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1 Introduction

The bootstrap method was one of the first developments towards the description of
quantized systems. It consists in a deductive scheme to the calculation of the scattering
matrix, by requiring that the S-matrix elements satisfy some general properties that
ought to be valid in a quantized theory. The advantage of this approach is that it is

independent of whether or not a lagrangian formulation for the theory exists.

The original formulation considered general four dimensional models. The hope that
the bootstrap method could provide a means for resolving or classify these theories was
not fulfilled. Other methods as functional integration and the perturbation expansion

took its place and became the main tools in the examination of quantum field theories.

Meanwhile one has understood that in that case bootstrap methods have been ap-
plied to models where they were unable to work efficiently. This thesis treats with two
dimensional integrable field theories, and as we will explain in detail, in this case one can

use the bootstrap principle to determine the exact quantum structure of a theory.

The interest in two dimensional systems is twofold. On the one hand, they can be seen
as a playground of field theory, since in this case calculations are much simpler. It is in
this context that one can learn how interacting field theories behave, not approximately
as one can study them by perturbative methods or numerical simulations, but exactly by

calculating analytic expressions for the quantum correlation-functions.

On the other hand, many of the field theories we will discuss are important as con-
tinuum limits of statistical field theories. One well known example are conformal field
theories, which describe critical points of a statistical system, and predict various critical
exponents and other universal finite-size scaling amplitudes. They have been resolved,
that is the exact quantum correlation-functions are known (they are given as solutions

of differential equations) and the operator content is classified.

Massive integrable field theories, which are the topic of this thesis, describe off-critical
regions in the space of coupling constants. Unfortunately, for these theories less is known.
Here is where the bootstrap method comes to work. The framework in which we will

describe massive theories is the Lehmann-Symanzik-Zimmermann (LSZ) formalism. It
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uses asymptotic states as a basis of the particle space and an S-matrix, which connects
them. Having an integrable field theory, additional constraints appear and allow to
determine the exact particle spectrum and the full S—matrix, once an initial input is
given. We will discuss this method in detail in part II.

The S-matrix provides only on-shell information. In order to understand the full
quantum structure of a theory, one needs to determine also the off-shell properties. This
is a subject of current interest. Still it is not possible to give a simple expression for
the correlation functions as in the massless case. But, through the form-factor bootstrap
approach, correlation-functions can be written as an infinite sum over form-factor con-
tributions. Also it should be possible to determine the operator content of a theory. We
will describe these methods and current results in part IIL.

Bootstrap methods give a way to understand the exact quantum structure of two di-
mensional integrable massive field theories. Nevertheless, they are not the only approach
to reach this goal. Already for massless theories one has seen that the underlying alge-
braic structure was the key in the solution of the models. Nowadays many properties of
conformal field theories are deduced from representation theory of the Virasoro algebra,
which is the relevant symmetry algebra. For massive theories the algebraic approach be-
comes rather involved and is still in its beginnings. Even if many objects in the massive
theory can be encoded into a (quantum) group theoretic language, it is not yet fully un-
derstood how to construct them from the principle in terms of the off—critical symmetry
algebra.

In this stage of investigation it is important to have an alternative method which does
not rely on the underlying symmetry. This role is played by the bootstrap method. It
is based on the principles of quantum field theory rather than on representation theo-
retic arguments. Therefore calculations can be done explicitly and many results can be
obtained without knowing the exact structure of the off-critical symmetry algebra.

In this thesis, I want to describe how the bootstrap principle works explicitly and

which results can be obtained.



Part I
Basic Elements of the Bootstrap
Approach

The bootstrap approach is supposed to be a method to determine the exact quantum
structure of integrable massive two dimensional field theories. In order to discuss to
which extend it can provide a means for such an ambitious goal, we need to introduce
some fundamental concepts. This will be done in this part of the thesis.

First we will discuss two dimensional integrable models in general, review some results
on conformal field theory, describe perturbations of them, and give a realization in terms
of affine Toda field theories. Then we will concentrate on massive theories and introduce
some fundamental properties of the bootstrap method. Since the subject is rather vast,
we will analyze only simple systems in order not to obscure the physical concepts with
technical complications. The techniques to treat with more complicated systems are

introduced later on when needed.

2 Integrable Massive Two Dimensional Field The-
ories

The most well known examples of integrable field theories are probably the conformal
models in two dimensions (see for example [22, 41, 56, 57]). Since they are also the best
explored, we want to discuss some of their basic properties. They provide an example of
a theory where the full quantum structure has been determined. In the following section

we discuss how this has been achieved.

2.1 Conformal field theory

Conformal field theories (CFT) describe the critical points corresponding to a second

order phase transition. This implies scaling invariance, and since we restrict ourselves to
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two dimensional systems, also conformal invariance.
Conformal transformations in general are defined as coordinate transformations such
that the angle between intersecting curves at the intersection point is preserved. In two

dimensions this means that z — f(z) and z — f(z) with

0:f(z) =0, 0.f(z) =0 .
In fact it is the group of analytic coordinate transformations. Expand

flz) =2+ Z 2"t f(Z)=Z+ Z E.2" !

n=-—o0 nm—0o0

These transformations are generated by

[, =2""0, and [,=z"108; |,

which satisfy the classical commutation relations

Iy ln] = (0 — M) lmin s [Zm,fn] =(n— m)lmsn and
[l‘m,ln] =0 .

Quantizing the theory this symmetry algebra turns into a couple of Virasoro algebras,

(2.1)

(L, Ln) = (m—7n)Lmin + 12(m — m)bmino
(Lo, L] = @n—%ﬂim+n+i%On3—7nﬁﬁ+mo , (2.2)
[Lm,fi,,] = 0

© L. _— L
T..=T(z)= >, 7 T:=T(z)= > JEETI
1
T.:=40=0 (2.3)

The anomaly c in (2.2) appears also in the operator product expansion (OPE) of the

stress energy tensor, namely

c 2T (z2) N 0T (z2)

z—z)  (z—z) (21— 22) e (2.4)

T(2:1)T(22) = (
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For a certain range of the central charge, 0 < ¢ < 1, the theories can be classified.

They are called minimal models and are determined by [12, 52, 60]

2
c = 1-— M ,  D,q positive relative prime integers (2.5)
rq
N2 (2
hr,s — (SP TQ)4 (p q) , 1_<.SSQ’“1 , ISTSP‘“l . (26)
Pq

Every minimal model is defined by a central charge labeled by two co-prime integers
p,q, and denoted as M,,. The operator content of each theory is specified by the
respective A, ,, being the conformal dimensions of the so—called primary fields. Equation
(2.6) shows that minimal models contain only a finite number of primary fields. All other
fields of the theory are contained in a Verma module structure. They are obtained by
applying L_j Ly, ...L_, to a primary field @, and are called descendent felds.

A reduction of the space of states is obtained through the so-called null-states [12, 11].
They are specific linear combinations of descendent operators, which have zero norm.
Therefore they can be eliminated from the space of states. These null-relations can be
used to determine the quantum correlation functions. One can define an operator L, to

give the action of L, on the correlator of primary fields as
(B1... 0L 4 ®) = L_4(3,...9,8) . (2.7)

Through the Ward identity these can be determined in terms of differential operators.
In this way a null relation turns into a differential equation for the correlator, which in
principle can be solved to compute all correlators of these theories. Explicit expressions
have been obtained through the Coulomb gas approach [42, 41], which defines the primary
fields in terms of vertex operators of a bosonic model with a charge at infinity.

We pause here to emphasize the physical importance of (2.5) and (2.6). The repre-
sentation theory of the Virasoro algebra in principle allows us to describe the possible
scaling dimensions of fields of two dimensional conformal field theories, and thereby the
possible critical indices of two dimensional systems at their second order phase transition
(22, 121]. In the case of systems with 0 < ¢ < 1 this has turned out to give a complete

classification of possible two dimensional critical behaviour. For example the two point
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function of primary fields can be determined as

Chn
(012 (2)@n(0)[0) = Wgh,h’ , (2.8)
where Cpp is a normalization constant. In confrontation consider now the Ising model.

The correlator of the order parameter o has at criticality the behaviour

1
(o,00) ~ —
WE

Comparing with (2.8) one can assign the values h, = h, = 7 to this field [22]. But
this in the above classification (2.6) corresponds to the field with weight k2 of the CFT
Ms,. Also the other operators of the Ising model can be brought in correspondence to
those of the theory M3 4. This renders the identification of the critical Ising model with
the model Mj, complete. Similar other systems have been identified , e.g. the models
My, Msg, Mgz with ¢ = {1—, —‘51,—(75 were identified with the tricritical Ising model, 3-state
Potts model and tricritical 3-state Potts model respectively. Actually all minimal models
have been found to be critical points of statistical models [3, 59].

