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1 Introduction

The properties of condensed matter at ultrahigh pressures are of considerable current
interest not only in solid state physics, but also in geophysics and in material science.
From a fundamental point of view, the behaviour of matter under extreme pressure
conditions shed light on the properties of bonding through the study of the modification
of the electronic structure induced by the decrease of the interatomic distances. These
modifications can lead the system to new ground states with different physical and chemical

properties, thus providing the driving mechanism of structural phase transitions.

The pressures that are attained in modern high-pressure experiments range up to a
few thousands of GPa. The typical pressure of the inner mantle of earth (from -600
to -2890 Km where P ~ 170GPa), falls in this range. Therefore these studies are of
considerable interest for geophysics. Changes in the structure of constituents of the mantle,
creating discontinuities in the density, are in fact crucial in the study of the dynamics of
earthquakes. Moreover, understanding the mechanical properties of matter in extreme
pressure and temperature conditions is of paramount technological importance in order to

improve the production and synthesis of new materials.

High—pressure experiments have expanded continually during this century. In recent
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Figure 1.1: Schematic diagram of the high-pressure cell with diamond anvil, according to Mao and
Bell [1]. Distance from top surface of upper diamond to bottom surface of lower diamond is about
Smm. The sample is 250um.

years, the diamond anvil cell technology has opened a major breakthrough in the physics of
materials at very high pressures, increasing the range of attainable pressures, and allowing
to achieve a more honriogeneous and hydrostatic pressure environment. This improvement
has made precise physical measurements possible under a wide range of pressures, and has
determined a renewed interest in this field, permitting fruitful comparisons between theory
and experiments. Hydrostatic pressures are in general obtained by placing a sample in a
transmitting medium which is acted upon by outside pressure. In Fig. 1.1 a schematic

diagram of a high-pressure cell with diamond anvil is drawn.

One of the most unexpected features of solids at high pressure is the spontaneous
symmetry lowering of some cubic compounds, such as alkali halides. Alkali halides exhibit
a large variety of behaviours at high pressure. Those compounds that crystallize in the
cubic;Bl structure (like NaCl and KCl) undergo a phase transition to the cubic-B2 (CsCl-

like) structure in a pressure range of few GPa. This structure is observed to be stable



up to very high pressure ( 100 GPa) for compounds like NaCl and KCl [2]. Cesium salts,
that crystallize in the cubic-B2 structure, display a distortion of the cubic cell at pressures
corresponding to a residual volume V/Vp ~ 0.5. These materials are the subject of the

present study.

Since the pioneering work of Madelung and Ewald [3], alkali halides have been the
subject of much experimental and theoretical work. They are the simplest and most
typical ionic solids, and even though innumerable studies have been devoted to them,
still today they remain subject of investigation particularly since the introduction of the
diamond anvil cells which has opened the access to previously unaccessible portions of
their phase diagram. Thanks to these new techniques, new and unexpected phases have
been discovered, and the modifications of the electronic properties related to bond-overlap
metallization have been studied. Among these compounds, CsI has been the subject of
intense interest. It is the softest among alkali halides and it has the smallest band gap.
For these reasons it is an ideal candidate to evidence an insulator to metal transition
upon increasing pressﬁre. Looking for the band-overlap metallization of this compound,
new and unexpected phases stabilized by the large applied pressure have been discovered.
Experimentally, the insulator-to-metal transition has been found by Reichlin et al. [10]
from infrared reflectivity measurements at an estimated pressure of 1.1 £ 0.1 Mbar. As it

is evidenced in Fig. 1.2, a general consensus on this estimate does not exist yet [11].

The first systematic studies on the low-symmetry phases of Cesium halides under high
pressure date back to 1984. From energy-dispersive X-ray diffraction experiments Huang et
al. [4] and Knittle et al. [5] were able to observe that all the cubic-B2 Cesium halides, CsI,

CsBr, and CsCl, undergo a transition which lowers the cubic symmetry of the system at a
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Figure 1.2: Summary of high pressure optical properties of Csl from Ref. [10]. Together with the
reflectivity data of Reichlin et al., other measurements by other groups are shown. For reference
see Reichlis’s original paper. '

pressure correspondjng to a molar volume v* = V/V; &~ 0.54 where Vo is the equilibrium
volume. The observed transition pressures are of 39, 53, and 65 GPa for CsI, CsBr and
CsClrespectively [5]. This symmetry lowering manifests itself through the splitting of the
(110) diffraction line into two peaks which are interpreted as corresponding to the (101)
and (110) unequivalent reciprocal lattice vectors of a tetragonal structure (see Fig. 1.3).
Cbr‘respondjngly, the (211) peak splits into the (112) and (211) of the tetragonal phase. In
their measurements both the authors observed no detectable discontinuity in any physical
observable, and therefore they classified the phase transition as second order. However,
- general g;'oﬁia-thébretical considerations indicate that this cannot be so. In fact, it is a
general and well established result that a transition from a cubic to a tetragonal phase in
which the only order parameter is the unit cell shape, i.e. the strain, cannot be second

order [6]. However, as the transition is nearly continuous within experimental accuracy,
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Figure 1.3: Curves showing the sequential splitting of the 110 peaks in CsI (a) and CsBr (b). From
Ref. [4].
we conclude that its first order character is very weak. Even though the measurements of
the two groups suffered of a rather limited experimental resolution and of a not perfectly
homogeneous and hydrostatic pressure, the results and the emerging picture are consistent
with each other, apart from minor quantitative discrepancies in the measurement of the

transition pressures.

In another experiment, Asaumi [7] reported on a successive transition in CsI from the

tetragonal to a simple orthorhombic structure (space group D1,) at a pressure of 56 GPa.
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Such a transition however has not been observed by others, nor it was predicted in any
theoretical calculations. Due to the limited resolution of the spectra and to the difficulty
in obtaining real homogeneous and hydrostatic pressure no final conclusions can be drawn

on the basis of this set of data only.

The first theoretical study of the cubic-to-tetragonal transition has been performed

' _ by Vohra et al. [8]. Using a Born-Meyer potential to model the interionic interactions,

they were able to explain the transition in terms of the competition between electrostatic
and repulsive interactions, confirming the first-order character of the transition. They
pointed out that the tetragonal distortion is due to the macroscopic instability of the
CsCl lattice which is related by the vanishing of the shear constant c, = %(cn — ¢12)
(in cubic compounds ¢, is the appropriate elastic constant for tetragonal distortions).
They also investigatéd the possibility of observing a further distortions of the lattice from
tetragonal to orthorhombic, but the minimum of the lattice energy was always found at

b/a =1, at all pressures, and no orthorhombic phase was predicted.

Some investigations on CsI have been carried out also from first principles. Christensen
et al. (9] studied the transition in the framework of Linear Muffin Tin Orbital in the Atomic
Sphere Approximation, in connection to the metallization. They globally confirmed the
picture already proposed by Vohra et al., and they were able to predict from first principles
the cubic-to-tetragonal transition and to describe the modifications in the electronic
structure induced by pressure. In particular, they predicted met;iﬂization of CslI to occur
at V/Vp =~ 0.50k corresponding to a pressure of about 0.65 Mbar. Baroni and Giannozzi
[12] performed an ab-initio pseudopotential study of the transition. Also in this framework

the cubic-to-tetragonal first-order transition has been confirmed, as it is clear in Fig. 1.4,
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Figure 1.4: Crystal energy per cell of CsI as a function of c/a for various volumes of the unit cell,
referred to the calculated zero pressure volume Vy. From Ref. [12].

where the crystal energy is plotted as a function of the ¢/a parameter of the tetragonal

cell for various residual volumes V/ V5.

