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Chapter 1

Introduction

1.1 Gauge theories as string theories

The microscopic behavior of nature, the fundamental particles and the inter-
actions among them are, on the base of present knowledge, well described by
gauge theories, where the fundamental objects are point-like and interactions
are local. Tt is believed, however, that at small distances (of the order of the
Planck scale) quantum gravity effects become important. Hence we need a
quantum theory including gravity.

It turns out that a consistent quantum theory of gravity can be devel-
oped if one abandons the idea of point-like fundamental objects and use,
instead, one-dimensional objects or strings. Today string theory is seen as
the strongest candidate for a quantum theory of gravity.

However, string theory was originally discovered in trying to describe
the large number of hadrons and mesons discovered in the 1960’s. It was
conjectured that all these particles where different oscillation modes of a
string. The hadronic spectrum has many stringy features, for instance, the
mass and the angular momentum of a relativistic rotating string of tension
T satisfy M? ~ TJ? + const., relation also satisfied for the lightest hadron
with a given spin. Today we know that hadrons and mesons are made of
quarks and these are well described by QCD.

The fact that the hadronic spectrum can be described in terms of a gauge
theory (QCD) and (to some extent) in terms of a string theory, make us sus-
pect that both descriptions may be equivalent, in other words, the existence
of a string dual of QC'D is more than plausible.

7



8 CHAPTER 1. INTRODUCTION

This idea was made precise by 't Hooft, who showed that gauge theories
with U(N) (or SU(N)) gauge group greatly simplify in the limit of a large
number of colors where the theory admits a stringy description [1]. More
precisely, in the so called ’t Hooft limit

N — oo, A= gy N fixed (1.1)

non planar contributions (to a given amplitude) are suppressed with respect
to planar ones, and the diagrams (in the double line notation) can be seen
as string diagrams, where the interaction (splitting and joining of strings)
coupling is proportional to 1/N.

These arguments are very general and are expected to work for almost
any gauge theory admitting a large N expansion. Finally, we should mention
the important result that in trying to construct a string theory dual of a four
dimensional gauge theory we are forced to introduce at least one additional
dimension.

1.2 AdS/CFT duality

In the last 20 years string theories, as theories of quantum gravity, were
extensively studied. It turns out that a quantum theory of strings is not
consistent in any dimension, in particular its supersymmetric version requires
a ten dimensional space time.

An explicit realization of 't Hooft ideas was found by Maldacena, who has
actually shown that the string theories dual to large N gauge theories were
nothing but the same as the ones proposed as quantum theories of gravity!

More precisely the Maldacena conjecture, or AdS/CFT duality, states
the equivalence between N = 4 super Yang-Mills (SYM) in four dimensions
and string theory on the ten-dimensional background AdSs x S° [2].

Such duality has been widely studied since its original formulation. The
reasons for such a big interest are several. On the one hand the conjecture
allows to compute quantities in the gauge theory by doing computations on
the string side (often in the supergravity limit) and vice-versa. On the other
hand it mixes many interesting ideas of physics.

A holographic description of a theory is an equivalent description in terms
of a lower dimensional theory. It has been argued that a quantum theory of
gravity on a volume V should be described in terms of a theory on its bound-
ary 0V. In the AdS/CFT duality the gauge theory lives in four dimensions,



1.3. SUMMARY OF THE THESIS 9

that can actually be interpreted as the boundary of AdSs, so the AdS/CFT
duality is an explicit and precise realization of the holographic principle [3].

Another idea behind the Maldacena conjecture is the duality between
open and closed string descriptions, called open-closed duality. As we will
see, the AdS/CFT duality arises as two equivalent descriptions of the same
system. The open-closed duality is thought to play an important role in the
understanding of string theory.

A related duality is that between string theory on PP-waves and a specific
subsector of N' =4 SYM [4]. Such duality can be seen as a particular limit
of the AdS/CFT correspondence (to be described in the next chapter) and
it has the advantage that string theory can be quantized in this background
[5] and its spectrum can be fully computed. ®

1.3 Summary of the thesis

In this thesis we study different topics on the AdS/CFT duality and different
limits of it. We consider such study very important since the duality helps to
understand many aspects of gauge and string theory and relates many areas
of theoretical high energy physics.

In the next chapter we give a brief introduction to the AdS/CFT duality
and related topics. In the first part of the chapter we describe the prototypical
example of strings on AdSs x S° dual to N' =4 SYM. In the second part we
describe strings on PP-waves, as a particular limit of strings on AdSs x S°
and the corresponding limit on the gauge theory side. Finally, we describe
some previous attempts, in the literature, aimed at understanding the duality
in the limit in which the gauge theory is weakly coupled. This limit is
particularly interesting and difficult to study since the string theory dual
presumably lives on a highly curved background.

In chapter 3 we study D-brane solutions on a PP-wave background. D-
branes are very important in string theory (being non perturbative objects)
as well as very powerful tools, for instance, the allow one to engineer gauge
theories. Moreover, as already mentioned, strings can be quantized on PP-
waves, so the study of such background in the presence of D-branes is inter-
esting. In particular we describe fully localized (i.e. the solution depends on

! Actually, string on pp-waves can be quantized in the ligth-cone gauge and for values
of the light cone momentum different from zero.
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all the transverse coordinates) supersymmetric Dp-brane solutions, as well
as the D1 — D5 system.

In the last year, clues for the existence of integrable structures on both
sides of the AdS/CFT duality have been pointed out. For instance, hints to
the integrability of N'=4 SYM in the large N limit were given by studying
the dilatation operator in perturbation theory and it was shown that the one
loop mixing matrix giving the anomalous dimensions, upon diagonalization,
can be identified with the Hamiltonian of an integrable spin chain [6, 7, 8|.

On the other hand, from the string theory side, after some clue from the
bosonic theory [9] , Bena et. al. found an infinite set of non-local classically
conserved charges for the Green-Schwarz superstring on AdSs x S® [10]. This
would imply that the world-sheet theory be an integrable system. Such
charges satisfy an algebra called the Yangian and such algebra appears also
in operators acting on spin chains, the relation between the two approaches
was given in [11].

In chapter 4 we study the structure of such charges on the PP-wave limit
of AdSs x S°. First we construct a set of non-local charges from the world-
sheet sigma model of closed strings on PP-waves backgrounds and then we
construct the charges on AdSs x S° and take their Penrose limit. Both
methods are shown to agree.

As already mentioned, the study of the AdS/CFT duality in the limit in
which the gauge theory is weakly coupled is non trivial, since string theory
lives on a highly curved background. In the last part of this thesis we describe
some attempts to find a string theory formulation underlying free N' = 4
SYM.

In chapter 5 we describe a partial match between states on a PP-wave-
like string theory and free SYM states (extending the BMN dictionary down
to small J). We further develop a discretized string field theory (SFT) that
we use in order to compute three-point correlation functions among various
string states. Such correlation functions do not agree with those of free
SYM, however the mismatch is small and seems to be systematic. We end
the chapter by discussing some possible reasons for such mismatch.

In chapter 6 a more effective approach is taken in order to give a string
dual of free SYM. By using a oscillator construction (which would act as
string oscillators in position space) we are able to obtain the precise spec-
trum of SYM. Further we re-develop the discretized light cone SF'T method
to compute correlation functions in these new variables and match them, suc-
cessfully, against some simple examples of free SYM correlations functions.
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Then we focus on the question of quantum corrections to two and three point
functions. In string theory we have no way to compute corrections in the ’t
Hooft coupling to the Hamiltonian, but once we use such corrections as a
input then corrections (at that given order) to n-point functions are fixed.
With such input string theory “predicts” the correct quantum corrections
to two and three points functions of the closed SO(6) sector. We end the
chapter with some conclusions and outlook.
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Chapter 2

AdS/CFT correspondence

2.1 AdS;/CFT, duality

The best established duality between a gauge theory and a string theory is
that between N = 4 super Yang-Mills in four dimensions and type IIB string
theory compactified on AdSs x S°. The relation between these two theories
can be understood as follows .

D-branes can be defined in string perturbation theory as an hypersurface
on which open strings can end. By a Dp-brane we mean an hypersurface
with p spatial dimensions plus time. Even though D-branes are not necessary
neither sufficient to proof the AdS/CFT correspondence, we will use them in
order to give a heuristic argument supporting it.

Consider an stack of N parallel D3-branes sitting together on flat ten
dimensional Minkowski space-time, as mentioned before, these D3-branes are
extended along a (3+1) dimensional plane. String theory on this background
contains two kinds of perturbative excitations, closed strings and open strings
and admits two dual descriptions.

In the open string description the dynamics of the D-branes is described,
at low energies, by the massless modes of the open strings ending on them.
For such N branes we have N? different strings (depending on the pair of
D-branes on which they end) that actually represent the N? massless gauge
bosons, together with their superpartners, of a U(IN) gauge theory. As the
endpoints of the strings are confined to live on the D3-branes then the gauge
theory lives in four dimensions, further it can be seen that the theory is

!There are many nice reviews on the subject, for instance [12, 13, 14, 15, 16].

13



14 CHAPTER 2. ADS/CFT CORRESPONDENCE

conformal and possesses N = 4 supersymmetries.

An alternative description can be given in terms of closed strings. These
describe the geometry of the space-time in the presence of the stack of D3-
branes. More precisely we can find a D3-brane solution of supergravity of
the form

ds? = f7Y2(=d? + dz? + da? + dz2) + f12(dr? + r2dO2) (2.1)
Fy = —f72(1 4 *)dt A dzy A dxy A dxs A df
4
f=1+ %, R* = 41g,0”*N (2.3)

With Fjy the field strength of the four form Ramond-Ramond (RR) po-
tential A4, whose source are the D3-branes. The energy E, of an object as
measured by an observer at a constant position r and the energy F measured
by an observer at infinity are related by the redshift factor

E = fYE, (2.4)

i.e. the same object brought closer and closer to r = 0 would appear to have
lower and lower energy for an outside observer. In another words, in the
low energy limit we should focus on the near horizon region (r < R = f ~
R*/r*), now the geometry becomes

2 R2
ds* = %(—dt2 + dz? + dx3 + dx3) + ?(alr2 + 72dQ3) (2.5)
4
Fy = (1 + #)dt A dag A dzs A das A d% (2.6)

which is the geometry of AdSs x S° supported by N units of RR-five form
flux

/S By =N (2.7)

As both descriptions should be equivalent, we are led to the conjecture
that A/ = 4 super conformal Yang-Mills theory, with gauge group U(N)
living in (3 + 1) dimensions be dual to type IIB string theory compactified
on AdSs x S° with N units of RR five form flux.

The duality also provides us with a dictionary between the parameters in
the two descriptions. The parameters of the gauge theory are the coupling
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constant gy,s and the rank of the group N (or the 't Hooft coupling A =
g%, N) whereas on the string theory we have the radius of the AdS space
R (equal to the radius of the S°) measured in units of v/o/ and the string
coupling constant g, the dictionary reads 2:

RQ
g, = gl%'Ma ? = g%’MN = \/X (28)

The strongest version of the duality states that the equivalence holds for
all the range of these parameters.?

It is important to notice the range of validity of both descriptions. An
analysis of loop diagrams in the field theory shows that we can trust pertur-
bative Yang-Mills when

R4
gy N ~ I <1 (2.9)
S
besides gy < 1, where we have defined the string scale I, ~ v/a'. On the
other hand, we can rely on the classical gravity description when the radius
of curvature becomes large compared to the string length

R> 1, (2.10)

We see that the two regimes are incompatible, avoiding any contradiction
from the fact that the two theories look rather different, this makes the
duality very useful, but at the same time hard to prove or hard to disprove!

From the dictionary (2.8) we can consider many limits, as particular cases
of the strong version of the duality. For instance, classical string theory
(gs — 0, with R?/q/ fixed ) is dual to the large 't Hooft N limit of gauge
theory (N — 00, gyy — 0, with A fixed ) and type IIB supergravity on
AdSs x S5 (g — 0, R?/a’ — o0) is dual to N/ =4 SYM in four dimensions
at strong 't Hooft coupling (gyy — 0, A — 00).

Let us have a closer look at these two apparently different theories. In

order to see the symmetries of the string theory background we can write
AdSs as a hypersurface embedded in R**

2Actually the dictionary extends for the full complexified coupling constants, relating
the vacuum expectation value of the axion in string theory with the theta angle of the
gauge theory: x =0

3Possibly with some corrections to the dictionary for small values of .
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X2 - X+ X4+ X2+ X2+ XD = —R? (2.11)

whereby it can be seen that the AdSs isometry group is SO(2,4). By
choosing an appropriate parametrization of (2.11) we can write the AdSs
metric as

ds® = R*(— cosh? pd7? + dp® + sinh® pdQ)3) (2.12)

these are called “global” coordinates and they cover the whole AdS space.

Besides AdSs we have the five dimensional sphere S°, whose isometry
group is SO(6). The full AdSs x S° metric written in global coordinates
reads

ds® = R?*(— cosh? pd7?+dp®+sinh? pd25+cos® Od¢? +dh?+sin HdQ'g) (2.13)

The gauge theory has four supersymmetries in four dimensions, .e. six-
teen real supercharges, and its field content in uniquely fixed, there is a
unique super multiplet, transforming in the adjoint representation of the
gauge group, so the only freedom is the choice of the gauge group and the
coupling constant (together with the # vacuum angle). The field content
consist of a gauge boson A,, p = 1,...,4, six real scalars ¢', I = 1,...,6
and four fermions A\o; and A4z, where o = 1,2, ¢ = 1, 2 are four dimensional
chiral anti-chiral indexes and i = 1,...,4. The theory has a SO(6) ~ SU(4)
global symmetry, called R-symmetry, that rotates the scalars and fermions,
the index I belong to the fundamental representation of SO(6) and 1,4 to
the 4,4 (spinorial) representations. the supercharges are in the 4, 4 as well.
Hence the isometry of the S° manifests as the global R-symmetry on the
gauge theory.

The theory is scale invariant quantum mechanically, i.e. the beta function
is zero to all orders, so it is conformally invariant. The conformal symmetry
extends the Poincaré algebra by adding the generator of scale transforma-
tions (the dilatation operator) and the conformal boosts. The result is the
conformal algebra in four dimensions, that is isomorphic to SO(2,4). Actu-
ally the space-time in which the gauge theory lives can be interpreted as the
boundary of AdSs, and the isometry group SO(2,4) acts on the boundary as
the conformal group acting on Minkowski space. It is a general feature that
local symmetries in the bulk reflect as global symmetries in the boundary.
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Commutating the sixteen ordinary supercharges with the extra conformal
generators gives rise to sixteen new conformal supercharges. Actually it can
be also shown that the supersymmetries coincide on the two sides of the
duality.

2.2 Plane wave limit of AdS/CFT

A particular limit of the AdS/CFT duality states the equivalence between
type IIB string theory on the maximally supersymmetric PP-wave [17] and
a specific subsector of N/ = 4 SYM. Since string theory can be quantized
on pp-waves (at least on the light cone gauge), this duality is particularly
interesting, as it is the only known duality between a gauge theory and a
quantizable string theory *.

On the string theory side the appropriate limit (also called Penrose limit
[21]) is obtained by focusing on the geometry seen by a particle moving very
fast on an equator of S°. This can systematically be done by first introducing
light-cone coordinates 2= = t — ¢, 7 = t + ¢ and then performing the
following rescaling:

- 2~— r Y
- =R% ,p—R,G—R,
where z is not rescaled and 7,7 and y are kept fixed. In this limit the
metric (2.13) becomes

R — o (2.14)

ds? = —2da*dx™ — (P 4 i) (dz™*)? + di® + dif? (2.15)

where 7 and ¢/ parameterize points on R* x R*. It can also be seen that
the only components of the RR five-form which survive are those with a plus
index. A mass parameter y can be introduced by rescaling x~ — x~/u and
T — pxt. The energy and angular momentum along the ¢ coordinate also
scale in the limit (2.14). In global coordinates these are given by E = i0,
and J = —i0y.

What does this limit correspond to on the gauge theory side? In terms of
the dual CFT the energy and angular momentum correspond to the confor-
mal dimension A and R-charge J (on a particular direction). It can be seen
that:

*Some nice reviews on the subject are [18, 19, 20]
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P =i0p =i(0,+0y) =A—J (2.16)
P A+J
pr=-b 2o (2.17)

So we need to consider gauge invariant operators with large conformal
dimension and large R-charge (A, J ~ R?) while their difference has to be
kept finite. Summarizing, the Penrose limit corresponds, on the gauge theory
side, to the double scaling limit:

A — 00, J — 00, N — oo keeping i, A — J fixed. (2.18)

VN

The fact that the spectrum of string on pp-waves can be exactly computed
provides us with a (almost) precise dictionary between string states and gauge
invariant operators. For instance, for the first levels in A — J we have °

0 > Tr[Z7] (2.19)
il |0 > Tr[¢' Z7] (2.20)
J
ag all |0 > > " Tr(¢' 2 ¢ 27 (2.21)
=0
J il
allalf|0 > Y Tr(piz'¢ 27 e T (2.22)

=0

Here we have chosen the R-charge in the direction of Z = ¢° + i¢%, and
@', i =1,...,4 is one of the four scalars with 0 R-charge. The choice for the
dual of the vacuum is the most natural, since on the gauge theory side we
have written the only single trace gauge invariant operator with R-charge J
and A — J =0.

For the next two supergravity states, one can easily see that they have
the correct quantum numbers and index structure. On the other hand, we
know from AdS/CFT that supergravity states map into BPS operators, so
we insert the “impurities” ¢° in a completely symmetric way.

5 All our conventions for the string oscillators are collected in appendix A.



2.3. STRING DUAL OF WEAK SYM 19

As for the string state, Berenstein, Maldacena and Nastase (BMN) pro-
posed that an insertion aif on the string side correspond to an insertion ¢’
on the gauge theory, with a phase depending on the position at which such
operator is inserted[4].

By quantizing the theory (in the light cone gauge) we can compute the
spectrum of energies:

/ n? 4 gy pr Nn?

N, being the occupation number of the oscillator a,, or a, .

A method to describe string interactions (splitting and joining of strings),
in light-cone gauge, on pp-waves has been developed in [22] and subsequent
works. The method consists in introducing an independent Hilbert space for
each external state involved in the process and then to describe the interac-
tion by an state |V,,) living in the tensor product of these Hilbert spaces. In
this thesis we will focus on three-point functions. In this case |V3), commonly
called the three-string vertex, will encode the three-string interaction in such
a way that the coupling among three string states, |S;), i = 1,2, 3 be given
by

Cs,5, = ((S1] ® (S2| ® (S3])[V3) (2.24)

2.3 String dual of weak SYM

In spite of its enormous success, the AdS/CFT duality seems to be far from
being completely understood. One of the reasons being that it is not known
how to quantize string theory on AdSs x S° in the presence of RR-fluxes
(apart from its Penrose limit), so often one is obliged to consider the limit
where the supergravity approximation can be trusted. This happens when
the curvature radius is large in string units (R > v/o/) which corresponds to
the limit of large 't Hooft coupling (A > 1) on the gauge theory side, actually
it is in this limit where the correspondence has been precisely formulated and
most of the tests have been done.

