y, —2). The reduced Lagrangian of the TMA is

1
L = §h (icié1 +icyéa + h.e.) — Eg (cie1 + c3e2) — h(clea + c5er) (4.4)

1 4 g\ _ 1 PRI PR PRy
—5Uo (leal* + fe2| )—§U12 (4le1 Pleal® + (cher)” + (cfe2)”)

—Us (|cl|2clc§ + |e1Pctea + |eaerch + |cz|2c’1‘02) ,

where E, and h are the diagonal and the out of diagonal matrix element of

the single particle Hamiltonian (kinetic plus external potentiargy), respec-
tively:

Ey = /dr\Ifl l——v%vm( )] Ui (r) (4.5)

h = /dr Uy (r l — V% 4 Vo (r )] Uy(r), (4.6)
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and
Up = g / dr U (r)* (4.7)
Us = g / dr U (r)2Ws(r)? (4.8)
Us = g / dr Uy (r)3Us(r), (4.9)

are the interaction terms. For repulsive interactigr (0) Uy, U2 > 0, whereas

(h 4+ Us) < 0. The equations of motions follow from the standard Eulero La-
grange equation starting from the Lagrangian 4.4. The norntiliza |> +
s> = 1 is a conserved quantity. Introducing the polar coordinate

ci = \/niexp (—ib;) , (4.10)

one recovers that the fundamental variables of the problem ardse pliffer-
enced = 6; — 6, and the fractiondlpopulation imbalance 1 < z = ny —ny < 1.
After some algebra one gets the following equationsfandé

hz = 2(h+Us)y1—2%sin(0) + Uiy (1 — 22) sin (26) , (4.112)
ho = —2(h+Us) \/12_7(308 () + (Uy — U (2 + cos (26))) = . (4.12)

The energy per particle is conserved by the dynamics descripéaebabove
ed.s.. We note that theand¢ variables are canonically conjugated, namely

. 0 (H
= <5> , (4.13)
. 0 (H
T T <5>
where the Hamiltoniad is given by
H(z,0) = Ey— Ej\/1— 22cos(0) (4.14)

70 (14 22) + U1 (1 22) (2 4+ cos (26))

In the above equation,
Ej=—(h+Us), (4.15)

the wave function is normalized to one, then = N, /N whereN ,N; are the total number of
atoms and the number of atoms in the left well respectively.

2|f the termU,» can be neglected] describes, in a simple mechanical analogy, a nonrigid pendu
lum, of tilt anglef and a length proportional tg'1 — 22, that decreases with the "angular momentum”
zZ.
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is called the Josephson coupling energy (which is positive defioitsistently
with a ground state solution of the GPE without node) in closed gyahath

Josephson coupling energy in Superconductor Josephsomodun& physical
interpretation of the Josephson coupling energy is also givelBijyhere it is
shown that it must depend only from the chemical potential and thenbvarrier
potential.

4.2.1 The current-phase relation

It will be shown in the following that eq. 4.11 can be comparéithwhe current-
phase relation. If the solution of the GPE is a superposition of tlrevtave
functions¥; and¥,, as assumed in the Ansatz 4.3, the fractional atomic current
flowing in the plane: = 0 is asinusoidalcurrent-phase relation

= % 1 — 22in () /_;oo dz /_;OO dy (xyl () %xyz (r) — Uy (r) a%\lfl (r)>

(4.16)
This equation is obtained from the "microscopic” definition of eumtrdensity
and it is exact within the validity of the Ansatz 4.3. On the otherdhahe
fractional atomic current must be also equal to the time derivative of the mod-
ulus square of the wave function integrated in the half spaee0 (the local

continuity equation is integrated in the half space)
I=n, (4.17)

where . N .
" :/_oodZ/_oo dm/_m dy |V (z,y,2)° (4.18)

represents the fraction of atoms in the left wel;is also related to the frac-
tional population imbalance byn; = § + (3 — &) z whereRr = [°_ dz|W,?
is typically very small. Hence, using 4.17, the curréns related to the time
derivative of the fractional population imbalancéy

I= (%-R)g. (4.19)

Inserting eq. 4.11 in the above equation one gets the result

I=(1-2R) (@\/1 — 22sin (0) + % (1 — ,22) sin (29)) : (4.20)
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The comparison between this equation and eq. 4.16 suggests thaflfhe T
approximation can be applicable in the following case:

1. if U;s < — (h + Us),for each value of the phase differertcand
r=(—2m" *;LU?’) V11— 22sin () . (4.21)

2. otherwise, i1 ~ — (h + Us), this relation holds only fof < 1.

Therefore, since we are interested in the non linear dynamics, in waath e
value of the phase differen@ecan occur, we assume that the tdrin is negli-
gible.

Note also that eq. 4.21 differs from Cooper-pair SJJ tunnelingeotim its
nonlinearity inz.

The detailed analysis of eq.s. 4.11 and 4.12 with exact analyiutations
in terms of Jacobian and Weierstrassian elliptic functions can be fioud8].
Here we describe only the main physical results (see also [17]).

4.2.2 Non-interacting limit case

For symmetric wells and negligible interatomic interactiobig {3, Uis < h),
eq.s. 4.11 4.12 can be solved exactly, yielding Rabi-like oscillations wneth f
guency

wr = 2/h| . (4.22)

Note that the eq.s. 4.11 and 4.12 in this case become

hzi = 2hy1—2%sin(0), (4.23)
: z
ho = —Qhﬁ COS (9) s

and their solution is not trivial, unless one writes such equatioterims of the
amplitudes: , cs.
4.2.3 Linear regime: Josephson plasma frequency

For symmetric wells the equilibrium value of the fractional populatiobain
ancey is equal ta0. Also the equilibrium value of the phase differersige= 0.
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The equations of motions 4.11 and 4.12 after linearizatiofxig- z — 2, and
30 =0 — 0y become

héz = —(=2h—2U3—2Uis) 66 , (4.24)
hod = (—2h—2U3+ Uy — 3U1p) 0z,

and the dispersion relatiémakes the form:

hw = \/(—2h — 2U3 — 2U1 ) (=2h — 2U3 + Up — 3U15) . (4.25)

4.2.4 *The homogeneous limit case

The time dependent variational TMA, can be understood as amailiee way
to perform an approximate description of the low energy dynamicsfiee
guency. It can be applied not only to the double well potential (the ttedet
is considered in this chapter) but also to the study of each namode. Let
me recall, that in the usual linearization of the GPE (as in the Bolgoliiap-
proximation) the/ (1) symmetry is broken and the various observab{escept
the energy) are not well defined to quadratic order in the displacsniieids
oV (see subsection 3 chapter 2 for the linearized GPE). In this sensestrubt
give a good description of the dynamics, although it gives thetdraguency
of the small amplitude oscillations around the ground state (jtztled with the
GPE). In contrast TMA provides only an approximate value of thiguescy,
but theU (1) symmetry is preserved and the various observables are welldefine
up to quadratic order in the displacement fields. In this senseviges a good
description of the dynamics.

It follows that, the TMA, with the appropriate choice of the trial wauead-
tion, can be used to describe low energy dynamics. It is worthtioreéng an
interesting work by Gardiner [37] in which a particle-numbersemving Bo-
goliubov method to describe low energy excitations is derived.

In the following, the linearized expression 4.25 is used for thlewation
of the dispersion relations (k) in the homogeneous system; choosingr) =
1/4/2 + sin (kx) and¥s(r) = 1/4/2 — sin (kx) as variational wave functions, the
integrals that appear in the Eq. 4.25 take the values — 17, = X gno,

4m?

3This result has been obtained for an Hamiltonian that coraswtth the axial symmetry — —z;
the more general expression can be obtained by simple algebr
4as for an example inteference between different mode.
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Uiz = $gno, Us = —gng, Wheren, is the density. Using Eq. 4.25 the dispersion
relation takes the form of the Bogoliubov result [33] for supedi/7e*

h2 k2 (2 k2
hw (k) :\l 5 ( 5 —i—2gn0> : (4.26)
which, in the long wavelength limit gives the linear dispersioft) = /<

(sound mode).

It is very important to note that the terriig, U2, Us, cannot be neglected. In
particular, just neglecting the tertn, leads to a unphysical gap in the spectrum
(see the previous discussion about the current phase relatiobsediont.2.1).

4.2.5 Non linear effects: self-trapped effect

A full solution of eq.s. 4.11 and 4.12 yields nonsinusoidal oscilfegjahat are
the anharmonic generalization of the sinusoidal JosephsecteMoreover, an
additional novel nonlinear effect occurs in this model: a selkéatpopulation
imbalance [17]. Following the discussion about the current @makation in
subsectiont.2.1, let us neglect the terrfr;, and rewrite eq.s. 4.11 and 4.12
using the time scate-2 (h + U3) / h:

z = —\/1—2%2sin(0), (4.27)

0 = Az+ \/12_722(305 0) , (4.28)
whereA = —Uy/ (2h + 2U3) > 0. We recall that the reduced energy
H = —%\/1 — 22 cos (9)+3A22 (4.29)

Is integral of motion. General solution of eq.s. 4.11 and 4.1Pbeaobtained by
guadrature and can be found in [17][18]. Using the integral of mataeduce
the number of equations

N2 —2H
_ 2
COS (9) = ﬁ s (430)
we get the following equation fge |
|z| = \/1 —4H? + (2AH — 1) 22 — iA2z4. (4.31)

Sthis combination of energy integrals must be positive amdesponds to have a ground state solu-
tion without node.