In 1989, new and unexpected features emerged from the X-ray diffraction experiments
performed by Mao et al. [13] on Csl. Using a more sophisticated experimental set-up and
a synchrotron radiation source, they were able to identify a continuous distortion of the
CsI cell from the cubic B2 to a hexagonal-closed-packed (HCP) structure passing through
an intermediate orthorhombic structure. In Fig. 1.6 we display the X-ray diffraction
pattern of Csl taken at 77.5 GPa in the energy range close to the (110) diffraction peak

of the undistorted cubic structure. It is observed that the (110) peak splits into three




8 §1. Introduction

Figure 1.5: Siructure drawings indicating the nature of the phase transition in Csl. (a) The original
cubic B2 cell; (b) the orthorhombic structure with the gliding of the cubic (110) plane. Solid spheres,
Cs; empty spheres, I. The subscripts o,c, and h denote the lattice parameter of the different
structures. From Ref. [13].

components, wheréas two additional lines appear on the low- and high-energy sides of the
triplet, corresponding to two diffraction peaks which are forbidden in the B2 structure.
This diffraction pattern can be explained by assuming an orthorhombic distortion of the
cubic cell, as depicted in Fig. 1.5. In the undistorted B2 structure the unit cell is
characterized by a, = a., b, = ¢, = v/2a,,, as indicated in Fig. 1.5(a). The orthorhombic
cell is characterized by a departure of the three lattice constants from the above ideal values
and by a gliding of the cubic (110) plane, as indicated in Fig. 1.5(b). In the absence of
this gliding there would exist a smaller unit cell describing the same structure and the
peaks corresponding to the cubic (%,%,1) and (%,%,0) would be forbidden. The observation
of diffraction lines corresponding to these two vectors is indeed a direct manifestation of
the postulated gliding whose magnitude is measured by the parameter z indicated in Fig.
15(b) In the final HCP structure one has a, = ap, b, = v/3an, ¢, = cp, (ch/an = 1.633
for ideal close packing), and ¢ = b/6. Even though the intermediate structure has an
orthorhombic symmetry, it is geometrically different from the previous assignment [7],

and the space group of the postulated structure is C},.
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Figure 1.6: Energy-dispersive z-ray-diffraction patiern of CsI at 77.5 Gpa showing deconvolution
of the quintuplet. From Ref. [13].

The observed splitting and peak intensities evolve continuously from 15 to 100
GPa, showing a single orthorhombic phase with variable parameters; even though the
experiments seem to indicate a continuous distortion from the cubic to the orthorhombic
structure, a weak first-order character of the transition cannot be ruled out. The starting
point of the phase transition, characterized by the splitting and broadening of the B2
diffraction lines, is observed at pressures as low as 15 GPa. However, below 45 GPa the
splitting is not large enough to allow an unequivocal identification of the orthorhombic

structure.

Nearly at the same time of the experiments by the Mao’s group, other data were
published by a russian team [14]. From the analysis of these measurements they framed
the conjecture that the cubic phase of CsI transforms directly into an orthorhombic one,

thus confirming the measurements of Mao et al. However, because of a poorer resolution
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in the recorded spectra, they were not able to clearly assign the symmetry of the new

phase and to identify any displacement of atomns in the cell.

As this short review has shown, the theoretical and experimental information on
structural phase transition in Cesium halides and particularly in CsI are somehow
confused. A clear assignment of the high-pressure phases is in general difficult, because
of the discrepancies between theoretical results and the new experimental measurements
and between experimental data themselves. Moreover also the character and the intimate
mechanism of the transition have not been explained. The purpose of this thesis is to
shed light on the characteristics of the low-symmetry phases of Cesium halides and on the
me;chanjsms which determine the structural transition under pressure, and to provide a

general classification of the high-pressure structures of a larger number of alkali halides.

The gliding of the (110) plane described by Mao et al. represents a lattice distortion
very similar to a zone-border acoustic phonon propagating with a wavevector q = z(110)
and polarized along (110). The fact that tl;js lattice distortion is energetically favoured
suggests that the above mentioned phonon mode softens upon an applied pressure.
This sof’gem’ng is intimately related to the previously postulated cubic-to-tetragonal
transitibn which is associated to a dramatic softening of the shear constant, that is in
fact proportional to the square of one of the two transverse sound velocities along (110).
These considerations suggest that a coherent picture of the low-symmetry phases of these
compounds may be obtained within a Landau theory of phase transitions (LTPT), in which

the amplitude of the above zone-border phonon plays the role of an order parameter.

In this thesis we present a complete study of the structural and lattice-dynami-

cal properties of Cesium halides based on modern techniques for calculating electronic
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and vibrational properties of crystals. Our calculations are based on density functional
theory (DFT) and density functional perturbation theory (DFPT). Our results have been
rationalized using LTPT which has allowed a thorough classification of all the possible
low-symmetry phases and an unambiguous characterization of the phase transitions. Up
to our best knowledge this is the first study in which LTPT and DFPT are used together

to predict new structural phases of crystals.

Ab initio methods based on DFT are the most powerful theoretical tools for studying
structural, electronic and vibrational properties of materials on very realistic grounds. The
plane-wave (PW) pseudopotential approach and the local-density approximation (LDA)
to DFT have provided a simple framework whose applicability and predictive power have
been widely demonstrated. In particular the method has been applied, since the very
early years of development, to the study of structural properties of materials, including
the relative stability of different phases as determined by the application of an external
pressure. A very well known example is shown in Fig. 1.7, where the energy vs. volume
calculations of Yin and Cohen [15] for Silicon are pictured. These calculations correctly
predicted the diamond-to-3-tin transformation at critical pressure within 20% or better
of experiment. Also the calculation of reliable phonon spectra is well within the reach of
DFT, as it has been shown by Baroni et al. within DFPT [16], and very good results have

been obtained for pure semiconductors and their superlattices and alloys.

In what follows, we first give a description of the theoretical tools used in this work,
LTPT and DFPT, and of the computational techniques necessary to implement them.
We then apply this method to predict the equilibrium and lattice-dynamical properties

of Cesium halides. Then, a complete description of the phase transitions that occur in
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Figure 1.7: Equation of state for Silicon,. calculated by Yin end Cohen [15] for seven crystal
structures. The slope of the dashed line gives the critical pressure for transformation from diamond
to B-tin structure. From Ref. [15].

Csl is given together with results on dynamical and electronic properties at high pressure.
Our results confirm our initial conjectures. In fact, the structural phase transition in
CsI is shown to be driven by the softening of an acoustic phonon at the M point of the
Brillouin zone, which occurs at about 23 GPa. A strong coupling between the soft mode
and a tetragonal distortion makes the transition first order, occurring at a slightly lower
pressure, and stabilizes the experimentally observed orthorhombic structure with respect
to other competing phases. The same analysis is also performed for CsBr and CsCl,
and the different behaviours of these compounds is discussed, giving eventually a general
picturé of the high-pressure phases of all of the Cesium halides. Finally, the high-pressure

phases of other alkali halides are also briefly discussed.



2 Theoretical tools

In this chapter we will describe the theoretical framework in which our study has been
performed. The key tools are the Landau Theory of Phase Transitions (LTPT) and

Density-Functional Perturbation Theory (DFPT).
2.1 Landau Theory of Phase Transitions:

In this section we will briefly review the basic results of LTPT that are relevant to our
study. For a complete description we refer to Landau’s textbook in Statistical Physics [18].
Structural phase transitions occur when a material changes its crystallografic structure due
to a modification of some external variable, like temperature or pressure. Here we will
limit our discussion to those cases where the high-pressure (or low-temperature) phase has
a lower symmetry than the low-pressure (or high-temperature) one. Mathematically, this
is equivalent to say that the symmetry group of the low-symmetry phase is a subgroup
of that of the high-symmetry one. A phase transition can be characterized by certain
quantities, called “order parameters”, whose expectation value is different from zero in
the low-symmetry phase and zero in the high-symmetry one.

In a structural phase transition it is natural to connect the order parameter with the

atomic displacements that characterize the low-symmetry phase. Atomic displacements

13
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can be represented as a superposition of the vibrational normal modes of the system, and in
this way we can classify them in terms of the normal modes and their symmetry properties.
In the simplest case, the order parameter of the phase transition is associated to a single
normal mode. When the phonon mode associated to the order parameter is degenerate,
the displacement is described by the superposition of the n degenerate normal modes, and
n is thg number of components of the order parameter (or its dimensionality). In the
language of group theory, the displacements of the atoms are functions which transform
according to an irreducible representation of the group of the crystal in the undistorted
phase. The symmetry properties of such representation give direct informations on the
possible stable structures in the less symmetric phase. Moreover, in many structural phase
transitions the size and shape of the unit cell alters, and to describe such modifications
we must include terms that depend on the infinitesimal strain parameters € as secondary

order parameters.

In the Landau theory of structural phase transitions it is assumed that the free energy
of one unit cell of the system may be expanded in a power series of the order parameter

u:

1
F(V,u)= fo+au+5Au2+Du3 + Bu* + ... (2.1)

where the coefficients are continuous functions of temperature or pressure and the
expansion includes terms up to fourth order for simplicity of discussion. If the states
for u = g_and u # 0 are distinguishable for their symmetry, the first order term must be
identically zero, in order to ensure stability to the high-symmetry phase in which u = 0. We
can classify the different cases according to the values of the parameters in the expansion

(2.1). The global stability of eq. (2.1) implies that the quartic term must be positive, and
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the local stability of the high symmetry phase is ensured by a positive quadratic coefficient.
In this regime, the existence of a stable low-symmetry phase is linked to the value of the
coefficient of the cubic term. If D? — 44B < 0 the high-symmetry phase is always more
stable, while for D? — 44B > 0 other stable structures can exist (see Fig. 2.1(a,b)). In
this case, the transition from the high- to the low-symmetry phase is discontinuous, and
it is said to be of first order. Other éta.ble phases can exist also if the quadratic coefficient
is negative (while the stability of the high-symmetry phase is ensured by the quartic
coefficient). According to the value of D the transition can be still discontinuous (first
order), or continuous. Continuous phase transitions are only possible if D = 0 identically.
In this case, the second-order coefficient must be zero at the transition, but > 0 in the
more symmetric phase and < 0 in the less symmetric one. The transition is then classified
as a second-order ;)ne (see Fig. 2.1(c)). So far, we have assumed B > 0. If B is negative,
the stability of thev system is ensured by the six-th order terms that must be included in
the expansion and whose coefficient must be positive. If for B < 0 low-symmetry stable

phases exist, the phase transition is always discontinuous, and then of first order.