The opposite limit, i.e. small ’t Hooft coupling in the gauge theory and
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small curvature radius on the AdSs © is less understood. We will end this
chapter by briefly describing some of the approaches in the literature to tackle
this problem. 7

2.3.1 String bits approach

In [25] a way to quantize string theory in the light-cone gauge on AdSs x S°
in the limit of small ( Iz, < 1) radius was proposed. Actually, it turns out
that on this background the usual light-cone gauge choice z+ = P*7 cannot
be combined with a conformal gauge on the world-sheet metric (since that is
not consistent with the equations of motion) so a slightly different gauge is
chosen

. -1 2n2?
V=99 N T (2.25)

In the limit 7 = R/v/o/ = 0 all the terms containing o derivatives dis-
appear from the light-cone Hamiltonian, so the string seems to separate into
non-interacting bits. Every bit behaves like a superparticle on AdSsx S®, and
it contains the full supergravity spectrum. Multi-bit states are then obtained
by simply cyclically symmetrizing the tensor product of a given number of
single bit states.

One can further consider the first order corrections in R/v//, which in-
troduce interactions among the bits, and compute the corrections to the
spectrum. Interestingly, potential divergences cancel for the few examples
considered in [25].

The whole string spectrum, however, is not easy to find in this picture,
basically due to the fact that it is not known how to take the continuum limit
(infinite number of bits) keeping the energy of the string states finite. More
precisely, one should find a way to regularize the energy (which otherwise
grows with the number of bits) while preserving the superconformal algebra.

On the other hand, if one insists in keeping a finite number of bits then
the multi bit spectrum does not coincide with that of free SYM.

6 As already mentioned, it is not clear whether free SYM corresponds to the zero radius
limit, or rather to some small radius R ~ v/o'. Since the dictionary (2.8) is derived for
large ’t Hooft coupling, it is not clear whether it will get corrections in the weak limit.

"We will not describe many other interesting approaches, for instance those in relation
with tensionless strings, see [23] and references therein and many regarding light-cone
string theory, see [24] and references therein.
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2.3.2 Free field theories and open-close duality

It is a general belief that the underlying mechanism leading to dualities be-
tween gauge and string theories is the open-closed duality. In the prototypical
example of AdS/CFT, the duality is the result of the equivalence between
the open string (gauge theory) and closed string (geometry) descriptions of
the same system.

Nevertheless, the open-closed duality, and its connection to AdS/CFT
remains to be fully understood. A step in this direction was taken in [26] and
[27] were the open-closed duality was used as a guide in trying to construct
systematically a closed string theory starting from a (free) field theory. Since
the simplest gauge theory is a free field theory then it seems the natural
starting point for such program.

The general idea consists in rewriting a gauge theory correlation function,
such as ) [T, Tr[¢” (k;)]( as an string amplitude on AdS. In figure (2.1) we
can see a planar contribution to a 5-points correlation function (A). The
Schwinger parameters associated to the propagators linking two vertices can
be replaced by an “effective” Schwinger parameter 8, hence the diagram glues
up into an equivalent “skeleton” diagram (B). It was argued (by counting of
moduli) in [27] that the moduli space of the planar skeleton graphs is basically
the same as the moduli space of genus zero Riemann surfaces with n holes
(C). In other words, the n point (planar) field theory correlation can be
written as an integral over the moduli space of a sphere with n holes. As the
radius of the holes go to zero, the sphere becomes an sphere with n punctures
(D).

This program was carried out for two and three point functions of scalars,
whereas the counting was done for any correlation function of scalars, but
was conjectured to work also for other fields, and shown to work also for
higher genus diagrams. At the moment, however, the picture is too general,
and is not clear how the properties of free ' = 4 SYM in four dimensions
reflect on the string theory.

8Tt is very useful to think of the diagram as an electrical network and of the propagators
as resistors, it is well known that a set of parallel resistors can be replaced by a equivalent
one.
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B

Figure 2.1: Path from a gauge theory correlator to a string theory correlator

2.3.3 Stringy AdS and higher spin symmetry

An important property not exploited by previous approaches is the fact that
at the A = 0 point N' = 4 SYM possesses an infinite set of higher spin
symmetries, i.e. an infinite set of conserved currents with arbitrary high
spin.

In [28] the spectrum of Kaluza-Klein (KK) descendants of string excita-
tions on AdSs x S® was derived. The basic assumption in such derivation was
that the ground floors in the towers of KK descendants were basically given
by the flat string excitations, rearranged in AdS representations. In other
words to each string excitation in flat space one associateds a tower of KK
descendants on S°. In such procedure the SO(6) x SO(4) quantum numbers
of the spectrum are fixed, but the conformal dimensions remain unknown.

By exploiting higher spin symmetry a simple formula for the dimension of
the highest weight state (HWS) of every multiplet was conjectured (in order
to satisfy certain unitary bounds)

Ag=2l+n (2.26)
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With Ag the conformal dimension at the A = 0 point, [ the string level and
n the KK level, then by supersymmetry the conformal dimension of the other
components of the supermultiplet could be fixed. With this assumptions the
string spectrum was shown to match that of free N'=4 SYM up to Ay = 4.

In [29] the conformal dimension formula was refined, basically by setting
gym = 0 on the plane wave limit formula (2.23), i.e. conformal dimensions
were assigned in such a way that

A-—J=v (2.27)

with v = ) N, the occupation number. Such relation was proposed
to hold for the entire massive string spectrum (at the A\ = 0 point), in
particular the quantum number J could be small. In order to determine
such quantum number we take the massive spectrum of strings in flat space,
which assembles into SO(9) representations, and lift it to SO(10), then by
breaking SO(10) — SO(8) x SO(2); we get J.

With such conformal dimensions the spectrum of strings on AdSs x S°
was shown to match that of free N = 4 SYM up to A = 10!. As a result,
the SYM spectrum can be written as

Zsym = Zpps + Y, Zoq) (2.28)
A

In [29] it was also predicted (and verified up to A = 10) that, once
1/2-BPS states, dual to supergravity, are subtracted, the SYM spectrum
arranges, for a given conformal dimension A, into SO(10) representations,
for instance, for the lower conformal dimensions, one can see

Z§0(10) =1 (2.29)
2o = 16 (2.30)
Zioao) = 10+120 (2.31)
2o = 16+ 144+ 560 (2.32)

And so on, where bold face denote SO(10) representations.
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Chapter 3

D-branes on pp-waves

As already mentioned, D-branes play an important role in string theory,
for instance, they are a very powerful tools to understand dualities between
string and gauge theories. On the other hand, starting [5, 17, 4] and related
work a lot of attention has been paid to string theory on PP-waves and in
particular to the presence of D-branes on such backgrounds [30, 31, 32, 33].

In this chapter we describe a supersymmetric solution of type IIB su-
pergravity equations corresponding to fully localized Dp-branes in presence
of a pp-wave background by explicitly solving the equations of motion and
the supersymmetry conditions. further, such results are generalized to the
D1-D5-brane system *.

In the next section we state our ansatz for a D3-brane on a pp-wave,
using as guide D-brane solutions on flat space. In section 3.2 we show that
our solution is supersymmetric and in section 3.3 we write down and solve the
equations of motion. Finally we generalize these results to other Dp-branes
(with p odd) and to the D1-D5 system. We end by summarizing the results
obtained in this chapter.

3.1 Putting D-branes on the pp-wave

Let us briefly review the case of a Dp-brane in flat space-time. Due to the
presence of the Dp-brane, the ten dimensional flat metric:

ds? = nundzMdx (3.1)

! This chapter is based on [34]

25



26 CHAPTER 3. D-BRANES ON PP-WAVES

is modified (in the string frame) according to:

ds? = Hy'’n,,da"dz” — H)/*dz'da’ (3.2)
where 4 = 0,...,p runs over the coordinates on the Dp-brane and 7 =
p+1,...,9 on the transverse coordinates and H,, is a harmonic function of

the transverse coordinates. In order to be consistent with the equations of
motion we are obliged to turn on a (p + 2) field strength (whose potential
couples to the world volume of the Dp-brane):

Fipioy =gy 'dz® A--- Nda? Nd(H, ) (3.3)

(if F is a 5 form we should add also its dual). Further, the standard relation
between the dilaton and the string coupling constant ( €?? = g,2) is modified
according to:

3—p
A (34)
Note that for the special case of a D3-brane the dilaton is constant, and we
can set it equal to zero. From now on we will set g, = 1.
To pass to the so called Einstein frame, we perform the following rescaling:
= e, (3.5)

For a generic p, the metric in this frame takes the form:

Guu,s

7 prl
ds? = Hp® n,,dz"dz” — Hy® dz'ds’ (3.6)

Note that for p = 3 the metric is the same in both frames.
The standard pp-wave background reads (written in Brinkman coordi-
nates):

ds* = 2dudv + 2S(u, 2")dudu — dz'dx’ (3.7)
Fy = duA gy’

Where the light—cone coordinates have been introduced according to u =
(2°+2°)/2 and v = (2 —27)/2, and i = 1,...,8. Here 4(2") is a four form
such that the five form is self dual. This kind of backgrounds was studied
previously for instance in [36] [37], where the problem of supersymmetry has
been addressed.
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Many people have studied the problem of putting D-branes in back-
grounds of this kind [30, 31, 32, 33]. We will focus on D3-branes and consider
the following pp-wave background instead of the usual one:

ds* = (2du(dv+ S(§)du) — dz?) — dg”

1
Fgp = E(go[g,]) Adz* A du + c.c. (3.8)
e = Widz' AdZ® A d2® + Wadz' A dZ° A d2® + Wadz' Ad2* A dZ°

where now # (2* in complex notation) denotes points on R? and ¥ (23 in

complex notation) points on R® and try to mimic the procedure previously
explained for the flat case. Note that S is only function of the 7 coordinates.

Inspired by the previous discussion it is natural to propose the following
ansatz for a D3-brane in the background (3.8):

ds* = H(§) * (2du(dv + S (§) du) — d&?) — H (§)* dif

1
Fsp = Edu Adv Adz' Ada®* NdH™ + dual (3.9)
1
F[5]B = E(ﬁp[g]) N d2’4 A du + c.c.
e = Widz' Adz2? A d2® + Wadz' AdZ° A d2? + Wadz' Ad2® A dZ°

Consistently with (3.4) we are assuming constant dilaton. Note that we
added the dual of the D-brane 5 form, as before. The W's have to be chosen
in such a way that the five-form is closed. Here we are placing the D3-branes
along the coordinates u,v and Z (or, in complex notation, in the 4 complex
plane) corresponding to a longitudinal D-brane [30]. Of course there are other
possibilities, namely transverse (that is with the u coordinate belonging to
the brane world volume but not v) or instantonic (neither v nor v belonging
to the brane world volume ) D-branes [32] [39]. Since in our case with this
orientation the worldsheet scalars coming from the pp—wave are transverse
to the D3-brane this choice seems to be the natural one.

The next sections are devoted to the study of this ansatz, first looking at
the conditions for the preservation of some supersymmetry generators and
then solving the equations of motion.
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3.2 Supersymmetry conditions

In this section we will analyze the supersymmetry conditions for the back-
ground (3.9). The supersymmetries are obtained by equating the variations
of the gravitino and the dilatino to zero and looking for non-trivial spinors (¢)
satisfying these restrictions. The generic supersymmetry variations for the
dilatino and gravitino in the “doubled” formulation of supergravity, wherein
both electric and magnetic RR fields, except for Clg), are used, are [30]:

1 ) 1 1 . 1
0V, = Dye+ Eed’ (250[0] (102) + gF[g] (01) + aF[a (202) + ﬁF[ﬂ (01)) Tu€

dpe + %e“’ (—430[01 (i0?) — %FB] (o) + %F[ﬂ (01)> € (3.10)

ox

With F' we denote the RR forms of type IIB string theory, Cig is the
axion and ¢ the dilaton. We define Ja ] = Fo,. 0,99 The covariant
derivative is defined as:

1

D,=0,— Zwﬂ@ra—” (3.11)

and the spin connection w can be expressed in terms of the vielbein through:

€€y Wymn = %[epg(auevg —0ve, k) — eug(avepg —0pe,t) + eug(apeug — Oue,?)]

(3.12)

With p, v, etc we label space-time coordinates and with a, b, etc coor-

dinates on the tangent space. In the following, a will refer to coordinates

transverse to the D-brane whereas 7 to coordinates longitudinal to the D-
brane. The components of the vielbein are chosen as: (e™ = e,™dz")

ey =€t=H idu, e,=et=H(dv+ Sdu),

N _ L . (3.13)
—e; =e' = H 1dzr', —e, =e*= Hudy"
and those of the inverse vielbeins as: (6, = e,,"0,)
0, = H1(d, — S9,), 0,=H1d,,
) . (3.14)
Hi:HE(?i, HQ:H’Zaa
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and we use flat light cone metric %¢ = 1, £ = —§;; and 7% = —§,. The
non-zero components of the spin connection are:

Wuna = +H 50,5, Wypa = —YH10,H |,
Wosa = —YH 10,H | wij = —1H 19,H6;;, (3.15)
Wabe = —3 Hinap0g H

For the background (3.9) the dilatino variation is automatically zero,
whereas the gravitino variation becomes:

1 /1 .
60, = D,e+ 16 (5}"[5] ('1,02)> Yu€ (3.16)

Equating this variation to zero we obtain one equation for every direction
and for each spinor component, the solutions of whose are the killing spinors.
The resulting equations read:

1
Ou€ + gH‘l(aaH)e + (H_1/4W[5] (i0?))HY 4y, =0
Oye =0
die + (H "Wy (i0®))H Ve =0 (3.17c
1
O + (H Y Wis)(i0?)) H 4 y2e — 5[—[‘1/28&51‘%6 =0 (3.17d
With W5 we denote the contribution coming from the background 5-form
where the H dependence has been explicitly shown. In order to obtain these
equations we also assumed the standard chirality condition in the D3-brane
world volume:

[y (io?)e = ¢ (3.18)
where o2 acts on € as a doublet of 16 components complex spinor. By rescal-
ing the spinor with a factor of H~'/% equation (3.17a) becomes 2:

Oae + (H VW5 (i0?)) H * e = 0 (3.19)

whereas, since H only depends on 7, the other equations remain untouched.

2This kind of rescaling is standard in the flat space D-brane solution.
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A solution can be easily found by considering constant spinors. Let us
1

denote them by (431,43, £3, £, +1), where every sign corresponds to the
chirality with respect to the corresponding complex plane (or to the u—v
plane). We choose conventions such that y%(+) = 0, v2(=) = 0, ['*(+) = 0
and T'%(—) = 0, where I'" = I'"" = 4% 4 in¥ are the complex v matrices for
the complex plane 1.

The condition of negative space-time chirality implies the choice of the
spinor with an odd number of minus sign components 3.

Remember that equations (3.17) were obtained imposing a definite chi-
rality in the world volume of the D-brane. This means an even number of
minuses in the two planes on which the D3-brane lies (in our case, the first
and the last planes) in the case of positive chirality and an odd number in
the case of negative.

A trivial solution can be found by noticing that v* annihilates the spinors
with a plus in the first position, and Wy annihilates the spinors of the
form (£3,+3,+3,+3,+3) and (£3,—3, —3, —3,3), since a definite sign
(plus or minus) is killed by either I'" or I'*. So, we see that the spinor
(+%, —%, —%, —%, +%) is a solution for positive world-volume chirality, and
(+%, +%, +%, +%, —%) is so for negative world volume chirality.

However this is not the only solution. We can find another solution
assuming that d;e = 0 and d,e = 0 so that equations (3.17) become:

Ou€ + Wi (i0°)vae =0 (3.20a)
O =0 (3.20b)
Wis (i0®)vie =0 (3.20c)
1
Wiz (i0%)y%e — 50T =0 (3.20d)

It is remarkable that the function H has disappeared from (3.17); thank
to this we obtain exactly the equations of [36] 4, with the further restriction
of definite chirality on the D-brane worldvolume ° and the condition that the
spinor depends only on the transverse coordinates to the D-brane.

3In our conventions FH — Fuv12345678 — Fuv11223344

4Equations (3.20) should be compared with (2.5) of [36] taking into account the different
conventions, for instance, € there is a 16 components complex spinor.

5As it can be checked this condition is consistent, since the chirality matrix leaves
equations (3.20) invariant.
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In particular our background will be a special case of the background
(2.9) of [36]

ds* = —2dudv — 32(|0kV|* + |¢,z27|?) (du)? + dz'dZ’

_ (3.21)
Omn = OmOV,  Omm = OmO0zV,  ¢um = constants
where ¢, and ¢y are defined in terms of ¢y as:

G = 371(0p) i€ " G
Since in our background we don’t have forms of the kind (2,2) (two holo-
morphic and two antiholomorphic indices) ¢, are zero. Here V is a generic
holomorphic function.
In [36] were considered spinors with e_ :

1 1 1 1 1 1 1 1 1 1
=algtyptyptypty)ti=3-3-2"279
where a and ¢ are complex numbers. Then, for a given V, €, is solved as a
function of €_.

With the additional restriction of definite chirality with respect to the
world-volume of the D3-brane, we have to choose one and only one of these
spinors.

Finally we have (at least) 2 complex spinors (for a definite world-volume
chirality), this means 1/8 of supersymmetries.

(3.23)

3.3 Equations of motion

For the ansatz (3.9) Einstein equations read:

R, = Lt (3.24)

5w

where T is the energy momentum tensor for the RR 5-form (the only dif-
ferent from zero for our background) defined by:

1 al..a 1 al..a
TE/} = E(F[5]ua1...a4F[5}1ym t— Eguu(F[5]a1...a5F[5]l 5)) (325)

6Note that we use opposite convention for e, and e_.
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For our background we obtain:

To = (WA + Wa? + W5?) + 5 (0uHOH)  (3.260)
o = %(ME#) (3.26D)
w = 0 (3.26¢)
Ty = oy <Mj{¢) (3.26d)
e (M) (M)

with the rest of the components being zero. Whereas the components of the
Ricci tensor for the metric (3.9) are:

Ry = 0 (3.27a)
R = %(s (0uH 0, H — H (0,0,H)) + 2H?(3,0,5))  (3.27b)
1
Rufu = @(QH aaH — H(aaaaH)) (327C)
1 1
Rab == (5ab@(8cH 8CH - H(auaaH)) - ﬁ(aaH 8bH) (327d)
1
R = —5ij@(aaH 0,H — H(0,°H)) (3.27e)

In (3.26) and (3.27) the contractions are understood in the euclidean
metric.

Finally, from the equations of motion we obtain the following conditions’:

0.0,H = 0 (3.28a)
1
0,0, = 5(\W1|2 + [Waol? + |[Ws[?) (3.28b)
Condition (3.28a) just says that H is harmonic in the 6 transverse direc-

tions; this fact together with the correct asymptotic behavior of H (far from
the D3-brane the space time should look like the standard pp-wave) gives:

"Similar equations were found, for instance, in [38]
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H=1+9 (3.29)

Y
with 42 = (y1)” + - - + (¥°)” and Q a non negative real number.