The above examples have a peculiarity: they are all of the type M, ;1. The reason
for that is the following: In order to select our models we did not include unitarity as
a constraint on our theory. Unitarity restricts ¢ and h to be positive, and only models
of the type M, p41 survive [22, 56]. The problematic feature of a non unitary theory is
that it contains correlators which diverge for large distances (compare (2.8) ), since the
theory contains at least one weight h smaller than zero. These models are of interest in
statistical mechanics. An example is provided by the theory M, 5, which describes [23]
the Yang-Lee singularity, i.e. the critical behaviour of an antiferromagnetic system in
an imaginary magnetic field.

The CFT posses an infinite number of degrees of freedom and because they are inte-
grable we expect also an infinite number of conserved quantities. A first one is provided
by the stress—energy temsor T'(z), since 8;:T'(z) = 0 because of conformal invariance. It is
a descendant operator and lies in the Verma module of the identity T(z) = L_21. Actu-
ally an infinite number of conserved currents can be constructed out of the descendents

of the module of the identity operator. The difficulty lies in the problem to select a linear
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independent set, eliminating derivative operators, which are obtained applying L_, ~ &,.

The first independent conserved quantities are given in table 2.1.

spins 0|1 2 3 4 ) 6
T = 13,7
T = 12,1

basis vectors [ I |0 | To = L_oI | 0 Ty=L*,1|0

Table 2.1: The first linear independent conserved quantities in CFT

For conformal systems defined on a torus there exists a general formula to calculate
the degeneracy structure of the descendent fields in a Verma module corresponding to
a primary field at every level k. Defining the theory on a torus corresponds to taking
periodic boundary conditions in both directions of the lattice in a statistical system. On

the torus the partition function takes a simple form [22]

£

Z(q,q) = g~ g 1t (¢hogh) | (2.9)

where ¢ is a parameter depending on the geometry of the torus. This can be decomposed

as

Z(9,3) = > Nuaxn(a)xa(@) , (2.10)

hh

where one defines the character y, as
! o
Xn(q) = ¢ Ftrng™ = g7 H Y dy(n)g” (2.11)
n=0
dn(n)is the degeneracy of states in a representation at level n. The number of idependent
states at this level n is given by do(n)—dy(n—1). The quantities Ny, 1, are fixed by modular
invariance. This means that one requires the partition function to be invariant under
modular transformations, which characterize special base changes on the torus. For a
given central charge there can exist more than one theory satisfying these requirements.
They are classified in the ADE series [21].
If there were no null states the degeneracy dy(n) in (2.11) would be given by d(n) =
P(n) = TIZ,(1 — n*), the number of partitions of the integer n, because all descendent
states would be independent. For the minimal models one needs to eliminate all the null-

states and the sub~modules of descendents they create. The expression for the character
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expansion in this case is given [98] by
l oc

[Qkpp'—{—rp-sp']?—(P‘P’)Q] [ 4pp' _ —
g (.s — s) (2.12)
P, | b

corresponding to the operator hr, of the model Mp .

xrs(€) = @5

2.2 Extended conformal symmetries

The minimal models above are not the only conformal field theories with a reduced space
of states, which allow an explicit calculation of correlation functions and exhibit a Verma
module structure. There exist extensions of the Virasoro algebra providing an enlarged
symmetry algebra, as for example supersymmetry, current algebra or W-symmetry. We
want to discuss here only the W-algebras, because of their interrelation with Toda field
theories (see section 2.4).

W -algebras are non-linear extensions of the Virasoro algebra, related to some finite
Lie algebra (see e.g. [15, 14, 49]). We will consider only the SL(n) models, which in the
following will be called W,—algebras. The algebra is easiest defined through the OPE of
the fields T(z) and W® with k = 3,...,n. They are given by (2.4) and

kWE(2) oW (2)

T(Z)I/V(k)(z’) = (z — zl)2 z— 2z ’
. k+1-1 P W(r) Py
W(k)(Z)pV(I)(Z ) = Z . -(—z—(-j—z,")'g—_ﬁ‘p; . N (213)
r=0
where : ... : denotes normal ordering and P(W)is a differential polynomial of win,

As the pure Virasoro algebra, these models allow a reduction of the space of states in
the range 0 < ¢ < n — 1, and the corresponding central charge and dimensions of the
primary fields are given by [14]

PRI P S L

p-9

) p7q>n_1 ’

hes = "}— (n}:_:(PTi — qSi)LUi>~ - n(n’ — 1(p = 2)° . (2.14)

2pg \iZ 24pg
Herein, @;, 1 = 1,...n — 1 are the fundamental weights of SL(n), normalized as @0 =
i(n —§) for i < j. The limits on the labels r; and s; are that 327 < ¢ and Y 5; < p. As

in the pure conformal case (which corresponds to W3), unitary theories are obtained for
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g =p+1. W-algebras are related to the ultraviolet limit of the affine Toda field theories,

to be discussed in section 2.4.

2.3 Perturbations of conformal field theories

One way to define an off-critical theory, is to perturb a conformal field theory by some
relevant field @(z),
H, = Hopr + ,\/ &(z)d%s . (2.15)

For certain fields ®(z) the integrability of the CFT can be preserved under this pertur-
bation. Nevertheless, the quantities T> (see table 2.1) which defined an infinite set of
conserved quantities in CFT, cannot serve any more as integrals of motion. This because
their existence relied on conformal invariance which is destroyed by the perturbation. As
a consequence, the energy momentum tensor is not any more traceless. At lowest order

we have

6.7 = [H,,T(2)] , H,= A/@(m)dzm . (2.16)

But since the field @ is a well-defined object in CFT, it is possible to evaluate the

commutator in (2.16) [45, 115], giving
0:T = 0,(A(1 - h)®) . (2.17)

This can be symbolically written as L_,I = L_;®. The same technique can be applied
in order to construct a deformed current based on Ty = L2,I. By dimensional analysis
one finds that 0:L?,I must be an element of P3, where we define P, as the space of

descendents of ® at level s. That is, in general we obtain that
8‘:L:‘121 - (ALil + BL_QL_l + CL_3)® (218)

with some coeflicients A, B,C. In order to obtain a conservation law, we want the right
hqnd side to be proportional to L_y, that is of derivative form. Assume there exists a
null state at level 3. Then L_; can be expressed in terms of the other two elements, and
we have obtained a conservation law at thié level.

This analysis can be generalized to higher levels, but soon becomes rather involved. In

[115] a method was developed which proves the existence of a conservation law, without
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determining its precise form. It is called the counting argument. For, let L, be the space
of descendents and [, be the space of independent descendents of I at level s, Then by
dimensional counting 8,L,+; must take values in the space Ps (as before in the example).
P, and P, are constructed analogously to L, and L, but using the primary field ® instead
of I. If the dimension of L,y is larger than that of B,, one can find a quantity which
maps onto L_1®,, and therefore defines a conserved current. The respective dimensions
of the modules P, and [ ;1 can be computed using the character expansion (2.12). For

example for the perturbations of the type ®, 3 one obtains

5 1234567
dim (Ty41)|1 0 1 0 2 0 3 (2.19)
dim (B,) |0 1 02 1 3 2

Using the above argumentation one reads off the existence of conserved charges at level
s=1,3,5,7,....

Doing a similar analysis for other operators ®, , one finds that only three of them are
selected to have conserved quantities for any minimal model: @3, ®, 5 and ®5,1. For the

series @, , for example, one finds the conserved spins s = 1,5,7,11....

2.4 Toda field theory

In order to get a lagrangian description of perturbations of CFT, one uses a realization

in terms of Toda field theory. Let’s analyze the lagrangian
1 1< .
L=-0,60"p~ — > eboid (2.20)
2 ﬁ-‘ 7j=1

This action is built intrinsically over a Lie algebra, using the following notation: Let
» be the rank of a finite Lie algebra G and let ¢ be an r—component scalar field. The
exponential interaction is determined by the a, which are defined to be the positive

simple roots of G. The equations of motion in light cone coordinates are

1 & 4
0,061 = 5 L e |
1=1
or redefining ¢ = a;¢
1< o
(9+(9_(Pj = _—ﬁ_ Zaijeﬁ’gj y (221)
=1
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_ {eiej)

a;; being the Cartan matrix of G, a;; = (oo The energy momentum tensor in light

cone coordinates takes the form

1
B

Herein p = 37, A;, where the ); denote the fundamental weights of the algebra. Since

1 )
Tiy = —55:;:¢3i¢+ poid Ty =0 .

1t is traceless, we have a classically conformal invariant theory. This property survives
after quantization. Computing the conformal algebra generated by the quantized energy

momentum tensor [58], one finds that the central charge is related to the coupling constant
0 as

1
B

where h is the dual Coxeter number of G [34]. We will mainly examine 4, Toda theories,

c=r+120°(= + B8P =r (1+h(h+1)(-;— +ﬁ)2) , (2.22)

for which A = n + 1. The symmetries of these models are described by the W, algebras
discussed in section 2.2 [8, 15].