At all the structural phase transitions the order parameter is coupled to the elastic
strains by terms in the free energy which are linear in the strain and quadratic in the order

parameter. Then the free energy is generalized to includé the strains as:
L2 3 4 2, 1 o
F(V,u)= Fo+ §Au + Du® + Bu* + Ceu® + §ce (2.2)

where C is the coupling constant and c is the appropriate elastic constant. Using the

condition for the material to be stress-free, %i: = 0, which gives ¢ = —Qf— we can eliminate

€ from eq. (2.2) and we see that the presence of such coupling renormalizes the fourth
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Figure 2.1: Sketch of the behaviour of the free energy (2.1) as a function of the order parameter
u. For the discussion of the different cases see the text.

order coefficient as

B=B- . (2.3)

Eq. (2.3) shows that B is smaller than B (and possibly negative), and consequently,

transitions under vanishing stress are more likely to be of first order.

To conclude this short introduction, it is important to notice that there are also cases
i in '\;irhich the order parameter of the transition is only the cell shape, i.e., the strain state
of the crystal. These are the so-called “martensitic” transitions. It is a general result of
group theory that these transitions have first order character, and the formal justification

of this assertion for a transition from a cubic to a tetragonal phase is given in section 3.3.
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5.2 Density Functional Theory and Lattice Dynamics

The above phenomenological discussion on structural phase transitions was based on the
knowledge of the free energy of the system in terms of the atomic displacements. For an
application to real systems, it is then necessary a quantitatively detailed description of
both the energetics and lattice dynamics of the system on & microscopic basis. Within this
work this is attained by means of the Density-Functional Theory (DFT) and its relation
to the lattice dynamics.

In the spirit of the Born-Oppenheimer approximation, in the actual calculations the
electronic and ionic degrees of freedom are decoupled. Tonic cores behave as classical
particles and, given a certain ionic configuration, their potential energy is given by the
ground state energy of the electrons which constitute a quantum many-body system. This
approach relies on the large mass difference between ions and electrons, which implies that
electrons remain very close to their ground state configuration while the ions move. For
this reason, the knowledge of the electronic ground state allows a complete description of
the properties of the system. DFT provides a theoretical frarflework to calculate ground
state properties of a quantum many-electron system, without solving the many-body
Schrodinger equation, which would be an impossibié task, due to the large number of
degrees of freedom involved in the calculation. A central result of DFT is that the ground
state energy of a system of interacting electrons can be obtained—at least in principle—by

minimizing the functional [19]:

Efn(x)] = Fln(x)] + f V(x)n(x) dr, (2.4)
where F(n| is a universal functional of the electronic density (i.e. it is independent on

V(r)), and V(r) is the external potential in which the electrons move, that in crystals
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corresponds to the potential generated by the jon cores. The form of F[n] is in general
unknown, and in order to apply this theory in actual calculations, Kohn and Sham

proposed for this functional the ansatz:

n(r) n(r')

v/ drdr’ 4 B [n(r)). (2.5)

Fln(o)] = Tofn(e)] + 1 [

F[n] consists of a Hartree term, corresponding to the classica] electromagnetic interaction

between the electrons, and a term To[n] due to the kinetic energy of a noninteracting
electron system with density n(r) (Hartree units are used throughout the discussion).
Equation (2.5) defines the exchange and correlation energy E;c[n] as the difference between
the unknown functional F[n] and the known terms in its r.h.s.. Minimizing the above

functional with the constraint S n(r) dr = N, we obtain a set of self-consistent equations

[20]:
(.FISCF - E,') 11),'(1‘) = 0. (2.6)
y o V? n(r’)
Hsor ==+ V@) + [ o veel) (2.7)
Vscr(r)

n{E) = DU (e )h(x)0 e — ep),

These are the well known Kohn-Sham equations, where the Fermj Energy e is defined by
the constraint on the number of electrons in the system and Vze(r) = 5E’xc[n]/6n(r) is the
exchange-correlation potential. Due to the unknown exchange and correlation potential,
the Kohn-Sham equations are of no practical use, unless an approximation for Uge 18
specified. The most used approximation in practical calculation is the so-called Local
Density Approzimation (LDA). In the LDA, the exchange-correlation energy is taken

as a local function of the density itself: Eieln] = S n(r) €z¢(n(r)) dr, where €xc(n(r)) is
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the exchange-correlation energy per particle of the homogeneous electron gas at a density

equal to the local density n(r). In this way the potential vy is given by:

() = pae(n(5)) = - fcuc(m)]

From the solution of the Kohn-Sham equations, we get the following expression for the

ground-state energy of the system:

E[{4:},V] = —-[39 —GF)/w(rV#), dr+/V r) dr +
2/ d dr’ + /n(r Yeze(n(r)) dr. (2.8)

Here, 9;(r) is the ith wavefunction where the global index i = (v, k) being v the valence
band index and k the wavevector in the first Brillouin zone. From the knowledge of the
electron-density distribution we can extract information also on the forces acting on the
atoms. Suppose that the external potential depends on a set of parameters {A} in the
external potential, V{,}(r), the Hellman-Feynman theorem [21] states that the derivative
of Efy; with respect to A is given b}; the ground state expectation value of the derivative

of the potential with respect to the parameter:

OE oV
- / ny(r) 2203

3\ ) (2.9)

This is a direct recipe to calculate, for instance, forces on atoms, i.e. first derivatives of
the energy with respect to atomic displacements. Also the stress tensor, i.e. derivative of
the energy with respect to strain, can be calculated in this way [22]. Differentiating eq.

(29) with respect to )/, directly yields the second derivative:

O%E v, 0
») _/ pyr) Onqny(x) +/5V1” (2.10)

AN aA N oo ) d
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Suppose now that the {A} parameters in (2.10) represent ionic displacements, Uqi(R),
then the second derivatives of the energy E are simply related to the matrix of the force
constants:

O*E

. . — I =
C’az,;@](R R) - auai(R)auﬁj(R,)

= CaZhi(R— R) + CZ.(R - R), (2.11)

at,8j

The first term in the r.h.s., C'*", is the ionic contribution to the force constants, which is
essentially the second derivative of an Ewald sum, and C °°° is the electronic contribution,

whose expression is:

C;f,eﬁcj(R _ Rl) — / ( an(r) 8V(r) + n(r) 62V(I’) (R,)) dr. (212)

8ua,'(R) 8Uﬁj(R') 6uai(R)8u5,-

Here, R indicates the position of the ion 7 in the unit cell, and «a is a polarization index.
Due to translational invariance, the force constants defined in eq. (2.11) depend only on

the difference R — R/, and are conveniently calculated in reciprocal space:
p p

1 iqR A
Coipj(R) = I > e Caipj(q). (2.13)
q
Then the electronic contribution can be written as:

dn(r) OV (r)
duai(—q) Oug;(q)

32V(r)
Ouai(q = 0)dug;(q = 0)

~elec
Caipi(a) =

+6i; [ n(r) dr. (2.14)

where 5?1%(% is the linear variation of the ionic potential corresponding to a “Bloch”
7

lattice distortion of the form:

ug;(R) = ugj(q)e'd®,

and ai’: L q is the corresponding variation of the electron density. The second term in

the r.h.s. of (2.14) depends only on the unperturbed density, and then it is of trivial
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calculation. Phonon frequencies are then obtained by diagonalization of the dynamical

matrix, Dy; ;(q), defined as:

Caipj(q)
/MM,

Daigi(a) = (2.15)

where the M’s are ionic masses.
For simplicity of notation, we use from now on a description in terms of finite difference,
and omit polarization and atom indices. The electron density response to a Bloch

perturbation AV9(r) is obtained solving iteratively the following system:
An(r) = 2Re » 7 (r)Ati(r) (2.16)

(Bocr — &) 10) = —AVEL el + 3 [95) (05| AVEE o). (2.17)

3 (r)= r ' *(r' ! 5 By (x") dr’
A‘fscl"‘( )— AVCI( )+;/A¢2( ) (Ir_ r,I + 571(1‘)571(1‘[)) ’(,b7,( ) d ’ (218)

where A;(r) are the linear variation of the wavefunctions induced by the perturbation.
This system can be solved using standard conjugate-gradient minimization methods, as
it is shown in Appendix A. Once the perturbed" electron density is known the calculation
of dynamical matrices is straightforward, and dynamical properties are calculated with
a numerical effort comparable to that of a calculation of unperturbed ground state
properties.