As an important difference with [30] we stress that this solution depends
on all the transverse coordinates (and is also supersymmetric). This differ-
ence is basically due to our choice for the five form.

The remaining equation, (3.28b), is easily solved, for instance for a quadratic
S (corresponding to mass terms in the pp-wave) and constant W's, giving
just a relation among them. This equation admits, however, more general
solutions (of course with the restriction on the W’s coming from the closure
of the five form field strength).

In the next section we will see how part of these results can be generalized
to other kinds of Dp-branes.

3.4 Generalization to other Dp-branes

In this section we will extend the previous results to other Dp-branes.

First we have to take into account that for other Dp-branes the dilaton is
not any more constant. It seems natural to suppose that relation (3.4) holds
also for this kind of background. We will also suppose that the pp-wave
background is supported by the following (p + 2) form:

Fipioy = duAdv Ndz' A--- ANdzP P ANd(H) (3.30)

Now the dilatino supersymmetry variation (3.10) becomes [30]:

X = (0.HY*) (1 =TwP)e=10 (3.31)

where Iy, is the chirality matrix on the world-volume of the Dp-brane we
are considering and P, as can be read off from (3.10), is a projector given by
o' or i0? depending on p (recall that this projector acts on € as a doublet of
16 components complex spinor).

So we see that requiring the standard chirality condition with respect to
the world-volume of the Dp-brane :

FyyPe =€ (3.32)

the above equation is satisfied.
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Now we will discuss the issue of the supersymmetric variation of the
gravitino and the equations of motion. The background to consider for a
generic Dp-brane is (in the string frame):

ds* = H(§) 7 (2du(dv + S (§) du) — dF>) — H (§)* dif* (3.33a)

Fpiop = dundvAdz'---AdaP" AdH ™ (3.33b)
1

Fsp = E((pw) A du + c.c. (3.33¢)

o = Widz' Adz® ANd2® A d2* + Wadz' A dZ° A d2® A dz*(3.33d)

+Wadz' Ad2? A dz2 A dzt + Wadzt A d2? A d22 A dz

(plus the usual relation between the dilaton and H) where now % denotes
points in R and # denotes points in RP~!. For a Dp-brane, with k = 232
only Wi ... Wy will be different from zero.

For the supersymmetry variation of the gravitino we obtain:

1 )
aae+§H—1(aaH)e+(H—zw[g,](z'o?))Hl/‘wge = 0 (3.34a)
O, = 0 (3.34b)
(9ie—|—(H_%W[5](i02))H_1/4fyie = 0 (3.34c)

) 1
8ue+(H‘ZW[g,}(iaQ))H_l/‘lfyﬂe—§H_1/26,ISF%6 = 0 (3.34d)

These equations are exactly the ones obtained in section 3. There, we
solved them for non constant spinors referring to the techniques developed
in [36] and imposing definite chirality in the world volume of the D-brane.
In order to redo this analysis for a Dp-brane, we must first check that the
condition of definite chirality on the D-brane can be imposed consistently.
Unfortunately, this is not the case for D1 and D5 branes, since in these cases
equations (3.34) are not invariant under the action of the chirality matrix
I'yo: because of this we will only be able to find constant solutions. Let us
study these cases separately:

D7: one can easily check that if positive chirality is imposed on the world

volume of the brane, the constant spinors (+1, —3, —3, —3, +3), (+3, —3, +5, —

237 923 91 9
and (+3,—3%, —3,+3, —3) are solutions. On the other hand, for negative

chirality, the solutions are (+3,+3,+3,+3,—3), (+3,+3,+3, —3, +3) and

1
2

1

2

)
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(+%, +%, —%, +%, +%) In both cases, we should add (only) one of the spinors
(3.23). This means that for definite chirality, we have four complex spinors
satisfying equations (3.34), or, in other words, 1/4 of the supersymmetries
are preserved.

D5: as stated before, for a D5 brane, we could only find constant so-
lutions of (3.34). If we choose negative world volume chirality, they are
(+h—d—h—LD), (hh =k~ b D), (b4 + D
and (—1—%, —}-%, —1—%, —%, —i—%) meaning that only 1/4 supersymmetries are pre-
served. Apparently for positive chirality the D5 brane breaks all the super-
symmetries.

D1: here, one can check that no u-independent Killing spinors are al-
lowed, irrespectively of the world volume chirality (unless some W; is set
equal to zero). The D1 brane seems not supersymmetric in our background.

In order to study the equations of motion we remark that S appears only
in the uu direction, so that for our ansatz the other equations are automati-
cally satisfied, therefore we will focus only on the equation of motion for the
uu direction.

In order to analyze the equations of motion we find it more convenient to
work in the Einstein frame, where the metric is:

p+1

ds? = H (5)"% (2du (dv + S () du) — dz?) — H ()5 dg®>  (3.35)

and the rest of the fields are identical to (3.33). In this frame the equations
of motion are [40]:

1
Ry = 50:00,6 + Sy (3.36)

with

1 (3-p)é a..a p+1
Sw=> ————¢ 7 (Fpisparoa,, FO5o — LT g F2
=2 2 (“’“]“ et g (p 2T “’“1)
(3.37)

with
F[?)+2] = Flpi9 FPo et (3.38)

aq...0p42 [P+2]

The uu component of the Ricci tensor for generic p is:
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_ 6a8aS_p—7

R O HOH p—7T_0,0,H

- ST Tt ST (3.39)

From this we obtain the conditions:

0.0,H = 0 (3.40a)
1
0a0aS = (WA + |[Waf* + [W3” + [W4P?) (3.40Db)

As before, the first condition says that H is harmonic (in the transverse
(9 — p)-dimensional space) while the second simply states a differential re-
lation between S and the W's. Taking into account the correct asymptotic
behavior for H, one must have:

_ Qp
H=1+ ) (3.41)
for p different from 7, and:
H=1+4+Q;Inr (3.42)

for p = 7, r being the radius of the transverse space.

For the case of the D5-brane and for constant W's (when S is quadratic)
our background is similar to those studied in [41] in the context of AdS; x
S3 x R* and its Penrose limits. Note, however, that we are considering more
general backgrounds.

We stress the fact that S doesn’t have to be function of all the transverse
coordinates, that is, we don’t have to give mass to all the transverse scalars.
So for a Dp-brane solution with a given S, there will be also a Dp’-brane
solution with p’ < p.

3.5 The D1/D5 system

In this section we extend the previous analysis to the D1/D5 system. This

system plays an important role in the AdS/CFT duality since its near horizon

limit is of the form AdS3; x S x M (see, for instance [12]); its Penrose limit

was considered for instance in [43]. First we solve the equations of motion (in

the Einstein frame) and then we briefly discuss the issue of supersymmetry.
We propose the following ansatz:
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-3 _1 i 1 1 3
ds* = H; *H, *(2du(dv + S(§)du)) — Hf H, 1dz* — Hi H1dj?
Fgp = dundvAdH;!

Fzp = duAdvAdz'---Ada* AdHS!
1
Fisp = %(gpw) A du + c.c. (3.43)
opp = Widz' Ad2? Ad2® A dzt 4+ Wadz' A dZ° A dZ® A dz?
e’ = HH;'

Here Z and ¢ denote points of R*. H; and Hj are only function of the
coordinates ¥ transverse to the D5-brane. As can be seen from the metric,
we place the D1-brane on the u, v coordinates and the D5-brane on u, v and
Z so that the D1-brane lies inside the D5-brane.

As before, the only non trivial equation of motion is the one in the uu
direction. From the metric (3.43) we have the following Ricci tensor:

R 380,H10,H1 3S50,0,H1 1S0,H50,H5 150,0,Hs 0,0,5
Y4 HyH3 4 HsH? 4 HH} 4 HZH, H, H;
(3.44)
From the equations of motion (4.17) we obtain the following conditions:

aa(?aHl =0 (345&)

0.0.Hs = 0 (3.45b)
1

0u0aS = S(IWi[>+[Wyl?) (3.45¢)

So, H; and Hs must be harmonic in the transverse directions and the
usual relation between S and W; must be fulfilled.

One can check that the supersymmetry conditions reduce to (3.17) pro-
vided H is replaced by the product H;Hs, except in the ¢ directions (i.e.the
ones longitudinal to the D5-brane but transverse to the D1-brane), where
the condition reads:

e + Hy "W (ioy)ye = 0 (3.46)

We stress that such equations were obtained assuming the spinor had
definite chirality with respect to the worldvolume of both D-branes. As in
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the case of the D1-brane, apparently such conditions are too restrictive to
allow for any supersymmetry.

3.6 Summary and conclusions

We have found a solution describing a fully localized D3-brane on a pp-wave
background. Such solution turns out to be supersymmetric, and it preserves,
apparently 1/8 supersymmetries. We have also shown how to generalize our
results to the case of other Dp-branes. Our conclusions are summarized in
table (3.6). Finally we have studied the D1/D5-brane system, which turns
out to be non supersymmetric.

D1 D3 D5 D7
Fywe =€ | Osusy | 1/8 susy | 0susy |1/4 susy
Cywe = —€ | O susy | 1/8 susy | 1/4 susy | 1/4 susy

Table 3.1: Summary of the results for Dp-branes.

As a possible further development, it could be interesting to study the
gauge theories living on the worldvolume of such D-branes, or to study the
backgrounds obtained from ours after some dualities. In this way other Dp
and Dp/Dp’ solutions are expected.



Chapter 4

Non local charges on AdS and
PP-waves.

In spite of the high amount of symmetry of AdSs x S°, due to the presence of
RR fluxes, it is not known how to quantize string theory in this background,
however, one might hope that the theory could be exactly solvable. In [9, 10]
it was shown that the world-sheet CFT contains, at the classical level, an
infinite set of non local charges of the type arising in integrable models .
On the other hand there has been lot of progress in the understanding of
integrability on the gauge theory side, since [6] and subsequent works, and
one expects that both lines of development will play a fundamental role in
fully understanding the AdS/CFT duality.

The aim of this chapter is to study the structure of the infinite set of non-
local conserved charges found in [10] for the sigma-model describing strings
on pp-waves. 2

In the first two sections we review the construction of non-local charges
for the Green-Schwarz superstring on AdSs x S5. We recall the results found
in [10] that will be useful in the following and then show that the Green-
Schwarz superstring on pp-waves possesses charges with the same structure.
In section 4.3 we show how to write the explicit form of these charges in
the light cone gauge and we do it for the first non trivial orders. In section
4.4 we write the explicit form for the first non trivial charges for AdSs x S°

'In [44] this set of charges was shown to exist also in the pure spinor formalism of
strings in AdS5 x S° [45]. Further it was shown that such charges are BRST invariant in
the pure spinor formalism and k-symmetric in the Green-Schwarz formulation [46].

2This chapter is based on [47]

39
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and show that its Penrose limit coincides with the charges previously found.
We also check that the semi classical value of the AdS charge for a rotating
string on S® (dual of a BMN state) coincides with that of the pp-wave charge
when applied to the same BMN state. Finally we end with a summary and
some conclusions.

4.1 Flat connections in coset sigma models

Consider the non linear sigma model with Lagrangian L ~ Tr(9;g~'9g),
where the field g(z) takes values in the group G. The global symmetry is
G x G, left and right multiplication. In the following we will focus on the
conserved current corresponding to left multiplication:

ji = —(0ig)g™" (4.1)

This current takes values in the Lie algebra G. Writing the current as a
one-form one sees that

dxj =0, dj +jNj=0 (4.2)

Thus the current can be regarded as a flat gauge connection. Actually
taking the following linear combination

1 1
azji(lztcosh)\)-l—*jé sinh A (4.3)

One can easily check that da+a/Aa = 0, so one obtains two one-parameter
families of flat connections. As we will see in the next section, this allows for
the construction of an infinite number of conserved charges.

Now let us consider G/ H coset models, where we identify g(z) = g(z)h(z).
Left multiplication by G is still a global symmetry. To construct the action
define

J=g¢ 'j9=—g '0g (4.4)

This is invariant under left multiplication. Further decompose J according
to the decomposition of the Lie algebra G = H & K:

J=H+K (4.5)
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Then H transforms as a connection under H-gauge transformation whereas
K transform covariantly. It is easy to see that k = gK ¢! is gauge invariant,
the Lagrangian is then L ~ Tr(k;k*) = Tr(K;K?).

We will use capital letters X to denote currents that are conjugated by
right multiplication, generally corresponding to some decomposition under
representations of H, then x = gX ¢! is conjugated by left multiplication.
We will focus on the H-gauge invariants, i.e. the x other than h. Notice
however that the x do not have simple decompositions under the Lie algebra,
to use such decompositions we must refer back to the X. Note also that

dr =g(dX)g ' —jAz—aAj (4.6)

The construction of flat connections can be extended provided the coset

is a symmetric space, that is, in addition to [H,H] C H and [H,K] C K,
which follow from the subgroup structure, we have [, K] C H as well. To
see this, note that dJ = J A J, and decompose both sides under G = H & K:

dH = HAH+KAK ,
dK = HAK+KAH. (4.7)

If the coset were not a symmetric space, then K A K would be a sum of
two pieces, one of which is in H and the other in .3 Transforming to the z
forms, we have

dh = —kAh—hAK,
dk = —2kAk. (4.8)

The gauge invariant k is also the Noether current for the global symmetry,
dxk = 0. The current 2k is both flat and conserved, and so can be used to
construct two families of flat connections precisely as above.

4.2 Nonlocal charges in AdS; x S°

The Green-Schwarz superstring on AdSs x S° can be considered as a non-
linear sigma model where the field g(x) takes values in the coset superspace
(48, 49, 50]:

3When K is a subalgebra, K A K contributes only to dK, and it is again possible to
construct flat connections.
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G ags _ PSU(2,2/4) (4.9)
Haas  SO(4,1) x SO(5)’ .
whose bosonic part is
4,2
50(4,2)  S0(6) _ AdSs x S°. (4.10)

S0(4,1) * S0(5)

The bosonic generators of G445 are the translations P® and rotations
J%® with a,b = 0, ...,4, (generators of SO(4,2)) and translations P% and
rotations J*Y, with o/, = 0,...,4, (generators of SO(6)). The fermionic
generators are 32 spinors Q*®' with o,/ = 1,...,4 and I = 1,2. Hygg is
the stability subgroup of G 445, generated by the rotations J% and J%V'.

Then, it follows that the Lie algebra of PSU(2,2/4) can be decomposed
in the following way:

Gaas = Hags + P+ Q1 + Qo, (4.11)

with H 445 the Lie algebra of Hag4s, P the algebra of the translations, and
Q; and Q, two copies of the (4,4) representation of H a4s.
We focus on the current

J=—¢19g=H+P+Q+Qy. (4.12)

Using the relation dJ = JAJ and the Z, grading respected by the algebra,
with the following charges

H:0, P:2, Qi:1, Qy:3 (4.13)

we can find equations for dH, dP, d(); and dQs:

dH = HAH+PAP+Q AQy+QuAQ ,
dP = HAP+PANHA4+QINQ1+Q2NQ5,
d@Q1 = HANQ+QANH+PAQe+ QNP
dQ1 = HAQo+QAH+PAQ +QiAP. (4.14)
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In terms of the lower-case currents they read:

dh = —h/\h+p/\p—h/\p—p/\h—h/\q—q/\h+%(q/\q—q'/\q'),
dp = =2pAp—pAqg—qgAp+3gng+d AT), (4.15)
dg = —2qANgq,

df = =2pAN¢ =2¢ Ap—qAhqg —q Aq,

where we have defined ¢ = ¢; +¢2 and ¢’ = g; —¢o. This can be supplemented
with the equations of motion [51]

dxp = pA*xq+*qAp+3(gNd +d Nq),
0 = pA(xq—¢)+(x¢—¢)Ap, (4.16)
0 = pA(g—*¢)+(g—*d)Ap.

Next, we define

a=ap+ Bxp+vq+ 44, (4.17)

then, by requiring a to be a flat connection, ¢.e. da + a A a = 0, we find two
one-parameter families of solutions, given by

= —2sinh® )\,

F2sinh Acosh A | (4.18)
= 1xcoshA\,

sinh A .

o =2 ™ L
|

Given a flat connection, the following equation

dU = —aU, (4.19)

is integrable. On a simply connected space, and with initial condition Uz, z¢) =

1, then

Uz, 20) = P exp (— / a> (4.20)

With P the path ordering in the Lie algebra. This allows the construction
of an infinite number of conserved charges, given by
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| U(0,t;1,1) |
- 1=t
Y »
U(0,t:0,t) U(l,t;1,t)
- ~ T=to
‘ U(0,t0;1,t0) ‘
| |
| |

Figure 4.1: Evolution operators on the strip.

Q¥ (t) = U (00, t; —00, t). (4.21)

For a a flat connection, in particular 4.17, this charge can be shown to
be conserved for an appropriate falloff of the fields at infinity.

As we are interested in closed string theory, the world-sheet satisfies peri-
odic boundary conditions. Considering the product of four Wilson lines that

form a closed path in the strip (and don’t enclose any singularity) we have
(see figure (4.1))

U+ (0, t(), 0, t)Uai (0, t, 1, t)Uai (1, t, 1, to) = U (0, t(), ]., to), (422)
from this equation it is easy to see that the following quantity

Q% (t) = (U*(0,t;1,1)), (4.23)

is conserved. Here the spatial coordinate o is restricted to the [0, 1] interval
and we have assumed periodic boundary conditions, so that U% (0, to; 0, %) =
(U (1,4;1,tp))"". With (O) we denote some invariant cyclic operator. For
the case of AdSs x S5, whose isometry algebra is semi-simple, the operator
() can simply be taken to be the trace.*

“More precisely, when the algebra is semi-simple the trace is equivalent to the more
general bilinear with the required properties we could take. This point will became more
clear when considering the PP-wave algebra, that is non-semi-simple.
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A convenient way to see the infinite set of charges is by Taylor expanding
in the parameter )\, for instance

QU () =1+ A\"Qn. (4.24)

Writing a_ = Aa'™ + A2a® + ..., we have for the first order charges

1
Q1 :/ daagl)(a), (4.25)
0
1 1 o
QQZ/ daa?)(a)—#/ da/ do'al? (0)al" (o), (4.26)
0 0

0

and so on.

4.3 Nonlocal charges on PP-Waves

In this subsection we will argue that these non-local charges exist also for
the case of the pp-wave and have the same form as in (4.23).

Let us consider the Green-Schwarz superstring on a pp-wave RR back-
ground

ds* = —2dz"dr™ — 22dx™? + da? (4.27)
F—il...i4 — 2€i1...i4 ’ F—’Lllzil — 261’1221 (428)

I =1,...8, describes the eight flat directions of the pp-wave, 7,7 = 1,...4
and 7,7 =5,...8. and =™ is taken to be the light-cone evolution parameter.