Comparing (2.14) and (2.22) one realizes that it is impossible to obtain realizations of
perturbations of minimal models or their W-extended versions, as long as the coupling
constant §is chosen real. The situation changes if one performs an analytic continuation
to imaginary coupling constant v = 43 [58]. The simplest algebra is Ay, for which A = 2.
Parameterizing % = E, the central charge (2.22) becomes

6(p — q)*
Pq

c=1-—

which are the values for the minimal models (2.5). In this case the Toda field equations

become

2
0= ——e%
?=-5"

which is the Liouville equation. Using the algebras A,, we obtain the values of the central
charge for the W, algebras (2.14).

Toda field theories can be built also over affine Kac-Moody algebras C; mstead of a
finite Lie algebra. As long as the full set‘of generators of the Kac-Moody algebra is
included in the construction, one obtains again a conformal invariant model [4, 7]. But

a consistent theory can be defined also by including only the 0% root. In this case one
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obtains a set of massive models, usually denoted as affine Toda field theories (ATFT).

The action is given by (2.20), but now including also the 0t root, 7.e. one adds a term

§V(¢) = A oo , (2.23)

to the lagrangian (2.20). The new minimum of the potential #©) is finite and satisfies

. (0 1(0)
Zaieﬁa.-é( Y /\aoeﬁaw(

In order to understand the structure of the excitations above the vacuum of this theory

one analyzes the potential

1 A

(0)+ ) ﬁao(¢(°)+¢>)
V= ghai(d™+e) L — .
g2 Zl B?
Since oy can be expressed in terms of the other roots ap = — S i mia;, one can rewrite

V as
E ,
= Znieﬁ“"q’ ,
ﬁ 1=0

where the constant k is given by k* = AeBood®) Expanding around the minimum ¢ = 0

one obtains

i n; + A/IZ abqsaqsb abc¢a¢b¢c +.o.. (224)

where summation over the mdices a,b,c is intended. The second order term defines the

mass matrix
(M*)° Zn alal (2.25)

and three point couplings c®* are given by the third order term
@ = 2B miofalal . (2.26)

It has been shown [93] that as well the conformal invariant as the perturbed Toda field

theories are classically integrable.
The simplest example is given by the perturbations of the Liouville model, corre-

sponding to A4;. In this case we have two possibilities to obtain an affine Toda field

2 -2
theory. One possibility is to choose A](Ll), with the Cartan matrix . The cor-

-2 2

responding equation of motion is §%p = %Sinh By, the so—called sinh—-Gordon equation.
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Its potential has a single vacuum. Similar as for the conformal TFT one can perform
an analytic continuation v = ¢# and the equation of motion becomes the Sine-Gordon
equation

2
8o = Zsinyp . (2.27)
“

The structure of the potential has now completely changed. Instead of an unique vac-
uum the Sine-Gordon potential exhibits an infinite number of degenerate vacua, and the
solutions of (2.27) are of soliton and breather type [31].
The second possibility to construct an affine Lie algebra from the finite algebra A4,
o) 9 —4

is to choose A;”, with the Cartan matrix . The corresponding equation of
-1 2

motion is the so—called Bullogh-Dodd equation

Op = —é—(f”ﬂ —2e°°) (2.28)

Similar as the Sine-Gordon equation it admits soliton solutions if an analytic continuation
in the coupling constant is performed.

The identification of the Liouville model with minimal models goes across the Coulomb
gas approach (for example see [42]). As we already mentioned, this approach describes
a massless scalar field embedded in a space with a charge placed at infinity, whose value
is —2 oy, where o is a rational number. The primary fields are given by the vertex-
operators

I/rs = exar,sé(l‘) )

with
A =r)ay +(1—s)a_]

re = 2.29
o . (2.29)

and r, s positive integers and @y = ay + /a2 + 1. The central charge is given by ¢ =
1 — 24af. The weights of these vertex operators are those given in (2.6). Therefore
the fields V; ; are seen as a realization of the primary fields of the minimal models &, ..
Taking the classical limit which corresponds to take ¢ — co one would like to identify

the corresponding classical objects. To do this we use the relation

V1—c++425—¢
oL =
+ \/-2—4‘
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which is obtained by inverting the definitions of ¢ and apy, above. We see that any
operator V,, with r > 1 will explode in the limit ¢ — oo. Therefore only operators of the
kind Vi, can be seen in a classical analog of the theory. These operators have classical

dimensions —%l, and can be identified with the field

e~i"T P (2.30)

in the Liouville theory. They are precisely of the form (2.23). And indeed, perturbing by
these fields, one finds for n = 3 the Sine-Gordon lagrangian and for n = 2 the Izergin-
Korepin model [62].

The above analysis shows that the two perturbations @ » and ®; 3 can both be realized
as classical lagrangian field theories. This is not so for perturbations by the operator @, 4,
which does not have a classical analogue. However, note that interchanging @, and ®1;
corresponds to interchanging o and co_ in (2.29), or changing the role of r and s.
Therefore one conjectures [101}, that those perturbations are also connected to the A(ZQ)
lagrangian.

We briefly summarize the principle results concerning the case of real coupling Toda
field theory. They have been analyzed in great detail and the masses and couplings
-for the respective algebras have been calculated [18, 29]. Many results can be put in a
unified form [40, 53] using a group theoretic notion. For simplicity we specialize to the
simply-laced case. This also implies that we consider only non-twisted algebras.

The masses are given by diagonalizing the mass-matrix (2.25). Since this matrix is
proportional to the incidence-matrix of the corresponding Dynkin diagram, the masses
are given by

m; = Bz;ol sin T (2.31)

that is, they are proportional to the components of the Perron-Frobenius eigenvector z;
of the incidence matrix. h again denotes the Coxeter number of the corresponding finite
dimensional simple Lie algebra G.

The three point couplings (2.26) are given by the so-called area-rule, which reads as

46

Cijk = C"z‘jkTEAijk ) (2.32)
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where A;j; is the area of the triangle whose sides are formed by the masses m;, m; and
my and o5 = £1 is a sign factor. Going to higher order couplings n > 3 one finds that

they can be completely determined in terms of the masses and the three-point couplings.

3 The S—Matrix Approach

In the last section we have discussed massive field theories which are integrable both
classically as quantistically. Therefore one expects that they are also resolvable, that is
that the full quantum structure can be determined, especially the correlation functions.
Unfortunately up to now no straight forward method exists in order to achieve this goal.
Nevertheless several methods have been proposed all of which are still under development.
One approach is the bootstrap method. As a first step one evaluates the on—shell structure
of the theory, that is the mass spectrum and the S-matrix. As a second step one can
construct the form—factors and then finally the correlation functions.

The S matrix is introduced into quantum field theory through the Lehmann-Simanzik-
Zimmermann formulation [44, 61]. Suppose we have a massive quantum field theory.

There are two sets of creation and annihilation operators

a‘f’n(ﬂ)) a?n,e(la) 7 a’Zut(ﬁ)? a’:ut,e(ﬁ) 7 (31)

which describe the physical particles asymptotically for £ — —o0,t — oco. In this re-
gion they are supposed to be free. They satisfy canonical commutation relations. The

momentum p,, is parameterized in terms of the rapidity 3, defined as

po(B) =mcoshfB , pi(B)=msinhf . (3.2)

One also assumes that there exists a common vacuum for these operators

2ix(B)I0) = agu (B)I0) =0 . (3.3)

These asymptotic states should be connected by a unitary transformation, which is the

S-matriz,

a?n,el (181) e a’?n,en(ﬂﬂ)l()) =
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= 3 S (B BialBr - - Ba) bt e (B) Tt e, (Br)IO) - (3.4)

Further one requires locality, unitarity and crossing symmetry in the theory. These

properties restrict the form of the components of S(B1 ...0r, |61 .- Bn)-

For two dimensional integrable systems, which provide an infinite number of conser-
vation laws the requirements for a consistent scattering theory become severe constraints
on the S—matrix elements. One can determine the form of the eigenvalues of the conser-
vation laws. The first of them are Iy = po + P and I_; = pp — p1 being the integrals of
T(z) and T(%), with eigenvalues MeP and Me~? respectively, where M denotes the mass.
Higher conservation laws I, have eigenvaiues of the form M,e?® , M,e ?%, M, being a con-
stant depending on the spin s. Due to locality of I.,, their eigenvalues on multi-particle
states are the sums of one particle eigenvalues. The S—matrix must commute with I,, I,
and therefore eigenvalues of “in” and “out” states coincide. So if we have the rapidities
{B....B.} after scattering, they should satisfy the infinite set of equations

i et P M, = i e=PiM,

i=1 =1
for any conserved spin s. The only solution consistent with analyticity, is n = m and
even more, {f,...8.} = {B1...Bn}. Therefore the scattering is purely elastic.