4.2 TMA: equations

31

Figure 4.2:Fractional population imbalance z(t) versus rescaled time, with the initial
conditions z(0) = 0.6, #(0) = 0, and A = 1 (a), and A = 8 (b), and A = 9.99 (c), and
A =10 (dashed line, d), and A = 11 (solid line, d).

From this equation follows that(t) = 0 for some values of if and only if
H < 3. Now looking this expression, it is evident that we have two types of

solutions:

e 1) for H < 3 solutions inz are symmetric and periodic around the equi-
librium valuezy =0 ;

e 2) for H > 1 solutions are not symmetric; i.e. the system dynamically
breaks the symmetry; we refer to this non-linear effect as a setetbc
population imbalance.

In the nonrigid pendulum analogy, this corresponds to an initial langao-
mentumz (0) sufficiently large to swing the pendulum bob over the = ver-
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tical orientation, with a non zer@ (¢)) time-average angular momentum corre-
sponding to the rotatory motion.

The self-trapping of an initial BEC population imbalance is due to the atom
atom interactions in the Bose gas (non linear self-interaction in #€)dt has
a quantum nature, because it involves the coherence of a mapioscmber
of atoms.

For H = % we have a critical solution. We have also a critical fractional
population difference. that represents also the maximal amplitude that can be
supported by a generalized Josephson plasma oscillation (in tha casg

/1 1

For an initial conditior: (0) > 2., we have the self-locked population imbalance.
For an initial conditionz (0) > 2. (A > 1), we have small oscillations of the
differential population imbalance(t) aroundz (0) with frequencyAz (0) and

amplitudé X;(ZO()O)Z.
In the case\ > 1 andz <« 1 eq.s. 4.27 and 4.28 can be rewritten

Z = —sin(h), (4.33)
6 = Az,

and can take the equivalent form

1. d
2=V o (4.34)

where the "potential” is given by
V() =1-—cos(h) . (4.35)

Fig. 4.2 shows solutions of eq.s 4.27 and 4.28 with the particular lictia-
ditions z(0) = 0.6, 6(0) = 0, and with the parametey = 1, 8, 9.99, 10, and11.

The sinusoidal oscillations around= 0 became anharmonic asncreases, fig.
4.2 (a), (b), and (c); in terms of energy these oscillations coora$o the value

of H = —0.31, 0.32, 0.4991. The fractional population evolution(t) with the
parametern = 10 (fig. 4.2 (d, dashed line)) corresponds to the critical energy

Sexcept around fixed point solution, in which the amplitudedsfixed, as we show in the following
subsection.
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valueH = 0.5. ForA = 11 (fig. 4.2 (d, solid line)) the population in each trap
oscillates around a non-zero time average)) # 0); in terms of energy this
corresponds to the valug = 0.59.

Figure 4.3: Constant energy lines in a phase-space plot of population imbalance z
versus phase difference 6. Bold solid line: z(0) = 0.6, 6(0) =0, A = 1, 8,10, 11, and20.
Solid line: z(0) = 0.6, #(0) =0, A =0,1,1.2,1.5, and 2.

The full dynamical behaviour of eq.s 4.27 and 4.28 is summairizég. 4.3,
that shows the-# phase portrait with constant energy lines for different value
of A, with initial conditionsf(0) = 0 andé(0) = =, bold solid line and solid line,
respectively. The bold solid line that cross the poiftsf) = (0, (2n + 1) 7)
corresponds to the critical energy valtie= 1.
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4.2.6 Fixed points andr-state

Let us expand the reduced Hamiltonian around the stable fixed pointindro
z = z the energy is given by

1 1
H =~ —5\/1—23(305 (9)+ZA23 (4.36)
+ <1L cos (6) + 1A z0> 0z
2. /1 -2 2
0
+i;3522 cos (0) + iA 622,
(w/l — z%)
wheredz = 2z — zp. The linear term iz is equal to zeroonly ify = (2n + 1) =
and22 =1 — > (for A > 1). With this choice
1/1

_ Ll 1,3 g 11
H_2<A+A>+4(A A) 622 + 5<% (4.37)

usingd = 20.H = (A®—A) 6z andoz = —20,H = —10 we obtain the fre-
guency of the small oscillations

wi=(A"=1). (4.38)

Solutions havingr as a fixed point are denoted asstates. In fig. 4.3 there
is some example of solutions aroundsolid line). The symmetrical solutions
around the equilibrium position = 0 correspond to\ < 1, while self trapped

solutions (around) correspond to\ > 1. The occurrence of similar solutions

(also denoted-states) have been recently observed in the Berkeley weak link

experiments on superfluitHe-B [24].
The other fixed point withyy = 0 andfy = 2nm andA > 0 corresponds to
the usual Josephson plasma oscillation.

4.2.7 *TMA: non symmetric case

In the non symmetric case the equations of motions correspondagggo4.11
and 4.12 become

hzi = 2(h+Usp+ AUsz) /1 — 225sin () , (4.39)
ho = AU+ AE —2(h+ Uspy + AUs 2) cos (0) + Uy, 2, (4.40)

— 2
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where
AE = B - B, (4.41)
AU = Ul;Uz, (4.42)
U = Ul';Uz, (4.43)
AUy = w (4.44)
Usyy = w (4.45)

The termst, E» andUy, Us andUs;, Uso are obvious extensions of the integrals
Ey, Uy, andUg; WhereU1 =g fdr \111(1‘)4, andU31 =g de‘ \Dl(r)S\DQ(I‘).

4.2.8 TMA versus an "effective” TMA

The analysis of the previous section has also a semiphenomeradlogarac-
ter. The behaviour of the two coupled Bose gases is describedms teir a
macroscopic phase differenéand a fractional population differeneewhose
equations of motion are given by eq.s 4.27 and 4.28, that digpmametrically
on the ratio between the energy termsand (i + Us). We have discussed the
dynamics without knowing the exact values of such energy teBogh terms
are geometry dependerit is a zero point energy of the single wely, is pro-
portional to the mean field energy at equilibrium, afid+ U3) represents the
critical current through the two wellgz,, Uy are bulk terms, whereds + Us)
should depend only on the chemical potengiaind on the details of the barrier.

Hence the TMA can have a semiphenomenological meaning, and we will
show that using proper "effective” values g, (h + Us) one can get a reason-
able agreement with the numerical solutions of the GPE.

4.3 TMA: variational functions and numeric implemen-
tation

In this section we discuss our procedure to find good trial funstiorir) and
Uy (r) to get realistic estimate of the termag, Uy, and(h + Us), for some geome-
tries and for different parameters of the laser. In the previegians we have

"four times in the double well symmetric potential.
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performed a semiphenomenological analysis and now we go into amore-
scopic one. We recall that the Ansatz 4.3 is that the trial wave fumctioves
in atwo dimensional linear (complex) functional spa¥ée need some criteria
to choose such reduced functional space in order to give a realistitags of
the dynamics. Such reduced functional space is generated by tiarseand
it is natural to choose one of them as the ground state solufjari the Hartree
equation [44]

.
(——Vz + Vet (x) + 9 |‘I’0|2> Wy = po Yo, (4.46)

2m

and the other one as a vectbr that must have a node at= 0. The usual left
U, (r) and right¥, (r) wave functions are given by

Uy (r) = %(% () + T_ (1)), (4.47)
Wor) = = (B ()~ - (r) (4.48)

So, the question is what is the best choicarafin order to better describe the
lower energy tunneling dynamics. We have considered here oolpasticular
choices for the variational wave functidn_:

o the first oddeigenstatel of the Hartree Hamiltoniaj#4]

2
(—h—v2 + Veat (x) + g |\If0|2> o = 1yl (4.49)

2m

o the first oddself-consistent stationary solutidn’® of the GPE

2m

2
(o0 Vit )+ g SR W20 = W (450

¥H is consistent with the Bogoliubov dispersion relations for the hamog
neous Bose system (see eq. 4.26). In fact the trials wave funciiprasd
U, used to obtain the results 4.26 are linear combinations of Harbtegms
(plane waves)

(1+ V2sin (k1)) | (4.51)
(1 —V2sin (kr)) .

S-Sl
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Using the Hartree wave functiol’” we have the relation:

B2 [dr Oy 2wl

—2(h+U3)—2U12:/L£I—/L0:EW.

