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Chapter 1
Introduction

In the last decades string theory has become the leading candidate for a theory that
consistently unifies all fundamental interactions of nature, including gravity. The theory
is supposed to predict gravity and gauge symmetry around flat space. Moreover, the
theory is UV-finite. The elementary objects are one-dimensional strings whose vibration
modes should correspond to the usual elementary particles. At distances large with
respect to the size of the strings, the low energy excitations can be described by an
effective field theory and therefore can be compared to quantum field theory, which
successfully describes the real world dynamics at low energy. However, even though a
lot of progress has been made, it has not yet been possible to confront string theory
with real physics. One possibility to achieve this is through cosmology by studying the

cosmological implications of string theory.

On the other hand, standard cosmology still faces the old basic questions such as
the initial singularity, dimensionality of space-time, cosmological constant, horizon and
flatness problem and the origin of the density perturbations in the cosmic microwave
background. Moreover, standard cosmology has been fettered by the chains of the
singularity theorems of General Relativity demonstrating the need for a more robust
theoretical framework, and thus is usually only seen as understanding the evolution of

our universe over the past 15 billion years or so since the Big Bang.

However since string theory may reveal to us a consistent theory of Quantum Gravity
it should also be able to address the problems of standard cosmology. On the other
hand string theory needs to be confronted with physics. All these reasons suggest that
cosmology and string theory complement each other in several ways giving rise to string

cosmology.

String cosmology is rapidly growing in importance for at least two reasons. First,

unless there is a fortunate conspiracy of scales and one or more of the extra dimensions
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are ~ O(TeV™') [1], we cannot reasonably expect to detect any stringy effects in accel-
erators in the foreseeable future. Hence string cosmology may provide the only means
for testing string or M-theory concretely, through e.g. non-commutative effects [2-4] or
the AdS/CFT correspondence [5]. Second, string theory offers the exciting possibility
of a resolution to the Big Bang singularity thereby opening up a potentially infinite
pre-history of the Big Bang. Models constructed in this vein include the Pre Big Bang
[6-8] (see also [9, 10]) and the recent ekpyrotic/cyclic models [11-14] which has lead
to new work on string propagation in orbifold backgrounds with curvature singularities
[15, 16].

A rigorous way to understand string cosmology is by studying time dependent back-
grounds in string theory [15, 17-19], unfortunately this is a hard task due to cosmological

singularities that arise in this context, and still much work has to be done.

On the other hand, a good approximation can be made by studying the adiabatic
evolution of time independent backgrounds in string theory. In this direction a lot of
work has been done within a low energy effective approach (see [9, 20| for recent reviews,
discussions and references), like for example, the Brandenberger and Vafa (B&V) model
[21] in 1988, continuing with the Pre Big Bang scenario[10]|, ekpyrotic universes[22],
brane cosmology [23], and so on. More recently, there has also been a renewed surge of
activity in applying string theory to issues relevant to cosmology through the advent of
brane-world models [24-31], the focus on de Sitter space-time [32-38], the application of
holographic ideas [39-42], and the controversial possibility that string theory (and quan-
tum gravity more generally) might leave an observable imprint in the cosmic microwave
background radiation [43-56].

In this thesis we are going to study aspects of the two different approaches to string
cosmology. The first part of the thesis will deal with an aspect of one of the possible
low energy effective approaches: we are going to study the adiabatic evolution of the
spatial dimensions in the BV scenario [57]. In the second part, on the other hand, we
will give a first possible step towards understanding string theory in the cosmological
setting of non-trivial time-dependent backgrounds. We will see that the Penrose limits of
cosmological singularities are singular homogeneous plane waves. Then we will show the

exact string solution in this background and we will study its thermodynamics [58-60].

Since in both parts of the thesis we will deal with string thermodynamics let us mo-
tivate our interest in it. It has long been recognized that one requisite element of string
cosmology is an understanding of string theory at finite temperature, and much work
along these lines has been undertaken [61-74]. These works have also demonstrated

that finite temperature studies have the capacity to shed light on critical foundational
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issues of string theory itself. As a prime example, compared with ordinary quantum field
theory string theory is exceedingly well behaved in the ultraviolet, a property largely
due to the exponential growth of states as a function of energy. Since the earliest days
of string theory it has been recognized that such a growth of states leads to a Hage-
dorn temperature, a temperature above which the statistical partition function diverges
because the exponential Boltzmann suppression is overcome by the exponential density
of states. The existence of a Hagedorn temperature is particularly tantalizing because
a long-standing, critical question has been: what are the true, fundamental degrees of
freedom in string theory? While strings provide a natural and perturbatively useful set
of constituents, the existence of a Hagedorn temperature is an indication that strings,
somewhat like low energy/temperature hadrons in quantum chromodynamics, may not
be the elementary degrees of freedom of string theory. Perhaps, many authors have
speculated, just as quark and gluons emerge as the basic ingredients of quantum chro-
modynamics at high enough temperatures (and energies), the true degrees of freedom of
string theory may also emerge at sufficiently high temperatures. In fact, if the specific
heat at the Hagedorn temperature is finite this indicates that the Hagedorn temperature
is not a limiting temperature but instead demarcates a phase transition, one that might
well signal the appearance of the true, elementary degrees of freedom of string theory.

Over the years there have been a number of studies of the Hagedorn temperature
in string theory; most have focused on string propagation in flat backgrounds since the
calculation of the density of states requires an exactly solvable model. For example, in
ref. [74] open bosonic, open and closed supersymmetric, and heterotic string theories
were studied in flat noncompact space and it was found that the Hagedorn temperature
is a limiting temperature for the open string models but not for the closed string models.
In [62] closed strings were studied on a flat compact manifold (7°) and it was found
that the Hagedorn temperature is a limiting temperature. More recently, [75, 76] have
studied D-brane thermodynamics and found, for example, that Dp-branes for p < 5
possess a non-limiting Hagedorn temperature and hence likely have a high temperature
Hagedorn phase.

In spite of many studies a precise understanding of the properties that a Hagedorn
phase in string theory would exhibit, is still lacking.! A number of the works cited did
reveal one likely qualitative feature of strings near the Hagedorn temperature, namely,
the coalescing of energy into one long string, but very little else is known. In light of the
work of [61] this may not be particularly surprising. Through indirect reasoning, these
authors showed that the Hagedorn phase is characterized by a drastic reduction in the

number of degrees of freedom (the free energy behaves as T2 instead of 7”) and hence

nteresting recent progress on this question is reported in [77, 78].
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it may well be a highly nontrivial task to identify and rigorously describe the correct

high temperature constituents.

In light of the above discussion it is interesting to perform a finite temperature
analysis of string cosmology scenarios. In particular, in the first part of the thesis,
chapter 3, we will do just this in the context of the BV scenario. Standard cosmology,
because of the limitations of general relativity, suffers a great lacking: it is unable to
make any predictions about the number of dimensions we live in or about the spatial
topology of the Universe. String theory and M-theory, in contrast, predict that we
live in either 10 or 11 space-time dimensions. Perhaps the greatest challenge for string
cosmology, after understanding the big bang singularity, is to explain why and how
three spatial dimensions became observable and large while 6 or 7 are either small or
unobservable for some other reason. Perhaps the only proposal in this direction so far
is the so-called Brandenberger-Vafa (BV) scenario [21] where it is assumed that the
universe is small and compact and that exactly three space dimensions become large
because of the dynamics of winding modes which play a particularly important role.
Subsequently it has been pointed out in [6] that the low energy effective action of a
dilaton-gravity system, naturally emerging in string theory, has a duality symmetry
that is a manifestation of the string T-duality R — «o//R symmetry and which plays
a crucial role in the analysis of [21]. In this respect the dilaton-gravity system is more
suitable than standard general relativity for the BV scenario [21]. Although some works
have already shown that the BV scenario can be realized and extended in a variety of
ways [79-89] (see also [90]), a full string-theory analysis is very complicated and still
not completed, even in the simplest toroidal compactification.

Winding states and T-duality are intrinsic features of string theory and play a fun-
damental role in the BV model. In this scenario, the universe starts as a 9 dimensional
small torus filled with an ideal gas of strings and evolves such that 6 dimensions remain
small and 3 dimensions become large as we see them today. How does it take place?
Since we are dealing with a compact universe filled with a string gas the strings wind
around the dimensions. When the system is out of thermal equilibrium there are in-
teractions between these states, in particular, the winding states wrapping around one
sense can annihilate with the states wrapping around the other sense. Now, the key
ingredient is that a string describes a 2 dimensional world-sheet, therefore it is easy
for the strings to see each other when the dimensionality of space is 3 or less. On the
other hand, when the dimensions are more than 3, the strings generically miss each
other being unable to annihilate. This, in principle, leads to 3 spatial dimensions free
to expand (due to the Kaluza Klein (KK) contribution), and on the other hand, leave

the remaining 6 spatial dimensions with winding strings around them preventing them
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from expansion. On the other hand, since string theory exhibits T-duality (R — 1/R),
it implies that neither the temperature nor the physical length are singular as R — 0,

avoiding the cosmological singularity.

Chapter 3 and [57] are inspired by this scenario. As opposed to the non-equilibrium
evolution considered in the BV scenario we will be interested in the adiabatic evolution
that takes place when the universe is in thermal equilibrium filled with an ideal gas
of closed strings (so we are always dealing with weak string coupling). The analysis
is performed in such a way that the “string ingredients”, T-duality and the presence
of winding states, are manifestly present. We study two regimes. First, we address
the question of what happens if we start off with 9 dimensional small toroidal universe
within a micro-canonical string treatment - the Hagedorn regime. It turns out that the
dimensions remain nearly constant around the initial value. It is important to recall
how to interpret this result and its connection to the original BV scenario. The above
result is obtained by assuming thermal equilibrium and a free, ideal, string gas, whereas
the dynamics and interactions of winding modes at very early times are crucial in the
BV scenario. The results we get in case (i) in relation to the original BV proposal [21]
should therefore be interpreted in the following way - unless string interactions are taken

into account and/or thermal equilibrium is relaxed, no interesting dynamics emerges.

Second, we assume that by some mechanism, for example the BV mechanism, there
are d large and 9 — d small dimensions. We consider an almost radiation regime, and
thus we study their evolution within a canonical string approach. We will show that
when there is only pure radiation, the small dimensions can be stabilized and kept small
relative to the large dimensions. Essentially, it is only required that the initial expansion
rate of the large dimensions is bigger or of the same order as that of the small ones?.
This mainly comes from the fact that the pressure in the small dimensions vanishes in

the case of pure radiation.

When matter, in the form of KK and winding modes, is included, the choice of ini-
tial conditions becomes more relevant. The crucial point is played by winding modes
that are able to distinguish large and small dimensions, leading respectively to a posi-
tive/negative contribution to the pressure along the large/small dimensions. This leads
to the possibility of an expansion of the large dimensions and at the same time keeping
the small ones almost constant. In fact we found that there exists a wide range of pa-
rameters for which the small dimensions actually remain small (see fig. 3.4), while the
large ones expand as required in the presence of radiation and string matter (see fig. 3.5).

This is actually achieved for the natural initial condition where the small dimensions

2Tt is actually quite hard to imagine initial conditions where the expansion rate of the small dimen-
sions are bigger than that of the large ones.
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are close to the the self-dual radius v/, together with the condition of the expansion

rate mentioned in the pure radiation case.

Thus we found that there exist a wide range of initial conditions for which the
small dimensions are stabilized around the self-dual radius before entering into a purely
radiation dominated phase, regime in which they are asymptotically stabilized anyway
to a nearly constant value 3.

In the second part of the thesis we will deal with the study of string theory in the
cosmological setting of non-trivial time-dependent and possibly singular backgrounds.
Two observations, that will be better explained latter on, are our main motivation for
performing this work: i) string theory in pp waves backgrounds simplifies due to the
existence of a natural light-cone gauge, and in many cases can be exactly solved and
quantized [92]; i7) the Penrose limit metric gives us information about the rate of growth
of curvature and geodesic deviation along a null geodesic of the original space-time [59].
Thus the study of Penrose limits of cosmological singularities becomes an interesting

question.

The Penrose limit construction [93] associates to every space-time metric and choice

of null geodesic in that space-time a plane wave metric,
ds? = 2dudv + Agp(u)z*2’du® + d7?, (1.1)

which is characterized by the plane wave profile matrix A (u). The computation of the
Penrose limit along a null geodesic v amounts to determining the matrix Ag(u) from

the metric of the original space-time.

This has recently been used to show [94] that the Penrose limit of the AdSs x S° 1IB
superstring background is the maximally supersymmetric plane wave [92]. String theory
in this RR background is exactly solvable [95, 96], giving rise to a novel explicit form of
the AdS/CFT correspondence [97]. Following these developments many Penrose limits
have been computed for various supergravity backgrounds and their applications have
been explored.

In [59] a simple covariant characterization and definition of the Penrose limit wave
profile matrix A, (u) was obtained which does not require taking any limit and which
shows that Az (u) directly encodes diffeomorphism invariant information about the orig-
inal space-time metric. The geometric significance of A (u) (and hence of the Penrose
limit) turns out to be that it is the standard [98] transverse null geodesic deviation
matriz of the original metric along the null geodesic v(u).

The relevance of this result lies in the fact that it tells us precisely which aspects

3See also [91] for a different approach leading to the same conclusion.
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of the original background, namely covariant information about the rate of growth of
curvature and geodesic deviation along a null geodesic, are detected by the Penrose limit
and hence probed by, say, string theory in the resulting plane wave background. Thus
since singularities of A4, (u) result from curvature singularities of the original space-time,
it is of interest to analyze the nature of Penrose limits of space-time singularities, as
they encode information about the rate of growth of curvature and geodesic deviation

as one approaches the singularity of the original space-time along a null geodesic.

In particular, as a first step toward studying string propagation in singular (and
perhaps time-dependent) space-time backgrounds, it is then of interest to determine the
Penrose limits of space-time singularities in general. In [99-102] it was found that for
a variety of particular brane and cosmological backgrounds the exact Penrose limit is
characterized by a wave profile of the special form

Agy () ~ S8 (1.2)

Plane wave metrics with precisely such a profile have the scale invariance (u,v) —
(Au, A\"'v) and are thus homogeneous singular plane waves (HPWs) [99, 103, 104].
Without loss of generality, Ag(u) can be chosen to be diagonal and, anticipating the
interpretation of the entries of A,, as harmonic oscillator frequencies, Aq(u) can be

parametrized as
Agp(u) = —wibapu > (1.3)

where w? can be positive or negative.

Moreover, in [59, 105] was observed that the Penrose limit of space-time singularities
of cosmological FRW and Schwarzschild-like metrics, i.e. the leading behavior of the
profile A,,(u) as one approaches the singularity, is also of the above form. In chapter 5,
we will show that this is an universal behavior: the Penrose limits of a large class of black
hole, cosmological and null singularities, indeed all the Szekeres-Iyer metrics [106, 107]
with singularities of “power-law type”, are plane wave metrics of the form (1.3) and the
eigenvalues are bounded by 1/4 [58, 59]. More precisely we will find that Penrose limits
of spherically symmetric space-like or time-like singularities of power-law type satisfying
(but not saturating) the Dominant Energy Condition (DEC) are singular homogeneous
plane waves of the type (1.3). The resulting frequency squares w? are bounded from

above by 1/4 unless one is on the border to an extremal equation of state.

In chapter 6 we will see that string theory in singular homogeneous plane wave back-
grounds is exactly solvable [104, 108, 109]. It has also been shown that in a class of such
models the string oscillator modes can be analytically continued across the singularity

[104]. It is natural, then to consider thermal string theory in such backgrounds, since
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we retain the necessary analytical control to make explicit calculations even though the

space is not flat.

In [110-114] the thermal partition function in the canonical ensemble for type IIB
superstrings in plane wave backgrounds with constant null RR 5 form has been stud-
ied. It has been found that the Hagedorn temperature is higher than the Hagedorn
temperature for strings in flat space, and that the corrections depend on the parameter
f, where f is the Ramond-Ramond flux [111-114]. Furthermore, in [110] it was found
that the free energy at the Hagedorn temperature is finite which may indicate a phase
transition when the system reaches this regime. On the other hand in [113, 115] it was
found that in the case of a plane wave supported by the NSNS 3 form flux, the Hagedorn

temperature is the same as the one for flat space.

However, as we will see strings propagating in singular homogeneous plane wave
backgrounds lead to a time-dependent Hamiltonian and then the concept of thermo-
dynamical quantities requires some thought. A possibility to study such systems is by
introducing a suitable analogue of the Boltzmann thermal state for time-independent

Hamiltonian system,

. e PH
i = — i (1.4)
which can be constructed as a density operator of the form
—BI
e
by = ——— 1.5
PI= re AT (1)

where I is an invariant of the system, i.e. dI/dt = 0 [116-118]. Therefore the density
operator satisfies the quantum counterpart of the classical Liouville theorem for the

phase space density, namely trp; = 1 and dp;/dt = 0. The invariant
I = H(ty) (1.6)

is such that the corresponding density operator reduces to the standard choice in the
case of a time-independent system and provides an “adiabatic” approximation to the

system provided that H(t) varies sufficiently slowly with time near ¢ = .

One can then calculate the “thermal” partition function, tre=?!, and it turns out
that it diverges when the parameter § takes on a value that is the same as the inverse
of the Hagedorn temperature for strings propagating in flat space [60]. This may be an
indication that strings propagating in singular homogeneous plane waves backgrounds,
which are the Penrose limit in the near singularity limit of the cosmological backgrounds,

behave in a similar way to strings propagating in flat space.

This thesis is organized as follows. Chapter 2 and 3 can be considered as the first

part of the thesis since the goal is to make a study of the low effective energy scenarios
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of string cosmology. In chapter 2 we present the preliminaries of string theory and
string thermodynamics in flat space. Section 2.1 shows the string theory solutions
in the light-cone gauge. In section 2.2 we show the partition function of the system
and show the exponential growth in the states. Section 2.3 remarks on the subtleties
of thermodynamics in the presence of gravity. The thermal partition function and
the appearance of the Hagedorn temperature are presented in Sections 2.4 and 2.5
respectively. The ideal gas of strings and its microcanonical and canonical treatment
are introduced in section 2.6. In section 2.7 we study the ideal gas of strings in compact
spaces, we study the singular behavior of the partition function and we introduce the
complex temperature formalism to deal with the microcanonical ensemble. Finally in
section 2.8 we deal with the question of imposing conservation laws to the thermal
ensembles by introducing chemical potentials and see that the singularities depend on

the chemical potentials.

In chapter 3 we study the fate of the spatial dimensions in the scenario of string gas
cosmology at finite temperature. In section 3.2 some general aspects of dilaton gravity
are briefly reviewed. Section 3.3 presents the computation of the free energy that will be
used in the next chapters. In section 3.4 we analyze the dynamics of the system in the
extreme Hagedorn regime of high energy densities considering that all the dimensions
are of the same size. Finally, in section 3.5 the dilaton-gravity equations are solved in
an almost-radiation dominated regime considering large and small dimensions, as well

as in the presence of some massive stringy matter.

The second part of the thesis can be considered chapter 4, 5 and 6 since the main goal
is to make a first step into the study of string theory in time dependent backgrounds.

In chapter 4 we show the basic concepts of plane waves and Penrose limits. We start
in section 4.1 by introducing the plane wave metrics and showing them in different coor-
dinates systems. In section 4.2 we study the geodesics. Then we proceed to section 4.3
where we will focus on a special type of plane wave, namely homogeneous plane waves,
which will be required for the next two chapters. Section 4.4 shows us the traditional
approach to computing Penrose limits and in section 4.4 some of their properties are
presented. Some explicit examples are in section 4.6 while a covariant presentation of
the Penrose limit is given in section 4.5. We end this chapter by showing solvable string
models in some of these backgrounds.

In chapter 5 we present the Penrose limits in the near singularity limit of space-
time singularities. We begin section 5.1 by explicitly calculating the Penrose limits of
static spherically symmetric metrics in terms of the geodesic deviation approach used in

section 4.7, in particular we focus on the Schwarzschild and the FRW metric. In section
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5.2 we calculate the Penrose limits of other more general metrics. In section 5.3 we
introduce the Szekeres-Iyer metrics (section 5.3.1), analyze their null geodesics (section
5.3.2) and their Penrose limits (section 5.3.3). In section 5.4 we supplement this by an

analysis of the Dominant Energy Condition in these models.

The study of string theory and string thermodynamics in the singular homogeneous
plane wave backgrounds is performed in chapter 6. We begin by showing the solution of
string model in these backgrounds in section 6.1. Then some implications of the scale
invariance are shown in section 6.2. In section 6.3 we describe the basic concepts when
dealing with thermodynamics of time-dependent systems. Finally in section 6.4 we show
the calculation of the “thermal” partition function in these backgrounds and show that
it diverges at a parameter which corresponds to the same value of the inverse of the

Hagedorn temperature in the case of strings propagating in flat space.

The last chapter gives some conclusions and in appendix A we present the definitions
and modular transformations of the Jacobi theta functions. Appendix B shows in some
detail the saddle point approximation method for solving integrals. The construction of
the partition function of an orbifold is explicitly shown in appendix C. Finally the Ricci

and Einstein tensors of the Szekeres-Iyer metrics are presented in appendix D.



Chapter 2

Strings & Thermodynamics in flat

space

In the present chapter we will introduce the basic notions of string theory in flat space
as well as string thermodynamics. This notions will be essential for chapter 3, where
they will be applied to a gas of strings. On the other hand, once we know the ingredients
to do some string thermodynamics in flat space it will be easy to do some string ther-
modynamics in an homogeneous singular plane wave background, chapter 6. Since the
objective of this chapter is by no means an introduction to string theory, but to present
the concepts that are necessary to be able to consistently follow this thesis, we will not
be as complete as one could in this chapter and only show the approaches that will be
useful for us in the next chapters. If the reader is interested in a complete introduction

on string theory he/she can refer to [119-124] and references therein.

2.1 Solution of bosonic string theory

Let us consider a fixed space-time background M of dimension D, with coordinates X =
(X*), u=0,---,D —1, described by the metric G,,(X) with signature (—,+,---,+).

In analogy to the point particle case, the motion of a relativistic string in this back-
ground is described by its generalized world-line, a two-dimensional surface ¥, namely

the world-sheet with coordinates £ = (7,0). The background metric induces a metric

oXH* oX"

gaﬁ == a_é_a _66,3 [ 28] (21)

where o, 8 = 0,1, are world sheet indexes.

19
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In the point particle case, point particles classically follow an extremal path when
travelling from one point in space-time to another. In this case, the natural action is
proportional to the length of the world-line between some initial and final points. In
analogy, the natural action for a relativistic string is its area, measured with the induced

metric:
1

P /E d*¢|det gop| "2 . (2.2)

This is the Nambu-Goto action, which is the direct generalization of the action for a

Sng = —

massive relativistic particle. The prefactor (2ra/)™! is the energy per length or tension

of the string and has dimension [length] = or [mass|%.

Even though this action provides a direct geometrical meaning, it is inconvenient for
calculating the equations of motion, Hamiltonian, etc. The Polyakov action, which is
equivalent to the Nambu Goto action, is used instead. In this approach one introduces
an intrinsic metric on the world-sheet hoz(£) and then the action takes the form of a

non-linear sigma-model on the world-sheet [125],

1
4o/

Sp =

/ d*6Vhh*P9, X 35 X" G (X), (2.3)
b

where h = |det hyp|. The energy momentum tensor is

_ A 6Sp
P = "\/h 6hoB

and is traceless h**T,5 = 0. Therefore T,5 has only two independent components.

1
T, = 0. X"05 X, — Shap0, X' X, (2.4)

The variation of (2.3) vanishes and the equations of motion reduce to Tps = 0. The two
independent components of T;, g vanish on shell. Since the trace of the energy-momentum
tensor is the Noether current of scale transformations, the two-dimensional field theory,

eq (2.3), is scale invariant, indeed it is a conformal field theory.

The Polyakov action has three local symmetries:
e two reparametrizations of the world-sheet:

£ = £%(1,0) (2.5)
e conformal or Weyl transformation:

hap(€) = €O hag(€) (2.6)

These three local symmetries are used to gauge-fix the metric hqg, with the standard
choice corresponding to the conformal gauge,

hog(§) = Nap, where n,5 = Diag(—1,1). (2.7)
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However (2.7) exhibits a residual gauge invariance. One can still perform reparametriza-
tions under which the metric only changes by a local, positive scale factor, because this
factor can be absorbed by a Weyl transformation. Thus by introducing light cone coor-
dinates,

F=r+0 (2.8)

the conformal reparametrizations are those reparametrizations which do not mix the

light cone coordinates:

EHoENEN), € o). (2.9)
The Minkowski world-sheet metric tensor h,3 = 748 becomes
1
M—-=7N—+= Ty Nyt =N-—-=0. (2.10)

2.1.1 Classical equations and quantization

If we consider Minkowski space as the background G, = 7, and rewriting (2.3) in

light cone coordinates the variation of the Polyakov action with respect to X* leads to

6S =T / d*€ (6X*0,0 X,)—T / dr X, 6 X", (2.11)

70

where T' = (27a) is the string tension and
1
0y = 5(87 + o). (2.12)

Using periodic boundary conditions for the closed string, and X'|,—o; = 0 ! for the

open string, we find the equations of motion
0,0_X"=0. (2.13)

From now on and for the purposes of this thesis we will focus on closed strings.

On the other hand, the Virasoro constraints which were obtained before, namely,
Tows =0 or

1.
T10 = T01 = §XXI = 0, (214)
1 .
T = Tu= Z(X2 +X"?) =0, (2.15)
= (X+X')=0, (2.16)

IThe prime denotes a derivative with respect to ¢ and the dot will denote a derivative with respect

to 7.
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must be imposed as well.