Since the theory contains only massive particles, the interaction is expected to be

short range. This implies that if one splits the interaction region into domains such that

ca—zs| SR, |ta—zl >R, |m—a|>R, ez >R, &i=l...,mn

7

one can describe in each region the process as a two particle scattering while the other
particles behave approximately as free ones. Because the conservation laws must hold
after every interaction processes, the n-particle scattering matrix reduces to a product of
n(n —1)/2 two particle scattering one [116]. This property is called factorized scattering.

Factorized scattering implies that for calculating the full S—matrix it is sufficient to

know all two—particle S—matrix elements. They can be in general represented as
(0105805 (B) i, (B) Ty (B2)10) = 6(81 = B1)6(82 = B)SELG (B = B5) 5 (3:9)

with B; > B1, 85 > B and the¢; labeling possible internal degrees of freedom. Because of
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Lorenz invariance the elements 5’:}2 (B1 — Bs) depend only on the difference of rapidities,
Bij = Bi — B

An important consequence of factorized scattering is the Yang-Baxter equation. For,
consider a three particle scattering. This can be decomposed in two different ways into
two particle scattering processes, which should be equivalent. The result is the Yang-

Baxter equation,

€ ".n
> ij:; ) :116’9’(131 B3)Se2e3 (B2 — Bs)
61“6;"63”

= 3 S8 — B5)Sh3 (B~ Ba)SEL (B - Br) (3.6)

1t 1
El 6 63

which we have depicted in figure 3.1.

(3.7)

Figure 3.1: Graphical representation of the Yang—Baxter equation

For the description of the space of physical states it is useful to introduce the so—called
Zamolodchikov—Faddeev operators. Their existence is an axiom in this approach. One

assumes the existence of a physical vacuum |0) which is annihilated by operators Z<(B),

Z5(B)lo) =0

The physical states are created by

|26 (B1) -+ Zer (Bn)) = 25 (Br) - - Z2,(Ba)I0) (3.8)

The importance of these operators lies in their commutation relations, which are governed

by the S-matrix,

Z(B)22(B) = S3F(Br—B2)Z%(B)25(By)
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Z;(ﬁl)Zé;(ﬁz) = 5::1:2(/31-ﬁz)Z:;(ﬁz)Z:;(ﬁl) ) (3"9)
29825 (8) = Z5(B2)Se e (B — B2) 24 (1) + 285, 8(Br — B2)

Not all of the states (3.8) are independent. By exchanging the ordering of the el-
ements in a state (3.8) one acquires a factor (i.e. an S-matrix element), and hence
exchanged states are linearly dependent. For this one introduces ordered bases, which

can be identified with the ‘in’ and ‘out’ states:

1Ze, (B1) -« Zen(Bn)in = | Zet, (Bin) - - Zes, (Bir))
lZEL (/81) ce Zen)(ﬁn))om = ‘Zegl (IBil SR Zﬁin (:an» (3'10)
where ,31'1 < ﬁi2 < L. < ,3,'"

Another important property of these operators is their behaviour under the Poincare

group. They transform under Lorentz transformations L{c) and the translations T, as

Il

ULZ(B)UE = Z{f+a)

Ur,2.(B)Uz} = ePu(BW* 7 () (3.11)

In this approach one need to assume the existence of the Zamolodchikov—Faddeev
operators and their properties. For some models they can be constructed explicitly in

terms of the underlying symmetry algebra [108].

3.1 Analytic structure

So far we have examined only the constraints on the S-matrix amplitudes which de-
rive from integrability. Further requirements derive from general S—matrix properties as
unitarity and crossing symmetry.

Recall the analytic structure of the S—matrix in terms of the invariant energy squared
- u _ 9 . /612
s = 4p¥p, = 4m smh(—2~ . (3.12)

The matrix S:E:é is analytic in the complex s-plane, with two cuts along the real axes
5 < 0 and s > 4m?. This is pictured in fig.3.2, wherein dots indicate possible poles,
which correspond to bound states. The cut for s < 0 corresponds to the threshold in the

variable t = (p; — p4)?, which is kept fixed. This Riemann surface is composed of two
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Figure 3.2: Cuts and poles of the S matrix in the s plane

sheets and the two cuts can be replaced by a single one going from s = 0 to s = 4m?.

The transformation to the rapidity variable 3,

bt (3——2m + s(s-4m2)> 7

2m?

which is the inverse of (3.12), transforms the physical sheet of the s-plane into the strip
0 < Imf§ < w. The edges of the right and left cuts of the physical sheet get mapped
into the axes Im 60 = 0 and Im 6 = 7 respectively. The axes Imf = Ir ,l = —1,+2...

correspond to the edges of cuts of the other complex s plane sheets (see fig.3.3).

Im@

left cut

r > bound states

¢ right cut Red

Figure 3.3: Analytic structure of the S matrix in the 6-plane

If the S-matrix is real-analytic, i.e. ST(B) = S5(—pB), the unitarity requirement can

be written as

S (B)SG5(-B) = 6463 (3.13)

1 €2
Finally let us determine the implications of crossing symmetry. Regarding both s and ¢

as complex variables, one can reach the region ¢t > 4m? , s < 0 by analytic continuation,

which describes the ‘crossed’ scattering process. The corresponding transformation is



20 3 The S—Matrix Approach

s — 4m? — s or in terms of the rapidity, 8 — 17 — 3. This yields the crossing symmetry
relation

ran

SE2(B) = caeScirg(im — B (3.14)

€1€2

where c is the matrix of charge conjugation, with the property ¢ = 1.

3.2 Bound states and the bootstrap principle

A remarkable property of two dimensional integrable scattering theories is the bootstrap
equation. It allows to determine the full scattering matrix once the S—matrix element for
the fundamental particle is given.

Let us assume that our system is composed of only self-conjugate particles, that is
particles without any internal symmetry. In this case the S—matrix can be written as
S.» a,bindicating the kind of particles which scatter. Since we require spatial reflection
symmetry we obtain that Sap(8) = Spa(9), t-e. the order of the indices is irrelevant.

Assume that the S—matrix element Sap exhibits a pole § = 1uf,, i.e. the particles a
and b form some bound state ¢ at this value of the rapidity. Expressing the energy in

this channel in terms of the masses and the rapidity one finds the identity

m? = m? +m] + 2mamp cos gy, - (3.15)

c —

This relation allows to determine the mass of the bound state c.

Because of crossing symmetry one expects also a pole at 6 = 1%, in the S- matrix
element S, where @S, = m — ufy,. Further, if the S—matrix gives rise to the bound-state
process a,b — ¢, then by crossing symmetry also the processes bc — aand c,a — b
exist. The poles of the respective S_matrix elements are determined by the masses of the
particles. A particular useful observation is to note that the relation (3.15) corresponds
to the cosine law for a triangle. This implies that the fusion rapidities are given by the
angles formed by the triangle with sides of length mg, mp and m, (compare fig. 3.4).

Having determined the mass of the bound state, the next step is to determine the
S_matrix elements involving this new particle. This is possible because in the boot-

strap approach the bound states are themselves identified with particles appearing as

asymptotic states. Assume we know the scattering amplitudes 5,4 and Spg. Then the
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Figure 3.4: The mass triangle with the fusion angles

scattering amplitude Sy, ¢ being the particle corresponding to the pole in the amplitude
Sab, 15 given by

Sea(8) = Saa(8 + i12,)Spa(6 — i3l , (3.16)

which is called the bootstrap equation. This relation is shown in figure 3.5.

04
b, )
9 —
8, _ b
/
6, 6.

Figure 3.5: Graphical representation of the bootstrap equation

In principle this allows to start from a given amplitude S,; and calculate all amplitudes

of the particles appearing in our theory. For scalar particles the unitarity and crossing

relations read as
Sab(g) = Sab(iﬂ' - 9) 3 Sab(9)5a5(-9) =1 . (3,17)

There exists a general solution to these equations, namely

50 = T[22 1m2) 11y (3.18)

p tanh(g — i)
This means that without any input from a specific model, the constraints deriving from

integrability and the analytic structure have restricted the possible form of the S~matrix

to that given in (3.18). Therefore it is possible to construct consistent S—matrices by



22 4 Form—Factors

classifying all possible combinations of the type (3.18) which fulfill the axioms of the
bootstrap method. This analysis will be pursued in section 5.1.

In order to investigate systems with internal degrees of freedom, one needs to ‘under—
stand the degeneracy structure of the S—matrix elements. We postpone the discussion
on the bootstrap equations in this case to chapter 6, in which S—matrices for degenerate

particles will be discussed in detail.