(4.52)
The rationale behind’*¢ is that, if w;, is sufficiently lower than the bare
harmonic frequencyy, the system is near the equilibrium and, if the phase

difference is justr, ¥°¢ can be a good approximation fér. Using the Self-
Consistent wave functio*¢ we have the relation for the Josephson coupling
energy (per particle)

eSC _ ¢,

EJ:—(h+U3): _2 ,

(4.53)

whereeS¢ ande, are the energy (per particfedf the stationary solutiongS¢
andvy, respectively.

4.3.1 Numerical scheme for the stationary states of the GPE

The variational wave functions, , ¥°¢ and ¥ require only a static calcula-
tion. The first step is to find the total minimuin, of the GP functional

HEP = /dr (fo*HOfo + %g|\1/|4> , (4.54)

where Hy is the non interacting part of the Hamiltonian (kinetic plus external
potential energy). Making use of the symmetry, we can work in tfienell

(z < 0) only, imposing for¥y, the boundary condition% = 0 in the plane

z = 0 and with the normalizatiori |¥|> = ;. The GP functional has been first
discretized and thefr, has been obtained working in the real space as in the
dynamical case discussed in sectian2. We consider a dissipative (or damped)
"dynamics” defined by the equatidn

T 0 GP —
b= HOP (4.55)

1
= —— [dr o
= T qmp/dr (

These equations have two properties:

5i*HGP> : (4.56)

8hamely e=p— 1 [drg|¥|* .
9Note that the dynamics we are referring to is not the dynaofitise Bose Condensate.
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e 1) the energy reaches the minimum with a velocity proportional to the
fluctuation in the chemical potential

d 2
SHap = —2/dr U (Hy + |92 )" @ +2 ﬂz/dr VU <0. (4.57)

e 2) the normalization
d N
—dt/dr Uy =0 (4.58)

IS conserved.

The same technique is also used to fintf’ with the boundary condition
¥5C¢ = 0 in the plane: = 0. The dissipative dynamics 4.55 can also be adapted
for the calculation ofv?, starting from the Hartree energy functional

HE = /dr (" HoW + g|Wo[? W2 ) . (4.59)

The "time” integration has been performed by using the fourdtebRunge-
Kutta method. Working in the real space representation redueeSRtU time
required for a single time iteration. The nonlinear interaction impoxery
much the efficiency of the algorithm (calculation®f and ¥5¢).

Virial relations

We have used a spatial discretization scheme. As a convergencwéelsave
used the following virial relations (obtained by the scaling trarmegdionsr; —

ary):

Ut + T, = v, (4.60)
2

1 t
CRANREERASY

Vlaser> — Vho’ (461)

¥4

whereU is the internal energyl, andT, are the longitudinal and radial ki-
netic energy term respectively> andV;** are the longitudinal and radial har-

monic potential term respectively/***" the laser potential which is assumed of
gaussian shape with a width A

Uint — %g/dr [t (4.62)

h2 5
T, = %/dr 18,07, (4.63)
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ho _ 1 2 2 2
Ve = 2mwx/dr 2 |U (4.64)
h? 2 2
T, = %/dr (19,9 + |0.9 %) , (4.65)
pho — lmuﬂ/dr (42 +22) 0P, (4.66)
ylaser /dr exp( >|\If| (4.67)
2
<A2vlm> ~ / dr exp( >|\p| (4.68)

Note that virial relations 4.60 and 4.61 are valid for any selfisistent station-
ary solution of the GPE, therefore also fbf¢.
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Chapter 5

Numerical solution of the GPE

5.1 Introduction

In this chapter the predictions of the variational TMA are testealrag a full
numerical integration of the GPE for a double well geometry [2&#)ich is
related to the recent MIT experiments. We have done a few nuatestiedies
for different values of the laser parameters. Here we limit to dis¢he case
of the laser parameters which provide a Josephson plasmafregu;, that
does not satisfy the ideal conditian < wy for TMA, but ratherwy ~ 0.15 wy.
Such a choice is due to the fact that in such regime one can exp@etidns
from the TMA and, on the other hand, this is a possible important rahge
from the experimental point of view. It is important to find the pnopkysical
parameters of the laser barrier to reach a Josephson frequgiet the same
order ofwy, so that a very low temperature is not needed for a clear expetamen
realization of the Josephson and self-trapped effects.

We have considereth* Na atoms instead of the- 106 of the MIT experi-
ments. Calculations performed with 103 atoms have given results very close
to the10* case. One gets qualitative differences only belotvatoms.
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In section 2 the Josephson plasma frequesncgnd the critical currenk,
calculated with the time dependent variational schemes, thébased to the
Hartree Variational Basis (HVB) and the other one based to the@eibis-
tent Variational Basis (SCVB), are compared with the numeriealilits. The
Josephson plasma frequengy is calculated with the Bogoliubov approxima-
tion, and also by solving numerically the linearized GPE (by simpleatiag
ization scheme). The critical current is also determined studgiregtly the
current-phase relation. The self trapping effect is also disdusse

The agreement between a TMA dynamics and the GPE is very good in the
range of the coupling constant relative to the experimental situatioth$ca
Josephson frequency, < 0.20 wy a sizeable decoupling from intrawell motions
IS observed.

5.2 Preliminary details

—— 3D calculation
0.15 + — —- 1D effective calculation B

0.10

density {1,

0.05

-8 -4 o 4 8
longitudinal axis [l ]

Figure 5.1:Equilibrium longitudinal density (integrated in the radial sections) for 10*
Na atoms in the MIT trap with a longitudinal frequency 19 Hz and a radial frequency
250 Hz. Energy and length scale are that of the longitudinal harmonic oscillator. The
equilibrium density with a full 3D static calculation (solid line) is compared with the 1D
effective calculation (dashed line). The detailed shape of the density is not important
for the dynamics that we will study in this chapter.

We first analyzed to what extent the cigar shape geometry of the Mp&re
iment can be simulated by an "effective’D geometry. This is particularly
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important because working with1i@ GPE (discretized) has the advantage that
the Bogoliubov and Hartree diagonalization become accessible @agonable
continuum limit can be achieved. With th® static calculation we found an ef-
fective radial section and from that an effective one-dimeraioauplingg®//

has been estimateg®(/ ~ 134). Fig. 5.1 shows the longitudinal equilibrium
density for 10* atoms in the cigar-shaped trap of MITI{-calculation) and that
obtained in the effective D geometry. One can see from this figure that the
1D effective geometry can be safely used to study the GPE dynamiesi/Th
effective coupling;®// calculated in the presence of the laser barrier differs the
previous one only within- 5%.

100 ‘ \
r — external potential
80 - —- self-consistent Hartreef\ potential B
3. 60 4
> L 1
=
D 40 -
= L i
5}
0 L L L
0.5 - ‘ - ‘ -- :
roe non interacting equilibrium density
0.4  — interacting equilibrium density B
5 0.3 -
=
L 0.2 - -
S
0.1 -
-7.5 -2.5 2.5 7.5

longitudinal axis [l ]

Figure 5.2:Potential profiles and equilibrium density in the longitudinal direction. A
double-well potential can be created by focusing blue-detuned far-off-resonant laser
light into the center of the magnetic trap (MIT protect[7]). The longitudinal 1/e? half-
width of the laser barrier is 0.3 um and its heigth is 85 Awy. The top figure shows the
external potential (solid line) and the self consistent Hartree potential (long dashed
line), both calculated along the longitudinal line z = 0, y = 0. The bottom figure shows
that the equilibrium density in the interacting case (considered) is strongly modified
by the interaction. Despite the condensate seems well separated into two parts, the
Josephson plasma frequency is ~ 0.15 fiwyg.

lthe 3D density integrated on the radial sections.
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Results for a particular choice of laser parameter (the longitudjrahalf-
width of the laser barrier i8.3 um and its height i85 7iwy) are discussed in the
following.

The Josephson plasma frequengyis approximately.15 of the bare fre-
guencyw (longitudinal frequency). Figure 5.2 (a) show the external ke
(harmonic potential plus the laser potential which is assumedsgaushaped)
and the Hartree self-consistent potential. In figure 5.2 (b) theaoteg equi-
librium density is compared with the non interacting one. It is intergstin
note that, despite the fact that the interacting tunneling frequenogptisoo
small compared with the bartg), the condensate appears well separated into
two parts.

o O
o o 1
2 g il
a a (ORNO NN = [ =
3 O non interacting |
= O Bogoliubov il
= < Hartree oo
Py o O
2 ]
r i oo
J(l)sephsfon - 07
asma frequenc
P q y o o |
o a
S O
<& S i
o SO
Ou c | | u s Q §> | | | | | |
1 2 3 41 2 3 4 5 6 7 8 9 10
quantum number (i.e. number of nodes + 1)

Figure 5.3:Energy level: interacting (squares) versus non interacting (circles). The left
figure is a zoom of that on the right. Hartree energies (diamonds), are showed only for
reference, and must not be confused with that ones calculated with TMA. Energy levels
are ordered as a function of the number of nodes and referred to the ground state
(labeled by 1). Energy levels are naturally grouped in couples of quasi degenerate
energy levels; the small shift (almost not visible) is due to the weak coupling of the
"two” condensates. It is interesting to note that only in the first excited level (labeled
by 2), that correspond to wy,, is strongly modified by the interaction.
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The Bogoliubov energy spectrum is given in fig 5.3 together with theseor
sponding spectrum in the non interacting case. The figure on this Eeftoom
of the figure on the right. Circles are relative to the non interactirsg @nd
square are relative to the Bogoliubov linearization. Diamonds arerleegy
of the Hartree states, that we show only for reference (ensiggnvalues must
not be confused with the TMA frequency calculated with the Hartreiesta
Energy levels are ordered as a function of the number of nhodeseéerded to
the ground state (labeled hy. Energy levels are grouped in couples of quasi
degenerate energy levels; the small shift (almost not visible)esalthe weak
coupling of the "two” condensates. It is interesting to note that only efitist
excited level (labeled by), the Josephson plasma frequengy, is strongly
modified by the interaction. Its value differs by severalq) orders of magni-
tude with respect to that of the non interacting tunneling case.