The Green-Schwarz superstring on a pp-wave background can be regarded
as a non linear sigma model on a coset superspace [51]

G
= (4.29)

The transformation group G is spanned by the following generators: The
even (bosonic) part of the superalgebra includes ten “translation” generators
P# SO(4) rotation generators J¥, 4,5 = 1,...,4, SO'(4) rotation generators
JU7' ' §' =5,...,8 and eight rotation generators in the (z~,z!) plane J*I.
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The odd (fermionic) part of the superalgebra consists of the complex 16-
component spinor (),, « = 1,...16. The stability group H, is generated by
JU Ji'7 and Jt!. The algebra between the relevant generators is given in
the appendix A.

Then, the Lie algebra G can be decomposed as follows

G=H+P+9Q1+9,. (4.30)

Hence the current J can be decomposed as in (5.27). The algebra in this
case also respects a Z, grading that together with the condition dJ = J A J
leads to equations of the exact form of (4.16).

For simplicity, from now on we will deal explicitly with the bosonic fields,
however the discussion can be carried out for the fermionic fields as well.
The equation of motion reads [51]:

dxp=0, (4.31)

which is the same as (4.17). We can then construct the same set of nonlocal
conserved charges (4.23), from the connection

a = ap + Bxp, (4.32)
with o and [ given by (4.18). In terms of Cartan 1-forms
p=p. ", pu=9gP.g", (4.33)

with L# 1-forms on the two dimensional world-sheet and P, generators of
G. We know that string theory on this background is exactly solvable in the
light cone gauge, so it is interesting to ask what is the form of these charges
when we choose such a gauge.

4.4 Explicit form of the charges on the PP-
wave

In the light cone gauge, the Cartan 1-forms become

1
LT =dz*, L' = da?, L =dx — §x%d:v+, (4.34)

with z* two dimensional fields on the world-sheet, depending in general on
the world-sheet coordinates (7, ) with metric g,. Further we fix
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Vg™ =n", zt(r,0) =T, pt=1. (4.35)
With this choice, the flat connection takes the form
4

a=ap+ B(xp) = £2A(xp) — 2A\%p £ g)\?’(*p) + .., (4.36)

with
I N
p=pidr + prdx’ + p_(dz™ — §$1d7)- (4.37)
where p, = p~ and p_ = p™. It is important to notice that p is written in

terms of lower-case generators, of the form p* = gP*¢~!, and hence depends

on the world-sheet coordinates through g. Choosing a coset representative
of the form g(z*) = ™" e”'P' we can express the lower-case generators in
terms of upper-case generators as follows

p' = cos7P! —sinTJM, (4.38)

2
p- =P — %P+ + 2" cosTJ + 2’ sinT P, (4.39)
pt = P+, (4.40)

where we have defined |22 = Sum;z’z!. Writing the charges in terms of

upper-case generators, we see their explicit dependence on the world-sheet
coordinates, then we can construct these order by order by Taylor expanding
in the parameter \.

4.4.1 First order charge

To first order in A we obtain the charge

Q1= < / 1 do(P~ + A(o)P" + B (o) P! + Cf(o)J+f)> : (4.41)
0
with
A(o) = 0,z — |z? (4.42)
B'(0) = sinTz! + cos 70, z" (4.43)

C'(0) = costa! —sinTd,z’ (4.44)
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where we are not showing the o dependence of the world-sheet fields. By
using (A.14) we can write A(c) purely in terms of the fields z!

1
Ao) = —5(8Tx187x1 + 0,27 0,2 + 2Txl). (4.45)

where sum over [ is understood. By using the equations of motion, we can
see that the coefficient of every generator is a classically conserved charge.
So we have the following conserved quantities

1 1 1
Qr =1, QA:/O doA(o), Qpr :/0 doB!(0), QCIZ/O doC!(0).
(4.46)

Since every coefficient is conserved, this implies the conservation of ()1,
for every invariant () we choose.

It is interesting to notice that if we plug the mode expansion of the fields
z! (see appendix A) we find the following expressions for the charges

1
Qi = 3 (pipg + zoxd) + Z (af'al +al?a), (4.47)
n#0
QBI = p(I), ch = .7)6 (448)

The classical Poisson-Dirac brackets among these charges are given by

{Qpr,Qcr}os =0"Qr,  {Qp1,Qualrs =Qor,  {Qa,Qer}ry = Qur,
(4.49)
whereas, of course, ()7 has zero Poisson-Dirac bracket with every operator.
Note that this is the same algebra satisfied by the bosonic generators of the
pp-wave algebra.
From (4.47) we see that this set of charges represent the constants of mo-
tion p}, x{ and the Hamiltonian, that are, of course, the quantities associated
with the symmetries of the pp-wave.

4.4.2 Second order charge

For the second order charge we have 5

5@, has in general a single integral term, proportional to [ pi, however, this is 0 in this
case, since p; is a total derivative in the spatial coordinate.
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Q2 = < / do / do' Ao )> (4.50)

A(o) =P + A(o)Pt + B(o P’+CI( )J

In order to study Q- let us introduce the following notation:

Qs = /0 ' do /0 " o’ A(0)B(o), (4.51)

where A, B can take the values 1, A, B or C'. Then we find the following
conserved quantities

Qll: QAA: QBB) QC’C
Qua =Qua+Qa, Qus =QiB+Up, Quc =Qic+ Qci,
Qa,By = @pa + Qas, Qua,cy = Qac + Qca, QB,cy = @Bc + Qcs,

1
Qo = EQ[CI,BI]<P+) + Q[BI,1]<J+I> + Q[1,CI]<PI>-

where we have introduced the notation Q4,5 = Qs — @p4- The charges in
the first three lines, can be written as product of the charges appearing in
@1, in fact

Qi = /01 do /OU do' A(o)B(c") + /1 do /U do'B(o)A(c") =
/ da/ do' Ao = QuaRs, (4.52)

where we have used that 4 and B commute. As for the last charge, note that
since the invariant operator is cyclic, then (TAT5) —(TBT4)y = ([T4,T?]) =
0 and it becomes trivial.

In order to get some non-trivial conserved charge we should go to higher
order.

4.4.3 Third and higher order charges

In this subsection we try to determine the general structure of the higher
order charges and give an algorithm to write them explicitly.
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As seen in the previous section, the charge of order n will have a local
contribution (only one integral) plus a bi-local (two integrals), etc, up to a
n-local contribution, given schematically by a sum of terms of the form

1 o1 On—1
Qa,.. Ay :/ dUl-Al/ dUQAQ.../ dop, A, (4.53)
0 0 0

times the corresponding product of generators, plus all the permutations.
In order to study these combinations, let us notice that we can write an
arbitrary permutation in the following form
i n

1
QAIl'"AIn = /dU1A1/
0 o

it n—p+1

-1
1 afltll On
Qar,. A, BAL Ar, = dovAr | dosAs... | doy A, | doniaB,
P 0 o} al an P
—

1

i+l
01

AR
dos As... / do, A, (4.54)

J

with o¢ taking the values 0,01, ..., 0y, 1 in increasing order. In other words,
we express the permutations by interchanging the intervals of integration
instead of the order of the A,.

We can give a precise recursive relation giving the integral of any permu-
tation if we complement (4.54) with the following relation

/0 1 doB(o) /UdalA(m): / 1 doA(o) / 1 do1B(04). (4.55)

0 0 o

For such a n-local integral, we have n! permutations, however, not all of
them are independent. For instance, with the recursive relation given here,
it is easy to see that the completely symmetric sum of all the permutations
is just the product of the local integrals

Q4,..4, + permutations = Q 4, ...Q4,, - (4.56)

More generally, one can prove that

Qay..4,B+ Qay..A, BA, T o T QBay..a, = QBQA,. 4,, (4.57)

from where (4.56) as well as other relations can be shown. By using (4.57)
together with the commutation relations among the generators one can write
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an arbitrary order charge in a way in which lower order contributions are
explicit. For instance, for the third order charge we have 6

Qs = Qapc (P'PPPC) = é (Qagc (P*PPP®) + permutations) =

= %QAQBQC <PA{PB7PC}> + 11_2QAQ[B,C] <PA[PB, PC]> T (458)
‘f‘éQA[B,C] <PA[PB, PC]> =
= 5Qu@sQc (PP, POY) + 1QuQuic) (PP, POY)

As happened for @)y, the first contribution of the right-hand side of (4.58)
is conserved, independently of the choice of (), since it is the product of
conserved charges. Let us focus on the nontrivial piece

37 = QaQs,c) (P, [PP, PC)) = QuQp, f5C (P PP). (4.59)

At this point we need to give an expression for <PAPD >, that we will call
QAP In our case P4 can take the “values” P!, J*/ P~ and P*. If we take
QAB = Tr(PAP?B) | then we obtain

00 0 0
|00 0 0
=100 —2 0

00 0 0

and as can be easily seen, we obtain trivial conserved charges. The fact that
Q48 is degenerate is due to the fact that the pp-wave algebra is non semi-
simple. Fortunately, the most general Q4% with the required properties has
been given for the algebra under consideration [52][53] *

o O

QA8 = (4.60)

oo o =
oo x>0
>

oo o

6There will be also a local term, that is proportional to @, and a bi-local term, whose
contribution vanish for the case under consideration.
"For the product of PTP7, or J*TJ+7 we take the invariant to be proportional to §77.
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With this choice one can see that QY7 is non trivial and conserved:

NT = Qicr,nQ1 + QpryQer + Qpuen@pr =

:—2/ da/ do'oz’ (0)0,x( +2/ do/ do'0d.2' (0)x! (0") +(4.61)
(/ da/ do'z! ()0, 2" ( /da/ do'0.2" (0)2! (o ))

Up to an overall factor k, note that the charge does not depend on ¥'.
Expanding in modes one has

2
M3 2 (allalt, — af%0l2). (4.62)
wnkn
n#£0

In order to evaluate higher order charges, one should give an expression
for higher order invariants. In general they will have contribution from lower
order invariants, plus some independent piece. We stress that in general,
for a given order charge, there will be terms conserved by themselves, for

instance, at fourth order we find

1 o 1 o
I _ I 1 I¢ 1 I ! I/ 1
Qy —/0 dox (0)/0 do'x (o)—i—/o dol,x (0)/0 do'd,z" (0"), (4.63)

plus some other complicated contributions. Note that even if the complete
charge at a given order is a Casimir of the group, there will be components
that are conserved by themselves and need not to be associated to Casimirs.
Plugging the oscillator expressions for the fields z’ in (4.63) we obtain

1
Qi = i(xéxé +pipg) — i Z —a2a’,). (4.64)

From the oscillator expressions for Q3" and Q7 it is evident that they will
have vanishing classical Poisson-Dirac brackets between them, so we see that
they will not generate any new charge. This is different to the situation of
sigma models with boundary conditions at infinity, where all the infinite set
of classically conserved non-local charges is generated by the first non-local
charges.
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As we will see in the next section, there is another procedure to recover
such charges, that simply consist in taking the Penrose limit of the corre-
sponding charges on AdSs x S°. In this case the algebra is semi-simple, and
so we can take the trace as invariant operator.

4.5 AdS; x S° charges and their Penrose limit

In the previous section we have given the explicit form for the infinite set of
non-local classically conserved charges for the pp-wave by studying directly
string theory on such background. It is expected that such charges are the
Penrose limit of the charges for the AdSs x S°. In this section we will prove
that this is the case for the first non-local charges.

4.5.1 Explicit form of the Charges on AdS; x S;

As before, the first order charge can be written as (the trace is understood)

Qaas = / (Lop® + Lap®), (4.65)

with the Cartan 1-forms given by [54]

inh
Loy = dy* + (Sm y_ 1> &y, @ (4.66)
’ ’ Sin ! ; ’
with
Y=V =% Y =\ = Ve,
b b
=gy = sy B (4.68)
Y Yy’

In this coordinates the bosonic Lagrangian (equivalently the metric) reads:

L = (dy)? + (sinh y)2dQ2 + (dy')? + (sin y')2d 2.2 (4.69)
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where the 4-sphere metrics are given by

402 — (dy“)(dy? — (dy)®
y

, (4.70)

and similar for dQZ. As before, in order to show the explicit dependence on
the world-sheet coordinates it is convenient to express lower-case generators
in terms of upper-case generators, for the present case we obtain

1 — cosh h
p* = cosh yP® ( = y) ayppb _ Y b gab (4.71)
a ! a 1 — cos y, a b b sin yl b 7a'b
p® =cosy P + 7 y*y’ P +7y JV. (4.72)
Now in terms of upper-case generators
Qlys = / (CoaP® + CopJ® + CLPY + Coy J*Y), (4.73)
with

coshy b sinhy ., b a
C, = coshyL, + ————2bdyby®, Cup = ——2(L%" — L'y"), (4.74)

]_ - I ’ ! i ! ! / / !
Cu = cosy/ L+~ bl Coy = 2V (1 — 1y (4.75)

So the charges fol doCyy, etc, are conserved quantities, and they represent
the isometries of background. As it is well know, by performing the Penrose
limit, the isometries of AdS5 x S5 map into the isometries of the pp-waves, so
the Penrose limit of this first order charges are the first order charges found
previously.

In order to find higher order charges we should worry about the invariant
<>. The algebra of AdS5 x S5 is semi-simple, so we can simply take the
trace of product of upper-case operators. Again the second order charge will
be trivial and we should go to the third order.

Let us write the upper-case generators as T, then [T, T%] = f,T¢. Next,
let us choose a representation of the algebra in which Tr(T%T®) o d4 then
the non trivial third order charge becomes
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Qs = [0 ( /0 1 ca> ( /0 o Cy(o) /0 ’ do’C’c(o’)) R

where now C,, is the coefficient of 7 in the first order charge, etc.

4.5.2 Penrose limit

The Penrose limit of the Cartan 1-forms was taken in [54], to which we refer
the reader for details, here we repeat basically their analysis. 8 We define
y¥ =y = (y° £ y°)/v/2 and then perform the rescaling

y~ — %y, yt =yt yg — Qyz. (4.77)

The Cartan 1-forms should also be rescaled as L~ — Q*L~, Lt — L*
and L' — QL".
Finally by performing the following change of coordinates

; sin y+ i
= = ', (4.78)
=yt (4.79)
o yiy sin 2y
T =y +2y+ (1— e ), (4.80)

we obtain the Cartan 1 forms used in the previous section for the pp-wave
as Q2 — 0 (see (4.34)).

1 » - - -
L =dz - ix’xzdafr, Lt =dz*, L'=dzx" (4.81)

In order to show that Q3,5 maps into Q3" we need also to show that the
AdSs x S5 algebra goes to the pp-wave algebra, with the correct structure
constants fgo. This was done in [55], by performing the following rescaling

1 ~ 1 ~ 4 ]_ 4
Pt 5Pt Pl P, Pl P (4.82)

8Qur conventions interchange + and - with respect to the conventions used in [54].
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where P? are the boost generator, and then taking the 2 — 0 limit. Notice
that these rescalings corresponds to rescalings on the coordinates.

So we see that Q% ;5 maps into @5'T. In order to contruct the charges for
AdSs x S° we can take the trace of products of operators as invariant form
without lost of generality, since the algebra is semi-simple. It is interesting
to notice that the Penrose limit of such charges is equivalent to consider the
charges on the pp-wave but using now the non-degenerate invariant (4.60),
as done in the previous section.

4.5.3 An explicit check

As an explicit check that the Penrose limit of the charges of AdSs x S° are
the charges on the pp-wave we can consider the following exercise.
Since we have the expression for @37 in terms of the mode expansion of

the coordinates z!, we can compute its value when applied to BMN operators
9.

Yol of ..ol 0>~ (i + 1 +..+ i) of af ..ol 0>, (4.83)
ny N2 nr

where we have taken the classical limit, i. e. v1+n2 ~ 1 %, On the
other hand, on AdS5 x Ss, the dual of the BMN operators are believed to be
rotating strings on an equator of S° with very large angular momentum. So
it is interesting to check the value of %, when we plug in its expression in
the semi classical solution corresponding to such a rotating string. This was
done for the Hamiltonian in [56].

In the following we will focus on the S® part, the analysis for the AdSs
is very much the same. First, let us change coordinates to the one used by
[4]. In such coordinates, the relevant part of the metric turns out to be

ds® = d¢® cos® 0 + df” + sin’® 0dQ)3, (4.84)

with dQ2% the metric of a 3-sphere parametrized by angles a, 3 and 7. Per-
forming this change of coordinates and setting o = 8 = v = 0 for simplicity

9For future convenience, we use the notation used in [4], where n > 0 for left movers
and n < 0 for right movers.

10More explicitly, reintroducing the dimensionful parameters |/m?2 + % ~m.
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we can rewrite the coefficients Cyp in terms of the new coordinates, as we
focus on the S® only we suppress the primes henceforth,

Cjis = —Cys4 = cos ¢df + sin 6 cos 0 sin pd o, (4.85)
Cps = sin ¢df — sin 6 cos 0 cos ¢do, (4.86)
Cps = — cos® 0d. (4.87)

We will consider a string rotating in the equator defined by # = 0, that is,
we will consider ¢ = J7 and small oscillations around § = 0. The Lagrangian
becomes

L = cos® 0(dp)* + (d)? =~ J*(1 + 6%) + (df)? (4.88)

By using the approximation of small perturbation and the explicit form
of ¢ we obtain

§4 = Cyas = —Cysa = cos (J7) df + Jsin (J7) Odr,
§% = Cpa = sin (J7) df — J cos (J7) Odr, (4.89)
j¢ = Cps = —Jdr.

By using the approximate equation of motion

(02— 02)0 — J?0 = 0, (4.90)

it is easy to see that the quantities Q4 = fol j&t, etc, are conserved. Let us
assume the perturbation to be of the form !*

0(7_7 0_) _ Z Az (ei(wnir+27mi0') + e—i(wnir+27mi0')) (491)

i=1 Wn;

with w, =V J? + 47n?. Then we find

" The presence of 0-modes will not change the final result.
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Qhas = Q1QPA + QEQMP 4+ QPQIOA =
1 o 1 P K J2A2
:J/ 670/ 0_/ 0/ 870 = 1 , 4.99
U ’ oy Z:; niy/J? + 4mn? (4.92)

that coincides with (4.83) for large J. In fact, one can notice that the form
of (4.89) coincides with that of the coefficients B!, CT and 1, of the pp-wave,
from which Q57 is built.

Of course the very same method can be used to compute these charges
for other string states on AdSs x S° | as done in [56].

4.6 Summary and conclusions

We have shown that the closed superstring on the maximally susy pp-wave
possesses an infinite tower of non-local classically conserved charges. We
have then shown that they coincide with the Penrose limit of the charges
present for AdSs x S°.

In order to construct these charges in closed string theory, one must
impose periodic boundary conditions on the world-sheet coordinates and then
take some invariant of the group elements appearing in the charge. As a
consequence it is not clear whether it is possible to generate all the tower of
non-local currents by repeated Poisson Dirac brackets of the first non-local
currents (or some finite number of them), as opposed to what happens when
one considers the uncompactified sigma model. Indeed, from the first order
charges explicitly obtained in this paper it is not possible to obtain more
non-local conserved quantities.

