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La solidarité par la science

La science n’a pas de nationalité; elle est aussi bien
allemande, anglaise, italienne, russe ou japonaise que
francaise. Elle progresse par les petites nations aussi
bien que par les grandes; chacune apporte son con-
cours a l'ceuvre commune, et c’est pourquoi tous les
peuples civilisés sont solidaires. Toute perte éprouvée
par lun d’euz ou infligée a l'un d’euzr est une perte
pour l’ensemble de ’humanité.

Quand ces vérités seront enseignées par tous et au-
ront pénétré tous les esprits dans les couches sociales
les plus élevées des aristocraties aussi bien que dans
les couches populaires les plus profondes des démocra-
ties, on aura compris que la véritable lot des intéréts
humains n’est pas une loi de lutte et d’égoisme, mais
une loi d’amour. Voila comment la science proclame
que le but final de ses enseignements est la solidarité
et la fraternité universelles.

Berthelot
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Introduction

Let G be a finite group of orientation preserving isometries of a closed ori-

entable hyperbolic 2-manifold F, of genus g > 1 (or equivalently, a finite group
of conformal automorphisms of a closed Riemann surface). We say that the G-
action on F,; bounds a hyperbolic 3-manifold M if M is a compact orientable
hyperbolic 3-manifold with totally geodesic boundary F, (as the only bound-
ary component) such that the G-action on F, extends to a G-action on M by
isometries. “Symmetrically” we will also say that the 3-manifold M bounds the
gwen G-action. We are especially interested in Hurwitz actions, i.e. finite group
actions on surfaces of maximal possible order 84(g — 1); the corresponding finite
groups are called Hurwitz groups. First examples of bounding and non-bounding
Hurwitz actions have been given in [33].
An important family of finite groups are the linear groups over finite fields, in
particular the projective special inear groups PSL(2,q) which are simple groups.
We consider the case of Hurwitz actions of type G = PSL(2,q), which have
been classified by Macbeath [15]. Our method allows to construct various infinite
families of bounding Hurwitz actions of this type and gives strong evidence for
the general conjecture that all Hurwitz actions of type PSL(2,q) should bound
hyperbolic 3-manifolds, with the only exception of the smallest Hurwitz group
PSL(2,7) of order 168 acting on Klein’s quartic curve of genus 3 (see [6]), which
does not bound. We also construct an infinite family of non-bounding Hurwitz
actions.

For the proofs we shall use the theory of hyperbolic 3-orbifolds. In fact our
3-manifolds which bound a given Hurwitz action will be regular coverings of a
certain kind of hyperbolic 3-orbifolds with a small number of vertices and edges in
the singular graph (it seems to be indeed the minimal possible choice). Depend-
ing on the given group PSL(2,q) and on the orbifold in this class, we get certain
number theoretical conditions which guarantee that a covering of the orbifold
bounds the given PSL(2,q) action. This allow us to construct various infinite
families of bounding PSL(2,q)-actions. It seems that the method gives a posi-
tive answer for each fixed value of g, for example we have found that all Hurwitz
actions of type PSL(2,q), for ¢ = p prime, 7 < p < 1000,In particular, forgetting
about the group actions, all the corresponding hyperbolic surfaces bound hyper-
bolic 3-manifolds, a fact we do not know for Klein’s quartic curve. The necessary
computations have been done with the aid of a computer VAX. All these results
bring us to- strongly believe that any Hurwitz action of PSL(2,q) type should
bound, but a general solution seems to require some intricate number-theoretical
considerations.

We underline that all hyperbolic 3-manifolds considered, together with their
PSL(2,q)-actions, are maximally symmetric with respect to the equivariant Hee-
gaard genus for 3-manifolds with boundary (see [32], [33]): they admit a Heegaard



splitting, invariant under the group action, into a handlebody of genus g and a
product-with-handles such that the group action is of maximal possible order
12 (g — 1). This is due to our choice of the quotient orbifolds. Of course also the
order 84(g — 1) is maximal for finite group actions on compact 3-manifolds with
one boundary component of genus g > 1; in particular the Hurwitz PSL(2, g)-
actions on hyperbolic 3-manifolds constructed in this work coincide with the
orientation preserving isometry group. So the constructed actions are maximal
both from a 2- and 3-dimensional point of view.

We have further applied the main Theorem 3.2.10 to the case of closed tetra-
hedral manifolds, that is the 3-manifolds that admit a quotient orbifold with a
tetrahedron as singular set. A further development of the above number theo-
retical conditions allows us to show the existence of actions of PSL(2,q)-type
also on non-orientable manifolds of tetrahedral type, thus giving a 3-dimensional
analogue of the H*-groups considered by Singerman in [25].

Let us briefly describe the contents of the various Chapters.

In the first, we collect some geometric constructions and observations, which
will be needed later; in particular we introduce the class of hyperbolic 3-orbifolds
we shall use. We refer to {29, Ch.13] and [30, Ch.5] for the theory of hyperbolic
3-orbifolds and to [33] for the maximally symmetric 3-manifolds with respect to
the Heegaard decomposition.

The second Chapter contains definitions and properties of the projective linear
groups. The main references are [8] and [15]. We have also referred to [10] and
11].

In the third Chapter we discuss the number theoretical conditions for the

existence of a PSL(2,q)-action on a hyperbolic 3-manifold bounding a given
Hurwitz action.

In the fourth Chapter we apply the framework of the third Chapter to mani-
folds of tetrahedral type.

In the fifth Chapter we present the tables and the computer programs, that
were used to check the number theoretical conditions. The programs are written
in the Pascal language.

We have added an appendix to describe some number theoretical tools and
applications belonging to our context. In particular we describe an application of
the Cebotarev’s density theorem on prime numbers; a similar application is done
by Mushtaq in [18, §4.3, §5.5] and [19, p.3882]. A good and recent introductory
book on elementary number theory is the work of Rosen [22].

Acknowledgements I would like to express my sincere and grateful thanks
to prof. Bruno Zimmermann for having devote part of his precious time to this
thesis.



Chapter 1

Geometric preliminaries

All manifolds and orbifolds are supposed orientable and hyperbolic if the contrary
is not explicitely mentioned.

1.1 Swurfaces

Let p,q,m be integers bigger or equal to 2. Take a spherical, euclidean or hy-
perbolic triangle with angles w/p, m/q and w/m. The reflections in the sides of
the triangle generate the extended triangle group [p,q,m| while the subgroup of
index 2 of orientation preserving elements is the triangle group (p,q,m) [2, §10.6].
These groups have presentation as follows

1.1.1 (p,q,m) = (z,y,t | 2P =yI=t"=1l,zy =1)
{panm] = <T17T2)T3 I T;l = Tg = Tg = 17
(rim2)P = (r2ms)? = (r173)" = 1)

where € =77y, y = To7r3 and t =7y T3.

In particular (2,2,m) is the dihedral group ID,, of order 2m, whereas (2,3,3),
(2,3,4) resp. (2,3,5) are the tetrahedral group Ay, the octahedral group S, resp.
the dodecahedral group As. If 1/p+1/g+1/m < 1 then (p,q,m) is a hyperbolic
triangle group and IH?/(p,q,m), where IH” denotes the hyperbolic plane, is a
hyperbolic 2-orbifold denoted by S*(p, g, m): it has the 2-sphere S? as underlying
topological space, and as branch set 3 branch points of orders p,q and m.

Suppose the finite group G is a surjective image of the hyperbolic triangle
group (p, g, m) with torsion free kernel: we have the exact sequence

®
I— kETSO ——>(p,q,m) —> G — 1L

Then H?/ker ¢ is a hyperbolic (or Riemann) surface F of genus g > 1 on which G
acts discontinously by isometries (or conformal automorphisms) [2], [11]. More-
over the fundamental group m;(F) coincides with ker ¢ and the genus gr of F is
given by

gr=1+(1-1/p—1/9—1/m)|G|/2,



where |G| denotes the order of G. The Riemann surface F is a regular covering
of the good 2-orbifold S*(p,q,m). The group of isometries (or conformal auto-
morphisms) is finite and its order is bounded by 84(g — 1). When the bound is
attained the action is called Hurwitz (see [6] for the theory of Hurwitz actions).

Suppose the group G admits a Hurwitz action on F,. Then the quotient
F,/G is the hyperbolic 2-orbifold S*(2,3,7), and the action is determined by a

surjection with torsion-free kernel
©0:(2,3,7) = m(5%(2,3,7) —> G

(up to automorphisms of G). Here m(5%(2,3,7)) denotes the orbifold fundamen-
tal group. In fact, the G-action on F, is given by the regular orbifold covering
of §%(2,3,7) corresponding to the kernel of ¢ isomorphic to m(F,). For more
general finite group actions on surfaces, one replaces the triangle group by a more
general Fuchsian group.

Remark: Working with tri'cmgle groups the Riernann surface struc-
ture on F, is uniquely determined, because the Teichmiller space of a
triangle 1s one point only.

1.2 Braids |

Let fix three strings. The group of braids in three strings is generated by two
elements o7 and o, [7, p.62]:

\

o, is a positive half-turn between the first and the second string, o, the same
but between the second and the third. There is only one relation between the



two generators, namely
010901 = 0901 02.

To each string we may associate a generator of the free group of rank 3: call q,
b and z the generators. Suppose that, from left to right, the strings are named
a, b respectively z. Then we consider a braid o also as an automorphism of the
free group and precisely

oi(a) :==b; o1(b):=b"1ab; o(z) ==

o2(a) := a; oa(b) 1= m; oo(z) ==z b’

We write the product of braids (and of the corresponding automorphism) as
composition, i.e. reading from right to left when going down from top to bottom.

1.3 Maximally symmetric 3-manifolds

Analogously to the Hurwitz bound 84(g—1) for closed Riemann surfaces of genus
g > 1, the maximal possible order of a finite group G of orientation preserving
homeomorphisms of the orientable 3-dimensional handlebody V; of genus g > 1
is 12(g — 1) [33]. The role of the triangle group (2,3,7) is played by the following
four products with amalgamation:

1.3.1 Gn :=(2,2,m) Z* (2,3,m), m=2,3,4,5,
i.e. the maximal handle-body groups G are exactly the finite groups that are
surjective images of G;, for at least one 7 = 1,2, 3,4, such that the surjection is
injective restricted to the amalgamated groups (2,k,m).

The quotient orbifold has the 3-ball as underlying topological space, singular
space as in the figure below

Fig.

[N)

and fundamental group G,,.



Notice that the vertex groups of the singular set of a 3-orbifold are submitted
to conditions described in the main Theorem of [16, p. 379] and Figure 6 [16,
p-389]: the possible choices are Z,,, ID,,, Ay, S, or As. So the plcture around a
vertex of the singular set must be one of the following:

A closed orientable 3-manifold is called mazimally symmetric if M has a
Heegaard splitting of genus g > 1 and a finite group G of orientation preserv-
ing homeomorphisms of maximal possible order 12(g — 1) which preserves both
handlebodies of the Heegaard splitting (but does not leave invariant a Heegaard
splitting of genus 0 and 1). Also the G-action is called mazimally symmetric.
Moreover G is a Gn-group, i.e. a quotient of G,, by a torsion free normal sub-
group. The maximally symmetric 3-orbifolds (M, () are exactly the finite regular
coverings of an orbifold with underlying topological space S and singular set as



in figure below:

Fig.4
o(a) o(b) ) o(z)

The concept of maximally symmetric 3-manifold is extended to 3-manifolds
with boundary. In particular we will consider totally geodesic boundaries with
one or two components. The groups acting on these general maximally symmetric
3-manifolds are now G,,-groups for arbitrary m bigger than 2.

1.4 Bounding actions

Now from groups acting on surfaces we want to obtain actions on 3-manifolds
with the starting surfaces as totally geodesic boundary.
We give the following:

1.4.1 Definition The G-action on a hyperbolic surface F, bounds a hyperbolic
3-manifold M if M is a compact orientable hyperbolic 3-manifold with totally
geodesic boundary F, (as the only boundary component), such that the G-action
on F, ectends to a G-action on M by isometries. “Symmetrically” we will say

that M bounds the G-actionA on Fy.

The following Proposition will assure later that we have only one boundary
component.

1.4.2 Proposition Let E be the fundamental group of a hyperbolic (good) com-
pact 3-orbifold Q, closed or with totally geodesic boundary. Suppose we are given
. a surjection onto a finite group G

¢ : E—> G,

whose kernel K is torsion free, and a connected subset Q of Q. Then the number
of connected components in the preimage of 0 in M, the hyperbolic 3-manifold



which regularly covers Q with G as group of covering transformations, equals the

indez of ¢(i.m:(Q)) in G.

Proof

The universal covering Q of Q is IH® or a subset of IH® bounded by hyperbolic
planes. Then £ = m;(Q) acts as group of hyperbolic isometries on the universal
covering of ). Since K = ker¢ is torsion free and normal in E, the quotient
M := /K is a manifold and a regular covering of ). The group G is exactly
the group of deck transformations of M over Q.

Assume the index of #(1-m1()) in G be equal to n. Take n elements

g1=1 62 --., gn

from the different cosets of ¢(i. 71(2)). The set

{gi ¢5(i~ Wl(Q))}izl,...,n

is a coset decomposition of G. Let ey,...,e, be n elements in E such that

¢)(€,’) = gi, 1= 1, veey T

Since ¢(i.m1(02)) is a subgroup in G = E/K of index n, there exists a subgroup
F of index n in E such that ¢(F') = ¢(i. m(Q)).
Suppose it is e € F'. Then there exists f € 1. 71(§) such that

¢(e) =¢(f) andso ef'eK.

Fix a component {] in the preimage of ). Then all the subsets e(ﬁ), e € F, col-
lapse to one subset AV} in M. Similarly happens to the subsets e; e(ﬁ), e € F,sep-
arately for any ¢, 1 = 2,...,n. We obtain exactly n different subsets N7, N3, .. NV,
in M such that

N;=gWN), i=2,..,n.

And in particular we are interested in the following

1.4.3 Corollary In the above hypothesis, suppose the fundamental group of the
subset () maps onto G. Then the preimage of ) in M is connected.

In particular consider a Hurwitz action G on F,, which bounds a hyperbolic
3-manifold M. Then the quotient M /G is a hyperbolic 3-orbifold having F,/G =
§%(2,3,7) as totally geodesic boundary, F, = M.

We will also consider the case of n = 2. Then the boundary has exactly two
connected components, isomorphic to each other.



We shall define now a class of 3-orbifolds which will be used in Chapter 3.

The underlying topological space is the 3-disk D3, the boundary the 2-orbifold
5%(2,3,m), and the singular set is as in Fig.5. It is a graph of groups, where each
edge is a rotational axis and the numbers stand for the order, e.g. the number
m denotes a rotation axis of order m, i.e. local group Z,,. Also we shall always
assume m > 7, so that $?(2,3,m) is a hyperbolic 2-orbifold, and n € {2,3,4,5}
resulting in the indicated local groups of the vertices.

S5*(2,3,m)

[SN]

~ | u positive
half-twists

D, ™ _ (2,3,n)

= ID:‘,A,;’S%.O}: A5



We shall denote the orbifold in Fig.5 by D*(c*,m,n), where ¢ = o, denotes
the positive half-twist between strings b and z. It has been noticed in [33],
using hyperbolic Dehn surgery on a 3-orbifold in which the braid o* has been
replaced by a cusp, that, at least for u large enough, the orbifolds D*(c*, m,n)
are hyperbolic with totally geodesic boundary §%(2,3,m). In fact, they are all
hyperbolic except in the case w = 0, where they are reducible resp. bad orbifolds,
and v = &1, n = 2, where they are twisted line bundles (see Lemma 1.4.5 and
the remark following it). If u = 1, the singular set is a tetrahedron truncated
at one vertex (or triangular prism); if also n > 2, the hyperbolicity may also be
seen by applying Andreev’s theorem for hyperbolic tetrahedra, see [29, ch. 13].
In particular, for u # 0 the 3-orbifolds are good, and therefore the local groups
at the vertices as well as m;5%(2,3,m) inject into the orbifold fundamental group
mD3(o*,m,n). This group can be computed in exactly the same way, from the
singular set, as the Wirtinger presentation is obtained from a planar projection of
a knot or link (see [33, Prop.1], [21, §3.D]); the apposite generators are indicated
in Fig.5. Alternatively one may apply the orbifold Van Kampen’s theorem. The
result is as follows (part b) is a short calculation using that b and = have order 2
in mD*(c*, m,n)):

1.4.4 Lemma

Remark: Given the 3-manifold M that bounds a Hurwitz G-action
of a surface F, the singular set of the quotient orbifold M /G contains
at least 3 interior vertices and 6 edges.