In polar crystals, as in the case of Cesium halides, particular care must be taken to
compute dynamical matrices at q = 0. In fact, the long-range character of the Coulomb
forces gives rise to macroscopic electric fields for LO phonons in the limit q — 0. Within
linear response theory, electric fields can be dealt with exploiting the well known analytic
properties of the dynamical matrix. The details of the method that allows the “first-

principle” calculation of the lattice dynamical properties of crystals can be found in Ref.
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[24], together with the formulas that allow the actual calculations. The derivation of the

key equations of DFPT from a variational approach is given in Appendix A.



3 Results

in this chapter we present the results of the calculations of the static and vibrational
properties of Cesium halides é.t different volumes and for different crystal structures. First,
we describe some thecnical details of the calculations and discuss the pseudopotential used
to describe the ionic cores; we present the results for the static and lattice-dynamical
properties of CsI, CsBr, and CsCl, and analyze the properties of these compounds at high
pressure. In particular we focus first on CsI, that is the compound most studied and that
shows the most interesting behaviour, also in connection to the problem of band-overlap
metallization. Later, we generalize our discussion to the other Cesium compounds and
finally we study the stability of other alkali halides against tetragonal and/or orthorhombic

distortions.
3.1 Computational details

Our calculations are performed in the framework of the LDA plane-wave pseudopotential
method. The electron-gas exchange-correlation energy and potential used here, are those
determined by Ceperley and Alder [25] as interpolated by Perdew and Zunger [26]. In
all calculations the sums over electronic eigenstates in the Brillouin Zone (BZ) have been

performed using the 4, 10 or 20 special point mesh for the simple cubic structure in the

23
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Monkhorst and Pack scheme [29]. Plane waves up to a kinetic energy cutoff of 25 Ry were
included in the basis set.
We have generated fully non-local pseudopotentials for Cs, I, Br and Cl assuming the
following form:
Vion(r, ) = oc(r) 8(r — ) + 5 3" B(FF') 6(r — ') (r), (3.1)
l
where the P’s are projectors over the [ angular momentum states. For Cs and I we
have used the pseudopotentials generated with the Kerker’s procedure [27] and previously
utilized in Ref. [12], where parameters are tabulated. For Br and I, we have generated
new pseudopotentials using the method originally proposed by von Barth and Car (28].

The resulting potentials are then fitted to the following analytical form:

2 xt(r/ER),  ulr) = (@ + bir?) exp(—arr?). (3.2)

vloc(r) = ”

Ionic pseudopotential parameters generated for Br and Cl, are reported in Table 3.1.
Electrons up to Cs 4d have been considered as core electrons. The inclusion of the Cs
5s and 5p states into the valence shell is needed in order to obtain sensible results. In
fact we found that pseudopotentials which sustain only the Cs 6s electron as a valence
electron, yield a monotonic lowering of the energy at decreasing volume, with no stability
at all. An explicit account for the non-linear core-correction [30], suggested by the large
size of the Cs core, does not substantially improve the situation. The stability of alkali
halides is due to the orthogonalization-induced repulsion between neighboring anionic and
cationic orbitals. In most applications of the pseudopotential technique to semiconducting
and metallic materials, the repulsion exerted by the ionic pseudopotential mainly acts on

orbitals centered around the ion itself, which are therefore atomic-like. A much more
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Bromine Z, = 7, a, = 1.0418
1=0 1=1 1=2
oy 1.4214  1.0871 1.0044

ap 10.3522 4.0326 0.1078
by -6.6640 -2.0113 0.1337

Clorine Z, = 7, o, = 1.7427
1=0 1=1 1=2
o 1.7209 1.3181  1.0480

a; 10.8927  3.4611 -3.1846
by -7.0063 -1.9352 0.8678

Table 3.1: Ionic pseudopotential parameters for Br and Cl.

difficult task is to proper account for the orthogonality effects between off-center orbitals.
To cope with the above drawback, we have preferred to include the Cs 5s and 5p orbitals in
the valence shell. In this way the orthogonality between neighboring orbitals is accounted
for exactly and the effect of the relaxation of the cationic core, not negligible in such
a “large” ion like Cs, are taken into account. Moreover, the inclusion of Cs 5s and 5p
does not affect significantly the numerical labour of the computation. In fact, the spatial
extension of these orbitals is comparable to that of the I 5s and 5p orbitals and then the

plane-wave basis set necessary to describe the latter is also adequate for the former.
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1

ag Bo BO

Csl  theor. 4.44 15.4 3.84
ezpt.  4.56°  13.5(2)% 5.45(6)°

CsBr theor. 4.17 20.7 5.20
expt.  4.28° 17.9° -

CsCl theor. 3.99 24.3 5.84
expt.  4.12¢ 22.94 -

Table 3.2: Structural parameter fitted to the Murnaghan equation of state for the four compounds
studied. Units are 4 for ag and GPa for By. Ezperimental values are: (*) from Ref. [13], (®) from

Ref.[32], (°) from Ref.[33], (%) from Ref.[34]. The uncertainty on the last figure in the ezperimental
data is indicated in parenthesis.

3.2 Equilibrium properties of Cesium halides.

We have computed the equation of state of Cesium halides fitting total energies and
pressures to the Murnaghan equation of state [31]:

P(V) = g;’ (X“3B 1>, X = (%)1/3, (3.3)

where Vj is the equilibrium volume, By the bulk modulus, B the first derivative of By
with respect to pressure at V = V. In Table 3.2 the zero-pressure structural properties
are compared with available experimental values. The comparison with the experimental
data is quite satisfactory. In the following we will use our calculated lattice constants
as equilibrium reference values. In Table 3.3 phonon frequencies calculated at high
symmetry points I' and M at the equilibrium volume are compared with experimental
dafa for Cesium halides. The agreement is quite satisfactory and gives us confidence in

the predictive power of our calculations.
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wro(T')  wro(T) wra(M) wps(M) wro(M) wro(M)

Csl theor. 2.09 2.85 1.17 1.30 1.48 2.35
ezpt.  1.91(5)° 2.74(1)° 1.29(6)* 1.34(5)° - 2.26(5)°
CsBr theor. 2.44 3.53 1.27 1.48 1.98 2.79

|

ezpt.  2.29(2)° 1.22(3)°  1.61(3)° 1.77(5)° 2.69(5)°

CsCl  theor. 3.33 5.06 1.24 1.86 3.18 4.04
ezpt.  3.17(2)¢ - 1.19(3)4  1.90(2)¢ 2.77(2)¢ 3.75(3)¢

Table 3.3: Comparison between calculated and ezperimentally observed phonon frequencies of
Cesium halides at zero pressure, at the I' and M points of the BZ. Units are THz. The uncertainty
on the last figure in the ezperimental data is indicated in parenthesis, Ezperimental data: (*) from

Ref. [35], (°) from Ref. [36], (°) from Ref. [37], (¢) from Ref. [38].

3.3 Properties of CsI at high pressure.

In this section we study the relative stability of various phases of CsI (cubic, tetragonal
and the newly proposed orthorhombic structure) at high-pressure. The cubic-to-tetragonal
transition reported in Refs. [4, 5] was originally thought to be second-order. Group-
theoretical considerations show that this transition must be first-order, and a discontinuity
in the order parameter, c/a, at the transition was actually found in both semiempirical [8]
and first-principles [9, 12] calculations. As Anderson and Blount have shown [6], transitions
from a cubic to a tetragonal structure in which the only order parameter is the unit cell
shape cannot be second order. The components of the strain tensor which describe a
tetragonal distortion of a cubic cell, ¢ = 71—5(2622 — €35 — €yy) and € = %(em — €y )s

transform according to the I's irreducible representation of the cubic Oy group. The free
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energy of the system can be written as:

1
F=A+ 58(e§+e§)+c§:eiejek+. .. (3.4)
ik
In order to have a second-order phase transition C = 0 identically, i.e. it must be

impossible to construct third order invariants with ¢; and e;. This is not the case,
in fact, the unitary representation I'l" is contained into the cube of the T'T irreducible

representation, and a third order invariant exist. As shown in Ref. [6] it is given by:

(ef = 3e2)er = [ex — (aw + eyy)llegy — (o2 + €aa)l€me — (e +€22)],  (3.5)

Thus the transition is necessarily first order.