On the other hand, when one considers closed string theory on pp-waves,
which has a non semi-simple algebra, the naive invariant, i.e. the trace, turns
out to be degenerate, and one should look for a non degenerate invariant in
order to obtain non-trivial charges. The non degenerate bilinear invariant for
the algebra under consideration was found in [52][53] and we use it in order
to compute the first non trivial non-local conserved charge. Remarkably,
this charge coincides with the Penrose limit of the first non trivial non-local
conserved charge for AdSs x S°, whose algebra is semi-simple and we can use
the trace as non-degenerate invariant.



4.6. SUMMARY AND CONCLUSIONS 29

There are many possible further directions to pursue. The super-Yangian
algebra was explicitly studied in [57], one obvious generalization of the present
work is to consider the Penrose limit of the super-Yangian algebra. The ques-
tion about the gauge dual of such charges is interesting. As the AdS/CFT
correspondence is more precise in the pp-wave limit (as the string spectrum
can be exactly computed there) it may be simpler to study the dual of the
charges in this limit.

Even though string theory is exactly solvable on pp-waves (in the ligth
cone gauge), the non-local charges described in this chapter could provide a
clue about the role played by these currents in the full AdSsx S® background.
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Chapter 5

PP-waves against free SYM

As already mentioned, in [28] and [29] the spectrum of strings on flat space,
organized in AdS representations, along with its KK descendants was found
to match that of free N' = 4 SYM. Besides the spectrum one would like
to have a precise matching between the generators of the symmetry algebra
on the two sides, having the Hamiltonian on the string side would allow to
compute conformal dimensions, for instance. On the other hand one would
like to have a systematic way to compute correlation functions on the string
theory side and compare those with that of free ' =4 SYM. In view of eq.
(2.27) and the above discussion it is natural to try to mimic [28] and [29] but
using strings on pp-waves as our starting point.

In this chapter we report some attempts in finding a correspondence be-
tween strings on pp-waves (with some additional restrictions to be described
below) and free N/ =4 SYM.

We begin by assigning to each string oscillator A and J quantum numbers,
this allows us to construct the string spectrum (by applying oscillators to a
tower of vacua |L) with L = 0,1,2,...) and read the quantum numbers of
the gauge dual to each state. In section 5.2 we match the string spectrum
to that of free N' =4 SYM. In order to have a precise correspondence some
restrictions must be imposed on the “level” of the vacua, depending on the
kind of oscillators acting on them, in this way we find a matching up to
level one in string theory and for all the string states with two (bosonic)
oscillators. In section 5.3 we develop a discrete SF'T formalism in order to
compute three-point correlations functions in string theory and in section 5.4
we compare these results with those obtained from gauge theory .

On the way we find many difficulties and the matching is not precise (but

61
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almost!) so the general picture turns out to be not completely satisfactory.
We end this chapter by discussing some possible sources for such mismatch.

5.1 Identification of generators in the two sides
of the correspondence

The aim of this section is to find a correspondence between the generators of
strings on pp-waves and that of free N' = 4 SYM. In particular we will find
A and J assignments for every string oscillator.

5.1.1 Identification of the conformal and Kaluza-Klein
generators

In the following we show that the creation and annihilation operators of the
zero modes aﬁ”, ay, with u = 1,2, 3,4, of the plane wave string theory can be
associated with the conformal generators K* and P* of the conformal field
theory. We also identify the Kaluza-Klein generators on the S° P;, Pf with
1 =5,6,7,8, with the creation and annihilation operators aff and af of the
plane wave string theory. In order to do that we use the fact that the plane
wave algebra is a contraction of the AdSs x S° algebra [55] and keep track
of the generators during the contraction. The relevant part of the Euclidean

AdSs algebra is given by
[M_10, M_y] = Mo, [M_y0, Moy] = M_y,, (5.1)
Here M_, o refers to the Cartan generator A, to diagonalize the action of A we

consider the linear combinations P, = M_; ,+ M, , and K, = M_, , — M, ,,
then the algebra reduces to

A,P] =P,

13

[AaKu] = _KH (52)
The relevant part of the SO(6) algebra is given by
[Ro10, R 1] = —Rosi, [Ro10,Ros]l=R 1, (5.3)

As before, we rename the Cartan generator R_; to ¢J and diagonalize its
action by considering the linear combinations P, = R_; + iRy; and P =
R_i; —tRy;. We obtain the simple relations

[JP]=P, [JP]]=-P (5.4)

1
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Note that the symmetry generators of S° and AdSs are decoupled. The plane
wave algebra is obtained by considering the following linear combinations

1
P+:§(A+J), P =A—-J (5.5)
and then scaling the generators according to
1 1 1
Pt — @Pﬂ K, — ﬁKN, P, — ﬁPﬂ, (5.6)
1 1
— Q i — Qi

In terms of these re-scaled operators the commutation relations (5.2) and
(5.4) read

Q Q
[P+,Pu] = 51?’“, [P+,Ku] = _§Kw (5.7)
Q Q
[P+=Pi] = §PZ [P+’Pi*] = _Ef)i*’
[P_,PM] =P, [P_,Ku] =—-K,,

[P_api] = _Pi7 [P_vpi*] = Pi*ﬂ

The plane wave algebra is then obtained by taking 2 — 0. P thus becomes
a central element.

Consider the following global charges of the light cone string theory on
the plane wave background

Pl =pl, JV=—iz), I=1,2,...8 (5.8)

Here z{ and p| are the zero modes of the position and the momentum on the
world sheet. Consider the linear combination af' = py—iz} and al = po+iz.
Their commutation relations with P~ are given by [35]

[Pia aéf] = aé]L: [Pi, CL[] = _a’(l; (59)

Comparing these relations with the 3rd and 4th line of (5.7), (5.2) and (5.4)
we can make the following identifications and read out the A and J quantum
number of the oscillators under consideration
P,—at, A=1,J=0, (5.10)
K,—aj, A=-1,J=0,
P—ady, A=0,J=1,
Pr—df, A=0J=-1.
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5.1.2 Identification of the superconformal generators

The commutation relations of the N' = 4 supercharges with A and .J are

A,Q7=5@%, 1407 =30 (.11)
AQ1=3Q, 1Q]=—3@,

A5 = 38", [1,5%] = 38",
AS] =35, 1S ]=—355,

where @* and S* are the supersymmetry and the superconformal charges.
They are 16-dimensional Weyl spinors, the superscripts indicate their R-
charges J. We identify the realization of these charges in the light cone
plane wave string theory in the m — oo limit. Only the dynamical charges
of the light cone string theory have m dependence, they are given by [35] !

m NIT7[

115, + h.c. )(5.12

o
Q™" = 2pyy' 0y — 2magy' 1105 + ) (2\/_wncnaﬁvfnn +
n=1

o
Q% = 207103 + 2ma {51162 + Z <2w/wncn&fj’_ylﬁn — alt5 Iy, + h.c.) ,
n=1

m
\/ w’ﬂ CTL
where

1
wn =+/(2mn)2 +m?, ¢, = (5.13)

1 + (wn727m)2

m

We see that in the m — oo limit, w, — m and ¢, — 1/v/2. Plugging this
limit in the dynamical charges (5.12) and considering the following linear

'In the conventions of [35] m = 2wa/pt p.
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combinations we obtain

O =Q ' +ilQ2 = 2v2m (agW“(aR +0) +diy (0 +0:)  (5.14)

o0
+ > (b5 0, + aly'nf + dakTy T, — z‘ééi"ﬂﬁ%))
n=1
ST=Q7' -l = 2v2m (aﬁi(eR +0.) + a3 (01, + Or)
o
+ > (a5 n, + byl + i@l v T, — i&ﬁﬁ“ﬂﬁi))
n=1

Fermionic oscillators are denoted by € (which is a complex Weyl spinor) and
we use the conventions of [35]

1 . | .
0o = ﬁ(eé + i), 0o = ﬁ(eé — i) (5.15)
1 1
— —277,{*, o = —277;, n=1,23,.. (5.16)
1+11 1-1I
= — 4 0, B (5.17)

We have defined the proper linear combinations in preparation for their
A and J assignment. The fermionic vacuum is defined by z|0) = 81]0) = 0.
The linearly realized supercharges are independent of m and can also be
grouped into the following linear combinations

ST =QM +iIQ =0z +6,, (5.18)
Q™ = Q" —illQ™* =0, + O,

Let us now assign the A and J charges to the above generators. The dynam-
ical generators commute with P~, therefore they both have A = J. We also
have the following commutation relations

[PM’ Si] = [agf’ Si] = ’7”@77 [Plu Q+] =0, (5'19)
[Kan+] = [%‘,Qﬂ = ’_YHS+7 [KwS—] =0
[P—7Q+] = [P—:S_] =0,
[P-,Q71=Q~, [P, ST]=-5"
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Inspection of the commutation relations suggests the following assignment of
A and J for the charges:

Q' A=l J= (5.20)
1 1

5 A=I§, J:IE

St A:_i’ J=§

5.1.3 Assignment of A and J to string oscillators

It is not straightforward to assign A and J charges to the string oscillators.
Inspired by [29] we rely on the extrapolation of the the BMN formula (2.23)
for gy = 0, which is given by

A—J=v (5.21)

where v is the number of excited oscillators. Therefore for a given oscillator,
the difference between A and J is one. In addition we use (5.20) in order to
infer the A and J quantum numbers of each string oscillator. We propose
the following assignments

all A=n, J=n-1, (5.22)
al - A=-n, J=-(n-1),
aﬁf: A=n+1, J=n,
ab A=—-(n+1), J=-n,
nt o A=n+1/2, J=n-1/2
M - A=—-(n+1/2), J=-n+1/2,
0, +0g - A=1/2, J=-1/2,
Or + 01 - A=-1/2, J=+1/2,

Note that substituting these charge assignments in the expressions for the
supersymmetry generators in (5.14) and (5.18) we obtain the charge assign-
ments in (5.20). Also, the identification of the charges for the bosonic zero
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modes in (5.10) agree with the more general assignment for the bosonic os-
cillators in (5.22).

5.2 Organization of the plane wave spectrum
into Yang Mills states

It would seem that now that we have the individual assignments of A and
J for each string oscillator it should be easy to construct the spectrum and
match it with the free Yang-Mills spectrum. However it turns out that we
need to put certain bounds on the J quantum number of the vacuum de-
pending on the kind of oscillators acting on it, so as to agree with the Yang
Mills spectrum for finite J. We will see this in the various examples below.

5.2.1 Supergravity modes

All supergravity states are generated by the action of various symmetry gen-
erators on the highest weight state (HWS) Tr(Z”7). In the plane wave string
theory we identify this state with the vacuum with J units of R-charge?.

Te(Z7) & |J;A = J) = |J) (5.23)

To fill in the full SO(6) content of this HWS representation we can act on
(??) with the J lowering operator on the gauge theory side. This is given
by
77=g 2 70
07 0¢*
As we saw in the previous section, on the string theory side this symmetry
is generated by the operator af)f. On the gauge theory we can keep acting by
J*? till we obtain TrZ”. Note that after J actions of J*4, the J quantum
number turns negative and the number of ®"s start decreasing till one is
left with all Z ’s. To mimic this feature in the string theory we fill out
the complete SO(6) representation in the following way. Start from |J) and
act with af)f’s J times. Acting with these operators lowers the J quantum
number till zero increasing the number of ¢¢. Then for the remaining states
start from the lowest weight state | — J) and act by the operator af J — 1

(5.24)

2Notice that the R-charge J is not necesarily large.
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times. The action of these operators increases the J quantum number and
increases the number of ¢*. Thus on the string side we constrain the number
of al acting on |.J) or the number of a} on | — J). This can also be thought
of as bounds on J given certain number of ao , in fact the J quantum number
of the vacuum is always greater than or equal to the number of aO acting on
it. A similar condition applies for the lowest weight state | — J). Note that if
one works in the sector of very large J and very small number of impurities
(BMN limit), these constraints are immaterial but obviously realized.

As a simple check of imposing this constraint in order to get the right
number of states in string theory, we evaluate the string partition function
and compare it with the partition function of all the SO(6) traceless sym-
metric tensors on the gauge theory. On the string side the partition function
is given by

oo 1 oo [-1
Z:ZZ r'gln” +ZZx_lqjxj (5.25)
1=0 j=0 1=0 j=0

Powers of ¢ count the number of oscillators af, either creation or annihilation,
acting on the corresponding vacuum and powers of  count the J quantum
number. The first sum counts the states with af)T acting on |J) and the second
sum counts the states with a}y acting on | — J). Summing both terms in the
partition function we obtain
1 1 1/x 1
+

l—-2z1-¢q 1-1/z1—¢q
Note that though we had a constrained sum in (5.25), in the partition func-
tion the sum becomes free and one gets a product of the partition functions
of the g oscillators and a oscillator which creates the Z or the Z states. Now
let us examine the partition function of all traceless symmetric tensors in
the gauge theory. We need to know the decomposition of a SO(6) traceless
symmetric tensor into SO(4) symmetric tensors including the trace and the
J quantum number of the SO(2). This is given by

0,7,00=n®n—-1"®n-2a...0 0" (5.27)

here [n] refers to a rank n symmetric tensor of SO(4) which includes the
trace and the superscripts indicate the J quantum number. The partition
function of all totally symmetric traceless tensors is given by

o 1 o 1
Z= Z Z ¢l + Z Z ¢ iz (5.28)

1=0 j=0 1=0 j=1

z =

(5.26)



5.2. ORGANIZATION OF SPECTRUM 69

Here g keeps track of the rank of the SO(4) tensor while z counts the J
charge. The first term is for the term in (5.27) with J = 0 and positive J,
while the second term is for J negative. Again the sum can be performed
and it gives

11 1z 1

e
1—x1—q+1—1/x1—q

(5.29)

which is the same as the string theory counting of the supergravity states.

5.2.2 Level one states and the Konishi multiplet

In order to simplify the search of string states which correspond to Yang
Mills operators it is convenient to look for superconformal primaries. Since
we know what the annihilation operators S* correspond to in string theory,
we can construct these states and look for their duals. S™ is just the zero
mode annihilation operator for the fermions, so obviously it annihilates the
vacuum. From the structure of S~ in (5.14) we see that creation operators of
bosonic oscillators in the ¢ directions come together with fermionic annihila-
tion operators and vice-versa for the u directions. Thus the following states
are superconformal primaries at level one

a"a'y, da@tgy,  oital]g) (5.30)

These are states in the symmetric traceless (9), anti-symmetric (6) and scalar
(1) representations of SO(4). From the assignments (5.22) we see that the
oscillator part of all of the above operators have A = 2 and J = 0. Thus the
degeneracy can be broken only if the level of the vacuum, J, is different for
these states. The information we have about the string theory is not enough
to predict what the allowed values of J are, in fact it seems all values of
J are allowed. However, as we have seen for the case of the supergravity
modes, there will be bounds on J coming from the requirement that these
string states match up with states of the Yang-Mills. We assume that they
are all HWS of SO(6). Consider the SO(6) scalar on the Yang-Mills side
Tr(¢p¢?), where I = 4,5,6,7,8,9, it is a dimension 2 operator, a supercon-
formal primary and not part of the 1/2-BPS multiplet.®> Thus the scalar in
(5.30) with |J >= |0 > has the right quantum numbers to be identified with
the Yang-Mills scalar Tr(¢’¢").

3Half-BPS SYM states are dual to supergravity states.
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The obvious choice for the operator to be identified with the anti-symmetric
representation of SO(4) is Tr(¢¢’1), but this is zero because of the cyclic-
ity of the trace. The next candidates come from operators with three scalar
fields, the operator Tro! ¢’ ¢ such that I, J is anti-symmetric and K is sym-
metric with respect to I or J is also zero due to the trace. Thus the only can-
didate is the completely antisymmetry representatlon of SO(6) Tr(al! ¢’ ¢*1),
whose HWS with respect to SO(2); is Tr(¢l¢?’ Z). Thus the lower bound
for J for the antisymmetric representation in (5.30) is [J >= |1 >. We see
by this choice the quantum number A = 3 also agrees on the string side.

For the state in the symmetric traceless representation of SO(4) in (5.30)
and A > 2, the obvious candidate is the symmetric traceless representation
Tr(¢¢?)), however this is ruled out as it is dual to a supergravity state.
The only non zero length 3 operator with at least two symmetric indexes is
the completely symmetric traceless representation which is also a supergrav-
ity state. Among the length 4 operators the non zero operator which has
the right symmetry properties is Tr(¢ ¢’ ¢* ¢%) such that two indexes say
I, K and J,L are symmetric but /,J and K, L are anti-symmetric among
them. This is the (2,0, 2) representation of SU(4). The HWS with respect
to SO(2); is given by

Tr(¢Z¢) Z — ¢C ) 2?) (5.31)

Thus the symmetric representation of SO(4) in (5.30) has at least |J >=
|2 >. In conclusion we have the following identifications

@Y o Te(¢ Z¢D Z — ¢ligh Z2) - [2,0,2] = 84 (5.32)
aTal| ) & Tr(glig?2) : [2,0,0] + [0,0,2] = 10 + 10x,
aTalt|J), <> Tr(g'o") - 0,0,0] = 1

The last column denotes the SU(4) representation of which the states are
highest weight of. All of these states are superconformal primaries, in fact
they are the ground states of the short multiplets in which the long Konishi
multiplet decomposes into [28] 4

11

1,1 13 31 11
A[ooo looy " CC; [000]00 + BC [420‘5](00) + CB[‘BO“Q](OO) + 88[42042}(00) (5.33)

4The long supermultiplet AAO’(“’]Z)

is obtained by the unconstrained action of the
sixteen supercharges on the ground state [k,p,q](,,j.) of conformal dimension Ay. For
some particular states some combinations of the charges may annihilate them, and we

obtain short or semi-short multiplets, see [28] for the details.
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With [k, p, q] denoting an SU(4) representation in terms of Dynkin la-
bels and (j1, j2) denoting an SO(4) representation in terms of spins. The
“bottom” component of CC has A = 2 and is the Konishi scalar Tr(®!®7).
It is a semi-short multiplet of dimension 2% x 5. The “bottom” component
of the multiplet BC along with CB is Tr(®!!®’®X]), in the completely an-
tisymmetric representation. The two multiplets combined have dimension
2(10 x 2" — 256 x 37). Finally, the bottom component of the multiplet BB is
the length 4 state Tr(¢{/¢p(/p{F)pL}) and it has dimension 10 x 212+ 256 x 5.
Note that adding the dimensions of all the sub multiplets gives 2% which is
the expected dimension of a long multiplet.

Though we have only written down the highest weight states in (5.30)
we obtain the full SO(6) representation by the action of af)T on the highest
weight states and af on the lowest weight states. The procedure is similar to
the gravity modes discussed in the previous subsection.

5.2.3 Generalization to two oscillators states

In the following we generalize the results obtained in the previous section
for string states of the form aif@if|J). The basic strategy is to count the
number of inequivalent states in SYM with given quantum numbers and fix
the bounds on |J) in order to have the same number of states (for every
representation) in the string spectrum.

A generic state aifaZ'|L) has quantum numbers A = 2n + L and J =
2n + L — 2 and transform in the SO(4) representations 1,6 and 9. So we
need to count inequivalent SYM states (taking into account the cyclicity of
the trace) with a given conformal dimension A and R-charge J = A — 2,
i.e. states of the form TrZ'¢!ZE='=2¢J  transforming in a definite SO(4)
representation.