The most general solution to the equation of motion, eq (2.13), that also satisfies
the periodicity condition
XH¥(r,0 4 27) = XH(1,0), (2.17)

can be written as
XMr,0) = X1 +0)+ X&(Tr—0), (2.18)
where

M o !
Xfr4a) = 4 P ) i[5 Bkt

k#£0

z* apﬂ Ck e’ (t—0)
Xp(r—o) = 3 ,/ Z —k g=tk( (2.19)

k0

z# and p* corresponds to the center of mass position and momentum, X7 describes “left-
moving” modes and X}, describes “right-moving” modes. The o} and &) are arbitrary
Fourier modes, and k runs over the integers. Since the function X*(7,0) must be real

it implies that x* and p* are real and that
(o) =¥y, (@' =a",. (2.20)
By imposing the Poisson brackets on X* and X*,

{X"o,7),X (", 7)}pp. = 2ma'6(c — o),
{X¥(o,7), X" (0", 7)}pB. = {X“(G,T),X”(a',T)}p_B_:0, (2.21)

the Poisson brackets for the oscillators and center of mass position and momentum

follow

{ab, artpp. = {&h,a,}pp = iMopinon™,

{af,an}tpe. = 0, {2",p"}pp =1"". (2.22)

The Hamiltonian, given by

H= [ do(XII- L) = do(X? + X" 2.2
[aotxn—1) = - [ao(2 4 x7), (2.23)
where II is the momentum conjugate to X*

m = 0L (2.24)

SXn’
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can be written as well in terms of oscillators

1 _
H = 5 Z(a,nan + A0y (2.25)

nez

On the other hand, the Virasoro operators are defined by
Ly, =2T / doT__e™=9) L, =2T / do T, ™) (2.26)
and can be expressed in terms of the oscillators:

L, = % ;am_nan , L, = % ; Oy, - (2.27)

By comparing with (2.25) we see that

The other operator Lo— Lg, which comes from the level matching condition 1/47c/ il do X X',
is the generator of translations in 0. So Ly — Ly = 0 means that there is no preferred

point on the string.

There are different approaches to quantize strings which agree among themselves:

e Covariant Canonical Quantization: the classical variables of the string motion
become operators and then impose the Virasoro constraints, in the quantum theory

as conditions on states in the Hilbert space.

e Light-Cone Quantization: solve the Virasoro constraints at the level of the classical
theory and then quantize. The solution of the classical constraints is achieved in

the so-called light cone gauge.

e Path Integral Quantization: as the name indicates one should quantize by means of
the path integral however it works in an extended Hilbert space that also contains
ghost fields.

In what follows we will focus on the light-cone quantization.

The invariance we were left with is eq (2.9). For closed strings £t and & are
reparametrized independently and they transform 7 = (67 4+ £7) and 0 = (£F — €7)
into

P o= o) +E (- o)

o = JErto)-Er—o). (2.29)
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The first equation tell us that 7’ is a solution to the free massless wave equation, and
once chosen ¢’ is completely determined. On the other hand, since X* also satisfies the
free massless wave equation, it is then a natural choice to reparametrize 7' such that it

is equal to one of the X*, 7' ~ X*. In other words,
Xt =zt +dptr. (2.30)

The Xt component of the string coordinates corresponds to the time coordinate as
seen in a frame in which the string is traveling at infinite momentum. The light-cone
coordinates are defined as

X+ =X+ X", (2.31)

Imposing the Virasoro constraints we can solve for X~ in terms of the transverse coor-
dinates X', which means that we can eliminate both X+ and X~ and only work with
the transverse directions. Thus we are left with all positions and momenta of the string

but only the transverse oscillators.

We can now quantize the system replacing the Poisson brackets by commutator
brackets via the substitution

{-}pp — —i[-] (2.32)

and replace z#, p*, o, and @', by operators.

In order to generalize to superstrings one simply introduces a D—plet of Majorana
fermions 9’4 (¢, 7) transforming in the vector representation of the Lorentz group SO(D—
1,1). The fermion equation of motion is simply the two-dimensional Dirac equation
P20, = 0, where p* represents two-dimensional Dirac matrices. Then, in the light
cone coordinates the equations of motion are

0 = &ﬂﬁﬁ :8_|_(8,X“)
0 = O_¢h =0_(8,X") (2.33)

and one can proceed as in the bosonic case, by imposing either periodic, Ramond, or
antiperiodic, Neveu-Schwarz, boundary conditions one can find the mode expansion and
so on. Concerning the light cone quantization we have to take care of the freedom in
applying local supersymmetry transformations that preserve the gauge choices. It turns
out that they are sufficient to gauge away 1+ completely so that we may make the gauge

choice

P =0. (2.34)
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2.1.2 Light-cone Hamiltonian

The Virasoro constraint eq (2.16) become
(X~ X'7) = (X' + X")2/2p*, (2.35)

giving an expression for the oscillators of X~ in terms of the o

o, = 2ap+ (Z ol al —2a5n,0) : (2.36)

and a similar expression for &, a is a normal ordering constant in aj 2.

In the light-cone gauge the identification of o, with p~ is the mass-shell condition,
therefore
M? = (2pTp~ — p'p') = o' M? = 4(N —a) (2.37)

where N is the level number operator
o0
N=) o ,o,. (2.38)
m=1
In order that the theory is Lorentz invariant it is required that ¢ = 1 and that the
dimensions are 26.
The ground state is |[p"), for which we have the mass-shell condition o/ M? = —4,
which leads to a tachyon. The first excited level will be o' &’ ,|p) (imposing the level
matching mentioned above)®. We can decompose this into irreducible representations

of the transverse rotation group SO(24) in the following manner

o0, [p) = ool p) + oyl — =50k b Jip) + ———0ak 0k |p) . (239

These states can be interpreted as a spin-2 particle G, (graviton), an antisymmetric

tensor B, and a scalar ®, which are representations of the SO(24) group.

2.2 The partition function

The partition function is

Z(7) = Trlexp(2mini P — 217H)] = (qq) Y Tr(g"g) (2.40)

2The same happens if one wishes to generalize to superstrings. The oscillators of ¥~ are given in

terms of oscillators of the transverse fields.
3In the supersymmetric case the spectrum must be additionally truncated by means of the Gliozzi,

Scherk and Olive (GSO) projection to get rid of the tachyon and unphysical states.
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Figure 2.1: Fundamental domain of the torus.
where 7 = 71 4175 is the modular parameter of the torus, ¢ = exp(27i7), the momentum

P = Ly — Ly generates translations in ¢, and the Hamiltonian H = Ly + L, generates

translations in 7. Explicitly

. o dk ) o
Z(7) = Valqg) ™ / (%)dexp(—ma’kz)]—[ Yoo g e g e (2.41)

" NypyNyrn =0
For bosonic string theory the sums are geometric
o
YN =1-q¢"7", (2.42)
N=0

and the partition function for the transverse fields becomes
Z(7) = iVyZx ()P (2.43)

where D stands for the transverse dimensions, which in the case of the d = 26 dimen-
sional bosonic theory is D = 24, and the contribution from every bosonic field is given
by

Zx(F) = (4n*a/R) PIn(7)| 2, (2.44)

where 7(7) is the Dedekind eta function *.

Thus one-loop partition function for bosonic string theory is

Ty = / ARdT (2.45)

8m2a/ 72

where F is the fundamental region of the modular group PSL(2, Z), corresponding to

integrating over tori not equivalent under diffeomorphisms, figure 2.1.

4Refer to appendix A.
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Likewise one can calculate the partition function for closed superstrings, type IIA/B

which can be written in terms of the Jacobi theta functions® as

Z(7) = Vlo(47r2a'?2)_577_12(%)77_12(?)%|9§(%) —04(7) = 6,(F)”. (2.46)

2.2.1 Asymptotic formulas for level densities

In this section we are interested in the asymptotic behavior of the level density for very
highly excited states. For these purposes we can write the D dimensional partition
function in terms of the degeneracy factor d%j) at every string level N. Thus let us

consider the one loop partition function

d’r 1 =
7= / S Z(#7) (2.47)
F T2 5,7
where 7”'2(1%2)/ ? is the contribution of the non-compact D-dimensional momenta, and of

course Z is modular covariant,

Z(7,7) = 7P 2 Z(-=, =) . (2.48)

2|
Nl =

Y

In the case of non-compact bosonic or type ITA /B theory the partition function factorizes
as Z(q,q) = Z%(q)ZR(q), in other cases this behavior is the asymptotic behavior as
g — 1 [63]. Then, the partition function is such that

Z5@) =Y dP¢",  ZR@) =Y dPq". (2.49)
N=0 N=0

Thus dg\],)) will tell us the asymptotic behavior of the level density and one can calculate

it by a contour integral on a small circle about the origin [119, 126]

1 d
(D) _ q 1
dN - i qN_|_1 D(Q)
1 d7 -
a0 = 2 7R(q) (2.50)

% q—]\_f—{—l

For large N one can evaluate the integral by using a saddle point approximation®.
7% (q) vanishes rapidly for ¢ — 1, while if N is very large, ¢V *! is very small for ¢ < 1.
Therefore for large N there is a defined saddle point for ¢ near 1. The behavior of Z5(q)

and Z&(q) as ¢ — 1, can be obtained from the ¥ — 1/7 modular transformations of the

5Refer to appendix A.
6Refer to appendix B.
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Dedekind eta and Jacobi beta functions, respectively’, which relates these two limits by
q — exp(4n?/Ingq),

D—-2
lnq 2 _47r2aL
Zp(q) ~ <—§> e e,
I 2 ,
_ 2 4r%ap
@ (‘ o ) © (251)

where ar p are the zero-point energies of the various string theories, a, = ar = 1
(bosonic), ar, = ag = 1/2 (superstring).

One can then solve (2.50) by comparing it with (B.1). And by means of (B.6) we
have

PN v
AP~ etmVoerN N5 (2.52)

Using the mass formula M? ~ 4N/o/, and imposing the level matching condition N = N,
the mass density function p(M) follows [63]
dN 21V o/ (aL++/@r)M 3 r—D
p(M)=dy—— ~e LTVAR)BE M (2.53)
dM
Thus the level density grows so rapidly with mass that the partition function of the free
theory cannot be defined beyond a maximum temperature 7" = Ty, which is known as

the Hagedorn temperature [127].

This exponential growth in the states is a pure stringy effect and as we will see, it
will lead to a divergence of the canonical partition function which may indicate either a

limiting temperature in the theory or a phase transition.

2.3 Thermodynamics in the presence of Gravity

One must be careful when studies the thermodynamics in these systems. Statistical

mechanics is rigorously valid only in the infinite volume limit.

On the other hand, any gravitating system with a nonzero mass density per unit
volume and sufficiently large volume suffers from the Jeans instability, which is the
tendency for the system to collapse. The Jeans instability, in any D spatial dimensions,

occurs at a length scale

R> <7w5)5 , (2.54)

"Refer to appendix A.
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where vg is the speed of sound, p the density of the system and G the Newton’s constant.
For a relativistic system this gives a constraint on R for the system to lie inside its
Schwarzschild radius Rg, which is reached when GM/RP~2 ~ 1. Thus, in the case of a
relativistic medium, the Jeans instability of the thermal ensemble is the statement that

a thermal ensemble of sufficiently large volume should collapse into a black hole.

The Jeans instability tell us that a gravitating system of infinite volume can not be
static. Since temperature is an equilibrium concept, it is not a rigorously defined notion
in the presence of gravity, however it is a good approximate concept at sufficiently
low temperatures: The energy density must be low enough that one can consider an

ensemble with a volume that is

e small enough to be unaffected by the Jeans instability, which in ten dimensional
string theory is
GpR? << 1, (2.55)

e large enough to contain many degrees of freedom, for string theory

R>> Vo' (2.56)

They can be simultaneously obeyed if and only if
g’ pa << 1, (2.57)

where g is the closed string coupling (G ~ ¢?)[61] .

Near the Hagedorn temperature and in ten dimensions the energy density of a gas
of free strings is p ~ (/)~°. Thus (2.57) is satisfied if g?a’~* << 1 which is the weak

coupling condition.

2.4 Canonical partition function

The canonical partition function Z(3), where § = 1/(kT) with k£ the Boltzmann con-
stant, which from now on we will set £ = 1 and 7T the temperature, is defined as the

Laplace transform of the density of states

Z(B) = / dE p(E)e PE . (2.58)
0
By using EF = 2N it can be written as

Z(8) = / dE E- 03 Lrvemveas (2.59)
I
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where p is a cutoff in order to make (2.53) applicable. Thus one can see that the
partition function Z(f) is defined provided that

B> Bu, (2.60)

with By = 47V, or 2mv/2a/ being respectively the Hagedorn temperature for the
bosonic or supersymmetric closed string.

2.4.1 Quantum Field approach

As in ordinary Statistical Mechanics, the Helmholtz free energy F'(3) is defined as
1

F(B) = 3 log Z(p) - (2.61)

In Quantum Field Theory, the canonical partition function in RY¥~! is equal to the
vacuum energy of the same theory in R%"! x S with the length of the compactified
circle equal to 3. Likewise the free energy will be calculated by computing the one loop
world-sheet path integrals for string propagation on R4~! x S, where S corresponds to
the euclidean time compactified on a circle of radius 5. Therefore one must sum over

winding modes in which X° is periodic only modulo a multiple of 3:
X'=a2"+no+mr+---. (2.62)

where ¢ and 7 are the world sheet coordinates. If we also want to describe fermionic
string theories in the RNS formalism, then in addition to summing over m and n, it is

necessary to sum over spin structures. Thus we must require
e space-time bosons to be periodic under X° — X + 3.
e space-time fermions to be antiperiodic under X° — X° + g,

which can be implemented by considering a transformation X° — X° + 3 accompanied
by a 27 spatial rotation [61].

This calculation corresponds to computing the partition function of type ITA /B string
theory compactified on S;/Z,, where Z, is generated by g, the product of a translation

73 along the circle and (—1)¥, with F' the space-time fermion operator.

The standard calculation® gives

d*7
FO) = ~5imemn | o

25/2 ~11/2 24
B (dma)B/2 [z 9711/2 2|
xS {102 A (1) + 13PN rg + 1052 ()" ] (2.63)
n2WEZ

8Refer to appendix C.
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Figure 2.2: S region.

where 7 is the modular parameter of the torus, 65(0|7) is the Jacobi theta function
and A, ,, is the lattice contribution from S;/Z,. By means of the unfolding technique
[128, 129] one can unfold the F region into S °

2

Va5 /dT2 1657 {1—(—)”} —p2
Fp) = -5 ~d7 ¢ ha
O = G Js e g 2 |

PEZL
Vas dia 1 _ |05]? i3? i5°
N -0 2.64
(271"/&')26 ¢ 2754 d ‘77‘24 03 0|27-204’ 4 | 2%, (2.64)

and the integral is evaluated over the strip S = {7|7» > 0,—1/2 < 7, < 1/2} shown in
figure 2.2.

Likewise one can find the Helmholtz free-energy per unit volume for the bosonic

string at one loop [128]

F(B) = —n 262714 g@“m(f)\“ [03 (0|’;L22~) — 1] ) (2.65)
S

20! Ty

2.4.2 Counting degrees of freedom

On the other hand one could also calculate the free energy by counting the degrees of
freedom which may give a more physical feeling. In order to illustrate this let us consider

for simplicity the bosonic string.

The free energy per physical degree of freedom and per unit volume of a bosonic

(fermionic) quantum field in D = d + 1 dimensions is

D1
Fpr(B,m 5/ d k (1Fe Pur), (2.66)

9Refer to appendix C.
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where w, = Vk?> +m?. After a bit of manipulation we can rewrite, for example, the
bosonic case of (2.66) in terms of the Jacobi theta function:

Qi =1 [, 5, a2 _
F = -~ E Z _ 3 Blp
B(ﬁam) B(2ﬂ_)d - l o (p m ) p dp €

(d-1)/2
= 42 f [d/2]( > MK g1)/2(Blm)

(d— (d+1)/2
Q4 m 2m Blm
B(2r) 1 V2 g
° dt —t—/a’2l2m2/(4a’t)
X/O A+@rn2°

o] - 22
= —gP/29D/2-1 / dss™!=P/2g=m"s/2 [93 <0| ip )—1} (2.67)
0 2mals

where K is the modified Bessel function of second kind and €, = 27%2/T'(d/2) is the
area of the SP sphere. Here we expanded log(1l + z), made the change of variables
p = VkZ+ m and used two different integral representations of the modified Bessel

function. Likewise we can find a expression for the fermion fields:

o] - Q2
Fr(B,m) = —xP/29P/21 / dss 1 P/2e s/ [04 (0\ P , )} : (2.68)
0

2ma’s

In order to get the Helmholtz free energy (2.65) we need to include the contribution of
all strings states, which is done by taking into consideration the degeneracy factor at
every string level N, d%)), and impose the level matching condition by means of a delta

function. Thus for example in the case of bosonic string theory:

1/2 . .
Fy = Z dPdY [ dmen Ny (5, )
—1/2
Da_ d*7 __(p_ o i3
— _.Do (D+2)/2/_ (D-2)/2 2(D-2) 0 — 1] (2.69
m SR ) s (050 ) — 1] (269

where we have used M? ~ 4N, s = 77 and recall (2.49). For D = 26, eq (2.69)
corresponds to (2.65) [74].

Likewise by considering a set of relativistic free gas of bosons and fermions in D spa-

tial dimensions, the free energy for the type ITA/B superstring theory can be computed
by the supersymmetric system, pg(M) = pp(M):

D 1 4 e~ AVE+M?
= 5 2n)D /d /dMg log s (2.70)

which simplifies to eq (2.64).
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2.5 Hagedorn temperature

As anticipated in eq (2.60) the thermal partition function diverges due to the exponential
growth of the density of states of highly excited strings. This divergence can be seen
directly as well from eq (2.69) (for simplicity we consider the bosonic case), which can

be written as

F(T) = — /S d%f“(zw %) Bn(F)| 482:@@ Mri) (2.71)

27’2 T2/ T2

The integral can diverge when 7o — 0, so in order to look at this divergence we focus on
7 = 179. The asymptotic behavior of the Dedekind eta function is obtained by means of

its 7 — 1/7 modular transformation?,
n(=1/irz) = n(i/72) — exp(—7/1273) , (2.72)

we obtain

deT 22007 ~13 s o0 2
—m/12 ——). (2.
)= = | G ram) g Penp( w128 Y eapl(— ) (279

At r = 1 the divergence at 75 — 0 comes from the term

) S (2.74)
<P 5 T T )
which implies that
1

The same procedure applies when dealing with the supersymmetric case obtaining as

the Hagedorn temperature
1

Ty = .
7 220!

Since the free energy is finite at the transition point, it suggests a first order phase

(2.76)

transition rather than a limiting temperature [61].

In the canonical ensemble description while approaching the Hagedorn temperature
from below the system undergoes violent fluctuations [130], which can be interpreted as
the breakdown of the canonical ensemble. Therefore in order to study the system beyond

the Hagedorn temperature one must use the microcanonical ensemble [62, 64-66, 130].

10Refer to appendix A.
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2.6 The ideal gas of strings

If string theory describes the real world, the very early universe should be modeled by
a hot gas of strings. Thus it is of interest to see the general features a stringy early
universe might have, as opposed to a universe of elementary particles. The assumption
of the ideal gas approximation is that the system is in equilibrium.

2.6.1 The microcanonical ensemble

The microcanonical ensemble is the starting point for the discussion of the thermody-
namics of a system. In this ensemble one considers the system at a fixed total energy F.
The basic quantity is the total density of states 2(F) which is defined to be the total
number of energy eigenstates of the system in the energy range E to F + dFE,

Q(E) =) §(E - E), (2.77)

where the sum is over all states a of the system and E, denotes the energy of the
state a. The importance of Q(E) follows from the fundamental postulate of statistical
mechanics which states that in equilibrium, an isolated system with total energy E
samples all its eigenstates at that energy with equal probability (provided there are no

conserved quantities other than the energy). Then, the entropy is defined as
S(F)=InQ(F), (2.78)

and the thermodynamical properties such as the temperature 7', the pressure P and the

specific heat C\ are defined as

1 oS oS 028
— = — P=— =_[7? =2 -1 2.
T <6E>V’ (aV)E’ Ov=-| (aEQ)V] (2.79)

2.6.2 The canonical ensemble

For point like particles (usual systems) an equivalent description of the thermodynam-
ics is given by the canonical ensemble, which basic quantity is the canonical partition

function:

Z(B) =) e, (2.80)

The canonical partition function is the Laplace transform of Q(E):

Z(B) = / " dB e QE). (2.81)

0
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For usual systems the microcanonical distribution function Q(E) and the canonical
partition function Z(3) provide equivalent descriptions since in that case the integral
in (2.81) is dominated by a saddle point located at the value E, which is a solution of
B = %Ei"). The specification of a § thus picks out an energy Ey(8) in the integral.
This Ey(5) coincides, up to small corrections, with the average energy as defined in
the canonical ensemble (E) = Z(8)'Y", Eae #P=. For usual systems it is also true
that the energy fluctuation 6F = [(E?) — (F)?]'/? is small compared to (E) (§E/(E) ~
1/ \/@) Therefore there is a physical correspondence between the energy FEj, of the
microcanonical description and the inverse temperature 3 of the canonical description.
Thus the thermodynamic quantities are essentially the same whether they are computed
in the microcanonical ensemble with the system held at a fixed energy FEj or in the

canonical ensemble at a fixed value 5 = G(Ey).

For the case of the string gas the physical correspondence between the microcanonical
and canonical ensembles fails at high energies. The reason is that at high energies the
behavior of Q(F) as a function of energy is such that the saddle point approximation
to the integral in (2.81) is no longer valid. At a given S (2.81) receives contributions
from a large range of energies. Therefore at high energy densities the microcanonical

ensemble must be used.

2.7 The ideal gas of strings in compact spaces

The canonical ensemble for free strings has been described in [61, 62, 64-67, 74, 110, 128
133]. The multi-string grand canonical ensemble for free strings can be defined in terms
of a sum over single string partition functions for bosonic modes Z? and fermionic modes
zf,

o0

log Z(B, p,v) = Z% (ZP(rB,rp,rv) — (=1)"Z{ (rB,rp,1v)) . (2.82)

r=1

If we have non-compact spatial dimensions, the behavior near the Hagedorn tempera-
ture will be dominated by the single string » = 1 term, which we denote Z; = Z8 + ZF,
therefore the free energy is SF = —log Z ~ —Z;. However when we are dealing with
compact dimensions one should be more careful in relating the single string thermody-

namics potentials to the full thermodynamic potentials.

Let us consider a system of closed strings in D spatial dimensions, d dimensions

are compactified on a d-torus, each with radius R; and the remaining d directions are
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uncompactified, i.e. D = d + d. The single closed string free energy density is given by

BV dpd7 82 ) )
(zwa_?)pﬂ/ oo " K(a,a)W (g, {R)), (2.83)

T
where Vp is the spatial volume, K(q,q) is the standard modular invariant integrand

Z1(5) =

for the uncompactified one-loop partition function and W(q,q, {R},{A\}, {v}) is the
contribution due to momenta and windings in the compactified directions, the lattice

term,

Wi(q,q.{R}) = HWo 4,4, Ri) ,

[ wiR\2 o
Wo(q,q,R)—”M2 S R R

(2.84)

Pi ,Wi=—00

2.7.1 Hagedorn singularity

To extract the singularity of eq (2.83) at the Hagedorn temperature, we must first
perform the integral over 7; to obtain the leading order contribution in the limit 7 — 0.
Again, the saddle point approximation technique becomes our main tool. The relevant
factors, for example in type IIA/B, come from K (g, q) — (\/E/\%|)_D+1exp(4fj’j?|2) and
W — Vit (2nva!)4(v/7/|7])? leading to

v (N (B
~—92 ~ H'2
d
" /_1/2 Tl(x/fz) o <4m’|?l2>

e [e’s) B ﬁQ 1
7_2(d 3)/2/ dz(1 + 22)@ D/ 2exp <47T§%2 i) (2.85)

where the change of variable x = 71 /7, was used. The saddle point is at = 0, thus
(2.83) becomes

2y~ — PV /A@%dﬂexp Ba— 5" (2.86)
L enVa)BaVade dmaly ) '

where the integral is cut off at the upper limit. As T — Ty, (2.86) takes the integral

representation of the incomplete Gamma function, which can be written as

(2.87)

_ ca(B — Br)¥? + regular : dodd
' ca(B — Br)Y?log(B — Bu) + regular  : deven,

with cg(By) ~ (—1)4T/2 and c4(By) ~ (—1)#?! for d odd and even respectively. The

free energy always remains bounded for d # 0.
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As we approach the Hagedorn temperature, the energy fluctuations become large
and there is no smooth thermodynamic limit for a fixed temperature anymore. Thus
we must look at the behavior of Q(E, V') as E becomes large. When space has d non
compact directions, one studies the thermodynamic limit V = R? large, and if d = 0,
one studies the behavior of Q(E, V) at large E as a function of V. The usual approach
to perform this study is by the complex temperature formalism [131].

2.7.2 Complex temperature formalism

Z(B) is an analytic function of 5 obtained by a Laplace transform (2.81). In the region
of B where this integral converges, Z(3) equals the canonical partition function. For
strings at large E, Q(E) = O(e’#¥), hence in general (2.81) converges only in the domain
Ref > By. By staying within this region, one can recover Q(E) by an inverse Laplace

transform

QE) = /Hm 2 p@e (2.88)

with L > fy. By analytically continuing the partition function Z(/) to the whole
complex (-plane and deforming the contour of integration one could get a density of

states valid in regimes different from the Hagedorn one.

To study the singularity structure of Z(3) one writes (2.63) as

Vi d>7 _ _ .
log Z(T) = 5o / @ W@ T R) D Kop(@,D)Ae,(5,7) (2.89)
]:27'2 2 o,p=+
where
_ mTy 2x2a/J2 ﬂ Lo
s = e () oo
L.J

where L and J run over integers such that (—1)* = ¢ and (—1)” = p. By expanding
K,, as K,, = ¢ V/2y" dggp)qN, we have

Vi d*7 (0p) 4(op) —2n[B, 5172 —iClyp7
(1) = b [,y XX P S s

Ty ? op=% N,N,mimni LJ



38 Strings & Thermodynamics in flat space

where

o1 i _\? o-1
m%, = N+~ <%—niRi> +2 (2.92)

where R? = R?/o/ and B% = 5%/(27%a!). The singular behavior arises as 7 — oo and
is given by
o - d/2 d
= 0 2TBopTa ~—d/2—1 _
/ die oty 4t = BT B, (2.93)

1/2m
where I' is the incomplete Gamma function and the lower bound in the 7, integral
is chosen for convenience. The singular points arise at B,, = 0, which by the level

matching (C,, = 0), are

V2

B = ﬂm(m +mg), (J,L#0),

~ V2my, _

B +2i ) (J=0),

B +i I(p) (L=0). (2.94)

2 /2m,

The first leading singularity Sg, that arises approaching the origin from the right is at
B =2 (By = 27v/20¢/) coming from L = 41. The next singularities are all confined to
the region —1 < Ref3 < 1 and depend on the radius of the compact dimensions. Thus

we see that close to Sy the singularity structure of log Z is
log Z ~ [h(B,d) (8 — Bu)** + A(B)]Va, (2.95)

where A(83) denotes all the regular terms at Sy, and

d/2m(~ 1)@/ _
h(ﬁ, d) = 5271— Oédﬁg ) 1)(d+1)/2[d/2}+1 +dodd . (2.96)
(2n%a/ By )~ 2 o log(6 — Br) i deven

We see that we find the same singularity structure we previously found in (2.87), how-
ever by the complex temperature formalism we are able to explicitly calculate all the

singularities of the analytically continued Z(5).