Even so, this transition is associated with a dramatic softening of the shear constant,
cy = %(cn — ¢12) (the appropriate elastic constant for a tetragonal distortion of a cubic
cell) which in fact vanishes at a volume slightly below the transition (8, 12]. The shear
constant is also proportional to the square of the sound velocity along the (110) direction
for vibrations polarized along (110). This observation suggests that the softening of the
shear constant could induce the softening of a transverse phonon along the (110) direction.
In fact, the gliding of one of the (110) planes—which was indicated in [13] as characterizing
the low-symmetry phase of CsI—represents a lattice distortion which is very similar to
that associated to a doubly degenerate acoustic phonon mode at the M point of the
Brillouin Zone (BZ), My . In Fig. 3.1 we display the ionic displacements along the
normal coordinates of the M acoustic phonon!. Note that the displacement pattern is
simjlar to, but different from that proposed in [13] (the magnitude of the cationic and

anionic displacements are here different, their ratio depending on the actual dynamical

' What we actually mean here by “phonon normal coordinates” are the eigenvectors of the matrix of the
interatomic force constants. This definition would coincide with the usual one when the phonon frequency
vanishes, or when the atomic masses are equal.
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& OO
Ucs .
b —& @
‘__ ._u e -
a

Figure 3.1: Atomic displacements corresponding to an MJ acoustic phonon, viewed on the (001)
plane. The magnitude of Cesium displacements, ucs, with respect to Iodine displacements, uj,
is ezaggeraied for clarity. The solid line indicates the unit cell of the distorted (orthorhombic)
structure, while the cell of the undistorted (cubic) structure is indicated by o dashed line. Iodine
atoms lie on a plane shified along the z direction by § with respect to the Cesium plane. In the
cubic structure one has a = b = +/2c.
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Figure 3.2: Frequency of the M phonon as a function of molar volume (lower scale, v = V/Vp,

where Vy is the equilibrium volume) and of the pressure (upper scale). Arrows indicate the sofiening
volume (v*) and pressure (P*).
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Figure 3.3: Lower portion of the acoustic dispersion along (110) at equilibrium volume (dashed
line), and at volumes slightly above (full line ~ V/Vy = 0.63) and below (point kine - V/Vp = 0.64)
the mode softening.

matrix of the crystal). In Fig. 3.2 the frequency of the M phonon as a function of molar

volume and of the pressure is shown. The M; phonon softens at v = V/V, = 0.638,

corresponding to a pressure P ~ 23 GPa, as a consequence of the incipient softening of
the sound velocity of one of the transverse branches, as it is clear in Fig. 3.3, where the
acoustic branches of the phonon spectrum for the equilibrium volume and two volumes
slightly above and slightly below the mode softening are drawn.

The vanishing of the frequency of the M mode signals the onset of a phase transition,
whose order parameter is the ‘amplitude of the atomic displacements along the phonon
normal coordinates. The small group of the M point—whose coordinates are (%%—0)—is
Dy and its star is made of three equivalent points. The M; mode transforms according to
the doubly degenerate I'; irreducible representation of Dy, so that the order parameter
associated with this mode is six-dimensional. According to the Landau theory,[18] the
transition can be second order if no third-order cubic invariant can be constructed with

the components of the order parameter. This is manifestly the case here, since the ry
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representation is odd. Assuming that the sixth- and higher-order terms in the expansion
of the free energy in powers of the order parameter are positive in the neighborhood of the
high-symmetry phase, the transition is then first- or second-order, according to whether
the fourth-order invariants are negative or positive, respectively. In our case the free
energy of the system coincide with the crystal enthalpy, because the temperature is fixed
to zero throughout all the calculations.

In order to write the enthalpy expansion, Eq. (2.1), we must construct all the possible
invariants of the phonon-phonon coupling up to the fourth order in the order parameter
u, i.e. all the invariant combinations of the products u;u;uru;. Every u; is a vector in real
space whose coordinates measure the amplitude of an atomic displacement corresponding
to one of the degenerate M5 phonon modes. The displacement depicted in Fig. 3.1
corresponds, for instance, to u; in our choice of direct space basis. The p?ocedure to
obtain all these invariants is described in detail in Appendix B. Here we giw;e only the

result, including also the second order term:

Hphph = Aul + 3 +uf +uf + uf +ud) + A(ud +ud+ud +ud+ul+ud)+

By(ul + uj + uj + ui + uj + ug) + Ba(udud + wdu? + wlud) +
Be[—uqua(us + uf — uf — ug) + uaua(uf + uf —uf —ud) +

usus(uf + u% — ug - ui)] + B3(—u1uouatiy — U usUsUg + uzUyUsUg) (3.6)

According to Ref. [39], the possible stable phases occur only along particular directions
in the order parameter space i.e. to a particular combination of phonon displacements.
A classification of the possible phases and their symmetry is given in Appendix B. In
our case, the coefficients of the fourth order invariants have been determined in the

particular case V/Vy = 0.58, by fitting their values to DFT calculations performed for
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A A By B2 Bg B3

-0.00378 0.02011 -0.00621 0.04558 0.04082 -0.17560

Table 3.4: Coefficients of the enthalpy ezpansion. Units are a.u.

a few lattice distortions. Their values are summarized in Table 3.4. All these invariant
turn out to be positive, thus indicating that the transition would be second-order. Group-
theoretical considerations considerably restrict the number of possible low-symmetry
phases. According to [39], there are seven distorted crystal structures of ‘maximal isotropy’
(each structure corresponds to a different ‘direction’ in the six-dimensional configuration
space of the order parameter). In the present case, an analysis of the crystal energy
reveals that below the transition the only energy minimum occurs along the so ca]ied ‘P11’
direction [39] (which corresponds lto the simultaneous excitation of all the six degenerate
soft modes). The space group of the low-symmetry phase is T3, whose tetrahedral
symmetry cannot be reconciled with the observed X-ray diffraction patterns [13].

The above considerations hold in the hypothesis that the strain state of the crystal is
constant across the transition, except for the isotropic compression due to the application
of a hydrostatic pressure. However we know that the softening of the M phonon mode
is closely related to the softening of the shear constant of the crystal, so that a strong
coupling between the soft mode and macroscopic strain (i.e. between zome-center and
zone-border acoustic phonons) is to be expected. We consider next the expression of the
Landau enthalpy of the crystal up to fourth order in the phonon displacements, including

the coupling with the strain.

If we include the coupling between phonons and elastic deformation of the cell, the
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complete expression of the Landau enthalpy per cell reads:
H= th——ph + th—-str + Helastic (37)

To write the phonon-strain coupling contribution to the enthalpy we have to construct all
the possible fourth-order invariants with v and the strain components ¢ . This is done in

Appendix B. The result for Hpp_g; is:

Hop—str = Cl—;—(em + ey + €z ) (Ui + U3+ ud + uf +ud +ud) +
Col(2(uf + u3) — uf — uf — uf — ug)(2e;s — €xo — €) +
3(u3 + uf — uf — ug)(eaw — eyy)] +
Ca(—2uruy — uzuy — usUg)(€zz — €yy) + (—ustly + Ustg)(26,, — €1z — €yy) +

Calut — u3)eay + (45 — uf)eys + (uf — uf)ess. (3.8)

Moreover the elastic energy terms must be included in the enthalpy expansion. For a cubic

crystal this reads:

1
Helastic = 5611(63;_7; + Ezy + Efz) + CIZ(meeyy + €xz€rr T Eyyezz) +
1
5644(521, + 52‘2 + 55;) - POchll(e:c:v + Eyy + Ezz) (39)

where ci1,¢12 and cyy are the three independent elastic constants, and the last linear
term takes into account the external pressure for each volume. The values of the
coefficients of the phonon-strain coupling and the elastic constant for V/Vy = 0.58 are
summarized in Table 3.5. These coefficient have been determined, as the B’s in Eq.
(3.6), through DFT calculations performed for different lattice distortions. We find that
the ‘.Pll’ minimum previously found is unaffected by such a coupling, while four out of

the other six maximal isotropy directional minima are slightly modified, still maintaining
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Cy Cy Cs Cy C11 €12 Ciyq

0.00007 0.02570 0.02996 -0.09320 6.524 6.431 6.332

Table 3.5: Coefficients of the enthalpy ezpansion for the phonon-strain coupling and elastic
constants. Units are a.u.

the saddle-point character they would have ignoring the phonon-strain coupling. This
coupling changes instead the character of the minima along the other two maximal isotropy
directions, ‘P1’ and ‘P2’, turning them from saddle points to true minima. The ‘P1’
structure corresponds to the excitation of just one transverse acoustic phonon (see Fig. 3.1)
and it has a much lower energy minimum than that of the ‘P2’ structure (corresponding
to the simultaneous excitation of two degenerate soft phonons at the same point of the
BZ), when the coupling with strain is neglected. The observed X-ray diffraction pattel;n
from the low-symmetry phase of CsI [13j is indeed compatible with the space group of the
‘P1’ structure, Dgh, which, furthermore, is geometrically simpler than the ‘P2’ one. For
these reasons, in the following we will concentrate on the ‘P1’ distortion only.