4 Form-—Factors

The complete description of a quantum theory is given by the knowledge of the whole

set of correlation functions

(0i (1) Oc () = (0IT(Oiy(31) .- Oa(2a)IO) - (4.1)

For integrable two dimensional massive models a very efficient approach exists for the
computation of these functions. Take for example the two point function of some local

operator O and expand it as
dp;...dBx

(000 = 5 [ T 010 Za (8- ZrBellin
in<Z6n (ﬂn)s e Z€1 (:31)‘0(0)‘0) ’ (4‘2)

where the intermediate states are given by the bases of asymptotic states (see section
3). The matrix elements in this expansion can be calculated in closed form through the
form factor bootstrap method which we will discuss in this chapter. The metyhod is based
on the fact [104, 105] that the on—shell factorized scattering data are sufficient for the
construction of the matrix—elements in the expansion (4.2).

As a first step let us reduce the set of independent matrix elements and define the
form—factors. In the expansion of the n—point function, we encounter the general matrix

element,
st Zer (BL)s - B (BDIO(@) Zey (Br)s -+ -5 Zen(Br))in - (4.3)
This can be reduced to the corresponding matrix element of O(0). Since translations act

on the operator O as O as Ur,O(z U7 = O(z + y), one obtains
v Ty

it (B (Bl)s -+ Ze (BOIO(@)| 2, (Br)s - - -5 Zen (Br)in =
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exp {i ( Xn: pu(Bi) — ipu(ﬁi)) ‘E#} OUt<Z€£n(/B:)1)7 ey L (BIO0)Z¢, (B1); - - Zen(Br))in
i=m+1 =1
(4.4)

Form-factors are defined as
Fer (B, BilBrs -+, Bn) =

(Zet, (Brn)s -+ 5 Ze (B1)|O(0)| Ze, (Br)y - - -5 Zeo(Bn)) (4.5)

i.e. as the analytic continuation of the matrix elements (4.3) to all values of 3;. They are

graphically represented in fig.4.1. The analytic continuation is an important step, since

Figure 4.1: General matrix elements of the operator O(z) between asymptotic states

it allows the use of the properties of the Faddeev-Zamolodchikov operators, introduced
in section (3).
For example, using crossing symmetry one can reduce the set of independent form-

factors to those containing particles only on the right (see fig.4.2) by

Ferm (B Bi1BY o1 Br) = Fepcnet ot (Bry -y By Bl — iy Bl — i) . (4.6)

4.1 Form—factor equations

Let us discuss the properties that the form—factors must satisfy. Heuristically these equa-

tions are derived from the properties of the Faddeev- Zamolodchikov operators together
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Figure 4.2: Relation of general matrix elements to the form—factors

with crossing symmetry and CPT invariance [65, 107]. As we will see the only information
needed is the factorized scattering data.

For simplicity, we discuss these equations in the case of scalar self-conjugate asymp-
totic particle states. A consequence of the commutation relations (3.9) is the symmeizy

property,
Fel...e;e;+1...5n(1817 v 7/Biaﬁi+17 .. :Bn) =
Sc;e;.H (ﬁz - ﬂi-{—l) Fel...e;+1e;...en(181, v slgi—}-l)ﬂh .. ,Bn) . (47)

Figure 1.3 shows this situation: exchanging to particles they scatter and give the S-

matrix element in (4.7).

Figure 4.3: The symmetry property arises by crossing two asymptotic states. The large dot on the right

hand side stands for an S—matrix element

Consider the analytic continuation /1 — By + 2mi, which from the kinematical point
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of view brings back to the initial configuration, but changes the ordering of the particles
in the function Fy, ., (B1,---,8.). The result is shown in figure 4.4. One sees, that the
analytic continuation can be related to the original form-factor in an alternative way
by scattering all other particles. The consequence for the form—factor is the constraint

equation

B

Figure 4.4: Analytic continuation of the form—factor by By — 1 + 271

Félez...ﬁn(ﬁl + 27ri)ﬂ27 LA ,ﬂn) = FEg...Enel (ﬁ27 LIRS ')/Bnyﬁl) -
55152 56163 B Selcn Feleg...en(ﬁlyﬂ% € ce 51371) . . (48)

So we have obtained the first two form-factor equations, which are also known as “Wat-
son’s equations” [111].
A further constraint is imposed by relativistic invariance. Assume that the operator

O has spin s. Then

Fel...en(,gl +A,,,Bn+A) = eBAFel...en(;Bl)"'aﬁn) . (49)

The form-factor equations discussed so far cannect from-factors corresponding to a
fixed particle number. n and m particle form—factors are independent of each other up to
now. The final two constraint equations have a recursive structure and link form—factors
of different particle numbers. Their originate from the pole-structure of the form-factors.

If particles A;, A; form a bound state A, the corresponding two-particle scattering

amplitude exhibits a pole (see section 3.2), with the residue

—i lim (8 iuk)Sy(8) = (T5)° (4.10)

ﬁ’—-»iul..
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T%. is the three-particle on-shell vertex (see fig.4.5).
1] P

Figure 4.5: Residue of a bound state pole of the scattering amplitude

Corresponding to this bound state the form—factor exhibits a pole at the point §; —
B; = 1uf; with the residue (see fig. 4.6)

__7’ ﬁl}glﬁ(ﬂ’ - lB)FijL---En(IB, + iﬁgkng - 'ﬁ';kngla LR 71871—1) =
= I‘?ijel...en (,B),Bla s 7ﬁn—1) . (411)

All other binding rules can be derived with the help of equation (4.7).

Figure 4.6: Recursion relation of the form factor corresponding to a bound state pole

The other type of poles has a kinematical origin and corresponds to zero—angle scat-

tering. They appear in the form-factors where particles of the same kind are involved.
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Their origin can be understood by the following argument [113]. Examine the form—factor

Feeel...en(ﬁl—*_iW):B::Bl""):Bn) H (4‘12)

which we have depicted in figure 4.7 a). By (4.8) the same graph can be represented by

the expression
Foo) o ene(ByB1y -y Bn, B —am) . (4.13)

Now examine these two expressions in the limit where the rapidities § and B’ coincide.

The two limit processes describe two different kinematical regions and are shown in figure

4.7 b). Their difference for § — 0
Feeel...en(,Bl + iﬂ' - iﬁ,ﬁ,ﬂl) s e 7,671) - Feel...ene(ﬁs ﬁls s 9,Bn7,3, - 7:71— + 15)

o= (1 T Sul8 - ﬁ.-)) Foe(Brreosf) (4.14)

indicates a simple pole of (4.12) at ' = B which gives rise to the residue-equation

—i i (8 = ) Faycon (B + 57,8, By -, ) =

(1 — z=ﬁ1 See; (B — ,8,-)) Foe(B1y.-,B8a) - (4.15)

In [104, 105] it was shown that the operators defined by the matrix elements (4.3)
satisfy proper locality relations provided that the form-—factors satisfy the properties
(4.6)-(4.9) and the residue equations (4.15) and (4.11).

4.2 Parameterization of the n—particle form—factor

In order to find solutions for the above discussed equations one needs to find a convenient
parametrization of the form—factors. A solutﬁoﬁ process which has shown to be very useful
[54, 65, 119], is to start with the calculation of the two—particle form—factor and then to

parameterize the n—particle form—factor in terms of it. Let us discuss these steps in more

detail.
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Figure 4.7: Recursion relation for the kinematical poles

4 Form-Factors
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The Watson’s equations for n = 2 read as

Fu(8) = Sup(0)Fur(—8) ,  Fulim — 8) = Fu(im +6) . (4.16)

This set of equations can be solved with the help of the following observation [65]. If the

S-matrix element S,; can be written in an integral representation of the form

S.5(8) = exp {fom %ff( ) sinh (fﬁ) } , (4.17)

then a solution of (4.16) is given by

sin? (2=
( ) } (4.18)

Fuo(0) = exp { [ Z =

Note that multiplying the expression (4.18) by an arbitrary function of cosh 8 we find
another solution of equations (4.16). In order to determine the final form of Fy;(6) it is
necessary to consider a specific theory and to know the physical nature of the operator
O. In chapter 8 we will discuss extensively this problem analyzing a specific theory, the
Sinh-Gordon model.

In order to select one specific solution we define the minimal two particle form—factor
Fmin as the solution of equations (4.16) with the additional property that it is analytic
in 0 < ImfB < 7 and has no zeros in the same range.