In fact, the boundary orbifold has three cone (or branch) points of
respective order 2, 3, and 7, each incident to a rotational axis of same
order. Since interior singular points carry spherical groups, these axes
can not be all three concurrent. The interior vertex incident to the
rotational axis of order 7 carries necessarily the group ID;,s0 is the
origin of two other rotational axes of order 2 (whose “product” is of
order 7). None of these latter can be incident to a boundary singular
point and, in view of minimal choices, they can not concur in a same
interior point. Then there are at least 3 interior singular vertices and
consequentely at least 6 edges. This minimal number is effectively
attained.

1.4.5 Lemma Let be u = £1 and n = 2. Then mD3(c*!,m,?2) is isomorphic
to the extended triangle group [2,3,m].

10



Proof
We use the presentations 1.1.1 and 1.4.4.a). An isomorphism

¥ D (o,m,2) — [2,3,m]
is given by

¢(a) = TlaT/J(b) = T17‘37“1,¢($) =T = T17'2,¢(y) =Y = T2aT3.

Geometrically, D3(c*!,m,2) is a twisted line bundle over its boundary; its
interior has a complete hyperbolic structure of infinite volume, but with totally
geodesic boundary it can be realized only in the (IH* x R)-geometry.

Note that, for u = 0, thereis a canonical injection of (2, 3,m)into m D*(c¥, m,n),
mapping z to z and y to y. We shall consider (2,3, m) as a subgroup of 7, D3 (%, m,n)
in the following.

We give now the bounding and non-bounding criteria which we will apply in
Chapter 3.

1.4.6 Lemma Suppose the surjection with torsion free kernel
¢:(2,3,m)—>G, G finite, m2>T,
eztends to a surjection (also with torsion-free kernel)
¢ : mD(o%, m,n) —> G, forsome u#0, nc {2,3,4,5}.

Then the G-action on a surface F, corresponding to the surjection ¢ bounds a
hyperbolic 3-manifold.

Proof

Suppose D3(c¥,m,n)is hyperbolic with totally geodesic boundary S5*(2,3,m).
Take the regular orbifold covering of D3(o*, m,n) corresponding to the kernel of
the surjection ¢ extending . This is a hyperbolic 3-manifold M (because the
kernel of ¢ is torsion free) with totally geodesic boundary F,, and G acts on M
by isometries as the group of covering transformations, restricting to the G-action
on F, corresponding to the surjection ¢. If D3(c¥,m,n) is not hyperbolic with
totally geodesic boundary (e.g. v = +1,n = 2) let v be the order of ¢(bz)in G.
Using 1.4.4.b), we have

(o (b)) = p(b(b)*+) = ¢(b(be)") = @(a(B).

Then, looking at the presentation 1.4.4.a) of mD*(c*,m,n), it is clear that we
have also an extension of ¢ to a surjection with torsion-free kernel of m; D3 (o™ ™+, m,n)
onto G. If u+pv is large enough the new 3-orbifold will be hyperbolic with totally
geodesic boundary.

11



1.4.7 Lemma Suppose the surjection with torsion-free kernel
©:(2,3,m)—> G, G finite, m > 1,

does not eztend to a surjecton of ID,, Z* (2,3,m) onto G, i.e. p(t) does not ke

in a dihedral subgroup of order 2m in . Then the G-action on a surface F,
corresponding to ¢ does not bound any compact 3-manifold with boundary F,.

Proof

Suppose the G-action of F, extends to a compact 3-manifold M with OM =
Fg. Then the 3-orbifold M/G has exactly one boundary component, namely
Fq/G = §%(2,3,m). At the branch point of order m on S§%(2,3,m) starts a
rotation axis of order m > 7, which has to finish in a singular point with local
group ID,,. This local group injects into the orbifold fundamental group of M /G
and then, via ¢, also into G which is a contradiction.

Remark: If two surjections differ by an inner automorphism of G,
their kernels are conjugate and the quotients by the kernels are iso-
morphic manifolds.

12



Chapter 2

The Projective Linear Groups
over Finite Fields

Let once for all p and n denote a prime number respectively a positive integer.
We denote by IF; the unique (up to isomorphism) Galois field on g = p™ elements.
We briefly write z =p y for = y (modgq). Obviously in Z, all elements have a
positive representative. Nevertheless any element has an opposite. So it will be
understand that £z, z € Z,, stands for both z and its opposite p — z =, —=z.

2.1 Preliminary notions

Consider the general linear group GL(2,q) of two by two non-singular matrices
with entries in the Galois field IF, with ¢ = p" elements. The special linear group
SL(2,q) is the subgroup of matrices whose determinant is equal to 1. The quo-
tient of GL(2, ¢) resp. SL(2,q) by the center,i.e. the subgroup of scalar matrices,
is the projective general linear group PGL(2,q) resp. the projective special linear
group PSL(2,q). If p = 2 these two groups coincide, but if p > 2 the group
PSL(2,q) is a subgroup of index 2 in PGL(2,g). This depends on the field TF,.
In fact if p = 2 each element of IF, has a square root in the field, but if p > 2
this is true only for half of the non-zero elements: the so-called squares [8, §61]
(or quadratic residues [12, 22]). It happens that in GL(2,q) all the matrices with
determinant a square project to PSL(2,q).
The group PSL(2,q) is simple and its order is g(g — 1)(g + 1)/2 if p > 2 resp.
(g—1)q(g+1)if p =2 [8, §108,p.88]).
It is useful to keep in mind that PGL(2,q) is represented as the group of trans-
formations

az-+b
Tz +d’

a,b,c,delFy;, ad-—bc#0.

Let X be in PGL(2,q). The determinants of two matrices representing X
differ by a square factor. Fix a non-square, in particular a generator g of the
multiplicative group IF, \ {0}, a so-called primitive root of I, [8, p.12]. We

13



choose to represent X by a normalized matrix of determinant 1 if X belongs to
PSL(2,q) resp. o if X belongs to PGL(2,q) \ PSL(2,q). Warning: the product
of two or more normalized matrices is not in general normalized.

In the set of the normalized representatives of X there are two matrices X; and
X,. They are related by

Xo =Xy, detX, = detX; and trX, = —trX;.

So det(X), the determinant of X, may be well defined, but ¢rX, the trace of X,
will be defined only up to sign. The two characteristic equations of X; and X,
are resumed by

2.1.1 A2 — (trX) A + detX = 0

the characteristic equation of X.

Before discuss it let us observe the following.

To make available, when p > 2, the square roots of each element of IF,, we
need to pass to the quadratic extension. Its construction looks like the passage
from IR to C (although in this case the resulting field is not algebraically closed)
and can be so described.

Take a non-square in IF,, in particular the primitive root p. Let 2 be a symbol
such that 22 = p. Then a model for the quadratic extension of IFy is

Fole]/(2® — o) = {21 + 221| 21,22 € T}

Since it has g elements it is just the Galois field IF .
The involution

z=21+ 2zt 21— 21 =2"1=%2

defines a conjugation that behaves exactly as in C:
z+%, zzZelF, whereas z—Z €11F,.

Return now to the equation (2.1.1). The two solutions coincide if and only if

(trX)* —4detX = 0.

Remember that we are working with normalized representatives, so detX is either
1 or p. Since trX belongs to IF, and p is a non-square, the only possibility is
detX = 1, which in turn implies t»X = 2. Such matrices and elements are

called parabolic. Any parabolic matrix of GL(2,q) is conjugate to ( 0 ) by

0 1
some matrix in SL(2,¢?). But if we want to remain in GL(2,q), a parabolic
. . . 1
matrix is conjugate to 0 /; , for some p € IF,. Two such matrices 0 yil >

14



1 . . . . . . .
and < 0 #12 > are conjugate in GL(2,q) if and only if p4 py ! is a square in IF,.

In particular it is immediate to verify that ( é q ) is conjugate to ( (1) 1 ) in

GL(2,q) if and only if p is a square in IF,.

If the discriminant of (2.1.1) is a square in IFg, there are, in IF,, two distinct
solutions of the characteristic equation. The element X is said hyperbolic. If
the discriminant is a non-square then there are two distinct conjugate solutions
in IF2. The element X is said elliptic. An elliptic element over Iy is however
hyperbolic over IF 2. It means that working with the quadratic extension, any
non-parabolic element has a representative that is conjugate to a diagonal matrix
by a matrix in SL(2,q) resp. SL(2,q%) (8, §101, §214].
Two non-parabolic elements are conjugate if and only if they have the same
trace and determinant. The “if” follows because they have the same character-
istic equation and are so conjugate to the same diagonal matrix. The “only if”
implication is obvious.

In all cases the trace characterizes the order of an element in PGL(2,q). Let’s
see how.
Remember that, if we work with normalized forms, the trace is well defined up
to sign. Otherwise it is defined up to a non-null multiplicative factor.

Consider in PSL(2,¢%) the diagonal element of order [ 2> 2 (to avoid cumber-
some distinctions the bar denotes also the inverse: if A € Iy then A=A

Rzi(é %) M=1, M#A
Then )\’:Xl:il and
-1
0=MN—X = =N (> AR,

k=0

The right-hand factor is a polynomial that can be transformed, by means of
7 = X+ ), into a polynomial in 7. Since A} = 1 the terms are powers of A or of

) that may be collected in pairs. Each binomial pLI=E 3* transforms easily into a
polynomial in 7: e.g.

MNaXN =(A+A)-2=1" -2,

If I > 2 is even, the result is a polynomial without the constant term. We define
Qi(7) to be, when [ is odd or equal to 2, the polynomial obtained, while, when
[ > 2 is even, the polynomial obtained divided by 7.
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We have in particular:

2.1.2 Table: TRACE’S POLYNOMIAL up to 7

! Qu(T) = Qui(r) - Qua(7)

2 T

3 ™ —1=(r—1)(r+1)

4 ™ =2 = (r = V2)(r + V2)

5 74—37'2—1:(7‘2—7——1)(72—}—T~1)

7 T6—5T4+6T2——1:(T3+T2——2T—1)(73—T2-—2T~I—1)

We call Qi(7) the trace’s polynomial of order I. Since Qi(7) = Qi(—7) and
the trace of an element in projective linear groups is defined up to sign, the
polynomial @; seems to represent the right tool to characterize the order of a
given element. Indeed

2.1.3 Lemma Let R belong to PGL(2,q). Then

R has order ] > 2  if and only if Ql(trR/\/ detR) = 0.

Proof
The trace is invariant under conjugation. So it is not restrictive to suppose,
when R is non-parabolic,

Ar O

Ros( )

), ArAz # 0, A # Xy, in PGL(2,q) or in PGL(2,4?),

respectively, when R is parabolic,

sz:(é *{), peTF,\ {0}.

In the first case R is of order [ if and only if A7 = Aj for s = [, but not for
1 < s <. (Note that we cannot ask A! = A, = £1, because although we wish to

work with normalized forms, the product is not always 50.)
We get

-1
0= 2] — A) = (A — X)) (O AR ),
k=0
Since Ay # A,, the element R has order [ if and only if the right-hand factor

vanishes.
In the second case, when R is parabolic, it follows that
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RI:i<1 'ul>::§:] if and only if p|l.

0 1
The polynomial A] — A] obviously vanishes for any s, because A; = Ay = +1; but
-1 -1
SATTFAS =3"1=1 isequal to 0 if and only if p]|L.
k=0 k=0

We may conclude in any case that

-1
R has order I if and only of Z A-1=kAE — 0,

k=0

where A;, Az, the two eigenvalues of R, are determined up to sign.

If R belongs to PSL(2, q), the conclusion is at hand because tr R = trR/+v/det R.
Otherwise, the element R is necessarily non-parabolic, then in PGL(2, ¢?) we may
factorize

A
R—d Ar O " v/detR VdetR 0 .
0 }\2 2 0 vV detR

VdetR

1
Now, ———= R belongs to PSL(2,q*) and has exactly the same order of R. H
VdetR (2:4) Y

Remark: Remember that although some elements of PGL(2,q) are
represented into PGL(2,q?%), the trace and the determinant belong al-
ways to IFy.

Recall here two results about polynomials over finite fields (see 1.69 on p. 28
and 2.15 on p. 52 in [14]):

2.1.4 Lemma The polynomial f € Flz| of degree 2 or 3 1is irreducible in [Fy[z]
if and only if f has no root in IF,. B

2.1.5 Lemma Let f be an irreducible polynomial of degree m in IFy[z]. Then
the splitting field of f over IFy is given by Fym (i.e. we have to consider Fym to
find the m roots of ). B

In particular consider Q;54(z) = 2® + = — 1. Since Q52(0) = 1 = Q;52(1) the
polynomial @5.(z) is irreducible in IFy[z]. But it is reducible in IFy and in any
Fyn,n > 1.

Moreover for the solutions of the quadratic equation in IFy» the following more
general result [8, §40] will be useful:
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2.1.6 Theorem The polynomial z? — z — (3 s irreducible in IF,n if and only if

n—1

BT BT B+ iy 0.
This gives another way to prove the reducibility respectively the irreducibility of
@s,2-

Now we would like to know which are the orders admited in PGL(2,q).
Let us first see that:

2.1.7 Lemma An odd order non-parabolic element in PGL(2,q), p > 2, belongs
to PSL(2,q).

The parabolic elements already belong to the projective special linear group
PSL(2,9) and, if p = 2 there is nothing to prove because PGL(2,2") = PSL(2,2").

Proof

Let R be non-parabolic in PGL(2,q). Then, up to conjugation,

_ A 0 _ 1
R—i(O /\2), Alz\z—{g

either in PGL(2,q) or in PGL(2,q%). If A; A; = 1 then there is nothing to prove.
So let us suppose A; A; = p and the order of R be equal to 25+ 1. It follows that

A?‘H—l — )\gs—.'—l =1 and #2 — (Al )\2)25+1 — 923-\‘-1.

Observe that p belongs to IF,. This is obvious if R is hyperbolic. If R is elliptic
then A, = A;. So it follows from g = A2+ = \25+1,
Then the relation p***' = p? gives the desired contradiction, because the left-

hand side is a non-square, while the right-hand side is a square in I, B

The detailed discussion of Dickson in (see [8, ch. XII]) implies that:
2.1.8 Proposition There exist elements of order s in PSL(2,q), ¢ =p", p > 2,
if and only +f s|(q—1)/2, s|(qg+1)/2 ors=p.

There exist elements of order s in PSL(2,q), ¢ = 2", if and only if s|(q—1),
s{{(g+1)ors=2. H

The elements of order s = p are exactly the parabolic ones.

Before discussing some particular orders, it will be useful to recall that:

2.1.9 Theorem|8, §62] The non-squares of any F,», p > 2, are non-squares
or squares in [Fpnm according as m is odd or even.
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Since the field Z, is contained as a subfield in any field I, with ¢ = p", we
have the following

2.1.10 Corollary A non-square = in Z, is a non-square tn [y if and only if
n 1s odd.

Given an integer number z it is possible to characterize by a congruence or a
system of congruences the set of primes p such that z is a square in IF, (see e.g.
[12] or [22] for proofs of the used results). This means in particular that there
are infinitely many primes p with the required property (see Appendix A).

Let us now discuss the orders 2, 3, 4, 5 and 7.

There are always elements of order 2 in PSL(2,q): they are of the form

Lov
i(w —#)’ pyvyw €y, —p® —vw# 0.
Also there are always elements of order 3. Indeed the trace’s equation gives simply
7 = £1. Alternatively, suppose it is p # 3. Then among the three consecutive
integers ¢ — 1, ¢ and ¢ + 1 at least one is divisible by 3, and it is not g because

p # 3. The above proposition applies - if p is greater than 2 both ¢ — 1 and g+1
are even.

Elements of order 4 exist in PSL(2,q) if and only if 4|(g £1)/2,1ie. ¢ =8 =1.
It is the right condition for the existence in IF, of v/2, the trace of an element of
order 4.

Supposeitis ¢ #g +1 and din IF, non-square. Then 2d is a squarein I’y and there

0 -1
. . . o N oo
exist elements with trace v2d in PGL(2,q) \ PSL(2,q): e.g. £ ( i V34 )

For p = 2 we have no elements of order 4, because 72 = 2 reduces to 7 = 0. So
any such element would already be of order 2.

Elements of order 5 exist in PSL(2,p"), p > 2, if and only if 5 divides (g—1)/2
or (g+1)/2 (i.e. ¢ =10 £1) or if p = 5. These are the conditions to get a solution
in IF, of the trace’s equation

4+ —1=0.