Projecting equation (3.7) along the ‘P1’ direction, the power expansion of the crystal

enthalpy reads:
1 g 1 1
H(u,¢€1,€) = Ekuz + aut + Ecse% + 5&;46% + (brer + baex)u’® + O(uG), (3.10)

where u = u; is the amplitude of the phonon displacement along (110), b; = T1§Cl — 2C,,
by =Cy, 61 = %(em-*-eyy—Zezz), and €; = €y, €;; being the strain tensor. By eliminating ¢,

and ¢ from Eq. (3.10) by the equilibrium condition O0H[0e; = 0H /8¢y = 0, one obtains:

byu? bou?
€1 = — ! y €2 = ——?——, ‘ (311)
Cs Cqq
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~ 1, , b2 b2
= ——k “ S S
H(u) = ghu”+ (a %,  2cua

) u + O(u®). (3.12)

Eq. (3.12) shows that the coupling between the soft phonon and macroscopic strain
renormalizes the fourth-order coefficient, making it large and negative, whenever c, or cyy
are small enough. Due to the ongoing softening of the shear constant, ¢,, we do find
that at the softening pressure the fourth-order coefficient is negative, and we conclude
that the transition must then be first-order, occurring at a somewhat lower pressure. A
thorough study of the transition might be performed by considering the expansion of
the crystal energy up to sixth order in the order parameter, and by fitting the relevant
coefficients to first-principles calculations, as it was done when the coupling to the strain
was neglected. We have preferred instead to perform straight energy minimizations with
respect to u and o along the ‘P1’ line, in correspondenc;e to different volumes, in such
a way to directly obtain the equation of state of the crystal in the low-symmetry phase.
The Maxwell constructjon gives then a transition pressure of ~ 21 GPa, corresponding to
a volume in the cubic phase V/V; = 0.64. In Fig. 3.4 we report the structural parameters
of the orthorhombic phase, calculated for different values of the pressure/volume. All the
structural parameters, including volume, are discontinuous at the transition pressure as
a consequence of its first-order character. The volume discontinuity is very weak (0.1%)
and it is not visible on the scale of the figure. Note also the different magnitude of the
Cesium and Iodine displacements, and the very weak dependence of b/a upon applied
pressure. the different behavior of ¢/a — 1 and b/a — 1 with respect to pressure is due to
the fact that the former is inversely proportional to the nearly vanishing shear constant,
¢y, whereas the latter depends on cyy which is regular in this pressure range. In Fig. 3.5 we

compare the enthalpy of the new orthorhombic phase (relative to that of the cubic phase)
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Figure 3.4: Structural parameters of the orthorhombic phase (see Fig. 3.1) of CsI as functions
of different values of the volume/pressure. Arrows indicate the transition pressure/volume. The

volume discontinuity at the transition is not visible on the scale of the picture. P, indicates the

transition pressure, while veyp and vy, are respectively the volumes of the high- and low-symmetry
phases at the transition. :

with that of the tetragonal phase previously conjectured to occur at higher pressures. The
orthorhombic phase turns out to be more stable all over‘the explored pressure range. In
Fig. 3.6 we display our pressure vs. volume data calculated for three different structures
(cubic, tetragonal, and orthorhombic) and compare them with the equations of state fitted
to experimental data from (7] and [13]. Our data are somewhat intermediate with respect
to the previous equations of state, displaying a consistent decrease of the pressure when

passing from the cubic to the tetragonal and orthorhombic phases.

In this work we have investigated the band structure of CsI for various volumes in
the limits of LDA and restricting our study to the non-relativistic case. Results of our
calculations are reported in Fig. 3.7, where it is reported the band structure for three

different residual volumes of the cubic cell. The main feature upon squeezing the volume,
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Figure 3.5: Enthalpies of the orthorhombic and teiragonal phases, relative to the enthalpy of the

cubic phase, as functions of the applied pressure.
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. and P, are the transition pressures from

the cubic to the tetragonal and orthorhombic phases respectively.
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Figure 3.6: Pressure vs. volume data calculated in the present work for different phases of Csl,
compared to previous equations of state (dashed line from [7] and continuous line from [13]), fitted

to experimental data.
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Energy (eV)

Figure 3.7: Electronic band structure of CsI calculated for three different molar volumes in the
cubic phase. The continuous line corresponds to equilibrium volume, while dotted and dashed lines
correspond to V/Vy = 0.63 and 0.54 respectively.

is the gap closure in T, responsible for the incoming metallization. We have also studied
the effect of the various lattice distortion on the gap, and the results are summarized in
Fig. 3.8. For a given molar volume, the tetragonal distortion tends to lower the gap, in
agreement with preceding calculations [9], while the orthorhombic one increases it. We find
metallization at V/Vy = 0.52, P = 53 GPa in the cubic structure, V/Vy = 0.54, P = 45
GPa in the tetragonal structure and at V/V, = 0.51, P = 55 GPa in the orthorhombic
structure. In the paper by Satpathy et al. [9], the enhanéement of metallization in the
tetragonal and orthorhombic phase was explained in terms of the reduction of the lattice
constant in one direction with respect to the cubic case, that affects the electronic states
on top of the valence band (TVB), mainly I 5p, and on the bottom of the conduction

band (BCB), mainly Cs and I 5d, in I'. The TVB is triply degenerate, has I';5 symmetry
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Figure 3.8: Band gap as a function of molar volume for the three different structures.

and consists of antibonding I 5p orbitals along z,y and z directions. In the primitive
orthorhombic cell the state along the direction of the shortest lattice constant has higher
energy than the simple cubic one at the same volume. A similar effect is responsible of
the energy lowering of the bonding state 32> — 1 in the BCB, I'15. This is no longer true
in the orthorhombic D3, structure, where the relative displacements of Cs and I atoms
compensate the lowering of the lattice constant in one direction, hence diminishing the
tendency of the system to Vmetalh'zation and the strength of interaction between states
centered on different atoms. All these results, although they suffer of the well known
limitations of the DFT-LDA approach to the electronic properties of crystals, give a
qualitative understanding of the electronic implications of the structural phase transitions

in Csl.
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Figure 3.9: Frequency of the MS acoustic phonon as a function of molar volume for CsI, CsBr
and CsCl. Arrows indicate the transition volume.

3.4 CsBr, CsCl and other halides

We have also investigated the relative stability of the cubic, tetragonal and orthorhombic
phase in CsBr and CsCl. In Fig. 3.9 we display the dependence of the frequency of the M. 5
acoustic phonon upon molar volume in CsI, CsBr and CsCl. As it is clear from the picture,
only CsI and CsBr show the softening of the My acoustic phonon mode upon increasing
pressure. A careful study of the two competing phase transitions (cubic-to-orthorhombic
and cubic-to-tetragonal) is needed in order to definitely assign the high-pressure phase of
CsBr, while for CsCl, the absence of mode softening is a clear indication that the final
structure will be tetragonal.

In Table 3.6 we report the molar volume and the pressure corresponding to the two
competing phase transitions in Cesium halides. In the first two columns we report the

volume and the pressure corresponding to the softening of the zone-boundary phonon in
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cubic-to-orthorhombic cubic-to-tetragonal
(phonon softening)

Cs] 0.64 23 0.54 45
CsBr 0.52 67 0.54 58
CsCl - - 0.54 69

Table 3.6: Molar volume and pressure corresponding to the phonon softening and to the
cubic-to-tetragonal transitions in Cesium halides. v* = V/Vy and P* is in GPa. The
cubic-to-orthorhombic transition in Csl and CsBr occurs at P* = 21 and 66 GPa respectively.

the cubic structure, and the second two the volume and pressure corresponding to the

cubic-to-tetragonal transformation.

In CsBr, the tetragonal structure, at variance with the CsI case, turns out to be
the most stable all over the explored pressure range, as it is clear in Fig. 3.10, where we
compare the enthalpy of the tetragonal and orthorhombic phase relative to the cubic phase.
The phonon softening is preceded by the cubic-to-tetragonal transformation, and we have
verified that the tetragonal phase is always favoured for all the investigated pressures,
and that the phonon-strain coupling induced by the softening of the shear constant does
not affect the hierarchy of the transitions. So we can definitely assign the high-pressure
phase of CsBr to be tetragonal. The cubic-to-tetragonal transition in CsBr and CsCl has
been experimentally observed at 53 &+ 2 GPa and 65 4+ 5 GPa at the same molar volume

v* ~ 0.54 [4]. Our results are in agreement with these measurements.