2.7 The ideal gas of strings in compact spaces 39

Given this singularity structure we are able to calculate Q4(E), by using (2.88).
However let us notice that the singularities of log Z are in general branch points. For
B1 < B < By the discontinuity of log Z across the cut beginning at Sy is given by

_ { —Vih(B — Bu)¥?  :dodd (2.07)

—2iVymho(B — By)¥?  :deven ’

where h = h(5,d) as above, and hg is the same as h(3,d) but without the log(8 — By)
term. On the other hand, as we just saw there is an isolated singularity at Sy, all other
singularities are to the left of Sg. Since the integral in (2.88) converges as Imf — +o00
for Re > L; we can deform the contour in (2.88) to Cy as shown in figure 2.3. Hence

QE,V) = d—B.Z(ﬁ, V)er (2.98)

o, 21

where Z(3,V) now stands for the analytical continuation of the canonical partition
function. C) is the sum of two contours C; = Cy + C}: Cj is the part that goes from L,
to B, encircles By and goes back to L; which gives a contribution O(ef#E) to Q(E, V),
and C! is the vertical part of C; (ReS = L;) which gives a contribution O(el1#). While
performing the Cj integral we must be careful and take care of the branch cut which

makes this term proportional to sin (—A/2i). Thus the density of states is

L [ dBePEHAIVasin[—iVyh(B — Bu) V2] + O (eMF) - dodd
Q(E) =
1 fﬂﬁlH dBePEAINBIHB-Bm) 2 WVa in[Vyrho (B — Bu)¥?] + O(eM1F)  : deven

(2.99)

where (3 is the next-to-leading singularity in the real axis. We can expand A(8) =

A(By) + AN (Bx)(B— Bu). The sine can also be expanded provided that nE >> 1, where

n= By —pBiand E = (E— A (By)Vy). Thus retaining only the first term and neglecting

the terms proportional to (3 — Bx)%?

finds

in the exponent of the integrand for d even one

Vo(2m20) B ) —4/2
Qd(E) ~ ePHE+AVy d( W;{ﬁH) ,

d>2, (2.100)

with A(Br) = Ao.
The case d = 0 is different since log Z has a pole rather than a branch cut. In this
case log(Z) ~ —log(B — Bu) + A(B) and then the density of states is given by

Qo(E) ~ ePubthoVa (2.101)

However in this case, which is the one we will consider in more detail, the leading singu-

larity By is not sufficient to study the thermodynamical properties of the system since
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Figure 2.3: Contour integration to calculate Qg(F).

the specific heat ¢y = —32(02S/0E?)|;;' is negative. So let us consider the subleading
singularity. In the case where all compact dimensions have the same radius R > 1,
the subleading singularity appears at §; = \/m, and it has a degeneracy of 36
(L = +, and 18 different KK momenta m; = +1). Hence (3 is an order 18 pole of log Z.
Since there are no zeros of Z between ; and [y, Z can be reparametrized as

1
Z(B) ~ eA<R’ﬁ>B i _7751)18 , (2.102)

where A(R, 3) is a regular term. Using the residue theorem the density of states is then

1 EU 17
Qo(E) ~ eﬂHE+A°<R>ﬁ [1 — (F (123) e"E] : (2.103)

where Ag(R) = A(R, Bx) is constant along the integration region.

For d = 1,2, eq (2.100) is not valid since the corrections are large in the thermody-
namical limit V3, £ — oo with E/V, constant. Hence one should solve (2.88) by the

saddle point approximation. The density of states in this case is

dz
Q1 (E) = efrFthohs / %eﬁ@ (2.104)

where z = 8 — g and

fi(z) = Ez+ h(B,1)V/zV, + O(z%) . (2.105)
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The saddle point of f; is at 29 = 7V?/E?(272a/By) ! and thus

V 2 I 2 1
Qi (E) efrEthoVi=nVi /(B2 e Bu) (2.106)

B2, Jan?cl iy

The corrections are of order f1"(z)/(f!(2))*/? ~ VE/V; arising from higher orders
in the saddle point approximation. These are small provided that VE < Vi which is
always valid in the above thermodynamical limit. The corrections of order 22V, ~ V3 /E*
arise from the O(22?) in (2.105). These require that £/V; < 1 or that the coefficients
associated to them are small.

In a similar way we can calculate s by using the expression (2.104) replacing V; —
Vo and f; — f5. In this case the saddle point of f, is located at —log zy = 1+ 272a/ By p
with p = E/Vj.

. B W —(2n2a’ By p+1)
_1 24/ e H
Q9(E) ~ P E+NV2—5(27°a Bup+1) o™ 220l By ) (2.107)

The corrections are of order f5"(zo)/(f¥(20))%/? ~ (Vazo)~/? and then the saddle point
approximation is valid if p < logV, which is valid in the thermodynamic limit. If
p > logV, we can use (2.99) without neglecting the factor A ~ logz in the exponent.

Since this factor is slowly varying we can make a good approximation by fixing — log zg ~
212/ By log V3. Hence one gets

‘7(271'2:/6)}[)_1
Qy(E) ~ efrlithoVs 22 . 2.108
o(E) ~e (E — ValogVs)? ( )

2.8 Conservation laws and chemical potentials

If there are conserved quantities other than the energy an isolated system at fixed
energy F will not sample all of its energy eigenstates at that energy. It will only sample
a subset that corresponds to a fixed value of each of the conserved quantities, because
by definition all processes that take place inside the system will keep these quantities
constant. The fundamental postulate that all microstates are equally probable applies
to this restricted set of states, and hence these are the states we would like to count. Let
@ generically denote all conserved charges other than the energy. In addition to E (and
V'), the macroscopic specification of the system now includes another set of parameters
(@, which define the total charge of each kind in the box. The microcanonical distribution
function which counts the states at energy E and total charge @ is given by (taking @
to be discrete)

QE,Q)=6(E — Ey)dgo. - (2.109)
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The entropy and the temperature, pressure, Cy, etc. are defined as before and now
depend upon Q.

In the case of toroidal compactifications that we have been considering, the conserved
quantities are the total winding number and the discrete momenta in each compact

spatial dimension.

By introducing a chemical potential for each conserved charge the density of states
is given by

i L+i00 d
o= [ g4 [ Bereme ), (2110)

where the contour in 3 is taken to lie to the rlght of any singularity in Z just as before

and the canonical partition function is defined as
=) e Plama, (2.111)
[0

The main difference compared to the case where no conservation laws are taking into
account is that the Hagedorn singularity will depend on the chemical potentials and in

the radius of the compact dimensions.

2.8.1 Hagedorn singularity

Let us consider for simplicity chemical potentials in one dimension. The partition func-

tion is again given by (2.83) by replacing
Wi(q,q,{R}) = W(q,q,{R},{A},{r}) (2.112)

where

W(QaQ? {R}? {)‘}7 {Ij}) = HWO(Q767 Ri7 )\ia Vi) ’

i=1
V > o’ _L_ﬂzﬁi ? ol (i wiRi\?
Wo(q, q_, Ri7)\iayz) = aT2 Z 1 121 of ) q_4 (p + of ) e_(uipi‘FAi’w(é-ll:a)
Di,Wi=—00

and (\;, v;) correspond to the chemical potentials associated to the momenta and winding
conserved numbers.

In the limit 7> — 0, the sum over p and w in the factor Wy(q, g, R, \,v) can be

approximated by integrals. By performing the change of variables z = 71/7%, y =
Va'i(p/R+wR/o!) and z = Vo'f(p/R — wR/'), eq (2.83) becomes

A = 2
d _
7y ~ / 27—2(‘1 3)/2/dxdydzexp (— ﬁl~ +
0o T2 4Tl Ty

1 dr .
N [1 T2 m(y? + 2%) —inz(y? — 2°) — oy — 7_2}) (2.114)
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where

1 o'

By using the saddle point approximation, we can integrate over z, y and z ! leading to

*dfs_us g’ 1 :
Z~ | 225 _ \/8 2 4 2 \/8 2y2) | (2116
! /0 5 2 P\ "o T Tern ( A yeT Y (2.116)

As we see the partition function still preserves the form of (2.86) and thus the nature

of the Hagedorn singularity is unchanged. However the inverse Hagedorn temperature
depends on the chemical potentials and on the radius of the compact dimensions and is

given by

B = <\/B§ + oy + \/ﬁg + a”y%) , (2.117)

where 3y = mv/8a’. As the chemical potential is increased, the Hagedorn temperature
decreases [131]. The general expression for several chemical potentials replaces 73 by
vi = Y..(viRi £ &'N\i/R;)*/d. The free energy is still given by (2.87) but now with
Br = Bu(A,v) given by (2.117).

Finally just as we did in section 2.7 the total density of states, and thus the thermo-
dynamical quantities, can be computed from (2.110) by integrating over the complex 3

plane.

1The saddle point is at the real values of y = —(v4/27)(1 + iz)~! and z = —(y—/27)(1 —iz)~!
where z lies on the imaginary axis at iz = (\/,Bg +aly3 — \/,Bg +a'v2)/(2BH).
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Chapter 3

String gas cosmology at finite

temperature

In this chapter we present the work made in [57], in which inspired by the BV scenario,
the dilaton-gravity equations of motion [79] were numerically solved with some types
of “stringy matter”. Adiabatic evolution (which implies constant entropy), weak string
coupling and thermodynamical equilibrium are always assumed in our analysis. For
simplicity, we analyze Type IIA or IIB closed string theory on a T torus, with no

branes’. In particular, we consider the following two regimes:

e (i) Hagedorn matter at high energy densities in a very small homogeneous and

isotropic universe with a common compactification radius ~ v/o/, and

e (ii) an almost-radiation dominated regime with two independent scale factors,

associated with the large and small dimensions.

In the latter case, the lightest Kaluza Klein (KK) and winding mode contributions are

also taken into account.

In both of these regimes, our matter is manifestly 7-duality invariant. This symmetry
is broken in our set-up only by the (arbitrary) choice of initial values. The main relevant
questions in the two cases are respectively: which is the evolution of the universe at
early times for a free Hagedorn string gas in thermal equilibrium? Assuming large and
small dimensions as initial conditions, how do they evolve? In particular, do the small

dimensions remain small?

In [80] it has been shown that fundamental strings, even in the presence of D-branes, are still the
dominant degrees of freedom for the realization of the BV scenario.

45
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String matter in the Hagedorn phase was already briefly discussed in [79] where it
was realized that, to a first approximation in which the energy is constant, it leads to
a very slow evolution of the universe, as in eq. (3.34). We complete the analysis of [79]
by relaxing this approximation and imposing the conservation laws for KK and winding
modes. We find that in any practical sense there is no departure from the behavior

dictated by eq. (3.34), and thus no relevant dynamics emerges in this set-up.

On the other hand, the evolution of the small and large dimensions in case (ii) is much
more interesting. First of all, we will see that when there is only pure radiation, the small
dimensions can be stabilized and kept small relative to the large dimensions. When we
introduce matter in the form of KK and winding modes, the winding modes will be able
to distinguish large and small dimensions, leading respectively to a positive/negative
contribution to the pressure along the large/small dimensions, as shown in eqs. (3.56)
and (3.57). As we will see it turns out that there exists a wide range of parameters
for which the small dimensions actually remain small (see fig. 3.4), while the large ones

expand as required in the presence of radiation and string matter (see fig. 3.5).

3.1 Dilaton gravity

We shall study the dilaton gravity equations of motion with a massless dilaton field ®
corresponding to the low-energy effective action of string theory in D + 1 space-time
dimensions, described by [6, 7, 79]:

S = / dPHlzy/—g [e** {R+4(V®)’} + L], (3.1)

where g is the determinant of the background metric g,,, and £y corresponds to the
Lagrangian of some matter. The coupling of ® with gravity is the standard one arising
in string theory. Hereafter we shall consider the case with D = 9. We are interested
in the case where the whole universe is small and compact, corresponding to a flat 7°-
torus. In this case, if one considers field configurations that are spatially homogeneous,
assuming only slow time-dependence and adopting an adiabatic approximation it has
been shown in [6, 79] that the action (3.1) exhibits a duality symmetry, a low energy
manifestation of the string T-duality R — 1/R symmetry. The ansatz for the metric
and dilaton we use is

9
ds’ = —d’ + ) Ri()da}, Ri=eN0, @=2(1). (3.2)
i=1
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Here the R; denotes the i-th scale-factor of the torus. The equations of motion simplify
if one introduces a shifted dilaton, 1, via

9
=20 N (3:3)
=1

Given the metric (3.2) the equations of motions of the dilaton-gravity system are then
[79]

9
> N+4* = 'E, (3.4)
=1
. .. 1
Ni— YN = 561”3- (3.5)
i 1
F—N")A2 = ZeYE 3.6
w ; 7 26 ) ( )

with E the total energy and P; the total pressure along the i-th direction found by
multiplying the total spatial volume of the space by the energy density and pressure
appearing in £, of (3.1). Here a dot denotes derivative with respect to cosmic time, t.

These equations are manifestly invariant under the duality symmetry [6, 79]

)\i — —)\i, b — P — Z)\Z, (37)

under which 1 defined in eq. (3.3) is left invariant. It is typically assumed that the scale
factors R; are the same in all directions, 7.e. R; = R. In contrast, we also consider in
section 3.4 a scenario where the background is homogeneous and isotropic in d-spatial
large dimensions and (9 — d)-spatial small dimensions. We denote the large and small

dimensions with their corresponding scale factors, as
R=e', r=e". (3.8)
In this case egs. (3.4)-(3.6) take the form

—di? — (9 —d)i? +9¢° = eYE, (3.9)
fi— Y = %éde, (3.10)
p— iy = %ewpgd, (3.11)
b—dit — (09— d)i? = %e’pE, (3.12)
where
P, = —SZ, vi=1,....d, (3.13)
Py_y = _oF Vi=d+1,...,9, (3.14)



48 String gas cosmology at finite temperature

in terms of the free energy F.

3.2 The one loop string partition function with com-

pact dimensions

Consider type ITA /B string theory with all dimensions compactified in a rectangular tori
(i.e. simple products of circles), where (9 — d) spatial dimensions are compactified on
small radii all equal to a common value denoted r, whereas the remaining d directions
are taken very large, and all equal to R. As we saw section 2.7 the free energy can be

written as

dr:
ro =l [ M e ), 61
2 p=1

+o0o
A(T,’iN') = Z q4(m+”"') q I (m_m«)Q , (316)

mn=—o0
represents the contributions of the whole KK and winding modes along the small di-
mensions. In deriving eq.(3.15) the winding modes along the large dimensions have been
completely neglected and the sum over the KK modes has been approximated by an
integral over continuous momenta. Note that p in eq.(3.15) runs only over positive odd
numbers and correspond to taking the correct quantum statistic for bosons and fermions.
Taking only the term p = 1 in the above sum corresponds to replacing the quantum
bosonic/fermionic distribution with the classical Maxwell-Boltzmann distribution. Vj is

the volume of the large dimensions in (472) units?®:

Vy= 21 R)* = R?, (3.17)

(472)11/2(
The M, factor in eq. (3.15) encodes the contribution to the free energy of the whole

tower of massive strings, and can be expanded in powers of g:

~ o0
,7_

My(7) = D(N (3.18)

N=0
Here 6, and n are modular functions on the torus (see e.g. the appendix A for an explicit
expression) and D(N) is the degeneracy factor at level N (D(0) = 16, for example). The
value of N corresponds to each string mass level. The 7; and 7, integrals in eq. (3.15)

2Recall that we are setting o/ = 1.
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can be easily performed. It is convenient to consider the term with N = N = m; =
n; = 0 in eq. (3.15) separately from the remaining ones. This is the contribution of the
purely massless states, which we will henceforth denote as F.q (where “rad” stands for

radiation). We get
R4 d+1
R = =g pPr (U5 ) (me g na - e )

where £(x) is the Riemann zeta-function. The remaining “matter” terms give

DI I)Y (%M)(dmé 20 DIN)D(R) Kias1)2(BpM) (320
min;+N—N,0 (d+1)/2\PP .

mi,n; p= 1NN

where K(441)/2 are modified Bessel functions, and

9—d 9
M = M(mi,ni,ri, N,N) = 4| Y (m—2 + n§r2> +2(N+N). (3.21)
r
i=1
The total free energy is given by
F@ =9 L @ (3.22)

The infinite sum over N and N is not always convergent. In fact, the degeneracy factors
D(N), for large values of N, have a leading exponential behavior D(N) ~ exp(27v/2N).
On the other hand, for large values of its argument, the modified Bessel function K, (z)
admits an asymptotic expansion whose leading term is ~ exp(—z). Hence, the sum over
N and N in eq. (3.20) converges only for 3 > By = 27v/2. The temperature Ty = 1/
is the Hagedorn temperature.

As long as we deal with a range of energies where eq. (3.15) converges and no large
energy fluctuations are present, we can work with the canonical ensemble. On the other
hand, for high energy densities a microcanonical description has to be used. In this
case the energy density of states is governed by the analytic structure of the canonical
partition function Z = exp(—gF), in the complex (-plane. Taking into account the
leading singularities of (3.15), we can parametrize the partition function as

CABR e NS gy )18
Z(ﬂ’R)_B—ﬂH<6—BK> (5—ﬁw ’ (3.23)

where 7 and ny are defined by eq. (3.26) with S8x = By — nk and By = By — Nw-

A(B, R) is an entire function in f. The microcanonical energy distribution function
Q(E), is then given by

Br+ioco dﬁ
o = [T naemets Y f Rz mer s

H—100 i=H,K,W
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where Cy, Cx and Cy are the three contours encircling respectively the poles in By,
Bk and By in the complex S-plane. The entropy and the rest of the thermodynamical
quantities easily follow from eq. (3.24).

3.3 Hagedorn regime

According to the original BV proposal [21], the very early universe was compact over
all nine spatial dimensions with radii » ~ 1 in string units. In this section we study the
dilaton-gravity equations (3.4)-(3.6), with E and P the total energy and pressure of a
free string gas in thermal equilibrium in such a compact, small universe. For simplicity,
we consider the string gas associated with type IIA/IIB string theory compactified on a
square T°-torus, simple product of nine circles, with radii all equal to a common value
r = e*. Although the strict thermodynamical limit V — oo cannot be taken for this
system, thermodynamics is still trustable as long as the system contains many degrees
of freedom. In our case, this implies having an energy density p > 1. Our first step is
then to derive the equation of state of the string matter in this regime, or equivalently

the energy and pressure entering in egs. (3.4)-(3.6).

3.3.1 Microcanonical ensemble

As we already saw in section 2.7, for a totally compact space at high energy, the leading
singularity (a simple pole) of the partition function at f = By is not sufficient to
establish the thermodynamical properties of the system [21, 64]. The first next-to-
leading singularities are poles of order 18 with a dependence on the compactification
radius. In this case a useful parametrization of the one-loop partition function 7 is
given in eq. (3.23), from which one computes the density of states Q(E) by means of
eq.(3.24) and thus the associated entropy S = log Q(F) 3. It reads

S(E,r) =~ fpE+log {1 - (nxe B) e + (77WE)1777}<8€7'WE} } , (3.25)

1
F(18)77}{8w [

3We have numerically checked that the term A(3,R) in eq. (3.23) is negligible and thus is not
reported in the following.
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where Sy = 227, and
2
m<=¢§w[2— 4——] :
nw = V2 [2 — V4 - 27‘2} : (3.26)

nKW:ﬁw{[a_\/@]_[z_w]}.

The energy as a function of r is given directly by (3.25), since S = constant, by the
assumption of adiabatic evolution. On the other hand, the temperature and pressure,
defined as

1 98 T 0S
- 22 p=-__"= 3.27
T OE’ 9 d(logr)’ (3:27)
yield
1 1 1 2\ 18 - 1
- = — - |z 17 — y)e Y Z 717 — 2)e™ 2
T ~ T, xEF(lS)[(w) y (A7 —y)e +<w) 21T =2)e, (3.28)
Tz1
P = —— 2
9z )\’ (3.29)
where
1 yz\18 fe¥ e?
=1-— (L) ([— .
v F(18)(w) (y * z) (3:30)

and y = nxE, 2 = nwE, w = ngwE. As usual in the microcanonical ensemble, the
temperature is a derived quantity (from S and F) and its explicit form is needed only to

compute the pressure P. When the radius r is close to unity, 7" and P are approximately

given by
L oL e in (3.31)
T TH 1 ) -
P~ CyEe™7 (3.32)

where 1) >~ ng ~ ny for r ~ 1, and C; and C} are certain polynomial functions of 7 and
Nxw-

We numerically solved the dilaton-gravity equations (3.4)-(3.6) using a standard
Runge-Kutta routine. We adopted initial conditions around Ey ~ 1000, rq ~ 1, which
comes from the requirement of T-duality. The shifted dilaton is chosen to satisfy the
condition e® < 1 to ensure that the string coupling constant is initially small and hence
that perturbation theory and the ideal gas approximation are trustable. The initial

condition for X\ is somewhat arbitrary and we have carried out simulations for a wide
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variety of different initial values of \. Notice that ¢g is fixed by the constraint equation
(3.4) and that the negative solution is taken to remain in the perturbative regime of

small string coupling constant.

For initial conditions ry € [0.8,1.2] and Ey ~ 1000, the temperature is very close to
the Hagedorn temperature with a nearly constant value. This is clear from eq. (3.31),
since the last term in (3.31) is vanishingly small relative to the first term, due to the
exponential suppression given by e 7¥. Similarly we have P ~ 0 for the above initial
conditions from eq. (3.32). Therefore the system is effectively described by a pressureless
dust as shown in fig. 3.1. In this case one has A ~ Ae¥ from eq. (3.5), with A an
integration constant. Subtracting eq. (3.6) from eq. (3.4), we find a simple relation,
(eiw) = F/2. Taking note that E is nearly constant (FE ~ Ej), the analytic solutions of
eq. (3.4)-(3.6) in the Hagedorn regime may be written as

Ey , B? — dA?
~ 4 Bt4+ ——
LU Bt+ B
1 Eot + 2B — 2v/dA)(B + VdA
)\:)\0+—log(0+ VdA)(B + VdA)
(Eot + 2B + 2v/dA)(B — VdA)

e (3.33)

7 (3.34)

A and B are integration constants depending on the initial values for )\, 1 and 1/1 In
particular
A= Xe ¥, B=—gye ¥, (3.35)

and d is the number of dimensions (we are now considering the case with d = D = 9).
Notice that due to eq. (3.4), %, and thus B, can not be taken to be vanishing.

In fig. 3.1 we plot the evolution of 7 that corresponds to the analytic solution (3.34),
together with the full numerical results. They show very good agreement, which implies
that the Hagedorn regime is well described by a state with a constant energy and
negligible pressure. This actually ensures the validity of the analytic estimation in
ref. [79] discussed briefly in its appendix.

As long as ) is positive (negative), the radius grows (decreases) towards the asymp-
totic value

1/vVd
B+ +/dA /

B —\/dA

Ao

Too =

: (3.36)

with 7 getting smaller with time (see fig. 3.1). We have checked this for values of ry very
close to 1, up to 7o = (1 + 1 x 107%%), and found no substantial changes in behavior. If
one chooses exactly 7o = 1, eq. (3.25) should be replaced by another similar relation,

since now the two poles of order 18 in the S-plane approach each other to a single pole
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Figure 3.1: The evolution of 7 and P for the initial conditions )y = 1073, Mo = 0.2,
Yo = —5 and Ey = 10% in the Hagedorn regime. @bo is determined by the constraint
equation (3.4). We plot the evolution of r both using the analytic approximation (3.34)

and the full numerical result, which show very good agreement each other.

of order 36. The above results apply also in this case: the pressure is almost zero and

the evolution of the system is very slow in time.

For initial values of E in the range E, € [500,5000], the dynamics of the system is
practically the same as explained above. For initial energies F; > 1000 the scale factor
is essentially constant in time. On the other hand the system is typically unstable for
Ey < 1000 and not thermodynamically meaningful for such low values of Ej.

3.3.2 Conservation laws

We can also address the question of what happens when conservation laws are taken
into account. In the case of the toroidal compactification we consider, the conserved
quantities are taken to be the total winding number N; and the KK momenta M; in
each compact dimension (i = 1,...,9). As we saw in section 2.8, this is performed by

introducing a chemical potential for each conserved charge [131].

A crucial difference with respect to the previous case is that the leading singularity
of the partition function, namely the Hagedorn temperature, is enough to study the

thermal behavior of the system. In particular, the leading singularity now depends on
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the compactification radius induced by the conservation laws. The entropy of such an

ideal gas can be easily computed, yielding

T o= [ M2
Er)~ BygE — . - —9InE. .
S(E,r) =~ Bu 4\/§E;<7‘2 17‘) 9 In (3.37)

We see that in eq. (3.37) there are two suppression terms with respect to the leading
term Sy E in eq. (3.25). This is expected, because eq. (3.25) counts states with all values
of charges whereas (3.37) counts a smaller set of states in which the value of the charge
is fixed. Moreover, the number of states decreases as M; or N; are increased, since less
energy is available for the oscillators. The temperature and pressure obtained from the

entropy (3.37) are:

N =

_2 2\}_71_;22<M2 7') (3.38)

\—fEXi: <M2 N?r 2) : (3.39)

&)~

©|’ﬂ

The pressure vanishes if one imposes vanishing winding and KK charge, M; = N; = 0.
The energy E evolves very slowly for Fy of order 1000 in which case the radius r
asymptotically approaches a constant value after some growth from r, ~ 1, thereby
showing similar behavior to fig. 3.1. When M;, N; # 0, due to presence of the E factor
in the denominator of eq. (3.39), the system evolves similarly to the case M; = N; = 0,
as long as the summation terms in egs. (3.5) and (3.6) are unimportant. The dynamics
changes if M; and N; are of order 10°, since the scale factor can have respectively a
significant expansion or decreasing rate. As expected, winding modes prevent expansion,

whereas KK modes, as standard matter, favorite it.

