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Introduction

In this work we shall be concerned with the study of (local) rotations on a
Riemannian manifold. Our aim is to investigate the interplay between the prop-
erties of these local diffeomorphisms and the geometry of the manifold, focusing
especially on the Riemannian curvature. This study originated from the general
problem of determining to what extent the properties of a family of geometrically
defined objects on a Riemannian manifold (3, ¢) influence the geometry of (M, g)
(cf. [CV1],|GV1],[V2],[V4]).

The development of the theory of rotations initiated with the study of geodesic
reflections (geodesic symmetries) and was then extended to the study of reflections
with respect to curves and submanifolds. Here we shall continue this theory consid-
ering the more general notion of rotations around points, curves and submanifolds
of a Riemannian manifold.

Rotations will be defined as a special class of local diffeomorphisms that gener-
alize in a natural way the corresponding concepts in Euclidean space. As rotations
in Fuclidean space have properties that are directly related to the specific nature
of Euclidean geometry, one can expect that rotations on a Riemannian manifold
with special curvature will have particular properties. On the other hand, if one
supposes that rotations have special properties, one may ask how this reflects in
the curvature of the ambient space and in the extrinsic and intrinsic geometry of
the submanifold.

Besides dealing with volume—preserving, holomorphic and symplectic reflections
and rotations, throughout the work special emphasis is given to the relationship
between isometric and harmonic rotations around points, curves and submanifolds.

To illustrate the nature of the problem we are interested in, we briefly recall some
significant results from the theory of reflections in various contexts (cf. [Bul,[V4]
for a more extended survey).

Local geodesic reflections are local generalizations to arbitrary Riemannian man-
ifolds of reflections with respect to a point in Euclidean space. These local diffeo-
morphisms may be used to define special classes of Riemannian manifolds. To start
with, a classical result by E. Cartan asserts that all (local) geodesic reflections (geo-
desic symmetries) on a Riemannian manifold (M, ¢) are isometric if and only if the
Riemann curvature tensor R is parallel with respect to the Levi Civita connection,
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ie., (M,g) is (locally) symmetric. Furthermore, it is clear that isometric reflections
are harmonic maps and hence locally symmetric spaces have harmonic geodesic re-
flections. On the other hand, it was proved in [DVV] that the converse also holds.
So, locally symmetric spaces may be defined as Riemannian manifolds with either
isometric or harmonic geodesic reflections. Alternative characterizations of locally
symmetric spaces have also been given in terms of the invariance, under local ge-
odesic reflections, of operators related to the extrinsic and intrinsic geometry of
small geodesic spheres, e.g., the shape operator and the Ricci operator. For this we
refer to Chapters II and III (see also [VW2],[DV1]).

In the framework of almost Hermitian geometry the consideration of almost Her-
mitian manifolds with symplectic (with respect to the Kéhler form) geodesic reflec-
tions was initiated by Jacob in [Ja]. Using the known classification of compact
homogeneous Kéhler manifolds, he gave, in a special case, an affirmative answer to
a conjecture of S. Kobayashi stating that such manifolds with symplectic geodesic
reflections are Hermitian symmetric spaces. This conjecture has been considered
from a different and much more general point of view by K. Sekigawa and L. Van-
hecke in [SV1] where it is proved that locally Hermitian symmetric manifolds may
be characterized as almost Hermitian manifolds with symplectic or holomorphic
geodesic reflections (cf. also Chapter 2). So, they provided a complete positive
answer to Kobayashi conjecture.

Symplectic geodesic reflections lead to consider another important class of reflec-
tions. In fact, it is clear that symplectic geodesic reflections are volume-preserving.
The class of manifolds with volume-preserving (up to sign) local geodesic reflections
were first studied by D’Atri and Nickerson in [DN1],[DN2]. This class contains, for
example, the locally symmetric spaces, the harmonic spaces, the generalized Heisen-
berg groups, the naturally reductive and the commutative spaces. Besides these
examples, all known examples of Riemannian manifolds with volume-preserving
geodesic reflections are locally homogeneous spaces, i.e., the pseudogroup of local
isometries acts transitively on these manifolds. Up to now it is an open prob-
lem whether the manifolds with volume-preserving local geodesic reflections are
locally homogeneous. For more details, references and further results we refer to
[Bu],[K2],[V3],[V4].

We already mentioned that the notion of geodesic reflections can be extended
and one may consider (local) reflections with respect to curves and submanifolds
of (M,g). By doing this, one obtains results illustrating the relation which ex-
ists between the geometry of (M, g), the geometry of the submanifolds and the
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geometry of tubular neighborhoods about them. Again, the properties of these
reflections have been used to define some particular classes of manifolds. Geodesic
reflections with respect to geodesics were first introduced by L. Vanhecke and T.J.
Willmore in [VW2] and were there used to characterize locally symmetric spaces
and spaces of constant curvature. As a matter of fact, the authors proved that a
manifold is locally symmetric if and only if the geodesic reflections with respect
to all geodesics are volume-preserving and that a Riemannian manifold is a space
of constant curvature if and only if the local geodesic symmetries with respect to
all geodesics are isometries. As concerns spaces of constant curvature it was then
explicitly proved in [VV-A] that the isometric property can be replaced by the har-
monic one. This result may also be seen as a consequence of the general result
proved in [DGV] according to which, for analytic data, the geodesic reflection with
respect to a submanifold B of a Riemannian manifold (M, ¢) is harmonic if and
only if it is isometric. For a survey we refer to [V4] and to Chapters III and IV for
a discussion of other properties of geodesic reflections.

Local reflections with respect to curves and submanifolds have also been shown
to be useful for studying almost contact geometry. When the manifold is an almost
contact metric manifold, it is natural to consider geodesic reflections with respect
to the integral curves of the characteristic vector field of the manifold, but also
reflections with respect to other naturally defined curves play an important role.
For instance, on a Sasakian manifold the integral curves of the characteristic vector
field are geodesics and having either isometric or harmonic reflections in these curves
is a characteristic property of the (locally) -symmetric manifolds. For an extensive
study of reflections and rotations in the context of almost contact geometry and for
a complete and update bibliography we refer to [Bu].

The characteristic vector field of a Sasakian manifold generates a Riemannian fo-
liation with geodesic one-dimensional leaves. These manifolds are just special cases
of Riemannian foliations. Reflections with respect to the leaves of a Riemannian
foliation have been considered in [ToV4]. The particular case of a Riemannian flow
generated by a unit Killing vector field was investigated by several other authors.
For a systematic account on this topic we refer to [GD].

The research presented in this work starts with a study of point rotations. These
are generalizations to arbitrary Riemannian manifolds of point rotations in or-
dinary Euclidean space and in turn generalize the already considered local geo-
desic reflections. A rotation s, around a point m on a Riemannian manifold is
the local diffeomorphism defined, in a sufficiently small neighborhood of m, by
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Sm = €Xpm 0 .S 0exp; .}, where S is a (1, 1)-tensor field on the manifold (M, g) that
preserves the metric g. S is called a rotation field and s,, a (local) S-rotation. In
this way we obtain a field s : m — s, of S-rotations such that d3m|m = Sm.

Several examples of rotations occur in differential geometry. Let S be a rotation
field on (M, g) such that I — S is non-singular (I denotes the Kronecker tensor
field) and suppose that, for each m € M, s, is a local isometry which preserves
S. Then (M,g) together with the field s of S-rotations is called a Riemannian
locally s-reqular manifold. This class of manifolds was first introduced in [GL] (cf.
[K1] and Chapter 2 for more details and references). When S is of finite order,
ie., S¥ = I for some k € N, (M, g) is called a locally k-symmetric space and we
obtain the locally symmetric spaces when & = 2. The rotation field .S associated to
a Riemannian locally s-regular manifold is such that both the covariant derivatives
VS and V2S, taken with respect to the Levi Civita connection, are S-invariant.
In [SV3] it is proved that a rotation field S with these properties induces a locally
s-regular structure on (M, g) if and only if, for each m € M, the S-rotation s,
is harmonic. Alternative geometric characterizations of the class of Riemannian
locally s-regular manifolds in terms of the s-invariance of the shape operators and
of the Ricci operators of small geodesic spheres may be found, respectively, in [LV1]
and [DV1]. See also Chapter 2.

Concerning almost Hermitian geometry there is a very natural class of rotations
to be considered. Let (M, g, J) be an almost Hermitian manifold; then we may con-
sider the field j of J-rotations that is defined by j : m + j,n = €xpy, © Jyn 0 €XPY,
for all m € M. Again, one may expect that there will be a relation between the
properties of these local diffeomorphisms and the geometry of (M,g,J). One of
our purposes in this work is to investigate this. We shall concentrate on aspects
about Riemannian and almost Hermitian geometry and consider isometric, har-
monic, symplectic and holomorphic J-rotations.

In Chapter 2 it is proved, for example, that on an almost Hermitian manifold
each J-rotation is harmonic if and only if it is isometric. Moreover, the only K&hler
manifolds all of whose J-rotations around all points are either isometric or har-
monic are the locally Hermitian symmetric spaces (cf. [NV1]). Furthermore, as
these particular rotations induce global diffeomorphisms on the (small) geodesic
spheres of (M, ¢), we are interested here in the study of the invariance, under these
diffeomorphisms, of some operators and naturally defined functions connected to
the extrinsic and intrinsic geometry of (small) geodesic spheres. All this leads again
to new characterizations of some special classes of almost Hermitian manifolds, in
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particular of Hermitian symmetric spaces (cf. [NV1]).

In Chapter 3 and Chapter 4 we continue our research by introducing the no-
tions of rotations around curves and submanifolds (cf. [NV3],[NV4]). Our aim
is to treat analogous problems as those treated for reflections. More specifically,
we shall deal with harmonic rotations and focus as before on the relation between
harmonic and isometric rotations. There are several examples of rotations. Ev-
ery orientation-preserving element f of the isotropy subgroup at some point p of
an odd-dimensional homogeneous Riemannian manifold is a rotation around the
geodesic through p given by v(¢) = expn,(tv), where v is a unit tangent vector
corresponding to the eigenvalue +1 of df |,. Another example was provided by J.
Inoguti (cf. [In]) in the context of K-contact geometry. The author introduced
the so-called ¢-rotation around a flow line of the characteristic vector field on a
K-contact manifold and proved that within the class of K-contact manifolds the
locally (p-symmetric Sasakian manifolds are characterized by having isometric -
rotations. Also in this situation one finds that the harmonic property is equivalent
to the isometric one (cf. [BuV]).

It will be clear from the detailed discussion that, in general, the problems for
rotations are more complicated than for reflections and this will be reflected in
restrictions on the class of ambient spaces or the class of submanifolds considered.
Among other results, we prove that harmonic and isometric rotations around a
totally geodesic submanifold with flat normal connection coincide when the ambient
space is a locally symmetric Einstein manifold. From this we also obtain that a
rotation around a geodesic in a locally symmetric Einstein manifold is harmonic if
and only if it is an isometry (cf. [NV3],[NV4]). The curve and submanifold cases
are treated separately in Chapter 3 and 4 to better underline the role played by
the geometry of the submanifold, namely by the second fundamental form and the
normal connection of the submanifold.

The method employed to prove our results, as well as to prove most of the
results we refer to throughout the work, is based on the power series expansions
of suitable geometric quantities connected with the specific problems. For this it
is necessary to consider the theory of power series expansions of tensor fields in
normal coordinates and, more generally, in Fermi coordinates. Although there are
general procedures (cf. [Gr4],[GV2],|GV3]), we shall use here Jacobi vector fields
to provide the needed power series expansions (cf. [V4]).

The preparatory material and the basic technical tools we shall need in the course
of the work are presented in Chapter 1.
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The original contributions of this thesis are essentially those contained in the
items [NV1],[NV2],[NV3],[NV4] of the bibliography, except that alternative proofs
have been provided on some occasions and some new results have been added

throughout.



Chapter 1

Preliminaries on Riemannian manifolds

In this chapter we review the basic notions regarding Riemannian manifolds
and provide the set-up for studying the geometry of normal neighborhoods and of
tubular neighborhoods about curves and submanifolds. In the course of the expo-

sition we shall use standard material as presented in [Be2],[Go],[GKM],[KN],[ON]
and [V4]. So, we shall not always specify the precise references.

1.1 Exponential map and Jacobi fields

Let (M, g) be an n-dimensional connected C'*° Riemannian manifold (henceforth,
if not otherwise stated, all objects will be assumed C*°). Let T'M denote the tangent
bundle, g the Riemannian metric and V the corresponding Levi Civita connection,
which is the unique torsion-free connection for which ¢ is parallel, i.e., Vg = 0.
This is given by

- g(Xv [Y7 Z]) + g(Y’ [Z7X]) + g(Z7 [X7 Y])
for any X, Y, Z € X(M), where X(M) denotes the set of vector fields on M. The

Riemann curvature tensor R of V is given, using the following sign convention, by
(1.1) RxyZ =Vixyv)Z —[Vx,Vy]|Z

forall X,Y, Z € X(M).
The Ricci tensor p at a point m in M is defined by

pxy = p(X,Y) =tr(Z — RxzY)

11
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with X,Y,Z € T,,M. Therefore, if {Ey,...,E,} is an orthonormal frame at m,
pxy = o, 9(Rxg Y, E;). We recall that a Riemannian manifold (M,g) is an
Einstein manifold provided p = cg for some constant c.

If N is an arbitrary manifold and f : N — M a differentiable map, df : TN —
TM denotes the differential of f. V naturally extends to a covariant derivative for
vector fields along f. For any vector field A on N and any vector field ¥ along f
the covariant derivative V 4Y is uniquely determined by requiring the chain rule
V(X o f) = Vgp()X for any tangent vector v € TN and any vector field X on M.
As a consequence we obtain for the Levi Civita connection :

(1.2) Vadf(B) - Vpdf(A) - df([4, B]) = 0,
(1.3) Rapayap3)Y = VaVgY — VgV aY — Vi g,

where A, B are vector fields on N and Y a vector field along f.

For a curve v : I = [a,b] — M the parameter vector field on I with respect to
the parameter ¢ will be denoted by (—id; and the tangent vector ¥(¢) = (d’y(—a%))(t) of
v at t is also denoted by (%~)(t). The covariant derivative V 4 Y for a vector field

Y along « will also be abbreviated by Y.
A curve v is said to be a geodesic if it satisfies the second order non-linear
differential equation (the geodesic equation)

4= 0.

It is worth noting that the geodesics with respect to the Levi Civita connection
are solutions of a natural variational problem in Riemannian geometry. They are
precisely the stationary points (with respect to fixed boundary values y(a), v(b))
of the energy functional

4

b
O Y R CORTON?

Stationary points of the length functional

b
L) =5 [ 9,0
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also give rise to geodesics, but possibly only after reparametrization, as they need
not be parametrized by (an affine transformation of ) arc length, i.e., need not satisfy

g(3(¢),%(t)) = const.

The ezponential map exp : TM — M is determined by the initial value problem
for geodesics, that is, if v € T}, M then exp(v) = 7,(1), where ~, is the geodesic
with initial conditions v,(0) = m and %,(0) = v. The exponential map at m,
denoted by exp,,, is the restriction of exp to the tangent space T, M. exp as well
as expm, are smooth and moreover the differential of exp,, at the origin of T, M
is the identity map. Therefore exp,, is a diffeomorphism in a neighborhood of the
zero vector of T,, M .

A Jacobs field Y(t) along a geodesic v is a vector field along « that is a solution
of the second order linear differential equation (the Jacob: equation)

(1.4) Y'(t) + Ryyn(t) = 0.

Any Y is uniquely determined by its initial conditions of order zero and one.
For a geodesic v the operator R along v defined on {¥(t)}* C TyoM by

R,7 X - Rﬂ,(t)x")’(t)

is the Jacobt operator along v. As a consequence of the symmetries of R we have that
R, is self-adjoint. For each m € M and each v € T), M one also defines the Jacobi
operator as the self-adjoint endomorphism R, of {v}"' C T;M by R,(w) = Ryyv,
forallw € {v}J‘. The Jacobi operator has been shown to be a useful tool to describe
the curvature along geodesics in a Riemannian manifold (for some applications see

for example [BV]).

Jacobi fields along a geodesic arise naturally as variational vector fields of one-
parameter families of geodesics. In fact if V' is a geodesic variation of v, 1.e.,

ViIx(—ee€)— M(ts)— V(t,s)

is differentiable and V'(¢,0) = v(t) and t — V(¢, ) is a geodesic for all s € (—¢,¢),

then Y (t) = (£V)(¢,0) is a Jacobi field along 7 since (1.2), [2,Z]=0and (1.3)
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yield
YI(E) = (Vo Vo 2V)(1,0) = (Vo V.o 2V, 0)
()= (Vg Ve gz V)1,0)= (Ve Ve =V,
0 0
= (V4. V5 5 V)(H0) = (V4 V 4 = V)(5,0)
= —Riyy1(t)-

Therefore the Jacobi equation is the linearization of the geodesic equation along
~ and it contains the infinitesimal information about geodesics and the curvature
along geodesics. Conversely, any solution of the Jacobi equation (1.4) can be ob-
tained as a variational vector field of a suitable geodesic variation of the geodesic

v (cf. [KN]).

Note that V' can be written in the following way. If « is the curve a(s) = V/(0, s)
and ¢ the vector field along o given by £(s) = (£ V)(0, s) then V (¢, s) = expa(s)t&(s)
and Y'(¢) is a Jacobi field along the geodesic (t) = expq(0)t£(0). Observe that £(0)
is the initial velocity vector of the geodesic v and that Y'(¢) = (V% 2V)(t,0). The
initial conditions of Y (¢) in terms of a and ¢ are Y(0) = (< )(0) and Y'(¢) = £(0).

The preceding discussion indicates a general method to generate Jacobi vector
fields with prescribed initial values. We state this as a lemma.

LEMMA 1.1. Let v : I — M,t — ~(t) be a unit speed geodesic with v(0) = m,
and let v,w € T, M. Then for any curve o : (—e,€) — M, s — a(s) with a(0) =m
and &(0) = v and any vector field £ along o with £(0) = ¥(0) and £'(0) = w,

V(t, 3) = eXPa(s)té.(‘s)

defines, on a suitable open subset of R%, a geodesic variation of v and the vector
field Y (t) = (£V)(¢,0) is the unique Jacobi field along v with Y(0) = v, Y'(0) = w
and Y'(t) = (V.2 5;V)(2,0).