Finally, we have analyzed the stability of other alkali halides against tetragonal and
orthorhombic distortions. The results are summarized in Table 3.7 where the stable phases

of various compounds are reported at a residual volume v = 0.50. The computational
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Figure 3.10: Enthalpies of the orthorhombic and tetragonal phases, relative to the enthalpy of the
cubic phase, as functions of the applied pressure for CsBr. Py, and Py, are the transition pressures
from the cubic to the tetragonal and orthorhombic phases respectively.

details of these calculations are nearly the same as for the Cesium compounds, although
a higher cutoff (35 Ry) is needed in order to get the same degree of convergence. We have
generated pseudopotentials for Rb and K with the procedure described in section 3.1.
Rubidium and Potassium compounds appear to be stable in the cubic B2 phase all over
the explored pressure range and no further distortions of the cell or structural transitions
have been observed. These results are in agreement with other calculations performed for
Potassium and Sodium compounds [2] in which the cubic B2 phase was reported to be
stable up to residual volumes ~ 0.5 in KCl, while, at our best knowledge, this is the first

ab initio study of the stability of the high-pressure phase of Rubidium compounds.



3.4. CsBr, CsCl and other halides

43

I Br Cl

Cs | Ortho. (23) | Tetr. (58) | Tetr. (69)
[59] [77] [92]

Rb | Cub. B2 Cub. B2 | Cub. B2
[60] (78] [99]

K Cub. B2 Cub. B2 | Cub. B2
[64] [92] [103]

Table 3.7: Stable phases of various alkali halides at V/Vy = 0.5. For Cesium compounds the
pressure at which the compound undergoes a structural transition from the high-pressure cubic
In square parenthesis the pressure corresponding

B2 phase is indicated in round parenthesis.

to V/Vo = 0.5 is reported for every compound. The values are interpolated from the calculated

equations of state. Pressures are in GPa.
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4 Conclusions

In this work we have analyzed the behaviour of Cesium halides, and in particular of Csl,
at very high pressure. The main motivation of the study has been the desire to unify the
large variety of theoretical and experimental results present in the literature in a consistent
picture, to elucidate the nature of the transitions and to produce a clear classification of the
high-pressure phases of Cesium halides. In order to get these results, we have performed
extensive Density-Functional Theory calculations of the static and vibrational properties of
Cesium halides at high pressure, using the Local Density Approximation, norm-conserving
pseudopotentials, and large plane-wave basis sets. All these results have been analyzed in
the framework of the Landau theory of phase transitions, that allowed us to classify the

different high-pressure phases and the nature of the phase transition.

We focussed our attention mostly on CsI, that is the most studied compound among
Cesium halides, and that shows the most original high-pressure behaviour among the
members of the family. In fact, as recent experiments have shown, Csl undergoes a
structural phase transition from the cubic B2 structure to a more complex orthorhombic
phase [13, 14]. We have identified the amplitude of a sixfold degenerate phonon mode (M)

as the relevant order parameter of the transition in the Landau sense. The frequency of

45
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this phonon is found to vanish at a pressure of ~ 23 GPa, which is well below the transition
from the cubic to the tetragonal phase. Neglecting the coupling between the soft mode
and anisotropic macroscopic strain, we find that the transition would be second-order from
the cubic to a tetrahedral (7°) phase; the coupling with macroscopic strain stabilizes the
orthorhombic structure, making the transition first-order, with a very small volume change
(= 0.1%) and a transition pressure (=~ 21 GPa) slightly below the softening pressure of
the Mg phonon. .We have also found that the orthorhombic structure is always favored
with respect to the tetragonal structure, up to pressures of 60 GPa. Furthermore, we have
studied the high pressure phases of CsBr and CsCl and we have demonstrated the peculiar
character of CsI. In fact, the other Cesium halides undergo a cubic-to-tetragonal transition
and, even though in CsBr there is evidence of a phonon softening, the tetragonal phase
prevails for all pressures. On the contrary, CsCl does not show any evidence of frequency
decrease upon increasing pressure. We have also verified that for Rubidium and Potassium
compounds the high-pressure phase is cubic B2 and that such a phase is stable against

tetragonal and orthorhombic distortions.

Thus we can conclude that ab initio theoretical calculations are able to provide a very
reliable picture of the structural properties of Cesium halides. Further work is needed
in order to clarify the profound reasons that induce the phonon softening and make
the orthorhombic structure energetically favoured at high-pressure only in CsI. There
are indications that a key role in the mechanism is played by the empty d orbitals of
cation and anion. Calculations done with pseudoatoms in which the d components of the
pseudopotentials have been varied “by hand”, have shown that in some cases the softening

pressure is lowered making the tetragonal structure energetically favoured. However no
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final conclusions can be drawn on the basis of such a restricted analysis and a detailed

study on this topic is still in progress.
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Appendix A
Density Functional Perturbation
Theory

Density-Functional Linear Response Theory

Here we present a variational formulation of the linear response problem in the
framework of DFT. The discussion is ba;sed on the method proposed by Baroni et al.
[16, 24] and we will specialize our variational approach to the case of phonons of arbitrary
wavelength.

In order to study the lattice dynamical problem in the linear response approach, we
must determine the second order variation of the total energy functional (2.8) with respect
to the variation of the wavefunctions and of the perturbing potential.

Let us suppose that a system is disturbed by adding a perturbation AV(r) to the
external potential V(r). The Kohn-Sham orbitals will expand accordingly: {¢;} —
{#; + A¢;}. Up to the second order in the perturbation the total energy functional

reads:

E[{¢i+A¢i},V+ AV] = E[{:},V] +Z/ 5, Az,/zl ) dr+

6E , ,
V) ) r)dr+ - Z/ 5V(r 5¢ AV (r)Av;(x") dedr’ +
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1 5E2 / !
3 %/WA%(r)A%(r) drdr’. (A1)
Functional derivatives are as follows:
§E . oF 52E N
Si(r) 2Hscrii(r); V() n(r); V)50 2¢i(xr)é(x — x');

S E ne (VO 1 52Em
Fui(r )‘W’J( r') = 2Hscr(r,1')8:; + 20 (x) (') (|r — 1] * 5n(r)6n(r’)) ’

where H(r,r’) is the kernel of the operator H between states i and J. Rearranging the

terms in Eq. (A.1) we write down the second order expansion of the total energy functional

E[{yi + A}, V + AV] =
B[{$:},V] + 22 / Ai(r) Hsor(r, )i(r) dr + / (£)AV () dr +
i / AP (r)HeorAdhi(r) dr +2 Z / Gi(£) Adi(r) AV (x) dr +
> [ i) A3 K (r, i) () i, (A.2)
where ]
K(r,r) = — 0 Eue

e = Gn(m)on()’

This functional must be minimized with the constraint
(% + Atilth; + Aghj) = 6
We have then to solve the variational problem:
§ (E = 22 X5 [(Avils) + (il Ayy) + (A¢i|A¢j)]) = 0. (A.3)
ij
where X’s are Lagrange multipliers. The variation of Eq. (A.3) with respect to Av); gives:

ﬁscp¢i(r) + ﬁSCFA¢i(r) + AVSCF( '9[1:(1' Z Az]("["](r + A¢J) (A'4)
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where
AVser(r) = AV () + 3 / AV K (x, ) hs(x') d'. (A.5)

Rearanging the terms in (A.4) we end up with the final system.
J J

A solution of this system would give in principle the answer to the linear response problem.
However the direct solution reveals to be an enormous task, du to the large number of
variables involved: number of Fourier components of A times the number of states. We
can decompose this large system into a restricted number of independent systems (one for
each state). To do so let’s consider the variation of Eq. (A.3) with respect to Aij It gives

the equation for the constraints:

(Ablb;) + (il Adds) + (Adhi|Aghy) = 0

that is

(Atily;) = O(AV?). (A7)
If we multiply Eq. (A.3) by (1| we get
(i AY) = 3 X Avs) = — (B AViscrlths) + Mi — &b (A.8)
J

Given the condition (A.7), substituting into Eq. (A.6), retaining only the linear terms, we

end up with the linear system:

(HSCF - 51‘) |A1/’i> = '—AVSCthi) + Z I¢j><¢leVSCFI¢i>' (A-g)