In fact the discriminant is 5 and +/5 exists in IF, if and only if ¢ =10 +1 or p = 5.
Then the trace is

T=+(14+V5)/2 or +(1-v5)/2

If p = 2 we conclude both by the condition of Proposition 2.1.8 and by those given
in Lemmas 2.1.4 and 2.1.5 that the required elements and traces in PSL(2,q)
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exists for any ¢ = 4", n > 1.

The case of elements of order s = 7 is presented by Macbeath in [15, thm. 8],
where more he proves that

2.1.11 PSL(2,q) is a Hurwitz group if and only if
i) g=17
i) g=p, p=r*l

iii) g =p°, p=7 2 orp =7 £3.

Suppose it is ¢ = 7. The elements of order 7 are parabolic. Accordingly 7 = £2
is the only solution of

PP -27F1=0.

Suppose it is ¢ > 7. There are, up to sign, at most three different possible traces
for elements of order 7 in PSL(2,q), with g as in (2.1.11). Let T be such an
element. We will prove that the traces of T, T? and T are all three different but
also that, up to conjugation, all the three elements of order 7 are determined if
we have individuated one.

The three powers of T all belong to PSL(2,q): so the determinant is 1 and is the
trace that depicts the conjugation class. Obviously they have all order 7. Let us
first prove the following

Claim: If two among T, T? and T° are conjugate then all three are so.

Proof
Suppose it is T = R™'T? R, for some R € PSL(2,q) or PSL(2,q*). Then
T3 = RF'T®R = R!T' R, because T7 = 1. Since trT~! = trT, ie. T7!is

conjugate to T', it follows that T is conjugate to 7.

If all three elements are conjugate, then all three traces coincide. And
Claim: The three traces of order 7 all coincide exactly in IF';.

Proof
We already know that in IF; they coincide. Let us prove the converse. It is not

Y O0Y yyoq e
A K),A/\_l, =1

restrictive to suppose 7 represented by a matrix T} = (

(if necessary just replace T' by T?). Let

2.1.12 gy = A+ X g2:A2+X2:gf—2; 93:)\34—:\_3:9?—391.
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It follows that

3
H(m—gl):ms—}—mz—,‘zm—l
=1

and so that
g1 +92+9g3 =p
gi1g2+ 9193+ 9293 =p
g1 9293 =p

Since we have supposed g1 = g2 = g3 = g We get

g =p L

Then

9=p9¢%°=(3g)(39%) =p 2 hence 7 =p 0.

-1
-2
1.

The last congruence occurs if and only if p = 7.

This means that the equation @® +z* — 2z — 1 = 0 has exactly three different
solutions in the cases 2.1.11.ii and 2.1.11.iii. For the case 2.1.11.iii the three traces
are different but conjugate under the automorphisms of the field I, (that induce
automorphisms of the group PSL(2,q)). Indeed Iy, ¢ = p°, is a finite fleld and a
Galois extension of IF,. The Galois group, i.e. the group of automorphisms that
are the identity on IF,, is generated by the so-called Frobenius autornorphism

e

Suppose as above that it is A7 = 1 and remember that (M)t = A
Since Q7(g) = 0 and 7 is an automorphism, it follows that Q-(w(g)) = 0 =

Q7(7(g)). A direct computation shows that

WL = A2 N

m(g)=w(A+ ) = -
(g) = (2 +2) {M+?:v+f

21
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2.2 Subgroups and Generators

The subgroups of PSL(2,q) are classified by Dickson in [8]. A recent reference
is the book of Suzuki [28]. Macbeath in [15] classifies the pairs of elements by
means of the subgroup they generate.

Let us present a quick review of the results.

The subgroups of PSL(2,q) fall into three families. These are however not
disjoint.

Class I: Exceptional subgroups

These are the finite triangle groups: the dihedral group ID,, of order
2m, the tetrahedral group A, the octahedral group S, and the do-
decahedral group Aj;. Obviously the order g of the field must be such
that PSL(2,¢) admits elements of the right order.

Class II: Afline subgroups

These are the conjugates of the subgroup of superdiagonal elements

in PSL(2,q)
a .
i(o a>,o¢;&é(),1nIFq,

and to the subgroup in PSU(2,¢?) of the elements

a 0 —
i(o a_),aE]qu,aa—l.

Class III: Projective subgroups

These are the conjugates of the subgroups of the form PSL(2,p*) and
PGL(2,p%).
And PSL(2,p°) is a subgroup od PSL(2,p") when IF,s 1s a subfield of

IF;n,ie. when s|n. Whereas PGL(2,p*) is a subgroup od PSL(2,p")
when IF 2. is a subfield of IFpn, i.e. when 2s|n.

Consider the triples (A1, A2, A3) of matrices in SI(2,q), such that
AL A A3 =1,
we call a; = tr(A4}), m; = order(A;), i=1,2,3.
A triple is called ezceptional if (m1,m2,m3) is one of the following
(2,2,m), for any m > 2,(2,3,3),(2,3,4), (2, 3,5),
(2,5,5),(3,3,3), (3,4,4),(3,3,5), (3,5,5), (5,5,5).

If Ay, A, generate an exceptional subgroup, then the triple is exceptional.

A triple generates an affine group if
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o a%+ag+a§—a1aga3=4
or

o (@,s,03)is one among (2,2,‘2),(2,—2,—2),(——2,2,~2),(—2,—2,2).
This triple is called singular.

A triple is called irregular if the subfield generated by the traces, say IF,, is a
quadratic extension of another subfield IF,, and if one of the traces of the triple

lies in IF, while the other two are both square roots in IF, of non-squares in IF,,
or zero. In this case the triple generates PGL(2,+/T).

The following theorem resumes the contents of Theorems 4,5 and 6 of [15]

and of §7.5 [7, pp.93-94]:

2.2.1 Theorem A triple which is neither ezceptional nor singular generates a
projective group. If moreover we also suppose it is not irregular it generates a
projective group isomorphic to PSL(2,q), where IFy is the field generated by the
traces. For q # 9, the group PSL(2,q) is a factor group of the modular group
PSL(2,7).

For all g, the group PSL(2,q) is generated by two elements one of which is an
wnvolution.

In particular PSL(2,p), p prime, is generated by two elements

10 0 1
+ 9
=+ ( 11 ) , of orderp, and £ < 1 0 ) , of order 2,

whose product has order 3.

2.3 The Isomorphic Unitary Groups

To conclude this chapter we exhibit, into PGL(2, g%), the conjugate subgroups of
PSL(2,q) and of PGL(2,q), that contain the diagonal forms for elliptic elements.
This will semplify computations when p > 2, although we move to the quadratic
extension of IFg.

Let us before prove a Lemma. Recall that

Theorem:[8, §64]

Ifv =+1 or —1 according as —cy 2 is @ square OT 4 MOM-SqUATE N
the field Fypn, p > 2, the equation belonging to the field

alff"razfg:” (a1#07a27é0)7

has p* — v or p* + (p" — 1) v sets of solutions according as k # 0 or
K =0.
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A direct application of the above Theorem gives us:
2.3.1 Lemma The equation
zZ2=k, keF,\{0}, p>2,

has g+ 1 solutions in Fp.

Proof

Substituting z = z + y1 we get the quadratic equation

2 — oy’ =k inTF,;

it has, by the Theorem above, g + 1 pairs of solutions.

The unitary group is

U(2,q2):{< J %)'5,561Fq2, 53+e€;é0}}

—€

and the special unitary group is

SU(2,q%) = {( _55 %) [ 6,e €Fp, 66 +e8= 1}

The projective groups PU(2,¢?) and P5U(2,¢%) are the quotients of U(2, q°) and
SU(2,4”) by their respective centers. Note that §6+ez e IFy, because § § and ez
belong to IF,. We have the following [8, §144, Corollary, §138, §137, Corollary II]

2.3.2 Proposition The projective unitary groups and the projective linear groups
are two-by-two isomorphic:

PU(2,q%) = PGL(2,q) and PSU(2,¢%) = PSL(2,q).

Proof

Choose k,r € IE‘; such that kk = 1, 77 = —1 and consider the matrix
- [ k1 _ 211 r -1
X = (r% ., ) and its inverse X! = T ( S > .

Then

X'PU22, )X = PGL(2,q)
and under this conjugation PSU(2, g*) corresponds to PSL(2,q).

Take an element in PU(2,4?) represented by ( ag ; ) Then its conjugate

a B \.
(7 5 ) 1s equal to

1 (ak~EE)T+bT2E+5k (a—&')r-{-brz—i—z
r(k—k) \ ~(a—a@)r —br*k —~ Bk —(ak—ah)r—br%—Bbk |
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By the general investigation about invariant forms, Dickson obtains that

oF,a7,aB,6%,7F € T,

This may be proved also directly verifying that each of the above products coin-
cides with its conjugate in IF 2.
It follows that in any case there exists a non-null factor w € IE‘: such that

(19)(3)
v 6 N 6

with ay, 81,71, 6, € IF,.

Conversely start from an element of PGL(2, q) represented by =+ ( CCL Z ) . Then
ak—dk—b+c —ak+dk-+bk*—¢
(@ 0) x1o _k=k _r(k—k)
T \ed)T T —ak+dk+bk2—c ak—dk—b+c
r(k—E) k—k

belongs to PU(2,¢*). If ad—bc = 1 the conjugate element belongs to
PSU(2,4%).
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Chapter 3

Actions of PSL(2,q) and PGL(2,q)

We wish to extend the Hurwitz actions of PSL(2,q) on 2-manifolds to actions
of either PSL(2,q) itself or PGL(2,q) on maximally symmetric 3-manifolds
bounded by those 2-manifolds. We will extensively use the necessity’s and suffi-
ciency’s criteria described in Chapter 1.

3.1 First example

As an easy case consider first the actions (only for p = 7 it will be Hurwitz!)
corresponding to the surjections

3.1.1 v, 1 (2,3,p) —> PSL(2,p), p=>7
T — X=:l:<2 _é)
0 1
VS T
y — ”*(~1 —1>

1 1
t — T—i(o 1)

where z,y,t are defined in 1.1.1. In fact the elements X and Y generate PSL(2,p)
2.2.1. Moreover they have orders 2 resp. 3, so the surjections ¢, have torsion
free kernel. (All surjections considered in the sequel will have torsion free kernel.
And throughout the work we will use small latin letters for the elements in the
domains and the corresponding capitol letters for their images.)

We have the following:

3.1.2 Theorem The surjection 3.1.1 eztends to a surjection

] PSL(2,p) ifandonlyif p=41
%o Iy Zj< (2,3,p) —> { PGL(2,p) ifandonlyif p=43.

P
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Proof
We have to find an element 4 € PSL(2,p) or PGL(2,p), A # 1, such that

A’ =1and (TA)? =1, ie AT'TA =T7L.
Take

Azi(? _;), where 8,¢,( € Z, satisfy —~52~5§:{ 2
We obtain

_ 11 5 ¢ _ b+¢ e—4
rams (o) (¢ %)== (7).
and so T' A has order 2 if and only if ( = 0. The determinant condition becomes

§% = —1 . The equation 6§ = —1 can be solved in Z, if and only if p =4 1, i.e.
—p p

when —1is a square [12, Thm. 82, p. 69]. Whereas the equation §% = —p can be
solved in Z, if and only if —p is a square, i.e. when —1 is a non-square, so if and
only if p=4 3. H

Remark: Any element of order p in PSL(2,p) s, up to conjugation,
of the form

Tzi(é I;), & € Z, \ {0} and order(x) = p.

It follows that the conditions p =4 1 resp. p =4 3 do not depend upon
the particular surjection of (2,3,p) onto PSL(2,p).

We are ready to prove the following:

3.1.3 Corollary The action of PSL(2,p) corresponding to the surjection 3.1.1
bounds a hyperbolic 3-manifold if and only if p =4 1.

Proof

Suppose that the action bounds. Then the conclusion follows from the crite-
rion 1.4.7 and the above theorem.

Conversely, define

® : 7 (D*(0,p,2)) —> PSL(2,p)

icil
s
I

14

&(a) = A:i(g _g),ﬁezpand(SQ:—l,
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where a is as in 1.4.4.a). The map & is well defined because b = (zya)! =

(ta)™! and we already know from the proof of 3.1.2 that (T A)? = 1. Moreover
ao(b) =az and

(6 oN[o0 -1\ _ [ 0 -5
A‘X“i(oﬂs)(l 0>—i<—5 o)

has order 2. We conclude by criterion 1.4.6.

3.1.4 Corollary There exist infinitely many non-bounding Hurwitz actions.

Proof
Consider Klein’s quartic curve F3 = IH?/ker ; and, for each integer m > 1,
the composite map

Ym 1 1 (F3) —> Z8 —> (Z,,)°

where the first map is abelianization and the second is quotient mod m. It is easy
to check that the subgroups ker),, are characteristic in ker w7 = m(F3) and so
normal in (2,3,7). Let K,,, L, tesp. F™ be (2,3,7)/ker b, kerp:/ker,,
resp. IH?/ker 1,,. Then the action of K,, on F™ is Hurwitz; moreover K,/ L,, =
PSL(2,7). Then the K,-action on F(™), for each m > 1, does not bound any

compact hyperbolic 3-manifold, because by 3.1.3 the PSL(2,7)-action on F3 does
not.

Remark: In the case p =4 3 of 3.1.8 there ezists already a cyclic
subgroup of the PSL(2,p)-action which does not bound any compact
3-manifold.

Let (T) = Z, be the subgroup of PSL(2,p) generated by T = wp(t).
The normalizer of (T) in PSL(2,p) consists of all matrices of the

form
:,:(a ,B)
0 =&

and has p(p — 1)/2 elements, so that (T) has indez (p — 1)/2 in its
normalizer. In (2,3,p) there is ezactly one conjugacy class of cyclic
subgroups of order p, with representative (t). Let F := w1 ((T)) de
the preimage of (T) in (2,3,p). Then F contains ezactly (p — 1)/2
conjugacy classes of cyclic subgroups of order p (for an element

g € (2,3,p), the conjugate g7 (t) g is again a subgroup of F if and
only if ¢,(g) lies in the normalizer of (T) in PSL(2,p)). Therefore
the 2-orbifold IH*|F has ezactly (p — 1)/2 singular points of order p.
If p =4 3 this number (p — 1)/2 is odd; similarly as in the proof of
Lemma 1.4.7 it follows that the T-action on IH"/kernel v, does not
bound any. compact 3-manifold.
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3.1.5 Corollary Given the action of PSL(2,p) corresponding to the surjection
(8.1.1), there exzists an action of PGL(2,p) that bounds a hyperbolic 3-manifold
if and only if p =4 3. The elements in PGL(2,p) \ PSL(2,p) ezchange the two
boundary components.

Proof
The map @ defined in Corollary (3.1.3) maps now onto PGL(2,q). H

3.2 Hurwitz actions

Let us how focus to the Hurwitz actions of PSL(2,q), ¢ as in (2.1.11) on page
20. To define the surjection of the triangle group (2,3,7) onto PSL(2,q), we
choose the images of the elements = and t of respective order 2 and 7. Since
we are interested on the action up to isomorphism, it is not restrictive to do a
conjugation.

We start from the element T of order 7 that, up to conjugation, is T'= * ( ())‘ % )
where the trace 7 = &() + X) satisfies

3.2.1 P2y —1=0,

that in particular becomes

P 4+42+1=0 inTFg and 4 +4*+9—-1=0 in Fyr.

Next we choose the element X of order 2: we take + ( Z : ), where

+1

3.2.2 a) —pf—-vw=1 b)) p(A=2A)=%£lde p=—"=#0,

and w = —7, —p =7 if 7| g+ 1. The first relation is the determinant condition,
the second comes from X T =Y because Y must have order 3.
Putting together the two relations 3.2.2 we get

3.2.3 pw=—p?—1=— 1 _1:3—(i+i)2 3 —
(A=2A)? A+N)2—4 2—4
that becomes , 2
1 _
vw = +27 =7 inIFs and 2 in IF,;

Remember that 4% — 4 = (A — A)? 3£ 0 because T is non-parabolic. The map
so defined on the generators = and ¢ is surjective by Theorem 2.2.1.
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With the above meanings and relations we set

3.2.4 Definition The map
v, (2,3,7) —> PSL(2,q), gasn 2.1.11, ¢> T,
1s the surjection given by
z+— X and tr—T.

Note that in any case we cannot define such a map onto PGL(2,q). Indeed
T and Y have odd orders, so belong to PSL(2,g). This forces also X(=Y 1)
to belong to PSL(2,q).

3.2.5 Remark:

1) The product vw is non-null because ~v* = 3 would bring a con-
tradiction when filled into 3.2.1.