REMARK. Among the variations with the properties as in the Lemma 1.1 there
is a natural one to be considered. Let v and « be as in the lemma and let X, W
denote the V-parallel vector fields along a with X(0) = 4(0) and W(0) = w. Then
a and £(s) = X (s) + sW(s) give rise to a variation V which generates the Jacobi
field Y with Y (0) = v, Y'(0) = w.
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For example, the Jacobi field with initial conditions ¥'(0) = 0, Y'(0) = w along
the geodesic expy,(tu) is obtained from the variation V(¢,s) = expm,(t(u + sw)).
Here «(s) is the constant curve a(s) =m, £(s) = u + sw and

Y(t) = dexpm g tw.

This shows that in a neighborhood of the zero vector of T,, M the differential of the
restriction €Xpr,, m = €XPm 18 determined by Jacobi vector fields on M with these
initial conditions.

More generally, the differential of exp is completely determined by Jacobi fields.
In fact, any tangent vector u to TM can be written as the tangent vector u =
(££)(0) of a curve s +— £(s) in TM. ¢ is a vector field along the base curve
a(s) = moé(s), where n : TM — M denotes the projection of TM. Then, if V and

Y are defined as above we have

dexPae) 0y (1) = “a(exPage) 0 E(5))(0) = (+V)(1,0) = V(L)

1.2 Normal neighborhoods, normal coordinates
and power series expansions

Let m € M, then an open set U is said to be a normal neighborhood of m if it
is diffeomorphic via exp.,, to an open starshaped neighborhood of the zero vector
in T, M. On a normal neighborhood U of m one can introduce normal (geodesic)
coordinates (z',...,z™) at m defined by

n
mi(expm(z ale;) = a', i=1,...,n,

i=1
where {e1, ..., €,} is an orthonormal basis of the tangent space T,, M at m. Clearly,
5%;(771) =e¢e;, 12 =1,...,n and moreover

o 0
gij(m) = g(é‘ga @)(m) = i,

0
o7)(m) =0,

9g;
—é;—g-(m):() &= Th(m)=0 (Ve,
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forallz,7,k =1,.
We recall that the Chrlstoﬁ'el symbols P are defined by V 2 ——- =3 et

and are expressed in terms of the metric ¢ by the following formula

U 31:"

Bg, Bg 8g,
_ 9 Z kl( l J.l ] )’

x'l
where g*' is the (k,!) entry of the inverse matrix of (g;;).

Next, let v be a geodesic parametrized by arc length r such that v(0) = m,
4(0) = v = e; and extend the basis {ey,...,e,} to a basis {E1(r),..., E,(r)} by
parallel translation along v. Now, by definition of normal coordinates we have for
sufficiently small r

0
En (v(r)) = dexpm|ru(€a) a=2,...,n.

According to Lemma 1.1 and the successive refnark, this implies that the vector
fields along v given by

(1.5) Y.(r)= raia (v(r)) a=2,...,n.
are the unique Jacobi vector fields with initial conditions
(1.6) Y.(0) =0, Y, (0) = e, a=2,...,n.

In this way we get a description along v of the normal coordinate vector fields
ai- ’s in terms of Jacobi fields, which are easier to handle as they are solutions of

the Jacobi equation with prescrlbed initial conditions. Next, put
(1.7) Yo(r) = (AE,)(r), a=2,...,n.

Then r — A(r) is an endomorphism-valued function. Each A(r) is an endomor-
phism of the space {#(r)}* and these spaces may be identified via the parallel
translation along vy with respect to V using the parallel basis {E1,..., E,}. Actu-
ally, A(r) can be thought of as an endomorphism of {#(0)}* once we assume that
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for X € {#(0)}+, A(r)X = 771A(r)7,. X, where 7, denotes the parallel translation
along 7.

Using (1.7) in (1.4) and the initial conditions (1.6) we obtain the following
endomorphism-valued Jacobi equation

(1.8) A"+ R,0A=0,
with initial conditions

(1.9) A0)=0,  A'0)=Idp,..
For R., we make the same identification as for A(r).

By the Jacobi equation (1.8) and the initial conditions (1.9) we get then

7‘3 4 7.5

r
(1.10) A(ry=rl — —6—Ru ~ ER; + -5-!-(—~3RZ + Ry 0 Ry)

6
+ %7(_41311’ +4R. 0 Ry + 2Ry 0 B'Y) + O(r7),

where R = (VE  R),.u and O(r") means terms of order seven or more in r.

We present now some applications of the preceding formulae to study the geom-
etry in normal neighborhoods.

We start by determining the components g;; = 9(5%;, ;9%—) of the metric tensor
g with respect to normal coordinates about m. For general methods to write
down power series expansions of covariant tensor fields we refer to [Gr4],[GrT],

[GV1],[Pe],[Gh]. The fact that

o () = - (1(7),

and the Gauss Lemma (cf. [CE]) yield at p = expm(ru)

(1.11) g1(p) = 1, 91a(p) = 0, a=2,...,n.
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Moreover, we have

1 0 0 1
(1.12) 9ab(p) = —59(r5—=2,r33)(7(r)) = —59(AEq, AEs)(r).
Therefore we obtain
7'2 7'3
(113) gab(p) = 6ab e "‘3"Ruaub(m) - 'E’(VuR)uaub(m)
4 n
r 2
+ 755 (-AViuR)uaus +8 ; Ruaui Rupui}(m)
5 n
r
Al v3 uau 2 u vautdlubui
+ (vuR)ubuiRuaui)}(m)

6
r
+ F{_lO(viuuuR)ua’Ub

+34> (V2 R)uauiRubui + (VE,R)ubui Ruaui)

i=1

-+ 55 Z(VUR)uauz(vuR)ubuz

=1
—16 Z RuauiRubujRuiuj} + O(TT))
ii=1

where a,b=2,...,n and Ruaub stands for Ruc,ue, = §(Rue, U, €3). By using (1.10),
(1.13) and the relations gikgk’ = 6;; we get the expansions for the contravariant
components of g:

(1.14) =1 ¢ =0,
7'2 T'3
(115) gab = Oqp + ?Ruaub(m) + E(vuR)uaub(m)
4 n
+ 2_0{3(v3uR)ualLb +4 Z RuauiRubui}(m)

=1

+ O(r%).
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As a further application we describe how the endomorphism A intervenes in the
computation of functions and operators related to the geometry of geodesic spheres
in a Riemannian manifold (cf. [V4],[VW1]).

Let Gn(T) = expmSm(T), where S;,,(T) denotes the sphere centered at the origin
of TpyM and radius 7, 7 sufficiently small. It is a hypersurface of (M,g). The
extrinsic geometry of G,(7) is described by the shape operator T,,, defined at

p = expm(Tu) by
(116) Toa(p)X = (Vx5 )p), X € T,Gn(),

where 56-; denotes the outward unit normal vector field along G ,.(7).
As the Jacobi vector fields Y,, a = 2,...,n, are tangent to the geodesic sphere
with center m, (1.16) leads to

)
(1.17) Tn(p)Ya = Vy, 5= = Vo Yo=Y,

due to the fact that, as I'(r,s) = expm(r cos(s)u + rsin(s)e,) is a diffeomorphism
of a neighborhood of (7,0) in R? onto a piece of surface through p in M, on this
el

surface we have [%, a—a;] = 0 and then Véa_ o = Vga_-‘% by the formula (1.2).

Therefore, at p = expm(ru),
(1.18) Tr(p) = (A'A71)(r).

So, the mean curvature h,, of the geodesic sphere G ,,(r) is given by

. _ ;-1 _ (detA)’
(1.19) R = t1Tm(p) = tr(A'A77)(r) = ) (7).
Finally, let
1
(1.20) Om(p) = (det(g:;))% (p),
where m is the center of the normal coordinate system (z1,...,2,) and p =

expm(ru) as above. 8, is the volume density function of exp,, and by (1.11) and
(1.12) we have

(1.21) 9Mmzri4@mxw
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Taking into account (1.19) and (1.21) we then obtain

n—1

(1.22) () = 2+ (Z2)),

1.3 Tubular Neighborhoods, Fermi coordinates
and power series expansions

Let (M, g) be an n-dimensional Riemannian manifold as above and let B be a
connected topologically embedded submanifold of dimension ¢q. The case ¢ = 1
will be dealt with in detail later. In what follows we consider B as a Riemannian
manifold with the induced metric and normal bundle v(M). First, we briefly recall
some useful formulae from the theory of submanifolds ([C1]).

1.3.1 Basic equations for submanifolds

%(B) will denote the set of tangent vector fields of B and X(B) the set of tangent
vector fields of M along B. Then

%(B) = %(B) @ x1(B),

where X+(B) consists of all vector fields normal to B. F(B) denotes the algebra
of real-valued C'*° functions on B.

Let V denote the Levi Civita connection of M and consider the covariant de-
rivative VxU of a vector field U along B in the direction X, X € X(B). The
connection V induces one on B by taking U tangent to B and projecting V xU
onto the tangent bundle T'B. This projection agrees with the intrinsically defined
Levi Civita connection V of the induced metric on B. We have the Gauss formula

(1.23) VxY =VxY + T(X,Y),

X,Y € X(B), where T : X(B) x ¥(B) — X1(B) is a symmetric F(B)-bilinear map,

the so-called second fundamental form of B in M. The mean curvature vector field
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H of B in M is defined by

q
(1.24) H =) T(E;E),
i=1
where {E4,..., E,} is an orthonormal frame field tangent to B. A submanifold is

manimeal if H = 0, and it is totally geodesic if T = 0.

There is also an induced metric connection on the normal bundle, the normal
connection V=+. It is given by projecting V x N onto v(B), where now N is a section
of v(B), that is N € X+(B) and X € X(B) . We have the Weingarten formula

(1.25) VxN =V%N +T(N)X,
where T(N) is related to T by g(T(N)X,Y) = —g(T(X,Y),N), X,Y € X(B)

(note that g(Y,N) = 0 implies 0 = g(VxY,N)+ ¢(Y,VxN) = ¢(T(X,Y),N) +
(Y, T(N)X). |

If R and R are the curvature tensors of V and V, respectively, the tangential
component of RxyZ is given in terms of R and T by the Gauss equation

~

(1.26) g(RxvZ,W) = g(RBxy 2, W)+g9(T(X, 2), T(Y, W))-g(T(X, W), T(Y, Z)),

where XY, Z, W € X(B).
On the other hand, by taking the normal component of RxyZ we have the
Codazzi equation

(1.27) (Rxy2)* = (VxT)(Y,2) - (VyT)(X, Z),
where (VxT)(Y,Z) = VL(T(Y,2)) - T(VxY,Z) - T(Y,VxZ).
The normal curvature tensor R+ is defined by
RyyN = Vix N = [Vx, V¥N,
where X,Y € X(B) and N € ¥1(B). R' verifies the Ricci equation given by
(1.28)  g(BxyU,V) = g(RxyU,V) + g(T(U)X,T(V)Y) - g(T(V)X,T(V)Y)
for X,Y tangent vector fields of B and U,V normal vector fields along B.

The normal curvature tensor represents an obstruction for the local existence of
normal parallel sections (i.e., parallel with respect to the normal connection) of the
normal bundle as it is stated in the following lemma (see for example [C1}).
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LEMMA 1.2. The following are equivalent:

(1) Rt is identically zero.

(2) Let g be any point in B. Then any vector N, in ve(B) may be uniquely
eztended to a local V1t-parallel section of v(B).

1.3.2 Tubular neighborhoods and the normal exponential
map

The exponential map of v, also called normal exponential map, and denoted
by exp,, is the restriction to v(B) of the exponential map on TM and is given
explicitly by

exp,((m,v)) = expm(v)

for m € B and v € vy (B). exp, is defined on an open domain containing the zero
section of v(B) that we shall always suppose sufficiently small in order to have a
diffeomorphic exp, (cf. [GKM],[ON]).

The differential of the normal exponential map is described by the so-called B-
Jacobi vector fields. A Jacobi field Y along a geodesic v : [0,8] — M,r — ~(r)
normal to B is a B-Jacobi field if it comes from a variation V of v through normal
geodesics, that is to say (cf. Section 1.1)

Y(r)= zl%expyré(s)|3=0,
where £(s) is a normal vector field along the curve a(s) = w0 €(s) and £(0) = 4(0).
Here m : v(B) — B is the projection of the normal bundle. Moreover, the method
described in Lemma 1.1 to generate Jacobi fields can be adapted with slight changes
to the specific case of B-Jacobi fields. In particular we have that B-Jacobi fields
are characterized by their initial conditions, i.e., Y is a B-Jacobi field along « if
and only if

Y(0)eT,B and Y'(0) - T(%(0))Y(0) is orthogonal to B.
For r > 0 we let

Up(r) = {u € vm(B) : m € B, ||u|| < r}.
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If exp, maps U p(r) diffeomorphically onto the open subset

Up(r) = exp,(Us(r)),

then Ug(r) is called a tubular neighborhood of B.
Up(r) can also be described as follows:

Up(r) = {m € M : there exists a geodesic v with length
L(v) < r from m to B meeting B orthogonally}

= |J {expm(v) : v € v(B), 0] <7}.
meRB

We also denote by Pp(r) the tube of radius r about B given by
Pp(r)={m e Up(r) : d(m,B) =r},

where d( , ) denotes the distance induced by the metric. It is a smooth hypersurface.
There is a natural parametrization for tubular neighborhoods about B in terms
of exp, when a parametrization of B is known. We describe it in what follows.

1.3.3 Fermi coordinates

Let {E;,...,E,} be a local orthonormal frame field of (M,g) along B in a
neighborhood U C B of a point m € B. We choose Ey, ..., E, to be tangent vector
fields and Ey41,. .., E, orthonormal sections of v(B). If (y',...,y?) is a system of
coordinates for B on U such that %(m) = E;(m), ¢ =1,...,q, then the Ferm:
coordinates ', ..., z™ relative to m, (y',...,y") and the frame field Eyt1,...,E,

are given by (cf. [G16],[GrT],[GKM],[V4])

n

zi(exp, Z t2Eo (b)) = yi(b), i=1,...,q

a=q-+1

z%(exp, Z t*EL (b)) = t°, a=q+1,...,n,

a=g-+1
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where b € U and the t®’s are small enough, in accordance with the hypothesis made
above for exp,.

Now fix a normal unit vector u at m and consider the geodesic normal to B
given by v(r) = expm(ru). We shall specialize the frame field {Eq, ..., E,} in such
a way that F,(m) = u. Next, let {e1(r),...,en(r)} be the frame field along ~(r)
obtained by parallel translation of {Ej(m),..., E,(m)} with respect to the Levi
Civita connection V of (M, g).

Again, by definition of Fermi coordinates and taking into account the discussion
made above about B-Jacobi vector fields, it is easily seen that the vector fields

(1.2 Vi) = (), Yalr) = raa (7)),
1 =1,...,¢; a = ¢+ 1,...,n — 1, are Jacobi vector fields along v with initial
conditions

Y;(0) = Ei(m), Y/(0)=Vyozx = (Ve E,)(m), i=1,...,q,
(1.30)
Y,(0) =0, Y!(0) = E.(m), a=q+1,...,n.

Then the endomorphism-valued function r +— Dy(r) defined by
(1.31) Yo(r) = Dy(r)eq(r), a=1,...,n—1,
satisfies the endomorphism-valued Jacobi equation

(1.32) D)+ R,0oD, =0.

Each D,(r) is an endomorphism of the space {¥(r)}* and as we mentioned above,
these spaces may be identified via the parallel translation along v by using the
parallel basis {e4(7)}. Using the Gauss and Weingarten formulae introduced above
the initial conditions for D, (r) with respect to the basis {E1(m),..., En—1(m)} are
given in matrix form by

I, 0 T(u) 0
(1.33) D,(0) = ,  Dy(0)=
0 0 —t—l—(u) In—q—h

where
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T(u)ij = g(T(w)Ei, Bj)(m), L (wia = 9(VE,Ea, En)(m);
I, and I,,_4—; are the identity matrices of order ¢ and n — g — 1, respectively.

REMARK. Note that the local orthonormal frame {E;41,..., En} can always be
chosen to be parallel with respect to the normal connection at any single point in
U. Moreover, according to Lemma 1.2, it can be taken parallel on U if and only if
the normal connection is flat.

Again, as an application of the preceding formulae we compute the covariant and
contravariant components of the metric tensor with respect to Fermi coordinates

(see also [V4],[NV4]). Let

R I I I BB
gij = ¢ 8:ci’8xj ) Gia =9 8:1:“8:1:“ ) Jab = G 83:“’6‘:1:” )

i,j=1,...,¢; a,b=¢+1,...,n and p = exp,(ru). Then the generalized Gauss
Lemma (cf. [Gr7]) and & (y(r)) = 52 (y(r)) imply

ginzganzo, gnnzl.

Next, using (1.29) we get

g‘ij(p) = g(Du(T)B,', DU(T)ej)7
(1.34) gia(p) = ~9(Dulr)ei, Du(r)ea),

9as(p) = 5 9(Dulr)ea, D(r)es).