For the discussion of the structure of the n-particle form—factors, we choose for sim-
plicity the form~factor F; _; where the indices indicate that we discuss the form—factor
corresponding to the fundamental particle of the considered theory. This is just a techni-
cal simplification since other form—factors can be treated in a similar way. In the following
we drop the indices referring to the form—factor as F;,. In general the form—factor can be

parameterized as

Fo(61,-..,0n) = Kn(bs,...,0,) [ F™"(63;) (4.19)

i<g

Then the function K, needs to satisfy Watson’s equations (4.7) and (4.8) with an S-
matrix factor S = 1. Therefore it is a completely symmetric, 2wi-periodic function of 5;.
It must contain all expected kinematical and bound state poles. Finally it will contain

the information on the operator O.
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Since we know the possible scattering processes we can split the function K, further
in order to determine the pole structure. The kinematical poles are expected at the
rapidity values 8; — 6; + iw. These poles can be generated by the completely symmetric
function [J;;(cosh %,Bij)”l, satisfying the periodicity requirement. Assume further that
the S—matrix element S;; exhibits poles at 6 = iabnr for I =1,...,p. Then according to

(4.11) also the form—factor exhibit poles which can be generated by the function

11

i<j

1
sinh %(6,-]- — 1oyr) sinh %(6,5 +ioym)

for each pole. The final parameterization of the n-particle form-factor reads as
Fin(6;;)
cosh %ﬂ,’j Hle sinh %(9,']' — z'anr) sinh %(9,",’ -+ ianr)
(4.20)

Fn(ela . .,Hn) = Qn(01’ se 7671)H

i<g

Q. is now a symmetric function free of singularities. A similar parameterization is possible
also for the other form-factors Fy, .., but is more complicated since the terms in the
product [];; will depend on the corresponding indices.

The form factor equations have been reduced through this parameterization to a set

of coupled recursive relations for @,. It has been shown [25] that the most general form

for @), is

_ ! B
Qn(,Bl,---,,Bn) — (H?=1 eﬁi)N,P( 10t ) 3

with P a polynomial. In this way one obtains polynomial recursive equations which in
certain cases can be solved explicitly.

In this chapter we discussed only the defining equations for the form- factors and
some of their general properties. This is due to the fact that the behaviour of the form—
factors will depend on the chosen theory and on the operator under investigation. In
chapter 8 we will solve explicitely the form—factor equations for the Sinh~Gordon model

and discuss some physical implications.
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Part Il

S-Matrix Bootstrap

“Bootstrap”~method means literally the determination of the S—matrix by itself, without
additional information. In fact, in chaptef 3 we have discussed the equations correspond-
ing to to crossing invariance, unitarity, integrability and bound states, which allow the
explicit determination of the full S—matrix. In this part we want to discuss some appli-
cations of this method, show to what extend it is self-contained and use it to determine
the on—shell scattering data of several models of perturbed conformal field theory.

The S-matrix takes a particular simple form if the spectrum consists only of scalar
particles. We devote chapter 5 to this class of models. For that case explicit calculations
are rather simple and one can analyze in detail the consequences of the bootstrap method.

Unfortunately the set of diagonal S-matrices is rather limited. For this in general
one needs also to consider the degeneracy structure of the particles. For example most
perturbed minimal models fall into this class of non—diagonal S—matrices. In chapter 6
we discuss the possible description of such systems. We will study how the bootstrap

equations change and how they can be applied in this more general case.

5 Diagonal S-Matrices

Even though the diagonal S-matrices are a rather limited set, they are an ideal play-
ground in order to examine the bootstrap—ideas. In section 5.1 we present our results
[74] on an axiomatic bootstrap approach. This means that we take the constraints on
the S—matrix as a set of axioms and try to classify all consistent solutions of it.

In section 5.2 we review some results on Toda field theories. Real coupled theories
exhibit a spectrum of scalar particles (see section 2.4) and the S—matrices can be written
in a unified form using a group theoretic language. In order to describe S—matrices
of imaginary coupled theories we introduce the basic notions of quantum group. We

discuss in which cases these theories become scalar S-matrices through the mechanism
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of quantum group reduction.

One class of such quantum group reduced models are the perturbed minimal models
Msonis + ®12. In section 5.3 we give our construction of the S—matrices for these
theories [72, 71] and discuss their features. We show that in order to explain their
analytic structure the bootstrap principle has to be generalized.

Finally in section 5.4 we discuss a peculiar perturbed minimal model Mjyg + @14
whose S—matrix we have constructed in [71]. This perturbation is especially interesting,

since it does not fall into the class of general perturbations ®; 2, ®2,1 and ®q 3.

5.1 Axiomatic bootstrap approach

We saw in section 3.2, that a particular simple class of S—matrices is given by those
massive integrable systems which are parity invariant and have no degeneracy in the
mass spectrum. In these cases the general solution of unitarity and crossing invariance

(3.17) conditions for the two-body scattering is given by

50 = I oG = T £O) (5.1

€Ny z€Xqp

The sets of positive {z}’s or {1 — z}’s in (5.1) are related to the position of the poles in
the scattering amplitudes Sgp, i.e. they signal possible bound states in this channel.

An interesting open problem is the classification of all consistent sets X satisfying the
bootstrap equations. Such a classification would give also a list of all possible consitent
integrable massive field theories with a spectrum consisting of scalar particles. Further
interesting conjectures are related to this. There is a hope that all consistent S-matrices
can be related to some Toda theories. No counter examples are known at this time. But
at the other hand it is not even possible to prove, that all o all consistent bootstrap
systems correspond to some integrable field theory. A general answer to these questions
is not available at this time, but as we will show, a first step in this direction cn be done
by classifying the consistent bootstrap systems,

Let us analyze systems of the form (5.1). Starting from the scattering amplitude 51
of the lightest particle, one can compute the S—matrices of the bound states with higher

mass using iteratively the bootstrap equation (3.16). But not all initial S11 give rise to
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a closed bootstrap process. Furthermore, since in principle we have the possibility to
choose for each function f, the pole at § = iwz or that at § = im(1l — z) in order to
continue the bootstrap, at each step of the process we can have ramification points. The
natural structure associated to egs. (3.16) is that of a schematic tree with the node of
each set of branches representing an S-matrix reached at that stage of iteration and the
branches from each node are the possible new singularities one can use o continue the

process (fig.5.1).

Figure 5.1: The “bootstrap tree”

The problem is to select Si; and then, out of all possible trees arising from it, only
those ones, which give rise to a consistent set of S-matrices. The precise requirements of
consistency will be formulated below. One can easily convince oneself that many initial
choices for S;; can be immediately discarded because the result of applying egs. (3.16)
will not be a function of the form (5.1), i.e. eqs. (3.16) map outside the space F. But
it remains to investigate those ones which give rise to a set of functions belonging to the
functional space F.

One of the fundamental questions is whether the bootstrap tree closes or will grow
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to include an infinite number of particles. For instance, it seems possible to generate
easily an infinite path in the following way. Let us take S;; = f§_e (¢ > 0) and choose
the singularity at 6 = im(3 — €) to start with. This gives a bound state A, with mass
equal to m, = 2cosw(3 — £)my and, using (3.16), S22 = f§+26(f%_6)2. Then, choosing
as a new singularity the pole at 6 = im(: + 2¢) we find a new bound state A; with mass
mg = 2cos TF(% + €) my. Proceeding in this way and taking e arbitrarily small, it seems
that we have generated a bootstrap with infinitely many particles, a subset of those with
the unbounded masses m, ~ 3" 1/2m,. Actually this is not a consistent system (see
below) and the aim of this paper is to select only those paths in the bootstrap tfee which
give rise to a consistent set of S-matrices. After the discussion of the requirements a
consistent set of S-matrices has to satisfy, we analyze the bootstrap tree generated by
511 = fz, t.e. with only one singularity. We conclude that the only consistent solution is
obtained when ¢ = 2w/(2n + 1), n = 1,2,.... The spectrum is that of the breathers of
the sine-Gordon model, my = 2msin kx/(2n + 1), k = 1,...n. For all other values of z,
the S-matrices obtained by the bootstrap equations (3.16) present higher oraer poles not
explained only referring to the particle content of the theory or they are not compatible
with the existence of higher conserved charges. In the first case the theory is not complete
whereas in the latter case we are not allowed to use elasticity and factorization to solve
the scattering problem. Later on we present our investigation of the bootstrap system
defined by a Sy; with higher number of f, terms and we comment our results.

The bootstrap systems are severely constrained by a set of consistency equations
and by the requirement that the higher order singularities find explanation in terms of
multiple re-scattering processes. In this section we discuss the role of the comsistency
" equations and in the next one we recall the basic features of the higher order poles. Let
us assume that in the theories under consideration there exist a set of integrals of motion

@, where s indicates the spin. The operators @, act diagonally on the asymptotic states
O | Auslbe) o As(Bu) > = 377 €5 | Ag(00) - Aur(6) > - (5:2)
=1

The eigenvalues 4% are constants which depend on particle identity and they satisfy a

linear system of consistency equations which involve the resonance angles ul, and the
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spins s [115]

a

,.Ys ei"agc + /-)/s eis—dgc = ’Y: . (5'3)

These homogeneous equations are always satisfied by 42 = 0 (Va,s) but in this case
(5.2) implies the absence of any operator @,. In this case we cannot any longer use
the factorization property of the S-matrix to solve the scattering problem. Suppose that
there are nontrivial solutions of (5.3). Normalizing the nonzero eigenvalues of the lightest
particle 4; to 1, it is easy to show by induction that all other eigenvalues are real and

eqs. (5.3) can be written in terms of two equations

sin(sup.)