As a last remark, notice that the string gas defined by egs. (3.38) and (3.39) has a
negative specific heat. Systems with negative specific heat are unstable in non-compact
spaces, but actually can be in thermal equilibrium in a finite space. Along the lines
of [63, 65, 134], we have evaluated the critical volume V, under which the system is in
equilibrium and found that this is actually the case for V. > 1, implying that the system
can be actually in equilibrium with radiation. It should also be emphasized that this
system is trustable as long as string corrections are completely neglected. When string
interactions are included, the system is most likely to undergo a phase transition [61]

whose details are so far unknown.
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3.4 Almost-radiation regime

Assuming that some dimensions (d) start to expand while the remaining (9 — d) di-
mensions remain small by means of some mechanism, the system will eventually reach
a temperature below the Hagedorn regime where the dynamics is mostly governed by
massless states, i.e. radiation®. In this case, it is important to see the conditions under
which the large dimensions continue to expand. At the same time, it is important to
study whether the small dimensions remain small or if they also enter an expanding
phase. Different from the Hagedorn regime discussed in the section 3, the microcanon-
ical ensemble agrees with the canonical one for the range of temperatures and energy
densities involved now. In the following we shall use the latter ensemble, which is more

convenient for practical purposes.

Assuming again thermodynamical equilibrium and adiabatic evolution, we shall solve
the dilaton-gravity equations (3.9)-(3.12), with E' and P obtained from the free energy
of a string gas at temperatures below Ty. The entropy S is conserved with time under

the assumption of adiabatic evolution:

jt (52 95 ) (3.40)

Eq. (3.40) is solved by letting 5 and the scale factors \; = log R;, be slowly varying
functions of time [ — B(t), i — Ai(t)]. In this way one can derive a differential
equation whose solution gives 8 = 3();) with S =constant. We denote the radii of the
large d dimensions, taken all equal, by R = e/, whereas the radii of the (9 — d) small

dimensions, again all equal, by r = e”.

3.4.1 Pure radiation

As a first step, let us consider the case of pure radiation. The energy and pressure are

easily evaluated from eq. (3.19) :

OFY  dRd d+1
B0, = £ 5%t = SEpopr () (an) P @ a-2 @)s 1,
whereas the pressure Pmd for the d spatial dimensions is given by
1 9F BY
P(d) — rad _F(d) — _“rad 3.42
rad da(ln R) rad d ’ ( )

4Notice that the system is already in an almost radiation regime for 8 > 11 and it is essentially
governed by pure radiation only for 8 > 14, in string units.
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which corresponds to the equation of state for radiation in d spatial dimensions. Eq. (3.41)
is nothing but the d-dimensional generalization of the Stefan-Boltzmann law in presence

of D(0)?/2 bosonic and fermionic degrees of freedom. Since F, ) does not depend on 7,

rad
the pressure along the small dimensions vanish:
. 1 9F%
pO Y- Trad _g 3.43
rad 9—dd(lnr) (3:43)

From the adiabatic equation (3.40), we easily get the following relation

R

relating the temperature and scale factor in a radiation-dominated universe, with S,
and Ry being initial conditions satisfying S(Ry) = So. In this case the dilaton-gravity
equations (3.9)-(3.12) read

. 1 1 1.

v = §d/l2 + 5(9 —d)i? + §¢2, (3.45)
o1

ji= it e P, (3.46)

o= 4w, (3.47)

together with the constraint equation
W? = e’ B+ di® + (9 — d)i. (3.48)
Eq. (3.47) is integrated to give
U= eV ", (3.49)

where 7y are 1)y are the initial values of o are ¢». We see from eq. (3.49) that when
vy is positive (negative) the expansion rate for the small dimensions is always positive
(negative). In order to avoid unbounded growth of the dilaton towards the strongly
coupled regime (e® > 1), it is natural to consider the case with negative ¢. In this case

the absolute value of v decreases with time.

In the absence of the pressure Pr(i)i in eq. (3.46), the evolution of the large dimensions

is similar to that of the small ones. In the case ¢ < 0 and fto > 0, we have i < 0
for P\

g = 0 from eq. (3.46). This corresponds to the universe with expanding large

dimensions with a decreasing Hubble rate. Numerically we found that the evolution of
the system in this case is trivial, namely the large dimensions soon approach a nearly

constant value with very small /.
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Figure 3.2: The evolution of R, » and [ for the pure radiation case with d = 3. We
choose the initial conditions jiy = 1.0, po = 4.0, vy = —0.01, vy = 0.0, Yy = —16 and
ﬂ() = ]_5

When the pressure pPY

oy 15 taken into account, this works as a positive source term

in eq. (3.46). Therefore it is possible to make the r.h.s. of eq. (3.46) positive even
when ¢ < 0 and > 0. We have made numerical simulations with initial conditions
Ry > rg ~ 1, 1/}0 < 0, and several different values of fio and 9. As long as fi is
positive, the large dimensions expand in the presence of the pressure due to radiation.
The contribution of the pressure term in eq. (3.46) inhibits the rapid decrease of fi,
thereby leading to different evolution of R compared to the case with PT(j; = 0. The
expansion rate  for the small dimensions is exponentially suppressed with the decrease
of 9 [see eq. (3.49)]. Therefore unless the initial value of || is much larger than unity,

the radius r can stay small around r ~ 1.

We have numerically succeeded to obtain ideal solutions with growing R and small,
roughly constant, r satisfying » < R. One typical evolution is plotted in fig. 3.2. These
solutions can be achieved by choosing initial values with g > ||, Ry > ro ~ 1 and
Yo < 0. When fiy < |9| holds initially, it is difficult to keep the small dimensions small
relative to the large ones. If iy < 0, we have jip > 0 from eq. (3.46). This leads to the
growth of the expansion rate fi. Since /i continues to be negative by the time it crosses
zero, the large dimensions contract during this stage. After i changes sign, R begins

to grow. This implies that bouncing solutions may be obtained if jip < 0. We have
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Figure 3.3: The evolution of R, r and [ for the pure radiation case with d = 3. We
choose the initial conditions g = —0.04, po = 4.0, 7y = —0.01, vy = 0.0, Yy = —16 and
ﬁo = 15.

numerically found that this is actually the case, see fig. 3.3. During the contracting
phase, the temperature increases according to eq. (3.44). The temperature is maximum
at the bounce where R is minimum. In the context of Pre-Big-Bang [7] or Ekpyrotic
Cosmologies [11, 12], nonsingular bouncing solutions are difficult to construct unless
loop or derivative corrections are added to the tree-level action [135-137]. It is quite
interesting to be able to obtain bouncing solutions only by including radiation in dilaton-
gravity equations.

It is worth investigating the asymptotic behavior of the dynamical system of egs. (3.45)-
(3.47), along the lines of [79]. Introducing new parameters, i = £, ¥ =0, ¢ = f, and
using the fact that the pressure in the large dimensions is connected to the energy Eﬁizi
through eq. (3.42), egs. (3.45)-(3.48) become:

fo e (G-0) ] b a0
. 2

£ = —% [£2+<3—1)n2}+f£+§—d, (3.51)
n o= In. (3.52)

Since we are considering the case with decreasing 1/}, n asymptotically approaches zero
from eq. (3.49), i.e. n = 0 is an attractive solution. In this case, the analysis is closely

related with the one outlined in the appendix of [79]. In particular one finds that the
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line described by

fl¢=—-d, n=0, (3.53)

is an attractor. From eq. (3.3) the time-derivative of the dilaton is given as 26 =
f+dé+ (9 — d)n. Therefore we have ® = 0 for the attractor (3.53), again in complete
analogy to the case of the single scale factor [79]. Substituting eq. (3.53) for eq. (3.51)

and integrating this relation, one finds

2

& x
This indicates that the late time evolution for the large dimensions can be described by
that of the standard radiation dominant phase in FRW cosmology for d = 3, even in
the presence of the small dimensions. The key point is that the pressure in the small
dimensions vanishes for the massless case, thereby leading to n = 0 as an attractor.
Notice that a cosmological solution of this kind has been also obtained in standard

General Relativity and in a purely Kaluza-Klein extra-dimensional scenario by [138].

We also analyzed the evolution of the system by varying the value of d, and found
that the situation is not basically changed compared to the d = 3 case discussed above.
As long as the initial conditions satisfy g > |0|, Rg > 19 ~ 1 and Yo < 0, the large di-
mensions continue to expand due to the presence of radiation while the small dimensions
are kept to be small (r < R). In this case the large dimensions asymptotically approach
the radiation-dominant FRW solution (3.54). When the initial value of j is negative,
we found that it is possible to have a bouncing cosmological solution that approaches

the expanding FRW universe given by (3.54).

3.4.2 Inclusion of matter

Although massless states, pure radiation, dominate the thermodynamical ensemble in
this phase, this dominant contribution has a trivial dependence on the small dimensions
r. In particular, Ffj()i does not depend on 7 and the pressure along the small dimensions
trivially vanishes. It is then important to see if and how matter terms can alter this
behavior. For this purpose, we study the leading terms that have an explicit dependence
on r in the infinite sums appearing in eq. (3.20). We have numerically estimated that it
is enough to consider the first KK and winding modes along a small direction, i.e. the
terms with {N = N = 0,m; = (1,0,...,0),n; = 0} (as well as m; and n; exchanged)

in eq. (3.20), plus the remaining 8 — d inequivalent permutations. The energy EY

ot and

pressures Pr(,f(zt and P,(nga_td) along the large and small dimensions associated with these



60 String gas cosmology at finite temperature

states are simply evaluated starting from the general expression (3.20). The equation

of state for these leading order terms are:

@ _ J 1 1-d B 1 B B
B, = —VdC(ﬁ)“{[m—g K«HU/?(? @y Kae| )|+

1—d
|:7-(d+1)/2TK(d+1)/2 (B'f') + '[‘(d+1)/2/8’[‘K£d+1)/2 (/67'):| } s (355)

d 1 B
Pt = VaO ()" [r(d+_1)/_2 Katy 2(? +r K g0 (Br) | (3.56)
PO = VO() 8|~ Ky (2) - r 92K

mat . = VaC(8)'B ey R CENE] e ) @-12(8r) |, (3.57)
where K, are modified Bessel functions, the prime denotes derivative with respect to r,

and 1))

2 18 — 2d
C(B)@ = (%) (8 =2d) b py2. (3.58)
7

Here D(0)? = 256 is a string degeneracy factor. Note that we only consider the p = 1
term in eq. (3.20), implying the approximation of the bosonic/fermionic statistics with
the Maxwell-Boltzmann distribution. The pressure Pr(,fgt along the large dimensions is
always positive, which aids expansion of the universe in addition to the pressure Pfj()j
from the massless states. The first and second terms in square brackets in eqs. (3.56)
and (3.57) come from the KK and winding mode, respectively. The above equations
(3.55)-(3.57) are all manifestly invariant under the duality symmetry (3.7) acting on
the small dimensions,  — 1/r. Notice that the winding modes give rise to a standard
positive pressure along the large dimensions (second term in (3.56)) but negative along

the small ones (second term in (3.57)).

. . . . . d
We numerically solved the dilaton-gravity equations (3.9)-(3.12), with E = E(uzl +

T

ED. P& = p@ 4 p9 ang po-d) = pO-9 4 pO-d) 1y carefully taking into account
the adiabaticity condition (3.40). The pressure Pga_td) for the small dimensions vanishes

at the self-dual critical radius » = 1. Therefore it is expected that the effect of the mas-
sive states for the small dimensions is weak around r ~ 1. In fact we have numerically
found that this is the case. As seen from the case (b) in fig. 3.4, the evolution of the
small dimensions is hardly altered by including the massive mode for the initial value
of r very close to unity. From eq. (3.57) one notes that % < 0 for 0 < r < 1 and
P,Efa;d) > 0 for r > 1 (the asymptotic values are Pga;d) — 0 for r — 0 and r — o0). This

indicates that the pressure of the massive state makes the small dimensions contract for

0 < r < 1 while its effect tends to expand the small dimensions for r > 1.

The effect of the massive states emerges by choosing the initial values of ry that are
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Figure 3.4: The evolution of the small dimensions for d = 4 when the massive states
are taken into account (solid curve). The dotted curves correspond to the case where
the massive states are neglected (only massless states). We choose the initial conditions
fo = 1.0, po = 4.0, g = —16, fy = 12 with (a) 2o = —0.1, vy = 1.0, (b) 7y = —0.1,
vy = 0.05, (¢) 7o = 0.1, vy = —1.0.

slightly smaller or larger than unity. For 0 < ry < 1 with 7y > 0, the small dimensions
can be larger than r = 1 for large initial values of ». In this case the small dimensions
continue to grow after they cross r = 1. When 7 is not large (¢ < 1), the massive
effect can lead to the contraction of the small dimensions due to the negative pressure
for r < 1. As found from the case (c) in fig. 3.4, the small dimensions always increase in
the massless case, whereas the small dimensions begin to contract if the massive effect
is included. Therefore we can keep the (9 — d) dimensions small (0 < r < 1) for these

initial conditions.

We have also made numerical simulations for ry > 1. When jiyp > 0 and 7y > 0,
both large and small dimensions expand in the presence of positive pressures. If 7y is
largely negative, the small dimensions contract by passing through r = 1. Meanwhile,
if [75| < 1, the small dimensions can exhibit bouncing with r > 1, instead of crossing
r =1 [see the case (a) in fig. 3.4). This means that the radius r can grow in the presence
of the massive states. Since the small dimensions continue to expand after the bounce,
this is not an ideal case where the small dimensions stay small. Nevertheless the small

dimensions can be made small compared to the large dimensions as long as iy > 7.

When the massive states are taken into account, this gives rise to an extra source
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Figure 3.5: The evolution of the large dimensions and S that corresponds to the case
(c) in fig. 3.4. The dotted curves correspond to the case where the massive states are

neglected (massless states only).

term for the energy E in eq. (3.9). Then WO\ gets larger compared to the pure massless
case. Typically this leads to the suppression of the r.h.s. of eq. (3.10) via the e¥
term, thereby yielding the smaller expansion rate f for the large dimensions. The large
dimensions in the massive case grow slower relative to the massless case, as seen in
fig. 3.5. In addition, the massive effect suppresses the growth of 3, i.e. the temperature

decreases faster in the massless case.

As expected, the massive terms get smaller as the initial value of /3 is increased. For
example, in the cases shown in fig. 3.4 and 3.5, the system is effectively described by
the massless states for 5y > 15. We also analyzed the behavior of the system by varying
the value d with 1 < d < 8. We found that the numerical results are quite similar to the
case explained above (d = 4). As long as the conditions, fiy > || and Ry > 19 ~ 1, are
satisfied, the small dimensions are kept small, while the large ones expand as required

in the presence of radiation and string matter.

We have also considered the case with the conservation of KK and/or winding modes.
Under this circumstance, the partition function must be taken summing only over the
configurations that respect the conservation laws. As before, this is done by introducing
a chemical potential corresponding to each conserved quantity in the partition func-

tion. It turns out that no significant changes are found compared to the case where no
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conservation laws are imposed.

We then analyzed the case where the massive string states are taken into account in
addition to the pure radiation. The presence of the massive states typically leads to a
slower expansion of the “large” dimensions relative to the massless case (see fig. 3.5).
Meanwhile the behavior of the small dimensions strongly depends on the initial condi-
tions for r and 7, resulting in either expansion or contraction of the small dimensions
(see fig. 3.4). The radius r can be kept small as long as r is initially close to unity,
since the pressure vanishes at the duality symmetric radius (r = 1). The vanishing of
the pressure at r = 1 is a purely stringy effect, since it is due to winding modes, whose
negative contribution compensates that of KK states. The important point is that, even
in the presence of the massive state, there exist a wide range of the initial condition
space for which the small dimensions are stabilized around the self-dual radius and are
kept small relative to the large ones. These behaviors are found to be insensitive to
the number of large dimensions, d. We also considered the case for the conservation of
KK and winding modes and found no substantial change compared to the case without

imposing the conservation laws.
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Chapter 4

Plane waves and Penrose limits

In 1976 Penrose [93] showed that any space-time (any solution of the Einstein field
equations) has a limiting space-time which is a plane wave, which physical interpretation

was described as follows:

There s a “physical” interpretation of the above mathematical procedure,which is the
following. We envisage a succession of observers traveling in the space-time M whose
world lines approach the null geodesic v more and more closely; so we picture these
observers as traveling with greater and greater speeds, approaching that of light. As their
speeds increase they must correspondingly recalibrate their clocks to run faster and faster
(assuming that all space-time measurements are referred to clock measurements in the
standard way) so that in the limit the clocks measure the affine parameter z° along .
(Without clock recalibration a degenerate space-time metric would result.) In the limit

the observers measure the space-time to have the plane wave structure W, .

Then in 2000 Gueven [139] showed that any solution of a supergravity theory has
plane wave limits which are also solutions.

Moreover, as we will see in the end of this chapter, the Penrose limit metric, encodes
diffeomorphism invariant information about the original space-time metric; in particular
it gives us information about the growth of curvature and geodesic deviation along a

null geodesic.

On the other hand the relevance of dealing with a pp-wave background in string
theory is that in this background there is a natural light cone gauge and in many cases

string theory can be quantized exactly.

By taking into consideration these two facts, the study of the Penrose limit of cosmo-
logical singularities and further on the study of string propagation in these backgrounds,

is one possibility to make a first step toward the study of string propagation in singular

65
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and time dependent space-time backgrounds.

In this chapter we will introduce the basics of Penrose limits and plane wave metrics
in order to be prepared for the explicit computation of the Penrose limits of space-time

singularities.

4.1 Plane waves

4.1.1 Plane waves in Rosen coordinates

If we consider a metric g,, with a small perturbation h,, of the Minkowski background

metric
Juv = Muv + h;u/ s (41)

the Einstein equations to linear order in h,, reduce to a wave equation, i.e. a gravita-
tional plane wave solution of general relativity. Gravitational waves are transversally

polarized. For example, a wave traveling in the (t,z) direction would be
ds® = —dt® + d2* + (6;; + hij(z — t))dy'dy’ . (4.2)

Using light cone coordinates U = z —t, V = (2 + t)/2 it takes the form:
ds® = 2dUdV + (6;; + hi; (U))dy'dy’ (4.3)

and so if we drop the assumption that h;; is “small” a plane wave metric g,, in Rosen
coordinates is
d3? = 2dUdV + Cy;(U)dY'dY? . (4.4)

Plane wave metrics are characterized by a single matrix-valued function of U, but two

metrics with different C;; could be isometric.

4.1.2 Plane waves in Brinkmann coordinates

Since one of the characteristics of the plane wave metrics is the existence of a covari-
antly constant null vector 0y, let us derive a metric for a space-time admitting such a

covariantly constant null vector.

Let Z be a parallel (covariantly constant) null vector of the (d + 2)-dimensional
Lorentzian metric g,,, V,Z” = 0 which is equivalent to:

V.Z,+V,Z, = 0, (4.5)

V.Z,-V,Z, = 0, (4.6)



4.1 Plane waves 67

in other words, Z is a Killing vector field and also a gradient vector field. We can assume
that Z = 0, for some coordinate v. Then, since Z is null g,, = 0. On the other hand,
the Killing equation implies that all the components of the metric are v-independent,
Oygu = 0. From this, it follows that eq (4.5) is satisfied for ;1 = v or ¥ = v and therefore

it remains
VoZs =VgZ,, (4.7)
where {z#} = {v, 2}, which implies that Z, = g4, = Oau.
Therefore the general form of a metric admitting a parallel null vector with coordi-
nates {u,v, 2%}, a=1,...d, is

ds’ = 2gupdz®dv + gaﬂdxadxﬂ
= 2dudv + guu(u, 2°)du? + 294, (u, 2°)d2zdu + gop(u, 2°)dzda®
= 2dudv + K (u, 3°)du® + 24, (u, 2°)dz*du + gap(u, 2¢)dz*dz’ (4.8)

Metrics with g = 0gp,
d5? = 2dudv + K (u, 2°)du? + 2A, (u, 2°)dz"du + dz? (4.9)

are called plane-fronted waves with parallel rays or pp-waves. “Plane-fronted” refers to
the fact that the wave fronts u = const are planar and “parallel rays” refers to the
existence of a parallel null vector. There are residual coordinate transformations that

leave this form invariant.

In particular, when A, = 0 and K (u, %) is quadratic in the 2% we have a plane wave

in Brinkmann coordinates:
d5® = 2dudv + Ay (u)z s du’® + dz?, (4.10)

Thus in Brinkmann coordinates a plane wave metric is almost uniquely characterized
by a single symmetric matrix-valued function Ay (u) since there are very few residual
coordinate transformations that leave the metric invariant.

Moreover the only non-vanishing component of the Riemann curvature tensor of the

plane wave metric is given by
Ruaub = _Aaba (411)

the only one non-trivial component of the Ricci tensor is
Ryy = —6% Ay = —trA (4.12)

and the Ricci scalar is
R=0. (4.13)
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Therefore the metric is flat if and only if A, = 0 and the vacuum Einstein equations
imply that A, is traceless.

Let us now look at the traceless part of the Riemann tensor, the Weyl tensor,

1
Cuaub = _(Aab - 86ath‘A) . (414)

We see that it vanishes if and only if A, is pure trace,
Aab(u) = A(U)éab (415)

and therefore for d > 1 the plane wave metric is conformally flat. By looking at the
plane wave metric in Rosen coordinates we see that for d = 1, every plane wave is

conformally flat.

When the Ricci tensor is non-zero, A, has non-vanishing trace, then plane waves
solve the Einstein equations with null matter or null fluxes, i.e. with an energy-

momentum tensor 7, whose only non-vanishing component is 7y,
Ty = p(t)0 b (4.16)

for example, null Maxwell fields A(u) with field strength FF = du A A’'(u), and their
higher-rank generalizations. Physical matter (with positive energy density) corresponds
to Ry, > 0 or trA < 0.

4.1.3 From Rosen to Brinkmann coordinates

By making the change of variables

U = u
1 - _.
Vo= U—|—§Em~E,§x“xb
Yt = E'z%, (4.17)

the plane wave metric in Rosen coordinates, eq. (4.4), is transformed to the one in

Brinkmann coordinates, eq. (4.10), with

Aw = E4Ey, (4.18)
which can also be written as the harmonic oscillator equation E,u = Ay Ep;. Here E_’f is
a vielbein for Cj;

Cij = E}E2Sa, (4.19)
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and satisfies the symmetry condition
EazEZ = EszZ (4-20)
(such an E can always be found and is unique up to U-independent orthogonal trans-

formations [99]).

Therefore the relation between C;;(U) and Ag(u) is that Agp is the curvature of Cj;,
Aab = —EZE_'gRUng . (421)

If the metric C;;(u) is diagonal, C;;(u) = &;(u)?d;;, one can choose E? = €;0¢. Then the
symmetry condition is automatically satisfied because a diagonal matrix is symmetric,

and one finds that A, is also diagonal

Ay = 254 (4.22)

a

Conversely, given a diagonal plane wave in Brinkmann coordinates, to obtain the
metric in Rosen coordinates one needs to solve the harmonic oscillator equations

In particular, the Rosen metric determined by C;;(u) is flat if and only if €;(u) = a;u+b;

for some constants a;, b;.

4.2 Geodesics and Harmonic oscillators

The geodesic equations can be obtained from the Lagrangian,
.. 1 a b2 1 =2
L =u0+ §Aab(u)x z°u” + 57 (4.24)
together with the constraint

L =¢, (4.25)

where the overdot denotes a derivate with respect to the affine parameter 7 and e = 0/—1

for massless/massive particles. The light cone momentum

oL

== (4.26)

Dy
is conserved and the light cone gauge is

U = p,T (4.27)



70 Plane waves and Penrose limits

so by setting p, = 1 we have u = 7. The equations of motion for the transverse

coordinates are

i = Agy(u)z®, (4.28)

which correspond to a non-relativistic harmonic oscillator with frequency matrix w2, =
—Ag.

On the other hand, the harmonic oscillator equation arises as well in the geodesic
deviation equation for the transverse coordinates. One way to detect the presence of a
curvature singularity is to study the tidal forces acting on extended objects or families
of freely falling particles, i.e. by means of the geodesic deviation equation:

D? _

ﬁéx“ = R, i¥i*0z?, (4.29)
where dz" is the separation vector between nearby geodesics. Let us consider the family
of geodesics 0, of plane waves parametrized by the transverse coordinates (v, z*), and
choose dx* to connect points on nearby geodesics with the same value of 7 = u. Thus
ou = 0, and the geodesic deviation equation for the transverse separations dx® reduces
to

B2

e 62" = —R%,, 02" = Ay 62°. (4.30)

We then see that A, contains direct physical information. For negative eingenvalues of
A, physical matter, this tidal force is attractive, leading to a focusing of the geodesics.
On the other hand, for vacuum plane waves the tidal force is attractive in some directions
and repulsive in the other. Finally if Ay, (u) diverges then the tidal forces become infinite
and therefore the plane wave space-time is singular at such points. If such a singularity
occurs at u = ug, since u is the affine parameter along the null geodesic, this shows that
any geodesic starting off at a finite value of u will reach the singularity in finite proper

time. Thus the space-time is geodesically incomplete and ends at u = wuy.

Therefore a plane wave metric is singular if and only if A, diverges somewhere.

4.3 Homogeneous plane waves

In Brinkmann coordinates, because of the explicit dependence of the metric on u and the
transverse coordinates, only the isometry generated by the parallel null vector Z = 0,
is manifest. On the other hand, in Rosen coordinates the metric depends neither on V'

nor on the transverse coordinates Y* and therefore the Killing vectors are Z = dy and
d ayk.
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All Killing vectors V' can be found by solving the Killing equations
Lygu =V,V,+V,V, =0, (4.31)

in Brinkmann coordinates [103], which turn out to be Z = 0, and the 2d

X (i) = X(x) = fxraOa — f()az® 0y (4.32)
where fig),, K = 1,---,2d are the 2d linearly independent solutions of the harmonic
oscillator equation

fa(u) = Agy(u) fo(u) . (4.33)

Then, the corresponding 2d Killing vectors
Qa = X(Q(a)) ) Pa = X(p(a)) y (434)
and Z satisfy the canonically normalized Heisenberg algebra

[Qaa Z] = [Pa, Z] =0
[Qa, Qs] = [Pu,P)=0
[Qaa Pb] - (SabZ, (435)

where p(,) and g arise by splitting the solutions f(;) into two sets of solutions

{fon} = P aw)} (4.36)

characterized by the initial conditions

P(ays (o) = dap Playp (o) =0
q(ayp(uo) =0 G(ay (t0) = Dap - (4.37)

This algebra acts transitively on the null hyperplanes v = const. However for special
choices of Ay (u), there may be more Killing vectors, which could arise from internal

symmetries of Agp.