The use of the Jacobi equation (1.32) and the initial conditions (1.33) for D, yield
the following power series expansions (by abuse of notation we will also denote by
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the same symbol the linear map corresponding to the matrix .L(u)):

(1.35) 9i;(p) = 9(Es, Ej)(m) + 2rg(T(uv)Es, Ej)(m)
+72{—g(RuE;, E;) + 9(T(u)*E;, E;)
+g(*L(w)Ei," L(u)E;)}(m)

3
T

+ 29(RuE;, T(w)E:) — 2g(RuEs,! L(w)E;)
—2g(R.E;," L(w)E;)}(m)
- L {o(RUE. Ey) — 4g(RLE, B))
+39(R,Ei, T(uv)E;)
+ 39(R/(w)E;, T(w)Ey)
+49(R,T(u)E;, T(w)E;)
—3¢(R,E:,' L(w)E;) — 3¢(R,E;," L(w)E;)
+49(Ru' L(w)E;,! L(u)E;)
—49(R." L(u)E;, T(u)E;)
— 4g(R.T(w)E;,* L(w)E;)}(m) + O(r®),

(1.36) gia(p) = —rg(* L(w)Es, Ea)(m) — %——g(RuEi,Ea)(m)

3

— S{80(RLE;, Eo) + 49(R.T(w)Bi, o)
—4g(R, ' L(v)E;, E,)}(m)
4
~ 55 {20(RIE;, Bo) — 49(RLE;, o)
+59(T(u)Ei, R, E,)
— 59(*L(u)Ei, R\, Eq)}(m) + O(r%),
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(1.37) 9ab(p) = 9(Ba, Ey)(m) = 7-0(RuFa, Ey)(m)
- (R B, By)om)

7.4

+ 755 (89(RiEa, By) — 99(R,Ea, Ep)}(m)
+0(r%). '
Furthermore, by solving the equations
8ij = gikg™ + giag®,
0= girg" + ging™?,
Sab = 9akg"" + gacg®,
with k,7,7 =1,...,q and a,b,c = ¢+ 1,...,n, we obtain
(1.38) 9" (p) = 9(Ei, Ej)(m) — 2rg(T(u)Ei, E;)(m)
+r*{39(T(u)*Es, Ej) + g(RuEi, Ej)}(m)
3
7,
+ T g(RLE:, B)) - 49(T () By, R )
—49(RuE;, T(u)E;)
—12g(T(u)* E;, Ej) H(m) + O(r*),
22

3
— 3 (T(w)E:, Ex)g(* L(w) By, Ea)}(m)
k

(1.39) g'*(p) = rg(*L(u)Es, Eq)(m) +

{Q(RuEian)

(o ), B) — (BT (1) By, )

+4 g(RuEi,Ek)g(t_L(u)Ek,Ea)
k

+12) g(T(w)* By, E)g(* L(w)Ex, Eo)}(m)
k

+0(t%),

27
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(140)  gH(p) = (Eur E)m) + - {g( R i)

+3 5" g(* L(u) Ex, Ba)g(* L(u)Ey, Ea)}(m)

3
T
+—6—{9(R;Ea7 Eb)

~12 ) g(T(u)Ex, Eg(* L(u)Ex, Ea)g(* L(w)Er, Es)
k1

+4 Z g(RuEk7 Ea)g(tJ-(u)Ek) Eb)
k

+4 ) 9(RuBr, Ev)g(*L(u)Ex, Ea)}(m) + 0(r*).
k

1.3.4 The curve case

We specialize now the preceding formulae to the case of a (unit speed) embedded
curve o : [a,b] — M. As the normal connection of v(o) is obviously flat, it is not
restrictive to work with normal vector fields along ¢ which are parallel with respect
to the normal connection of v(¢). This considerably simplifies the treatment.

Let {Ey(t),..., En(t)} be an orthonormal frame along o, such that Fy(t) = &(¢)
and Fs,..., E, are normal vector fields along o which are parallel with respect to
the normal connection. Then, on a tubular neighborhood U, of o, the Fermi coordi-
nates (z1,...,2,) with respect to o(¢,), t, € [a,b], and the frame field {E,, ..., E,}
are defined by

ml(expa(t) thEjla(t)) =t—1,
Jj=2

n
' (expo(s) Zt”Ele(t)) =t i=2,...,n.

i=2

For p € U, we have p = exp,(yv, where v = Y i, z'E;(t) = ru, |jul] = 1 and

2

TZ = Z?:? (mi)d'
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In general o is not a geodesic and we put

Ky = g(5,u),

where (1) = (V 2 6)(1) is the (mean) curvature vector of o normal to o at ¢. If u

is VX parallel along o, we have

(V s u)(o(1)) = g((V 2 u)(2), 6(1))5 (),
Therefore, since g(u, &) = 0,
(1.41) (V 2 u)(o(t) = —g(u, (1))5(t) = —rud(2).

Thus if we assume that E,(t) = 4(0), where v : r + expy(s(ru), (1.41) reads in
Fermi coordinates

(Vo w)(o(t)) = —rus (1)

Hence the initial conditions for D,(r) are (cf. (1.30))

Du(0)=<(1) DL), DL(0)=<—5” .rno_2>‘

Proceeding as in the general case we get for m = o(t) and p = exp,(y(ru) the
following power series expansions for the components of the metric with respect to
Fermi coordinates:

(1.42) g11(p) = 1 — 2rku(m) + T'Q(fii — Ryy1u)(m)

3
—_ %{(VUR)lulu - 4/‘3uR1u1u}(m)

4 n
r
- E{(ViuR)lulu -4 Z Ri?ucu

c=2

— 6k4(VuR)1u1u + 45iR1u1u}(m) + O(TS),
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(1.43)

(1.44)

(1.45)

(1.46)
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2r2
91a(p) = ~ 5~ Riuau(m)
,,.3
— E{B(VUR)luau - 4’{'uR1ua.u}(m)

4
T
- %{Q(ViuR)luau - 4]%lulu]?'luau

-4 Z RlucuRaucu - 55u<vuR)1uau}(m)
c=2

+0(r%),

2

3
T
gab(p) - 6ab - ?Ruaub(m) - %(vuR)uaub(m)

{g(vzuR)uaub - 8R1uauR1ubu

7“4
180
-8 Z RuaucRubuc}(m) + O(r5)7

c=2

gu(p) =14 2rk,(m) + r2(R1u1u + SRi)(m)

3
%{(vuR)lulu + 8’§uR1u1u + 12/"":;}(771)

4 n
r

c=2

+ 30ku(VuR)1u1u + 1805% Riu1u + 18053 }(m)
+ O(r%),

2r2

3
gla(p) = ?Rluau(m) + %‘{(vuR)luau + K'uRluau}(m)

4
r
'4—5" {3(ViuR)1uau + 24‘R1u1uRluau

+ 4 Z RlucuRaucu + 15ﬁu(vuR)luau

c=2

+ 6052R1uau}(m) + O(Ts)’
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2 3

(147) gab(p) - 6ab + %Ruaub(m) + %(VUR)ua,ub(m)

4
r
éa{g(viuR)uaub + 24RluauRlubu

+4 Z RuaucRubuc}(m) + O(TS)-

c=2

1.4 Almost Hermitian geometry

1.4.1 Almost Hermitian manifolds

An almost complex manifold is a smooth manifold M equipped with a (1,1)-
tensor field J wich satisfies J? = —I, where I denotes the identity map. M is
necessarily even-dimensional and orientable. Note that J gives TM a structure of
complex vector bundle over M by posing (a +0)X = aX +bJX, X € X(M), a,b
real numbers. The complexification TeM = TM @gr C of TM splits into conjugate
subbundles under the action of J,

TeM = THO M) @ 7OV (M),

where Jip(,0(p) =1 and TOD(M) is the complex conjugate of T ().
TWO (M) is generated by elements of the form U = (X —iJX), X tangent

vector and the mapping X +— U defines a C-linear isomorphism between T'M and
TEO(M).

A map f: M — N between almost complex manifolds (M, JM) and (N, JY)
is said to be holomorphic if its differential df : TM — TN commutes with the
respective almost complex structures, i.e.,

df o JM = JN o df,

and anti-holomorphic if it anti-commutes, i.e., df o JM = —JN o df.
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A Hermatian metric on an almost complex manifold M is a Riemannian metric
g such that
g(JX, JY) = g(X’Y)

for all X,Y € X(M). Every almost complex manifold admits such a metric, for
example by taking ¢(X,Y) = h(X,Y)+h(JX,JY) with h an arbitrary metric. An
almost complex manifold with an Hermitian metric is called an almost Hermitian
manifold .

Let (M, g,J) be an almost Hermitian manifold and N a submanifold of M. N
is said to be a holomorphic submanifold of M if JT(N) = Tpn(N) for all m € N
and N is a totally real submanifold if for all m € N we have JT,,(N) C T (N),
where T:-(N) denotes the normal space (with respect to g) to Ty N in T M.

In almost Hermitian geometry two additional tensors defined in terms of J play
a special role. The first is the Kdhler form Q defined for X, Y € X(M) by

QX,Y)=g(X,JY).

Notice that €2 is skew-symmetric and defines a differential two-form. Moreover it
is non-degenerate as bilinear form on each tangent space.
The second is the so-called Nijenhuis tensor N defined by

N(X,Y) = [X,Y] - [JX,JY] + J[JX,Y] + J[X, JY).

The condition N = 0 means that the almost complex structure is integrable (cf.
[KN],vol.II,[Go],[NN]), that is, locally there exist coordinates (z!,...,2™), 2m =
dimpM, zF = 2% +1yF, k= 1,..., m, for which

9. 0
T(500) = 5,7

Since any two such systems of coordinates are related by a biholomorphic change of
variables, the integrability condition is equivalent to M being a complez manifold.

We describe now some types of almost Hermitian manifolds obtained by assuming
additional conditions on J and 2. In what follows V will denote the Levi Civita
connection of the Hermitian metric g.
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DEFINITION. An almost Hermitian manifold (M, g, J) is (cf. [Grl],[V1])

(1) Hermitian if N = 0 or, equivalently, (VxJ)Y — (VsxJ)JY =0;

(2) Kahler if VJ = 0; (In this case VQ = 0 and so d2 = 0. Moreover J is
necessarily integrable.)

(3) Nearly-Kahler if (VxJ)Y + (VyJ)X =0;

(4) Quasi-Kéhlerif (VxJ)Y 4+ (VixJ)JY =0;

(5) Almost-Kdhler if Q is closed, i.e., d§2 = 0;

(6) Semi-Kdhler if 6Q =0, where § denotes the codifferential.

A remarkable feature of Kahler manifolds is that the Riemann curvature tensor
satisfies the so-called Kdhler identity, i.e., (cf. [KN], vol. II)

RxyoJ=JoRxy, X,Y € X(M).

Kahler and almost-Kahler manifolds are examples of a broader class of manifolds
which we will treat now.

A smooth manifold M equipped with a closed 2-form 2 which is non-degenerate
as a bilinear form on each tangent space is called symplectic . (M,£2) is neces-
sarily even-dimensional and orientable. Among other restrictions, most of them
of topological kind, a further restriction on a smooth manifold to be symplec-
tic is that it must admit an almost-Kihler structure. To see this we pick any
Riemannian metric ¢ on a symplectic manifold (M,2). Then £ can be rep-
resented with respect to ¢ by a skew-symmetric endomorphism A on TM, i.e.,
QX,Y) = g(X,AY). —A? is then positive definite so that it has a positive square
root B. Set J = AB~!. Since A and B commute, J? = —I, while Q(JX,JY) =
g(AB7'X, AAB™Y) = —g(AB7'X,BY) = —g(AX,Y) = QX,Y). On the other
hand, Q(JX,X) = g(AB7'X,AX) = ¢(BX,X), which is strictly positive for
X # 0. This says that the modified metric ¢'(X,Y) = ¢g(X,BY) gives M the

structure of an almost-Kahler manifold with Kahler 2-form 2.

If (M,) is symplectic, then a symplectic diffeomorphism of M is a diffeomor-
phism f: M — M which preserves {, i.e.,

0 = Q.

For example the group of holomorphic isometries of a Kahler manifold M consists
of symplectic diffeomorphisms of (M, §2).
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However, we emphasize that our use of the word symplectic in the framework of
Hermitian geometry does not imply necessarily that the Kéhler form 2 is closed

(cf. [SV1],[V3]).

1.4.2 Holomorphic normal coordinates

Let (M,g,J) be a K&hler manifold with respect to the Hermitian metric g. ¢
extends by complex linearity to a complex bilinear form g on TcM (this form cannot
be positive definite) and determines a positive definite Hermitian scalar product h

on TcM, whose components with respect to complex coordinates (z!,...,z™) are
defined by

o 0 0

5}
ha,B = h(azaaé';ﬁ) "‘g(g';;, azﬁ) _ga-ﬂ-7

a,f=1,...,m.

Then h induces by restriction a positive definite Hermitian scalar product on the
holomorphic tangent bundle TM ~ T ().
This Hermitian scalar product A is (locally) expressed in the form

h=Y hapdz®®dz?  (hap = hga).
o,fB

The corresponding Riemannian metric ¢ is then

g = 2Re(z haﬁdz"‘ ® d;E)
a,B

In this setting the following are equivalent (cf. [Go],[KN],vol.II):
(1) (M,g) is Kahler.

(2) At each point m there are complex coordinates (z?,...,2™) such that
_ Ohagp o Ohqap
(1.49) hap(m) = bu 22 m) = 0 = 228 )

forall o, 8,7,6 =1,...,m.
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(3) For each point m there exists a system of complex coordinates (z1,...,2™)
centered at m such that h coincides with the flat metric )  dz® ® dz® up
to the order 1 at m, i.e.,

(1'49) ho:ﬁ(z’?‘:) = 6&;3 + 0(2)7

where O(2) means terms of order two or more in the z® and z®.

Complex coordinates as in (2) or (3) are called holomorphic normal coordinates.

REMARK. If z¥ = ¢* +iy* &k =1,...,m, are holomorphic normal coordinates,
it holds that

(Voo )m) =0, (Vo g2)m)=0, (Vs o)(m)=0,
9(520 5a)(m) = b1, 9550, r)(m) = b, 9555, 5r)(m) = bua,

for k,1 =1,...,m. Therefore, the real and imaginary parts of normal holomorphic
coordinates at a given point m match Riemann normal coordinates at m up to
the first order. In other words exp,, is holomorphic to second order at m in nor-
mal holomorphic coordinates. The request for exp,, to be holomorphic in normal
holomorphic coordinates forces M to be a flat Kéhler manifold. In fact, Riemann
normal coordinates (z!,...,22™) on U about m are real and imaginary parts of
normal holomorphic coordinates if and only if

0 3]
dt (")a:i) = Bgmti

1=1,...,m,

on U or, equivalently, if for p = expn,(ru) € U, u € T,, M,
(1.50) \ Jp 0 dexpm |y (€i) = dexpm|ru(J€i)-

Now, using Jacobi fields as indicated in Section 1.1 and taking into account that
M is Kéhler (VJ = 0), we write down power series expansions about m for both
sides of (1.50). The first necessary condition we get is

R,oJm —JnoR, =0,
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which yields
Ruzuy - RquuJy = 0) U, T,y € TmM

Putting u = z = y we obtain Ry jyyu sy = 0 and hence R = 0 (see [KN],vol.II, p.166).

1.5 Harmonic maps

Let ¢ : M — N be a smooth map between two Riemannian manifolds with
metrics g and h, respectively. The differential d¢ : TM — TN can be interpreted
as a homomorphism from the tangent bundle TM of M to the pull-back ¢~1TN
of the tangent bundle of N, i.e., d¢ can be considered as a section of the bundle
T*M®@¢ 1TN. Let V denote both the Levi Civita connection on TM and the pull-
back connection on ¢~!TN. With the due identifications, the covariant derivative

of d¢ is then defined by

(Vxdd)Y =Vx(d¢Y) — d¢(VxY), XY € X(M).
Since V is torsion-free

(Vxd$)(¥) — (Vydg)X = [dsX,dpY] — dg[X,Y] = 0.

Therefore Vd¢ is a section of the bundle S?*T*M ® ¢~ 'TN, i.e., is a symmetric
bilinear form on T'M with values in ¢ 'TN and is called the second fundamental
form of ¢. The trace of Vd¢ taken with respect to the metric g is called the tension

field of ¢ and is denoted by 7(¢). The map ¢ is harmonic if 7(¢) = 0 (cf. [ES],[EL]).

Let U C M be a domain with coordinates (z!,...,2™)and V C N a domain with
coordinates (y!,...,y") such that ¢(U) C V and suppose ¢ is locally represented
by y* = ¢%(z!,...,2™), a = 1,...,n. Then we have

247 . 07 ¢ dg”
T L Mpk T NpY ZF 2T
(1.50) V(de); = CIREW L) 5ok T Fag Oz 9z7’

where Ml"fj and Nf‘gﬁ denote the Christoffel symbols of (M, ¢) and (N, h), respec-
tively. Hence ¢ is harmonic if and only if

(1.51) () =g7(V(d$)]; =0, y=1,...,n.
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Harmonic maps occur in many different situations.

For example, if N = R, 7 is just the Laplace-Beltrami operator on (M, g) and
harmonic maps are just harmonic functions.

If M = [a,b] C R then a map from M into N is harmonic if and only if it is
a geodesic. But as we saw in Section 1.1, the geodesics are precisely the critical
points of the energy functional. In general, it can be seen that harmonic maps arise
as solutions of a variational problem and an arbitrary map ¢ is harmonic if and
only if it corresponds to a critical point of the energy functional

B()=5 [ lds’

where 04" 05°
2 jk oo

and 7(¢) = 0 is the associated Euler-Lagrange equation.

If ¢ is a Riemannian immersion, i.e., ¢*h = ¢, then Vd¢ is the classical second
fundamental form of the submanifold ¢(M) in N and ¢ is harmonic if and only if
it is a minimal immersion.

If ¢ is a holomorphic map between open sets U C C™ and V C C", where both
C™ and C™ are considered with the flat metric, then each component ¢ of ¢,
a =1,...,n, satisfies the Cauchy-Riemann equations

a [e
?L.:O, B=1,...,m.
028

Therefore ¢ is harmonic since each component satisfies the Laplace equation

T
=1 028028

If (M,g) and (N, h) are Kahler manifolds and ¢ is holomorphic, we can choose
holomorphic normal coordinates at p € M and ¢(p) € N (cf. Section 1.4). For
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such a choice of coordinates 7(¢)(p) reduces to the usual Laplacian and then, by
arguing as above, ¢ is harmonic.

More generally, one can give conditions on almost Hermitian manifolds M, N in
order that a holomorphic map ¢ : M — N should necessarily be harmonic. To this
purpose we state the following theorem by Lichnerowicz [Li].

THEOREM 1.3. Let ¢ : M — N be either a holomorphic or an anti-holomorphic
map of almost Hermstian manifolds, where M 1s semi-Kdihler and N s quasi-

Kdihler. Then ¢ 13 harmonic.



Chapter 2

Rotations around points

In this chapter we present some aspects of the theory of rotations around points
on a Riemannian manifold (M,g). A rotation s, around a point m € M is the
local diffeomorphism defined by s,, = exp, 0 S o exp;,,}, where S is a given (1,1)-
tensor field on M which preserves the metric g (the rotation field ). The concept of
rotations extends in a natural way the corresponding notion for ordinary Euclidean
space. In the same way as rotations in Euclidean space have properties that are di-
rectly related to Euclidean geometry, we can expect that in a Riemannian manifold
there should be a strong relation between rotations and the curvature properties
of M. Therefore, it is likely that on a specific Riemannian manifold obtained by
some restriction on the curvature, the rotations will have particular properties and,
on the other hand, if the rotations have special properties one may ask how these
reflect in the curvature of the ambient space.

After introducing the notion of a rotation around a point we discuss different
examples of rotations such as reflections, S-regular rotations and J-rotations. We
concentrate on aspects about Riemannian, Hermitian and symplectic geometry and
consider in particular isometric, symplectic, holomorphic and volume-preserving
rotations. Moreover, we study these properties of rotations in relation with the
extrinsic and intrinsic geometry of the (small) geodesic spheres of a Riemannian
manifold. In this way, we again obtain information on the curvature of the ambient
space.