2) The construction works also for (2,3,m), m # 7. Bui form <5
and q > 5 the map will be no longer onto. Indeed the triangle
group (2,3,m) is isomorphic to a subgroup of PSL(2,q) (see
section 2.2).

The freedom in the choice of v is not effective. In fact different v’s do not
give rise, up to automorphisms of PSL(2,q), to different surjections.

3.2.6 Lemma Let @, be defined as above, and let ¢, be such that

A= i @ =X=z(f 7).

Then o, and @ differ by an autornorphism of PSL(2,q)-

Proof

Both X and X belong to PSL(2,q). They have the same trace so they are
conjugate: there exists P € PSL(2,q) such that X = P71 X P.

Let us determine the form of P to see how it operates on 1. Take P =

+ ( 3 g ) and impose the above relation:

N AN A AV A YN A
I<&3 w)‘*(ﬂ Cf)(w ~#)(7 5) dao=fr=t

It leads to the system
ad+By==%£1

ab—By=1
vy —PBwa=0.
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The first two equations give a § = { é and By = { ?—l and so as candidates
i(af), or i(ag),with a #0,
0 @ ¥ «@

respectively

i(_% g) or i(_% ﬁ) with B # 0.

Since vw = v @ # 0, with the third equation the candidates reduce to

”:
i(%‘ _g) a0, or i(_% g) B8 +£0.

a 0

Suppose first it is P = + ( 0 =

). Then P™'T P = T because diagonal matri-

ces commute. So

oy =0pocp., where p is the inner automorphism determined by P.

Suppose now it is P = :i:( _I—g— ’g ) Then P'T P = T-'. Observe that
0 -1

in PSL(2,q) the inner automorphism ¥ associated to + ( 10 ) maps each

non-zero element to its inverse. Since X = X’l, it follows that

o, =%olpogy,.

Remark: For g > 7, the possible different surjections of (2,3,7) onto
PSL(2,q) are classified, up to automorphism of PSL(2,q), by the
conjugacy classes of T'. There are exactly three conjugacy classes. But
in case 2.1.11.iii) the three traces are equivalent under automorphisms
of PSL(2,p°) (induced by automorphisms of IFys, see section 2.1 at
page 21). Therefore all three kernels are equal.

Now, the first step is to verify the necessity criterion (1.4.7). As we will easily
see

3.2.7 Lemma Any Hurwitz surjection 3.2.4 eztends to ID: Z* (2,3,7) both onto
PSL(2,q) and PGL(2,q). T
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Proof

We need A such that 42 = 1 = (T A)?. Then take A = % ( g _; ) It

AS Ae ) and since A — X # 0, the trace will be

follows that T4 = i(XC 35

zero if and only if § = 0. So exactly the elements A = =+ ( 2 g ), where
e { # 0,provide such an extension: onto PSL(2,q) if —£( is a square in IF,, onto
PGL(2,q) otherwise. H

In the sequel we will supposed the representative of A normalized in determinant,
ie. —e( = ng . Remember that anyway the product of normalized representa-

tives is no more normalized unless at most one does not belong to PSL(2,q).

At this point we need to find a braid o on three strings such that
3.2.8 (Ao(B)) =1, for 1 =2,3,4 or5.

First of all let us analyze the special case ¢ = o} with v = 1.

Then

_ - EW —EU
AU(B)_AA_ﬂ:<C# Cv)'

The condition 3.2.8 becomes

3.2.9 cew+ (v =1|AlY?

where |A]| :=detA = —e( = { 2 and 7, defined only up to sign, is the trace of

an element of order [ (see Table (2.1.2)). We obtain, multiplying by £ (# 0), the
quadratic equation

wel —T|A[Y?e —v]|Al = 0.

If p # 2 we may compute the discriminant, and using 3.2.3 we get

2 2 3—'72 T2(72_4)+4(3°—'72)
A=|A|(7? +4vw) = |4 (T +4~72_4>= e 4]

which always belongs to IF,. So there exists 7 in IF 2 such that A = r*. We have
the solutions

ex = (7| A £r)(20)"

and from (3.2.9)
(o = (7 |AM? F7)(2v)7
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There are indeed good chances these provide a solution because
ex - o= (T]A]Y2 £ 7) (7 |4V £ r)(drvw) = (7|4l - A)(4vw) Tt = —|4].

But we still have to verify we are in the right field and we have the right meanings
for symbols.
If7]g—1,ie A €T, we have

ex €IFy ifand only if relF,.

The product of two squares or of two non-squares is a square, while the product
of a square with a non-square is a non-square [12, Thm.85,p.69]. Since v?> — 4 =

(A — X)? is a square in Iy, the solutions e+ belongs IF, if and only if (72 (42 —
4) +4(3 — 7)) |4] is a square in IF,. In particular since 4 - (x = —|A| £ 0 we
have that both €; and e_ cannot be null.

I7[g+1,ie A ¢y, then w = —7, and { must be —. Since 7 is in IF,, so

coincide with its conjugate and moreover is defined up to sign, we have
= —(r AP £ T)(-20) = (¢ A £ )20
So
(=-% ifandonlyif r+7=0.

. . . - . . 2
This is equivalent to require 7 € :IF,, i.e. A non-square in IF, or zero. But v* —4
is a non-square in IF, and again the condition turns out to be

(T (=4 +4B =1"))14] squarein T,

Although |A| is involved in the condition, there is no contradiction with the fact
that we are computing the entries of A. Indeed the only feature needed in the

condition is A € PSL(2,q) or A € PGL(2,q) \ PSL(2,q).

Remark: As we should have ezpected, the seemingly free parameter
v s not involved in the condition obtained.

Define

C(ry7) =7 (7" = 4) +4(3 - 7).
If C(r,7) is a square then the element A must belong to PSL(2,q); while if
C(7,7) is a non-square then 4 must belong to PGL(2,9)\ PSL(2,q). In the last
case also 4 X belongs to PGL(2,q) \ PSL(2,q), forcing the order of A X to be

even (Lemma 2.1.7).

If p = 2 to solve the quadratic equation we have to proceed in a different
'way, as we cannot apply the usual formula. Moreover PGL(2,8) coincide with
PSL(2,8), so we have |A| = 1.
Suppose it is 7 = 0. We have simply

we? —v =0.
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So

, ¥ vw ¥

w w? w

Since all elements are squares in IFg, we obtain

v

£ = .
W

Suppose it is 7 # 0. Then the only possibility is 7 = 1, because we have no
elements of order 4 or 5. We get

wel—e—v =0,
With the substitution € = zw™! it becomes
22— z+ 4=0.

We may apply Theorem 2.1.6 to verify that this equation has no solutions in IFs.
We have p = 2 and n = 3. Then we have to compute

AT AT =R = (P AP A= (P D)+ =140
All above resumes into the following theorem:

3.2.10 Theorem LetT = 7(I) be the trace of an element of orderl in PSL(2,q),
t.e. let 7 be a zero of Q) (see (2.1.2)).
Suppose it is p > 2. The surjection 3.2.4

vy :(2,3,7) —> PSL(2,q)
extends to a surjection
¢ : T (D*(02,7,1)) —> PSL(2,q), for 1=2,3,4 or5,
if and only if

(C) re€F, and C(r,y) isa squarein IF,.

While, if 1 =2 or4, it estends to
3., 1 m1(D%(02,7,1)) —> PGL(2,q)
if and only if
(C’) 7%p isasquarein I, and C(r,v) is a non-square in IF,.

Suppose it is p = 2. Then @, eztends to ¢, if and only if 7 = 0.
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For I = 4 and 5 there must exist in PGL(2,q) both elements of order [
and 7, so two congruence relations must be satisfied. There are, by the Chinese
remainder theorem, infinitely many numbers that satisfy both (see Appendix A).

3.2.11 Remark:

a) The function C(.,.) may be rewritten as
C(ry7) =1"7" = 47" +7°) + 12.

So we see that it is in fact symmetric in 7 = tr(c(A) o(B)) and
v = tr(T), and that their role may be interchanged. This fact
s supported and ezplained by the observation that the resulting
condition must be the same also if we start from a diagonal form
for R = o(A)o(B) and proceed starting backwards. However in
this case we could have also elements R of even order belonging

to PGL(2,q) \ PSL(2,q), whose diagonal form is %+ ( 6\ % ),
A\ = p: the choice falling before on A, has to be done now,
from the beginning on R. To mantain the computations, also in

between, as closer as possible to the ones already done, the role

of X has to be taken by B.
b) From Definition 8.2.4 to Theorem 3.2.10, the hypothesis Q-(7) =

0 has been applied to prove that vw is non-null (as 4% can not
be 3). If we allow v to be the trace of an element of whatsoever
order m, we find in particular that

¥?*=p3 if 1) v=0 and p=3
2) y=+1 and p=2
3) y=7(5) and ¢g=4",n> 1.

In case 1) the element T is parabolic and in cases 2) and 3)
the element X is parabolic. Since for the applications we will
always require order(T) = m > 4 the cases 1) and 2) will be
excluded. The fact vw # 0 has been applied in the proof of
Lemma 3.2.6. It is easy to see that also in case 3) there exists an
(inner) automorphism of PSL(2,2") such that X and X (now
parabolic) result conjugate, but T remains fized. In all other
cases the computations applies verbatim.

c) Still for order(T) = m # T the value 4> —4 = (A — A)? # 0
15 a square in IFy, when A € Fy ( m|g— 1) and a non-square
otherwise ( m|q+1). So v =~(m), 7 = 7(l) € F, and C(r,7)
square 1n IFy is the condition to be satisfied to eztend ¢, to ¢,

from m(D*(o,m, 1)) onto PSL(2,q).
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From criterion 1.4.6 we get

3.2.12 Corollary The Hurwitz action corresponding to 3.2.4 bounds a hyper-

bolic 3-manifold if condition 3.2.10(C) is satisfied.
‘ If instead is satisfied condition 8.2.10(C°), the Hurwitz action eztends to a
PGL(2,q)-action bounding a hyperbolic 3-manifold with 2 isomorphic boundary
components.

What we would like to obtain is an infinite answer expressed by a character-
ization of the order of the field g, on which the condition seems ultimately to
depend. In this direction the following Lemma helps us:

3.2.13 Lemma Supposed g1,92,95 are as in (2.1.12), for a fized T the product
3
[[C(r,£g:) = —T7° + 287" — 64
i=1
depends only on 7.
Proof

It is not restrictive to suppose A" = 1 (see Chapter 2). It follows that
AT = A7 = (X) and we have

G=0+2 G=@g+2 Z=g+2.
Then
rz(g§—4)+4(3-gf):72(gz—2)+4(1—g2):(4—272)~(4—,~2)g2,

and similarly for g, and g;. Since for [ = 2,3,4 or 5 the trace = is such that
72 £ 4, we may write

[[C(r+g) = ((4—272) — (4_72)91,)

i=1 1=1

3 (4 — 272
— (4 ( _ g,-)

; 4 72

o 4 —27°
= (4—"T~)3P(4_72)
= —7r%4 28— 64. H

When g = p, p =7 %1, we get an infinite but indefinite answer respect to the
particular surjection. In fact

if —775 4+ 2871 — 64 is a square in IF,
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then among the C(r,4g;), 1 = 1,2,3, there are 1 or 3 squares; while if is a non-
square there are among the factors 0 or 2 squares. We will see, as an application
of the Cebotarev density theorem (see Appendix A), that all 4 possibilities occur
infinitely many times.

Lemma 3.2.13 is very useful when ¢ = p°. Indeed remember that the three
traces +g;, i = 1,2, 3, are conjugate under the automorphism group of the field
IF, (section 2.1 on page 21). Then so is any expression that contains them. It
means that the values C(r,+g;), ¢ = 1,2,3, are all three squares or all three
non-squares. By the above Lemma we need only to check if —77% +287% — 64 is
a square or not.

Let us discuss now condition 3.2.10(C) with respect to the various values of
the order [.
Take first [ = 2 (i.e. 7 = 0). Then C(0,7) = 4(3 —+?) and the condition

being or not a square falls on 3 — 47,7 = 1,2,3. Lemma 3.2.13 gives

3
[IC(r,+g) = —64=—1-8%

=1

Since —1 is a square if and only if p =4 1, we get
3.2.14 Corollary Letp=41 orp=2.

a) Let ¢ = p°, p =1 £2, +3. Then the unique Hurwitz action of PSL(2,q)
bounds a hyperbolic 3-manzfold.

b) Letq=p, p=r £1. Then at least one of the 3 Hurwiiz actions of PSL(2,q)
bounds a hyperbolic 3-manifold.

Remark: Theorem 3.2.10 read in this particular case (r =0, 1=2)
gives the main algebraic result of [4]. At first glance the conditions
seems to be different, but the dictionary is provided by Lemma 2 (in
[4]) and subsequent discussion.

Now suppose it is [ = 3, 1.e. 7 = 1. Then
3
[ C(£1,£g:) = —43.
=1
This is a square if and only if p =g¢ 7, where
r € R:={1,9,11,13,15,17,21,23,25,31,35,41,47,49,53,57,59,67,79, 81, 83}.
Equivalently —43 is square if and only if p =43 s where

s€S:=1{1,4,6,9,10,11,13,14,15,16,17,21,23,24, 25, 31, 35, 36, 38,40, 41},
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and S is the set of squares in Zys.
The set R is obtained by an application of the Gaul Lemma [12, Thm. 92], [22,
Lemma 9.2] and S by the Quadratic Reciprocity Law [22, Thm. 9.6], [12, Thm.
98].

Analogously to 3.2.14 we have

3.2.15 Corollary Let p =gg 7, where r € R, or p = 43. Then

a) the unigue Hurwitz action of PSL(2,9), ¢ = p*, p =7 2, &3, bounds a
hyperbolic 3-manifold;

b) at least one of the 3 Hurwitz actions of PSL(2,9), ¢ =p, p =7 1, bounds
a hyperbolic 3-manifold.

Remark: In PSL(2,3%) the elements of order 3 are parabolic. So
Y = X T is parabolic, and in this case also AX. This fact does not
trouble the computations: the parabolic elements are characterized
by the trace being equal to 2 and indeed £1 =3 F2.

The case [ = 4, i.e. 7 = *+/2 (which exists if ¢ =g £1), does not enlarge the
infinite set of order satisfying the conditions because

3
1] C(i\/i, +g;) = —8 1is a square if and only if p =g 1.
=1

Moreover the condition 3.2.10 (C) in case [ = 4 can be obtained by the knowledge
of the same condition for [ = 2. Indeed we already know that g, = g; — 2, g3 =
g% — 3¢, and that g1 g2 gs = 1 (see 2.1.12 and what follows). Let g := g;. Then

1=g-("—2) (5 ~39)=¢" (" =2) - (¢" = 3).

So (9% — 2)(g® — 3) is a square. It follows that g? — 2 and g® — 3 are both squares
or both non-squares. And so 2 — g° and 3 — g°.
Then we conclude that in IF,, ¢ =g £1

C(0,+g:) = 4(3—g?) isasquare if and only if C(£V?2,4g:) = 2(2—g7) is;
and that in IFy, ¢ =g +3 (now V2 €TF)

C(0,+g;) = 4(3—g?) is a square if and only if C’(i\/i +g;) = 2(2—g7) is not.

Last, when [ = 5 (remember the restriction: ¢ =10 *1 or p = 5) we have
1—4/5 1 5 .
T =+ 2\/_ or + +2f. Lemma 3.2.13 gives [T°_, C(r,£g:) = —29 + 14+/5.
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Since we cannot get rid of the term /5, we cannot give a new corollary like 3.2.14

and 3.2.15. In fac¢t the answer depends more closely on g as we need the specific
value of /5 in each IF,.

At this point the above corollaries and results assure that the surface actions
of PSL(2,q) do bound a hyperbolic 3-manifold for infinitely many values of q.
Anyway the precise answer about a given action is known for g = p° but not for
g = p. For the latter we need to really compute the function C(.,.) with the
relative entries.

In particular we may state the following

3.2.16 Corollary Forg=7p°, p=7 +2,4£3 and 2 < p < 100, p # 3, the unique
Hurwitz action of PSL(2,q) bounds a hyperbolic 3-manifold.

Proof

By the above corollaries we have positive answer for ¢ = 23 and 5%, but the
case ¢ = 3% remains open. The next values q = p3,

The values p =7 +2,0r £3 up to 100, are

p=11,17,19,23,31,37,47,53,59, 61,67, 73,79 and 89.