4.3.1 Cahen-Wallach plane waves

The Cahen-Wallach metric [140, 141] is such that Ay is u-independent

d5® = 2dudv + Agpz2’du® + dz? (4.38)



72 Plane waves and Penrose limits

and has an extra Killing vector X = 0,. Since A, is u-independent, it can be diagonal-
ized by a u-independent orthogonal transformation acting on the z¢. Moreover A,, can

be rescaled, Aq — pu?Ag by the coordinate transformation
(u, v, 2%) = (pu, p~ v, 2%). (4.39)

The appearence of the extra Killing vector renders the metric homogeneous and since

the Riemann curvature tensor is covariantly constant,
ViR =06 0,A0 =0 (4.40)

the metric is locally symmetric. The additional Killing vector X = 0, extends the
Heisenberg algebra to the harmonic oscillator algebra, with X playing the role of the
number operator or harmonic oscillator Hamiltonian. X and Z conmute and the rest of

the conmutators are

[XaQa] = Pa
(X, P = AuQy (4.41)

which corresponds to the harmonic oscillator algebra.

The Cahen-Wallach metric eq. (4.38) can be generalized with the profile
Agy(u) = (€ Be ™)y, (4.42)

which reduces to eq. (4.38) for f,, = 0, and presents the extra Killing vector
X =0y + fup?"0, . (4.43)

These homogeneous plane waves are completly non-singular and geodesically complete,

and they are solutions to the vacuum Einstein equations if and only if By, is traceless.

By making the change of coordinates
1% — (7)) gpa?, (4.44)
the metric becomes manifestly independent of u,
ds? = 2dudv + kepzzbdu® + 2fpxtdzbdu + dz?, (4.45)

with
kap = Bap — [ (4.46)
In this coordinates the additional Killing vector is just X = 0, and the corresponding

conserved charge is the lightcone Hamiltonian which is that of an harmonic oscillator

coupled to the constant magnetic field f,,.
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4.3.2 Singular homogeneous plane waves
The plane waves with u-dependent A, such that
Aup(u) = uCap, (4.47)

for some constant matrix c,, are still homogeneous but not symmetric. In this case, the

plane wave metric
2

d
ds* = 2dudv + caba:“acbi2 + dz? (4.48)
U

is invariant under the boost eq (4.39), corresponding to the extra Killing vector
X =u0, —v0,. (4.49)
The generalization of these metrics is done by considering the profile
Agp = u 2(ello8WS ¢ g (ogw)) (4.50)

They have null singularities at u = 0.

4.4 The Penrose limit

As it was already mention at the beginning of the chapter, the Penrose limit construction
associates to every space-time metric g,, and choice of null geodesic y in that spacetime
a plane wave metric g,,. The “traditional” receipt to take the Penrose limit is roughly

the following:

e Rewrite the original metric g,, in “adapted” or “Penrose” coordinates

ds® = 2dUdV + C(U,V,Y*)dV? + 2C;(U, V, Y*)dY*dV + Cy;(U, V,Y*)dY'dY7

(4.51)
e Perform a change of coordinates (2 € R)
UV, YR —  (u, %0, Q) : ga. (4.52)
e Take the Penrose limit to obtain the Penrose metric g,
d3* = lim Q ?ds?, (4.53)

Q-0

which corresponds to the metric of a plane wave in Rosen coordinates.

In what follows the procedure will be explain carefully.
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4.4.1 Adapted coordinates
Consider metrics of the form
ds® = 2dUdV + C(U,V,Y*)dV? 4 2C,(U, V,Y*¥)dY'dV + Ci;(U, V, Y*)dY'dY? | (4.54)

where C, C; and Cj; can depend on all the coordinates (U, V, Y*). This class of metrics
is characterized by the fact that gyy = 1 and gyy = gy; = 0. In particular, dy is null
and is also a geodesic vector field, with U playing the role of an affine parameter along
the null geodesic integral curves of Jy. Indeed, Jy is a geodesic if

V3U8U =0 & FNUU =0. (455)

Since gyy = 0, it follows that g,y is U independent, as it certainly is.

Thus the above metric defines a special kind of null geodesic congruence: in the
region of validity of the above coordinate system there is a unique null geodesic passing
through any point, and we can therefore parametrize the points by the value of the
affine parameter U on that geodesic and the transverse coordinates (V,Y*) labelling the

geodesics.

Now, given any particular null geodesic z#(7) of a space-time with metric g,,,
(U,V,Y") are “Penrose coordinates” or “adapted coordinates” if the metric takes the

above form, (4.54), with z#(7) corresponding to the geodesic V = Y* = 0 with U = .

Such a coordinate system always exists and can be shown by means of the Hamilton-
Jacobi (HJ) formalism [58, 100] which is as follows: The momenta,

dx¥
Pu = guuﬁ s (456)

associated with the above null congruence (U =1,V = Y* = 0) are
pv=1, py=pyr=0, (4.57)
so that, in arbitrary coordinates x*, one has
pu=0,V. (4.58)
Thus, since the geodesic congruence is null, g**9,V 9,V = 0, one can identify
V(zh) = S(z") (4.59)
with the solution of the Hamilton-Jacobi equation

9" 9,50,5 =0, (4.60)
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corresponding to the null congruence (4.57)
= g"a,Ss . (4.61)

Likewise, any solution S of the equations (4.60,4.61) gives rise to a null geodesic con-

gruence,
1
2PV it = ¢g*? "'V ,0,50,S = Eg“uay(g”‘fapS&,S) =0, (4.62)
and V = § is the corresponding null adapted coordinate.

There usually exists a “complete” solution to the HJ equation (4.60), complete in
the sense that it depends on d + 2 (the space-time dimension) integration constants
[142]'. For a complete solution to the HJ equation with integration constants c,, the
associated geodesic congruence is z# = z#(7, o, 25 ), where zff are the positions of the
geodesics at 7 = 0, zf = 2#(0, o, 2fy). The initial value surface parameterized by the

xf can be represented by the equation F'(z#) = 0.

Given a particular null geodesic 7, the integration constants a4 can be uniquely
fixed. We can let pg = gw®”|r=0 to be the momentum of the geodesic v at 7 = 0. The
mass-shell condition g*'p,p, = 0 is scale invariant and therefore there are d independent
momenta. These can be used to determine the integration constants of the HJ function
S via the equation

Py = 0uSlr—0. (4.63)
Therefore we can use the HJ equation to embed a given null geodesic into a null geodesic
congruence determined by the solution S [105].

We can then parameterize the null geodesic congruence as described above (the

integration constants are specified by the momentum of the null geodesic 7)

= zh(r1,xp) (4.64)
F(zt) = 0. (4.65)
Then we set
U =1
vV = S(af). (4.66)

Since S = 0 then S(z#) = S(z%). The coordinates Y* are found by solving the equations
F(zfj) = 0 and S(zf) = V. Therefore the first equation in (4.65),

o = 2*(U, 2 (V,Y*)) = 2*(U, V, Y*) (4.67)

Tt is not always guaranteed that such a complete solution exists, though in all the cases that we
consider here it does. The most general solution can be constructed from a complete solution [143].
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is the transformation which relates a coordinate system on a space-time to the Penrose

coordinates.

Since there is no natural choice for the hypersurface F' = 0, it must be thought of
as a gauge fixing condition, the Penrose limit metric is independent of it, corresponding
to different ways of labelling the geodesics of the congruence on which the adapted

coordinates are based.

In these coordinates the metric takes the form (4.54):

Ozx# 0z
guu = w5 = 0 (4.68)

because the geodesics z# (7, zf) are null. Moreover

ox* oxY ox*  Ox# oV
L Ly i P A | 4.69
Jov =G g gy = ImI 00 Gy T gy e T By (4.69)

and Ozt Dz oS 0z OV
o zt 0z¥ _ up z _ A
9vi = 9w g gy = IS oy ayi L (4.70)

4.4.2 Taking the limit

By inspection we see that by dropping the second and third terms in eq. (4.54) and
keeping only the U dependence of the coefficient C;;, Cy;(U) = C;;(U,0,0), the metric,
eq. (4.54), is the plane wave metric in Rosen coordinates. Being more precise, the
Penrose limit can be understood as a boost accompanied by a commensurate uniform
rescaling of the coordinates in such a way that the affine parameter along the null
geodesic remains invariant.
Therefore consider the original metric in adapted coordinates, eq. (4.54), and perform
the boost
(U, V,Y%) — (Q7'U, QV, Y. (4.71)

Since taking the limit {2 — 0, infinite boost, results in a singular metric, one must as

well rescale the metric as

U, v, Y = (QU, QV, QY*)

ds* —  Q?ds®. (4.73)
The net effect is thus the asymmetric scaling

(U, V,Y¥) = (U QV, QY*) : gq (4.74)
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of the coordinates, leaving the affine parameter U invariant, plus an overall rescaling of

the metric.

Finally the Penrose limit metric, g, arises by taking the infinite boost and large
volume limit €2 — 0

Penrose Limit =  d3* = lim Q™?ds} = 2dUdV + Cy;(U)dY"'dY7, (4.75)

Q—0

and results in the plane wave metric in Rosen coordinates.

A coordinate transformation (U,V,Y*) — (u,v, %) takes the metric into the stan-
dard Brinkmann form eq. (4.10), with A, related to the only non-vanishing component

of the Riemann curvature tensor , eq. (4.21),

Aap(u) = —Ravnw (u) = —Riuju(0) E; (u) B} (u) (4.76)

with E? an orthonormal coframe for the transverse metric 0i; satisfying the symmetry
condition eq.(4.20).

One may think that the plane wave limit space-time sees only an infinitesimal neigh-
bourhood of a small segment of the geodesic blown-up to cover all of space-time, but
this is not the case. By transforming to Brinkmann coordinates one recovers the entire
original null geodesic, with the affine parameter U running from —oo to +oc unless the

geodesic runs into a curvature singularity.

4.4.3 Covariance of the Penrose limit

It was just shown that the Penrose limit construction associates to any choice of Lorentzian
metric and null geodesic a plane wave metric. But one can ask to what extent this plane
wave metric depends on the choice of null geodesic. For small values of the affine pa-
rameter, a null geodesic v is characterized by specifying the initial position v(0) and
the initial velocity 4(0). So, the Penrose limit only cares on the initial direction of the
geodesic. Consider 7, and 79, two null geodesics starting at the same point but such
that 4, (0) = A2(0) for some nonzero constant A, then the geodesics are related by a
rescaling of the affine parameter. The resulting Penrose limits are related by a rescaling
of u, which can be absorbed by a rescaling of the v coordinate. Thus the Penrose limit
depends on the actual curved traced by the geodesic and not on how it is parametrized.

Furthermore Penrose limits have the covariance property: if two null geodesic are

related by an isometry their Penrose limits are themselves isometric.
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4.5 Some elementary hereditary properties of Pen-

rose limits

Geroch has called a property of space-times hereditarity if, whenever a family of space-
times have that property, all the limits of this family also have this property [144]. In
this context one considers a one-parameter family of space-times (M), g,) for A > 0 and

tries to study the properties of the limit space-time as A — 0.

In the context of Penrose limits a property of space-time is hereditary if, whenever
a spacetime has this property, all its Penrose limits also have this property [99].

Therefore the first step to check if a property of a space-time is hereditary is to check
if it is preserved under the coordinate transformation eq (4.74) and the accompanying
scaling of the metric. Looking at generally covariant (coordinate independent) properties
of a space-time metric amounts to checking if the property is invariant under a finite

scaling of the metric before looking at that A — 0 limit.

One evident property is the following [144]: if there is some tensor field constructed
from the Riemann tensor and its derivatives which vanishes for all A > 0, then it also
vanishes for A = 0. In particular,

e the Penrose limit of a Ricci-flat metric is Ricci-flat,

e the Penrose limit of a conformally flat metric, vanishing Weyl tensor, is conformally
flat,

e the Penrose limit of a locally symmetric metric, vanishing covariant derivative of

the Riemann tensor, is locally symmetric.

On the other hand, if we have an Einstein metric with cosmological constant or

scalar curvature, the Penrose limit is not of the same type since the Ricci tensor,

Ry (9) = Mgy (4.77)
is only invariant under simultaneous scaling of the metric g and A,
Ru(A?g) = Ru(g) = (VA (A %gu) (4.78)

and the Ricci scalar is not scale-invariant. Thus
e the Penrose limit of an Einstein metric is Ricci-flat.

Geroch [144] argued that the number of linearly independent Killing vectors can
never decrease in the limit. Moreover his argument is also applicable to Killing spinors
and supersymmetris and so the number of supersymmetries preserved by a supergravity

configuration can never decrease in the Penrose limit [99].



4.6 Penrose limits of some “cosmological” backgrounds 79
4.6 Penrose limits of some “cosmological” backgrounds

In order to illustrate the Penrose procedure in this section we are going to calculate
in detail the Penrose limit of the Schwarzschild metric, and mention the Penrose limit
metrics of some cosmological backgrounds such as AdS black hole, the FRW and the

Kasner metrics.

4.6.1 Black Hole

We start with the Schwarzschild metric

ds? = —f(r)dt® + f(r)"tdr?® 4+ 12(d6? + sin® 0d¢?) , (4.79)
where 9
fr)=1- Tm (4.80)

and m is the ADM mass of the black hole. Since we are interested in a family of geodesics
parametrized by the transverse coordinates we will consider the motion to take place in

the polar plane, ¢ = const. Such curves correspond to geodesics on S2.
Therefore for ¢ = const the Lagrangian,

L= %(— FOE + F(r) 52 4 1262), (4.81)

gives us the equations of motion
0 = Ir ,
t = f(r)'E, (4.82)

where F and [ are the conserved energy and angular momentum respectively. For null

geodesics L = 0, which becomes
72 =B —Pf(r)r> = E> -2V 4(r) . (4.83)

Here V.¢¢(r) is the usual effective potential, with respect to which r(u) satisfies the

Newtonian equation of motion
fi: - — elff(T) . (4.84)
The Hamilton-Jacobi function S(z#), is constructed by solving the conditions

Pu=0,S, ¢"pup,=0. (4.85)

Plugging the ansatz
S=—-Et+10+p(r), (4.86)
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into the null constraint, we find a equation for p(r),
0 = F0) B - PE) T = () (4.87)
which is solved by
o(r) = / £y idr = / Fr) e (4.88)

Choosing U to be the affine parameter 7, and V = S(z*) as a new coordinate, we can
change variables to an adapted coordinate system (U, V, 0, qg)

dp = do
do = 0(U)dU + db
= Ir(U)2dU +df

dr = +(U)dU
dt = —E'dV + E~'df+ E~'dp(r(U))
= —E YWV +E'Pr(U)2dU + E~Yd0 + (Ef(r(U))~! — E~12r(U)~2)dU
= —E7YWV + Ed0+ Ef(r(U))"dU. (4.89)

By plugging this into the metric one finds

ds? = 2dUdV + B2 (U2 (UY2d8 + r(U)? sin®(6 + | / r(U)2)d3?
L, (4.90)

where the dots refer to terms involving dV. Once we are in adapted coordinates (dU
only appears in the term 2dUdV), the Penrose limit is obtained by dropping the other
dV pieces and the explicit dependence on coordinates other than U. Thus the Penrose

limit of the Schwarzschild metric for non zero angular momentum /,
d3* = 2dudv + E?r(u)?7(u)*d6* + r(u)? sin®(l / r(u) 3)de?. (4.91)

For zero angular momentum one must replace 0 — 6, +9~, with 6y # 0, since one can not
zoom in on the geodesic passing through 6 = 0 where there is a coordinate singularity.

The Penrose limit turns out to be
d5® = 2dudv + E~r(u)?(u)?d6? + r(u)de® . (4.92)

We can write the metric in Brinkmann coordinates by using eq (4.22),

Au() = (i)™ 5 (r(w)iw)

Ap(u) = (r(u)sin / r(u)_Q)_I%(r(u)sinl / r(u)"2). (4.93)
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Using eq (4.83) and eq (4.84) we can write the Penrose limit of the Schwarzschild metric

in Brinkmann coordinates as

l2
ds* = 2dudv + %(x? — 23)du® + da? + da3 . (4.94)

This metric is singular if and only if r(ug) = 0 for some ug, in other words, there will
be a singularity precisely when the original geodesic runs into the singularity.

By consider the dominant term in eq (4.83) one can calculate the limit » — 0 which

simplifies to the homegenous plane wave metric

1
ds® = 2dudv + 26—5@(33% — z5)du® + da + dz3 . (4.95)

This is a universal behavior since there is no /2 or m dependence and as we will see it
generalizes to arbitrary dimension. As we will see in the next chapter this 1/u? behavior
of the metric in Brinkmann coordinates is a universal behavior of the Penrose limits of

singular metrics.

For the | = 0 case the equation of motion for r(u) is

i = E?, (4.96)

and then eq (4.92) can be written as
d5? = 2dUdV + E?U?(d#? + sin® 0,d@?) . (4.97)

This corresponds to the flat metric in Rosen coordinates and one may wonder that it is
not singular anymore. However in the original spacetime the geodesic r(U) = —EU only
exists for U < 0 and ends at U = 0 and in this sense there is a singularity, even though
it seems to disappear after one transforms to Brinkmann coordinates and extends the
range of U to U > 0.

4.6.2 AdS Black Hole
In this case the metric takes the form
ds? = —f(r)dt? + f(r)tdr® 4+ r?dQ% + R?[d¢? + sin®¢d2], (4.98)

with
fr) = (%22 +1- %> . (4.99)
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By following the same procedure it turns out that its Penrose limit is [145]

2 4 2 7 2 8
_ [ 2 MR > MR\ 5| 2 2
d5* = —ddudv — — E .+ (1+ - ) E zy+(1-3 )z | du” + E dz;

4
L b=5 r i=1
(4.100)
where y = ¢R? is the angular momentum and £ is the energy. However in the limit
7

r — 0 one recovers the 1/u? behaviour.

4.6.3 Kasner

A cosmological solution to the vacuum Einstein equations that is homogeneous but not

isotropic is the Kasner metric,

ds* = dt* — t*"da? — t*P2dxk — 1*Poda?

YpP=) P=1. (4.101)

The set of exponents {P;} as constrained above have the properties that they are all
smaller than one, and they can not all have the same sign. If n of the exponents are
positive so that the Universe expands as time increases in those n directions then the
remaining exponents are negative, and the Universe shrinks in those directions as time

increases.

The metric can also be rewritten as
ds® = t@* D12 (g% — d2?) — t'"Pda® — t'Pdy?. (4.102)

Its Penrose limit along the (¢, z) plane in Rosen coordinates reads as

2(1+p) 2(1-p)

ds? = 2dudv + u v+t da? +u et dy?, (4.103)

which written in Brinkman coordinates? is

1+p)p—1") > (-DPE+p’) 5] 1 s o
(1 + p?)? a’ 1+ p?)? y2 EdUZ-i-diE +dy®, (4.104)

ds® = 2dudv +

showing once again this 1/u? behaviour.

4.7 Penrose limit without the limit

Before [59], the precise nature of the Penrose limit and the extent to which it encodes

generally covariant properties of the original space-time was somewhat elusive, also

2See [101] for related matters.
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because the usual definition and practical implementations of the Penrose limit, which

require changing of coordinates and taking a limit, look rather non-covariant.

In what follows it will be provided a completely covariant characterization and defi-
nition of the Penrose limit wave profile matrix A, (u) which does not require taking any
limit and which shows that A, (u) directly encodes diffeomorphism invariant information
about the original space-time metric.

In [59] (see also [58]) it was shown that the wave profile A,;(u) of the Penrose limit
plane wave metric associated to a null geodesic v in a space-time with metric g,, can

be obtained directly from the curvature tensor of the original metric,
Aap(u) = —Rav |y - (4.105)
Here the components refer to a parallel pseudo-orthonormal frame along -,
ds?|, = 2ETE™ + § 4 E°E® (4.106)

with £, = 0, the tangential direction. This relation is reminiscent of, but should not
be confused with, the already known relation (4.11), expressing the sole non-vanishing

curvature component of the plane wave metric (4.10) in terms of Ay (u).

Agp(u) can be characterized as the transverse null geodesic deviation matrix [98] of
the original metric, ,

%Za = Agy(u)2° (4.107)
with Z the transverse geodesic deviation vector. And as we will see in the next subsec-
tion, the equivalence of (4.107) and the characterization (4.105) of Ay (u) is a standard
result in the theory of null congruences. It turns out that in practice this is not only a ge-
ometrically transparent but frequently also a calculationally efficient way of determining

the wave profile Agy(u).

Figure 4.1 schematically summarizes the two procedures to obtain the Penrose limit

metric.

4.7.1 The Penrose Limit and the Null Geodesic Deviation Equa-

tion

To establish the relation between (4.105) and (4.107), we embed the null geodesic 7 into
some (arbitrary) null geodesic congruence. Via parallel transport one can construct a

parallel pseudo-orthonormal frame E4, A = +, —, a, along the null geodesic congruence,

ds® =2EYE™ 4+ 04E°E" | V,E*=0 (4.108)
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Infinite boost such that
the observerstravel at a
speed approaching that
of light

Null geodesic deviatio
equation restricted to
the null geodesic
evaluated in a comoving
frameA =R

a+b+| y

Recalibrate the clocks to
run faster and such that
they measure the affine
parameter + infinite
volume

In the limit the observers measure the
space time to have a plane wave structure

Figure 4.1: Two different ways of calculating the Penrose limit metric.

such that the component E, of the co-frame E4 is
E+ - x'“au s E+|’y - 8u ; (4109)

i.e. the restriction of £, to every null geodesic is the tangent vector of the null geodesic.

Infinitesimally the congruence is characterized by the connecting vectors Z repre-
senting the separation of corresponding points on neighbouring curves and satisfying

the equation
Lg Z =E,Z| =V Z-VzE;=0 . (4.110)

In a parallel frame, covariant derivatives along the congruence become partial deriva-

tives,
EYV (ZAE4) = Vy(ZAE) = (0,2*)Ea (4.111)

and since E is null one has
g(E+, E_|_) =0= (VAE_F)i =0 . (4112)

Hence (4.110) implies that (d/du)Z~ = 0, and we can set Z~ = 0 without loss of
generality. Then, using the geodesic equation V,FE,; = 0, one finds that

VzE, = Z(VyE,)E, + Z°(V,E, )T E, (4.113)
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and the connecting vector equation (4.110) becomes

d
— 7%= B4z’ 4.114
du b ( )
with
B% = (V,E,)* = ECEI'V,E" | (4.115)
and Z*1 determined by the Z* via
diz+ =Z"(VyEL)"T . (4.116)
u

For later use we note that (4.112) implies that the trace of B is

1 i
\/—_—gau(\/—_gév ) (4.117)

explaining the ubiquity of logarithmic derivatives in the examples to be discussed below.

trB= B% = V,E! =

It follows from (4.114) that the transverse components Z* satisfy the null geodesic

deviation equation

dZ
57 = Agp(u)2° . (4.118)
where J
A = @B‘g + BB . (4.119)

Note that (4.118) is just a (time-dependent) harmonic oscillator equation with (—Ags(u))

the matrix of frequency squares.

A routine calculation now shows that

A% = EJE/RY, ,#"i" = —R%, , (4.120)

with R the Riemann curvature tensor of the metric g, establishing the equivalence of
(4.105) and (4.107). In the following chapter we will use this geodesic deviation approach

to calculate the Penrose limits of a variety of cosmological backgrounds.

4.8 Strings in plane wave backgrounds

As we said in the begining of this chapter the relevance of dealing with plane wave
backgrounds is that in many cases string theory can be exactly quantized and solved.
In particular, string theory in plane wave backgrounds simplifies dramatically due to

the existence of a natural light-cone gauge.

Before the discovery of the new maximally supersymmetric solution of IIB super-

gravity was found, two maximally supersymmetric solutions of the IIB supergravity



86 Plane waves and Penrose limits

were known. The first is the flat ten dimensional Minkowski space and the second is
the AdSs x S5 supported by Ramond-Ramond charges [146-148]. The recent maximally
supersymmetric solution of IIB supergravity is a ten dimensional plane wave space sup-
ported by the RR 5-form flux [92]. The plane wave RR background is an exact solution
of the equations of motion of IIB supergravity which are the equations of motion for
the massless modes of the type IIB superstring. Moreover this new solution is an exact
solution of type IIB string theory, there are no o’ corrections since the possible correc-
tions to the equations of motion consistent with supersymmetry, involve combinations

of the curvature and derivatives of the curvature which are equal to zero[92, 149].