2.1 Definitions and examples

Let (M,g) be a Riemannian manifold and V its Levi Civita connection. Fur-

39
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thermore, let S be a (1,1)-tensor field on M which preserves g, i.e.,
9(5X,8Y) = g(X,Y)

for all vector fields X, Y € X(M). S is said to be a rotation field on M. For
any rotation field S we define on a sufficiently small geodesic ball B,, with center
m € M a local diffeomorphism s,,, which fixes m, by

Sm = €XPm 0 Sm © exp;l.

We call s, a (local) S-rotation . In this way we obtain a field s : m +— s, of
S-rotations such that

dsmlm = Sm.

If S — I is non-singular (I denotes the Kronecker tensor field), i.e., Sy, has no fixed
tangent vector X € T, M for each m € M, then m is an isolated fixed point of s,
and we say that S is a free rotation field and s,, a free rotation. In the literature, S
and s,, have also been called a symmetry tensor field and a symmetry, respectively

(cf. [GL],[K1],[LV2).

For a system of normal coordinates (z!,...,z") on B,, centered at m and such
that '5?:7 =e;, 1t =1,...,n, we have the following analytic expression for s,,:

o s, = S]’:(m)a:j,

where S}(m) are the components of S at m with respect to the chosen basis. They
form an orthogonal matrix.

The following are some well-known examples of free rotations that occur in dif-
ferential geometry.

EXAMPLE 1. For § = —1I, s,, defines the local geodesic reflection or geodesic
symmetry with respect to m. See [V3],[V4] for applications and additional refer-
ences.

EXAMPLE 2. Let F(M) be the ring of all real-valued smooth functions on M.
For all non-negative integers p, ¢ let 77(M) be the module over F(M) of all smooth
tensor fields with contravariant and covariant orders p and g, respectively. Then, for
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a rotation field S we say that any T € TP(M) is S-invariant if for all wy,...,w, €
T2(M) and all X,..., X, € T}H(M)

T(w1S,...,wpS, X1,...,Xg) =T(wy,...,wp, SX1,...,5X,),

where (wS)X = w(SX) for w € T(M) and X € T}H(M).
In particular, a free rotation field S is said to be regular if VS and V2S are
S-invariant.

Next, let S be a free rotation field and suppose that for each m € M, s,,, is a
local isometry. Moreover, let S be s-invariant, that is

S(dsmX) =ds,,(SX)

for each vector field X defined on some neighborhood of m. (M, ¢) together with
the field s of S-rotations is called a Riemannian locally s-regular manifold .

If in addition S* = I for some k € Ny, k # 1, (M,g) together with S is
called a k-symmetric space (see [GL],[K1]). Note that Riemannian locally s-regular
manifolds are necessarily locally homogeneous and hence analytic.

For k =2 (S = —I) we obtain the classical locally symmetric spaces. For k = 3
we have the locally 3-symmetric spaces. Such manifolds are almost Hermitian
manifolds (M, g, J), where the almost complex structure is determined canonically
by the field s of S-rotations as follows:

Sm = dsm|m = —~%Im + —?Jm.

With respect to this almost complex structure the locally 3-symmetric spaces are
quasi-Kahler manifolds and in the connected, simply connected, complete case they
are nearly-Kahler if and only if they are naturally reductive homogeneous spaces.
For more details about locally 3-symmetric manifolds we refer to [Gr3],[K1],[TV3].

Any locally s-regular (in particular, any k-symmetric) Riemannian manifold can
be defined either by local isometries as above or equivalently by the following tensor
conditions on S and on the Riemannian curvature tensor ([GL],[K1]).

LEMMA 2.1. Let S be a regular rotation field on (M, g) such that R and VR are
S-invariant. Then V2R is S-invariant and hence all the covariant derivatives of R
are S-invariant. Moreover, (M, g) 1s a locally s-regular manifold with respect to S.
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EXAMPLE 3. On an almost Hermitian manifold (M, g, J), the almost complex
structure provides a natural free rotation field and hence a field of J-rotations.

So far we have considered only examples of free rotations. In the next are
considered non-free rotations.

EXAMPLE 4. Let (M, g) be a Riemannian manifold and P a (1,1)-tensor field
on M such that P? = I and g(PX,PY) = ¢(X,Y), X,Y € X(M). P is said
to be an almost product structure on M and (M, g, P) is called an almost product
manifold (cf. [Gr2]). The tensor fields V = {£ and H = 5L verify V2= H2 =1
and determine complementary distributions on M, neither of which is in general
integrable.

2.2 Isometric rotations

First, we note that any isometry f fixing a point m is a rotation when restricted
to-a suitable neighborhood of m. Its rotation field is df|,. We want to determine
necessary and sufficient conditions for an S-rotation to be an isometry. In the
analytic case we obtain the following criterion.

PROPOSITION 2.2. Let (M, g) be an analytic Riemannian manifold and m € M.

Then the S-rotation s, 18 an isometry if and only if

(2.1) (Vi xR)xvxy = (Vix. sxR)sxsysxsv, k=0,1,2,...

for each X, Y € T, M, X orthogonal to Y.

We refer to [KV3] for a proof. According to Proposition 2.2, if S satisfies (2.1)
we have as a consequence that the conditions

(2.2) (Vi ..x.B)xvzv = (Vix,  sx,R)sxsvszsv, kE=0,1,2,...

X1... X, X,Y, 2,V € T, M, hold. The conditions (2.2) are the classical conditions
for the existence of a local isometry in the analytic situation ([KN],vol.I). Thus,
in the analytic case, (2.1) implies (2.2). From the algebraic point of view this
implication has a non-trivial meaning and leads to the following (cf. [KV3])
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PROBLEM. Do the conditions (2.1) imply the conditions (2.2) for any &k ?

For k = 0 this is the standard fact that the sectional curvature uniquely deter-

mines the Riemann curvature tensor. For £ = 1 the implication is also true due to
(see [VW2],[Gr5],[CV1] and Lemma 2.24 in [Bel))

LEMMA 2.3. In a Riemannian manifold the following are equivalent:
(1) VR =0;

(2) (VxR)xyxy =0;

(3) (VvR)wxvz+ (VxR)wzyv + (VzR)wvyx = 0.

It is worth noting that the proofs of Lemma 2.3 given in [VW2],[Gr5] and [CV1]
are of algebraic kind, while the proof provided in [Bel] is based on the use of Jacobi
vector fields and the geodesic reflections.

Now we specialize Proposition 2.2 to the different examples considered above. In
the case of geodesic reflections (2.1) yields (VxR)xyxy = 0 and then for Lemma
2.3 this is equivalent to VR = 0. Hence, if (2.1) holds for each m, we get the well-
known fact that (M, g) is locally symmetric if and only if the geodesic reflections
Sm are 1sometries for each m € M.

For a regular rotation field S on (M, g), Proposition 2.2 and Lemma 2.1 yield
(INV2])

PROPOSITION 2.4. Let (M,g) be a Riemannian manifold and S a regular rota-

tion field. Then all S-rotations s,, are wsometries if and only if

(2.3) Rxyxy = Rsxsysxsy,

(2.4) (VxR)xyxy = (VsxR)sxsysxsy,

for each XY € T, M, X orthogonal to Y and all m € M. In particular, if

(2.3) and (2.4) hold, then (M,g) s an s-regular manifold with respect to S, and
conversely.

- Finally, for J-rotations we have ([NV1])
PROPOSITION 2.5. Let (M, g,J) be an almost Hermitian manifold. Then each

J-rotation jm is an isometry if and only if (M,g,J) s locally symmetric and

(2.5) Rxyxy = Rixivixiy
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for all vector fields X,Y on M.
As an alternative we present here a direct proof that makes use of Jacobi fields.

PROOF. First, let jn, be an isometry. Since djm |y, = Jm, we have

Ry x5, vi.xJ,.vy = Rxyxvy,

where X,Y € T, M. Hence (2.5) holds. Moreover, since j2, is the geodesic reflection
centered at m, these reflections are isometric and then, as is well-known, (M, g) is
locally symmetric (cf. [He]). '

Conversely, let B,, be the ball about the origin in T,,M corresponding to
B, by the exponential map. Let p € B, and v € T,M. Then there exists a
unique u € By, and also a w € Ty(TmM) ~ TM such that dexpm|,(w) = v.
Here v = Y(1), where Y is the unique Jacobi field along the geodesic v : t
expm(tu) with initial conditions Y (0) = 0,Y'(0) = w (cf. Chapter 1). So g(v,v) =
9(¥Y(1),Y(1)). Moreover the definition of j, yields djm,(v) = dexpm(Jmw) and
hence g(djm |, (v), Gmp(v)) = g(Y(1),Y(1)), where Y(1) is the unique Jacobi field
along 7 : t + expm(tJmu), F(0) = m, with initial conditions Y (0) = 0,7’(0) =
Jnw. Now, let (Eq,...,E,) be the orthonormal frame field along v obtained by
parallel translation of (ey,...,en) and (Ey,..., E,) that obtained by parallel trans-
lation of (Jey,...,Je,) along ¥. Put Y(t) = S Vi()E;, Y () = S Y(t)E;. As
(M, g) is locally symmetric and, from (2.5), R is J-invariant, both Y;(¢) and Y(#)
satisfy the same system of linear differential equations with the same initial values.
Hence we get g(Y(1),Y (1)) = g(Y(1),Y (1)) and then j,, is an isometry.

An almost Hermitian manifold (M,g,J) is said to belong to the class AHj3 if
and only if R is J-invariant ([V1]). Any K&hler manifold belongs to this class and
in particular (2.5) is automatically satisfied.

COROLLARY 2.6. A Kihler manifold s locally Hermitian symmetric if and only
iof each J-rotation is an isometry.

REMARK. Note that there are several examples of non-Kéhlerian symmetric al-
most Hermitian manifold of the class AH3. S® with a nearly-Kéhler structure is
perhaps the most well-known one. Flat non-Kéhlerian manifolds also provide exam-
ples. Some of them are constructed in [TV1],[TV2]. For other classes of examples
we refer to [V1].
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2.3 Harmonic and isometric rotations

We now deal with harmonic rotations and study their relationship with isometric
rotations.

First, it is clear that an isometric reflection s, is a harmonic map, i.e., 7(s,,) = 0.
Hence all locally symmetric spaces have harmonic geodesic reflections. Actually,
these spaces are the only Riemannian manifolds with this property according to
the following characterization proved in [DVV].

PROPOSITION 2.7. A Riemannian manifold 1s locally symmetric if and only if
all geodesic reflections are harmonic.

For a regular rotation field S we have ([SV3])

PROPOSITION 2.8. Let (M,g) be a Riemannian manifold and S a regular rota-
tion field. Then all s, are harmonic if and only if they are isometric, that is, if
and only if (M, g) is a locally s-reqular manifold with respect to S.

The study of the relationship between harmonic and isometric rotations becomes
much more difficult when we drop the condition of regularity on the rotation field
S. The best result we can state is (cf. [NV2])

PROPOSITION 2.9. Let (M, g) be a locally symmetric Riemannian manifold and
S a rotation field on (M,g). Then any s, is harmonic if and only if 1t is an
1sometry.

Since, by hypothesis, the manifold is locally symmetric, to prove Proposition
2.9 we have just to show that if s, is harmonic then the curvature tensor R is
S-ivariant at m. This can be done by following a method similar to the one used in
[SV3] to prove Proposition 2.8. We will illustrate this method in proving the next
result concerning J-rotations on an almost Hermitian manifold ([NV1]).

PROPOSITION 2.10. All J-rotation on an almost Hermitian manifold are har-
monic if and only if they are isometric.

PrOOF. If j,, is isometric it is also harmonic. Conversely, suppose 7(j,) = 0.
In a system of normal coordinates (z?!,...,z™) this is equivalent to (cf. (1.50))

(2.6) ()" () = g7 (PH=T4(P) T (m) + Ty (3m(p)) i (m) T5(m)} = 0,



46 CHAPTER 2. ROTATIONS AROUND POINTS

where p = expp,(ru), u unit vector in T, M. Put
5
—TL(P)TH(m) + Th(m(p) T (M) Tf(m) = ) afii(m,u)r’ + O(r°).
t=1

Using (2.6) and the expression for g%/ (cf. (1.14), (1.15)) we get that j,, is harmonic
if and only if '

(4) Za{cii(mvu) =0;
(B) i agii(m,u) = 0;
() 3 ahilmu) + 3 3 ok (m, ) Rusas (m) = 0
i i,
(D) Y akilm ) + 5 3 @by (m,u) Ruij(m)
i i,
+ 23 0k (m,u)(VuR)uin(m) = 0
%,
(B) Y akulm,u) + 5 3 aby(m,u)Run(m) + 5 3 by (m,w)(VuR)aias (m)
1 2,7 t,J
+ é% Z atij(m, ) {3(VauR)uinj +4 ) RuiwsRujus}(m) = 0.

To compute afij for ¢ = 1,...,5 we need to know the Christoffel symbols. A
straightforward but long computation shows that

k _ 1 - ki, 99it agjl_agij _ - l l 6
Pij(p) - 9 Zg (0512] + ozt dz! ) - ;ﬂijk(mau)r +O(T )’

1=1

where

1
Biir(m,u) = — §{Ruijk + Rujir},
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1
Biin(m,u) = — B (ViR)uiuk + (ViR)ujuk — (Vi R)uiuj

= 2(VuR)ujri — 2(VuR)uikj},

1 1 1

Blik(myu) =~ E(v?uR)uiuk - E(Vin)uiuk - —2-0-(VZ,LR)uijk
1 0 1 1

— 20 Viuujur — E(ViiR)ujuk = %(meR)ujik

1 ., 1. _, 4
+ E(VkuR)qu + Za(vukR)uzu] - Zs" Z:Ruistukus
4 R... R 1 R R 1 R R :
— E Xs: wjistlukus + ‘i‘g ; jhkusdbuius + '1—5 Zg: ikusflujus,
1
ﬁ{—"(v?uuR)uwk - (vijuR)uiuk - (viujR)UiUk - (v?uuR)"JUk

- (vizuR)Ujuk - (viqu)uJUk + (V?cuuR)muJ + (vikuR)Uiuj
+ (viukR)qu - Q(ViuuR)ka - g(viuuR)Uﬂk}

1.3
+ 5513 E;(VjR)uiusRukus -4 ;(VuR)uistukus

ﬁ?jk(m7 u) =

+ Z(VjR)ukusRuius —4 Z(vuR)ukusRuijs

13
+ z(viR)ujusRukus - ? Z(VUR)ujisRukus

8

=+ Z(ViR)ukusRujua —4 Z(vuR)ukusRujis
- Z(VkR)UiusRujus - Z(VkR)ujusRuius

+3 Z(vuR)uiustkus +3 Z(vuR)jkusRuius

+ 3 Z(vuR)ujusRikus + 3 Z(vuR)ikusRujus}a
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ﬂ?jk(mv u) =
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2(7'){ lo(vjuuuR)Uiuk 10(vu]uuR)WUk - 1O(vouuR)u“Lk

— 10(Vayuj R)uink — 20(Viayuu R)uijk — 10(ViyyuR)ujuk
— 10(ViiwuR)ujuk — 10(VauiuR)ujuk — 10(ViyuiR)ujut
= 20(VyuuuR)ujir + 10(Viyu R)uinj + 10( Voo R)uing
+10(ViukaRuing + 10(ViyurR)uiuj + 34 Y (Vi R)uivs Rukus

+ 34 Z(vi]’R)uiusRukus + 34 Z(viuR)uistukus
+132 Z (ViR uins Rjkus + 34 Z(v wR)ujusRukus
+34 Z(V iR)ujusRukus + 34 Z (V2.R)ujisRukus

+ 132 Z(V wI)ujus Rikus — 34 SZ(VZ R)uinsRujus

_ 342 (V2. R)uinsRujus — 132 Z(V wB)kivsRujus

+ 342 (V3. R)ukusRuius + 342 (V2,R)ukusRuius
+132 SZ(ViuR)jkusRuius + 34 SZ(ViuR)ukusRuijs
+34 Zs(v?uR)ukusRujus +34 i(viiR)ukusRujw

+ 34 Z(viuR)ukuaRu_jis — 34 zs:(viuR)ujusRuius

~ 34 (V2iR)ujusRuius +55 Y (V;R)uius(VuR)ukus
+ 55 Z(VuR)uijs(VuR)ukus + 55 Z(vuR)uius(ij)ukus

+ 95 Z(vuR)uius(vuR)jkus + 110 Z(VuR)uius(vuR)ukjs
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+55 ) (ViR)ujus(VaR)ukus +55 ) _(VaR)ujis(VuR)ukus
+ 55 Z(vuR)ujus(viR)ukus +110 Z(VuR)ujus(VuR)ikus
=553 (ViR)uius(VuR)ujus =55 Y (VuR)kins(VuR)ujus
— 55 Z(VuR)uius(VkR)ujus

- 16 Z RuijaRukubRuaub - 16 Z RuiuaRjkubRuaub

a,b ab

— 16 Z RuiuaRukjbRua.ub — 16 Z RuiuaRukuijaub
a,b a,b

— 16 Z RuiuaRukubRuajb —16 Z RujiaRukubRuaub
a,b ayb

— 16 Z RujuaRikubRuaub —16 Z RujuaRukibRuaub
a,b a,b

—16 Z Rujua.RukubRiaub - 16 Z RujuaRukubRuaib
a,b a,b

+16 ) ReivaRujubRuaus + 16 Z RuikaRujubRuaub
a,b a,b

+ 16 Z RuiuaRkjubRuaub +16 Z RukuaRujibRuaub
a,b a,b

+ 16 Z RukuaRujubRiaub + 16 Z RukuaRujubRuaib}

a,b a,b

1
Z Rurut{=3(ViR)uiut — 3(Vi;R)uiut — 6(V o, R)uiji
1

* 360
— 3(VER)ujut — 3(VaiR)ujui — 6(V iy R)ujit + 3(Vi,R)uiuj

8 8
+ S(Vi[R)uzu] + '3' Z Ruistulus + 73' Z RujisRulus

+8 Z Ruiustlus +38 Z RujusRilus}

49
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1 ,

- '.72' Z(VuR)ukul{(vJR)uzul + (viR)ujul
]

— (ViR)winj — 2(VuR)tiuj — 2(VuR)witj }

1
~ 180 > {Ruiji + RujiH{3(VE R)ukul
[

+ 4 Z RukusRulus}-
s

According to the explicit expressions for the Christoffel symbols we obtain the
following consequences from the conditions (A),...,(E).
From (A) we obtain for the Ricci tensor p at m

Puk — PIuik = 0,

where, as we have already mentioned, k stands for a—‘zk(m), k =1,...,n. Since
a—ik(m) and u are arbitrary this implies that the Ricci tensor p is J-invariant.