All of these except p = 3 and 19 are covered by Corollaries 3.2.14 and 3.2.15. For
p = 19 the case [ = 5 gives a positive answer: in fact in IF;5 we have /5 = 9 and
—29 — 14+/5 =19 16 = 42. There are no elements of order 5 in PSL(2,27). Only
three values of the form (2.1.11.111), namely g = 23, 3% and 53 are less than 1000.

For ¢ = p, p =r +1 we have done a systematic check by computer up to
1000. We have produced a Table (Chapter 5 on page 62) with the values of
C(r(l),7v) for I = 2,3,5. We have up to 1000 fourteen values that are not covered
by Corollaries 3.2.14 and 3.2.15, namely

71,211,223,419, 463,491,503, 587,631,727, 743,811,839, 911.

The complete computations shows that also in these cases there are actions that
bound. So at this point we may resume that

“For ¢+ p, p =7 %1, and 7 < q < 1000, at least one Hurwitz action
of PSL(2,q) bounds a hyperbolic 3-manifold.”

The situation is different if we consider each action individually. There are
gaps: exactly 24 over 165 up to 1000, corresponding to the 14,54%, and the first
occurs already for ¢ = 13, g = 10.
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So return to condition 3.2.8 and assume it is o = o7. It follows that
Ac(B)=AXBX = AXTAX, as B=TA.
Since we have already find a 3-manifold which bounds by PSL(2, 8), we will

no more consider the case p = 2. .
So let be p > 2 and remind that

Tzi(é %),Whereq’::}:g, g=A+2A

2 2 3 —
XZ:!:(‘LL V), where p*=1/(y"—4), vw= 7

w —p ~? —4
and
uw:1+972: in Fs and —1— in T
v 7' -1
ies(3 1), e
Then

- Ew —EW A0 Ew —ep )
AXTAA_:i:<C# CV)(OX><C/J, CV>#
__L<Aew —X_Eg) (sw —e,u)__
T A A (p (v )

:i(E(AEwZ_X_C#?) -_;Le(/\sw-'r_XCv))
Cp(ew+AvC) ((=rep® + 207 )7

Now, contrary to the case o = o3, the trace of Ao(B) = AXTAX is not sign
independent from the trace of T'. Indeed there are two occurences of both A and
X, but only one of T. The change of the SL-representative of T produce the
change of the SL-representative of Ao (B), whereas this does not happen for A
and X. ‘
Let be ¢ := |A| 1 ¢r (AX ( 6\ % > AX). Then the condition (3.2.8) becomes

g

2

3.2.17  £Aefw?t ( 1 —t) |A] £ X202 =0.

So it is enough to solve

3.2.18 A52w2+< J 4—t> Al + A% =0.

,./2 —
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Multiply the equation by €% (y2 —4) # 0:
A =4t et + (g -ty —4)) |42+ XA (47 —4) = 0.
The discriminant of this biquadratic equation in the unknown €? is
A=AP((g—-t(7*~4) -4(3—7"))
and belongs to IF,. In particular there exists 7 € IF 2 such that
r?=(g—t(7" ~4)) ~4(3 —7*)?
and we always have in IF;> the solutions

(—g+t(r*—4) £
2 w2 (92 —4)

| Al.

e} =

From (3.2.18)
= (—g+t(y*—4) Fr
=T 22X (42— 4)

A careful computations shows that

EZi ' Ci : ]Alza

IA].

so we are on the right direction. As before, now we have to verify that the
solutions stay in the right field.

Suppose it is T|g — 1, i.e. A € IF,. Then & must belong to IFy, so we require

i) r€lFy,ie (g —t(y"—4))* —4(3 —9?)? square in F;

and

- t(v*—4 —g L+ t(~y2— _
ii) (=9 + (g)\ ))+T[A| or (g + (;A 1) TlAlsquareinIFq.
Suppose it is T|g + 1,i.e. A € IF,. Now w = —¥ and we do computations in the
quadratic extension IF 2. Also ( = —. Then we have that

—g+t(y*—4)£7F

T TN (2 — )

|A|  is equal to ¢} if and only if T4+ r =0,

which as before is equivalent to vrequire r € 1lFy, i.e. A non-square in IF; or zero.
Let us write 7 = x 1, where x € IF,; the subsequent condition is to check when

(=g +t(y* —4)) £ x2
2202 (72 — 4)

|A| is a square in IF ..
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This is enough because any element in IF 2 is a square if and only if its conjugate
1s a square.

Since we have no general formula to express 7%, which anyway is already a square,
we need merely to discuss when

(—g+t(y*—4)) £ x2
2X2(y* —4)

zg+ z11 =

Al = (hg + h12)?, for some hg,h; € TF,.
g

A first constrain is provided by

ez = |A|, €= (ho+hi1)/T.

It implies
7’ -3
hi—hip=(ho+hit)(ho—h12)=vT|A] = T | Al
From
A+A=g and A—A=p"t
we get
2A=g+pl
Since
pl=~"—4=(A-2)P and Mg,
it follows that p™* € 2 IF,.
If
pTt=%£p1, LT,
we obtain

2A=g+pf2 and 2A=gFpBe.
Supposing 2A = g + B, we have

1 g(t(4? —4) —
5 = Lot 2 9)FxPe
4 v —4
and ( 9
1 ((Ex+0B)g
n=p (B0 51
Now
. 2 . . g+gh§-—ZU
zo+ z11= (ho + hy1)* if and only if  the system hohy = 21/2
oh1 = 21

has a solution (hg, k1) in (IFy)°.

There would be nothing to prove if 2z, = 0, because zy € IF; is always a square in
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Fp2. So we assume z; 5 0. Then both kg and hy are non-zero.
As by = z,/(2hg), we have

R+ o027 /(4h}) — 20 = 0.
Multiply by A to obtain

hy — zo bl +pz2/4 = 0.

Zg = 1/23 — gz12

2

The solutions in hg are

Since

7 -3
zy— o2 =PV = |AP (vo)? = |A] (’72 - 4)

the discriminant is a square. But the choice of the sign of the square root is
forced because

|AlvT = hi —oh] = Rhi+oh}—20h} =2y—2022/(4h2)

20 ety A—es

= zy— = = 20— 2
zo £ /23 — p 2} £z
9 2 —

= =Iy/z5 — oz = £|A\vw.

So

v 2+ (P =) — 47 Al _ sl —4) + A2 = 3)
’ 2 2(7% - 4) '

Substituting the expression of zy, the right hand side becomes
|Al(tg F x87" +3)/2

and must be a square in IF,. This completes the condition for the existence of

the extension for ¢ = o2.

We observe that there is no global condition for both cases 7| g—1and 7 |g-+1.

Define
Calt, 9) = (g — t (g — 4))* — 4 (g — 3.

We may formulate the following

44



3.2.19 Theorem Let 7 = 7(l) be the trace of an element of order | in PSL(2,q),
e let 7 be a zero of Q; (see (2.1.2)). Moreover suppose it is p > 2.

When q =7 1 the surjection 3.2.4 |
00 (2,3,7) —> PSL(2,q)
eztends to a surjection
¢ : 1 (D%(03,7,1)) —> PSL(2,q), for 1=2,3,4 or5,

if and only if

T e lF, Cy(t,g)=r> withr € IFy and, for at least one choice of the sign,
—g+tp it _ 2.
- b

there ezists k € IF, such that
while, if 1=2 or 4, it extends to
| 8, : m1(D(o2,7,1)) —> PGL(2,q)
if and only if

T ey, Cs(t,g) =7° withr € F, and, for at least one choice of the sign,

-2 1
=7
o = k>

—g At
there exists k € IF, such that g 2'LL

When g =7 1 the surjection 3.2.4
vy :(2,3,7) —> PSL(2,q)
eztends o a surjection
8y : 71(D*(02,7,1)) —> PSL(2,q), for 1=2,3.4 or5,
if and only if

T €Iy, Cit,g) = x" o with x € IF, and, for at least one choice of the sign

7

tgFxBt+3
2

there exists k € IF, such that =k?, where B?o=gqg*— 4;

while, if 1 =2 or4, it ectends to
@, : my(D*(03,7,1)) —> PGL(2,q)

if and only of -

T € Fy, Cy(t,g) = x* o with x € IFy and, for at least one choice of the sign,

tgFxp 43

there ezists k € IF, such that o = k2.

With the program for algebraic manipulation Macsyma, we have obtained a
correspondent of Lemma 3.2.13
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3.2.20 Lemma The product of the three values the function Cy(.,.) takes on the
traces gi,g> and gz, for a fized t, depends only on t. Namely

3
I Ca(t,g:) = 49t® — 196¢°> — 98¢* + 938t> — 343t* — 1078t + 637.

=1
B

It solves only the first part of the condition: anyway it does not help to get an
infinite answer because of the second condition. But it is anyway useful especially
when g = p3, providing a first selection of the possible solutions.

We have checked by computer if the Hurwitz actions of PSL(2,q), g =p, p
prime less than 1000, which do not bound for ¢ = o3, do bound for o = 3. We
do enlarge the set of positive answers, but we do not yet get positive answer for
all surjections.

We have then considered the case ¢ = 3. No algebraic pattern seemed to

emerge for increasing powers of oy and the computations got cumbersome. We so
have decided to do a systematic check on the remaining cases just working with
the candidate matrices A of Lemma 3.2.7. We have obtained that all Hurwitz
actions of PSL(2,q), for ¢ = p, p < 1000 do bound for o = o}, u < 3.

We conclude that

3.2.21 Proposition For g = p prime, p =7 £1, 7 < ¢ < 1000, any Hurwitz
action of PSL(2,q) bounds a hyperbolic 3-manifold.

The case g = 27 remains open at this point, considering only the braid o = 0.
Now consider the braid ¢ = o2. We have already seen that in case ¢ = p°
the three traces are conjugate under the action, on the field, of the Frobenius
automorphism. Then the same happens for any expression in the traces and also
for Cy(t,9:), 7 = 1,2,3. So, to check the condition on Cy(.,.), we need merely to
analyse the polynomial of Lemma 3.2.20 for the various values of ¢. Since we are
now in the case 7|gq + 1, the condition is C,(.,.) non-square.

For t = 0 the product of Lemma 3.2.20 is 637 =3 1. Since it is a square
the necessary condition is not satisfled. The product for £ = 1 and ¢t = —1 are
respectively —91 =3 2 and 581 =3 2: both values are non-squares. Unfortunately,
doing computations in a concrete model for IF;7 we have verified that the second
part of the condition of Theorem 3.2.19 is not satisfied, neither for £ = 1 nor for
t=—1.

Then we have done a systematic check on candidates for the element A. It
turns out that the braids ¢ = o} provide no 3-manifold that bounds. Indeed

oy(a)oy(d) — AX(TAX) ! u>1
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and there are no candidates A for which this product has order 2 or 3in PSL(2,27).
This is not so difficult to check because the maximal order of the cyclic subgroups
of PSL(2,27) is not so high.

So the next step was to consider more general braids involving also ;. We
have written a Pascal program, that given the length, i.e. the total number of
half-turns, generates all the possible braids that starts and ends with o2 (see on
page 68). But the check becomes much longer in increasing length bigger than
10 (also on a VAX). It seems that up to 15 half-twists there is no braid that gives
the positive answer. 4

So, up to now, we may conclude that

3.3.1 Corollary For g =p?, p =7 +2,43 and 2 < p < 100, p # 3, the unique
Hurwitz action of PSL(2,q) bounds a hyperbolic 3-manzfold.
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Chapter 4

Applications

The theorems developed in Chapter 3 applies to find maximally symmetric tetra-
hedral 3-manifolds, that is 3-manifolds that admit a quotient orbifold with a
Coxeter tetrahedron as singular set. A further development of the number the-
oretical conditions allows us to analyse the case of non-orientable tetrahedral
3-manifolds.

4.1 The group C[4,3,5]" maps onto PSL(2,31)

The Cozeter group C[4,3,5] is generated by the reflections in the sides of the
tetrahedron Ty 35
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(The notation of Coxeter and Moser in [7] lacks the C. We have added it to

distinguish this group from an extended triangle one).
As in Chapter 1, a number m at an edge denotes it is the corner of a dihe-
dral hyperbolic angle w/m. We denote by C[4,3,5]* the subgroup of index 2 of
orientation preserving isometries of the hyperbolic 3-space TH>: it is called the
tetrahedral group associated to Ty35. An edge labelled m has stabilizer Z,, in
C[4,3,5]%, and each vertex has the stabilizer as indicated in Fig.6.

The tetrahedral group C[4, 3, 5]% is an infinite properly discontinuous group of
isometries of IH>. The quotient H?/C[4,3,5]* is an orbifold Q, whose underlying
topological space is S® and whose singular set is the 1-skeleton of Ty 3 s.

As in Chapter 1 a presentation for C[4,3,5]* is obtained from the singular
set, as the Wirtinger presentation is obtained from a planar projection of a knot
or link. Let the generators be chosen as in Fig.6, then we have

C[4,3,5]" = (t,z,a|t' = 2" = a® = (tz)* = (ta)? = (za)® = 1).

The plane in Fig.6 stands for an embedded 2-sphere that meets the singular set of
@ in four points of orders 2, 2, 2 and 3. This 2-sphere divides the 3-orbifold into
two 3-orbifolds with boundary, both of Euler characteristic —1/12 [29, Ch.13]
and [30, Ch.5].

Let U be any normal torsion free subgroup of finite index in C[4,3,5]*. Its
existence is assured by the Selberg’s Lemma:

Lemma:Any finitely generated subgroup of the general linear group
GL(n, C) has a torsion free subgroup of finite indez.

Let K be C[4,3,5]"/U. Then the K-action on M := H*/U is maximal [33,
§3] and the quotient orbifold M /K is exactly Q. Moreover we have the relation
|K| = 12(g — 1), where g is the genus of the 2-surface covering the embedded
2-sphere of Q (Fig.6). Certainly we are looking for subgroups of small index,
as done in [32] for the hyperbolic tetrahedral group C[5,3,5]" (which maps onto
Aj). But the quotient of C[4,3,5]" cannot be a spherical group. Then the next
finite simple groups to investigate are the projective linear groups.

4.1.1 Maps of C[4,3,5]" onto PSL(2,p)

Since we are interested in torsion free kernels we need to find three elements T,
X and A4, the classes of which generate PSL(2,p), and such that

T=X"=A"=(TX)P=(TA?=(XAP®=1.

There are elements of order 4 and 5 in PSL(2,p) if and only if p =g %1 and
p =s +1. Then by the Chinese Remainder theorem (see Appendix A) there are
infinitely many values that satisfy both congruences: the smallest is p = 31.

Now we apply the procedure developed to determine the extensions of the
maps p,. We start from the subgroup S, = (2, 3,4).
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Let us choose up to conjugation, a diagonal form for T, either in PSL(2,p)
or in PSU(2,p*). We proceed as in Chapter 3, in particular we refer to Theorem
3.2.10.

We choose T' and X as in Definition 3.2.4. Then we need to find the element
A. Now the trace of T is v = £+/2 and the trace of A is 7 = £(1 + +/5)/2 or
+(1 —+/5)/2. By Remark 3.2.11, to find 4 in PSL(2,p) the value of the function
C(r,7) = 4—27* must be a square. For p = 31 the function C assumes the values
26 and 7 = 10%. So the latter permit us to find the element A in PSL(2,p).

Remark:In Definition 3.2.4 the element T (of order 7) and the ele-
ment X (of order2) already generate PSL(2,p), but here the situation
does not repeat. In fact the present T and X generate an octahedral
subgroup Sy of PSL(2,p). The extra element A cannot belong to this
octahedral subgroup because X A has order 5 and there are no ele-
ments of order 5 in Sy (by the Lagrange theorem on the order of the
subgroups). Then the subgroup generated by T', X and A properly con-
tains an Sy (and also an Aj): by the classification of subgroups of a
projective special linear group it must coincide with PSL(2,p) itself.

So there exists a short exact sequence

I—-U—C[4,3,5]" — PSL(2,31) — 1.
Since |PSL(2,31)| = 14880 the equivariant Heegaard genus of IH?/U is

1+ 14880/12 = 1241.

4.1.2 Decreasing the order of the target

Since we are interested in finding surjective maps onto groups of order as smaller
as possible, we are going to check if some PSL(2,p"), n > 1, or PGL(2,p"),
n > 1, of order less than 14-880 already admits a surjection of C[4,3,5]".

Let us first review the simple groups PSL(2,p").
Since there are no elements of order 4 in any PSL(2,2"), the values p" for p = 2
are excluded.