As an example, let us consider the simplest gravitational plane wave backgrounds
(4.10) with Agy(u) = —f?84 supported by a Ramond-Ramond 5 form Fy1934 = Fys678 =
2f. This background preserves the maximal number of 32 supersymmetries [92] and it
is related by a Penrose limit (boost along a circle of S° combined with a rescaling of
the coordinates and of the radius) to the AdSs x S® background [94]. In the light cone

gauge

u=p,7, I0'=0, (4.121)

where 07 (I = 1,2) are the two real positive chirality 10 —d MW spinors, I'* is the chiral
representation for the 32 x 32 Dirac matrices in terms of the 16 x 16 matrices v*. The
resulting quadratic light cone action [95] can be written like the flat space GS action,
in a 2 — d spinor form and describes 8 free massive 2 — d scalars and 8 free massive

Majorana 2 — d fermionic fields ¢ = (', 6?) propagating in flat 2 — d world-sheet

1
L=Lg+Lp, Lp= 5(8+X18_X1—m2X12), m=p"f (4.122)
Ly = i(0'3°0,0" + 6°5°0_6* — 2m0'5°110%), 70" =0, (4.123)

where 01 = 0, + 0,. Thus, the equations of motion are

0,0_-X"+m*X" =0, (4.124)
0,0" —mllg* =0, 0 6°+mll' =0. (4.125)

The general solutions satisfying the closed string boundary conditions,

XNo+1,7)=X"o,7), O(c+1,7)=0(0,7),0<0<1, (4.126)
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are [96]:

1
X'(o,7) = cosmTXj +m 'sinmrPy +i Z — (¢n(o, 7y + @2 (0, 7))

n#0 Wn
0'(o,7) = cosm7y + sinmrIlf; + ch ( (o,7)0. + Mqﬁi(a, T)Hei)
m
n#0
0*(o,7) = cosmTl; — sinmrIlfy + ch ( (0,7)0% — iwgb}l(a, T)Hei) ,
m
n#0
where the basis functions ¢.%(o, 7) are
¢k (0, 7) = exp(—i(w,T — kno)), ¢2(0,7) = exp(—i(wnT + ko)) (4.127)

and

wp = Vk2+m?, n>0; Wy = —V\/k2+m?, n<O0; (4.128)
1
k, = 2mn, Cpn = n==+1,4+2--- (4.129)

V1+ n)2/m2’

Given these solutions, one can now quantize the 2 — d fields X! and ' by promoting

as usual the coordinates and momenta to operators and replacing the classical Poisson
brackets by equal-time commutators of quantum coordinates and momenta. As usual
one can calculate the light-cone Hamiltonian, which in terms of the normalized oscillators

1 1
I I I - I_ I
ay = ——(Fy +1mX,), ay = —(Fy, —1mXy),
0 \/%( 0 0) 0 2m( 0 0)
ozgl=”—u;nagl, ailz —u;n’il, n=12---
Lo o ) Lo o
6y = ﬁ(eo +’590), bo = —2(00 - 100)5
1 1
6* = 0 = —n-, n=1,2,

-n Efr]n ’ n ﬁnn )
takes the explicit form

o0

1 v
it 3D Ve + (e f)al @l iy ) - (4.130)

I=1,2n=1

H = f(ajas+2f007°110,+4)+

Thus as we just saw in this plane wave background is easy to exactly solve the superstring
theory.

In a similar manner one can solve string models in general non-singular homoge-
neous plane wave backgrounds[108], and in a class of singular homogeneous plane wave
backgrounds[104].
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Finally as a remark we must keep on mind that since the Penrose limit relates in a
precise way a general supergravity background to a pp-wave, it allow us to understand
string theory on many backgrounds at least in the Penrose limit. This opens the possi-
bility to probe string theory in backgrounds that were hitherto inaccessible, for example
backgrounds with RR fields.



Chapter 5

Penrose limits near space-time

singularities

Since singularities of A, (u) result from curvature singularities of the original space-time,
it is of interest to analyze the nature of Penrose limits of space-time singularities, as they
encode information about the rate of growth of curvature and geodesic deviation as one
approaches the singularity of the original space-time along a null geodesic. In particular
as was shown in the previous chapter, the geometric significance of the Penrose limit, is
that A, is the standard transverse null geodesic deviation matrix of the original metric
along the null geodesic y(u).

Since the study of string propagation in singular, and perhaps time-dependent, space-
time backgrounds is one of our main interests, then the first step toward this goal is to
determine the Penrose limits of space-time singularities in general. In this chapter we
are mainly interested in answering the following questions: What are the Penrose limits
of space-time singularities in general? Is there any universal behavior? As we will see
and as it was found in [58, 59], the Penrose limits of space-time singularities show a

remarkably universal behavior.

In [99-102], it was found that for a variety of particular brane and cosmological
backgrounds the exact Penrose limit is characterized by a wave profile of the special

form

Agy ~u™?. (5.1)

Moreover, in [59, 105] it was observed that the Penrose limit of space-time singular-
ities of cosmological FRW and Schwarzschild-like metrics, i.e. the leading behavior of

the profile A, (u) as one approaches the singularity, is also of the above form.

In the following we will calculate the Penrose limit of some cosmological backgrounds

89
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by means of the geodesic deviation approach. Afterwards, it will be shown that in this
case the Penrose limits exhibit a remarkably universal behavior in the sense that for a
large class of black hole, cosmological and null singularities, indeed all the Szekeres-Iyer
metrics [106, 107] with singularities of “power-law type”, one obtains plane wave metrics

of the form

2 o, b U’ ~2
d3” = 2dudv + cepr’x’—- + dz”, (5.2)
u

with ¢, constant and with eigenvalues bounded by 1/4. Due to the existence of the scale
invariance (u,v) — (Au, A™'v), these singular plane waves are homogeneous reflecting

the scaling behavior of the original power-law singularities.

Moreover, as we will see chapter 6, string theory in singular homogeneous plane wave
backgrounds is exactly solvable [104, 108, 109, 150]. On the other hand, it has also been
shown that in a class of such models the string oscillator modes can be analytically
continued across the singularity [104]. Since the Penrose limit can be considered as the
origin of a string expansion around the original background [99], the above observations
about the relation of these backgrounds to interesting space-time singularities provide

additional impetus for understanding string theory in an expansion around such metrics.

5.1 The Penrose Limits of a Static Spherically Sym-

metric Metric

Even though in section 4.6 we already showed explicit examples in the computation of
the Penrose limit in this section we are going to illustrate the modern way to take the
limit, namely, the geodesic deviation approach. We will determine all the Penrose limits
of a static spherically symmetric metric. We start with the metric in Schwarzschild-like
coordinates (the extension to isotropic coordinates, brane-like metrics with extended

world volumes, or null metrics is straightforward and is discussed in section 5.2),

ds® = —f(r)dt® + g(r)dr® + r*d;
dQ = db* +sin?0dQ; | . (5.3)

Taking the Penrose limit entails first choosing a null geodesic. Because of the rotational
symmetry in the transverse direction, without loss of generality we can choose the null

geodesic to lie in the (¢,r,0)-plane. The symmetries reduce the geodesic equations to
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the first integrals

t = E/f(r)
0 = L/r?
i = E*/f(r)g(r) = L*/g(r)r* , (5.4)

where E and L are the conserved energy and angular momentum respectively. This

defines a natural geodesic congruence, corresponding to the Hamilton-Jacobi function
S=—-FEt+ L0+ R(r) (5.5)

with .
(5B =gf 'E*—r7gL? (5.6)

and allows us to calculate By,.

We first construct the parallel frame. We have
E, =70, +10,+608, , E|,=0,, (5.7)

and we will not need to be more specific about E_. The transverse components are
E, = (F1, E;), with @ = 2,...,d referring to the transverse (d — 1)-sphere. Since there
is no evolution in these directions, the E; are the obvious parallel frame components

Fy= — (5.8)

= €
a . a
rsinf

with e; an orthonormal coframe for dQ2_,. The transverse SO(d)-symmetry implies

B = Aj=0
By(u) = B(u)dy,
Agy(u) = A(u)dy - (5.9)

Moreover, because of (4.117) we have
By (u) = Vi (u) — (d — 1) B(u) (5.10)
so that we only have to calculate By (u) = B(u), for which one finds (with, say, e; = 0,)
Boy = Fﬁ,i‘ + Fﬁaé = 0, log(r(u)sinf(u)) , (5.11)

or

B;j(u) = 6,30, log(r(u) sinf(u)) . (5.12)

a
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Since
tr B = 0, log (frd sin® ™ 0y/f(7")g(7“)> (5.13)

one finds

By (u) = 0, log (T(U)f(U) \/f(T(U))g(T(U))> : (5.14)
Now, in general, for By, (u) of the logarithmic derivative form
Bap(u) = 0ap0y log Ko (u) (5.15)
one has
Agy(u) = 0ap Ko (u) ™ 05K, (u) (5.16)
and therefore

Ay = (Tf\/‘fig)ilai(ﬂ\/ﬁ)

Ay = 0,;(rsing)~'02(rsind) . (5.17)
In particular, for the transverse components one has the universal result

7 (u) L?

Agp(u) = ai’(r(u) r(u)4) .

(5.18)

5.1.1 Schwarzschild metric

In section 4.6.1 we explicitly computed the Penrose limit of the Schwarzschild met-
ric, however in this section we we will consider it again as a concrete example of the

calculations above. The D = (d + 2)-dimensional Schwarzschild metric is'

ds® = —f(r)dt* + f(r)"*dr® + r?dQ3 (5.19)
where 5
fr)=1- M—’Z . (5.20)

We are assuming that D > 4 and note that evidently only for D = 4 is m the ADM
mass of the black hole.

In this case we have

i =E? — L’ f(r)r~> = E> = 2V 44(r) , (5.21)

LThe Penrose limit for certain special (radial L = 0) null geodesics in the AdS-Schwarzschild metric
has been discussed before e.g. in [145, 151]. The general case, using the Hamilton-Jacobi method
to construct adapted coordinates, was presented in [105]. For a general discussion of limits of the
Schwarzschild metric not depending on additional parameters like L see [152].
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where V.;;(r) is the usual effective potential, with respect to which r(u) satisfies the

Newtonian equation of motion

P elff(r) ' (5.22)
It follows that
Agpp(u) = ... = Agg(u) = :(—Z; - T(L:)4
_ _(d+1)mL? (5.23)
r(u)dts 7 '

where 7(u) is the solution to the geodesic (effective potential) equation (5.21). Moreover,

since the Schwarzschild metric is a vacuum solution, this is a vacuum plane wave with
tr A(u) = §%Agp(u) = 0, so that

(d+1)(d — 1)mL?

An () = r(u)d+3

(5.24)

There are a number of facts that can be readily deduced from this result:

e First of all, we see that the Penrose limit of the Schwarzschild metric is flat for
radial null geodesics, L = 0. We could have anticipated this on general grounds
because in this case the setting is SO(d + 1)-invariant, implying Ag(u) ~ dgp,
which is incompatible with tr A = 0 unless Ag(u) = 0. This should, however,
not be interpreted as saying that the radial Penrose limit of the Schwarzschild
metric is Minkowski space. Rather, the space-time “ends” at the value of u at
which r(u) = 0, say at u = 0. Perhaps the best way of thinking of this metric is
as a time-dependent orbifold of the kind studied recently in the context of string
cosmology (see e.g. [153] and references therein).

e We also learn that the Penrose limit is a symmetric plane wave (u-independent
wave profile) if r(u) = r, is a null geodesic at constant r. Setting # = 7 = 0, one
finds that

r&t = (d+1)m (5.25)

*

(the familiar 7 = 3m photon orbit for D = 4), with the constraint

, d—1L?

on the ratio L/E. Precisely because they lead to symmetric plane waves, with a
well-understood string theory quantization, such constant r Penrose limits have

attracted some interest in the literature.
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e Moreover we see that the resulting plane wave metric for L # 0 is singular if and
only if the original null geodesic runs into the singularity, which will happen for

sufficiently small values of L/E.

We will now take a closer look at the u-dependence of the wave profile near the
singularity 7(u) = 0. We thus consider sufficiently small values of L/E in order to avoid

the angular momentum barrier.

For small values of r, the dominant term in the differential equation (5.21) for r is

(unless L = 0, a case we already dealt with above)
P = VImLr e (5.27)

This implies that
L2 d 2
r(u)*3 = w& . (5.28)

Thus the behavior of the Penrose limit of the Schwarzschild metric as r — 0 is

A (u) = —wis(d)u? (5.29)
and
AQQ(’U,) =...= Add(u) = —w%s(d)u_2, (530)
with frequencies
2(d? -1
wis(d) = _((d+73)2) : (5.31)
d
o 2(d+1)

(5.32)

We note the following:

e First of all, in this limit one finds a singular homogeneous plane wave of the type
(4.47). As we will see later, this scale invariance of the near-singularity Penrose
limit can be attributed to the power-law scaling behavior of the near-singularity
Schwarzschild metric.

e Moreover, the dependence on L and m has dropped out. The metric thus exhibits
a universal behavior near the singularity which depends only on the space-time
dimension D = d+ 2, but neither on the mass of the black hole nor on the angular
momentum of the null geodesic used to approach the singularity. For example, for
D = 4 one has

wig(d=2)= — . (5.33)



5.1 The Penrose Limits of a Static Spherically Symmetric Metric 95

e The frequencies are bounded by

1
was(d) < 0 < wie(d) < 1 (5.34)

e Finally, we note that the above result is also valid for (A)dS black holes since the

presence of a cosmological constant is irrelevant close to the singularity.

5.1.2 FRW metric

As another example we consider the Penrose limit of the D = (n+ 1)-dimensional FRW

metric
ds* = —dt* + a(t)*(dr® + fx(r)?dQ2_,) (5.35)
where fi(r) = r,sinr,sinhr for £ = 0, +1, —1 respectively.
Since the spatial slices are maximally symmetric, up to isometries there is a unique

null geodesic and hence a unique Penrose limit. So without loss of generality we shall con-

sider null geodesics which have vanishing angular momentum on the transverse sphere.

Then, with a suitable scaling of the affine parameter, the null geodesic equations can

be written as

Litw) = 2altw) ", ru) = aftw)? (5.36)

(and in what follows, we choose the upper sign in the first equation). Thus
E,=0,=a"'0,+a%0, , (5.37)
and this can be extended to a parallel pseudo-orthonormal frame by
E_ = %(—a@t +0;)
E. = (afi) " , (5.38)

where é, is an orthonormal frame for dQ3% d =n — 1.

The transverse rotational symmetry implies that Bgy(u) = B(u)de and Agy(u) =
A(u)dgp. Therefore, to determine B(u) it suffices to compute the trace of Bg,(u),

tr B =0, 10g<an_1 ,?_1> , (5.39)

implying
B(u) = 8, log(afy) - (5.40)
Using %f,c = —k fx, one finds

Aay(1) = S5 A1) = Gap <#— k ) . (5.41)
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This is the precise analogue of the expression (5.18) obtained in the static spherically
symmetric case, the spatial curvature £ now playing the role of the angular momentum
L2

This can now be rewritten in a variety of ways to obtain insight into the properties
of this FRW plane wave. For example, writing this in terms of ¢-derivatives (in order to
make use of the Friedmann equations), we find

1 ad"(t) k+ad(t)?

URTOTO RO

where a(t) is determined by the Einstein (Friedmann) equations, u(t) by du = a(t)dt,

) (5.42)

and a' = %a. The Friedmann equations
a(t)?+k 167G
TOLE ~ OmE
a(t) n(n —1)
a’(t) &G
= ———[(n—=2 P .
= =200+ nP()] (5.43)
imply

a(t)’+k d'(t) 871G
a(t)? a(t) — (n—1)

so that one finds that the wave profile of the FRW plane wave can be written compactly

[p(t) + P(t)] (5.44)

* 817G p(u) + P(u)

n—1 a(u)?

One immediate consequence is that the Penrose limit is flat if and only if p + P = 0,

A(u) = (5.45)

corresponding to having as the only matter content a cosmological constant. This is
in agreement with the result [99] that every Penrose limit of a maximally symmetric
space-time is flat.

We will now study the behavior of A(u) near a singularity, and to be specific we

choose the usual equation of state
P(t) = wp(t) . (5.46)

We consider w > —1 (w = —1 would correspond to the case p + P = 0 already dealt

with above) and introduce the positive parameter

2
h = — 5.47
() = e (547
and the positive constant (constant by the continuity equation for p)
167G
Ch = p()a(t)?* (5.48)

n(n —1)
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in terms of which the Friedmann equations read

d(t)? = Cha(t)P=2/h _k (5.49)

—1
ad'(t) = hh Chra(t)h=2/m (5.50)

Thus the universe is decelerating for 0 < h < 1 and accelerating for A > 1, the critical
case h = 1 corresponding to w, = —1 + 2/n (the familiar dark energy threshold w, =
—1/3 for n = 3).

We first consider the case £ = 0. In that case one has
a(t) ~th (5.51)

and therefore
a(u) ~ ut/h (5.52)

It then follows immediately from (5.41) that, more explicitly, the u-dependence of A(u)

is?

A(u) = —wi o (b k= 0)u? | (5.53)

where
h

(1+h)?2 °
We see that the Penrose limit of a spatially flat FRW universe with equation of state

wipw (h k= 0) = (5.54)

P = wp is exactly a singular homogeneous plane wave of the type (4.47).

The frequency square w% gy, (B, k = 0) has the following properties:

e Since

wWrpw(h, k= 0) = Wrpw (1/h,k=0) | (5.55)

for every accelerating (inflating) solution of the £ = 0 Friedmann equations there
is precisely one decelerating solution with the same Penrose limit. The self-dual

point A = 1 corresponds to the linear time-evolution a(t) ~ t.
e The frequency squares are again bounded by

Wigw ( k=0) < 2, (5.56)

e

with equality attained for h = 1.

2This generalizes the result reported in [99].
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e Curiously, the frequencies obtained in the Penrose limit of the Schwarzschild metric
(in all but one of the directions) are precisely those of a dust-filled FRW universe,

P = w =0, of the same dimension n =d + 1,
wis(d) = wigw (b k= 0) , (5.57)
e.g. 6/25 for n = 3.

It is clear that for k£ = 0, when only the first term in (5.41) is present, this homoge-
neous v~ 2-behavior is a consequence of the exact power-law behavior of a(t) and hence
a(u). Let us now consider what happens for k£ # 0, when there is a competition between

the two terms in (5.41) as one approaches the singularity.

One might like to argue that, even for £ # 0, one finds the same behavior provided
that the matter term dominates over the curvature term in the Friedmann equation
(5.49) as a — 0. This happens for 0 < h < 1, and this argument is correct as one can

2 indeed dominates

also see that in this range the first term in (5.41), proportional to v~
over the second (curvature) term which (cf. (5.52)) is proportional to u=**/(»+1)  Thus
for 0 < h < 1 the near-singularity limit of the FRW plane wave is a homogeneous plane

wave with k-independent frequencies (5.54),

h

0<h<l1: w%‘RW(hak):w%RW(h’kzo):m .

(5.58)
Now let us look at what happens as one passes from a decelerating to a critical
(h = 1) and then accelerating (h > 1) universe. First of all, for h = 1, both terms
on the right hand side of the Friedmann equation (5.49) contribute equally (they are
constant), and correspondingly both terms in (5.41) are proportional to u 2. Thus one
finds a homogeneous plane wave, but with a curvature-induced shift of the frequency,

1
h=1: wipw(h=1k)=wkpy(h=1,k=0)+kc = 1t kc? (5.59)

for some constant c¢. In particular, in the spatially closed case k = +1 (this requires
C} > 1), one now finds frequency squares that are larger than 1/4. This is a borderline
behavior in the sense that, as can easily be seen from (5.49), the initial singularity for
k = +1 ceases to exist for h > 1.

It thus remains to discuss the case kK = —1 and A > 1. Given the previous discussion,
one might be tempted to think that now the second term in (5.41) will dominate over

—4h/(h+1)_hehavior. This is,

the first, leading to a non-homogeneous and more singular u
however, not the case, as (5.52) now represents the leading behavior at large a(u). At

small a(u), the leading behavior is, exactly as for h = 1, determined by the constant
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curvature term in (5.49). Thus even in this case one finds a singular homogeneous plane
wave, with frequency

h>1: wipw(hk=-1)=>—¢ (5.60)

1
4
once again bounded from above by 1/4.

5.2 Generalizations

5.2.1 Brane metrics

It is straightforward to generalize the analysis of section 2.1 to include longitudinal world

volume directions,

fr)(=dt?) — f(r)(=dt* + di?) . (5.61)
A parallel frame in the brane world volume directions is E; = f~/29,:, and
Bjj = 60, log f (r(u))"/? (5.62)
which in turn leads to
Aij = 653 f (r(w)) /20 log f (r(u))/? . (5.63)

The remaining of the components of A are as in section 2.1.

5.2.2 Isotropic coordinates

Likewise, for isotropic coordinates,

ds* = —f(r)dt* + h(r)(dr® + r?dQ3) , (5.64)
a straightforward calculation reveals that
. gl dtl Log g
tr B =0, log| rr®fzh 2 sin® " (0) (5.65)
and
By = 0y log(h%r sin(6)) . (5.66)

These lead to
Bii(u) = 0,log(rihf'/?)
B.j(u) = 6,;0,log(rh'/*sing) (5.67)

with the corresponding second-derivative expressions for Ag(u). Again it is easy to

include longitudinal directions.
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5.2.3 Null singularities
Finally, we consider spherically symmetric null metrics of the form
ds®> = 2g(z)dzdy + f(x)d . (5.68)
The geodesic equations are
L? .
t=Pg', y= —Ff‘l . 0=f"1L | (5.69)
where P and L are constants of motion. In this case, one finds
tr B = 0, log(&gf sin(6)) (5.70)

and
By, = 0, log(f% sin(f)) . (5.71)

Therefore, we have

Ki(u) = Pf(u)'/?
Ky(u) = f(u)?sinf(u) . (5.72)
In particular, in terms of r(z) = f(x)/?, As once again takes the standard form (5.18)

L2
r(u)t

~—

AQQ(U) — 7“(_u —

_ (5.73)

~—

5.3 The Universality of Penrose Limits of Power-

Law Type Singularities
In the previous section we have presented some evidence for a remarkable

Conjecture: Penrose limits of physically reasonable space-time singularities

are singular homogeneous plane waves with wave profile Ag(u) ~ u=2.

In this section we will show how to prove this conjecture for a very large class of physical
singularities of spherically symmetric type. We will in the process also see some examples

of “extreme” stress-energy tensors that give rise to a different behavior.
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5.3.1 Szekeres-Iyer metrics

The homogeneity of the Penrose limit (geodesic deviation) that we have found in the
above examples appears to reflect a power-law scaling behavior of the metric near the
singularity. Thus to assess the generality of this kind of result, one needs to inquire
about the generality of space-time singularities exhibiting such a power-law behavior.

In [106] (see also [107]), in the context of investigations of the Cosmic Censorship
Hypothesis, Szekeres and Iyer studied a large class of four-dimensional spherically sym-
metric metrics they dubbed “metrics with power-law type singularities”. Such metrics
encompass practically all known singular spherically symmetric solutions of the Einstein
equations, in particular all the FRW metrics, Lemaitre-Tolman-Bondi dust solutions,
cosmological singularities of the Lifshitz-Khalatnikov type, as well as other types of

metrics with null singularities.

In “double-null form”, these metrics (in d 4+ 2 dimensions) take the form
ds? = —eAOV)qudv + eBOVd02 | (5.74)
where A(U, V) and B(U, V') have expansions

AU, V) = plnz(U,V) + regular terms
B(U,V) = gqlnz(U,V) + regular terms (5.75)

near the singularity surface z(U, V) = 0.

Generically, the residual coordinate transformations U — U'(U), V. — V'(V) pre-
serving the form of the metric (5.74) can be used to make z(U,V) linear in U and
v,

(U, V)=kU+IV , kl=+1,0, (5.76)

with n = kl = 1,0,—1 corresponding to space-like, null and time-like singularities
respectively. This choice of gauge essentially fixes the coordinates uniquely, and thus

the “critical exponents” p and ¢ contain diffeomorphism invariant information.

The Schwarzschild metric, for example, has p = (1 — d)/d and ¢ = 2/d, as is readily
seen by starting with the metric in Eddington-Finkelstein or Kruskal-Szekeres coordi-
nates and transforming to the Szekeres-Iyer gauge. Alternatively, if one is just interested
in the leading behavior of the metric, one can simply expand the metric near » = 0 and

then go to tortoise-coordinates.

We will focus on the behavior of these geometries near the singularity at x = 0,

where the metric is
ds® = —2PdUdV + 2%dQ7 . (5.77)
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For generic situations this leading behavior is sufficient to discuss the physics near the
singularity. In certain special cases, for particular values of p,q or for null singular-
ities, this leading behavior cancels in certain components of the Einstein tensor and
the subleading terms in the above metric become important for a full analysis of the
singularities [106, 107]. The analysis then becomes more subtle and we will not discuss
these cases here. In the following we will consider exclusively the metric (5.77) which,
for n # 0 and generic values of p and ¢, captures the dominant behavior of the physics

near the singularity.

For n # 0 we define y = kU — [V and choose k = nl = 1. Then the metric takes the

form
ds® = naPdy® — naPds® + r1dQ3% . (5.78)

With the further definition 7 = 2%2 (for ¢ # 0), this has the standard form of a
spherically symmetric metric. We will come back to this below in order to be able to

make direct use of the analysis of section 5.1.

For n = 0, on the other hand, we choose x = U, y = —V/, so that the metric is
ds® = aPdzdy + z9dS)3 | (5.79)

which has the form of the spherically symmetric null metrics analyzed in section 5.2.3.

5.3.2 Null Geodesics of Szekeres-Iyer Metrics

In terms of the conserved momenta P and L associated with y and, say, the colatitude
0 of the d-sphere,

dQ3 = df* + sin”® 0dQ3_, (5.80)
in particular

0 =1, (5.81)
the null geodesic condition (for any 7) is equivalent to
i’ = P’z + nLPz7 P77 | (5.82)

To understand the null geodesics near z = 0, we begin by extracting as much information
as possible from this equation, recalling that due to the expansion around x = 0 we can

only trust the leading behavior of this equation as z — 0.

Unless p = g, one of the two terms on the right-hand-side of (5.82) will dominate as
x — 0, and thus the generic behavior of a null geodesic near x = 0 is identical to that
of a geodesic with either L = 0 or P = 0. In the former case, one finds

Behavior 1:  z(u) ~ u!/@*Y (5.83)
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unless p = —1 when z(u) ~ expu. We are only interested in those geodesics which
run into the singularity at x = 0 at finite u. This happens only for p > —1. In the
latter case, corresponding to null geodesics which asymptotically, as x — 0, behave like
geodesics with P = 0, we evidently need n = +1 (a space-like singularity), which leads

to
Behavior 2 z(u) ~ v/ (PHet2) (5.84)

unless p + ¢ = —2 which again leads to an exponential behavior. These null geodesics
run into the singularity at finite v for p 4+ ¢ > —2.
For n = +1, the situation regarding null geodesics that reach the singularity at finite

v is summarized in the following table.