In order to do that we can use a particular case of Polya’s theory [28,
60, 61]. According to this technique, the inequivalent necklaces of length n,
built from beads of p different types a1, as, ..., a, are given by

1
P,(ay,az,...,ay) = - E o(d)(af +ad + ... + aZ)”/d (5.34)
dn

where the sum runs over the divisors of n and ¢(d) is the Euler’s totient
function, denoting the number of numbers relatively prime to d, smaller than
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d, with ¢(1) = 1. For instance, for n = 6 and two different kind of beads a
and b the different necklaces are given by

1
Ps(a,b) = 6[(a +0)° + (a® +6*)° +2(a® +b*)* +2(a® +0%)]  (5.35)
= a% + a®b + 3a*b? + 4a®® + 3a%b* + ab® + b°

Where a® denotes the necklace with 6 beads of type a, etc. If we are
interested just in the total number of inequivalent necklaces then we should
compute P,(1,1,...,1).

Hence, the quantity of inequivalent states of length L composed by the
fields Z and ®, i = 1,...,4 is given by Pr(Z, ®!, &2, &3 d*). As we are inter-
ested in keeping just the information of the R-charge, we need to compute
P.(Z,1,1,1,1), then the coefficient of ZX=2 in such polynomial equals the
quantity of inequivalent states with A = L and J =L — 2.

In order to know how these states distribute among the SO(4) repre-
sentations 1,6 and 9 it is enough to note that the representations 1 and 9
appear the same quantity of times at each level, and the quantity of singlets
is given by Pr(Z,1). In table (5.2.3) we can see the number of inequivalent
states and the representations in which they appear for any given length.

Length=A | states Representations

2 10 1+9

3 16 1+6+9

4 26 21+6+29

5 32 21426429

6 42 3.14+264+39

2n 16n—6 | n.1+(n—1)6+n.9
2n+1 16n n.l1+n.6+n9

From the analysis of the supergravity spectrum, section 5.2.1, we know
that at every length L there is a state transforming in the 9 representation,
dual to the supergravity state a(()”af))”[, >

It is now straightforward to fix the bounds for arbitrary level for every
representation, so as to match string states with those of free SYM. Actually
one can see that we have the same bounds as those at level one. In summary,

the following string states
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aftait 0y + 1) + |2) + ...), (5.36)
altallt (1) 4 |2) 4 [3) + ...) (5.37)
atat(|2) +(3) + 4) + ...) (5.38)

reproduce exactly the same quantum numbers, representations and mul-
tiplicities, when summing over n, of the corresponding YM states (table
(5.2.3)).

As the string level grows there is increasing ambiguity in fixing the pre-
cise dictionary between string and gauge theory states, since the conformal
dimension and R-charge of the state a’l@/'|L) depends on the combination
2n 4+ L and not n and L separately. We know, however, that for large R-
charge there is a precise dictionary, see (2.19), and ours should reduce to
that for large J. This assumption together with the fact that the duals of
the string states should form an orthogonal basis (also for small J) will help
us in order to conjecture the precise dictionary, as will be done in section 5.4.

Once we have the precise dictionary between the spectrum on the two
theories the most natural test is to compute correlation functions on both
sides of the correspondence. This is straightforward in free YM as it involves
simply Wick contractions (apart from the position dependence). In order to
compute correlation functions in string theory we develop a discretized light-
cone SKF'T formalism, on PP-waves, on the limit of large mass, i.e. u — oo.

In this picture the string 7 is composed by N; bits, which are non inter-

acting in the limit considered, and string interactions are viewed as splitting
of the bits N3 — N1 + N2 = N3

5.3 Discrete light cone string field theory

In this section we compute the 3-string vertex |Vj3) in discrete light cone SFT
on pp-waves, for the process in which one string, 3, splits into two, 1 and
2 (or two strings, 1 and 2, join into 3). This vertex depends (on a way to
be described in the next sections) on the overlapping matrices X7, , which
express the Fourier basis of the string r in terms of the Fourier basis of the
string 3. °

5String field theory for the closed type IIB string theory was developed in [58] for flat
space-time, for a introduction to light cone SFT on pp-waves see[59].
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We start by setting up notations and computing the various overlaps
mentioned above. We focus on one of the bosonic coordinates. The string
action is given by (we are not showing the 7 dependence)

(N+1)/2

=ay [ 3 (F0- (019 Xis 17 - mt)

(5.39)
here we have scaled the world sheet coordinates to X — v/27ra/X. The mass
of the plane wave is given by m = uv/o/27. Note that with these conventions,
the world sheet, as well as the target space coordinates are dimensionless.
1 has dimensions of mass. We have discretized the o direction of the light
cone string by N bits. In (5.39) N is taken to be odd for convenience, and
X(s+ N) = X(s). Solving the equations of motion we obtain

2mns

]_ mns
X(s,7) = cos mT:co—i-— sin m7’p0+\/_ Z ( —iwnT=200) 0 4 —i(wn T+ 22 )dn)
wn

(5.40)
here

:\/m2+4sin2%, for n>0 wn:—\/m2+4sin27]rv—n, for n <0

(5. 41)
The summation over n in (5.40) runs from —%=1 to =1, Similarly P = %,
is given by
1
P(s,7) = N [—m sin mTxy + cos mTpy (5.42)
_F :E:: 6-—ZLUnT wnS)cx _F e Z«Un74_2wn5) NT{) ]
\/§ (n;éO
The commutation relations among the oscillators are given by
[ana CVm] = wn6n+m,0 ; [&na &m] = wn5n+m,0 s [-,L‘O’Z)O] =1. (543)
It is convenient to redefine the operators according to
Oy, 1 O_p
Uy, = , al = (5.44)
v Wn " V |wn |
_ t_ O
a_, = al, =

- V |wn |
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where n > 0. After the change of normalizations, the commutation relations

read
[GIL, am] = 5m,n (545)

The overlapping matrices are obtained by matching the momentum modes
before and after the string splits. Let us suppose the string splits at world-
sheet time 7 = 0, and let us rewrite the modes in a convenient form at 7 = 0.
The worldsheet coordinate is given by

N-1
. T
1 1 2mns
X(s)=z0+—% ((an —al +a_, —al,)cos (5.46)
V2 = \/|w] " N
2mns
+ i(an + af —a_p, —al,)sin r >
N
performing the following linear transformations
1.
an + a/—n G/Il + a_n 1L
= T O0py, = 7 Oy, 5.47
— t_ ot
R R L

V2

and substituting in (5.46) we obtain

\/§ —-Nn

2mns . 2mns
X(s) = zo+i Z \/|T ( —al) cos N + (acjp — aT_W) sin — )

2 2
= o+ \/52 <xn| cos ans + Z_|p sin 7;\7;8> (5.48)

n=1

where we have defined

a =L P — i\ |Wwp|x an:L P 1\ |Wn|Tn
5.49

Going through the same change of variables for the mode expansion of P
given in (5.42) we obtain

N-1

1 2 21ns . 27mns
P(S):N p0+\/§z (pncos 7;\7; + P sin 7;\[ ) (5.50)

n=1
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For N even we take the positions of the bits to be at 1/2 integer points. This
is so as to have a symmetric distribution of bits about the origin, therefore
the expansion of the momentum mode for N even is given by

P(s) = % {po + \/inzi:l (pn coS w + P_ | Sin 27”’(‘9]\;—1/2))}
(5.51)

The inverse relations are given by

-1
Po = P(s), (5.52)

o= N

2
-1

P =V2 Z P(s)cos — (s +1/2),

s=—%
|

With similar inversion relations for N odd.

5.3.1 Calculation of the overlaps

Requiring momentum conservation across the point where the string splits
we obtain

PO (s) + P (s) + PA(s) =0 (5.53)

P®)(s) is defined on the points lying between —(N' —1)/2 and (N* —1)/2,
while P® is defined on the points from (N* —1)/2+ 1 to (N3 —1)/2 and
—(N*—=1)/2 -1 to —(N® —1)/2. Here we are discussing the case when an
odd number of bits of the third string splits into an odd number of bits of the
first string and an even number of bits of the second string. The overlapping

matrix X} is just the coefficient of pg) in the expansion of pg) in Fourier
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modes of P®)(s). Assuming m,n > 0 we obtain

Xl

mn

m0

—m-—-n

Ny—1
2 2 27ns 27rms
— cos cos = 5.54
N 2 N TR, (5:54)
S=—773
1 (sin7m( + )N sina(g — 35)M
N\ sinm(g- + +) sin7 (3 — %)
Nip—1
2 2 2
£ Z oS ’ﬂ'TI’LS,
N, 4 PTN,
§=——3
V2 [sinm({E)M
Ny \ sinm(g) )’
0,
1,
Npi—1
2 2 2mns 2rms
— sin cos =0,
N2 Ty
s—
Ny
2 2 2rns . 2wms
— cos sin =0,
Ny ZNI_I Ny N3
s 3
Ny—1
2 2 . 2mns . 2mms
— sin sin
M ZNI_I Ny N3

1 sin7r(Ni1 + Nﬂg)Nl sin7r(Ni1 Nﬂ)
sin(5t — 1)

The overlap function of the second string with the third string, denoted

by X

mn’

expressions and multiplication by (—

is the same as X!

after replacement of Ny by N, in the above
1)m*tm+1 To show this let us explicitly

mn?

calculate the overlap function of the second string with the third string for
a particular case. As the number of bits of the second string is even for the
case under consideration, they are defined on half integer lattice points. The
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different overlaps, for n > 0, m > 0, are given by

N27
2 [ 2mn 1 2rm N, —1
X2 — t t 1)) (5.55
=y | 2 o e e+ F 1) 659
_Na
2mn 1 2mm Ny -1
t_ZICOS(TQ(t+_))COS( N, (t— 5 ),
i sin T Ny sin7r(N IN
Ny \sinm({£ + §)  sinm(g — )
( 1)n+m+1i sin 7 (55 + N%)Ng sinm (5 — Nﬂs)NQ
Ny \ sinw({ + §) sinm (3 — %)

Note that in the last step we have used N3 = N; + N,. As for the overlapping
of the 3rd string with itself we have obviously X3, = 0,.

5.3.2 Construction of the vertex in the u — oo limit

The SFT three-vertex is given by [22]°

[V3) = exp ( Z a*TN” ) |0) (5.56)
r,s=1
where the Neumann functions are given by
N =" =20 P X x O (5.57)
with ,
T=>Y XOC4x0T (5.58)
r=1
and
Ciryrrr = Ny \/m2 + dsin "oy (5.59)

6Note that the oscillator basis used here differs from that of the previous section, the
relevant change of basis will be given when computing actual correlation functions, done

in the next section.
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In the limit under consideration, m — oo, Cik Teduces to N,mdyy , and
hence I' reduces to mezl N, XOXOT In this limit I can be shown to be
proportional to the identity. Let us examine in detail

Ty = m (Nabpr + Ny (XOXDOTY 0 + Ny (XD X ET),0) (5.60)

For the case k, k' > 0. Consider the second term in the above expression, use
(5.54) and write write

Ni—1 Ni—1 Ny-—-1
2 2 2 /!
(1) +(1) 4 2mns 2rks 2mnt 2mk't
Ny ZX,ka,n = E Z Zcos N, cos N, cos N, cos N,
n=0 s,t:—% n=1
Ny—1
2 2 o2rks 2mk't
+ N ZN cos N, cos N, = (5.61)
st=— 12_1
Ni—1 Ni—1
2 2 2 2rns  2mks  2mnt  2wk't
= A Zl_l ZNl_lcos N, cos N, cos N, cos N,
S,t=— 3

Summing over n we obtain the delta function &t (6(s — t) + 6(s +¢)). Thus
the sum reduces to

27Tkt 27rk’t
N ZXk1>Xk, =2 Z A (5.62)

N11

Now let’s examine the last term in (5.60), again using (5.55) we obtain

X2 Ny/2-1 ,
2 +(2) 2wk N1—1 2wk N1—1
N, nZOanXk,n = 2 ; cos N, (t+ 5 +1)cos N, (t+ 5 +1)
Na/2
21k N1—1 27k’ N1—1
—(t — t— = (5.63
+ coS N3( 5 ) cos N, ( 5 ) ( )
t=—1
N3—1 _ Np+1
2 okt  2mk't 2 2 kt 2 k't
= QZCOS ]7;3 cos7r + 2 Z il 7;\[3
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Note that here we have used N3 = N, + N;. Adding the three terms of
(5.60) we obtain

N3—1

: 2rks  2mk's
Ferr = mN30gg + 2 = 2m N30k 5.64
gkt = MN30kp + chos N, “CN, M N3Ok (5.64)

_Ng—1
2
Though we have discussed the case k, k" > 0 we can repeat the same line of
arguments for other ranges of k¥ and arrive at the same conclusions. Thus we
have the result that in the gy — oo limit I" is proportional to the identity. If
we consider a bit non conserving process, by going through the same algebra
we will obtain a doubling of terms when the bits overlap. Therefore we
cannot use the result for the final sum in (5.64), thus for such cases I'; j will
not be proportional to dy.
Now that we have all the ingredients of |V3) we can proceed and compute
three point correlation functions.

5.4 Correlation Functions

In this section we compute correlation functions among various operators to
be defined below and compare gauge and string theory results.

5.4.1 Yang Mills correlation functions
Definition of the states

Let us begin by defining the following operators *

1
O = ——_Tr(Z71 < |J 5.65
e = Z5Tr(Z7] 1) (5.65)

J 1

0/ = Tri¢iZ7] < af|J + 1 5.66
1 \/J—H T[¢ ] a0| > ( )

For a generic two-oscillators string state in the symmetric representation
we propose the following YM dual

"A normalization factor depending on the rank of the gauge group is not included.
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(20 + 1)

J
affal)J=2n+2) & Ofijyn = No D _T1(6'2'¢' 2" Jcos —

=0

(5.67)

Obviously the dictionary reduces to that of BMN for large J. As seen
in section 5.2.3, the number of string states is given by the conditions J —
2n+2 > 2 and n > 0, i.e. we have 22 states for J even and Z4= for J odd.
Inequivalent states on the gauge theory are easily accounted for by noticing
the following identifications

iy = Oligyn = —Of jy.s414n (5.68)

so we can restrict ourselves to the range 0 < n < J“ , and hence we have

the same quantity of states in both sides. Furthermore one can check that
for the particular case n = 1 and J = 2 the dictionary is equivalent to (5.32),
as expected. In order to fix the normalization constant and check that such
states form an orthonormal basis we compute

7m(20 + 1) cos (20 + 1) :NEL(J—i—l
J+1 J+1 2

J
< @{1,2)%0{1,2),” >= Nz Z cos
1=0

)5m,n

(5.69)
Except for m = n = 0 where we obtain twice that result. So we choose

V2
\/ﬁ and N5 = NOESE

A similar analysis can be repeated for the antisymmetric representation,
in this case

No =

fJT \/5 ! i 7l 15 7 1] o
affal|J — 2 +2) & OF 1 = ————= "Tr[¢'Z'¢’ 2" "] sin

(2l + 2)
i = T2 2

J+2

(5.70)
Again, the particular case n = 1 and J = 1 agrees with (5.32). For
completeness we give the YM dual of the singlet representation

alaif|J —2n +2) &

J
1 Z il pd—ly . T2+ 3) J+1
<§ £ TT[QZSZZ QZQZ ]COSJ74_3 — 2cos J TT[ZZ ]

(5.71)

1
vVJ+3
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Again in the case of m = n = 0 the normalization factor has an additional
1/+/2 factor. The presence of the term with Z does not affect the counting
of inequivalent states but is required for orthonormality. As before, (5.32) is
a particular case of 5.71, with n =1 and J = 0.

Notice that our dictionary coincides with that of [62], obtained from di-
agonalizing the one loop anomalous dimension matrix for two impurities
operators.

Correlation functions

Let us begin by computing &

J
(07020 ) = N Y (Tr[o' ZTr[* Z7Tr[0' Z'6* 27 1)) £(1) (5.72)
1=0
With J = J, + Jy and f(l) = cos mﬁf). In order to proceed we need to
compute the correlation function on the r.h.s of (5.72). As we are considering
large N free SYM such correlation function is just given by the different Wick
contractions, on a planar way, among the fields under consideration. It is
not hard to see that

I+1 for | < J,
< Tr[p* ZTr(¢? Z2Tr[¢' Z' 9?27 >= < Ty +1 for J, <1< J
J1+J2—l+1 forJISZ

where we have supposed J; > J; without lost of generality. By plugging
this into (5.72) we obtain

o K sin ML iy nr(at1)
<Ol OOy >= 5 (= 1)y (5:73)
1 92 Y, 2 (sin 725)?

With K some factor. In the same way it is easy to compute

8Tt is a well know result that the position dependence of three-point corre-
lation functions of local operators is fixed in conformal field theories, for in-

stance, for three scalar primaries operators we have (O!(z1)0%(z2)03%(z3)) =
1,2,3 . . .
T 22 STFAT=R3 5 7| FaF A5 =B |5y 7 RS FAT=AD > throughout this theses we will be inter-

ested in the structure constants f1-2:3.
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< Of'0L 04 41, >=0 (5.74)

Finally, we can compute

s (Jo+1)mmy o o (Ja+1)Tm
conon, o, s NIRRT ST (G~ 5h)
AT (sin (7% - 7))
(5.75)

5.4.2 String computations

Consider the process of two supergravity states joinning into a string state
ag |N1) + af | No) — aifadt| Ns) (5.76)

N1, Ny and Nj refer to the number of bits in each string. The relevant overlap
is given by

Coon = ((Nilaf" @ (N[ @ (NofaPaV) V) (5.77)

As already mentioned, in order to use the results of the previous section we
should change our basis, this is simply done by

1 . - 1 .

a, — ﬁ(aw — Za_w), ap — ﬁ(aw + m_w), (5.78)
1 ) _ 1 )

al — —(arn‘ + m!m), al — —(a[‘n‘ - zaiw),

V3 NG
Substituting this in (5.77) and using (5.54), (5.55) and (5.57) we obtain

o N1 o:.. mniNa
1 31)i A/(32)) 1) (2 ST SN T
Coom = =NOVING — —x() x® _ s N (5.79)
2" 0 0 g7 n0 im0 (sin 57)?

Up to an overall normalization. Let us now look at the following two
impurity process
INy) + @l adt | No) — alfadl| N) (5.80)
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Again performing the required change of basis in (5.78) we get the following
contribution from the Neumann functions to the overlap

((Nﬂ ® (Ng\a(Q a(2 (N |a(3)i~(3)j) \VE’) — (5.81)

n

N@YiNGDT _ NBDE NGh NGBy NG g GLT

2
(Nr(l%)i - Nﬁsilim) (N,S i NGB m> _ (Sl = NN
sm7r(NL2 — Nﬂg)

Up to an overall factor. Again we have used (5.54) and (5.55) and (5.57).