5.3 Linearized dynamics and Current-Phase relation

The numerical values of the energy integrals @y, Us, U2 defined in eq.s.
4.6, 4.7, 4.8, and 4.9, respectively) that appear in the TMA, eteduwith
the Hartree variational basis (HVB) and the Self-Consistentitranal basis
(SCVB) are compared below

HVB SCVvB

Uy 28.0 28.1
Us 138.3e4 6.0 e+
—(h+ Us) 8.8 e4 5H2e+A
Uqa 3.7 e4 85b5e7

The termU, is a bulk term and depends very weakly from the choice of the

trial wave function. In the equations of motion the terinandUs, appear in

the combinatiork + Us; it is worth notice that the mean field tertiy cannot be

neglected in the geometries that we have considered. In thetH&/&rmi; is

not negligible compared to+ Us, while in the SCVB the tern, is negligible.
The calculation of the Josephson plasma frequency with HVB, BB@vd

linearized GPE (Bogoliubov approximation) gives the followinguits

HvVB SCVB Bogoliubov
wr, 0169  0.170 0.15
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Both variational basis, HVB and SCVB, provide similar results fer dloseph-
son plasma frequency, despite the fact that the values of theligrare very
different. Both are an upper bound of the exact Bogoliubov redtily. 5.4

Figure 5.4:Josephson frequency, calculated with Bogoliubov (1), HFVB (2), SCVB(3),
versus different values of the laser power (arbitrary units). In wide range HFVB, SCVB
agree and approximate the Bogoliubov dispersion a part from a constant shift.

shows the Josephson plasma frequengyn a wide range of the laser power.
Josephson plasma frequencies are calculated both with Bogoliuboviheith
SCVB , and with HVB. The calculated; with SCVB and HVB agree well
each other and differ from the exact linearization by 0% quite indepen-
dently from the barrier height (laser power).

Finally fig. 5.5 shows the current-phase relation obtained by intiegrau-
merically the time-dependent GPE. It is almost a sinusoidaltfon@nd agrees
very well with the TMA current phase relation given by the SCVB. Bi¥é-
sults for the current phase relation agree with the numerical resullgsfar
very small phase differencé € 0.01).

It is important to notice that the main reason why SCVB provide®g@a b
ter description of current phase relation is becduisds much smaller than in
HVB. This feature is quite general. TMA fails in the description of tloa fin-
ear dynamics when thé;, energy integral is comparable with the combination
—(h + Us) (see the discussion on the current phase relation in subsection
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Figure 5.5: Solid line correspond to the numerical integration of the GPE; longh-
dashed line correspond to the sinusoidal current-phase obtained in the TMA.

The small deviations of TMA with respect to the numerical resultseapp
ing in fig. 5.5 are not due to numerical errors, but to the coupling with
intrawell motions. Such deviations totally disappear in the limit oflsdwseph-
son plasma frequency.

5.4 Non linear Josephson-like oscillations

One of the most relevant prediction of the variational TMA is the odogrof
the so called Self-Trapped effect [17], when the initial imbalandarger than
a critical valuez. (see eq. 4.32). This is confirmed by the numerical solution
of the GPE under the conditiary, < 0.20 wy andlUy z < hwy. Fig. 5.6 shows
the evolution of the fractional population imbalange) for some initial values
z (0) chosen around its critical valug. Forz > z. Self-Trapping occurs, i.e. the
population in one well oscillates around a value that is not thidiegum value

z = 0; in figure 5.6 the solution with initial conditions(0) ~ 0.015 andf (0) = 0

Is a self trapped one; it oscillates arounds 0.010, without passing through
the zero. The critical solution, corresponding to the initial conditig0) =
z. ~ 0.013 andé (0) = 0, is not a periodical solution. Far= 2. anharmonical
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Figure 5.6:Numerical GPE results for the fractional population imbalance evolutions
z (t) for different values of the initial condition z (0) near the critical value z., and with
6 (0) =0.

oscillations occur while for < 2. one has harmonical oscillations. Self trapped
solutions forz > 2. are harmonical.

5.5 Effective TMA

The numerical integrations of the Gross-Pitaevskii equation {GRFPER one-
dimensional double well potential shows a qualitative agreementthlself
consistent variational TMA. In particular excellent agreemeabisined for the
critical current (with typical relative precisian1%) and the current-phase rela-
tion. However, in general one cannot expect an excellent quiwvditdescrip-
tion of the non linear tunneling dynamics, because the variationalnhode
ansatz is only an approximate one. However the variational TMAbeavery
useful to give a semiphenomenological set of equations of motiotiné&rele-
vant quantities. Let us rewrite the TMA equations (see eq. 6.8@®&1) in the
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Figure 5.7:Frequency of the nonlinear Josephson oscillations versus different values
of z in the range of its critical value z.; the initial phase difference is zero.

form

where the relevant physical quantities, £% are "phenomenological” inputs.

hz = —2E7\/1—2%sin() ,

) * Z *
he = QEJ\/ﬁCOS(G)"—UO Z

(5.1)
(5.2)

In this case these "phenomenological” inputs are obtained from theencal
solutions of the GPE:

e Josephson energy coupling is obtained analyzing the current gasen

Ef=hl,~52-107*  EJ°VBx~52.107

(where the critical current. is the maximal value of the curreif)
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e the mean field ternv; should be obtained by the frequengy of the low
energy Josephson plasma oscillation

hw?
21,

Ut = ~21.9  UFYVB ~281

These values lead to excellent results. The critical value of the popula
imbalance:. is reproduced within%. Both shape and frequency of the non
sinusoidal Josephson oscillations are reproduced with the secnesay. Fig.
5.7 summarizes these results: the period of oscillation is displayaflastion
of the initial valuez (0) in a range of values around its critical valuezpf(and
with 6 (0) = 0).

5.6 Discussion

The numerical integration of the Gross-Pitaevskii equation (GRER)double
well potential proves that the low energy tunneling dynamics isiately de-
scribed by an effective two mode approximation. The non-linearadycal
behaviour of the two weakly coupled BECs can be described in tefrnas o
macroscopic quantum phase-difference and in terms of the populdifier-
ence between the two sub-systems. The macroscopic quantusgiffasence
and the population difference satisfy a nonlinear equation in wméhtao en-
ergy scale are present, the Josephson coupling egrgnd a bulk energyc.
In particular one of these can be used as unit scale refereddb@anoefficients
in the equations depend only on the ratio between the two energyaigeghe
values of the Josephson coupling energy and the bulk energy caxtraeted
studying the current phase relations and the frequency of the Winglexcita-
tions (the Josephson plasma frequency) of the GPE. Using tpasadmeno-
logical” values it is possible to reproduce a large variety ot typically of
the TMA.

In the last section.5, we have observed that, despite the self consistent vari-
ational TMA give a systematic error in the calculation of Josephseaguincy
the non-linear dynamics is well described. We have proved tieal BhA equa-
tions, after the substituting andw;, calculated on a variational basis, with those
determined by the mean field dynamics, reproduce with an exce|pnoxs-
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mation the non linear low energy dynamics. This feature is quiteg¢mand
the accuracy increasesag/w, decrease.

The bulk energy in the variational TMA is essentially independemhftioe
choice of the variational function and it is typically an upperbo(iod:- 20 %)
with respect to the "phenomenological” value obtained studying maadéy the
GPE. Such energy shift between variational bulk energy and theopihenolog-
ical value is a clear signature that the exact low energy medehdynamics of
the wave function is not well described by an evolution in a two dinuerad
(complex) functional space.
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Chapter 6

An analog of the Josephson effect (dc
I —V curve)

6.1 Introduction

One of the proposed way to obtain a BEC weak-link, extensively désclim
the previous chapters, is based on a double-well potential crbgtémtusing
an off-resonant laser light into the center of the magnetic trap [17

Theoretical calculations show that (in a typical experimentalpetiespite
the fact that the frequency scale of Josephson plasma oscillati@an be a
fraction not necessarily small of the typical trapping frequesndiee maximal
amplitude of Josephson population oscillations could be low for theeptes
resolution of the available experimental setups. Thereforditket observation
of Josephson oscillations as well as the measure of both the pfasguency
wr, and the critical current. could be difficult.