Conditions on (P, L) | Constraints on (p, ¢) | Behavior
P#0,L=0 p>—1 1
P=0,L#0 > —2 2
L # p+yq (5.85)
P#0,L#0 p>q,p>—1 1
P#0,L#0 p<q,p+q>-—-2 2
P#0,L#0 p=gqg>-—1 1=2
For n = —1, the situation is largely analogous, the main difference being that now

the second term in (5.82) acts as an angular momentum barrier preventing e.g. geodesics

with L # 0 for ¢ > p from reaching the singularity at z = 0. These cases are indicated

by a ‘—’ in the table below. For the same reason, for p = ¢ one finds the constraint
|P| > |L.
Conditions on (P, L) | Constraints on (p, ¢) | Behavior
P#0,L=0 p>—1 1
P=0,L#0 —
L7 (5.86)
P#0,L#0 p>q,p>—1 1
P#0,L#0 p<q —
|P| > |L| p=gqg>-—1 1=2

Finally, for n = 0 we find Behavior 1 for all values of p and ¢, with the corresponding
constraint p > —1.
5.3.3 Penrose Limits of Power-Law Type Singularities

We will now determine the Penrose limits of the Szekeres-Iyer metrics along the null

geodesics reaching the singularity x = 0 at finite u.
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For 1 # 0 we notice that the metric is simply a special case of a spherically symmetric
metric and thus can be treated using the analysis of section 5.1. Indeed, with t = y and
r = 129/% (¢ # 0), the metric (5.78) takes the form

ds®> = naPdy?® — naPdz® + 27d0? (5.87)
— ’I']T'ZP/thz _ 4_7277.2(P_q+2)/QdT-2 + T'deQ (588)
q
where in the second line the notation of ¢ and r is adapted to the case of n = —1 where

the singularity is time-like and ¢ is time. We will continue to use this notation even for
space-like singularities where ¢ is actually space like.

The case ¢ = 0 is special, but actually corresponds to a shell crossing singularity
[106] which is usually not considered to be a true singularity as the transverse sphere is
of constant radius 27 = 1. Such singularities arise for instance for certain collisions of

spherical dust shells. From here on we will only discuss ¢ # 0.

Referring to section 5.1 where such a spherically symmetric metric was treated, we

can identify

flr) = —nprvle (5.89)
4
g(r) = —q—ZTQ(pq”)/q. (5.90)

We can now appeal to (5.14, 5.12) to deduce that
Bap = 4y 0y log(Ko(u)) (5.91)
with
Ki(u) = r(u)r(u)?eti/e
Ky(u) = r(u)sin(f(u)) (5.92)

As shown in section 5.2.3, it is straightforward to extend this analysis to the case of null
singularities, n = 0, with the result that the expressions for K,(u) are identical to those

given for n = £1 in (5.92). We can thus treat all three cases simultaneously.

It follows from the analysis of the previous section that the only possibility of interest
for r(u) = x(u)?? is the power-law behavior

r(u) =u® , (5.93)
with

Behavior 1:  p>—-1 a=gq/2(p+1) (5.94)
Behavior 2: p+¢>-2 a=¢q/(p+q+2) . (5.95)
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Clearly, then, Ki(u) is also a simple power of u. Specifically one has (since we are

interested in the logarithmic derivatives of K (u), proportionality factors are irrelevant)

Behavior 1:  Kj(u) ~ r(u)
Behavior 2:  Kj(u) ~ r(u)?/? . (5.96)

Thus the corresponding component of Ay (u) is

Kl (U)

Behavior 1: A = =a(a—1)u?
ehavior 11(w) Ky () ala —1)u
K
Behavior 2 Ay (u) = — u) =pa/q(pa/q — u 2 . (5.97)
Kl(U)

and the Penrose limit behaves as a singular homogeneous plane wave in this direction.
Since b(b — 1) has a minimum —1/4 at b = 1/2, this leads to the bound

1

This is the same range that we found empirically for both the Schwarzschild and FRW
plane waves near the singularity.

The behavior of Ay is more subtle due to the dependence of Ky(u) on sinf(u). The

general behavior is as in (5.18), namely

Ao (u) = r— - (5.99)

With the power-law behavior r(u) = u®, the first term is always proportional to u 2.

This term is dominant as v — 0 when a < 1/2, while it is the second term that dominates
for a > 1/2 (and leads to a strongly singular plane wave with profile ~ u=*¢). In the

special case a = 1/2, both terms are proportional to «~2. Thus one has, for L # 0,

1

r(u) =u% a< % : Azz(u) — —w%u_Q , wg = a(l — a) < Z (5'100)
1 1

a=1: Ap(u) - —wiu? @:Z+BZZ (5.101)

a>1: Ap(u) - —Lu™ . (5.102)

When 7 = 0, Behavior 1 arises in the entire p-q plane. Thus w? < 1/4 and a can take
any of the three values above with the special value a = 1/2 corresponding to the line
g=p+1. When p>qandn#0,a=q/2(p+ 1) and thus always a < 1/2. On the
other hand, when p < g and n = 1 we see that a = ¢/(p + ¢ + 2) can take on any value,
with @ = 1/2 along the line ¢ = p+2 and a > 1/2 for ¢ > p+ 2. When p < ¢ and

n = —1 we cannot reach the singularity along a geodesic with L # 0.
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Figure 5.1: The Penrose Limit Phase Diagram in the p — ¢ plane for (a) space-like (n =
+1) and (b) time-like (n = —1) singularities. Singular HPWs arise in the light-shaded
regions whereas in the dark-shaded region there are Penrose limits leading to strongly
singular (and non-homogeneous) plane waves. (a) The diagram is bounded on the left
by the lines p = —1 and p+¢q = —2. The dashed line a = 1/2 < g = p+ 2 separates the
two regions, and only along that line one finds singular HPWs with w3 > 1/4. (b) For
n = —1, one finds singular HPWs with w? < 1/4 for all (p,q) with p > —1, w3 =1/4

arising only along the dashed line a = 1/2 for zero angular momentum, L = 0.
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When L = 0, only the first term in (5.99) is present, and one thus finds (5.100) for
all values of a. Since L = 0 implies Behavior 1, this means a = ¢/2(p + 1). Along
the special line ¢ = 2(p + 1) one has ¢ = 1 and one finds the “flat” Penrose limit
Ayi(u) = Ag(u) = 0. In particular, this happens for radial null geodesics in the
Schwarzschild metric (p = (1 — d)/d and ¢ = 2/d), as already noticed in section 5.1.1.

These results are summarized in figure 5.1(a) for n = 1 and in 5.1(b) for n = —1.

5.4 The Role of the Dominant Energy Condition

We thus see that while we frequently obtain a singular HPW with w? < 1/4 in the
Penrose limit, other possibilities do arise. For time-like singularities, the situation is

clear:

Penrose Limits of time-like spherically symmetric singularities of power-law
type are singular HPWs with frequency squares bounded from above by 1/4.

We will now show that for space-like singularities a different behavior can occur only
when the strict Dominant Energy Condition (DEC) is violated, in particular, that the
strongly singular region (the dark-shaded region in figure 5.1(a)) is excluded by the
requirement that the DEC be satisfied but not saturated.

We begin by recalling the definition of the Dominant Energy Condition on the stress-
energy tensor 1% (or Einstein tensor G* ) [98]: for every time-like vector v*, T),, v*v” > 0,
and THv” is a non-space-like vector. This may be interpreted as saying that for any

observer the local energy density is non-negative and the energy flux causal.

Next we recall that a stress-energy tensor is said to be of type I [98] if T# has one
time-like and three (more generally, d + 1) space-like eigenvectors. The corresponding
eigenvalues are —p (p the energy density) and the principal pressures P,, « = 1,...,d+1.

For a stress-energy tensor of type I, the DEC is equivalent to
p> Pl . (5.103)
We say that the strict DEC is satisfied if these are strict inequalities and we will see

that the “extremal” matter content (or equation of state) for which at least one of the

inequalities is saturated will play a special role in the following.
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The Einstein tensor of the metric (5.78) is diagonal (appendix D),

1 1
GE = _id(d — 1)z 77— gndq((d —1)q +2p)z 2
1 1
Gy = —éd(d —1)z79+ gndq(Qp +4— (d+1)q)z~ @2
,~ 1 N -
G; = _E(d —1)(d—2)5277 + §77(4P —4q+ 4qd — d(d — 1)¢*)8}x (P+2)5.104)

and hence clearly of type I. For space-like singularities, n = +1, we have energy density
p = —G7, radial pressure P, = GY and transverse pressures P; = G, while for n = —1
the roles of G7 and G are interchanged.
Since for ¢ > p + 2 the first term in G and GY dominates over the second term as
x — 0, it is obvious that for ¢ > p + 2 the relation between p and P, becomes extremal
as x — 0,
G;—Gy—=0 < p+P—0. (5.105)

Put differently, ¢ < p + 2 is a necessary condition for the strict DEC to hold. Since
strongly singular plane waves (the dark-shaded region in figure 5.1(a)) arise only for
g > p + 2, we have thus established that

Penrose Limits of space-like spherically symmetric singularities of power-law

type satisfying the strict Dominant Energy Condition are singular HPWs.

Since frequency squares exceeding 1/4 can only occur along the line ¢ = p + 2 itself, we

can also conclude that

the resulting frequency squares w? are bounded from above by 1/4 unless

one is on the border to an extremal equation of state.

A more detailed analysis of the DEC (as performed for d = 2 in [106]), shows that the
actual region in which the strict DEC is satisfied (taking into account also the conditions
involving the transverse pressures P;), is more constrained. For space-like singularities,
this is the (infinite) region bounded by the lines

¢g=2/d, g=p+2, ¢=2(p+1) , (5.106)

displayed as the highlighted region A of figure 5.2(a) (drawn here for d = 2). A look at
this figure confirms the results we have obtained above.

For time-like singularities, the region where the strict DEC is satisfied is consider-

ably smaller - it is a finite subset of the strip bounded by the lines ¢ = 0 and ¢ = 2/d,
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Figure 5.2: The Penrose Limit + DEC Phase Diagram in the p—g¢ plane for (a) space-like
(n = +1) and (b) time-like (n = —1) singularities. In the highlighted regions A and B the
DEC is satisfied (but not saturated). (a) the strongly singular (and non-homogeneous)
plane waves of the dark-shaded region with extremal equation of state are excluded,
and singular HPWs with w3 > 1/4 arise only along the boundary ¢ = p + 2 to the
extremal equation of state. (b) the Penrose limits are singular HPWs with w? < 1/4,

with w? = 1/4 only along the dashed line ¢ = p + 1.
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indicated (for d = 2) as the highlighted region B of figure 5.2(b). While of no con-
sequence for the present discussion, the fact that in region B the pressures P, and P;
cannot simultaneously be positive plays an important role in the discussion of Cosmic

Censorship in [106].

The fact that the Penrose limits of time-like singularities always behave as u~2,

while in the space-like case strongly singular Penrose limits can arise (even though only
for metrics violating the strict DEC), might give the impression that time-like (naked)
singularities are in some sense better behaved than space-like (censored) singularities.
We believe that this should rather be viewed as an indication that massless particles
are inadequate for probing the geometry of time-like singularities since, for large regions
in the (p,q)-parameter space, the angular momentum barrier prevents non-radial null
geodesics from reaching (and hence probing) the singularity. From this point of view,
it is much more significant that for space-like singularities massless particle probes with
arbitrary angular momentum all detect homogeneous singular plane waves provided that
the strict DEC is satisfied.

We conclude this chapter with a comment on the case of null singularities of power-
law type (n = 0) which are analyzed in [107]. As mentioned in section 4.1, in this case
some of the leading components of the Einstein tensor vanish and hence one (somewhat
trivially) ends up with an extremal equation of state. Thus no interesting constraints
arise from imposing the DEC, and using only the leading form (5.79) of the metric
cannot be the basis for a full analysis which is more subtle and will be left for future

work.



Chapter 6

Strings & thermodynamics in

homogeneous plane waves

As we saw in the previous chapter, singular homogeneous plane waves are the Penrose
limit of a large class of cosmological backgrounds. Moreover the plane wave metric
is singular if and only if Ay (u) is singular at some finite value of u, i.e. if and only
if the tidal forces along the null geodesic diverge in the original space-time. Since this
infinite tidal force along time-like or null geodesics enters in the usual general relativistic
definitions of singularities, we see that the Penrose limit retains precisely the information
that characterizes space-time singularities.

On the other hand, if one would like to consider string theory as the unified theory
of all fundamental forces of nature, it then becomes of interest to understand string
theory in a generic cosmological background. However string theory can not be solved
in generic cosmological backgrounds and therefore as a first step one would like to solve

it in singular homogeneous plane wave backgrounds.

One of the most important applications of string theory is the study of energy regimes
where the quantum effects of gravity become relevant. In many cases, for example the
dynamics of the initial state of the universe, thermodynamical properties of the system
must be taken into account. To deal with these issues, it is therefore necessary to have
an understanding of the thermodynamical aspects of string theory. As we saw in chapter
1, the free energy of a gas of strings propagating in a flat background converges only for
temperatures less than a limiting temperature, the Hagedorn temperature. This blow-
up of the free energy is due to the exponential growth in the density of single particle
states as a function of the mass, and is known to lead to a first order phase transition.
Therefore studying the thermodynamics in the singular homogeneous background will

shed light on the thermodynamics of singular cosmological backgrounds. As we will see

111
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in the following, strings propagating in a singular homogeneous plane wave background

present a similar behavior as strings propagating in a flat background do.

However since string theory in singular homogeneous plane waves lead to a time
dependent system the usual notions of thermodynamical equilibrium does not apply
and an alternative procedure to study the non-equilibrium thermodynamics via a density

matrix must be used.

6.1 Solution of string theory model

6.1.1 Classical equations and quantization

In this chapter we will show the bosonic solution of string theory in singular homoge-
neous plane waves as done in [104]. First we will consider a background where all the
frequencies are the same

Agy = —wibgpu = —ku ?, (6.1)

ie. i
ds? = 2dudv — —2Xz'2du2 +dX% i=1,...,d, (6.2)

u
where d is the number of transverse dimensions. If we consider the case of a string

propagating in a curved background with metric G, (X) the Polyakov action takes the

form of a non-linear sigma-model

Sp / 2oV hhP 0, X 3 XV G (X) . (6.3)

~ Aol
So, for strings propagating in the singular scale invariant homogeneous plane wave back-

ground, the bosonic part of the string lagrangian in the light cone gauge
U= PyT, (6.4)
where p, = p* is the light-cone momentum, is
1 i i ki
Lp=-|0,X'0_X"——=X , (6.5)
2 T2
where 04 = 0, + 0, giving rise to the equation of motion:
ok
0;0-X"+ 5X"'=0. (6.6)
T

The key property about this lagrangian, compared to the one corresponding to plane

waves, is that there is no dependence on p, due to the extra isometry of HPWs!. As

!In that case, the metric is ds?> = 2dudv — kz*?du® + dX*? and the lagrangian in the light cone gauge
has an explicit p, dependence, Lg = (04 X'0_X" — p*?kX )
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we will see this independence of p, will imply that the density matrix associated to the
system diverges at a parameter which does not depend on the metric and which in the

flat limit corresponds to the Hagedorn temperature of strings in flat space.

The solution to eq (6.6) expanded in Fourier modes corresponds to an infinite col-

lection of oscillators with time dependent frequencies

1 _ 7 Z / - 1 1 210 ~1 . —2ino

— Z*(2n7) (ozi,ne_%"” + &ine%"”)] , (6.7)
where
- 1
Z(2nT) = e "2"\/7nT [JU_%(QHT) — Z'YV_%(QTLT)} : v= 5(1 +V1-4k), (6.8)
iy p— (@ 77" +2d'P'7) ,  k# L (6.9)
0 V2v —1 ’ 4’ '
) ) ) 1
o (1) = VH(E + 20D logT), k= 1 (6.10)
N " . 1 ; it
'=—(ah+ay), p= ah —ay) . 6.11
\/5 ( 0 0 ) p Z\/Q—O!,( 0 0 ) ( )
Here J,_1 () and Y, _ L (z) are the usual Bessel functions. Asymptotically,
Z@2nT) e ™ [1+0(r )], (6.12)
and satisfies the equation of motion
Z(@2nT) + (1 + )Z(2nT) = 0. (6.13)

412n?2

For large 7 the oscillator part of (6.7) reduces to that of the flat-space theory. How-
ever the zero mode part does not present this asymptotic flatness behavior since it does
not reduce to z} e (7) = 7° + 2a/p'r. This is a consequence of the scale invariance,
T — aT, a = constant, of the equation of motion, eq (6.6), restricted to the zero mode.
Therefore the Fock-space vacuum for the zero mode part is different from the flat space

zero mode vacuum at all scales.

When %k = 0, the functions Z and Z* reduce to plane waves eT2*7 and therefore one

recovers the flat space solution. On the other hand, the case k = i corresponds to a

limiting value and the solution depends on Jy and Yj Bessel functions. For higher values
of k, v becomes imaginary and the Bessel functions have a singular behavior at 7 = 0.

Therefore from now on £ would be consider to be in the range 0 < k£ < i.
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By imposing that X* are real functions it follows that the oscillators satisfy ot , =
(op)" and a7, = (a7,)".

By considering the canonical momentum,

. 1 .
Ir = 0, X", 6.14
the total momentum carried by the string,
i " i L
wor) = [ ot = i), (6.15)

and imposing the canonical commutation relations,
[T (o, 7), X7 (o', 7)] = —i6Y6(0 — o) [(X%(o,7), X (c',7)] =0, (6.16)
follows the standard commutation relations,
[og,, o] = 65, &7, = 10604, |0, 64,] = 0, (6.17)

where we used the Wronskian:

IW* — Z"W = =21, (6.18)
where .
W(2nr) = — ZZ(?NT) — Z(Zm’)] (6.19)
2n L1
The zero mode part oscillators satisfy
[0f, o] = 67, (6.20)
which implies
[, 5] =i, [z5(7), m(7)] = 6" . (6.21)
6.1.2 Light-cone Hamiltonian
The light-cone Hamiltonian,
1 1 1 4 - . k.
H=—p,= = do (X% — X' 4+ —X* 6.22
p a’va o'y, 87ra’/0 o + T2 ) ( )

corresponds to a time-dependent harmonic oscillator which written in terms of the so-
lutions to the equations of motion and invariant oscillators reads

1 8 oo

H =Ho(r)+3 > > [ (n) (00 + 6,6 +dn) — Bu(7)ahas, — Bial 6t ], (6.23)

i=1 n=1
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where #Ho(7) is the Hamiltonian of the zero modes and

Q(r) = +—=)|ZP+ W - (ZW*+Z*W)

422

B,(r) = (1+ V2% + W? — —ZW. (6.24)

47'2712 ™

By using

~i o i i 1 i i
=S dl), = ——(ah— ), (6.25)

we can write the zero mode part as

Ho(7) = co(1)ab? + co(T)*(ai1)? + do (1) (aTal +1/2), (6.26)
where
co(T) - 820 — 1) {12;25 = yQV + 4;)_2} , wrA1/4 (6.27)
8i {(é + %2) — [w + 2w? log® 7]
—i[w + 2w? logT]} w?=1/4, (6.28)
and
) ¢ T {12;; o QU} W1/ (6.29)

2 1 +1
y {(g + %) - % + 2w° logQT} , Ww'=1/4.  (6.30)

The asymptotic behavior of the functions for large nr is

2

w
—4inT i
Bu(t) = w?™ (_8n37'3 +) : (6.31)

The light cone hamiltonian eq. (6.22) is not diagonal, but it can be diagonalized by

introducing new operators,

A7) = 0, fu(T) + 6L gn (), AL(T)
AL (1) = ol gn () + G, fu(r),  ALT(T)

L Fa(T) + &5, gn(7), (6.32)

o
ol gn(T) + &, fx(1), (6.33)

where AT = A_,,, At = A_,,, satisfying the commutation relations
n n g

(AL (), ALY(T)] = 6um6” - [AL(T), AL H(T)] = 8™ (6.34)
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[AL(7), AL (1)] = 0. (6.35)

The functions f,(7) and g,(7) are

fu(T) = @e%“’“[Z(QnT) + LZ(?TLT)] ,

2n 2w,
Vw” —24wnT iy

and

% 2 wz'z
wy = wy (1) = /0% + R (6.37)

Plugging in these new operators the diagonalized light cone hamiltonian is

H=Ho(r) + ) D wn [A (D) AL(T) + AL (1) AL(T)] + h(r), (6.38)

i=1 n=1

where h(7) is a normal ordering c-function,

W) =3 ( n? + 4w—; + Z’—T) . (6.39)

=1

This corresponds to an infinite collection of oscillators with time dependent frequencies

given by eq. (6.37).

6.2 Implications of Scale Invariance

As we have seen, the string mode frequencies in the scale invariant plane wave are
py-independent but 7-dependent

: , , wl

K - 7
wy (1) =4/n?+ it (6.40)
This highlights the special feature of the scale invariant plane waves, namely that for
fixed 7 their large n behavior is exactly that of flat space,
Xn, (6.41)

i
Wy

The above behavior of strings in scale invariant homogeneous plane waves should be
contrasted with the behavior of the string modes in the symmetric plane waves, e.g. the

BFHP plane wave [92, 95-97], with constant wave profile,

Ap(u) = =264 - (6.42)
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In this case one finds (up to the same overall factor as in (6.37)) the now 7-independent

but p,-dependent frequencies

QL = /N2 +ap2pu2 . (6.43)

While these also behave as ~ n for fixed p,, the integration over the light-cone momen-
tum implies that for the symmetric plane waves (or any u-dependence of the frequencies
other than =2 times a bounded function of u) there can be significant departures from

the flat space behavior even for n — oc.

This seems to indicate that the scale invariant singular homogeneous plane waves
have properties more in common with strings in flat space than either have with the
symmetric plane waves. Another manifestation of this is the fact that for v > 0 the
wq — 0 limit of the metric with profile (6.1) is the flat metric, while rescaling p,, in (6.42)
is an isometry of the metric (so that the flat space emerging at p, = 0 is a non-Hausdorff
limit).

In particular, this has direct implications for the issue we want to study in this paper,
namely the Hagedorn behavior of strings in scale invariant plane waves, which depends
on the properties of the string modes and the exponential growth of the number of states
at large n. On the basis of the above reasoning, one might expect this behavior to be
identical to that in flat space, and we will confirm this by an explicit calculation in the
next section. For the symmetric plane waves, on the other hand, a different behavior
may be expected and has indeed been found, see e.g. [110-114].

6.3 Thermodynamics of time-dependent systems

We wish to initiate a study of the non-equilibrium thermodynamics of string theory on
the time-dependent background corresponding to the singular family of homogeneous
plane wave space-times. This is complicated by the fact that we have an explicitly
time-dependent Hamiltonian.

For present purposes we will adopt the point of view (see e.g. [116-118]) that suitable
analogues of the Boltzmann thermal state for a time-independent Hamiltonian system,

e PH
o = ——= 6.44
PH tre—AH (6-44)
can be constructed as density operators of the form
el
Pr (6.45)

~ tre-Bl
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where [ is an invariant of the system, i.e. a possibly explicitly time-dependent operator

in the Heisenberg picture satisfying the equation

d 0
—I=—-I+1iHI|= 6.46
G1= T +ilH 1 =0 (6.46)

(note that for a time-independent system evidently the Hamiltonian H itself satisfies this
equation). In particular, therefore, the density operator satisfies the quantum counter-
part of the classical Liouville theorem for the phase space density, namely the Liouville-
von Neumann equation

d 0

—pr = —pr+iH,pr|=0 . 6.47
at’! ath [H, p1] (6.47)

For the harmonic oscillator systems under considerations, such invariants are easy to

trﬁ[:]_ y

come by (as we will briefly recall below), and different choices correspond to different

initial “thermal” ensembles with partition functions
Zi(B) = tre Pl . (6.48)

A convenient, but by no means the unique acceptable, choice is the “instantaneous”

density operator based on the choice
I = H(ty) (6.49)

(which will be explicitly time-dependent when written in terms of Heisenberg operators).
The corresponding density operator reduces to the standard choice in the case of a
time-independent system, and it provides an “adiabatic” approximation to the system

provided that H (t) various sufficiently slowly with time near ¢ = ¢,.

6.4 Calculation of the “thermal” partition function

In this section we will present the calculation of the density operator corresponding to
the invariant I = Hj.(79). We first do the calculation for a plane wave solution with
non-trivial dilaton and no other non-trivial fields in the bosonic string theory [104] and

will discuss later the generalization to type II string theories.

We will add to the invariant the light-cone momentum p, in such a way that in
the flat space limit the density matrix becomes the density matrix for evolution by the
time-like Hamiltonian 1/v/2(p, + p,). Since we are interested in the density operator
corresponding to the exponential of our invariant,

o va(I+0)

pr=——"s— . (6.50)
tre-viltP)
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Analogously to what happens to strings in flat space we are interested in what happens
to pr as the parameter 8 — 0. The only possible source of a singular behavior is the
trace in the denominator, the “thermal” partition function, and thus we will concentrate

on its evaluation:
Z1(8) = tre Vi@ D (6.51)

We of course need to implement the level matching condition to evaluate this trace.
In terms of either of the oscillator bases the level matching condition is simply the

difference between the left and right number operators.

d oo d oo
N-N= ZZ(QZ al — @&, an) = ZZ(AQLA:L — ATl (6.52)
i=1 n=1 i=1 n=1
We thus need to evaluate
_Bpy B (NN
Z1(8) = / dp, / dhe V7 tre Vil TETANN) (6.53)
A convenient way to deal with this integral is by introducing the complex variable 7,
T=T1+iTa=A+i—— P : (6.54)
2\/§a’7rpv
The trace inside the integral is
~ [ee] [ee]
tr 6727r7~'2[+27ri’?1(N7N) — H ‘ Z e 27r72wn+27rz71n)M‘2d
n=1 M=0
o
X Z e—27r7~'2w0dMe—27r7:2h(T0)
M=0
A 1
_ d . —27Toh(7
= H 1— e—zn%2wn+2mﬁn) € () (6.55)
n=-—o00

For concreteness, we will from now on consider the case where all the frequencies are
equal, w® = w (such plane waves arise for instance as the Penrose limits of FRW metrics
[68, 59, 99]). The normal ordering term is,

> w
h(re) = d n2+—+ , 6.56
( 0) (nz::l 47’0 47'0) ( )

and is divergent. Actually h(7p) has two divergences, the first one arising from a sum
over n of n - a quadratic divergence, the second one arising from a sum over n of
1/n - a logarithmic divergence. In the present case (generalizing bosonic string theory

in Minkowski background) this quadratic divergence is canceled by a generalized zeta
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function regularization which removes the divergence coming from the sum over n. The

details of the resummation are given in the appendix A with the result that (¢ = w/27),

M) IS e (6.57)

B 2 K, (27kq) ¢
— _; > - Lr(-1) (6.58)
= Molg) - Lr(o), (6.59)

4

where K is a modified Bessel function of the second kind. Note that the term propor-
tional to ¢ needs interpreting as it is infinite. The source of this infinity is a subleading
divergence of the sum over n in h(7y) mentioned above. At ¢ = 0 it is easy to see that
we get the usual result of zeta function regularization that ¢ = —1/12 as is shown in

appendix A.