From (B) we get that Vp is J-invariant and hence Vp = 0. Using the preceding
facts about p and Vp, the condition (C) yields

(2.7) 5 Z Ruyiuj(Ruivj — Ryusigusj) — 3 Z(Riiuj — R%, izusj) = 0.

1,5 t,J

To derive useful results from (2.7) we identify T, M with the n-dimensional Eu-
clidean space E™ via the orthonormal basis {%(m)}, kE=1,...,n and consider
the left hand side of (2.7) as a function on the unit sphere S™ !(1). Integrating
(2.7) on S™! using the formulae given in Lemma 4.10 (see also [CV1],[Gr7]), we
obtain

Z Raivj(Raiv; — Ryagignss) =0

ab,i,j=1
and hence also

n
Z Riyasinsj(Ryagisvg; — Raisj) = 0.
a,bi,j=1
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The sum of these two conditions yields

Z (Raivj — Ruatigns;)? =0,

a,b,z,7j=1

from which follows that R4;p; = Ryesisps; and then that R is J-invariant or, with
the terminology introduced above, M is an AH3-manifold.

Taking into account the results from conditions (A), (B) and (C), the condition
(D) yields

> Ruin;(VuR)uinj = (VsuR) sugisus;) = 0.
ij

We will not use this condition to prove our result. After a long computation, in
which we use the fact that R is J-invariant, we obtain from the condition (E)

43 Ruinj(ViuR)uinj — (Vi 1uR) susisus;)
iy
+ 22 § [(VuR)win;)? = (V5uR) rugigu;)’]
5]

— 70 Z(vuR)uiuj((vuR)uiuj —(VyuR) jugigus;) = 0.
tj

Integrating again over the unit sphere, we obtain

Z (VaR)bici(VaR)pic; — (VyaR)sprigesj) =0

a’b7c71)]

and hence

(VaR)pic; = (ViaR) b iger;

which means that VR is J-invariant and then that (M, g, J) is locally symmetric.
This and the fact that M is an AH3-manifold imply, according to Proposition 2.5,
that j,, is an isometry.

COROLLARY 2.11. An almost Hermitian manifold (M,g,J) is a locally symmet-
ric manifold of class AHs if and only if each J-rotation is harmonic.
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REMARK. Instead of integrating over S™~!(1) we may proceed as follows. As
above, we identify T,,M with the n-dimensional Euclidean space E™. The left
hand side of (2.7) may be regarded, after multiplication with r*, as a homogeneous
polynomial of order 4. Next, let A denote the Laplacian of E™. Then, taking twice
the Laplacian of (2.7) we get the same result as with the integration process. A
third method for reducing expressions like (2.7) is the linearization and summation
procedure illustrated in Lemma 2.28.

2.4 Symplectic and holomorphic rotations

In this section we deal with holomorphic and symplectic rotations in the context
of Hermitian geometry, namely with rotations that preserve, respectively, the al-
most complex structure J and the Kahler form 2 of an almost Hermitian manifold
(M,g,J) (cf. Section 1.4).

It is well-known that all geodesic reflections on a Hermitian symmetric space
preserve both ¢ and J (see [He]) and hence they are symplectic. Moreover, the
following holds (cf. [SV1)).

PROPOSITION 2.12. An almost Hermitian manifold (M, g, J) is locally isometric
to a Hermitian symmetric space if and only if the geodesic reflections (geodesic
symmetries) are either symplectic or holomorphic.

The proof is obtained using power series expansions for 2 and J, respectively.
First one gets that the manifold is Kéhler and once in the K&hler situation the
following result is crucial to obtain the proof (cf. [Gr3],[SV1]).

LEMMA 2.13. A Kdhler manifold (M,g,J) 1s locally symmetric if and only if
(VxR)xsxxisx =0 for all tangent vector fields X.

We also refer to [V3] for a discussion of this criterion.
For J-rotations we are able to prove [NV1]

PROPOSITION 2.14. An almost Hermitian manifold (M, g, J) is locally isometric
to a Hermitian symmetric space if and only if each J-rotation is either

(1) holomorphic, or
(2) symplectic.
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PRrOOF. (=) From Corollary 2.6 each j,, is an isometry and then, as soon as 7,
is holomorphic (respectively, symplectic) we get easily that j,, is also symplectic
(respectively, holomorphic). Therefore, we are left to prove that in our hypotheses
Jm is either holomorphic or symplectic.

Consider J = dj-toJodjy,. Itisa tensor field of type (1,1) which clearly
satisfies J2 = —1. Moreover, it is a parallel tensor field due to the fact that j,,
is an affine transformation with respect to the Levi Civita connection and that M
is Kihler. Since J and J have the same value at m we have J = J , that is 7,, is
holomorphic.

(<) Let j,, be holomorphic (respectively, symplectic) for each m € M. Then
each geodesic reflection j2 is also holomorphic (respectively, symplectic). Accord-
ing to Proposition 2.12 we conclude that (M,g,J) is a locally symmetric Ké&hler
manifold.

Next, we consider S-rotations with S regular. In this case the known results can
be summarized as follows (cf. [LV2]).

PROPOSITION 2.15. Let (M,g,J) be an almost Hermittan manifold and S a
reqular rotation field on M. Then, for each m € M, the following are equivalent:

(1) sm is isometric and J,VJ are S-invariant;
(2) sm 1s 1sometric and Q,VQ are S-invariant;
(3) sm s holomorphic;

(4) sm s symplectic.

COROLLARY 2.16. Let (M,g,J,s) be an almost Hermitian manifold with a local
s-regular structure. If J and VJ are S-invariant, then each (local) rotation s,
m € M, 1s holomorphic and symplectic.

Conversely, suppose (M,g) admits an almost Hermitian structure J and a ro-
tation field S for which the corresponding rotations are holomorphic (respectively,
symplectic). Then J and VJ (respectively, Q and VQ) are S-invariant. Moreover,
if S is reqular then each s, is a local isometry and hence (M, g) 1s a locally s-regular
manifold with respect to S.

REMARK. This generalizes the above characterization of locally Hermitian sym-
metric spaces (cf. Proposition 2.12) to the class of s-regular almost Hermitian
manifolds.

Dropping the hypothesis of regularity on S we can prove
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PROPOSITION 2.17. Let (M,g,J) be a locally Hermitian symmetric space and S
a rotation field on M. The following statements are equivalent for each m € M:

(1) sm 18 isometric and SJ = JS;

(2) sm 13 holomorphic;

(3) sm 18 symplectic.

PROOF. (3) = (1) For a system of normal geodesic coordinates (z!,...,2™) cen-
tered at m we have, as indicated in Chapter 1, the following power series expansion
for Qi]' - Q(%, 8—2]-), i,j = 1,... , e

2 3

r r
Q;5(expm(ru)) = agij + raqi; + E'azij + —6‘0431'3‘ + 0(7‘4),
where
agij = ij(m),
Q147 = O,
(2.8) 1

1
e = HO Rut + 3 Rk,
¢ t

Now, if s,, 1s symplectic we have

(2.9) Qijlexpm(ru)) = S{(m) S (m)Qap(expm(rSu)).

By equating the as;; in (2.9) we get

(2.10) Rxyxsz — Rxivxz = Rsxsysxsiz — Rsxsivsxsz

for all X,Y,Z € X(M). Observe that the symplectic property yields at once that
(2.11) SJ=1JS,
a condition that has already been used implicitly to write (2.10). Next, define

(2.12) Txyzw = Rxyzw — Rsxsyszsw-
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T verifies the algebraic conditions of an algebraic curvature tensor and moreover
the Kéhler identity for R and (2.11) imply that T satisfies the Kéhler identity too,

Txvyiziw = Txyzw.

Furthermore, (2.10) implies T'x rx x 7x = 0 and hence T' = 0 (see [KN],vol.II,p.166).
Thus R is S-invariant. The S-invariance of R and a Jacobi field argument as
presented in the proof of Proposition 2.5 yield that s,, is an isometry.

(1) = (3) If JS = SJ, then Q is S-invariant and at any point p € M, Q is
invariant under the action of dsPlp = 5,. Since Q2 is also parallel, it is uniquely
determined by its value at one point, and since s, is isometric and then preserves
parallelism locally, it follows that § is invariant under the action of s, and hence
sp is symplectic.

Analogously we can prove that (1) = (2).

(2) = (1) As usual, let (z',...,2™) be a system of normal coordinates centered
at m. First we note that, if J; denote the components of the almost complex
structure J with respect to (z!,...,z"), then

n
—J;::ZQ]-kg’”, 1,7=1,...,n.
k=1
From this, the previous expansion for {;j(expm(ru)) (cf. (2.8)) and the expansion

for g* (cf. (1.14), (1.15)) we have

2
i i i L
Ji(expm(ru)) = vo; + 771 + 5 72 + 0(r?),

where ) )
m; =0,
) 1
f)/éj = -—-g{z Rujut']it + Z Ruzut]]t}(m)
t t

We now compare this power series with that for J }(expm(rSmu)) and following the
same procedure as in the proof of (3) = (1) we obtain the required result.
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2.5 Rotations and the geometry of geodesic
spheres

It is clear that rotations in general induce global diffeomorphisms on the (small)
geodesic spheres. We are interested here in the study of the invariance under
these diffeomorphisms of some operators and naturally defined functions related to
the intrinsic and extrinsic geometry of the geodesic spheres. This leads again to
new characterizations of special classes of manifolds, e.g., locally symmetric spaces,
locally s-regular manifolds, Hermitian symmetric spaces, and to new criteria for
rotations to have certain properties.

We will present here results concerning the shape operator (extrinsic geometry)
and the Ricci operator (intrinsic geometry) of geodesic spheres. For p € Gp(r)
we denote by T,,(p) the shape operator at p of the geodesic sphere with center m
and by @m(p) the Ricci operator of the geodesic sphere G, (r) at p. We recall
that the Ricci operator is the symmetric (1,1)-tensor associated to the Ricei tensor
pxy = tr(Z — EXZY) of the geodesic sphere G,,(r). R denotes the curvature
tensor of G,(r) and X,Y, Z are tangent vectors to G,(r) at p (cf. Section 1.3).
Using the Gauss equation for the hypersurface G,(r) (cf. (1.26)) we obtain the
following power series expansion for the Ricci operator @m( p) at p (see for example

[CV1]):

Qo) =52 +1Q = plu, Ju — 3 p(u,0)] = TR} (m)
(V4@ — (Vup) (s Ju — 3(Vup)(w )] = “TLRL}m) + 00,

where @) denotes the Ricci operator of the ambient space (M, g).

In [VW2] was given a criterion for isometric reflections, or equivalently, for a
manifold to be locally symmetric, by using the shape operator of small geodesic
spheres.

PROPOSITION 2.18. Let (M,g) be a Riemannian manifold. Then (M,g) is lo-
cally symmetric if and only of
(213) Texpm(ru)(m) = Texpm(—ru)(m)’
for all uw and small r.

This result was then generalized to the broader class of locally s-regular manifolds

in [LV1]:
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PROPOSITION 2.19. Let S be a regular rotation field on (M, g). For each m € M
choose a geodesic ball B,,(r) which is a normal neighborhood of each of its points.
Suppose that for each unit vector u € Ty M there exists a positive v, such that of
0< o<1, and p = expm(ou) then

(2.14) Tsm(p) o Sm = Sm o Tp,

where each side of this equation is considered as a linear map of {u}L and s, is
the local rotation determined by S. Then (M,g) is a locally s-regular manifold.
Conversely, any locally s-regular manifold has the above property.

REMARK. A criterion for S-rotations when S is not necessarily regular may be
obtained analogously within the class of locally symmetric spaces.

As concerns J-rotations we have the following characterization of locally Her-
mitian symmetric spaces [NV1].

PROPOSITION 2.20. Let (M, g) be a Kihler manifold. Then 1t 1s locally Hermat-
1an symmetric if and only if

(2.15) T, (»(m) o Jm = Jm 0 Tp(m)

for all p = expy(ru) and all sufficiently small radu r.

PROOF. For a locally Hermitian symmetric space, (2.15) follows from Corollary
2.6.

Conversely, suppose (2.15) holds. Then we also have
(2.16) Tj2, (p)(m) 0 I = Jm 0 T}, ()(P)
and consequently (2.15), (2.16) yield

T 0 Ty(im) = Jm o T ()

and hence Tp(m) = Tjz (,(m). But this is just (2.13) which is a characteristic
property of locally symmetric spaces.
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REMARK. Instead of (2.15) it is sufficient to suppose that (2.15) holds when
applied to the vector J,u which is tangent to the geodesic sphere G,(r) at m. So,
the necessary and sufficient condition becomes

Tp(m)Jmu = InTj,, (py(m)u.

Another characterization is the following [NV1].
PROPOSITION 2.21. Let (M,g,J) be a Kihler manifold. Then it is locally Her-
mitian symmetric if and only if the shape operator Ty, 1s locally j,-invariant, i.e.,

(2.17) Thmodim =djmoTh

for allm € M and all sufficiently small radii r.

ProOF. First, let (M,g,J) be locally Hermitian symmetric. Then j,, is an
isometry (cf. Corollary 2.6) and hence (2.17) holds.
Conversely, suppose (2.17) holds. Then we have

(2.18) djm|p 0 Tm(p) = Tm(m(p)) 0 djmlp
and also
(2.19) Gl (p) © Trn(im(P)) = Tr(Gm(P)) © dim ;.. (-

From (2.18) and (2.19) we get dj2, 0T}, = Trmodj2,. This means that T}, is preserved
by the geodesic reflection j2,. But this is characteristic for locally symmetric spaces

as can be deduced from the following characterization of locally s-regular symmetric
manifolds (cf. [LV1]).

PROPOSITION 2.22. Let S be a regular rotation field on (M, g) and suppose for
each m € M the shape operator s locally sp,-invariant, i.e., Ty, 0 dSy = dsy 0 Ty
Then (M, g) 1s a locally s-regular manifold associated to S.

Conversely, any locally s-regular manifold has the above property.

There is a great similarity between the properties of the shape operators and
the Ricci operators of small geodesic spheres. We present here the analogues of the
preceding results for the Ricci operator.

The following was proved in [DV1].
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PROPOSITION 2.23. Let S be a regular rotation field on (M,g), where dimM >
3. Then (M, g) s a locally s-regular manifold with associated rotation field S if and

only if
(2.20) Qs (p)(M) 0 S = S 0 Qp(m)

for allm and all p = expp,(ru) with r sufficiently small.
When S = —1I this provides another characterization of locally symmetric spaces.
COROLLARY 2.24. A Riemannian manifold M of dimension greater than 3 is

locally symmetric if and only if

@expm (ru)(m) = @expm (—ru)(m)

for allm € M, all unit vector u € T, M and all sufficiently small r.
For J-rotations we get ([NV1])

PROPOSITION 2.25. A Kdhler manifold (M,g,J) of dimension greater than or
equal to 4 18 locally Hermitian symmetric of and only of

Qm 0 djm = djm 0 Qm
or, equivalently,
Qjmp)(m) 0 Jm = Jm 0 Qp(m)
for allm € M, all p = expp(ru) and all sufficiently small r.

Next, we note that the local diffeomorphism 7, induces in a natural way a global
diffeomorphism on sufficiently small geodesic spheres with center m. We still denote
it by j,m. We are now interested in the invariance of the function

p— £m(p) = 9(Tm(p)Jp7'(r), Jp¥' (7))

km(p) is the curvature at p of the geodesic of G, (r) tangent to Jp¥'(r). Note that
v'(r) = % » Then we get (cf. [NV1])
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PROPOSITION 2.26. A Kdhler manifold (M, g, J) is locally Hermitian symmetric
if and only if for each m € M

e
ImbEm = Em.

The proof is similar to the preceding ones in this section. Finally, we consider
the function

P = Em(p) = rp(m) = g(Tp(m)Jmu, Jmu).
In a similar way as for Proposition 2.26 we get ([NV1])

PROPOSITION 2.27. A Kdhler manifold (M, g, J) is locally Hermitian symmetric
if and only if for each m € M

= —
ImEm = Em.

REMARK. a) All the proofs of the results concerning J-rotations rely on Propo-
sition 2.5 and on the known results about geodesic reflections (cf. [NV1]). One
may also give direct proofs by using power series expansions. We will give a short
indication of this method. First, we need the following linearization result.

LEMMA 2.28. Let (M,g,J) be a Kdihler manifold with dimM = n and suppose
there exist real numbers a and b, b # 0, such that for all tangent vectors X we have

(2.21) aVxpxx9(X,X)+0VxRxsxxsx =0,
where {(n + 4)a + 6b}{(n + 6)a + 12b} # 0. Then

(2.22) VxRxsxxisx =0.

PROOF. We indicate the two main steps in the proof. First, we replace X by
aX + BY in (2.21) and write down the coefficient of a33?. Using the Kiahler and
the first Bianchi identities, we obtain

a{(Vxp)xxg(¥,Y) +4(Vxp)xyg(X,Y) + (Vxp)yye(X,X)
+2(Vyp)xyg(X, X) +2(Vyp) xx9(X,Y)} |
+0{10(VxR)xsvxsv +2(VxR)xyxy + 4VixR)sxsvxsv} = 0.
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Now, put ¥ =e;,7 =1,...,n, where {e1,...,€,} is an orthonormal basis and sum
over z. This yields

(2.23) {(n+6)a+126}VXpXX—{—QGVXTg(X,X) =0,

where 7 denotes the scalar curvature. Then, by a similar linearization and summa-
tion procedure applied to (2.23) we get

(2.24) {(n+4)a+6b}Vxr =0,

So, (2.22) follows from (2.21), (2.23) and (2.24).

Finally, one proceeds as follows. Using normal coordinates and Jacobi vector
fields one may write down power series expansions for the operators and functions
needed (cf. Chapter 1). Then the conditions in the statements lead quickly to
a relation of the form (2.21) and hence the results follow from Lemma 2.13 and
Lemma 2.28. We note that for Proposition 2.14 the power series expansions lead
first to VJ = 0.

b) For the study of the invariance under a field of rotations of other functions
and geometric objects related to the extrinsic and intrinsic geometry of geodesic

spheres we refer to [DV1],[LV1],[NV1].
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Chapter 3

Rotations around curves

In this chapter we present the study of local rotations around a smooth embedded
curve ¢ : [a,b] — M in a Riemannian manifold (M, g). These transformations are
local diffeomorphisms that generalize in a natural way rotations around a straight
line in ordinary Euclidean space. They are determined by means of a field of
endomorphisms along the curve that for each m € o fix the tangent vectors to
o and when restricted to the fibres of the normal bundle of o behave as linear
isometries.