So we have still to examine PSL(2,9) and PSL(2,25).
A meodel for Iy is

Filz]/(z® + 1) := {0, %1, +z,+(1 +z),£(1 — z)}

where in computations we have to remember that z? = —1 =3 2.
The table of squares is

T1 ]z | £(1+2) | £(1 —z)

22 1 -1 —T T
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The trace v of an element of order 4 is the solution of
4 —-2=0

which in this model of IFg is v = +z.
The trace of an element of order 5 is

T=+(14+V5)/2=F(1+2) or +(1-+5)/2=7F(1-z)

because 5 =3 —1, +/—1= 4z and 27! =3 —1.
Then
C(r,y) = 7'272 — 4(7‘2 —|—72) +12=1F=z.
Both values are non-squares. So we can not find a surjection onto PSL(2,9).

Turn us to PSL(2,25).
Since the squares in IF; are &1 and the non-squares are +2, a model for IFy;s
is
Fs[z]/(z* — 2) = {0,41,+2,+z,+2z, ey 2(2=22)}

where z* = 2 and so £v/2 = &z. (We will not need the table of squares!)
The trace 7 = 7(5) is £1/2 = £3 = F2 because 5 =5 0. Indeed the elements
of order 5 in IFy5 are exactly the parabolic ones. Then

C(r7)=1
1s really a square in IF;.

Remark:The fact that AX is parabolic does not trouble the devel-
opments and computations. We start with T of order 4 in diagonal
form. Then choose X and last A (all as in Theorem 3.2.10). The
condition on A X is that the trace squared is equal to 4: the right
characterization of parabolic elements.

We may compute explicitely the images of the generators:

_ z . 0 - T 1 _ 0 —2+4z
Tnj:(()—2m>’X——i(2—m>’A_i(l—2a: 0 >
So we have found that the group C[4,3,5]* acts on a tetrahedral hyperbolic

3-manifold with Heegaard equivariant genus equal to 1 + 7800/2 = 651.

Let us review now the groups PGL(2,q). The order obstruction leaves the
following possibilities:

PGL(2,5), PGL(2,9), PGL(2,11), PGL(2,19).

The order of PGL(2,25) is already bigger than 14-880.
Note that the condition (C") of Theorem 3.2.10 reads now
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7% o square in F, and C(r,v) non-square in IF,,

where as usual « is the trace of T, which has now even order. (As before pis a
non-square, and in particular a primitive root, in IF,.)

Let us analyze the condition in each of the above groups.

In the group PGL(2,5) we find elements of order 4 because [y(4)]> - o is
a square in IF5. We already know that 7 = 7(8) = 42 and C(7,7) = 1. So

condition (C’) is not satisfied.
We exclude also PGL(2,9) because the value [y(4)]* ¢ is non square in FFy.
But [7(4)]? g is square in IFy;: the table of squares in IFy; is

+1 | 4+2 | £3 | +4 ¢ +5
z 1 4 9 5 3

N

!

so 2 is a non-square (it is also a primitive root). Take o = 2.
Since /5 = 4 and 1/2 =6, we have 7 = 7(5) = £8 =11 F3 or F7 = +4.
The possible values taken by the function C(.,.) are:

C’(??),i\/ﬁ) = —25=11 8
and
C(:!:él,i 2) = —-17T=11 5= (:{:4)2.

Since the last value satifies the condition, let us exhibit the effective surjection.
As 11 =g 3 implies 11 =4 -1, it follows 4|11 + 1 and T is elliptic in
PGL(2,11), i.e. the value of A is to be found in

Fio = Fyyfe]/(e? —2) ={a+ b1 | a,b€TFy; and :* = g = 2}.
Finally

1541 0 11
— ' —
T”“‘( 0 1:!:41)’ _*47‘(1 -1)'

For A we get two possible different values:

A::%:<2_5>, and A:i<32 _4(;).

So we have defined a map in PGL(2,11). It remains to check if it is a surjection.
Since PGL(2,11) is a subgroup of PSL(2,121), the subgroups of the former are
subgroups of the latter. Moreover (X,T, A) properly contains both A; and 3.,
and it can not be PSL(2,11), to which such a map could not even be defined.
Then by the classification of subgroups of PSL(2,121) it must coincide with
PGL(2,11).

We have so lost any interest for bigger groups, and we do not even consider

the case PGL(2,19).
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4.2 The bounded 3-dimensional hyperbolic
Coxeter tetrahedra

The tetrahedron T35 is one of the nine bounded Coxeter tetrahedra in IH>, i.e.
the hyperbolic 3-dimensional simplices with dihedral angles integral submultiples
of 7 [7, p.132]. Demnote by T'(s1, S2, s3; ™1, M2, m3) a tetrahedron where w[s; are
the three dihedral angles at the edges of a face, and w/m; the dihedral angles at
the opposite edges of the tetrahedron.

Vi

v
2

Let us call the vertices of the tetrahedron V;, ¢ = 1,2,3,4 and r; the face
opposite to the vertex V;,1=1,2,3,4.

Let us denote with the same letter r; the reflection in the plane opposite to
the vertex V;, 2 =1,2,3,4.

The group G = G(s1, $2, 5331, M2, m3) generated by the reflections in the
faces of the tetrahedron T'(sy, s2,53; ™1, M2, m3) has presentation

2 _ 2 2 __ 2 __
(r1,7o,m3,ma | T =Ty =73 =7y =1

(ri72)™ = (rarg)™ = (ri7r3)™ =1
(7'1‘7'4)“ = (rqms)*? = (rara)™ = 1).

The group G is a group of isometries of the hyperbolic space .

We picture the nine Coxeter tetrahedra, following notations in [31, p.41]. For
each tetrahedron we give also the Coxeter graph: each vertex corresponds to a
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face and two vertices are adjacent if the correspondent faces form a dihedral angle
w/m, m > 3 (when m > 4, we mark the edge of the graph with m).

Ty = T(2,2,3;3,5,2)

Ty = T(2,2,3;2,5,3)

Ty = T(2,2,4;2,3,5)




Ty = T(2,3,5;2,3,5)
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To = T(2,3,5;2,3,5)

We will briefly call G; the group generated by the reflections in the faces of

g . . . . .
T;, and Gy its subgroup of index 2 of orientation preserving elements.

4.3 Non-orientable hyperbolic 3-manifolds

We will now consider as an application the non-orientable (compact) hyperbolic
3-manifolds of tetrahedral type.

Let us first explain the situation by the 2-dimensional analogue [25]: take a
Coxeter triangle

m,s,k € IN such that I/m +1/s +1/k <1
/s 3}

w/m ’
7 <k Fig.8

As we have already said in Chapter 1, the group of reflections in the sides
of the triangle is the extended triangle group [m,s, k| and represents a discrete
subgroup of isometries of the hyperbolic plane. The triangle group (s, k,m) is
the subgroup of index 2 of the orientation preserving isometries. Suppose we are
given the exact diagram of groups

PSL(2,q) — 1

then ker ¢ is a subgroup of index 2 in ker ¢. The group ker ¢ is a Fuchsian
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group and PSL(2,q) acts on the Riemann surface F = IH?/ker . The geometric
diagram of covering spaces is in Fig.9. The orbifold O has no boundary and the

edges of the underlying topological space are silvered, see [30, Ex. 5.2:4] and [17,
p-83]. Moreover according to [17, pp. 85, 87] the orbifold O is non-orientable.

/kemﬁ

\\/,W .

(m, 5, k] D | _
/’//PSL(2,q)

D, D

Fig.9

The Riemann surface F* is a 2-fold covering of 7 by an orientation reversing
involution. Indeed the group ker ¢ is the maximal subgroup without orientation
reversing elements and has index 2 in ker ¢. Since the orientation reversing
transformations already apply in the quotient from F* to F, 1t i1s clear that F
1s a non-orientable surface and F* is its canonical double (25, Ch.2, Thm.1] and
(3, §9].

In the 3-dimensional case the underlying topological space of the orbifold
H?/G; is the tetrahedron 7;. Each vertex group is the extended triangle group
in the labels of the concurrent edges, and each edge group is the dihedral group
of order the correspondent label.

If G; maps onto the simple group PSL(2, ), then automatically the group G7,
of index 2 in Giymaps onto PSL(2,q). The tetrahedron is then a non-orientable
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orbifold with the faces silvered.

In each hyperbolic Coxeter tetrahedron there is always at least one vertex
labelled [2,3,m], m = 4 or 5. We know how to define a surjective map of
(2,3,m), m = 4 or 5, onto PSL(2,q) and moreover we have determined the
exact condition to be able to extend to a surjection from [2,3,m]. Since the
presentation we used early for [2,3,m] is

(z,t,a | =t" = (zt)’=d’ = (ta)? = (za)’ =1)
we are motivated to consider a different presentation also for Gj, né.mely
(z,t,a,r | c® =t" = (zt)® =a* = (ta)’ = (za)*=1

r? = (ra)k = (r at)’ =(raz)’ =1).

The group [2,3,m] may be always placed at the vertex V,. Then the generators
¢t and z are the rotations of order m and 2, suitable product of two reflections
among 71, 72 and 73. The generator a is the common reflection to z and ¢, and 7
is the reflection r, (“opposite” to the vertex V).

Resuming the situation:

for T,

¢+ 7371, T+ 77 which implies (ra)? = (rat)® = (raz)’ =1
for 7,

t s r 73, T+ 7372 which implies (ra)® = (r at)’ =(raz)’=1
for 7;, 2 > 3,

s a7y, @+ 737 which implies (ra)®? = (rat)’ = (raz)® =1,

We suppose to have already at hand a map of [2,3,m] in PSL(2,q) given by
Theorem 3.2.10 and Remarks. Remind that

A0 L _ ~
T:I<0 —X),Where'y__l_g, g=A+A

w o —p

0 € -
A:i(_g 0), g€ = 1.

Now the trace 7 of Theorem 3.2.10 is equal to zero, so

X:i<# V), where p?=1/(7"—4), vw=

e =+r/(2w) and & = +r/(2v), where 7’ = 4vwin Fe.
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So we have to determine an element of order 2

R::t<5 _g) —§ =1,

7
such that i .
RAZ:E( —f‘fé :;z> has order I,
RAT:i<_§§§ zz—i—) has order s,

RAX:i<_£E#+66w —Efu—E&p) has order k.
§Ep+nmew v -—qep

We get the system

—{letne=w
—EEXA+per =
—p(le+ne)+é(ewter) ==k

where w,v and & are the traces of elements of respective order [, s and k. (We are
looking for maps onto PSL(2,q), so all representatives are supposed normalized:
it follows that w, v and & are roots of @, @, and respectively Q.)
Observe that »
EW+EV = 7.

The system gives the solutions

A—v wA—v
= 2 + _1_____.w - =9 L)t i
5 U( T) A—*‘A7 77 LU( T) A—A

We have to check now if there are values of w,v,x (compatible with our

requests) such that
—8% —¢n=1

l.e. substituting

wg—2v\?
—A? (Iﬂ‘, +;L—g——_—> —,uz(w2 —vwg -1'—'112) = 1.
A=A
Since w,v, k are not all 3 contemporaneously different from zero, it is more simple
to consider separately three cases, namely 7; and 75, then 73 and 7, and last all

the remaining tetrahedra 7;, 5 <7< 9.

The above condition applies also to the case of totally geodesic boundary. The
non-orientable orbifold to consider is now a truncated tetrahedron.
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Chapter 5

Tables and programs

Here we have collected tables and programs supporting the stated results.

We give first the table for the detailed analysis of condition 3.2.10(C) when
g = p, p prime, p =7 +1, 7 < p < 1000. The entries are explained by the
headings. The table is divided into seven columns; from the left we encounter

o the order ¢ of the field,

o the trace g;, 7 = 1,2,3, (there are three for each ¢, each with its proper
Tow),

e the values of C'(T(l),ig;), | = 2,3 and 5, for a total of four columns (the
two columns for [ = 5 correspond to the two values for 7(5); no entries in
these columns means that there are no elements of order 5),

and last, a service-column with

e an arrow at each row that gives negative answer to condition 3.2.10 (C) for
~all 1=2,30r5.

All numbers that are squares in Z, appear with the respective root, also the
traces to allow the comparison of our results with those in [4]..

The entries of the table are produced by a computer program written in the
Pascal computer language. The program follows the table. It has been run on
a VAX which reserves 32 bit for a variable-word of integer type. So the integer
range is

(2% — 1) = £2147483'647 = £(46'340.95)%.

Then the built in arithmetic operations allow computations in Zj, for any p up to
46-340. The most troubling operation is obviously multiplication. Since we keep
p under 1000 we would be allowed to do products also of three factors, without
intermediate reductions modulo p, but in any case not of four.
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TABLE

[ | o | Clog) |CELg) [C(EEE,g) [CFSE,0) [u>2]
7 11 4 =92
13 8 3 =47 11
10 = 6° 2 7 —
3 5 =112 10 11 14
29 7T=6" 19 6 = 82 15 13 = 107
18 21 22 = 147 28 = 122 17
14 7 35 26 31 = 207
41 30 20 = 152 14 13 9 = 32
37 = 187 30 1=12 3 11
8 14 =10% | 31 =177
43 [ 15 =127 | 15 =127 | 21 = &?
19 30 0 =07
4 =22 19 = 272 31 68 6 = 197
71 14 9 =32 59 12 = 157 14
52 59 61 g = 242 45 = 202
10 =332 | 27 =392 | 40 = 177
83 15 25 = 5° 80
57 47 55 —
25 = 52 34 73 = 482
97 30 1 =12 24 = 117
41 78 9 = 3?
9 =32 27 104 = 452
113 24 81 =9% | 88 = 38?
79 21 43 —
24 121 =112 58
127 36 =62 | 35 =172 57
66 114 21 = 237
5=127 | 51 = 327 72 0 =02 26
139 23 120 = 267 | 89 = 282 96 = 427 51 = 322
110 123 126 76 40 —
19 = 552 71 94 = 422
167 | 25 = 57 17 137 = 537
122 = 177 95 112 = 467
37 =477 [ 147 =50 | 64 = 8° 169 = 137 57
181 | 43 =627 | 37 =477 72 19 160
100 = 10% | 13 = 70? 54 85 64 = 82
95 160 = 957 119
197 140 18 111 —
158 = 542 35 173 = 317
18 193 = 682 91 101 = 342 190
211 | 81 =92 | 143 = 96? 159 54 = 732 69 = 512
111 102 181 45 = 162 185 = 947
(continued)
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TABLE(cont.)

Lol o [ €0 [CELe) [CERE ) [CESEg) [u>2]
92 52 38 = 222
223 142 82 =642 | 172 = 297
211 = 65% | 105 = 952 22
6 = 227 107 139 173 137 —
239 | 34 = 89? 168 125 = 842 154 53
198 = 262 219 223 48 = 547 163 = 1012
106 = 682 248 185 26 30 —
251 | 190 = 212 188 140 = 892 234 249 = 912
205 = 742 82 186 66 = 982 159
47 168 125 = 942 177 30
281 240 32 = 342 23 243 75
274 = 672 97 142 166 163 = 437
54 = 126% | 68 = 192 50
203 | 254 = 662 81 =92 133 = 962
277 = 342 | 160 = 632 119
63 = 1292 | 100 = 107 74
307 267 59 120 —
283 164 = 852 | 122 = 957
143 107 = 1182 332
337 | 227 = 1007 140 104 = 212
303 106 247 —
133 103 338 237 325 —
349 237 92 =217 | 68 = 106° 10 102
327 = 262 170 301 = 677 65 319
205 = 1797 188 140 317 294 = 1082
379 | 219 = 1467 321 145 36 = 62 78
333 = 432 265 103 = 1227 274 149 = 1617
196 = 147 | 121 = 112 404 62 = 302 191 = 972
419 285 256 = 16% | 191 = 972 83 234
356 58 252 = 1547 | 136 = 1077 143
116 76 56 151 362 —
421 | 322 = 2082 382 75 = 517 165 = 432 99 = 1382
403 400 = 20% | 299 = 1267 42 34
62 224 167 = 1592
433 378 36 = 67 26 = 667
425 = 1382 189 249 —
43 249 = 1052 298 295 = 1732 350 = 2032
449 | 51 = 1677 384 287 = 1307 | 128 = 2092 349 = 2212
354 281 322 = 1882 292 393 = 2172
221 112 83 367 = 1322 231
461 | 266 = 957 42 261 8 272 = 4672
434 323 = 287 | 126 = 2042 | 402 = 22372 114 = 1102
(continued)
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TABLE(cont.)