7. = (5.4)

sin (s )73

ac

and

(49)* = (42)° + (10)° + 2957, cos(sugy) - (5.5)
Eq. (5.4) is particularly useful because in order to have a non zero value for 4% and +°
the above ratio of sines should be independent of any bound state A appearing in the
channel | A;Ay >. Therefore, knowing the resonance angle of one bound state in this
channel we can use this equation (a) to correctly identify the location of the other ones or
(b) to prove that it is not possible to have higher order conserved charges compatible with
the bootstrap. Simple examples clarify the above consideration. Consider two bootstrap

systems defined by the following S;; functions:

S = "‘f%fg . (5-6)

We identify the poles at § = i7/9 and 157 /9 with two new bound states m. and
ms. Applying (3.16) we can compute

Siz=fifufufy . (5.7)

In this amplitude the pole at 6 = 177 /18 corresponds to the particle A;. This
angle is u}, and therefore fixes the ratios (5.4) and from table 5.1 we see that we
can identify the poles at § = 17/6 and 6§ = il17 /18 as due to other bound states.
The conserved spins are s = 1,5,7,9,11,13,17, mod (18).
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Sn=-fufr . (5.8)

Let us apply the bootstrap egs. (3.16) using for instance u}; = 7/7. We obtain
Swe=fafifufs . (5.9)

In this amplitude the pole at § = 113w/14 is due to the particle A; and this angle
fixes the ratios 47/y;. But from table 5.2 we see that there is no other pole in
this amplitude which gives the same value of these ratios for s = 1,3,...35. Hence
the bootstrap system defined by (5.8) is not supported by the existence of higher
additional charges and is not a comsistent model. The same result is obtained

starting by any other possible u?,.

1 1.970 1.970 1.970 1.970 1.970
3 1.732 1.732 0.303 | —0.866 | 0.647
5 1.286 1.286 | —1.177| 1.286 | —0.920
7 0.684 0.684 2.159 0.684 | —0.989
9 0 0 —-1.219 0 ~2.888

11 —0.684 | —0.684 | 0.850 | —0.684 | —0.258
13| —1.286 | —1.286 | 0.333 | —1.286 | 1.040
15| —1.732 | —-1.732 | 10.190 | 0.866 0.068
17| —1.970 | —1.970 | —0.507 | —1.970 | 3.603

Table 5.1: Ratio of v2/v}, s=1,...17, calculated for the poles occurring in the amplitude 5;, for the

Bootstrap starting with S11 = -—f_;_ f%. The first column contains the ratios for the identified pole u},.

In order to have a consistent set of elastic S-matrices, one has also to analyze the
additional constraints related to the higher order singularities introduced by the bootstrap
equations. The basic idea is due to Coleman and Thun [31] and has been generalized

in [18, 29]. In two dimensions, a box diagram corresponding to multiparticle scattering
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1 1.950 1.950 1.950 1.950 1.950 1.950 1.950
3 1.564 1.564 | —0.344 | 1.325 | —0.841 1.812 0.836
5 0.868 0.868 | —0.705 | 0.284 1.204 1.547 —0.66
7 0 0 —3.343 | —0.821 | 0.450 1.171 —1.41
9 | —0.868 | —0.868 | 0.906 | —1.582 | 0.142 0.710 —4.28
11} —1.564 | —1.b64 { —0.296 | 0.087 | —1.086 0.195 —1.08

13| —1.950 | —1.950 { 6.053 | —1.857 | —1.438 | —0.340 | 0.534
15| —1.950 | —1.950 | —1.122 | —0.855 | 0.961 —0.862 | 1.184
17| —1.664 | —1.564 | 0.905 0.289 | —2.275 | —1.340 | —5.405
19 | —0.868 | —0.868 | —1.064 | 1.225 | —1.569 | —1.765 | 1.498
21 0 0 0.840 1.441 0.659 | —2.194 | —0.423
23| 0.868 0.868 | —1.039 | 3.016 | —0.792 | —11.529 | —1.069
25| 1.564 1.564 2.395 1.458 0.078 —1.5648 | 1.136
274 1.950 1.950 | —0.002| 0.281 | —0.416 | —1.596 | —2.353
29| 1.950 1.950 0.731 | —0.798 | 1.841 —1.381 | 0.315
31 ] 1.564 1.564 | —2.052 | —1.388 | 1.527 | —1.023 | 1.013
33| 0.868 0.868 | —1.410 0.088 | —1.009 | —0.568 | —0.429
35 0 0 —0.118 | —2.271 | 2.518 —0.052 | 5.248

Table 5.2: Ratio of v? v}, s=1,...35, calculated for the poles occurring in the amplitude S)2 calculated
for the Bootstrap starting with S1; = —f% f%. The first column contains the ratios for the identified pole

1
Uqq.
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is singular if it can be drawn as a geometrical figure with all internal and external lines

on-shell (fig.5.2).

Figure 5.2: Double scattering process responsible for higher order pole singularities in the S-matrix

This is equivalent to evaluating the discontinuity of this graph by the Cutkosky rules:
the point interactions correspond to S-matrix elements and the lines to the on-mass shell

propagators. The higher order poles are located at

Oap = 21 —us, —up, . (5.10)

If S, is regular at this value of the rapidity, we obtain a double pole, otherwise if S is
itself singular at 6,5, we get a higher order singularity. Of course this explanation only

works if we can actually draw such a graph, s.e. if
ul 4wl <7 . (5.11)

If this condition does not hold, it is not possible to explain the appearance of higher order
poles in an S-matrix theory.

In particular, as was noticed in [18], the scattering amplitude Sy, of the lightest
particle cannot have higher order poles because the resonance angle of two heavy particles
with the lightest one is greater than 27 /3 and therefore it is impossible to draw a figure
like fig.5.2 with the particle A; on all four external legs and the internal ones on-shell.

Let us consider a bootstrap system with

Our approach consists in applying egs.(3.16) as far as there are singularities in the func-

tions S, identifiable as bound states. We prove [74] that there is only one possible way
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to implement the bootstrap which satisfies the consistency equations (5.4). We will find
that the spectrum is given by

ke
my = 2msin —-gz , (5.13)
where m is an arbitrary normalization constant. Moreover, if we also require a consistent
explanation of the higher order poles, we have to put the mass of the lightest particle
Asni1 produced by the bootstrap equal to zero, and decouple this particle from the mas-
sive sector of the theory. This is equivalent to have the following quantization condition

for =

2
2n 41

Maont1 — 0, - T = (5.14)

In order to get familiar how this works, let us first study the cases when z is close to 2/3.

a) ¢ > 2/3. In this case the singularity at § = iwz corresponds to a bound state 4,

with mass mq, less than m,

ma T
— =2cos — . 9.15
o cos — (5.15)

and therefore contradicts the assumption that A; was the lightest particle. This fact alone
is not necessarily a drawback since we were aware that the bootstrap allows computing
scattering amplitudes choosing any arbitrary particle as starting point. Therefore the
only possible interpretation would be that our initial identification of the lightest particle

was wrong. But the real difficulty comes when we compute

522 - er(f:r)z . (516)

because we see that in this amplitude (which is now that of the lightest particle) appears
a double pole which cannot occur. Hence there is no consistent set of S-matrices starting
from Sy; = fr when z > 2/3.

b) z slightly less than 2/3, z = (2/3 —¢), (¢ — 0). In this case the bootstrap produces
three bound states with masses (fig.5.3)

k
my = 2msin —g—r—, k=1,2,3 (5.17)
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and S-matrices

Sllzf:r 512:f§2_‘f% 513:fzf2:r

(5.18)
522 = f2::(f1:)2 523 - féi)ﬁf%(fz_z)z 533 = f3::(f:cf2:z:)2

As in case a), we obtain a particle A; with mass m3 less than m;. Ss3 contains as well

m3 my Mo m

Figure 5.3: Mass spectrum generated by 511 = fr with z close to 27 /3

unwanted double poles. The only way to make this system consistent is to push mz — 0

and correspondingly decouple A3 from the rest of the theory. In this limit all S-matrices

involving Aj go to the identity and the other particle state A, becomes identical to A;.