In this chapter we suggest a strategy to improve the observability ofhe
linear effects of the interaction [26]. We propose an expernittbased on the
possibility of a slow relative motion of the trapping potential withpest to
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the laser sheet. We will show that if the relative veloeitys sufficiently slow

(~ 0.1 wm/s), no chemical potential difference between the two wells occurs
and a finite superfluid currehflows through the tunneling barrier to maintain
the chemical potential equilibrium. Then we will see that a critiedlie of the
relative velocityv¢ exists for the occurrence of the critical effects of the interac-
tion (Self Trapping). Under the critical valué a macroscopic and observable
flux of atoms can be produced. We will show that this strategy leads tadan in
rect measure of the critical currehtand the Josephson plasma frequengy
even in the case in which the Josephson oscillations cannot bdylobserved.

We suggest to experimentally investigate a phenomenon that is the close
analog of that occurring in a single Superconductor Josephsaetidn (SJJ)
under the action of an external dc current sotifd&]. The role of the external
electric circuits with a current source is played by the relatie¢iom of the laser
and the magnetic trap artde analog of the dc and ac effectan be formally
recovered. The relative velocity. corresponds to the intensity of the external
applied currentin SJJ. Thke I — V curve V = V (I) can be explored.

To theoretically investigate this "experiment” we have used nuatsimilar
to those described in the previous two chapters. We will first dssosne
analytical approximations based on the TMA. Then we will suligigsthese
approximations showing that results from a numerical integraticheo GPE
agree with those from the effective TMA (in chapt@r

The chapter is organized as follows. The underlying physical idgavén
in section 2. A semiphenomenological treatment based on anieffdone-
dependent TMA is discussed in sections 3 and 4, together with the exjolan
of the origin of the critical value for the relative velocity. A relation between
the effective parametersis also discussed in section 4. The tastrsis devoted
to a summary.

The superfluid current component is approximatively cantfaC component).
2(or also under the action of a slowly varying current).
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6.2 A moving laser improves the observability

Let us consider the harmonic trapping potential with cylindrical syatmn(with
a longitudinal frequency, and with a radial frequenay,) given by

1 1
Virap (r) = imw,% (:vz + yz) + imwg 22, (6.1)
At ¢ < 0 a barrier potential, that can be created by focusing an offrrast laser
sheet into the center of the trap, is described by the gaussipedipatential

given by
2

Viaser (2) = Vlgser exp <_7_2> . (6.2)

The laser starts moving at= 0 in the longitudinal direction (the axis) with
constant velocity,. It is possible to show (also by the numerical integration
of GPE), that if it is the trap to move instead of the laser, we obtansdme
dynamic$, that we will discuss. The time dependent external potential is then
given by the sum of the trapping potential,, (r) and the laser barrier potential
Viaser (2 — vrt)

Vet (r7 t) = V;Erap (I‘) + Viaser (Z - Urt) ) (63)
where

fort <0 weassumew, =0. (6.4)

We will consider values of,, much smaller than the maximal sound velocity.
The populationsy; and N, of the left and right well, respectively, are defined

by

=z
~—
S~
N
1

N/_o: az [ [ dudy|w (1) 2, (6.5)
N/O: as [ [ dvdy|v (1) 2, (6.6)

5
—~
.
N
Il

(whereuw,t is the longitudinal position of the laser sheet). Let us assume that
the system is in the equilibrium configuration for< 0 and then the initial
conditions are

N1 (0) = Ny (0) = N/2. (6.7)

3Moving the trap instead of the laser, due to Galilean invaréa leads to the same equations for the
relevant macroscopic observables. Only the initial caoditan change, but for the values of velocities
considered such modifications are negligible.
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We will show with the direct numerical integration of the GPE (chapjer
that if the velocityy, is smaller than a critical valug the population imbalance
AN (t) = Ny (t)— N3 (t) can be estimated by approximating the condensate wave
function¥ (r, ¢) by a quasi-stationary solutioby, (r, t) of the GPE given by

hz 2 2

po (1) Yo (r,1) = —o V"W (r,2) + [Veat (x,1) + g %o (r,1) ] ¥o (r,1) . (6.8)
wherey (t) is weakly time dependehtWe also assume that,; (r,t) > o (1),
I.e. that we are in the tunneling regime. For the laser displacementst, that
we will consider AN is approximately proportional t@ Since the experimental
accuracy in measuring the condensate density with non destruativeiqees
is about10%, the laser displacement must be sufficiently large to have a value
for AN which is measurable.

As usual, we assume that the lifetime of the condensate is long compared
to the scale of Josephson oscillations. From the experimental poirevafthe
lifetime of the condensate can be a practical limitation. For this reésis
better to analyze the dependence of the population on the velpciiying the
time intervalt; of the laser motion rather then its total displacement. Than
is observed after the timg, and itis a functiom\ N (v,) of the velocityw,..

We will also demonstrate that, above the critical veloeftythe approxima-
tion 6.8 breaks abruptly and the fluxV (v,) ~ 0. The actual experimental
observation of this sudden changeAwv gives a measure of.. The strategy
described here improves the observability of the Josephson-hketefkince,
although "plasma” oscillations can be difficult to observe, tbthcritical cur-
rent I. and the Josephson plasma frequengycan be indirectly determined
from the experimental values af andAN (v, ~ v5).

In fact, we will show that, andw; can be obtained by the following e@.s

AN (vy)

1.~
C tf

, (6.9)

4Although this approximate solutiob, (r, ) is a real function and therefore current density cannot
be calculated directly from it, the time dependence of theutettion imbalance between the two wells
AN (t), can be realistically calculated.

SWe have omitted for simplicity a common factor in both theatipns. This factor¥/0.72) depends
on the initial condition 6.4 and it will discussed in secti&B.3. In the case in which the laser acquires
its velocity very slowly (in the time scalk/w;,) this factor must be omitted. It is possible to show that
also in presence of strong damping this factor must be odhitte
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2F

W2
where the average fordeis given by

F= —mwg/drz [ . (6.11)

6.2.1 How can the population difference be measured?

Recently a new technique of observing dynamical processesstusad to
study the propagation of sound in elongated cloud of Bose-Einsteiden-
sates [9]. Impressive pictures of moving condensates have fagen using
phase-contrast imaging. This method seems to be within a good>amation
a quantum nondemolition measurentefior a recent discussion se@|[46]).
Non-resonant laser light illuminates the sample, travels throagH, attains
phase shifts that are proportional to the density of the conderBageacquired
phase gradient is measured using the non-scattered part of thennbght as
a reference.

This method seems an excellent candidate for monitoring the population d
ference in the two well potential. In particular this technique dgvedidfor rapid
sequence of imaging of sound propagation can be adapted and/adgor the
case in which the time scale of the dynamics is much longer than thheo
sound propagation. For our proposed experiment is necessaugufficient the
knowledge only of the initial and final population difference ¢aisitial be-
cause is too difficult to cut the condensate exactly in the middlehssgictures

in [9]).

6.3 A simple theoretical model

The simplest but still realistic model to study the proposedspaf system is
based on the variational TMA, in which the low energy solution of th&c@&P
written as a superposition of two static wave functidns (r) with complex
time dependent amplitudgn, » (t) exp (—if; 2 (¢)). In the previous chapter we

8F is the average force, that the condensate atom in the lefffidglinduced by the moving laser
barrier andF'v; t represents the corresponding average work. The condeatsats, "localized” in the
left well, are in a quasi stationary state; then the force the laser barrier played on these atoms is
equal and opposite to the force played by the harmonical trap

"which means that the measurement does not modify signifjcénet condensate.
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have shown that a good choice for the variational wave functigs is given
by the combination even and odd of the low energy self-consistatibsary
solution$ ¥, of the time-independent GPE

2
(—:—mvz 4+ Vewt (r,0) + g |\Ifi|2> Uy = py Uy, (6.12)
where [dr|U.> = 1 and ¥, = ¥, (the ground state solution of the GPE).
The dynamical behaviour of the fractional population imbalance n; — n»
and the phase differende= 0, — 0, depends only through few energy inte-
grals: the Josephson coupling ene@y, the capacitive energy,, and the
"zero point” energy differenca&FE (¢). We calculate such terms when the laser
Is positioned in the middle of the trap (we take advantage from yhareetry
setting¥, (z,y, z) = ¥y (z,y, —2)). We have shown in the previous chapters that
Ejisrelated toV. by 2F; = ¢, — e Wheree. are the respective values of the
energy per partickandE, arises from the mean field. = Uy = ¢ [ dr ¥y (r)%.
Let us consider the case in whiély is several orders of magnitude lower than
Uy, typically 4 + 6 order of magnitude. Then the maximal amplitude of the
Josephson plasma oscillation (which coincides with the critical @qge4.32)
2 = 2/2B; /Uy — (2E;/Up)? ) iis of order.02 = .002.