5.4.3 Comparison of the results

The SYM correlation function (5.73) is to be compared with the string the-
ory correlation function (5.79). First of all we notice the same structure on
both results, in particular the appearance of a term like sin % in both de-
nominators, not present in the usual BMN limit, where n < N and hence

siny ~ . Actually both correlation functions agree if
Ny S +1 Ny Jo+1
= = N3 =J+1. 5.82
Ny J+1 Ny J+1’ s=I (5.82)

However this is not compatible with the condition N; + Ny = N;. It
seems as if we should “shift” the number of bits of some of the strings, by
one.

Again, the same structure can be seen in the denominators of (5.75) and
(5.81) and again in the numerators there is a relative phase 7
between the two results.

Notice that the mismatch between string and gauge theory results vanish
when the number of bits, or J, is very large.

(71 — 2+

5.5 Conclusions

In this chapter we have reported some attempts at finding a correspondence
between strings on pp-waves (with some additional restrictions) and free
N =4 SYM.

We have found a precise match of the spectrum for string states with two
oscillators, as well as for the supergravity states. There are, however, two
problems one should overcame in this picture. The first has to do with the
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fact that there is no algorithm that allows one to find the allowed vacua when
more than two oscillators are acting on them, on the other hand, the strategy
to look for superconformal primaries on both sides of the correspondence is
rather laborious already at level 2. ? The second problem is that we don’t
know how to obtain the dual of a generic SYM state containing arbitrary
number of fields Z and Z, for instance TrZ3Z3. On the positive side the KK
descendants have an explicit string realization.

We have also developed a method for computing correlation functions in
string theory, by using a discretized version of light-cone SFT, but there is
a small mismatch between these and the corresponding SYM correlations
functions. However, the fact that the correlations functions are “almost”
working and have the same structure, make us think of seriously taking some
kind of bit description for free N’ =4 SYM.

Another issue is that even if we have obtained an identification of the
gauge theory symmetry generators in terms of string theory operators, the
operators on the two sides satisfy different algebras!. A related issue is the
following, let us suppose we want to work on position space, then (if the
bit picture is right) there should be string oscillators such that when they
act on a string of Z's (the vacuum) they insert some field, let’s say ¢°, at
a given position. However, such oscillator cannot act at the same position
twice! i.e. we should, in some way, forbid two oscillators (of this kind) to
act at the same place. We don’t know how these constraints will reflect on
the string theory we are considering, in momentum space, but it is expected
that, before getting a precise matching of states and correlation functions,
one should implement this. Note that when the number of Z's is very large
compared with the number of impurities, these constraints are irrelevant.

9The matching between string and gauge states was seen to hold up to level two,
including fermionic primaries.



86

CHAPTER 5. PP-WAVES AGAINST FREE SYM



Chapter 6

Oscillator approach to weakly
coupled SYM

One of the problems of the approach followed in the previous chapter was
the fact that we did not have the full AdSs x S® algebra on the string side.
Further, if one works in position space, one should impose some conditions
on the string oscillators, since one cannot act twice on the same site with the
oscillators “inserting” ¢¢, for instance.

An oscillator description of such algebra was developed in [63], where the
supergravity spectrum was computed. In this chapter we use such oscillators
as string oscillators acting on position space and show how the difficulties of
the previous approach are overcome.

In section 6.1 we give a brief introduction to the oscillator construction
(following [63, 64, 65]) and show the dictionary between oscillator states and
SYM letters. In section 6.2 we compute the single and multi-bit partition
function and show that it agrees with that of free ' = 4SY M. In section 6.3
we derive the three-string vertex, by symmetry considerations, in oscillator
variables and show that, for some simple examples, the correlations functions
computed with such vertex agree with those of free N' = 4 SYM. In section
6.4 we consider the first order corrections in the 't Hooft coupling in the
gauge theory and try to include such correction on the string theory side.
In string field theory corrections to two and three points functions are fixed
once the corrections to the Hamiltonian are given and in particular there
is a precise relation between quantum corrections to two and three point
functions. We show that such relation is actually satisfied for gauge theory
correlation functions of operators in the SO(6) sector. We end with some

87
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discussions of the results obtained in this chapter.

6.1 The oscillator construction

The symmetry group of type IIB superstring theory on AdSsxS® is (P)SU(2,2/4),
whose even (bosonic) subgroup is SU(2,2) x SU(4) x U(1). This coincides
with the symmetry group (superconformal group plus isometries) of N' = 4
SYM in four dimensions. In the following we show how the oscillator method
can be used in order to construct the spectrum and generators of such gauge
theory.

SU(2,2) is the covering group of the conformal group SO(2,4), we shall
denote its two SU(2) subgroups by SU(2);, and SU(2)r. Let us consider
a set of bosonic oscillators a;, b, and a* = (a;)!,0” = (b,), satisfying the
canonical commutation relations

[a;, '] = &7, (b, ] = 6¢ (6.1)

with 4,7 = 1,2 an index in the fundamental representation of SU(2);, and
SU(2) g respectively. The SU(2,2) generators are then given by the following
bilinears

Air = U,ibT, Air = G,ibr (62)
% % 1 % T T 1 T
Lj = d'a; - So5da, Ry =b'by — 505hy (6.3)
1, . 1
E= E(azai +0bb,)+1= §(Na +N,) +1 (6.4)

with A;,, A" the non-compact generators, Lj- and R the generators of the
SU(2);, and SU(2)g respectively and E the U(1) generator in the maximal
compact subgroup of SU(2,2). SU(4) also contains two SU(2) subgroups,
denoted with SU(2)g, and SU(2);,. We can consider a set of fermionic
oscillators ., 8, and o7 = ()7, B* = (B,)T, satisfying the canonical anti-
commutation relations

{ay, o’} = 53 {Bu, B} =6, (6.5)

with 7,4 = 1,2 and index in the fundamental of SU(2);, and SU(2)y,

respectively. As for the case of SU(2,2) we can express the generators of
SU(4) in terms of bilinears
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Ty = 0y By, JH =a"B" (6.6)
1 1
M} =ad"a5 — 5(5:;]\7&, St =p*p, — 55,‘/‘]\75 (6.7)
1
J=1- i(Na + Npg) (6.8)

We can generate the spectrum of states by defining the Fock vacuum

a;|0 >=0,|0 >= |0 >= 3,|0 >=0 (6.9)

and then by acting on it with the creation operators. In addition to E
and J we can define the following U(1) charges

1
C = (Na+No = Ny = Np) (6.10)
B=N,— Ng (6.11)

C is the generator of the U(1) in the bosonic subgroup of AdSsx S® and it
commutes with the rest of the generators, one can mode it out and obtain the
PSU(2,2/4) algebra. Rather remarkably by considering only states with zero
charge C' we obtain precisely the letters of N' =4 SYM, with the following
identifications

0)=12) & Z (6.12)

a’Br|0) = [¢7) ¢ T = ¢ (o) (6.13)

o' a’BBR0) = |2) - Z (6.14)

atBr|0) > N, b a|0) <> ATL/2T (6.15)
a'B'B%a7|0) <> AT1/20 bota? BH(0) «» AT/ (6.16)
d‘ala'a?|0) < F bt B B%10) « F (6.17)

a't! s (a")™9, (6.18)

In the fermionic states the superscript denotes R-charge and tilde de-
notes negative “chirality” (see discussion below). It is easy to see that with
these identifications we have the right index structure and degrees of free-
dom, moreover the quantum number E can be identified with the conformal
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dimension A, J can be identified with the R-charge and B with the so called
“bonus” symmetry (see [66]) or hypercharge. It is now straightforward to
construct the dual of single trace gauge invariant operators of a given length
L. In order to do that we consider the Fock vacuum of level L, as the tensor
product of L vacua, living at different sites:

|L >= |0 >1 ®‘0 >0 Q... Q ‘0 >, (619)

then add an additional index s = 1,...,L to the oscillators described
above, labeling the site at which they act, and now act with these oscillators
on the Fock vacuum (oscillators acting on different sites will commute or
anticommute). So for instance !

s By i) Bliazy | L > Trlg™ 20 7512 (6.20)

Due to the cyclicity of the trace one has to impose periodic boundary
conditions, i.e. |sp41 >=|s; >, etc. Notice that the charge C is zero locally,
i.e. at every site. The superconformal charges are represented as bilinears in
the oscillators as well

Q™ " =a'BH, Q" =V (6.21)
Fi=da, FT =1, (6.22)
St = aiBy, S = bra, (6.23)
S =0, S, =bp" (6.24)

The generators of the various groups as well as the supercharges act on
a given state of length L in a natural way, i.e. J = 25:1 J (7) with J(7)
acting on the site 7 2. The full generators satisfy the following commutation
relations

LA more precise dictionary will be given when computing correlation functions.
2one has to be careful when J(i) is fermionic since it will acquire a sign +1 when
passing through the sites 1, ...,i — 1
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[Air, A7) = 6411 + 6] RI + §10°E (6.25)

[Ty J7) = 04 M + 855y — 61807 (6.26)

{Q ™ Si} =ouLl - 5isk + %5;155(13 +J+0C) (6.27)
{Q ™,85}=6]Rr —oTM] + %5;@;(15 +J-0C) (6.28)
(@7 1,570} = 031 + 5MI + Lol(E — T +C) (6.29)
{Qf 7,870} = 0"R, + 015, + %5;5;@ ~J-0) (6.30)

It is clear that the generator B never appears in the Lh.s. of a (anti)commutator:
it acts as an external automorphism.

Note that our notion of bit is very different to that of [25], see discussion in
2.3.1. The bit we are considering corresponds to the singleton representation
of SU(2,2|4) and not to the full supergravity spectrum.

Diffrently from the approach followed in the previous chapter, notice
that now we have, by construction, the full AdS algebra. Furthermore, the
fermionic nature of the oscillators a and S ensures that one cannot apply
them more than a definite number of times on the same site. On the other
hand one should be able to take arbitrary number of derivatives of SYM
fields, and this is ensured by the bosonic nature of the SU(2,2) oscillators.

6.2 Partition function

6.2.1 One bit partition function

In the following we will compute the partition function for a single bit. In
order to do that we should simply compute

Z=>Y <SS > (6.31)

Sphys
with H=F — J = %(Na + Ny + N, + Np). The sum runs over physical
states, i.e. those with zero central charge C, and as a consequence the

oscillators do not act freely. The C' = 0 condition can be imposed by inserting
e’"C | treating the oscillators as free and at the end integrating over p.
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Z(g) = / 3 < SleHeHOIS s= (6.32)
S

dz 1 2 1 2 B
:‘%Fl?(l—ql') (1—qx_1> (1+q2)*(1+qz)°

where we have defined e=” = ¢, e~ = z. The contour integral has a simple
pole at x = 0 and a double pole at x = ¢ and can be easily evaluated

16¢°(1 + ¢%)

2O = gy

o
=1+16(¢’ +4¢* +9¢° +16¢°+..) = 1+16 Y _ I%¢*
=1

(6.33)

The coefficient of ¢? gives the number of single bit states with A —J = [.

In order to compare our counting with that of ' = 4 SYM let us have a

closer look at the single letter states. In the table (6.2.1) we can see the

different single letter fields of N' = 4 SYM, together with their quantum
numbers (A and J) and the number of physical states

Field A J A — J | Number

oM ... 0M 7 E+1 |1 k (k+1)?

oM. OMk k+1 |0 k+1 | 4(k+1)?

oM ... 0" 7 E+1 |-1 | k+2 | (k+1)2

oM ..OMR N T k+3/2|1/2 | k+1 A4k +2)(k+1)
oM ..o\~ k+3/2|-1/2 | k+2 | 4(k+2)(k+1)
oM. OMFY Fi | k+2 |0 k+2 | 2(k+3)(k+1)

In order to count physical states one should take into account the equa-
tions of motion. Let us consider a massless scalar field ¢ satisfying 0*9,,¢ = 0,
the quantity of physical fields is the number of states of the form 9...0"* ¢,
i.e. w minus the number of states of the form 9...0"*-20"0,¢,
i.e. %, so we obtain (k + 1)? in accordance with the table 6.2.1. A
similar counting can be carried out for the other fields.

The sum of all the contributions for a given A — J = k can be seen to
be 16k? in perfect agreement with (6.33). It is remarkable that the fields of
N =4 SYM at a given level A — J are just multiples of perfect squares!
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In the same way we can compute the partition function giving other
quantum numbers, for instance, the one bit partition function for A turns
out to be

2¢%(3 + q)
Zale) == =00 — 160" +30¢" — .. (6.34)

Now the coefficient of ¢! gives the quantity of one letter fields with confor-
mal dimension [/2. Odd powers of g, with negative multiplicities, correspond
to fermionic states.

6.2.2 Multi-bit partition function

Now that we have the single bit partition function Z(gy) we can consider the
partition function for states of n bits. The only subtlety arises from the fact
that operators in SYM are cyclically symmetric, and we should impose this
condition on the partition function. Let us define g as the generator of the
cyclic group, i.e.

gls1 > [s2 > .|sy >= s > ..|sp > |51 > (6.35)

One can compute the result of the insertion of ¢ into the multi-bit analog
of (6.32)

; _n__  (myn)
/d“ D> < Sl < SileT e OGSy > S, >= (Z(qé’“”“))
S14.0055n

(6.36)
With (m, N) we denote the largest common divisor of m and n. Then
cyclically invariant states can be kept by inserting a projector P = %(1 +g+
@ +..+g" ).
More generically we can consider the following set of projectors P, =
. 27i
L1+ w'g + wg? + ... + w" Vlgn 1) with w = e™n', they can be seen to
satisfy

N-1
PyPuy =08,Py, > Pu=1  gPy=uw"P, (6.37)
=0
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Next we can insert Z?:_ol ¢! P, with ¢} = 1, then, by summing over ¢,
only the term proportional to ¢? is kept, i.e. the cyclically invariant term.
The final result for the partition function for n bits is then

"(q1,q2) qu (Z ( (mn")))(m’n) wlm) (6.38)

m=1

Let us focus for a moment on the cyclically invariant piece

o2 ()" =550

The sum runs over the divisor of n and ¢(d) denotes the number of m,
such that (m,n) = %. Since (m,n) = 4 then m = Za with (a,d) = 1, on the
other hand, since m < n then a < d (unless d = 1) so ¢(d) is given by the
number of coprimes with d and smaller than d, with ¢(1) = 1, but this is
nothing but the Euler’s totient function.

The result we have obtained agrees with what is expected from Polya’s
theory! (see section 5.2.3). One may as well compute the terms proportional

to ¢

~—
a3

(6.39)

S e, z)%Z(qg)% (6.40)

N

with ¢(d, ) the so called Ramanujan’s sum.
d 2mil
c(d,l)= D e (6.41)
a=1,(a,d)=1

The complete partition function is then the sum over the partial partition
functions for fixed numbers of bits

o] oo n—1
C(d, l) n
Z(q2) = E "(q1, q2) E (Ii n Z(qg)d (6.42)
n=2 n=2 [=0 din

Since on the r.h.s of ¢; depends on the term in the sum I am looking at
(as it is a Nth root of one) we are not allowed to write a “stringy” partition
function, on which ¢; ~ 2™,
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Since there are infinite number of states with a given A — J (for instance
TrZ’ has A — J = 0 for every J) every term in (6.2.2) is divergent and
the full partition function is not very useful. One can consider, instead, the
partition function encoding information on A

nd @ d n
ZA = Z Z %ZA(qd) d =21¢* — 96¢° + 376¢° — 1344¢" + ...  (6.43)

which agrees with the free SYM partition function computed in [29]. As
already mentioned, in the oscillator construction it is very easy to include
the information on the other quantum numbers, just by inserting the corre-
sponding operators in (6.33).

6.3 String overlap in the oscillator construc-
tion

In this section we derive the three string vertex by using conservation laws.

Let us first define inner products and selection rules for the states in the
oscillator construction. We normalize (0/0) = 1. The dictionary with YM
states implies that as |0) has Jyy = 1, the state (0] has Jyy = —1, however
the operator J = —1 (N, + Np) +1 still has eigenvalue J = 1 when acting on
the state (0|. Therefore, the conservation law for the inner product on the
oscillator construction is Ji, = Jous, unlike the case of YM where J; + J; = 0.
This point has to be kept in mind for all the processes we will discuss. For
instance for a three string process the conservation law is J) + J@ = J©&)
instead of J + J@ 4 J@) = 0, which is what one would have expected from
intuition in YM.

Consider the “ket” state afo?S1|0), where o = (1,i5), its “bra” is given
by (0|35%«. Here 5 = (1, —i5), the inner product of these two states is 8.

In the next subsection we will construct the 3 vertex in terms of a state in
the 3-Hilbert space of strings. Since the conservation laws in our conventions
might be unfamiliar we will construct the two point function as a state in
the 2-Hilbert space of strings and derive the conservation laws for this case.
Consider the 2 point function (0]O,|0) where O; and O, are 2 operators
written in terms of oscillators and are normal ordered. For any generator J
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which annihilates the vacuum |0) and (0| we obtain the following conservation
law

(0][7, 01]05/0) + (0]O][T, O][0) = 0 (6.44)

A similar analysis also holds for the generators for which |0) and (0| are
eigenvectors with the same eigenvalue, for instance the J charge and A. Thus
the following generators satisfy the above conservation law (as explained in

section 6.1 J =Y. Js))

1 1
J=—5(Na+Np) +1, A=g(NatNo)+1, (6.45)

1
Mt =adlas, M =do, M = 5((1‘{@1 — ),

St=Blt ST=HB 5= (816 - B,

1
Lt =dlay, L™ =dla, L°= E(a‘{al — abay),

1
Rt =blby, R~ =0lp, R®= 5(1{{1)1 — blby),

+a _ 1. —a _ b
b= ey, S5 = ajay,

Q+b _ biﬁ], S b Btb]a

SU(2) indices are contracted with the invariant Levi-Civita tensor, i.e. ofay =

ole”’as = a'as — o’a;. Note that all these generators commute with the
Hamiltonian H = A — J. The 2-point function of the physical states can be
written in terms of a state in the 2-Hilbert space as

(010{0,10) = ((0/0} & (0|0} [v2) (6.46)

where |V3) is given by

[Va) = (6.47)
l
exp Z(aggTa(s;T + /B(I)TIB(S)T +a 1;’[&8” + bg;TbggT)‘| |0)(1) ® |0)(2)
s=0
Again, contraction of SU(2) indices is done by means of the by the invari-

ant tensor €2, Only such an invariant reproduces the two point function
(0|85t ol BT]0) = 26%
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Let us now write the conservation laws in (6.44) as an operator equation
on the 2-vertex |V3), we obtain

M(0|[7,011 ® P(0|0f + D(0]0] @ @07, O] [V2) =0 (6.48)
for any two operators. This implies the following operator equation on |V53).
TVV,) = TTO|Vs) (6.49)

for generators which do not carry any SU(2) indices, if G carries SU(2)
indices, a careful analysis shows that GT also involves change of the SU(2)
labels by the € tensor.

One can think of |V4) as a solution to the operator equations correspond-
ing to the conservation laws (6.49). The solution is given by (6.47). The
generators which do not annihilate the vacuum also give rise to operator
equations for [V5) for instance Q;, Sy, anti-commute to generators which ei-
ther annihilate the vacuum or have a definite eigen value on the vacuum.
Thus, they give rise to operator equations of the following type for |V5)

Q5 SEIMVa) = (@5, ST V) (6.50)

Now we proceed to compute the three string vertex, as a simple general-
ization of the two string vertex 6.47.