Reflections with respect to a curve provide a class of examples of such rotations.
We refer to [V4] for further details about this study. When ¢ is a constant curve,
we obtain the rotations around a point. We study problems similar to those for
rotations around a point. The main purpose is to study harmonic rotations and
to compare them with isometric rotations. In Section 3.1 we define the notion of
rotation and derive in the analytic case a set of necessary and sufficient conditions
for a rotation to be isometric. This will be used later in the chapter when we
will consider harmonic rotations in relationship with isometric rotations and we
need a criterion to recognize isometric rotations. In particular, we show that for
free rotations these two concepts coincide for locally symmetric Einstein spaces.
It is not known to us whether this result can be extended to general Riemannian
manifolds.

3.1 Rotations and isometries in tubular neighbor-

hoods

Let f be an isometry of (M, ¢) whose (totally geodesic) fixed point set F'(f) has
positive dimension and let o be a curve as above contained in F(f). Then we have

63
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LEMMA 3.1. On a suffictently small tubular neighborhood U, of o the isometry
f can be expressed in the form

(3.1) f=expsodfjs0 exp,t.

PROOF. For each point p € U, there exists a unique geodesic v : [0,1] — M of
minimal length such that p = (1) and o(t) = (0) for some ¢ € [a, b]. Furthermore,
F(0) = exp;(lt) (p). The curve for~ is also a geodesic emanating from the same point

o(t) and with initial velocity df|,()(%(0)). Hence
F(p) = F(v(1)) = expy()(dfjo(7(0))-

REMARK. There are several examples of Riemannian manifolds endowed with
isometries as described above. For example, let (M,g) be a homogeneous Rie-
mannian manifold and let K be the isotropy group at some point of M. Since the
linear isotropy representation of K in T,M is faithful the isotropy group at p can
be identified with a subgroup of O(T,M), the linear isotropy group at p. Now, if
we suppose that dimM is odd, then any orientation-preserving element df), of the
linear isotropy group admits the eigenvalue 1. Let v be a unit tangent vector corre-
sponding to this eigenvalue and consider the geodesic through p given by exp,(tv).
Then f(expp(tv)) is also a geodesic with the same initial conditions as those of
expp(tv) and hence f(expp(tv)) = exp,(tv).

Motivated by these considerations, we turn to the definition of a rotation.

DEFINITIONS. Let S(t) be a field of linear endomorphisms
S(t) : Ta(t)M — Ta(t)M

along the curve o such that S(t) restricted to T, ()0 is the identity map and on
each fibre v(0),(;) of the normal bundle v(c), S(t) is a linear isometry, that is

S(t)e(t) =o(t),  g(S(HX,SHY) = g(X,Y)

for all X,Y € v(0),(s)- Then S(t) is said to be a rotation field along o. In what
follows we shall use the same notation S(t) to denote the operator on T, M as
well as its restriction to the fibre of v(o) at o(t).
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Now, let U, be a tubular neighborhood of ¢ with sufficiently small radius. Then,
the local diffeomorphism s, defined by

Sy = expy 0 S oexp;!

is called a (local) S-rotation around o. Moreover, if S — I is non-singular in the
normal bundle, we say that s, is a free S-rotation .

For S = —I, s, defines the reflection with respect to o (cf. [VW2],[V4]). Note
that we have

So: Uy — Uy : expy(o(t),v) — expy(o(t), S(t)v).

Furthermore, ¢ is contained in the fixed point set of s,.
The analytic expression of s, follows easily by using Fermi coordinates (cf. Chap-
ter 1):

(3.2) zlos, =z, gt 05, = Si(t)al,

where S}(t) are the components of S(t) at o(¢) with respect to the basis
{E4,...,E,} defined in Section 1.3. Moreover, we have

dsala(t) = S(t)

for all ¢ € [a, b].

From the expression (3.2) it is clear that the study of S-rotations is different
and somewhat more complicated than that of rotations around a point due to the
special role played by the z!-coordinate.

REMARK. Note that S is parallel along o if and only if S is parallel with respect
to V+ and S& = &. In this case it follows that each higher order covariant derivative
of o is also an eigenvector of S with eigenvalue +1, that is,

Sot®) = o  keN,.

So, once a parallel rotation field S is given, we have restrictions on ¢. For example,
if S defines a reflection, i.e., S = —I in ¥(0), then & = 0 and hence ¢ is a geodesic.
The same holds when S is a free rotation field.
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Note that Lemma 3.1 yields that each isometry f is a rotation around any curve
o contained in its fixed point set and its rotation field is df|,. As may be checked
directly, this rotation field is parallel. We stress the fact that the isometric rotations
around o are exactly the isometries which have a (totally geodesic) fixed point set
of positive dimension containing ¢ and this is the only relation between the curve
and the isometry.

Now, we will look for conditions under which a rotation field S along o defines
an wsometric rotation . This criterion will be used later in this chapter.

PROPOSITION 3.2. Let o : [a,b] — M be an embedded curve in a Riemannian
manifold (M,g) and suppose that the S-rotation s, is an isometry. Then

(3.3) (1) S s parallel along o;
(3-4) (2) (vﬁ...uR)uzuy = (vg‘u...SuR)SquSuSy’

for allu € v(0) 54y, all 2,y € ToyM, allt € [a,b] and all k € N.

Conversely, if (M, g) is analytic and S is a rotation field along o such that (1)
and (2) hold, then the corresponding S-rotation is an isometry.

PROOF. First, let s, be an isometry. Then ds,|, is parallel along o and since
dss|; = S, S is parallel. Then (3.4) follows since any isometry preserves the
curvature tensor and its covariant derivatives.

To prove the converse one may use the power series expansions for the compo-
nents of the metric tensor with respect to Fermi coordinates (cf. (1.42), (1.43),
(1.44)). Then it is not difficult to see that the coefficients in the expansions only
depend on the subset

{(vauR)uuau € V(U)a(t)a ke N}

of the set of all covariant derivatives of the curvature tensor R and on the (mean)
curvature vector & of o. Then the conditions (3.4) and S¢ = &, which follows at
once from So = ¢ since S is parallel, yield that s, is an isometry. This finishes the
proof.

For the special case of reflections with respect to ¢ and for analytic data Propo-
sition 3.2 reads as follows ([CV2)]):
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COROLLARY 3.3. Let (M,g) be a Riemannian manifold and o : [a,b] — M an
embedded curve in M. Then the reflection s, is an isometry if and only if

(1) o 18 a geodesic;
(2) RZ®)y is normal to o,

R&Zk“”)v 1s tangent to o,

RZ¥V 6 s normal to o

for all vectors u,v normal to o and all k € N, where RY = (V! L R)u.u.

The criterion given in Proposition 3.2 becomes considerably simpler for locally
symmetric spaces.

COROLLARY 3.4. Let (M,g) be a locally symmetric Riemannian manifold and
o a curve as above. Then the S-rotation s, 1s an wsometry if and only if

(3.5) S is parallel along o;
(36) Ruzuy = RSquSuSy
for all u € v(0) ,(4y, Ty € To(ry and all't € [a,b].

Moreover, for real, complex and quaternionic space forms, one knows the explicit
form of the curvature tensor (see for example [Be2],[V3]). We consider now these
spaces case by case.

I. Let (M, g) be a space of constant curvature c. Since
Rxyzw = c{g(X, Z)g(Y, W) — g(X, W)g(Y, 2)},

X,Y,Z, W € X(M), (3.6) is always satisfied. This leads to

COROLLARY 3.5. Let (M,g) be a space of constant curvature c. Then the S-
rotation s, is an 1sometry if and only if the rotation field S is parallel along o.

For reflections we have ([CV2],[ToV2])
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COROLLARY 3.6. Let(M,g) be a space of constant curvature c. Then a reflection
i a curve o 18 an isomeltry if and only if o 13 a geodesic.

To see this, suppose first that s, is an isometry. Then the result follows from
the remark above. Conversely, suppose o is a geodesic. Then S& = ¢ gives S'¢ =
0. Moreover, for u € v(0)y(;) we have Su = —u. Hence (note that Vaouis

perpendicular to o since o is a geodesic)
(V%S)u——— -S(t)—uv=u—-u=0,
that is S is parallel.

II. Let (M, g,J) be a Kahler manifold of constant holomorphic sectional curvature
¢ # 0. Then we have
c
Rxyzw =7{9(X, 2)g(Y, W) — 9(X, W)g(Y, Z) + g(J X, Z)g(JY, W)

X, Y, Z, W € X(M). From this we easily derive
COROLLARY 3.7. Let (M,g,J) be a Kihler manifold of constant holomorphic

sectional curvature ¢ # 0. Then the S-rotation s, 1s an isometry if and only if S
s parallel along o and

(3.7) SJoe=J6 and SJu= JSu,or

(3.8) SJoe=—-J& and SJu=-JSu

for all u orthogonal to o.

II1. Let (M, g) be a quaternionic K&hler manifold of constant quaternionic sectional
curvature ¢ # 0. In this case the Riemann curvature tensor has the form

Rxyzw =g {o(X, 2)g(¥, W) = o(X, W)g(¥, 2) + Y_[9(JaX, Z2)g(JaY, W)
a=1

= 9(JaX, W)g(JoY, Z) +29(JaX,Y)g(JaZ, W)},

where (Jy, Ja, J3) is a set of defining almost complex structures.
From this one derives



3.1 ROTATIONS AND ISOMETRIES IN TUBULAR NEIGHBORHOODS 69

COROLLARY 3.8. Let (M,g) be a quaternionic Kdihler manifold of constant
quaternionic sectional curvature ¢ # 0. Then the S-rotation s, 1s an isometry
if and only if S 1s parallel and

3
(3.9) SJa= Y aaplsS, a=1,2,3,
p=1

where A = (aqgg) € SO(3) and aqp are functions of t.

As we pointed out above, when s, is a reflection, S is parallel if and only +f o
is a geodesic. In this case we derive, from(3.7) and (3.8) (respectively, (3.9)), that
sy can never be an isometry except when dimM = 2 (respectively, dimM = 4) in
which cases (M, g) has constant curvature and then, according to Corollary 3.6, s,
is always an isometry.

Note that this last property is characteristic for real space forms. Indeed, we
have (cf. [VW2],[V4]):

PROPOSITION 3.9. A Riemannian manifold 1s a space of constant curvature if
and only if the reflections in all geodesics are 1sometries.

For locally symmetric spaces and reflections, (3.6) reduces to
Ruvu& =0

for all u,v orthogonal to o. In [CV2] it is given a nice geometrical interpretation of
this condition relating to the existence of totally geodesic submanifolds in locally
symmetric spaces. This aspect will be dealt with in the next Chapter, Section IV.1,
Proposition 4.3, to which we refer.

Using the theory by Chen and Nagano about (M., M_)-totally geodesic sub-
manifolds in symmetric spaces (cf. [C2]) it is known that Riemannian manifolds of
constant sectional curvature ¢ # 0 are the only irreducible symmetric spaces which
admit totally geodesic hypersurfaces. Hence by applying Proposition 4.3 we have
the following result ([V4]).
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PROPOSITION 3.10. Let (M,g) be a locally irreducible symmetric space. Then
(M, g) 1s a space of constant curvature if it admits a curve o such that the reflection
So with respect to o i3 an sometry.

3.2 Harmonic and isometric rotations around
curves

Now we focus on harmonic rotations around a curve o : [a, b] — M with emphasis

on their relationship with isometric rotations. The earlier results for reflections were
given in [VV-A].

PROPOSITION 3.11. Let o be a topologically embedded curve in a Riemannian
manifold M. If the local reflection in o is harmonic, then o is a geodesic.

Furthermore, we have a characterization of space forms in terms of harmonic
reflections with respect to geodesics.

ProPoSITION 3.12. Let (M,g) be a connected Riemannian manifold. Then
(M, g) is a space of constant curvature if and only if the local reflections with respect
to all geodesics are harmonic.

Concerning the problem of the relationship between harmonic and isometric
reflection we can state, for analytic data, the following special case of Proposition
4.5 ([DGV]), that indeed clarifies why Proposition 3.9 is equivalent to Proposition
3.12.

PROPOSITION 3.13. The reflection s, with respect to an embedded curve o of a
Riemannian manifold (M, g) 1s harmonic if and only if it is an isometry.

For an S-rotation s, we aim to prove the following results [NV3].

PROPOSITION 3.14. Let o : [a,b] — M be a smooth embedded curve in a Rie-
mannian manifold M and s, an S-rotation around o. If s, 1s harmonic, then S is
parallel along o. Moreover, if s, 1s a free S-rotation, then o is a geodesic.

PROPOSITION 3.15. Let s, be a free rotation on a locally symmetric space such
that the Ricci tensor is S-invariant. Then s, 1s harmonic if and only if it is
1sometric.

As consequences we get the following corollaries.
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COROLLARY 3.16. A free rotation s, on a locally symmetric Einstein space is
harmonic if and only if it is an 1sometry.

COROLLARY 3.17. A rotation around a geodesic in a locally symmetric Finstein
space 18 harmonic if and only if it 1s an 1sometry.

We use Fermi coordinates to express the fact that the tension field 7 of s,
vanishes. From (1.51) we get that s, is harmonic if and only if

7(s0)(p) = {gM(Vds,)51 + 29'*(Vdss)is + 9*°(Vds, )3 }(p) = O,
(3.10)

T (s5)(p) = {g" (Vdso )1y + 29" (Vdsa )i, + 9" (Vdse)o }(p) = 0,

with a,b,¢=2,...,n, p = expy(»(ru), ||u]| = 1 and where

(Vdsa)}l(P) = —I‘%l(P) + Plaﬂ(sa(P))gggﬁivﬁwu + len(scr(P))nga
+ Tia(so(p))She" + T11(54(p)),

(Vdso)la(p) = —T1a(p) + Thpl(so(p)SESE2Y + Tl 4(54(p))SE,
(Vdsq)is(p) = —TLy(p) + TLs(s0(p))S2SY,
(3.12)  (Vdso)$i(p) = S — Ty (p)Ssa® — TF,(p)SE
+ T8 5(50(p) S22 a” 4 T¢, (54(p))So 2"

+T54(s4(p)) Sz + 51 (s0(p)),

(Vdso)ia(p) = 55 = T1,(p)SE — T1a(p) Sz
+Tap(s0(p))Sy SEa" + Tip(s0(p))SE,

(Vds,)Sy(p) = =T, (p)SE — TL,(p)Sea® + T2 4(s0(p))SESY.
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Next, we put
3

(3.13) T(so)(p) = 3 _Airt+0(r*),  c=2,...,n,
(3.14) Hs4)(p) = Z Alrt 4+ 0(r?).

Then (3.10) and (3.11) give the following necessary conditions for a harmonic ro-
tation s,:

(3.15) A =0, A} =0, t=0,1,2,3, c=2,...,n.

In order to write down the expressions for the Christoffel symbols, we set

9aB(p) = Z agp(m)r® +0(r*),
I=0

g*B(p) =) Bis(m)r +0(r"),
1=0

o 3
L2 (P) =) Tho(m) +O(r*)
=0

for A,B =1,...,n, m = o(t) (see Chapter 1, formulae (1.42)-(1.47)). We have for
a,bc=2,...,n

2 n
r r
I'(p) = ‘2")’%11(7”) + E{’an + 811 i — Zﬁlzﬂgm}(m) +0(r?),

a=2
1 r
I'i(p) = 57?1a + 5{7111a + B11711a}(m)

2
T
+ '2‘{’)’%1(1 + 51117%10. + :31217?1a}(m) + O(’“S)v

2
r T
T'y(p) = 5{7}@ + V1pa (M) + 3{’)’%@ + Yiba — Vopt
+ /81117'.:llab + ﬂlll'.)'llba}(m) + O(Tg)a
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Tty(p) = ;vm<m> Srhie(m)

“"{971c1 ’Yllc Z /Bca711a m)
re
+ 3{2’7:13c1 — Yi1e — Z 5?017%1(1
a=2

- Z Beanita + 171111 + B vt Hm) +0(r*),

a=2

¢ T
Fla(p) = 5{7llca - 711ac}(m)
r’ 2 2 2
?{’cha + Yact — Tlac
+ B2 112} (m) + O(r?),
T
ng(p) = ;{7icb + 7gca - Vibc}(m)
r? 2 2 2
+ "é—{’)/acb + Toca — 7abc}(m)
r’ 3 3 3 2 .1
+ E{7acb + Ybca — Vabe + ﬁlc’yalb

n
+ B Viia + Zﬂzd'yidb

d=2

+ Z BedTbda — Z Beqvaba}(m) +O(r").

d=2

Hence, using the expressions for the Christoffel symbols, the expressions for the
components of the metric ¢ in terms of Fermi coordinates (cf. (1.42)—(1.47)), (3.10),
(3.11) and (3.12), we compute the desired coefficients A§ and A}, ¢ =2,...,n. We
omit the lengthy but straightforward computations.
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PROOF OF PROPOSITION 3.14. Using A§ =0, ¢ = 2,...,n, we obtain
9(6,E;)—g(6,SE.) =0, c=2,...,n.

This yields
(*S -1 =ké

for some real k. On the other hand, (*S —I)d is orthogonal to & and hence we have

(3.16) S =4.
Next, from conditions A{ = 0, ¢ = 2,...,n, we obtain, taking into account
(3.16),
_ . 2 <
(31 {) g(Su7 EC) - (RluIS"lc - RlSulc) - g Z(RuaS“lca - RSuSacSa) =0

a=2

or, equivalently,

.. 2
(318) g(SU, SEC) - (Rlulc - RlSulSc) - :—3' Z(Ruaca - RSuSaScSa) = 0,
a=2

where Sc and S7'¢ denote the vectors (S32:)(a(t)) and (S™152-)(o(t)), respec-

tively, for ¢ = 2,...,n. Now, put E. = u in (3.18). Then we obtain

. 2 &
(319) g(Su, Su) - (Rlulu - RlSulS’u) - _3‘ Z(Ruaua - RSuSaSuSa) = 0.

a=2
Since ||u|| = 1 we have g(Su, Su) = 0. Differentiating once again we get
(3.20) 0 = g(Su, Su) + g(Su, Su) + g(Su, Su) + g(Su, St)

= g(Su, Su) + g(Su, Su) + g(*SS +t $S)u, )
= g(Su, Su) + g(Su, Su)



3.2 HARMONIC AND ISOMETRIC ROTATIONS AROUND CURVES 75

because 1SS 4+t $S = 0 on normal vectors to ¢ and (!S) =! (S). Using this in
(3.19), then putting v = E, and summing up with respect to ¢ = 2,...,n, we get
with S& = 0,
e 2w B
”S” + -.?: ag_::z(Rcaca - RScSaScSa) =0.
This implies
V%S =0, i.e., S is parallel.