L |

| C(0,4) | C(1,4:)

%29 | 052,90 [ux2]

64

gi
67 = 1757 | 113 = 242 431
463 75 199 264 = 462
320 167 = 104% | 240 = 592
227 = 1822 116 86 321 = 1992 312
491 [ 291 = 422 78 303 = 577 259 81 = 92
463 = 447 313 111 = 1377 384 127 = 40°
111 22 = 812 267
503 | 144 = 127 | 63 = 1652 | 172 = 412
247 434 73 = 247
54 = 29222 382 12 —
547 (179 = 2672 393 157 = 2692
313 = 1637 335 387 —
204 = 702 | 256 = 162 | 191 — 1447
587 445 362 564 — 2187 i
524 572 = 1372 4928
292 324 = 187 | 242 — 382 427 576 = 242
601 388 38 328 302 = 1032 554 = 692
521 = 732 255 40 = 1902 34 432 = 1782
16 = 42 2922 474 —
617 254 471 198 = 942
346 557 = 552 571
79 = 2927 | 288 = 1342 | 215 = 1712 | 388 = 1522 600
631 560 40 = 1577 | 20 = 2412 81 = 92 597
622 319 396 32 = 2552 206
20 341 94 = 1052
643 224 567 = 2477 | 585 = 2182
398 = 2362 | 394 = 2757 | 616 = 2217
58 = 3067 | 395 = 1512 | 460 = 2007 640 345 = 1932
659 67 508 = 2057 | 380 = 229° 279 353 = 752
533 431 487 = 2897 490 540 — 2812
85 = 249? 51 542 —
673 94 337 = 195° 420
493 301 393 —
388 = 337 | 696 = 1457 | 521 = 1692 2 164 = 1332
701 | 485 = 17772 | 555 = 692 240 147 18
528 = 3497 | 167 = 3327 650 372 g =232
41 558 54 —
727 [ 225 = 15% | 345 = 1562 76
460 567 = 1522 606
21 477 = 1652 | 171 = 2662
743 [ 282 = 1407 | 663 = 942 | 682 = 2022
439 362 642 p
(continued)




TABLE(cont.)

(¢ ] & | C0,8) | CELe) |C(EEE)]|C(ES2g) u>2]
136 214 = 2242 | 538 = 53?
757 294 217 351 = 892
326 = 75° 342 634
311 = 432 704 527 = 362 | 371 = 348° 506 = 1322
769 594 552 413 = 2017 | 486 = 2647 201
632 208 = 3037 | 607 = 3797 | 749 = 127° 5 =922
100 = 102 659 294 = 2802
797 262 401 = 3747 | 499 = 367
434 550 13 = 3562
179 797 = 1912 394 61 324 = 182
811 | 221 = 3652 | 99 = 767 | 276 = 198 543 186
410 742 150 = 312 13 506 = 155%
63 676 = 262 506
827 | 104 = 3507 | 579 = 1407 | 640 = 378>
659 415 517
442 = 74% | 504 = 231% | 377 = 165° 56 = 77° 571 = 3522
839 521 753 354 = 1102 495 653 = 2797
714 437 = 3532 117 167 586 = 1382
376 47 = 30° 674
853 | 629 = 1332 616 461
700 206 580 = 1047
98 = 2942 | 360 = 1912 269 862 = 1577 466 = 1642
881 | 792 = 3047 | 44 = 366° | 32 = 168% | 420 = 2997 513
871 = 4267 | 493 = 562 589 128 = 3367 265
120 690 = 250° 75
883 270 685 292
492 = 2607 | 407 = 1137 | 525 = 396°
123 = 2997 | 533 =382 [ 171 =376% | 152 = 218? 739
911 236 423 544 573 636 = 1502
551 882 = 522 | 205 = 2777 630 14
105 = 542 | 888 = 435° | 665 = 2757
037 | 115 = 189% | 521 = 313% | 624 = 388*
716 = 1677 | 481 = 266 594
232 = 1522 94 546
953 266 29 = 3642 | 259 = 94°
454 846 157 = 632
256 = 162 | 892 = 4587 668
967 745 144 = 127 107
932 914 201 = 1532
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program checking_ condition C(input, output);
var g {the size ""g"" in the text}, gd2:integer;
g:array[l..3] of integer;
Zx: boolean;
u2:file of integer;
t:integer;
primes:array[0..1000] of boolean;
root, square: array[0..1000] of integer;
i:integer;

{ tools }

procedure Eratostene sieve (n:integer);
var k,i:integer;

begin
for i:=2 to n do primes[i]:= true;
for i:=2 to trunc(sgrt(n)) do
if primes[i] then for k:=2 to n div i do primes[k*i] := false;
end;

{***** * KKk ******}

procedure tools (g:integer);
var k,i:integexr;

begin
gd2 := (g+l) div 2; {1/2 in Z_q}
root [0] := 0; square[0] :=0;
for i:=1 to g do =xoot[i] := ~1;
k:=0;
for i:=1 to qgd2-1 do
begin
k= ( k + 2*%1 - 1) mod q;
root[k] := 4i;
square([i]:= k; square[g-i] := k;
end;
end;

{***** * k& ******}
procedure traces(k:integer;var tl,t2,t3 : integer) ;
var t,i :integer; tr : array[l..3] of integer;
begin

t:=1;

for i := 0 to k-1 do if (i*i*i 4 i*i - 2*i-1) mod k = 0

then begin tr{t] := i;
t = t+1
end;
tl = tr[l]; t2:=tr[2]; t3 := tr[3]
end;
{***** * kK ******}
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procedure condition{tau,gamma:integer) ;
var c¢,r:integer;

begin
c:i=(square[tau] *square [gamma] - 4* (square[tau]+square[gamma]) + 12) mod q;
=root[c];
write (gamma, tau);
if r<>-1 then begin writeln(c,’'=",xz,’*2%);

ex:=true;
end :
else writeln{ ('Condition (C) not satisfied’)};
end;

{ }

begin

open(u2, 'power2.dat’) ;
rewrite (u2);
Eratostene_sieve(lOOO);

for g := 2 to 1000 do
if primes[q] and ((g med 7 = 1) or (g mod 7 = 6)) then
begin

tools(qg);

traces(gq,g(l]l,9[2],9[3]);
writeln(qg);
for i:=1 to 3 do
begin
ex := false;
condition(0,g[i]);
condition(l,g[i]);
if (gmod 5 = 1) or (g mod 5 = 4) then
begin
ti=(qd2 * (1 + root[5])) mod g;
condition(t,g([i]) ;
ti=(gd2 * (1 - root[5])) mod q;
condition(t,g[i]);
end;
writeln;
if not (ex) then {save the trace and the order for a check with
higher power of the braid}

begin u2”:=qg; put (u2);
u2~:=g[il; put(u2);
end;
end; {of for i}
end; {of mod7}
close (u2);
end.
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The program for the inspection of conditions of Theorem 3.2.19 is not es-
sentially different from the previous program: the tools are the same. But the
program results longer because we have to distinguish the two case 7|g— 1 and
7|q + 1. Since the previous program produces the file 'power2.dat’ with ths
cases without positive answer for o = o (those emphasized by an arrow in the
TABLE), we may check only these ones.

The program for the systematic check on the candidates in PSL(2,p), p
prime, is similar to the following program, which does the computations for the
case PSL(2,27). It is simpler because we do computations modulus a prime and

we check the braids

So let us turn to the case PSL(2,27). The concrete model used for computa-
tions 1 IFy7 Is ~ :
Z3[a:]/(:n3 —z?y 1).

Each element is a polynom that we represent, in the program, as the linear matrix
of the coeflicients; also let us simply write the coefficients in sequence without
commas

_ asa10gy = Aa z? +aiz+ ag.
The multiplication table of IFy; is the following (obviously we need only half of
the non-zero elements):

MULTIPLICATION TABLE of IF,;

|- [1001]010 011 [012[100 [ 101 102 [ 110 [ 131 [ 112 [120 ] 121122
001 ][ 001
010 || 010 | 100
011 || 011 | 110 | 121
012 || 012 | 120 | 102 | 111
100 || 100 | 102 | 202 | 002 | 122
101 | 101 | 112 ] 210 | 011 | 222 | 020
102 |} 102 | 122 | 221 | 020 | 022 | 121 | 220
110 || 110 | 202 | 012 | 122 | 221 | 001 | 111 | 120
111 | 111 | 212 ] 020 | 101 | 021 | 102 | 210 | 200 | 011
112 || 112 | 222 | 001 | 110 | 121 | 200 | 012 | 010 | 122 | 201
120 || 120 | 002 | 122 | 212 | 020 | 110 | 200 | 022 | 112 | 202 | 021
121 | 121 | 012 | 100 | 221 | 120 | 211 | 002 | 102 [ 220 | 011 | 111 | 202
122 | 122 | 022 | 111 | 200 | 220 | 012 | 101 | 212 [ 001 | 120 | 201 | 020 | 112

The program that follows, established the necessary tools, generates all braids

up to a fixed total number of half-twists and verifies the trace of the correspondent
elements in PSL(2,27).
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program braids for PSL{2,27} {(input,output);

const len=65535; {i.e. the maximum length allowed,

Reference Manual VAX Pascal 2.3.3}

lem=65535; {the Pascal compiler requires in the heading
of a procedure identifiers, so any integer
has to be definied as a constant. We need
two names for the same because the compiler
does not admit the same constant identifier to be
repeated in one heading}

type parts = (Re,Im);
elem = array[0..2] of integer;
comp = array|[Re..Im] of elem;
matrix = array[l..2] of comp;
var one {one}, zero {zero}, g { tracel}l: elem;

ro {primitive element}, ro_ inv {its inverse} : elem;

Lambda : comp;

square, root, inv : array[0..2,0..2,0..2] of elem;
mu_sqr_inv {gamma square -4}, mu_sqgr {its inverse}, beta : elem;
data:varying[65535] of char; {the string}

work,wa:varying[65535] of char;{the letters to which the string applies
and their returned images}

k,leng:integer;

{#FF4F#FHF#F4444 to write a variable of type elem or matrix F#FSS4E44208%04,

procedure wri(a:elem);

begin
write(af[2]:1,a[1]1:1,a[0]:1);

end;

procedure wri m(A:matrix);

begin
wri(A[1l] [Re]);write(’ + i . ") ;wri(A[1][Im]); writeln;
wri(A[2] [Re]);write(’ + i . 7);wri(A[2][Im]); writeln;
end;

(T R S R S R R R R A R R A A S St s gy

{ the product in F(27) }
procedure p (a,b : elem; var c:elem);
begin
c[2] = (a[2]*b[0]+a[1l]1*b[1l]+a[0]*b[2]+al[2]*b[l]+a[l]*b[2]+a[2]*b[2])mod 3;
c[1l] := (a[l]*b[0]+a[0]*b[1l]1-a[2]*b[2]) mod 3;

c[0]
end;

I

(a[0]*b[0]-a[2]1*b[l]~a[l]*b[2]-a[2]1*b[2]) mod 3;
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{*********************** +he tools ****'k******‘k*‘k***********'k*************}

procedure tools;
var a,c:elem;
az2,al,al,k : integer;

procedure inverse (h:elem; var b:elem);

label 3;
var a,temp : elem;
a2,al,al : integer;
begin
if (h([2] = 0) and (h{1] = 0) and (h[0] = 0) then
begin b[0] := -1; b{l] := -1; b[2] := -1 end
else

for aZ:=2 downto 0 do
for al:=2 downto 0 do

for al:=2 downto 0 do

begin
af2}l:=a2;a[l]:=al;a[0]:=a0;
p(h,a,temp);
if (temp[2]=0) and (temp[l]=0) and (temp[0]=1) then
begin b:i=a;

goto 3

end;

end;

3 : end; .

begin {procedure tools}

onel[2]:=0; one[l]:=0; one[0]:=1
zero[2] :=0;zero[l] :=0;zero[0]:=
for a2:=2 downto 0 do
for al:=2 downto 0 do
for al:=2 downto 0 do
for k:=2 downto 0 do root{a2,al,al][k]:=-1;

0;

for al2:=2 downto 0 do
for al:=2 downto 0 do
for al:=2 downto 0 do
begin
al[2]:=a2;a(l]:=al;a[0]:=a0;
pla,a,c);
for k :=2 downto 0 do squarela2,al,al] [k] :=c[k];
root {c[2]},c[1l],c[0]] := a;
inverse (a,inv([a2,2l,a0]);
end;

end;

procedure primit (var ro : elem);
label 2;
var a2,al,al,count:integer;
d,y,x:elem;
begin
for a2:=2 downto 0 do
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for al:=2 downto 0 do
for al:=2 downto 0 do
begin
vi2]:=a2;y[1]:=al;y[0]:=al0;
count:=1; x:=y;
if not ((y[2]1=0) and (y[1]=0) and (y[0]=0)) then
begin
while not ((x[2]=0) and (x[1]=0) and (x[0]=1)) do
begin p(y,x,d);
count :=count+1;

x:=d;
end;
if count=26 then begin ro:=y; goto 2 end;
end;
end;

2 : end;
{CEEEaREEEE e e L L L EEEEEEEEEE S L EGEEEEEELELEEEEEEEEEEEEEEEEELELEELEEEEEEEEEEEE])

procedure trace(var g:elem);
label 1;
var a,b,¢c,d,h:elem;
az2,al,al,k:integer;
begin
di=zero;
for aZ2:=2 downto 0 do
for al:=2 downto 0 do
for al:=2 downto 0 do
begin
af2):=a2;al[l]:=al;a[0]:=a0;
h:=squarefa2,al,al];
for k:=2 downto 0 do blk]l:= (alk] + onelk]) mod 3;

p(h,b,d);

for k:=2 downto 0 do clk] := (d[k] + alk] - onelk]) mod 3;
if (c[2]=0) and (c[l]1=0) and (c[0]=0) then

begin

g:= a; goto 1
end;
end;
1 : end;

procedure Compute Nu(var Nu:comp);
label 5; -
var a,h,v,temp : elem;
a2,al,al,k:integer;
begin
vi=zero; {initialization}
for a2:=2 downto 0 do
for al:=2 downto 0 do
for al:=2 downto 0 do
if not ((a2=0) and (al=0) and (a0=0)) then

begin

af[2]:=a2;a[l]:=al;a[0]:=a0;

h:= square([a2,al,al];

p(h,ro,v);

for k:=2 downto 0 do v[k] := (v[k] + mu sgrl[k] + onelk]) mod 3;

if (root[v[2]1,v[1],v[0]1][2] <> -1) and
(not ((v[2]=0)and(v[1]=0)and(v([0]=0))) then

begin Nu[Re] := root[v[2],v[1],v[0]];
Nu[Im] := a;
goto 5

end;
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end;
5 : end;

procedure Compute Lambda (var Lambda:comp) ;
var f,h:elem;
k:integer;
begin
f:=zero;
h:=square{g(2],g9{11,g[0]1;
h{0] := (h[0] - 1) mod 3;
p(h,ro_inv,£f);
Lambda [Im] := root[£[2],£[1],£[0]];:
for k:=2 downto 0 do Lambdal[Re] [k]:=(-g[k]) mod 3;

end;

13113 I A T T I I L T S I T I T I I T T I T I T T I 1

procedure normalizes (var w:varying[len] of char);

{ the elements a, b, x of the group have order 2, so we want to get
rid of the squares that may have appeared }

var i:integer;
ck:boolean;
s:varying[65535] of char;
begin
for i:=1 to length(w)-1 do if w[i+l]=w[i] then ok:=false;
while not (ok) do
begin s:="7;
i:=0;
repeat
io=i41;
if w{il='t’ then s:=s+w([i] else begin { a, b and x have ordsx 2}
1f w[i+1l]<>w([i] then s:=s+w[i]
else i:=i4+1l; end;
until i >= length(w)-1;
if wllength(w) ]<>w[length(w)-1] then s:=s+w[length(w)];
ok:=true; :
for i:=1 to length(s)-1 do if (s[i]<>'t’)and(s[i+1]=s[i]) then ok:=false;
wi=s;
end;
end; {normalizes}

procedure sigma data (data:varying[len] of char;
var work:varying[lem] of char);