The moving laser induces a time-dependent energy (per partitferedice

AFE (t) =F —Ey, (613)
in the two well, where
h2
EI(Z) = /d?” \1’1(2) [—%Vz + ‘/ezt (I’,t) @1(2) . (614)

If we linearize AE (¢) in the timet aroundt = 0 (i.e. when the laser is in the
middle of the trap), we get

AE (t) = 2F v,t, (6.15)

wherev, is the relative drift velocity and wherE is given by

2
F= /dr Wm{;ig(r) 0% =y (—Q/dr%exp <—%> |\Ill|2> . (6.16)

e, Uy =V +T_]/V2 and Uy =[T, - V¥_]/V2.
*namely er =py — 3 [drg|Wy|* .
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and represents the average force per atom in the singld Jefte(l induced by
the laser barrier. Note that for symmetry reasons this forceualemd opposite
to that one calculated in the right wel)(

FE/dI‘ aVlager (I‘) |\111|2 :—/dr avla(;er (I‘) |\112|2 . (617)
V4 z

But the same force integrdl can be also calculated using the fact thatis
guasi-stationary in the sense tlat must satisfy within a good approximation
the stationary equation

/d e“ 5 g2 ~0 (6.18)

Then the force integral’ can be also calculated by using the following expres-
sion
F~ —mwg/drz 0, 2 (6.19)

If one approximates the expression 6.16 with 6.19, the relative eroduced

is typically less them.1%. An important point is that the integral 6.19 does not
depend very much from the details of the laser potential. It can be adoeded
with the static Thomas-Fermi approximation with only fénof relative error.

6.3.1 The analog of the DC Josephson equations

Within the TMA we obtain the following equations of motion for the relati
population: = n; — ne and the relative phase= 6, — 6,

hi = —2Ej;\/1—22%sin(6), (6.20)

. z
he = AE(t)+2E1mcos 0)+ U z, (6.21)
where
AE (t) = 2F vt , (6.22)

Let us consider the cage; < Uy, namely let us neglect the second term in the
right hand side of Eq. 6.21. To simplify the discussion, we consider 1,

V1— 22 ~ 1. From eqg.s. 6.20 and 6.21 one gets the result
d

1
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where the effective potential (¢) is given by
V() =T160+1—cos(9), (6.24)

with I = 2F v,/hw?. Eq.s. 6.23 and 6.24 are well known equations in the
context of the DC effect in Superconductor Josephson Jundi®hh [45]. In
that context/ = I.,;/I. wherer,,; is the external current source andis the
critical current. In analogy with the Josephson effect in SJXefme

2F I
Iowt = —S0, | 6.25
t hw% v ( )

and we will show thaf,,; can be view as dc external "current source”
One can easily verify that the quantity

G = %w;%? LV (0) . (6.26)

IS a conserved quantity.

6.3.2 Critical velocity

Fig. 6.1 shows the potenti&l (9) for different values of/.,; around the critical
value I.. If we consider an arbitrary conditionr < 6 (0) < «, then from the
eq.s. 6.23 and 6.24 follows that

1. forI.,; > I. only not periodic and unbounded solutions exist;

2. forI.,; < I.two types of solution exist: (A) periodic and bounded oscilla-
tions around some local minimum of the potential 6.24; (B) non périod
and not limited solution;

Not periodic solutions

Not periodic solutions have the asymptotic formfop 1/wy,

0 (t) ~ %IN wit? (6.27)
2L (Lue)
z (t) ~ const + o7 5 <2Ith : (6.28)

One can see that where@g) increases quadratically with z (¢) has a weak
oscillating component with a "frequency” and an amplitude whiespectively
increases(w I th) and decreases with tin(ec %)



6.3 A simple theoretical model

61

V(0)

Figure 6.1:Potential energy V() of the driven weak link BEC at various values of the
“external current” I.;.

Periodic solutions

Periodic solutions in the phasecorrespond to a finite time averaged driftzin
In fact, alsa is periodic, and from eq. 6.21 it follows thamust be of the form

2= —leztt + 2pscil - (629)
The fractional population imbalanceis a sum of a drift term-1.,: ¢ and a
oscillating (and periodic) term, ;.
Critical velocity

The existence of a critical relative velocity, is simply related to theterce or
not of a local minimum in the effective potentigl(d) (see also the fig. 6.1). In

particular if I.,; > I. Self-Locking in the population imbalance occurs and we

can define a critical velocity‘2 corresponding td..; = 1., which is given by

—m—% (/drz A ) . (6.30)

&
UT’
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Then if v, is larger then the critical valug: the adiabatic condition 6.8 breaks
and self-locking in the population imbalance occur.u/lfis less thenv¢ the
occurrence of self-locking in the population imbalance depends @mthal
condition.

6.3.3 Initial conditions

D inversion
1 point

V(6)

Figure 6.2: Potential energy V (6) of the driven Josephson junction at the paricular
values of the “external current” I.,; = 0.72461,. and I..; = I,

Let us consider the case

AE(t<0) = 0, (6.31)
AE(t>0) = 2Fut. (6.32)

The conditions under which the system is in equilibrium ato are
9 (0)=0 and 6 (0) = 0. (6.33)

This is also the case that we will consider later on in the numericallatron
of the proposed experiment. Then the modulus of the velocity caalbalated
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starting from the conserved quanti&ygiven by eq. 6.26, with the results

‘0‘ :wL\/—Q TH—2(1—cos(f)) . (6.34)

We have an inversion poirf # 0 if a solution withé # 0 of the equation
fy = 0 exists. If such inversion poirty exists, thery (¢) is a periodic func-
tion. ¢, is a function of the external curreit,;. In particular there is a max-
imal value#,, as a possible inversion point. This maximal valiyeis solu-
tion of the trascendental e(fd,,, sin (6,,,) = 1 — cos (6,,) and takes the value
0 = 2.33112 (sin (A,,) = 0.724613 ). Correspondingly, we have a maximal
value 124*of the "external current sourcd;,; (or a maximal value™ of the
laser drift velocityy,.)

105 =sin (0,) 1., (6.35)
and
m_ howi
o =sin () 5% (/drz Ty ) , (6.36)
and
z(v") = 2sin (O) Loty . (6.37)

From the experimental determination of the critical value/dfand of the max-
imum 2z (v™) value ofz, the relevant quantity; andI, can be indirectl{® de-
termined through

oy = wg\/L 2m JES (6.38)

sin (6

and
1 z(v)

T 2sin (0)  tg

(6.39)

Fig. 6.2 shows the potenti&l (¢) corresponding to this particular value of
the external current;2* = 0.7246 I.. From this figure it is also clear that with
the boundary condition (0) = 0 andé (0) = 0 we have that

1. for I, > sin (0,,) I. the solutiory (¢) is not periodic and unbounded;

2. for I.;+ < sin (6,,) I. the solutiory (¢) is periodic and bounded;

also through the determination of the integ(gﬂdrz |‘I!2|2) :
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6.3.4 Brief summary

Depending on the initial condition we can have bound solutionsratauocal
minimum that correspond to a drift in the population imbalan¢g. If we
have as initial conditior (0) = 0 andé (0) = 0 we have a maximal value of
the laser drift velocityy)* ~ 0.7246 ¢ and in the small velocity limitv,| <
v¢ we have the simple analytical solution for the population imbalanee=

By (t — isin (th)) .

6.4 Adiabatic condition on the effective TMA

In chapter 5 we have shown that the numerical integrations of the ®itessvskii
equation (GPE) in a double well potential indicates that the low energyetu
ing dynamics can be accurately described by an effective TMA. Aldhis
case, in which the external potential,; (r,¢) is time dependent, we may give
an effective description

hz = —2E7/1—2%sin(0), (6.40)
) * * z *

in the form of the variational TMA eq.s. 6.20 and 6.21, in whick tiele-
vant physical quantitieg;, £E%, AE* (t) are a "phenomenological” input. We
recall that from the numerical integrations of the GPE, we can ahater di-
rectly the Josephson frequeney and the critical currenf.. The effective
equations of motion are obtained by substituting the Josephsotirmpepergy
Ej = (h+ Us) (eq.??) and the mean field integral, (defined in eq. 4.7) with

E% = hl., (6.42)
. hoj
Ui = 51 (6.43)

With these substitutions we have obtained the excellent resulisddime inde-
pendent external potential case showed in sectimnNow the problem: which
Is the way to define the effective "zero point energyt* (¢)? In the case in
which AE* (t) changes slowly in time we can give the following answer.
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Adiabatic condition

AssumingU; > hl., the equations of motion 6.40 and 6.41 read

hz = —2E73\/1—22%sin(f) , (6.44)
ho = AE*()+Ug = . (6.45)

If AE* (t) changes sufficiently slowly in tim@(t) ~ 0 andz (t) ~ —AE* (t) JU;.
On the other hand, within the validity of eq. 6:8¢) must correspond to the
equilibrium value(z)., at the timet. Then the effective "zero point energy”
AFE* (t) can be estimated by

AE* (t) = =Uj (2)eq (6.46)

where(z)., can be determined by solving eq. 6.8. In the case in which the laser
barrier moves with constant velocity (in the small velocity limit) we obtaomf
6.46 that

AE*(t) = 2F*ut , (6.47)
* 1 *a<z>€q
F* = — 5 U 5’ (6.48)

wherea = v, ¢ is the position of the laser barrier. Furtherm8fg= can be also
calculated in the framework of the time independent linear resptheory?.