Finally, it is clear from (3.16) that, if s, is free, then & = 0 and this finishes the
proof.

PROOF OF PROPOSITION 3.15. Since any isometry is harmonic we only have
to prove the direct part of the proposition. So, let s, be harmonic. According to
Proposition 3.2 we have to prove

Rlulu = RlSulSua Rluau - RlSuSaSu; Raubu = RSaSquSua
a,b=2,...,n.
From (3.19) and the fact that S is parallel we get
2 n
(321) Rlulu - RlSulSu + '3‘ Z(Ruaua - RSuSaSuSa) =0
a=2

and since p is S-invariant this yields at once
(3.22) Riutu = Risuisu

for all u € v(0) (-
Further, we consider the conditions A5 = 0. As s, is free, o is a geodesic. By
putting S~!c = u, these conditions become

(3.23)

— 60 2 Rluau(Rluau - RlSuSaSu) + 36 Z(R%uau - ?SuSaSu)

a=2 a=2

+6 > (Risus — REusasusy) — 10 > Ruaub(Rugus — Rsusasuss) = 0.

a,b=2 a,b=2
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To handle (3.23) we integrate it over the unit sphere S"7%(1) in v(0),,. For

this technique we refer to Lemma 4.10 in the next chapter (cf. [CV1],[GV1],[GTT]).
First note that the integrals of

n n

Z(Rguau - R%SuSaSu) and Z(Rzztaub - RzSuSaSqu)

a=2 a=2

are zero. Next, put

A= Z Rluau(Rluau - RlSuSaSu)7

a=2

B = Z Ruaub(Ruaub - RSuSaSqu)
a,b=2
and let .

P Gl ) L
=y

denote the volume of the unit sphere in the Euclidean space E*~!. Then we have

Cn—2

Adu = RiiaiRija; + RiiajRiiaj
[S’n—Z(l) U (n—l)(n+1) a?_;z{ 1 ljaj T fl1iaj 14a;

+ RiiajRijai — RiiaiR15j5a5; — RiiajRisisas;

— RyiajR15jSasi}

— Cn—2 - - 2 . '
- (n _ 1)(77, + 1){2 Z (Rlaaj - Rlaa]RISaSaS])

a=1a,j=2

+ Z Z (RlaaﬁRlﬂaa - RlaaﬁRISﬂSaSa)}
a=2 affi=1

_ Cn—2 - 2
- (TL — 1)(77, + 1){ Z (Rlaﬂ'y + ‘Rlﬂ’.@’)/]%l’)’ﬁCy

a,f,v=1

— RiapyR15a585y — RiapyR1svs85a)

-3 Z (R?alﬂ — Ria1pR15q158)}-

a,f=1
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Now we use the following identities (see for example [GV1])

mn 1 3
(324) Z Rla,@‘le'}',@a = 5 Z 101,8'77
o,B,v=1 B =1
n 1 n
(325) Z RlaﬂqulS'ySﬂSa = '2' Rla,@'leSaS,BS'r
a,B,7=1 a,B,v=1
to obtain

3Cn—2 =
3.26 / Adu = R o (R a — R SaSBS~)-
( ) Sm=2(1) 2(n—1)(n+1) a;ﬂ::lv 1afy\{t1apy 1SaSpS~)

By the same procedure we compute the integral of B:

Cn—2
Bd —_ a a
/Sn-z(l) YD) Z {(par = Rra)” + 5 Z iy

,1—2

— (Pab — Ria1b)(psass — Risarse) + 5 Z RiajbRsisasjss}-

1,j=2

Taking into account (3.22) and the S-invariance of p we obtain

3cn-—2 =
3.27 / Bdu = Riajp(Riajo — Rsisasjss)-
( ) sn-2(1) Q(n —_ 1)(17, + 1) a,b§=2 J ( J 7 )

Finally, (3.21), (3.26) and (3.27) yield
6 Z Riopy(Riasy — Risaspsy) + Z Risjb(Riajo — Rsisasjsy) =0
o,f,y=1 a,b,i,j=2

and hence also

77
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n

6 > (Riapy— Risaspsy)’+ Y, (Riejs— Rsisasjss)’ =0.

a,B,v7=1 a,b,1,j=2

This gives
Riapy = Risaspsy a,f,y=1,...,n,
Riajp = Rsisasjss, i,7,a,b=2,...,n.
Thus the required result is proved.

REMARK. In the preceding propositions we restricted to the case of locally sym-
metric spaces with S-invariant Ricci tensor. In the more general case the conditions
A¢ = 0, Al = 0 become rather complicated and involved. Up to now we do not
know if these results can be extended to the case of general Riemannian manifolds.

3.3 Survey of related results

Let 8, be the volume density function of exp,, where o is a curve as above. 6,
is defined with respect to Fermi coordinates along o by

(3.28) 6,(p) = (det(g:;(p))?-

Using (1.34) and (3.28) we have, with the notations and symbols introduced in
Chapter 1, Section 1.3,

(detDu)(r)

Tn——?

(3.29) 05(p) =

Consider now the shape operator T, of the tube P,(r) at p = expy(ru). Proceeding
as in the case of the geodesic spheres (cf. Section 1.2) it is not difficult to prove
that T, takes the form

(3.30) To(p) = (DD )(r)
and therefore the mean curvature hy(p) of P,(r) is given by

(330 help) =D = o2 ) = 222y (o),
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Using (3.31) and the expansion for the mean curvature of the tube P,(r) we
obtain the following power series expansion for the volume density function (cf.

[CV1],[V4]):

1
(3.32) Os(expm(ru)) =1 — Kyr — g(/’w + 2R1u1u)r2 + O(r3).

An S-rotation s, around a curve o is volume-preserving (up to sign) if and only if

(ct. [V4])

(3.33) bs(so(p)) = 0+(p)-

Volume-preserving reflections with respect to curves have been considered (see
[V4] for more details) and may be used to characterize special classes of manifolds.
For example, it was proved by L. Vanhecke and T.J. Willmore in [VW2] that a
Riemannian manifold is locally symmetric if and only if the reflections with respect
to all geodesics are volume—preserving.

Note that if the reflection with respect to a curve o is volume-preserving then
o is a geodesic. This is just a special case of the fact that if a free S-rotation
$o around a curve o is volume-preserving then o is a geodesic. In fact the first
condition we get from (3.32) and (3.33) is

9(F,u) = g(&, Su)

and therefore if S is free & must be zero, i.e., o is a geodesic. Apart from this, very
little is known about volume-preserving rotations around curves.

For example, we can mention that for a space of constant curvature ¢ # 0, due
to the fact that the Jacobi equation can be solved explicitely, the volume density
function for a geodesic is given by (cf. [GV3],[V4])

sin/er., . _
6, (expm(ru)) = (cos Ver)( \/—\c/r_ 2
and therefore any rotation around a geodesic o is always volume-preserving.
Also in the case of a space with constant holomorphic curvature ¢ # 0, the
volume density function for a geodesic ¢ is given explicitly (cf. [GV3]) by

2
0s(expm(ru)) = (ﬁ sin -72—67“)2”_2(cos2 767« — a%sin? \/757‘),
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where a = g(6(0), Ju). Therefore, we must have
9(6, Ju)g(6, Ju) = g(¢, JSu)g(&, J Su)

and hence SJé = £J&. So, a rotation s, around a geodesic o is volume—preserving

if and only if SJ& = £Jo.

Reflections and rotations with respect to curves have been used extensively in
(almost) contact geometry . There it is natural to consider reflections with respect
to integral curves of the characteristic vector field but also reflections with respect to
other curves play an important role. In [In], the author considers special rotations
around ¢-geodesics on a Sasakian manifold, the so-called (local) ¢-rotations . For
this kind of arguments the most recent and extensive reference is the doctoral
dissertation by P. Bueken [Bu] to which we refer the interested reader.

In several cases, for example in the framework of K-contact geometry itself, the
manifolds are just special cases of Riemannian foliations. Reflections with respect
to the leaves of a Riemannian foliation have been considered in [ToV4]. In that
paper the special case of a Riemannian flow generated by a unit Killing vector field
was also treated. This study was then continued and developed by other authors
in subsequent works. For these problems we refer to [GD].



Chapter 4

Rotations around submanifolds

In this chapter we continue our study by considering the notion of a rotation
around a submanifold.

4.1 Isometries and rotations in tubular neighbor-

hoods

Let f be an isometry of (M, g) and suppose it has a fixed point set of positive
dimension. Let B be a (totally geodesic) connected component of this fixed point
set. Then, on a sufficiently small tubular neighborhood of B, f can be represented
as

f = exp, odfipoexp,,

where df|p is the differential map of f calculated along B. So, df g is a (1,1)-tensor
field along B which is a linear isometry on each fibre of the normal bundle of B
and which is the identity map on the vectors tangent to B.

With this example in mind we will now introduce the notion of rotation around

a submanifold ([NV4]).
DEFINITIONS. A (1,1)-tensor field S along B, that is, an F(B)-linear map

S:%(B)— X(B),
is said to be a rotation field along B if
S(XH(B)) CXH(B),  Sxm) = IxB)

and

g(SU,SV) = g(U,V)

81
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for all U,V € X+(B).
On a sufficiently small tubular neighborhood of B, the local diffeomorphism
defined by
sp = exp, 0 Soexp,’
is said to be a (local ) S-rotation around the submanifold B. If S —I is non-singular
on the normal bundle, sp is said to be a free S-rotation.

Note that for S = —1I, sp defines the (local) reflection with respect to B. Fur-
thermore, we have
sB : expy(m,v) — exp,(m, Sv)
and B is contained in the fixed point set of sg. Finally, the analytic expression of
sp in terms of Fermi coordinates is

IiosBzxiy Z.:].,...,q,
x“osB=S§‘($1,...,mq)mb, a,b=q+1,...,n,
where S; are the components of S with respect to the basis {Eg41,...,E,} intro-

duced above (cf. Chapter 1).

__ The covariant differential of S along B is the F(B)-linear function V.S : X(B) x
X(B) — X(B) defined by '
(VSH(X,V)=(VxS)V =Vx(SV) - SVxV.
Then it is easy to see that V.S = 0 is equivalent to the two following statements:
(1) S preserves the second fundamental form of B, that is,

ST(X,Y)=T(X,Y);
(2) S preserves the normal connection of B, that is SV{U = V%(SU) (or,
equivalently, (V£S)U = 0),
for XY € X(B) and U € XX(B). If S is free, VS = 0 implies that B is totally
geodesic. In particular, when S determines the reflection with respect to B, then
VS = 0 is equivalent to the fact that B is totally geodesic since V£S = 0 is
automatically satisfied.

From the remarks made above at the beginning of the section it follows that an
isometry f of (M, g) is a rotation around the (totally geodesic) connected compo-
nents of its fixed point set (which was supposed to have a positive dimension). Its
rotation field is the differential map of f along B. It is easy to see that this field is
parallel along B. Now, we will derive a criterion for a rotation to be isometric.
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PROPOSITION 4.1. Let B be a submanifold of (M,q) as specified above and let
sg be an S-rotation around B. Then, if sp 1s an isometry,

(1) VS =0 valong B;
(2) (VzuR)uzuy - (vgu.,.SuR)SuSrSuSy7

for all normal vectors u, all tangent vectors z,y of M and all k € N.
The converse also holds for analytic data.

PROOF. If sp = exp, 0 Soexp,! is an isometry, then sp = exp, o dsg|po exp; !
and hence S = dsp|p is parallel along B. Moreover, since any isometry preserves
the curvature tensor and its covariant derivatives, we have (2).

Conversely, given (1) and (2), we have to prove that s¢g = ¢g. Using (1) this
reduces to

9:;(p) = 9ii(58(P)), gia(p) = gia(sB(P))SS(M), gas(p) = g5+(sB(P))SE(m)S} (m),

fori,j=1,...,q;a,b,a, 8,7 = q+1,...,n where p = expn(ru). As we explained in
Section 1.3, the components of the metric tensor with respect to Fermi coordinates
are given in terms of the operator D,. The Jacobi equation (1.32) yields

l
DL+2(0) —_ Z (i) R(l—k)(o)ng)(O), leN.
k=0

Then, the Taylor expansion of D,(r) together with the initial conditions,
T(Su) = ST(u) = T(u), SV+tu = Vi(Su),
and (2) yield the required result.

This proposition generalizes the result obtained in [CV2] for reflections, i.e.,
when S = —1I. In this case the proposition reads as follows.

PROPOSITION 4.2. Let (M,g) be an analytic Riemannian manifold and B a
submanifold. Then the reflection sp 1s a local isometry if and only if

(1) B is totally geodesic;
(2) (V2 R)you is normal to B,
(VZ*HIR)uou is tangent to B, and

(Vi’i’HR)wu 18 normal to B

u
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for all normal vectors u,v of B, any tangent vector © of B and all k € N.

When (M, g) is locally symmetric (2) of the above proposition reduces to
R,,u is normal to B

for all u,v normal to B. As we already mentioned in Chapter 3, Section 3.1, there
are two useful geometric interpretations of this condition for a totally geodesic
submanifold B in a locally symmetric space (cf. [CV2]).

PROPOSITION 4.3. Let B be a totally geodesic submanifold in a locally symmetric
space (M,g). Then the following statements are equivalent:

(1) Ryyu s normal to B for all u,v normal to B;

(2) Through each m € B there ezists a totally geodesic submanifold B such that
TB = v(B)m;

(3) B 1is curvature-adapted to M, i.e., Ry (TmB) C T;yB and R, o T'(u) =

T(u) o Ry for each m € B and every (unit) normal vector u at m.

For the notion of a curvature-adapted submanifold we refer to [BV] (see also
[Gr7] for the notion of compatible submanifold), where one can also find further
applications. It is clear that every submanifold of a space of constant curvature is
curvature-adapted. Moreover, in spaces of constant holomorphic sectional curva-
ture the holomorphic submanifolds provide examples of curvature-adapted subman-
ifolds. Other examples of curvature-adapted submanifolds are the geodesic spheres
in P-spaces (cf. [BV]).

In [CO] it was pointed out that a totally geodesic submanifold B in a Kéahler
manifold of constant holomorphic sectional curvature ¢ # 0 is either holomorphic or
totally real with dimB = %dim_M . Then from the preceding discussion the following
holds true ([CV2]).

COROLLARY 4.4. (a) Let (M,g) be a space of constant curvature. Then the
reflection sp 13 an isometry if and only if B is totally geodesic.

(b) Let (M, g) be a Kihler manifold of constant holomorphic sectional curvature
¢ # 0. Then the reflection sp 18 an 1sometry if and only if either B 15 a holomor-
phic totally geodesic submanifold or a totally real totally geodesic submanifold of
dimension $dimM.
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4.2 Harmonic and isometric rotations

In this section we concentrate on harmonic S-rotations in relation with isometric
S-rotations around a submanifold of a Riemannian manifold.

The relationship between isometric and harmonic reflections for analytic data is
completely clarified by the following result [DGV].

PROPOSITION 4.5. Let sg denote the reflection with respect to a submanifold
B in a Riemannian manifold (M,g). Then sp 1s harmonic if and only if it 1s an
18ometry.

For S-rotations the problem is not solved in general. Nevertheless, we have

[NV4]:

PROPOSITION 4.6. Let B be a submanifold of (M, g) as specified above and let sp
be an S-rotation around B. If sp is harmonic, then S preserves the mean curvature
vector field of B and if sp 13 a free rotation, then B is a minimal submanifold.
Moreover, if B 1s totally geodesic with flat normal connection and sp a harmonic

rotation, then VS = 0 along B.

PROPOSITION 4.7. Let (M,g) be a locally symmetric space with S-invariant
Ricci tensor and let B be a totally geodesic submanifold with flat normal connec-
tion and s an S-rotation around B. Then sp 1s harmonic if and only if it 15 an
1sometry.

This gives at once

COROLLARY 4.8. Let (M,g) be a locally symmetric Einstein space and let B be
a totally geodesic submanifold with flat normal connection and sp a rotation around
B. Then sp 18 harmonic if and only if sp 18 1sometric.

In the next part of the section we will prove these results. Using Fermi co-
ordinates and with the notations and symbols introduced in Section 1.5 we first
state

LEMMA 4.9. An S-rotation sg around the submanifold B is harmonic if and
only if for all m € B

°(s8)(p) = {97 (Vdsp)s; + 29" (Vdsp)i, + ¢**(Vds )5, }(p) = 0,
(4.1)
*(sB)(p) = {97(Vdsp)f; + 29" (Vdsp)l, + 9*(Vds )5, }(p) = 0,
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fori,5,k=1,...,¢;a,b,e=q+1,...,n, where p = expp(ru), u € v(B)m, ||u|| =1
and

gﬂ
(Vds5)ty(2) = ~T5(0) + T (s5(p)) + la(s5(2) o
B
4T (s 5(0)) 8 50 4 T ‘255 ‘ZS;‘ s,
(Vds)f(p) = —T'fu(p) + Tis(s5(p))SE + L&
(Vdsp)ky(p) = —Thy(p) + Ths(sn(p))SESY,
(Vds5)5 () = mroisa® — T(p) okt TS
(4.2)
+T5(sB(p)) + 15 (SB(p))
05 as8
+T5,(5(0) ‘:x“+rcﬁ<33<p>>‘25 Rl P
(Vds 5)5u(p) = 9ok — Ty () gba’ — T4 (r)SS
+T(s5(0))S8 + Toplon(p) 2 55",
8.5'5 e

(Vds)oa(p) = ~Tiu(p)5ra’ — TS5 + I‘zﬁ<s3<p)>sz'5£’,

where S§ and its partial derivatives are evaluated at m.