6.3.1 Length conserving processes

In a length conserving process, 2 strings of length I} and I® join together
to form a string of length [®) = [(1) 4-]() see figure (6.1,A) . The interaction
vertex for these strings is given by the delta function overlap, bits of the
string 1 and 2 are put in one to one correspondence with the bits of string
3. The IV bits of the first string overlap with the first {(V) bits of string 3
and [?) bits of the second string overlap with the next [® bits of the third
string. Thus we write the interaction vertex of three string states

<0‘@T(1)(9T(2)0(3)|0> — (<0|(9T(1) ® (0‘01(2) ® <0|(9T(3)) Vs) (6.51)

The overlap of these bits are determined by the scalar product discussed in
the previous section. Going through the same analysis as in the previous
section for the two strings overlap we find that the three vertex |V3) satisfies
the following conservation laws

(TO + TO) V) = TOHVs) (6:52)
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where JU 7@ 7G) is one of the various charges listed in (6.45), corre-
sponding to the strings 1, 2 and 3 respectively. Thus the construction of the
three vertex is naturally obtained by generalizing the two vertex in (6.47).
The vertex which satisfies all these conservation laws is given by

1M1
V) = exp z (aDTa®t 4 gWTgBt 4 oWt aGF 4 pWHp3IT (6.53)
s=0
131
+ Z (oz?”ag?’” + 53(2)Tﬂ§3)1‘ + ag2)Tag3)T + bg2)Tbg3)T)
s=I(1)

Note that to obtain the conservation laws in (6.52) the contraction structure
in the bilinears is performed by the SU(2) invariant tensor ¢;;. We will verify
that this reproduces the structure constants for the three point functions.

6.3.2 Length non-conserving process

Consider a process in which two strings of length [() and [® join together
to form a string of length [®) with [V 413 — 2] = 13 here 21 refers to the
length “loss” in the interaction, see figure (6.1,B).

The length violation is always even as [ bits of the string 1 overlaps with
[ bits of the string 2, thus I® is shorter by 2! bits. We will choose ()
be such that 1) > [ > (1) > | The interaction vertex is constructed by
the overlap of the I(Y) — [ bits of the first string with the first (V) — [ bits
of the third string, the remaining [ bits of the first string overlap with the
first [ bits of the second string. Finally, the remaining () — [ bits of the
second string overlap with the bits left over of the third string. In terms of
correlation function, this vertex is represented as

(ol o"oR! 0P o) = (o0 & (loR! 0" @ (00°

(6.54)
Here the subscript [ refers to those bits in string one and two which overlap
with one another. The conservation laws on |V3) derived from the above
correlation function are the following

TN+ T8 l—J“")T (6.55)
‘7l — ‘7l(2)’r

) va)
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Figure 6.1: Joining of strings 1 and 2 into string 3, for a length conserving
process (A) and a length non conserving process (B). Remember that every
strip represent a closed string world-sheet, so we have periodic boundary
conditions.

The three vertex satisfying these conservation laws is given by

V3) = exp [N(13) + NG 4 N(12)} ’ (6.56)
1M1
NOD = 3™ o)D) + B(5)VB(:)? + a(s)Va(s) + b(s) Vb(s) Y,
s=0
131
N@ = Z a(s+1)Pa(s)® + B(s + )P B(s)® +a(s + )Pa(s)® + b(s + 1) Pb(s)®,
s=1(1) —
13—
NOD =37 a()Va(s)® + BeO B +a()Va(s)® + b(s)b(s)?,

s=1(1)_

6.3.3 Examples

In the following we consider some examples of various processes to test the
vertex (6.53). Consider the following Yang-Mill operators
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1 1

(1) _ iz 1 @___- | 772
0 _\/WTr(qﬁZ ), O \/WTI"WZ ); (6.57)
0 = L (i g Ty ik T < .

vV NJ1+J1+2

The normalizations are chosen such that in the large N limit the leading
term in their two point function is canonically normalized. The two point

function of @&, (z1)¢’,, (x2) is given by 68,4 0py /|z1 — 22|?. The three point
functions of these operators in the large N limit is given by 2

J+1

(1) 2) (3) B
(O (1) O (29) O (23)) = N|zy —x3|2(J2+1)|3;3 _ x1\2(J1+1)’ J < J1(6.58)
Ji+1
_ N|x2 — .T3|2(J2+1)|333 _ $1|2(J1+1)’ J1 < J< J2
Jit+do—J+1
— 1+ Jo —+ I J2

N|zy — 232241 |g5 — g [200+D)

The multiplicity occurring in the structure constants are due to the cyclicity
of the trace, see section 5.4. To evaluate this correlation function using the
string vertex, we first set up the dictionary for the states.

I+ 12 a(s)aB(s) — O, (6.59)
SHIREL i ()0 B (1)l (¢ + T + 1) BH(t + T + 1)y + Jo + 2)® — 0F)
ATy + 1| 2 a(u)aiB(u) — 0P

Evaluating the vertex on these states we obtain

Ji+Jo+1 Ji+J2+1 Ji

OV @ (02O [V5) = > 3 ) (s, t)0(ut+J+1)

=0  wu=J1+1 s=0

= J+1, J<J, (6.60)
Ji+1, i <J<Jo,

hAd—J+1 J>J,

3As in the previous chapter we will be interested in the structure constant of such
correlation functions.
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Up to an overall factor, in perfect agreement with (6.58).
As an example of length non conserving process, consider the following
operators

1 . .
O, = \/WTr(qsﬂzlquZJH) (6.61)
Oy = ! Tr(¢'Zm ¢k Z27>~™) (6.62)

A /NJ2+2
1
= 7r<13+2 Tr

With ¢ # j # k and J; + J5 = J3. The correlation function of these three
operators is given by (up to the position dependence)

O CIAL A (6.63)

(5 m,n

For this process the length violation is two units. The corresponding
string states are

J1+1
> al(s)o'Bi(s)al(s + 1+ 1)o?Bi(s + 1+ 1)L, +2)D = |0V)
s=0
J3+2
Y ol Bl ()it +m+ 1)o7 Bt +m+ 1) +2)? = |0®)
t=J1+1
J3+1
Y ol (w)e'Bl(u)al (u+n+1)o/Bl(u+n+1)J5+2)® = |0P)

u=0

Evaluating the length non conserving vertex (6.56) with [ = 1 we obtain

J3+1J1+1 J3+2

(OW[@(0P@ (0] Vo) =) > > Subsrirtnriduntt = bmiin

u=0 s=0 t=J1+1

In perfect agreement with (6.64). Let us notice that all the SYM corre-

lations functions have a factor %, so the string coupling constant should be
proportional to % and the three vertex should include a normalization factor

1
~ »as expected.
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6.4 Quantum corrections

In the previous section we have seen that SF'T two and three point correlation
functions agree with those of free ' = 4 SYM. In this section we include
the first order corrections in the 't Hooft coupling A for the gauge theory
correlations functions and then try to obtain them from the string theory side.
We will focus on single trace operators composed only by scalars without
derivatives, i.e. we restrict ourselves to the SO(6) sector. Operators of this
kind do not mix, at one loop, with other kinds of operators, so it is consistent
to consider such subsector by itself.

As shown in [6] these operators can be naturally mapped into states of an
SO(6) spin chain and remarkably the one loop anomalous dimension matrix
is given by the integrable Hamiltonian of such spin chain. Since then a huge
industry has been developed in order to compute anomalous dimensions in
N =4 SYM [7, 8, 67] . Quantum corrections to three point functions have
been computed in [68] for general operators in the SO(6) sector.

In SFT n-points correlations functions are determined by the Hamilto-
nian. In the previous sections we have seen that the free Hamiltonian actually
reproduces two and three point correlation functions of the free gauge the-
ory. At the moment we don’t know how to introduce quantum corrections
to the string Hamiltonian, but it is interesting to consider the first order
corrections in the 't Hooft coupling to the Hamiltonian and to see whether
SFT, with such “interaction” Hamiltonian as an input, reproduces the first
order corrections to two and three points gauge theory correlations functions.
Remarkably, the answer turns out to be positive for gauge operators in the
SO(6) sector.

In the following we give a brief review of how one loop quantum correc-
tions to two and three point functions are computed in gauge theory and
then compare such results with those of SFT.

6.4.1 One loop corrections to two and three gauge the-
ory correlation functions

Given two bare scalar conformal primary operators OF with free scaling
dimension A the two point function to first order in A takes the form

(OF (11)OF (22)) = —L2L (8 — 9" hop log(a3,A?)) (6.65)

|$12|2A0
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(97'h)§ is the anomalous dimension matrix. By a unitary transformation
we can diagonalize the matrices: UlgU = 8,54, and Ul (g7'h)U = 05 Yas
with A, the normalization and 7, the anomalous dimension. Decomposing
the normalization as A, = N2(1 + 2a,)\ + O(\?)), where a, is a scheme
dependent constant, the two point function for a orthogonalized operator O,
becomes

(Ou(1)Ou(w2)) = M;ﬁ”a — yaLoglz:2AP2). (6.66)

|$12

The two point function of renormalized primary operators OF = 0, (1 —
ao A + Yo Log|A/u|) takes the form

N2

B |219]280|z19p |27

(03 (1) 05 (z2)) (6.67)

As required by conformal invariance. Single trace gauge invariant opera-
tors composed just by scalars fields can be put in one to one correspondence
with states of an SO(6) spin chain

Tr(¢"¢™...¢") < [¢™)...|¢") (6.68)
Very remarkably, the anomalous dimensions of such operators are given
by the integrable Hamiltonian of the SO(6) spin chain [6]:

L

A
= 6.2 Z H;;, Hiip1 = Kijp1 + 2141 — 2P ;4 (6.69)

=1

H;;1 is a two body operator, acting on the sites ¢ and 7 + 1, 7. e. the
spin chain Hamiltonian describes a nearest neighbor interaction. K, I and P
are called trace, identity and permutation operators and their action on the
fields under consideration is given by

K |¢)¢") = 0"][6%)|¢") (6.70)
Ighle’) = I¢")eé”) (6.71)
Plghle’) = 167)6") (6.72)

As two simple examples consider the length two operator in the com-
pletely symmetric traceless representation and the Konishi scalar
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Tr(g"¢”) |¢“>|¢”)=|¢I>\¢J>+\¢J>I¢I>—%5”|¢K)I¢K)(6-73)
Tr(¢'¢") « [¢")]¢") (6.74)

It is easy to see that

Hipl¢\ gy = 0 (6.75)

Hip|d")|6") = 6[6")|o") = H|¢)[¢") = 12(1é\7r2)|¢[>|¢[> (6.76)
The state in the symmetric traceless representation is a BPS state and
its anomalous dimension is zero, as expected, as for the Konishi scalar, its
anomalous dimension (6.76) coincides with that computed in [69].
Conformal invariance constrains the three-point function for renormalized
primary operators to be

_ NaNgNycCapp
‘x12|Aa+AB_AP|x13|Aa_AB+Ap|x23‘Aa+AB+Ap‘u‘7a+’YB+’Yp
(6.77)
where cqg, is the OPE coefficient. We are interested in finding the one-
loop correction to the structure constant. Therefore, we decompose

(04 (21) 05 (22) O, (x3))

Capp = Capp(1+ Acgg, + O(N?)) (6.78)

Where we have supposed cgﬁ , 7 0. In computing the quantum correc-

tions to three point functions two classes of Feynman diagrams contribute,
pair-wise contributions, arising already in two point functions and three-wise
contributions, acting on the three operators, see figure 6.2.

In [68] the quantum corrections for the three point functions of SO(6)
operators was found to be

1 A
sy = =5 (Va + 75+ %) = 7o 5 (br2 + bas + bs1) (6.79)

Where b;; denote the pair-wise contributions among the operators 7 and
j, or, in another words, the sandwich of H in (6.69) among the overlapping
between the operators 7z and j. Notice the interesting result that c}lﬂ , can be
entirely expressed in terms of pairwise quantities!.
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I
Y

i 1%

Figure 6.2: Pair-wise contributions (left) appear already in two point func-
tions, the fat vertex denotes all kinds of contributions, quartic interactions,
gluon exchange and self energy. On the right we see genuine three-wise in-
teractions.

6.4.2 Comparison with string field theory

From 6.47 and 6.56 we see we can write the SF'T vertices (at zeroth order in
the 't Hooft coupling) as

[V5) = effi2]0) () |0)@ -
|V3)0 = el i3+ 1310) (D)2 |0) @) (6.81)

With H?j the “Hamiltonian” action on the strings ¢ and 7, etc, i.e.:
Za(s) +BBY) + alal) + b)) b7 (6.82)

The sum runs over the sites in which the strings under consideration
overlap. When focusing on the SO(6) sector it is enough to consider just the
fermionic oscillators  and 3, but the following discussion is general.

As already mentioned, at the moment we don’t know how to introduce
corrections in the ’t Hooft coupling to the string Hamiltonian, but we may
suppose that there is an interaction Hamiltonian such that up to order one

in A

H}; is the anomalous dimension Hamiltonian (6.69) (properly expressed
in terms of oscillators) acting on the strings 7 and j, however we don’t need its
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explicit form in the following discussion . Then, with this new Hamiltonian
the two and three vertices will get corrected, for instance

Vo) = [Va)? + |Vo)! + O(N?) = etz 0)(D)|0)@) =
= (1+ Hy+ O(N\?))ei2|0)M)0)® (6.84)
Va)! = Hp|Vs)°

In the same way it is easy to check that

Va)! = (Hiy + Hys + Hs,)|V3)° (6.85)

Given three string states |a), |5) and |p), we have

(a{aVa)' =74, (BI(BIV2)' =15, (pl{pIV2)" =)

A
1672 ban

A

A
(QUBIVEN = — b, (BAVa) = =1 b, (pl(alVa)! = -

Then it is straightforward to compute the corrections to three point func-

tions for the normalized string states |s) = \/%

e 1 A
(a|(B(p||V5)* = _5(% + 98+ ) — W(bu + bag + b31) (6.86)

In perfect agreement with (6.79)!. Many comments are in order, first of
all notice that the SF'T answer is completely general and it should apply also
for the full SY M spectrum and not just to the SO(6) subsector. Second,
notice that the SE'T answer is very easy to get and to understand, corrections
to n-point functions are fixed once the world-sheet Hamiltonian corrections
are given, in another words, once the norm of the states is known up to
that order. On the other hand, in the gauge theory getting (6.79) is rather
non trivial and it becomes even more complicated for operators which don’t
belong to the SO(6) sector.

4As the string Hamiltonian is A — J and we expect J not to receive any quantum
corrections, then the quantum corrections to the Hamiltonian are given by the quantum
corrections to the conformal dimensions.
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6.5 Conclusions

In this chapter we have shown how the spectrum, together with all the gener-
ators, of free ' = 4 SYM can be obtained from the oscillators construction.
In order to get the precise algebra and spectrum, the nature (bosonic or
fermionic) of the oscillators seems to play a fundamental role. Notice that
the notion of bits arising from the oscillator construction is very different to
that of [25], as there a single bit behaves basically as a superparticle on AdS,
with the full supergravity spectrum and not only the doubleton representa-
tion.

The partition function of the oscillator construction was shown to agree
with that of free N' = 4 SYM, though we were not able to write it as a string
theory partition function.

Thinking of these oscillators as string oscillators acting on position space
we have obtained the three strings vertex, which allowed us to compute cor-
relations functions on the string theory. We have tested, with success, some
simple correlations functions for length conserving and length non conserving
processes.

In SFT once the norm of the states is known (up to some given order in
the 't Hooft coupling) two and three point correlation functions are given,
this implies, in particular, that quantum corrections to gauge theory three
points correlation functions can be expressed in terms of pair wise quanti-
ties, appearing already in two point correlation functions. This was shown
explicitly to be the case for gauge operators in the SO(6) sector, where SF'T
and gauge theory answer are in perfect agreement.

The next step would be to test the SFT “prediction” for gauge operators
not belonging to the SO(6) sector [70]. An interesting sector is given by con-
sidering operators of the form [8] TT(Dﬁgb...DZ’ ¢), i.e. covariant derivatives
on one complex direction acting on a fixed kind of scalar field. Such sub-
sector doesn’t mix with others at one loop, further its spectrum at one loop
contains a rich structure of Harmonic numbers and we have a richer structure
of primaries and descendants as well (for the SO(6) sector all the operators
are primaries). On the string theory side the relevant oscillators are bosonic,
consistent with the fact that for a given length there are infinite number of
gauge invariant operators. We should also mention that the gauge theory
computation seems to be rather non trivial, since there are many diagrams
one should add, even for a small length and number of derivatives, so we find
such computation interesting by itself.
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Appendix A

Notations

In most of the theses we use a,, @, for bosonic annihilation oscillators, left
and right respectively, with n > 0 and af, @' for the corresponding creation
oscillators.

In chapter 3 we have use o)., a2 for bosonic left and right oscillators, with
n > 0 for annihilation and n < 0 for creation oscillators.

Any possible changes of such conventions during the text are clearly in-
dicated.

The commutation relations between the bosonic generators of the Ad.Ss x
S% algebra are

[Pe, PY] = Job [Pa’,Pb’} = —J9Y (A1)
[Pa’ ch] — nach _ nach’ [Pa” Jb’c’] — na’b’Pc’ - na’c’Pb” (A2)
[Je, Je4] = n**J* + 3 terms [J“'b', Jc'dl] =7 J? 4+ 3 terms, (A.3)

with @ = 0, ...,4, so(4,1) vector indices, in the tangent space of AdSs, a' =
0, ...,4 so(5) vector indices in the tangent space of S° 7% = diag(—++++)
and %% = diag(+ + + + +).

The commutation relations between the bosonic generators of the pp-wave
algebra are

[P_aPI] = _J+Ia (A4)
[P, g = =51 P+, [P=,J*] =PI, (A.5)
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with I = 1,...,8. These generators admit the following field representation

1
Pt =1, Pl = —/ do(cos 70,2 +sinTa’), (A.6)
"
JH :/ do(sin 70,27 — cos t2’). (A.7)
0

The two dimensional fields z/(7, o) satisfy the following equations of mo-
tion and periodicity conditions:

(=02 +02)z" —2' =0
z'(1,0) = 2’ (7, 1), 0,2 (7,0) = 0,2" (1, 1) (A.9)
Such equations admit as solution
1 _ . .
2’ (0,7) = cos Ty + sin T pj + iz — e wnT (lhno gLl 4 omkne 20 (A 10)
Wn
n#0

with the frequencies defined by
wn = /k2+1, n > 0; wp = —+v/k2+1, n <0, (A.11)
kn=2mn, n=41,+2 ... (A.12)
The coordinate z~ can be expressed in terms of 2! by the following con-

straints

Oy~ = —0,2'0,1", (A.13)
0, = %(—8733187331 — 0,2’ Opa” + 2’ 2"). (A.14)
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