Validity limit

We have implicitly assumed that the displacement of the potentiaffisiently
small to use constant values of the Josephson frequency iécdl@urrent.

1For a small displacemedtit: of the laser the variation in the external potentialiis,; = %da.
The variation

—1
oV = (Ho — o + 39 |‘I’0|2) (6Vear —6p) Yo ,
wheredy is the chemical potential variation. The constraint on thieservation of the norm implies
o= [ oo $Vers + 930)
(in the symmetric double well potentid): is, for symmetry reasons, zero). The variation of the frac-

tional population imbalancé: is by definition a simple function of the variation in the digngp, that
is related with the variation in the ground state wave fuorcdil throughdp = 2009.
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6.5 Conclusion

We have explained that a moving laser in the trap improves the oltsiggvaf
the Josephson-like effects in the BEC weak-link. In particular axeHound
a practical method to obtain an indirect measure pfand 7. through the ex-
perimental determinations of the critical value of the relative vglog¢” and
the maximum value of the function(v,) for v, ~ v. We rewrite here the
important eq.s 6.38 and 6.39

wr = wo\/LQm/drz Wy %, (6.49)

sin (6
1 z (v)

L = 2sin (0,,) tp (6.50)

where as shown in subsectien.3, the numerical factatin (6,,) comes out from
the initial conditions defined in eq.s 6.31, 6.32 and 6.33.nTthe presence of
fluctuations of the population imbalance (Josephson "plasmseflations), due

to these initial conditions, reduces the values of the criticalorgiand the
maximum value of the function(v,). This is also expressed by eq.s 6.36 and
6.37, that we also rewrite for clarity in the following

o™ = sin (6,) h “’L </drz|\112|> | (6.51)
z(v") = 2sin (O, )I tf : (6.52)

Furthermore, in the case in which Josephson oscillations are strdaghped
(in a time scale shorter thanw;), and therefore difficult to directly observed,
the DC' component of the current is preserved, and the fadtgp,,) can be
neglected. It follows that the possibility to detect experimentally dszghson
effect is not at all reduced (at contrary it is a little improved).

Eq. 6.51 is of practical utility for the precise determination of trap asdra
parameters.



Chapter 7

..numerical results

In this chapter we show the results obtained by solving numerically Bte iGr
the experiment proposed in the chagt@and compare them with those obtained
with an effective TMA. In section 2, we consider a detailed analyssetan
the numerical integration of the standard time dependent GPEdalstic 3D
trapping potential, referred to the JILA setup [8]. A similar lsés for the MIT
setup is in progress. The numerical results demonstrate that alse casle of

a time-dependent Hamiltonian, an effective TMA can be usecetzbe the
low energy dynamical behaviour of the two wells system. It is alsovshibat

it is possible to give an indirect measure of the "plasma” feeyw;, and the
critical currentl.. We will discuss in a subsection an interesting resonance effect
between the longitudinal intrawell dipole mode and the tunnelingadyics, that
cannot be described in terms of the effective TMA. In the followingsection
we show (as a check) that the effective parameters of the TMAdralyea weak
dependence on the laser position.
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7.1 The proposed experiment for the JILA setup

We have considered the JILA setup with = 50.000 Rb atoms where a thin
laser barrier cuts the condensate in "two” parts. The harmonicisraglin-
drically symmetric, with a longitudinal frequency, of 50.0 Hz and a radial
frequencyw, of 17.68 Hz. We have used as scattering length the valu€58.19
Angstrom (the more precise actual value is 57.7 Angstrom [47]). Using the
longitudinal harmonic oscillator as natural scale of dimensiosenergy, we
obtain an adimensional coupling constafit™ = 2396.2. With this adimen-
sional scales, the units length scaléyis= 1.5256 um, and the unit time scale
iswy! = 3.1831 ms. A laser sheet (of longitudinal gaussian shape) is focused
in the center of the trap. We assume that the longitudinel half-width of the
laser barrier i3.5 um. The laser height used is hwy. We have used a grid
of 84 x 77 whereg4 (77) is the number of longitudinal (radial) discretization
points. This grid leads to an accuracy-ofl% on the critical currenf. and on
the Josephson plasma frequengy

The starting point of our numerical analysis has been to find (ubeagelf
consistent variational TMA discussed in the previous chaptepa get of
physical parameters, to achieve a good compromise betweerediffexperi-
mental needs, such as the choice of time scale, the dimension scaéecointh
densate, and laser sheet parameters. We have first estimataad 7., and
subsequently the critical population imbalangeThen we have computed the
exact value ol by solving numerically GPE with an initial imbalanee« z..
Once the exact valug is found, the current-phase relations is obtained starting
from an initial imbalance: ~ z.. From this relation the critical currert is
finally determined.

We report in the following the results about the numerical simulatich®
proposed experiment. The population imbalance is "measured”tafterme
t; = 1 s. This time was chosen requiring thaft = t;) is of the order~ 0.4
(value that is clearly observable). The fig. 7.1 shows the refuits at¢ =
1s, versus different values of the laser velocity Crosses are calculated with
the full numerical integration of the GPE and the solid line coroesis to the
effective TMA.

1The exact value of, is in good agreement with that obtained in the SCVTMA (withinaccuracy
of ~ 1%).
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t=1sec. Zeq /,/
0.4 - )’ |
I/'
DC region AC region
Z
0.2 - v ]
I/'
critical
velocity.
0.0 ‘ ‘ ‘ E ‘ ‘
0.0000 0.0002 0.0004 0.0006

laser velocity [um/ms]

Figure 7.1:JILA setup: numerical results evidentiate a critical behaviour of the popu-
lation imbalance. z is calculated after 1 s versus different laser velocities. Crosses and
solid line correspond to the results of the GPE and of the effective TMA, respectively.
Dashed line represents the equilibrium value z, in the "final” position v, ¢, of the laser
barrier (time independent GPE). Note that for v, > 0.00042 pm/ms the differences be-
tween the numerical results for z and the equilibrium values z., become immediately
very large.

Analyzing the population imbalance versys a critical behaviour appears.
Such effects manifest itself in a jump of the curv@,) in correspondence to
the valuev, =~ 0.00042 ym. This critical value agrees well with the valu@
estimated with eq. 6.36. Also the maximum of the curve,) ~ 0.35 agrees
well with the valuez (v/") of eq. 6.37. Therefore using the numerical results
v, ~ 0.00042 um andz (v,) ~ 0.35 one can verify that botl. given in eq.
6.39andv;, given in eq. 6.38 can be indirectly measured with a relative error of
few %.

Dashed line (fig. 7.1) represents the equilibrium valugsf » calculated
with the eq. 6.8 (stationary GPE) when the laser barrier is in thal*fposition
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Figure 7.2:JILA setup: v, < v!™. Fractional population imbalances evolution z (t) for
0 <t <ty = 1sec for the velocity values of the first eight crosses of the fig. 7.1, below
the critical velocity. Solid line is the numerical integration of the GPE and long dashed
line correspond to the effective TMA. z () decomposes exactly in a DC component
dz (t) /dt =~ I,z and an oscillating part. The DC component of z (¢) increases both
with the time and velocity v,.

v, - t¢ (along thez-axis). Note that fow, < v the numerical results foragree
well with the equilibrium values,, and forv, > v the difference between the
numerical results fot and the equilibrium values, become immediately very
large. We have observed two separate regions, which can be cadléD@ji
and the "AC” regions, because of the formal similarity of the eq23 &nd 6.24
with the SJJ equations in the presence @ aurrent source.

e for v, < v/» we have a "DC” region, namely a DC supercurrent flow of
atoms between the two wells (or superconducting region). The ffow o
atoms is approximately proportional to the timeandz ~ z,. (See also
fig. 7.2)

e for v, > v™ we have an "AC” region. In this region a difference in the
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Figure 7.3:JILA setup: v, > v™. Fractional population imbalance evolution for 0 <
t < 1s with velocity values corresponding to the 11th and 13th cross of fig. 7.1.
Note the agreement for the frequency of the AC oscillations between effective TMA
calculations and GPE. The first small deviations appear as the frequency reaches that
of the lowest radial intrawell mode: a small resonance effect appear. In the case
v = 0.00060 pm/ms we have for t > 900 ms a strong resonance effect between the
dipole intrawell mode.

chemical potential occurs (Self Trapped or insulator region)e Jiper-
current oscillates at a frequency approximately proportionaHa., and
increases with the timg-.