Further, put
3
T(sp)* =Y Aft*+0(t"), c=q+1,...,n,
. 3 .
r(sp)' =Y AitF+ 0@, i=1,...,¢

From (4.1) it follows that if sp is a harmonic rotation then we have
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for k=0,1,2,3;c=q+1,...,nand i =1,...,q. To compute A¢ and A% we need
to know the Christoffel symbols. To this end, we put

gap(p) =) aGp(m)r® +0(r),

=0
3
g*8(p) =>_ BIp(m)r® + O(r),
=0

9 3
e () = Thpo(m) + O(r4)
=0

for A,B = 1,...,n (see Chapter 1, formulae (1.35)—(1.40)). We have, for ¢,7,k =
1,...,¢a,b,c=q+1,...,n,
Tk (p) = Lo 0 0
ii(p) = ‘2‘{7ikj + Viki — Yijr (M)

T 1 1
+ 5{’Yz'kj + Yiki — Vijk

- Z ﬂ/lcd’)’?jd}(m)

d=q+1

2
T
+ '2—{7;'21;3‘ +Viki = Vigk
g g g
+ Z Brrvi; + Z Brivjii — Z Briviji

n n
- Z Biaviia + Z BraYias

d=g+1 d=g+1

+ Y Braviai— D Bravia}(m)+0(r*),

d-—_—q-|-1 d=q+1
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1
Ffa(p) = §7ioka(m)

q
r 1 1
+ 5{%‘11“1 t Yaki = Yiak T IZ Brvita
=1

+ Y BraYiaa— Y, Bravha}(m)

d=g+1 d=q+1

2
r 2 2 2
+ —Q‘{Yz‘ka T Yaki = Viak
q n q
1.1 1.1 1.1
E BriYita + E BictYati — E BriYial
=1 l=q =1

q9 n n
+ Y BVt Y Bravis t+ > Braveas
1=1

d=gq+1 d=gq+1

- }: Braviaw— Y, Biavha}(m) +0(r*),

d=q+1 d=g+1

. 1 r
I'ty(p) = '2'{72kb + Yora (M) + 5{7;%

g g :
Voka T Z Brivaw + Z Biiviia}(m)

=1 =1

2 q
™
+ ‘2“{721&; + Yok — Yom + E BirYen
=1

g g g
+ > Bivaa + Y BRrvas + > B
=1 1=1 I=1

n n
11 1
+ Z BraYaas + Z BriToda

d=q+1 d=gq+1

- Z Bravasa}(m) + O(r?),

d=q+1
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D% (p) = — 295u(m) + S {vky + 7
i\P) = — Q’Yijc m ) Yiej T Vjei

2 q q
T
— Yijed(m) + E{Z Bivly + > Barvhi
=1 =1
q
2 2
- Z ﬂél')’iljl + %‘2cj + Yjei — Yije
1=1

- Z Birrijal(m)

d=gq+1

3 n
r
+ "'2—{7?cj + 7?«:1‘ - 7?3'0 + Z Bliviaj
d=q+1

n n '
+ Z ﬁzd’ﬁdi“ Z 6zd7iljd" Z 5§d7gjd

d=gq+1 d=g+1 d=q+1
g g g
2 1 2 1 2 1
+ Zﬂcz’m]’ + Z Berviu — Z Berviji
1=1 1=1 1=1

q g g
+ Z ﬁim‘zzj + Z 5217}1:‘ - Z /331’)’1'21'1}(771) +0(r"),
=1 =1 =1

1
Pfa(p) = 5{7?00, - ’Y?ac}(m)

q
T
+ 5{2 5217?111 + 7z'lca - 7z'lac}(m)
=1

2 q q q
r 1.1 11 1.1
+ ‘2“{2 clVila T Z BerVati — Z BerViai
=1 =1 =1
q
2
+ Z ﬂzl7?la + 722ca + Yaci
=1

- ’Yizac + Z ﬁzd7?da}(m) + O(T3)’
d=g+1

89



90 CHAPTER 4. ROTATIONS AROUND SUBMANIFOLDS

q q
r .
I'2e(p) = ’2‘{2 Bavdn + > Bivi
=1 =1
1 1 1
+ Yach + Ybea — 7abc}(nz)

2 q q q
-
+ E{Z BarYaw + IZ: BerToia + Z Birvewm
=1 =1 =1

q
+ Z /le'ygla. + ’chb + 7gca - 7Zbc}(m)

=1

3 q q q
r
+ —Z‘{Z Barvan + Z Betsia — Z Barviu
=1 =1 =1
g g g
2 2 3
+ Z Bervaw + Z BerToia + Z BerYaun
=1 1=1 1=1

q
+ Z ﬂgl7g1a + 720() + 7gca
=1

n n .
— Yabe + Z BeiYaar + Z B2 bda

d=q+1 d=g+1

- Z Biavaat(m) + O(r*).

d=gq+1

Therefore, using (4.1), (4.2), the expressions for g42 and for the Christoffel sym-
bols we are able to compute the coefficients A§ and A}. We delete the lengthy but
straightforward computations.

PROOF OF PROPOSITION 4.6. First, from A§ =0,c=¢+1,...,n we get

q q
SY TpEi=)Y TgE:.
=1 =1

This is equivalent to SH = H, where H is the mean curvature vector. So, if sg is
a free rotation, we get H = 0 and hence B is a minimal submanifold.
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Next, suppose that B is totally geodesic and that V1 is flat. Then the frame
field {E441,...,En} can be taken parallel with respect to the normal connection in
a neighborhood of m € B (cf. Section 1.3). Under these hypotheses, the conditions
Af =0 yield

q q
(43) Z g((viiEi S)ua SEC) - Z(Rm‘ci - RSuiSci)
=1 1=1
9 n
"3 > (Reaua — Rsesasusa) = 0,
a=q-+1

where as before Rapcp = RE,EpEcEp, A, B,C,D =1,...,n. Now, for a normal
unit vector field u we have g((V,5)u, Su) = 0 and then, differentiating again and
using the identity 'SS = I, we get

9(VE 5, S)u, Su) = —g((VE,S)u, (VE,S)u).

Next, we substitute this in (4.3), replace u by E. and sum with respect to ¢ =
g+1,...,n. This gives

SN d(VES)E,(VES)E) + Y Y (Reici — Rseisei)

i=1 c=¢+1 i=1 c=¢q+1
5 n
+ § Z (Rcaca - RScSaScSa) = 07
a,c=g+1

and therefore
n

g

Z Z g((Vf;S)EC,(VﬁS)EC) = 0.
i=1 c=q+1

As V+: 2(B) x ¥1(B) — ®1(B) is F(B)-linear, we obtain V-+S = 0 along B. So,

since B is totally geodesic, V.S = 0 along B.

PROOF OF PROPOSITION 4.7. Since any isometry is harmonic we only have to
prove the converse. So, let sp be a harmonic rotation around B. According to
Proposition 4.1 and Proposition 4.6 we have to prove that
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Riuju = RiS’ujSu, Riuau - RiSuSaSu; Raubu = RSaSquSu

fors,j=1,...,q;a,b=q+1,...,n
First, since V.S = 0 and since the Ricci tensor is S-invariant, (4.3) yields, by
taking E. = u,

q
(44) Z(Ruiui - RSuiSui) =0

=1

for all u € v(B)m.
Next, we consider the conditions A§ = 0,c = ¢+ 1,...,n. Then, after a lengthy
computation, we obtain

(45) 30 Z (Ruzu] Squu]) 45 Z Rl“u] RUWJ RSWSUJ)
i,5=1 ,5=1
q n

— 60 Z Z Ruiua(Ruiua - RSuiS’uSa)

i=1 a=q+1
+ 362 Z (Rzuau SiLSaSu)

1=1 a=q+1
+6 Z (Ruaub uaSub)

a,b=q+1

n
- 10 Z Ruaub(Ruaub - RSuSaSqu) = (.
a,b=q+1

The left hand side of (4.5) may be considered as a function on the unit sphere
S™=471(1) in v(B),,. We shall integrate this function over this sphere. To this
purpose we recall the following auxiliary lemma (cf. [CV1],[Gr7],[GV1],[GV2]).

LEMMA 4.10. Let u = ZZ=q+1 u.E, be an orthonormal decomposition of the
unit vector u € v(B)n, with respect to an orthonormal basis {Eyq,...,E,} of
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v(B)m. Then we have

/ uqdp =0, / UgUptcdp =0
Sn-a-1(1) Sn-a-1(1)

1
UUpdt = Cpe—ge1———=04b,
/anl(l) K qln—l b
1 1

uuduz—-/ utdy = cpe g , (a #0b),
/Sn a-1(1) b 3 Sn—1-1(1) a ! 1(”“])(”“@‘*“2) ( #0)

/ uguptuugdu = 0 whenever at least three indices are different,
Sn—q-— 1(1)

/ wuydp = 0, a#b,
neami(1)
where a,b,c,d =q+1,...,n; du denotes the volume element of S™"971(1) and

_ (="

Cp—g—1~
(=)
is the volume of a unit sphere in the Euclidean space E"™9.

As a consequence of this lemma one gets at once that the integrals of

Z(Rizu] R:.)S"uiSuj)a Z Z (Rzuau SuSaSu)

i,7=1 1=1 a=q¢+1

and

Z (Ruaub RzSuaSub)

a,b=g+1

vanish. Next, put

93
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q
A= Z Ryiuj(Ruinj — Rsuisuj),
1,5=1
q n

B = Z Ruiua(Ruiua - RSuiSuSa)7
1 a=q+1

1=

n

C= Z Ruaub(Ruaub - RSuSaSqu)-
a,b=¢+1

Then, by integration, we get first

q n
Cn—g—1
Adp = : RaivjRaiv; + Raivi Rbiaj
/sw-l(x) P =g —q+2) i§=:la,b=zq—§-1{ e goonal

— RaipjRsaist; — RaivjRsbiSaj}-

Now, we use the first Bianchi identity and the Ricci equation for the submanifold
B (cf. (1.28)) in order to obtain

q n
Cn—gq-1
Ady = n—gq Rai'—Raz‘ ,2'
/S"*H(l) SR O E) Z 2. (Raisj = Rsaist)

1,7=1a,b=g+1

Next, we have

q n
Cn—g—1
Bduy = 1 Rbi aRcica + RbicaR ica
/Sn—q-l(l) P = m—q+2) 2 2 R '

i=1 a,b,c=q+1

+ RyicaReiba — RbivaRsciscSa — RbicaRspiScsa — RbicaRSciShSa }-

Observe that

n q q
Z (RpivaReica — RbibaRsciscsa) = Rpiva(pia — Z Rjija — pise + Z Rjijsa)
c=q+1 j=1 j=1

q
=Y Riina(Rjijsa — Rjija)
j=1
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since p is S-invariant. As the submanifold is tota eodesic g, F; is tangen
pis S t. As th b fold is totally geodesic, Rg; g, E; is tangent

to B and then the last expression vanishes. Furthermore, because of the curvature
identities

Z RibcaRicba = ';' Z RibcaRibcm

a,b,c a,b,c
1
RipcaRiscsbse = = RipcaRisbScSa,
2
a,b,c a,b,c

we eventually obtain

3¢, _ 1 q n
Bdu = n—q Rica Rica"'Ri cSa)-
/Sﬂ-q—l(l) s 2(n—q)(n—q+2) Z Z bea(Rib SbScSa)

1=1 a,b,c=q+1

For the integral of C' we get

Cn—qg—1 E
Cd/,l, = 1 {RaaabR aBb + Raa bRaa b
/SR-q-rm (n—a)(n—q+2) %;_ o s

+ RaagbRpaat — Raaab 58505850 — RaappRs5aSassss — RaappRSpSasash})-

Proceeding in the same way as above we obtain

n
Cn—q—1 .
Cdu = 1 {RasasRpaps — RaaabRspsassss
/Sn_q’l(l) (T’L B q)(n —q+ 2) a,b,a;q—fl oef f ’

3
+ ‘Z‘Raaﬂb(Raaﬂb — RsasSaspss)}-

Now, the S-invariance of p yields

1 Z3 q n
Z Roaab(Rpapy — Rspsaspsy) = — Z Z Rogob(Riaib — RiSaiss)

a,b,a,f=q+1 =1 a,b,a=q+1

and this vanishes because of (4.4). So, we get
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3Cn—q—1

Cdu =
/SH—q—lu) r g —q+2)

n
Z Ruapt(Raaps — Rsasaspss)
a,b,a,8=g+1

n

3Ccn—g-1 2
= (Raaps — Rsasaspss)”-
4n-gn-q+2) ay,,,a%::qﬂ

From all these computations, (4.5) integrated over S™971(1) takes the form

q n q n
2 2
6> > (Raitj — Rsaiss;))*+6) Y. (Riabe — Risaspse)
1,9=1a,b=q+1 1=1 a,b,c=¢q+1
n

+ Y (Raaps — Rsasasps)’ =0
a,b,a,8=g+1
and this is equivalent to

Raiv; = Rsaisss, Riape = Risaspse; Raaps = Rsasaspss
fori,5=1,...,¢;a,b,c,a,8 =¢q+1,...,n, from which the required result follows.

4.3 Holomorphic and symplectic rotations and
related questions

In this section we consider holomorphic and symplectic free rotations around a
submanifold B of an almost Hermitian manifold (M, ¢, J). We shall put emphasis on
the influence that such rotations have on the extrinsic geometry of the submanifold.

This study was initiated by B.Y. Chen and L. Vanhecke for the case of reﬁectlons
in [CV2] and continued in [CV3].

First of all, note that if a free S-rotation spg is either holomorphic or symplectlc,
then we obtain the condition

SJ =178,

and this implies at once that the submanifold is holomorphic. Analogously, if sp is
anti-holomorphic, then the submanifold B is totally real.
The consequences on the second fundamental form of B induced by the holomor-

phic and symplectic properties of the reflection Wlth respect to B are summarized
in the following ([CV2])



4.3 HOLOMORPHIC AND SYMPLECTIC ROTATIONS 97

PROPOSITION 4.11. Let (M,g,J) be an almost Hermitian manifold and B a
submanifold. If the reflection with respect to B is holomorphic (respectively, sym-
plectic) then

(1) B is a holomorphic submanifold;

(2) the second fundamental form T of B in M satisfies T(X,Y)-T(JX,JY) =
0 (respectively, T(X,Y)+T(JX,JY)=0);

(3) (VuJ)X s normal to B

for all vectors XY tangent to B and all w normal to B.
For a generic free rotation sp there is an analogous result.

PROPOSITION 4.12. Let (M,g,J) be an almost Hermitian manifold and B a

submanifold. If the free S-rotation sp ts holomorphic (respectively, symplectic)
then

(1) B is a holomorphic submanifold;

(2) the second fundamental form T of B in M satisfies T(X,Y)-T(JX,JY) =
0 (respectwely, T(X,Y)+T(JX,JY)=0);

(3) (VuJ)X s normal to B :

for all vectors X,Y tangent to B and all v normal to B.

The proof of this proposition is obtained in the same way as that of Proposition
4.11 by computing power series expansions of the Kéahler form and the almost
complex structure in terms of Fermi coordinates along the submanifold. We sketch
the proof for a symplectic rotation. Let p = expm,(u), r sufficiently small, u €
v(B)m, ||u|| =1, m € B. Then sp is symplectic if and only if

0 0 0 0
‘Q(d’SB(ax_A)?d'SB(W))(p) = Q(‘a‘:‘b‘;ra?g)@): A7B = 17"'7n'

In particular,

(46)  Qdsn(mm) don(z)E) = Upmyy )o), i =100

or, equivalently,

d —~ 9(55) 8 @ "L9SY) s 0 o 0
5:;’7—*- 9zt 0z Bz + ‘. dzi " 5;;)_9(811"’5;17)'

a=gq+1 a=q

&
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Using the initial conditions for D,(r) (cf. Section 1.3) we have

Qij(p) = 9(Ei, JE;)(m) + r{g(T(u)E;, JE;) + g(Es, JT(u)E;)
+9(Ei, J'(w)E;j)}(m) + O(r?),

Qia(p) = 9(Ei, JEa)(m) + r{g(T(u)Es, JE,) — g(" L(w) E;, JE,)
+9(Ei, J'Ea)}(m) + O(r?),

Qus(p) = 9(Ea, JEs)(m) + rg( Ea, I Ey)(m)

2
n %-{3g<Ea, J"Ey) — g(Ea, JRyEp) — g(RuEa, JE;) Hm) + O(r?),

where ¢, =1,...,¢;a,b=¢+1,...,n and J'(u) stands for V,J.
Comparing the first order terms in (4.6) we obtain

: g(u7T(Ei7 JEJ)) - g(”) T(JEZ') EJ)) + g(Ei7 Jl(u)EJ) =
9(Su, T(E;, JE})) — g(Su, T(J E;, E})) + g(Ey, J'(Su)Ej)).

Using the fact that B is holomorphic and replacing E; with JE; we get

9(u, T(JEi, JE;})) + g(u, T(E, Ej)) + (T Ei, J'(w)E;) =
g(u7t ST(JEU JE])) + g(u’t ST(EH EJ)) + g(JEia J,(SU)EJ))

Then, for all X,Y tangent to B we have

g(u, T(JX,JY) + T(X,Y) -t S(T(JX,JY) + T(X,Y))) =
—g(JX,J' ()Y — J(Su)Y).

Observe now that the right-hand side of the preceding formula is skew-symmetric
and the left-hand side is symmetric. This implies

SS(TIX,IV)+ T(X,Y)=T(JX,JY)+T(X,Y)
and J'(u)Y — J'(Su)Y is normal to B
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and thus, since S is free,
TJX,JY)+T(X,Y)=0
and (3).

From the relation T(X,Y) + T(JX, JY) = 0 for the second fundamental form
we have easily that a symplectic free rotation implies that the submanifold B is
manimal .

This result can also be obtained as a consequence of the fact that any symplectic
rotation preserves the volume.

A free rotation spg is volume-preserving (up to sign) if and only if

(4.7) Op(expm(ru) = 0p(expm(rSu))

for u € ¥(B)m, m € B and r sufficiently small, where 8 p denotes the volume density
function of exp,(p) defined, in a sufficiently small tubular neighborhood of B, by

(4.8) 05 = (det(gap))?, A,B=1,...,n

* As has been proved in [VW2] for the curve case and in [KV2] in general (see also
[V4]), the following important formula holds

05(p) = r'6m(p)det{T(u) + Bu(r)},

where 0,,(p) denotes the volume density function of exp,, in (M, g) (cf. Section
1.2), T'(u) is the shape operator of B with respect to v and

By(r)ij = 9(Tp(m)E;, E;)(m), t,7=1,...,g =dimB.

Here Tp(m) is the shape operator at m of the geodesic sphere G,(r) with center p
and radius r.

The remarkable feature of this formula is that 6p is completely represented by
quantities relating only to the extrinsic geometry of B and the geodesic spheres of
the ambient space that are tangent to B.
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Taking into account the power series expansions of 8,, and B, (cf. Chapter 1,
and [CV1]) we obtain

Op(expm(ru)) = 1+ trT(u) + O(r?).
Thus, if sp is volume-preserving (up to sign) then
trT(u) = trT(Su),

that is S preserves the mean curvature vector of B. Since S is free we then obtain
that B is a minimal submanifold.

Volume-preserving reflections with respect to submanifolds have been investi-
gated in [ToV1] (see also [V4]) to which we refer for further details. Other prob-
lems connected with the study of reflections with respect to submanifolds in relation
with the extrinsic and intrinsic geometry of tubular neighborhoods can be found in

[ToV2],[ToV3].
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