If we consider a given periodic perturbation of wavevector q, AV%(r), and impose

translational symmetry, we can identify the quantities that enters this formulation as
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Yi(r) = Y, x(r), Ai(r) = A, xiq(r), AVser(r) = AVikp(r). In particular, it is
important to stress that AVgs, when acting on a wavefunction of wavevector k, transforms
it into a function of wavevector k+q, and it should be remarked that the linear response to
a perturbation of given q only contains Fourier components of wavevector q + G; different
q’s do not mix at this order of perturbation theory. Rearranging the terms in (A.9) and
recognizing that 3 [, x){¥, x| = P, where P, is the projector over the valence-state

manifold, and P, = 1 — P, we end up with the final result

[ev,k - HSCF] IA"l’u,k-f—q) = PCAVS(;C'F[’L/)v,k>° (A.10)

The total first order variation of the density induced by the perturbing potential can be

written as

Anfr) = 2Re 3 3080 k10 (A1)

v

Equations (A.5) (A.11) and (A.10) constitute a self-consistent set of equations that can
be solved iteratively. The linear system (A.10) has an infinite number of solutions because
the determinant of [¢,y — Hscp] vanishes, and the vector on the Lh.s. is orthogonal to
the null space of [, x — Hscr). In practice, Ath, x+q is defined within a multiple of Yy k-
However such an indeterminacy does not affect the final result because we are interested
only in its projection onto the conduction-state manifold. Depending on the size of the
basis set, Eq. (A.10) can be solved either by factorization techniques,[40] or by iterative
methods. The variational formulation of the DFPT problem can improve the solution of
the linear system giving explicit variational formulas for the coefficients of the response
functions, and allowing a replacement of the traditional solution methods by a conjugate—
gradient algorithm [41], where self-consistency steps are done simultaneously. The method

described in this section applies to a general perturbation. The matrix elements necessary
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when the perturbation describes a lattice distortion are discussed in Ref. [24] where

detailed formulas are explicitly given.

Conjugate—Gradient algorithm.
In this section we will describe the steps that allow the solution of the linear system

(A.9) by a conjugate—gradient algorithm. To this aim, let’s recast the system in the form:

Z/Aij(r,r')A¢j(r') dr’ = b;(r), (A.12)

identifying the operator 4;; in the Lh.s., and the r.h.s. b;. To proceed to this identification

we can rewrite

AVieer(r) = AV(r) + 2 ; [ VK (e, x i) e (A.13)
and define
AVser(r) =23 / AP (e ) K (x, 2 )opi(r') dr’ (A.14)
and then |
ATV sor(t)di(r) = 2}{3 / A () K (r, )i )i () di. (A.15)

Knowing that, we can write
Z |¢l><¢l,AVSCFI¢i> = Z/¢r(r,/)AI75CF¢i(r,l)¢l(r) dr” = (A.16)
l l

2 AYI(e")K (v, ' ); (2" )by (2 hs () ebi(x) dr'dr” =
é\;// W50 (o Y (o (2 s Yo ()

>/ (Z [ 0 b b (o) K (e, ) d) A3 () o’
J I

and then we can identify
Hoep(r,r') — 8(r — r'); ifi=j
1/)i(r”)¢j(r)K(r, I‘,)+
S SN (e Vb (x" )i (r) K (r, 1) dr”  otherwise
bi(r) = —AV(r)¢:(r). (A.17)

Aii(x,x))

I
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To perform the conjugate ~ gradient minimization is then sufficient to compute
> / Aij(r, v") Ay (r') dr,
J
that, once AVSCF(r) is known, is given by:
3 / Aij(r,T)A%(x') dr' = [Hser — &] | Agh) + PoATserlthi). (A.18)
J

At this point we have a system that can be solved by a standard conjugate-gradient
algorithm. For more details on the minimization procedure see for instance Ref. [42] and

references therein.



Appendix B
Symmetry invariants of the Lan-
dau Theory

In this appendix we give explicit formulas for the fourth-order invariant polinomials that

enter the phonon-phonon and the phonon-strain contributions.

Invariants of the phonon-phonon coupling

The invariant polynomials in v up to the fourth degree can be obtained using standard
techniques of group theory [43]. The number of fourth order invariants is equal to
four, because the identical representation is contained four times in the 4-th symmetric
power of the irreducible representation I'; of Dys. A way to obtain them is to operate
on the possible fourth power combinations of u’s with all symmetry operations of the
point group Op of the more symmetric phase. The starting combination must obey
some symmetry conditions in order to preserve translational invariance: given U U UL Uy,
k; +k; + k; + ki = G, where k; is the wave vector for phonon u,; , and G is a reciprocal
space vector. This implies that the two phonons associated to the same k vector of the
star must be always coupled, i.e. products if the kind udu, are forbidden. The basic

invariants are summarized in Table B.1.
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Starting combination Invariant
4 a4 g : ; -
UpU U U Uq +u2+u3+uj+u§+ué
2
U U Ug U uful + ulu? + ulud
2 .2 .2 _ .2
U U U3 U3 —uyug(uj + uj — ué — ug)+

ugty(uf +uf — uf —uf)+
2 2 2 2
usug(uy + uz — u3 — uj)
UL U2 U3 U4 —U U U3z Uy — Ui U2 U5 UG + UULU5UG
1 1

Table B.1: Basic invariant polynomials in u up to degree four which enter the free energy ezpansion
Eq. (2.1).

.Given the free energy expansion it is possible to find the possible stable phases after
the transition along the lines of standard group theory [43]. For our specific case, we
refer to Ref. [39], where a complete description of the six-dimensional order parameter
case is carried out. Following the notation of Ref. [39], the possible stable phases can be
classified as in Table B.2 where each configuration gorresponds to a particular direction
in the order parameter space, i.e. to a particular combination of phonon displacements.
We have verified that for each direction there was an energy minimum and for each case

we determined the corresponding length of the displacement.

Invariants of the phonon-strain coupling

Consider the generic expression of the Landau free energy projected along a certain

direction of the order parameter space:
F = —w?u? + Iu' 4 Flu, €

where u” stands for all possible invariant combinations of degree n, and F[u, €] is the term

of phonon - strain coupling, containing all possible products (up to the fourth order) of
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Direction Symmetry group
Pl  (a 0,0,0,0,0) Sh
P2 (a,a,0,0,0,0) D}
P6 (a, 0,3, 0,3, 0) C3,
P7  (0,-a,0, a,0, a) D}
P9 (a,a,a,a,0,0) DY
P10 (a,a,0,0,a,a) DiT
P11 (a,¢a,a, a3, a) T5

Table B.2: Classification of the possible stable phases along particular direction of the order
parameter space.

the kind:

e, ue, ule, ue?, ued, u?e?, ule.

All products containing an odd power of u are not invariant and so they cancel. The only
remaining products are €2, that is the elastic energy term, u’¢ and u%¢?. Up to fourth
order only u?¢ must be considered; in fact we can easily demonstrate that ¢ « u? and so

2

u?€? is actually of sixth order in the order parameter. To see this, we start from

F=—wu? + Tut + A + au’e + ﬁu262

and from the equilibrium condition %%: = 0 to get

2A€ + au? + 28u’e = 0

and so -

1 au? 2 4
E~§m0(ﬂ —i—@(u).

Q.E.D.

To find the form of the u?¢ invariant we have determined all second order products

such that k; + k; = G. These correspond to a 9-dimensional representation that can
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irrep Basis functions
3D I —UjUy + U3y + UsUg
I3 —2uup — U3UL — UsUs;

U3U4 — UsUg

2
6-D I u%—f—u%—kug«i—ui—}-ug—i—ug
2 2 2 2 2 2,
T3 2(uf + u3) — uz — uj — uf — uf;
2 2 2 2
uz + Uy — Uz — ug

2 _ 2 2 a2, 22 2
Ts uy — uj; U3 — Uy UE — UG

Table B.3: Basis functions for the different irreducible representations of the order parameter.

irrep Basis functions
T, €z T+ €yy T Eyy
FB €xz — Eyy; 2622 — €z — €yy
T's €ryy €xzy €yz

Table B.4: Basis functions for the different irreducible representations of the strain tensor.

be decomposed into a 3-dimensional one: uju;, uzuy, usug, plus a 6-dimensional one:
ui, uj, u3, wu}, ul, ul. These can be decomposed as: T'y + I'; and T'; + T's + I's

respectively. Knowing that, we constructed the combinations of u’s that correspond to

the basis functions of the irreducible representations, tabulated in Table B.3

The strain tensor in the group Oy transforms like T'; +T's +T's, and the basis functions

that can be constructed are summarized in Table B.4.

The invariant that can be constructed from these basis functions are four (the identical

representation is contained four times in the direct products of the representations of the
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u;u; ® €), and they can be obtained as:

¢F; - Z 61;:;(11. ® u)§1
A

where A is the index of the basis functions.
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