Let us discuss separately the "DC” regign< v, the "AC” regionuv, > v"
and the transition region. ~ v™. For each of these regions we show the time
evolutionz (¢) for 0 < t < ¢ty = 1sec.

In fig. 7.2 we show fow, < v the fractional population imbalancet)
evolution for the values of the laser velocitycorresponding to the first eighth
crosses of fig. 7.1. For small displacement of the lasgr and for velocity
smaller than the critical velocity the agreement between GPE (soe) and
effective TMA (dotted line) is extremely good. The evolutioft) consists of
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Figure 7.4:JILA setup: v, ~ v™. Fractional population imbalance evolution during
1s with velocity values correspondingly to the 9th and 10th cross of fig. 7.1. Solid
line is the numerical integration of the GPE and long dashed line corresponds to the
effective TMA.Solid line is the numerical integration of the GPE and long dashed line
corresponds to the effective TMA. For laser velocity near its critical value v the ef-
fective TMA cannot fit well the numerical results, because of the sharp incline of the
curve z (v,) in fig. 7.1. In fact a small error in v, causes a large indetermination in z.

a mean atom flux through the barrier proportionaltg (DC regime), plus a
Josephson plasma oscillation with amplitude and frequency depgon the
laser velocity. The Josephson oscillations are due to the fact that we start to
move the laser abruptly at= 0 with the constant value, for ¢ > 0. If the
velocity v, is reached in a time large comparedij, the DC component is
the only appreciable.

In conclusion, although Josephson oscillations can be difficult sz,
the mean average of the population imbalance is observable and tivesvoe
of a sudden jump in (tf,vr) as a function ofv,., will be a clear evidence of
Josephson-like effects in a BEC Weak-Link.

2more in general they must depend also on the initial conitio
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In fig. 7.3 we show the evolution(t) for 0 < ¢ < t; = 1sec for v, > v
corresponding to thelth andi3th crosses of the fig. 7.1. The numerical results
(solid line) show a small deviations from the effective TMA (ddtli@e); a brief
discussion of such deviations is given in the following subsection.

In fig. 7.4 we show the evolution(t) for 0 < ¢t < ¢ty = 1sec for v, ~ v
corresponding to theth and10th crosses of fig. 7.1. Solid line is the numerical
integration of the GPE and long dashed line corresponds to teetie# TMA.
For laser velocity near its critical valu#® the effective TMA cannot fit well the
numerical results, because of the jump of the curte) (see fig. 7.1). In fact

a small error inv,- causes a large indeterminatiornzin

7.1.1 Breakdown of the effective TMA and resonance effects

resonances with the intrawell GPE
collective motions
0.1 4
radial intrawell
monopole dipole
7 frequency frequency
\ \
TMA
o0 4
0 500 1000 1500
time [ms]

Figure 7.5:JILA setup: fractional population imbalance evolution z (¢) for 0 < ¢ < 1900
ms with the velocity that correspond to the 13th cross of fig. 7.1. Solid line is the
numerical integration of the GPE and thin line correspond to the effective TMA.

Non trivial dynamical behaviour can take place because of thplow between
intrawell motions and interwell dynamics, when the Josepligmjuency in the
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Figure 7.6:JILA setup: Top: dipole moment. Middle: longitudinal monopole moment.
Bottom: solid (dotted) line correspond to the right (left) well radial monopole moment.
These data correspond to the same calculation of previous fig. 7.5

self trapping regime (AC-like) is comparable to the frequencyaohe intrawell
mode. In fig. 7.5 we display, as an example, the fractional populatiolution

z(t) for 0 < ¢t < 1900 ms in correspondence to the laser velocity of tt3¢h
cross of fig. 7.1+, ~ 0.0006 um/ms). Notice that the frequency of Josephson
oscillations increases in time in accord with the effective TMAfe 900 ms.
When this frequency becomes comparable with the longitudinal dipotenetr
frequency & wy), the population of the second well changes to another value
(approximately the double of the TMA prediction).

This effect can be qualitatively understood by using an effechvee level
system model, in which in addition to the left and right statesand ¥,, an
effective dipole model{ is included on the right well. The effective TMA
equations, expressed in terms of the amplitudemdc, can be written as

* 2 AE* E*
0 e ) _ [ Ul + (t) Ej a (7.1)
o\ o Ej Ulea? ) \ €2
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If one includes the dipole mode, the equations become

5[ @ Utler|* + AE* (t) E% E%, c1
iha o | =| E Utlea? 0 o | (7.2)
4 E%, 0 Uyl 42 + wq 4

wherec is the amplitude corresponding g, w; ~ wy is the dipole frequency,
U, 1s an effective capacitive energy (referred to the occupatiath@fdipole
mode¥{) and E%, is an effective off-diagonal term betwed@n and ¥¢. This
equations is able to explain qualitatively the jump in population olesknv 7.1
aftero00 ms if U}, = Ui andE%, =~ E%. In fact, in that case, after some time, the
system occupies th&¢ state. This explains the jump in the population of the
second well, and the amplitude of the jump is comparable to the ThNeAipr
tion. When this transition occurs, dipole oscillations of amplitudwgoprtional

to Re (c3c§(¥1] 2 |¥9)) can be observed.

While it is not difficult to understand wh¥/, ~ U (these are bulk terms),
we don’t have any microscopic explanation of the reason Whyshould be
almost equal ta@s.

Fig. 7.6 provides more direct information about this feature. Thauvell
dipole mode manifests both in the dipole moment

dy = /drz w2, (7.3)
and in the longitudinal monopole moment
m, = /drz2 w2, (7.4)

Directintegration of the GPE shows that also the low energy ratialopole
mode is excited, as it can be seen from the radial monopole moment

my = /dr (x2 —|—y2) |2 (7.5)
shown in fig. 7.6. Note that the effect is smaller than in the casedegpthe
dipole mode.

7.1.2 *Atest on the effective parameters

A more sophisticate description of the moving laser dynamicsaitiovided
by the effective TMA introduced in sectioh3, requires the use of effective



..numerical results

A B
0.8 -+ .
longitudinal
density
z = 0.7
0.6 - Zea~ - e -
z Tl
laser
0.4 — position —
0.9 micron
0 |
| ‘
0.2 - \ 4 | |
‘ |
|
| 4 |
|
v !
0.0 . . . . . .
0.0 0.2 0.4 0.6 0.8 -8 -4 (@] 4 8

longitudinal laser position [.am] longitudinal axis [m]

Figure 7.7:(A): equilibrium value of z versus the laser position a. (B): longitudinal equi-
librium density for the maximum displacement of the laser considered in the simulation
a=0.9 pm.

energy parameters which depend on the laser position
Uy =U; (a), E = E5(a) andAE* = AE* (a) . (7.6)

Such functions must be calculated to reproduce within the effectid, Tthe
GPE numerical results at each laser positiofhis approximation has not been
considered here in a detailed way and it is beyond the scope of¢kerg work.
We limit to observe that, for symmetry reasons, one gets the refatio

a(a[f)|a:0 - 3(3]?)|a:0:o, (7.7)
9 (AEY) 9 (AF)

|a:0 = 2F and |a:0:0- (78)

oa 0%a

We have checked thﬁ%f”a:o, %bzo give negligible corrections for our
purpose, and most of the discrepancy comes out from the coupithgthers
collective motions. We have checked that the values of the miestarg phys-
ical quantities are all almost independent on the laser positioreimedjion of
interestd < a < 0.4 um (values that correspond to the regior v, < ™ in fig.
7.1).

Fig. 7.7 A shows the equilibrium values of fractional population imbalance
zeq (a) versus the laser position In our effective TMA we have linearized
Zeq (a) ~ 22| 4. Fig. 7.7 B shows the equilibrium longitudinal density
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Figure 7.8: Left: U§ versus the laser position a. Right: normalized critical current
I.__ versus the laser position a.

profile calculated at the maximum value of the laser displacenmrgidered
a = 0.9 um. Note that, despite of the fact thats less then m and the longi-
tudinal extent of the condensates is ab®utn, the fractional population equi-
librium imbalance is higher then?.

Fig. 7.84 shows the value dfi; versus the laser positien Fig. 7.8B shows
the valueE normalized by the factovl — (2)2,- In the region of interest the
effective energy integrals; andE*% change only 06%.

7.2 Summary

The numerical results (GPE) demonstrate that the low energy tugresiimam-
ics can be accurately described by an effective TMA, also in tee sawhich
the external potential is time dependent. The non-linear dysarhehaviour
of the two weakly coupled BECs can be described in terms of a reagpic
guantum phase-differenéeand in terms of the fractional population difference
z between the two sub-systems. We have showed that the relevaatilgas
and: satisfy a non linear equation depending parametrically only throwgh tr
energy terms: the Josephson frequengythe critical current,, and the dif-
ference in the "zero point energ\XE (¢) (or equivalently through the average
force F).
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