{ applies the braid given as the product of the generators denoted by 1 and
2 in the variable ’‘data’, to the element in ’‘work’.
The result will be a sequence of a, b, x and it is placed in ‘work’ again}

var s,h:varying([65535] of char;
i,Jj:integer;
ok:boolean;

begin
for i:=1 to length{(data) do
begin ok:=true;
if data[i]="1’ then
begin
he=r 7 :
for j:=1 to length(work) do
begin if work[j]l="a’ then h:=h+’b’;
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if work[jl="b’

then h:=h+"bab’;

if work([jl='x’ then h:=h+'x’;
end;
work:=h;
normalizes (work) ;
end;
if data[i]="2" then
begin
hi="7;
for j:=1 to length(work) do
begin if work{jl='a’ then h:=ht’a’;
if work([j]="b’ then h:=h+'x’;
if work[j]l="x" then h:=ht'xbx’;
end;
work:=h;
normalizes (work)
end;
end;

end; {sigma_data}

{*********'k*"k**'k******************************'k***"lc************************-k}

procedure Matrix Prod(A,B:matrizx;’

var z,w,v,x:elem;
k:integer;

begin
p(A[1l] [Im],B[1] [Im],z);
pA[2] [Im],B[2] [Im],w);
for k:=2 downto 0 do wv[k]
p(v,ro,z);
vi=z;
p(A[l}[Re],B[1]{Re]l,z);
p(A[2] [Re],B[2] [Re], ) ;
for k:=2 downto 0 do wv[k]
C{l] [Re] :=v;

P(A[1][Im],B[1] [Re],z);
p(A[1] [Re],B[1][Im],w);
P(A[2] [Im],B{2] [Re], V)
p(A[2] [Re],B[2] [Im],x);
for k:=2 downto 0 do v[k]
C{1][Im] :=v;

P(A[L] [Im],B[2][Im],z2);
p(A{2] [Im],B[1] [Im],w);
for k:=2 downto 0 do vik]
p(v,ro,z);

vi=z;

p(A[1] [Re],B[2] [Re], z);
p(A{2] [Re],B[1] [Re],w);
for k:=2 downto 0 do vik]
C[2] [Re] :=v;

p(A[L1]1[Rel,B[2] [Im],z);
p(A[1] [Im],B[2] [Re],w);
p(A[2] [Im],B[1] [Re],V);
p(A[2] [Re],B[1] [Im],x);
for k:=2 downto 0 do vi{k]
C[2] [Im] :=v;

end;

var C:matrix);

r=(z[k]+w[k]) mod 3;

i=(vIk]+z[k]-w[k]) mod 3;

r=(~v[k]+x[k]+z[k]+w[k]) mod 3;

r=(z[k]l-wl[k]) mod 3;

i=(vikl+z[k]l+wlk]) mod 3;

i=(vik]-x[kl+z[k]+w[k]) mod 3;
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procedure powers;
label 6;
var a2,al,al,b2,bl,b0,k:integer;
e 1,e 2,h,mde:elem; ;
A, B, X, T, M, Q, S : matrix;

begin {powers}

for a2:=2 downto 0 do
for al:=2 downto 0 do
for al:=2 downto 0 do
begin

for b2:=2 downto 0 do
for bl:=2 downto 0 do
for b0:=2 downto 0 do
begin

e 1 := square(a2,al,al];
e 2:=squarel[b2,bl,b0];
p(e_2,ro,h); .
for k:=2 downto 0 do mde(k]:=(-h[k] + e_1[k]) mod 3;
if (mde[2]=0) and (mde[1]=0) and (mde[0]=1) then
begin
Af{l] [Re] :=zero;
Afl1] [Im] :=zero;
A[2]1[Re] [2]):=a2; A[2][Re][l]:=al; A[2][Re][0]:=a0;
A[2][Im] [2]:=b2; A[2][Im][1]:=bl; A[2][Im][0]:=bO;

T[1] [Re] :=Lambda[Re];
T{1] [Im] :=Lambda[Im];
T[2] [Re] :=zero;
T[{2] [Im] :=zero;

X{1] [Re] :=zero;
X[1] [Im] :=beta;
X[2] [Re] :=Nu[Rel;
X[2] [Im] :=Nu[Im];

Matrix Prod(T, A, B);
{the initjalization for the product of the matrices )
M{1l] [Re] :=one;
M[{1] [Im] :=zero;
M[2] [Re] :=zero;

M[2] [Im] :=zero;

for k:=1 to length(work) do

begin
if work([k]="a’ then Q := A;
if work([k]='b’ then Q := B;
if work[k]='x" then Q := X;

Matrix Prod (M, Q, S);
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end; )
if (M{1]([Re][1]=0) and (M[1][Re][2]=0) then
begin
writeln (‘eureka’);
writeln(’candidate : 7,a2:1,al:1,a0:1," + 7,b2:1,bl1:1,b0:1," i");
writeln (data); writeln (work):;
end;
end;
end;
end;

6 : end; {powers}

{**************************************************************************}

procedure make data( s:integer; data:varyingl[len] of char);
var i:integer;
d:varying[256] of char;
begin
if s >= 1 then
begin
for i:=1 to 2 do
if i=1 then begin d:=data+’1l’; make data(s-1,d); end
else begin d:=data+’2’; make data(s-1,d) end
end -
else begin d:="2"+data+’2’;
wa:="a’;
sigma_data (d,wa);
work:="b’;
sigma data (d,work);
work :=wa+twork;
normalizes (work) ;
powers;
end
end; {make data}

{************** the body of the program ***************************k%k*k****}

begin
tools;
trace(g);
primit (ro) ;
ro inv := inv[ro[2],zo[l],xo[0]1];
for k:= 2 downto 0 do
mu_sqr_invik] := (square{g[2],g[1],g9(0]1]{k] - onel[k]) mod 3;
mu_sqgr := inv[mu_sq;_inv[Z],muwsqr_inv[l],mu_sqr_inv[O]];

p (mu_sgr,ro_inv,beta);

beta:=root [beta[2],beta[l],beta[0]];

write (“the primitive root ‘) ;wri(ro);writeln;
Compute Lambda (Lambda) ;

writeln ( Lambda’) ;

wri (Lambda[Re]) jwrite(’ + i .’);wri(Lambda[Im]) ;writeln;
Compute Nu (Nu) ;

writeln ("Nu’);

wri(Nuf[Re]) ;write(’ + i .7);wri(Nu[Im]) ;writeln;
readln (leng) ;

for k:=1 to leng do

begin

data:="";

make data (k,data);
end;

end.

{******************************************************************t*******}
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Chapter 6

Final remarks

6.1 Other Hurwitz groups

There exists also an infinite family of non-bounding Hurwitz actions by simple
groups. These are the Ree groups G5(q) of order ¢° (¢°> +1) (¢ — 1), where ¢ = 37,
p > 3 prime, see [23, p.31,Prop.2.7]. There are three conjugacy classes of elements
of order 3 in G;(g), denoted by T, T~! and X in [23, proof of Prop.2.7]. In
particular, 7' and T~! are not conjugate, so do not lie in a subgroup D3, Sy or
A of G5(g). Now in [23, Prop.2.7] Hurwitz actions

v:(2,3,7T) — G5(q)

are constructed such that

wly)=T or T7'.

If such an action bounds a compact 3-manifold, the axis of order 3 starting from
the branch point of order 3 on §%(2,3,7) has to end in a point with local group
A, by the above. But then from this point another axis of order 3 emanates
associated again to the element T or T, so continuing we get infinitely many
points with local group A, which is impossible by compactness. Therefore all
these Hurwitz actions do not bound. Moreover, the number of different Hurwitz
actions of this type, for a fixed ¢, becomes arbitrarily large with g ([23, Prop.2.7]).

The orders of the Ree groups are quite large. Among the simple Hurwitz
groups of low order, other than of type PSL(2,q), there are the Janko group Jy
and the Hall-Janko group J, [6]. There are 7 resp. 5 different Hurwitz actions,
the corresponding surjection extends from (2,3,7) to [2,3,7] ([5, §2], so at least
one Hurwitz action of J; and also of J, bounds a hyperbolic 3-manifold.

Similar remarks apply to the alternating groups A,: for all n > 168, there
exist bounding Hurwitz actions of A, because the corresponding surjections again
extend from (2,3,7) to [2,3,7], see the comments in [4, Introduction] on H~-
groups. However, one would suspect that there are also many non-bounding
Hurwitz actions of the groups A,,.
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6.2 The group C[4,3,5]" does not map onto A;

The group C[4,3,5]" maps onto infinitely many groups of PSL(2,q) type, and
PSL(2,25) is the simple group with lowest order.

Among the simple groups that contain elements of order 4 and 5 and has order
less than 7800, there is only the alternating group Az (see [8],{1],[9]).

But let us show that:

6.2.1 Proposition The alternating group Ar can not be a surjective image of

C[4,3,5]*.

We read the product of permutations from left to right.
Proof
We have to find three elements 7', X and A in A such that

T =X*=A’=(TXP =(TA?=(X A =1

The cycle decomposition of the even permutation T has to contain a cycle of
length 4. Since the latter is odd and we are left with 3 elements, we assume that,
up to conjugation, T' equals the permutation (1,2,3,4)(5,6).

Being of order 2 and even, the permutation X must decompose into 2 disjoint
transpositions. The same applies to A.

Since moreover (X T')? = 1 = (X 4)*, the only possibilities are

X =(5,k)(5,1), 1<j<k<4, i=6orT.

A= (7,5)(k,d), d#1.
Let us now compute the order of T'A. Suppose first it is d € {1,2,3,4} \ {7, k}:
applying T and then 4 we obtain
1 2 3 4
2 3 45

o o ot
LT e
-3 = =3

The product T A is (., 5,6,7,.)(...) and so has order at least 3, because j < 4.
If d is equal to 7 we have

1 2 3 45 6 7

23 45 6 71

6 7 k

and so we conclude as above.

If d is equal to 6, i.e. A =(7,5)(k,6), we have

1 23 45 6 7

23 45 6 71

k7 7
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Since 1 < k and j < 4, we may write
T(k—1)=k and T(j)=7j+1.
Then there is a cycle of T' 4 that contains the sequence
wk—1,6,7, .

If j # k — 1, the order of T' A is bigger than 2.
Ifj =%k —1 then

T=(1,2,3,4)(5,6) =(.,7,k,5)(5,6), s#b.
Since the permutation A fixes s, a cycle of T' A contains the sequence
9k, s,.
and also in this case T' A has order bigger than 2.

We have exhausted all the possibilities, so the Proposition is achieved.
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Appendix A

A.1 Congruences and primes

Throughout the work we have encountered congruences and systems of congru-
ences. The well known Chinese Remainder Theorem for numbers assures that
there are infinitely many integers that satisfy a system of congruence supposed

they are taken modulo coprime natural numbers. The proof may be found in
particular in [12, Thm.121], [22, §3.3,Thm.3.12].

A.1.1 Theorem Let mq, ms, ... , m, be s > 1 positive integers. Suppose m;
and m;, 1,7 = 1,...,8, 1 # j, are relatively prime. Then there ezists an inleger =
such that

T Eml kl, T Emz kg, .y T =mg ks.
Any other solution y of the system is congruent modulo my - ma - ... - m, L0 T. 8

But do there exist prime numbers satisfying some given congruence?
A direct check on the correspondent sequence of primes, answers positively. And
the Dirichlet’s prime number theorem (e.g. [20, Ch.V, §6]) says us even more:

A.1.2 Theorem (on prime numbers of Dirichlet) In any arithmetic pProgression
a,a+m,a+2m,a+3m,..

a, m natural and relatively prime numbers, there are infinitely many prime num-
bers.
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A.2 Applying Cebotarev’s theorem on prime
numbers S

Consider the maps 3.2.4
vy 1 (2,3,7) —> PSL(2,q), 1=1,2,3,
and the possible extensions
b~ 1 [2,3,7] —> PSL(2,q).

If p =4 1 there exist 1 or 3 maps ¢+;, whereas if p =4 3 there exist 2 maps

¢+; or none. We have seen that all four possibilities really occur. Actually, as a

consequence of Cebotarev’s theorem on prime ideals in Galois extensions, each

case occurs infinitely many times. To see how, we give, by the example, a quick

introduction to the theorem and to the way to apply it. For proofs and detailed

definitions about general theory we refer to [13, Ch.12],[24], [26] and [27].
Consider now the equation

P(z)=z®+2* -2z —-1=0, over R.
Its solutions g1, g2, g3 belong to IR \@Q and we know that
g2=gi—2 and 93 = gs — 2.

Then the algebraic number field Q(91,92,93) is just Q(g), g := g1 and {1,9,9°} is
a basis over Q. The extension is Galois and of degree d = 3. The Galois group is
the cyclic group of order 3 generated by the automorphism 7 defined by

m(g) == g* — 2.

(Indeed the order of G is the degree of the extension and the image of g is itself
a solution of P(z) = 0. So there are no other choices up to isomorphism. In this
case we are easily forced by the general theory.)

To state the Cebotarev’s theorem we need some more definitions.
The elements z € Q(g) such that

z”-{—a1z3"1+...+a3_1+a3:0, for some s €N, q; € Z

are called algebraic integers and form a subring D, that is preserved by the ele-
ments of the Galois group G. Since the minimal polynomial P(z) of g belongs to
Z[z], the set {1,g,4%} is a basis also of D. The trace and the norm of elements
in Q(g) may be computed by the characterizations in terms of @

trace(z) = z 4+ m(z) + 7v*(z) and norm(z) = z - 7(z) - w3(z).
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Then the discriminant of D (and.of(D,(g)) is
A(1,g,9%) = det(trace(g' g7))i jmga = (—1)4d /2 norm(P'(g)) = 49.

Let’s outline the computations with the latter formula. Keep in mind that ¢° =
1+2g—g*and g*=g+2¢°-g°=—-1-g+34°%

‘We have
m(9)=9"-2; w(¢")=(n(9))’=g"—-4g"+4=3—-g—g°
Wg(g):w(gz-—2)=3—g—g2—2=1——g——g2
(g )=m(8-g-g")=3~-9"-2-3+g+4 =2+g.
SO

(P'(g))=7(3g" +29-2)=3~-3g—¢*
T (P'(g)) =6 +g—24%

Finally a careful computation shows that

norm(P'(g)) = P'(g) - w(P'(g)) - *(P'(g)) = —49.

The discriminant is always an integer.
In D every ideal is the product of prime ideals in a unique way. In particular
for any prime p in Z there exist s (> 1).prime ideals Py, Pa, ..., P, of D such that

e the ideal generated by p in D factorizes as (p) = P Ps...P¢, e > 1;

e the finite fields D/P;, i = 1,..., s, have pf, f > 1, elements and are Galois
extensions of their (commun) prime field Z,;

o the three numbers e, f and s are related by the formula

efs=d=3.

The exponent e is greater than 1 if and only if p divides the discriminant,
in the present example if and only if p = 7. Always the primes that divide the
discriminant are finitely many. Moreover when e = 1 the Galois group G; of
the finite field D/P; is isomorphic to the group of the automorphisms of G that
preserve the ideal P;. But G; is cyclic of order f: its canonical generator is the
Frobenius autornorphism defined by

h: zw 2P, forany z€ D/P;.
Then h coincides with some automorphism 7 € G.

A.2.1 Theorem (restricted version of Cebotarev’s density theorem)

Let L be an algebraic number field, D its subring of algebraic integers and =
an element of the Galois group. The subset of primes p € Z, non dividing the
discriminant, such that the Frobenius automorphism of D/P;, for a factor P; of

(p) in D, coincides with = is infinite and depends only on the conjugacy class of
7w n G.
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As the identity belongs to G the following is immediate:

A.2.2 Corollary There are infinitely many prime numbers p € Z, non dividing
the discriminant, such that

D/P; =127, where P; isa factor of (p) in D.
B

In specific example, if p # 7 the possibilities are G(D/P;) = 1, when f = 1,
8 =3, or G(D/P;) = G when f = 3, s = 1. There are no other possibilities
because fs = 3. By the Cebotarev’s theorem both occur for infinitely many
primes. Since D/P; = Z,(g), we are in particular interested in the case f = 1
because it implies that Z,(g) = Z, and so that g belongs to Z,.

Now ¢; = C(0,+g:), 7 = 1,2, 3, belong to Q(g), but not so their square roots.
Anyway we may repeat the process and consider the Galois extensions Q(g,¢;),
i =1,2,3,Q(g,¢c,¢i), 1,7 = 1,2,3, © # 7, Q(g,c1,¢2,c3) and reapply Corollary
A.2.2.

For any prime p € Z such that D(g,c1,¢0,¢3)/Pi = Zy(g,c1,02,¢3) = Zp
we have obviously that Z,(g,ci,c;) = Z, and Z,(g,c;) = Z,. But the converse
implications are not true. Indeed there are infinitely many primes such that
Z,(9,¢irc;) D Zy(g,c:): just apply Cebotarev’s theorem to the Galois extension
Q(g,ciyc;) of Q(g,¢;). Since cicicl = —1 - 8%, we have that Z,(g,c:,¢;) = Z,
implies Z,(g,c1,c2,¢3) = Z, if and only if p =4 1.

The same result is true for C(£1,+g;) and C(r,%g:), 7 = 7(5). In the last
case we start from the Galois extension (Q(\/g)
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