We can also expand and re-sum this series for the case that ¢ is small by utilizing
the binomial expansion of the square root. Again the calculation is presented in the
appendix A and the result is,

hm) =4 +¢(1 -3 s

k=

(6.60)

¢ function regularization gives ((—1) = —1/12 but there remains the complex infinity
of ¢(1).

This remaining divergence is more subtle, but before we consider it in more detail
we first make the following observation. This divergence is in the term in h(7) that is
quadratic in q. Recall that the massive modular functions of the appendix A for the

case that by = by = 0, transform as
Doo(71,72;9) = Doo(—71 /|7, 2/ |71%; 4l7]) (6.61)
A term in h(7) that is proportional to ¢? satisfies trivially the identity,
20" = (R /1T (6.62)

and thus any term in h that is proportional to ¢? is also modular covariant.

In principle there can be a logarithmic divergence arising in a non-linear sigma model
though it generally vanishes on shell or can be removed by a singular field redefinition
as such models are formally (1-loop) scale invariant. In string theory one requires that

the quantization preserves conformal invariance and divergences are again regularized
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via singular field redefinitions and appropriate subtractions [104]. For us at the moment
it is important simply to note that any subtraction that removes the divergence will be

proportional to ¢ and thus will not destroy the modular covariance of the state sum.

Referring to the definition of the generalized theta function in appendix A, we see
that we can now write Z; in the form (recalling that for the moment we are considering
bosonic string theory with d = 24 transverse dimensions),

dr 82 _
= / 7'2 / d7'1e dma’ "'QD() 0(7'1,7'2, d )_24. (663)
0 —1/2 27

The divergence in this integral comes from the region where p, — 0o corresponding
to 7o — 0 and we can set 7; = 0 to determine the leading behavior of the integral. To
easily determine the behavior of the integrand we first use the modular transformation
property of Dy,

L T .
Do (71,723 q) = Do,o(—~—12, ~—22§Q|7'|) (6.64)
1712717
In this limit 7; = 0, 7 — 0 the transverse partition function behaves as
N 27 .
Doo(71,72;9) > — eXP[—%— 24A0(q7)] (6.65)
2
and so,
dr 2 2 T
Zy ~ / 7 / e e BT Solam)] (6.66)
~1/2
By expanding Ay(q) for small ¢ at first order, see eq. (A.20)
1 1w
A7) = —— + ——7F 6.67
o(q72) 12 + 591, T2 ( )

we can evaluate the dominant behavior of Z; by taking the limit 75 — 0, and we find

that it diverges at a value of 8 = [, independent of k/7y:
B2 =167’ (6.68)

This is precisely the value of 5 (as inverse temperature) that corresponds to the Hagedorn
temperature for strings in flat space, 8. = Bg. Since Z; diverges as § — 5. we see that
the density matrix p;, becomes ill defined at f = [, signaling a breakdown in the
non-equilibrium thermodynamic description.

For the type II superstring theories, we have a similar background with dilaton field.
Apart from the change in dimension, the calculation of the bosonic part of the density
matrix carries through as above. To include the fermionic contribution we notice that
in the light cone gauge the fermionic Lagrangian is given by

Ly = ¢'0x)" + ¢'0:9" (6.69)
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so the fermions do not couple to the parameters of the metric, and therefore its contribu-
tion to the “thermal” partition function will be the same as the one in a flat background.
Calculating the “thermal” partition function as above we discover that the density ma-
trix of type II strings in singular homogeneous plane waves is singular at a value 5 = £,

where (. = g = 2mV2'.



Chapter 7
Conclusions

This thesis has been devoted to the study of some aspects of string cosmology. In the
first part we have studied some aspects of string-gas cosmology at finite temperature
mainly based on [57]. In the second part, our objective was the study of strings in
time-dependent backgrounds. In particular, we studied the universal behavior of the
Penrose limit metric close to space-time singularities, based on [58, 59]. Then we looked

at the solvable string model and studied its thermodynamics based on [60].

In chapters 2 and 3 we studied string-gas cosmology at finite temperature in a
toroidal universe. We made use of the dilation-gravity equations of motion, satisfy-
ing the R — 1/R duality symmetry, to study the evolution of the system, which was
assumed adiabatic. Our set up was as follows: the universe, initially homogeneous,
isotropic and in thermal equilibrium, is filled with an ideal gas of closed strings. The
9 spatial dimensions, compactified on a 9-torus, evolve adiabatically starting from a

Hagedorn regime.

In order to find an acceptable equation of state that describes such a system in string
theory at finite temperature, we evaluated the energy and pressure in a microcanonical
approach. Close to the Hagedorn regime, the scale factor R exhibited a slow time
evolution around R ~ 1, as shown in figure 3.1. In this case the dynamics of the system
is effectively described by a nearly constant energy and negligible pressure. We found
that the analytic solution in the Hagedorn regime shows very good agreement with the
full numerical result. No substantial changes were observed even when the conservation
of Kaluza-Klein and winding modes was imposed, as long as the conserved charges are

of order one.

We have also investigated a “low” temperature regime, in which the equation of state
was derived in a canonical context. We first considered the dynamics of 3 “large” and

6 “small” compact dimensions in the presence of a pure gas of radiation (given by the

123
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massless states). It turned out, as expected, that there exist interesting cosmological
solutions where the large dimensions continue to expand while the small dimensions
remain nearly constant and small relative to the large ones (see figure 3.2). The at-
tractor solutions for the large dimensions can be described by the evolution of the
standard radiation dominant phase in FRW cosmology whereas the small dimensions
always asymptotically approach a constant value. We also found bouncing solutions for

the large dimensions if their Hubble rates are initially negative (see fig. 3.3).

We then analyzed the case where the massive string states are taken into account in
addition to the pure radiation. The presence of the massive states typically leads to a
slower expansion of the “large” dimensions relative to the massless case (see fig. 3.5).
Meanwhile the behavior of the small dimensions strongly depends on the initial condi-
tions for r and r, resulting in either expansion or contraction of the small dimensions
(see fig. 3.4). The radius r can be kept small as long as r is initially close to unity,
since the pressure vanishes at the duality symmetric radius (r = 1). The vanishing of
the pressure at r = 1 is a purely stringy effect since it is due to winding modes, whose
negative contribution compensates that of KK states. The important point is that,
even in the presence of massive states there exist a wide range of the initial condition
space for which the small dimensions are stabilized around the self-dual radius and are
kept small relative to the large ones. These behaviors were found to be insensitive to
the number of large dimensions d. We also considered the case for the conservation of
KK and winding modes and found no substantial change compared to the case without

imposing the conservation laws.

Concerning the second part of this thesis we showed that space-time singularities
exhibit a remarkably universal homogeneous u~2-behavior in the Penrose limit. We
established this in complete generality for time-like singularities of power-law type and
also showed that for space-like singularities of power-law type, for which more singular
Penrose limits are possible, this u~2-behavior is implied by demanding the strict DEC.

Perhaps the main implications of this result are for the study of string theory in
singular and/or time-dependent backgrounds. In general, because of the simplifications
brought about by the existence of a natural light cone gauge [154, 155], plane wave
(and more generally pp-wave) backgrounds provide an ideal setting for studying such
problems. Now, as we have seen, the Penrose limits of a large class of singularities are

always at least as singular as u 2.

Thus “weakly singular” plane waves with profile
~ u~% «a < 2, while perhaps interesting as toy-models of time-dependent backgrounds
in string theory [109, 150, 156], do not actually arise as Penrose limits of standard
cosmological or other singularities. Moreover, a strongly singular behavior with o > 2

can only arise for metrics violating the strict DEC. This singles out the singular HPWs
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2

with profile ~ u~“ as the backgrounds to consider in order to obtain insight into the

properties of string theory near physically reasonable space-time singularities.

String theory in precisely this class of backgrounds, and in precisely the frequency
range w2 < 1/4 that we generically found in chapter 5, has already been studied in some
detail and shown to be exactly solvable in chapter 6. The significance of this bound
on the frequencies for string theory (also noted in the earlier studies [109, 150]) lies
in the fact that the properties of Bessel functions allow for an analytic continuation
of string modes through the singularity in this case (due to the standard shift by 1/4
in the Bessel equation). Other aspects of string theory in this class of backgrounds
still remain (and deserve) to be explored. The above observations about the relation of
these backgrounds to interesting space-time singularities provide additional impetus for

understanding string theory in an expansion around such metrics.

This analysis can be generalized in various ways. In particular, even though we have
only considered spherically symmetric metrics, the results we have obtained are certainly
not restricted to spherical symmetry. A prototypical anisotropic example is the Kasner
metric whose Penrose limit (together with those of other anisotropic or inhomogeneous
cosmological models) was studied by Kunze [101] and shown in section 4.6.3. In many of
these examples one obtains either an exact u2-behavior (for particular Penrose limits
of the Kasner metric) or as the dominant contribution in the near-singularity limit. It
would be interesting to establish a more general result along these lines, in particular
also in view of the role played by the Kasner metrics (and Bianchi IX cosmologies)
in the BKL discussion of the general solution of Einstein’s equations near space-like
singularities [158, 159].

Going beyond spherical symmetry may also shed light on a peculiar feature of the
spherically symmetric metrics of power-law type studied in [106, 107] and here. Namely,
we have seen that a rather special role is played by the “extremal” equations of state
for which at least one of the inequalities in the DEC is saturated. As noted in [106, 107]
this type of equation of state is not ruled out by physical considerations alone, and
arises “rather too easily” near the spherically symmetric singularities of power law type
that we have been considering. Indeed, as we have seen in section 5.4, whenever q >
p + 2 one obtains an extremal equation of state close to the singularity because then
the “extremal” contribution to the curvature from the transverse sphere dominates the
longitudinal (radial/time) contribution. Thus this may well be an artifact of spherical

symmetry.

Finally we concluded our analysis by calculating, in a suitable approach for time-

dependent systems, the “thermal” partition function of strings propagating in these
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singular homogeneous plane wave backgrounds. Contrary to the case of symmetric plane
wave backgrounds we found that the partition function diverges when the parameter
B takes on a value that is the same as the inverse of the Hagedorn temperature for
strings propagating in flat space. This suggests that strings propagating in singular
homogeneous plane wave backgrounds behave in a similar way to strings propagating in
flat space.

This thesis contributes in a small way to the progress in string cosmology. Despite
all the work done over many years, string cosmology is a broad young field and much
work has yet to be done. Hopefully one day as a result of continuing work in the field,

the question where does the universe come from? will be closer to finding an answer.



Appendix A

Jacobil Theta functions

A.1 Theta functions

The Dedekind eta function is defined as

where ¢ = exp(27i7), and under modular transformations it transforms as

n(F+1) = €7Pn(F)
n(—=1/7) = V—iFn(7) (A.2)

The Jacobi theta functions are defined as

boo(v,7) = O3(v|7) =0 [ _f: 7

Oor(v,7) = Ou(v| )_e[g]( 7) = i (1) /22,

O1o(v,7) = Ba(v \7)_9[0%] Z J-1/22 /2 0172

(7)) = ~0uwlF) =0[}] (7) = i f: LU (A
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Their product representations are

o0

Ooo(v,7) = [ =¢™ @ +2gm (1 +27"g™7),
1

3
I

(1 . qm)(l . qu71/2(1 . zflqul/Q) ’

8

901 (V, 7:) =

1

3
I

o
010(v,7) = 2" cosmy H (1—¢™)(1 4+ 2¢™ Y2(1 + 271¢™),

m=1

01(v,7) = —2e™/tginqy H (1—¢™(1 —2¢™ Y21 — 27 ¢™). (A.4)
m=1

Their modular transformations are

000(1/ T+ 1) = 001
001 I/T+1) = 000

(
910( 7~' 1) = exp(m'/4)010(1/, 7:),
911( 1) = exp(m/4)011(1/, 7:),
(A.5)
and
Ooo(v/7,—1/7) = (—i~)1/2exp(7rw/ V000 (v, 7)
o1 (v/7,—1/7) = (—i7)exp(miv?/7)010(v,7),
bro(v/7,—1/7) = (—ZT)I/QeXp(Tl”LI/ /7)001 (v, T),
01, (v/7,—1/7) = —i(—i7)2exp(miv?/7)011 (v, 7). (A.6)
A.2 Generalized Theta functions
The generalized Theta function is given by
Dbl,b2 (7:1’7:2; q) = eQTr’i"zAbl (9) H (1 - 6—271'7"2\/(n—|—b1)2—|—q2—|—27rﬁ'1(n—|—b1)—27rib2)’ (A7)
where
. cos(27b
M) = =23 O i o), (A.9)

p=1
and K is a modified Bessel function of the second kind. Its modular properties are'

o~ T To - -
Dy, (F157250) = Dhy,—y (— TR |2,CI|T|) Dy, 1oy (71 + 1,705 ) - (A.9)

I This modular transformation is valid since ¢ is not related to the torus modular parameter, other-
wise the modular transformation would be Dy, s, (7, q) = Dy, 5,(—1/7,¢/|7|) [111].
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In the detailed calculations of this thesis we only need Dy (71, 72;¢) and therefore

just Ag(q). Lets see how it arises.

Consider

F=> Vn’+¢ (A.10)

nez
where we will put ¢ = w/27 at the end of the calculation and the normal ordering
term h(7) = F/2 and we want find out how h(7) is related to Ag(g). In zeta function

regularization the first step we take is to use Poisson resummation. Then,

F= Z/ dye2™kY | [y2 4+ 2. (A.11)
keZ
Rewriting the square root term as an integral,
]. © dt 2 2
2 2 2 o Hy*+e?)
V= 5y /0 /3¢ (A.12)
we can then write
© dt 2 2
_ —2miky oy +d®)
F 1/2 %;/ dye /0 1372¢ (A.13)
2¢ x— Ki(2mkq) ¢
_ 4 Z - 51“(_1), (A.14)
k=1

Alternatively the binomial expansion of F for small ¢? is as follows.

F = q—i-Qi\/m (A.15)
= q+2 i F?/32/2 = 1)‘1% (A1)
= ¢+2¢((-1)+¢%(1 +2Z 3/32/2 _%_1) 2 (A.18)
So we find that
M) = Aolg) = 1) (A.19
_ _11—2 +2+ q;m) + i r(( )%)Fr(lgk_+_))g(2k “ D¢ (A.20)
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Appendix B

Saddle point approximation

The saddle point approximation is a way to approximately calculate the integral

F(\) = /C d(2)eM@dz (B.1)

where C'is a given contour in the complex plane and both ¢(z) and f(z) are analytic
functions in a region G containing the curve C. This method works as long as f(z) has a
sharp maximum along C, such that one can expand around it. Since f(z) is an analytic

function, it will have saddle-points rather than minima or maxima.

Suppose f(z) has a saddle point at z = 2z, where f'(z) = 0, thus
f(2) = f(z0) +co(z — 20)* + -+ - (B.2)

around zp. Assume, for simplicity only, that ¢y # 0. Introduce radial variable a — ag =

pe'®. ¢y and denote u and v the real and imaginary parts of f. Then

u(p, @) —u(z) = p’rocos(2¢ +6g) + - -
U(p, ¢) - ’U(Z()) = p27“0 Sin(2¢ + 00) N (B3)

One should approach zy such that the imaginary part vanishes, and there is no cancel-
lation in the integral. Moreover, one should get a maximum for v along such direction
and hence u(p, @) — u(z) < 0. We then get

. mw— 90

Om = 5 Tmm, m=0,1. (B.4)

By plugging in the expansion (B.2) into (B.1):

F() ~ M0 g(z) / IGO0 g, (B.5)
C
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Recalling that f" = 2¢y = 2r¢e® and making the change of variable z—z, = pe?l(?m+1)7—0l/2

F(\) ~ M) [¢(,zo)1 / %ei% + O(/\?’/Q)] : (B.6)

The choice m = 0 or m = 1 depends on the orientation of the contour integral on C.

one obtains

See [160] for a more rigorous statement and proof of the saddle point approximation.



Appendix C

Orbifold

C.1 Compactification

Let us consider a periodic scalar field such that
X~X+21R. (C.1)

Since the world-sheet action is the same as in the noncompact case, the equations of
motion are unchanged. However the periodicity has two effects. First, string states
must be single-valued under the identification (C.1), i.e. the operator exp(27iRp) which
translates strings once around the periodic dimension must leave states invariant, so the

center of mass momentum is quantized
k=n/R, nezr. (C.2)
The second effect is that a closed string may wind around the compact dimension,
X (o +27) = X(0) + 2rRw, wEZ, (C.3)

where the integer w is the winding number. Then, the most general configuration for
X (o, 7) satisfying the two dimensional wave equation and the closed string boundary
conditions is

NP |
X(0,7) =+ 7 +2Rwo + ; [ane™2nT) o G em2n(r+ )], (C-4)

The partition function for X is now

Zx = (q@) 7 Tr(g"og™)

o

= @A D] Anw (C.5)

n,w=—00
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where A, ,, is the lattice contribution

!

Ay = g% (+2) g5 (2" (C.6)

INE
2|3

The oscillator sum is the same as in the noncompact case but the momentum integration
is replaced by a sum over n and w. By using the Poisson resummation formula,

f: exp(—man? + 2mibn) = o~/ i exp [—M] (C.7)

a
n=—00 m=—00

the partition function can be written as

o0 1,2 2R2
Zx = |n(F)|? Z exp |:—7T7~'2 <an + 2 )+27Ti7~'1nw}

R2 o

n,w=—00

= Lo Y ew (-0 ©8)

C.2 Orbifold

The orbifold arises when we consider a manifold M that has a discrete symmetry group
G. The new manifold M = M /G is obtained from the old one by modding out the
symmetry group G. If G is freely acting (M has no fixed-points under the G action)
then M is a smooth manifold. On the other hand, if G has fixed points, then M has
conical singularities at the fixed points known as orbifold singularities.

In the orbifold construction we should keep only the operators invariant under the
orbifold transformation. Therefore we have to insert a projector in the trace: (14 g)/2,
where g is the non-trivial orbifold group element acting on states, and include the twisted

states. Thus for a scalar field propagating in the orbifold the partition function is

Zorb — Zuntwisted + thisted

= o> (C.9)

h,g=0
where h = 0 labels the untwisted sector, h = 1 the twisted sector, ¢ = 0 implies no
projection and g = 1 implies projection.

Let us now for the purposes of this thesis consider a scalar on a circle of radius R,
under the action X — X + 7R (freely acting orbifold). Z[J] is simply given by (C.5).
The lattice shift X — X + 7R acts in the states as |n,w) — (—1)"|n, w) and leaves the
oscillators invariant. Therefore Z[] is of the form

exp [ =32 (5 + )" — et (3 — )]

Z[ =Y (=" - : (C.10)

n,WEZ
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The computation of Z[}] can be made by noting that the twisted boundary condition is
similar to that of a circle of half the radius, so that w — w + 1/2, or by performing a

7 — —1/7 transformation on Z[?]. Both methods give

2=y eXp[T(§+(w+5)J)__T(§_(w"'i)E)] (C.11)

n,2wWEZ m

Finally Z[7] can be obtained from Z[j] by a ¥ — 7 + 1 transformation or by inserting

the group element:

exp |2 (2 4+ (w+ §) B) - 2T (2 — (w+ 1) B)”
7l =Y (-1 p [T G+ (w+3) B) (% — (w+3) )]- o

n,WEZ m

Now let us consider type IIB string theory compactified on S;/Z5, where Z, is gen-
erated by g, the product of a translation 73 along the circle and (—1)f, with F the
spacetime fermion operator. Since we already know what is the effect of the translation

along the circle let us focus on the action of the (—)¥ operator.

Let us introduce the level one SO(2n) characters

o L o gn

I, = 2 (03 + 04) ) Von = 2 (03 - 04)7 (013)
| L n  ngn

SZn = ﬁ(QQ +1 01)’ CQTL = ﬁ(GQ -1 91) (014)

Then, leaving aside all contributions from transverse bosons and from the measure over

the moduli, the partition function of the type IIB superstring in 10d is simply

Z = |Vg— Sg|*. (C.15)

In this notation, the massless spectrum is manifest; in particular, |Vz|? describes the
universal bosonic modes of the NS-NS sector (graviton, dilaton and antisymmetric ten-
sor), while |Sg|* describes the additional scalar, the 2-form and the self dual 4-form of
the RR sector. Now the action of the (—1) is clear: it acts as +1 to the bosonic states
and —1 to the fermionic states. In other words, for F' = Fy, + Fg, the total space-time
fermion number, (—1)F = RgcRsc, where Rgc contributes with a +1 to Iy and Vz and
with a —1 to Sg and Cs. Thus by acting on the partition function with (—1)f we can

straightforwardly calculate Z[9).

Now, modular invariance is restored by introducing the twisted sector, which can be
calculated by Z[}](7) = Z[°](—1/7). Finally, Z[{] is calculated by taking into consider-
ation the (—1)¥ action on Z[}] [161, 162].
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It then follows that the partition function, or likewise the free energy, of type I11B
string theory compactified on S;/Zs, where Z, is generated by g, the product of a
translation 73 along the circle and (—1)¥, is given by, eq(2.63),

I T 7 P71
Fo) = _3(47?04’)25/2/fz%,jl/22|n|24

x> {108 A (=1)" + 1812 A s + 62D ya (<)} (C16)

n,we”Z

C.3 Unfolding technique

In the following appendix we briefly discuss the unfolding technique (UT) used in this
paper to calculate the torus contribution to the vacuum energy density. This technique
was first introduced in string theory in the context of strings at finite temperature
[128, 129]. It has also been efficiently used in the context of threshold corrections to
gauge couplings in heterotic string theories (see e.g. [163, 164], and more recently [165]).
It has also been used in [166] to study the quantum stability of type IIB orbifolds and
orientifolds with Scherk-Schwarz SUSY breaking.

One loop closed string amplitudes on the torus always involve an integral over the
fundamental region F which is given by the complex upper half plane 7 > 0 modded
out by the modular group PSL(2,7Z). Analytic integration over this region is difficult
to perform even for zero-point amplitudes, i.e. in computing the partition function of a
model. The UT gives a systematic procedure that allows one to unfold F into the strip
S: 79 >0, —1/2 < 7; < 1/2. In many instances, such as in the models studied in this
paper, such technique is essential to be able to compute the torus partition function.

The integrand Z7 of a torus partition function is generically given by a sum of terms.
Although Zr is always modular invariant in any consistent string theory, each term in
the sum generically is not, being mapped to another term under the modular group. It
is always possible, however, to choose a set of representative terms Z:. having as an orbit
under the action of the modular group the whole Zr. We can thus integrate a given set
of representatives of the orbit over the unfolding of F, namely the strip S, instead of
integrating the whole Zr over F:

/fZT:/S/GZZg[Z}] :/ng:z;. (C.17)

geG 1

In particular we will show how the UT allows to rewrite eq.(2.63) as (2.64). As can be

easily shown, each of the three terms in curly brackets in (2.63) is not modular invariant.
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The first term is invariant under T'4[2]/Zy which is given by the set of unimodular

(0)

with ¢ even and d odd, where Z, acts as a, b, c,d - —a, —b, —c, —d. The two remaining

transformations

terms can be reached from the second one by the action of S and ST, where S(7 —
—1/7) and T(7 — 7 + 1) are the usual SL(2,7Z) generators. Moreover, PSL(2,7Z) =
{I,S, ST} xT'4[2]/Z5. The lattice contribution of the first term in (2.63) can be written
as:

CV,7~—2 2 : 77rR~2 n+1/24w7|? 2 : - "R? ntwi|?
An,w(_)n — e al7.2| / ‘ — e 4al7_2| |

R
n,2weEZ n € Zodd, we€ Zeven

S c18)

pEZodd ¢ Nodd,
d € Zeven

where we have performed a Poisson resummation and then the change of variable n = pc,

w = pd with ¢ > 0 and p the minimum common divisor between n and w.

By applying ['4[2] = T'4[2]/(Z2 x T) to

Zexp[ yPES } (C.19)

we obtain ,

R* 2
E exp [_4a'7~'2 P |c+ d7| } : (C.20)
Therefore (2.63) can finally be written as (2.64):

.- O 1= () g
F(B) = - 1+ S+ ST) 1ol
) (2mv )6 472( FZ m |24pezz 2
Vas /d2~ 7105)° 1 - ) —p?
- _ 4072’ C.21
et Js o 2 2

where S is the strip 7, > 0, —1/2 < 7, < 1/2, the unfolded region of F.
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Appendix D

Curvature of Szekeres-Iyer metrics

For reference purposes we give here the non-vanishing components of the Ricci and

Einstein tensors of the metric (5.78),
ds® = nzPdy* — naPdz’® + 29dQ; (D.1)

(for d = 2, these results can be inferred from [106]). Indices i, j refer to the metric g;; of
the transverse sphere (or some other transverse space), with Ri]- and R the corresponding
Ricci tensor and Ricci scalar.

Ricct TENSOR

1
R,, = Z(Qp + 2qd + pgd — qzd):lc’2
1 _
yy Zp(qd - 2)$ 2

=
|

- 1
Ri; = R+ ZW(qd — 2)giat P’
.1 e

Ricct SCALAR

~ 1
R = Rz %- Zn(élp + 4qd — d(d + 1)¢*)x~ P+

1
= d(d—1)a™" = In(4p + dqd — d(d + 1)g?)z~(*+2) (D.3)
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EINSTEIN TENSOR

Gy = —%f%x“’ - %ndq((d —1)g + 2p)z~ 2
= —%d(d — 1)z - %ﬂdQ((d —1)q +2p)z *+?
Gy = —%Rx_q + éndq(?p +4—(d+1)q)z®+?
= —5d(d = Da~ + indg(2p+ 4~ (d + 1g)a~0+?
G = éé-ac*q + én(4p —4q + 4qd — d(d — 1)q2)(5§x’(”+2)
1

= _E(d —1)(d—2)8z" + %n(élp —4g+4qd — d(d — 1)q2)5§x_(”+2) (D.4)
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