The initial three-particle system collapses to that one with only one particle state and
S-matrix

Su = f2(0) . (5.19)

This corresponds to the S-matrix of the Yang-Lee model [24], i.e. Mys + @13 |

Let us consider now the general case and let us prove that there exists only one path

in the bootstrap tree which satisfies the consistency equations. The proof is by induction

[74]. Starting with Si; = fz, we obtain a new bound state whose mass can be written as

9 i
My _ o o T _ msinz (5.20)
mi 2 2msin 7

where m is an arbitrary mass scale. We can compute 512 by applying (3.16)
T

2

512:511(9—7:325)511(9+i )= fafs - (5.21)

We get a function with four singularities: those at 6 = %iwa: and § = (1 — z/2)x, from
the fz term, and those at 6 = %iwm and 6 = i(1 — %(IZ)TL’ from the f_:gz; term. Among

these, that one at § = i(1 — z/2)w corresponds to the bound state A;. Therefore we
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have correctly identified this angle as the resonance angle due to a bound state. We can
now apply (5.4) in order to decide which of the two poles in fgi_:g corresponds to a new
bound state A;. The answer turns out to be that one at § = g‘-iTra:. This means that we

cannot use the other singularity at § = (1 — —3’2-95)71' to implement further the bootstrap if

we require a non zero solution of the consistency equations but we are obliged to follow

the path defined by the resonance angle u3, = %mz:. The mass of the new particle is
my _ msin E (5.22)
s 2msin 5F
We can compute
513 - 512(9 - 2‘7153)511(9 + 'Lﬁ?l'S) - f:r:f’Zx . (523)

Repeating here the same reasoning of before, we can identify the pole at § = 7(1 — z)~ as
u?, and in this way fix the ratio of the conserved quantities 7, /s in (5.4). The singularity

due to a new bound state 4, is that at § = uj; = :2wz. The mass of this new bound

state is
my _ 2m sin.(2zrrxa:) (5.24)
my 2msin
The process can be continued up to the particle A,,,1 where n is defined by
< 5.25) -
3 2ntl (5:25)

and has to be completed by the computation of the remaining S-matrices. The mass

spectrum is given by

k
mkzzmsin—;if, k=1,2,...2n+1 . (5.26)

The particle Aj,yq is the lightest one and the corresponding S-matrix element has a
plethora of double poles. We can get a consistent set of S-matrices only if we put
Man+1 = 0 and decouple this particle from the theory. In this limit the remaining 2n

particles become identical in couple and we end up with a n-particle system with generic

S-matrix [51, 102]
min(a,b)—1
Sap = floztifare ] (faz—b+1+1w=)2 - (5.27)
k=1 *

2nfl  2n
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(a,b=1,2,...n). All double poles have now an explanation in terms of multiscattering

processes and the conserved spins are all odd numbers but multiple of 2n + 1
s=1,3,...,2n—1,2n+3,...,4n+1 (mod 4n+2) . (5.28)

The price to be paid is that these S-matrices are not one-particle unitary and indeed
correspond to the @, 3 deformation of the non-unitary minimal models Mj 2n43 [24, 51,
102].

The problem to find consistent sets of S-matrices starting with a S;; with more
than one singularity gets more complicated. In order to investigate the bootstrap tree
generated by a generic S1; we have designed a computer algorithm which spans all possible
paths and selects only those ones which satisfy our requirements of consistency. With
the help of this algorithm, which includes also one-particle unitarity as an additional
requirement, we found [74] analyzing a large set of initial S-matrix elements (~ 10%)

with two to five factors f; the only two systems:

S11 = —f.éfg ; (5.29)

which corresponds to the minimal S-matrix of the E7 system [50, 29] and

Su=fif:fr (5.30)

which corresponds to the minimal S-matrix of the Eg system [115, 50]. In the case of Si;
with four and five functions f., in the range we analyzed, the bootstrap does not give
rise to any consistent system.

Let us summerize the tesults of this section. We have presented our investigations
on the classification of the non-degenerate S-matrices in two dimensions. Our analysis is
based on the bootstrap equations (3.16) and consistency requirements alone. In the case
of Sy, with one function, Si1 = fz, the only consistent bootstrap system is obtained when
z = 2/(2n+1). The cases of consistent S-matrices with higher number of singularities fall
in the E; (two f, functions in S11) and Eg (three f, functions in Si;) systems. We have
not found any example which is not related to the Dynkin diagrams and therefore to Toda
field theories. This gives additional support to the hypothesis that the only consistent

sets of non-degenerate S-matrices reduce to those constructed on the Lie algebras [29, 89].
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5.2 S-matrices for ATEFT

In section 2.4 we have analyzed the classical properties of ATFT. We saw, that the models
behave extremely different, depending on whether the coupling constant is chosen real or
imaginary. Much more is known for real coupling theories. They exhibit a spectrum of
only scalar particles and this reduces the possible form of the S—-matrices to (5.1). For
all the real coupled ATFT the S-matrices have been conjectured. For the simply-laced
theories one can write down the S-matrices and their pole-structure in a unified way,
relating them to the properties of the root system of the corresponding Lie—algebra. For
non—simply laced algebras such a unified scheme is still missing and the S—-matrices have
a more complicated structure.

On the other hand our main interest are imaginary coupled ATFT. All of them have
a soliton—spectrum and therefore also the S—-matrix elements of the fundamental particle
are degenerate. But they can have scalar bound states, called breathers. For rational
values of the coupling constant the model can be reduced in order to describe deformed
.minimal models. For certain special values the solitons drop out of the physical spectrum
under this reduction mechanism and only scalar particles remain. In this way we again

obtain S-matrices of a purely diagonal structure.

5.2.1 Real coupled ATFT

For real coupled ATFT the particle spectrum comnsists of only scalar particles. Let us
first discuss the simply-laced case. A special feature allows a simple determination of
the S—matrix. This is that the ratios of the masses remain unchanged after quantization
[5, 18, 29]. But because of eq. (3.15) the masses determine the possible fusion angles
(see fig.3.4), and therefore the poles of the S—matrix. Requiring further the existence of
conservation laws it is possible to construct the S—matrix.

Before discussing the general case, let us analyze a simple example. Consider the

algebra AQ). The corresponding Dynkin-diagram is A, and the masses of the

and my = 2m sin %’—T-, my being the antiparticle of m,.

s

particles (2.31) are m; = 2msin §

2%

Now the fusion angle between the particles is u3; = 2F, which must correspond to a pole

of the S—matrix. Therefore we can conjecture the S—matrix as S;; = f% It turns out that
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this is not the full S—matrix but only it’s minimal part. The additional factors depend
on the coupling constant and do not introduce additional poles. They are determined by

perturbative calculations [18, 29]. The full S—-matrix finally takes the form

S = f%fbf.__z__ 3

3+b

where b is the coupling constant depending factor given by

b(B) = -2—% (1 + g) o (5.31)

The above analysis is only schematic and incomplete. The conserved charges, boot-
strap equations, higher pole structure, etc. must be checked, in order to confirm that
the proposed S-matrix is consistent. But generalizing the above method all simply-laced
S_matrices have been constructed in a case by case study [18, 29]. Using the underlying
algebra they can be expressed in a unified way. Take the Dynkin—diagram of the cor-
responding finite dimensional Lie-algebra of the ATFT which you want to examine and
color the nodes alternatingly. Associate to this bicoloring a value ¢(i) = &1, Further

introduce the following building blocks for the S-matrix:

{m}_[ml(; (2] = <z4+1l><z—1>g
T Tz O <z Hl—b>g<z—1+b>y
o1 1T
and < ¢ >p= sinh ?2-(9 + T)

Then the S—matrix can be written in general as [40]

558)= T {2q _ —(—)—f—@} e (5.32)

g=1 2 o
where 7; are the simple roots and A; denote the fundamental weights of the algebra.
This expression satisfies the bootstrap rules and all consistency requirements de-
manded for a scattering matrix [53]. Further it is consistent with perturbative calcula-
tions [19].
Non-simply laced theories are less explored. The fundamental problem is that the
masses renormalize, that is perturbative calculations show that their ratios change with

the coupling constant. Therefore in general it is also impossible to find a solution to
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the S—matrix constraint equations which is independent of the coupling constant. In
other words no minimal S-matriz exists for these theories. Nevertheless recently the

S-matrices have been proposed [37], and checked to be consistent [35].

5.2.2 Imaginary coupled ATFT

Because of their soliton spectrum, imaginary coupled ATFT are much more difficult to
describe. In section 3 we saw that the main requirement is that the S—matrix must satisfy
the Yang-Baxter equation (3.6) additionally to unitarity and crossing constraints. Now
a large class of Yang-Baxter algebras is given by the affine quantum groups. It is an
obvious guess, that the S-matrix of an ATFT corresponding to an algebra G might have

~

the same degeneracy structure as the R—matrix of the quantum—group U,(G), that is
Sae2(8) = So(B)Ree(8)

The factor Sy(/) is necessary in order to guarantee unitarity and crossing symmetry.
This ansatz was confirmed in the case of the Sine-Gordon model. There the S-matrix
was computed by different means [116] and identified with the R-matrix of Uq(Agl)).

Since we will treat with these kind of models in following sections, we want to take the
opportunity to introduce the basic notions on quantum groups. Since we do not have the
space for a complete exposition, we refer the reader to the literature [43, 48, 66, 83, 110].

The algebra U,(G) can be seen as a deformation of a Lie algebra, in which a complex

deformation parameter ¢ has been introduced. The deformed commutation relations are

given by
Hi,H- :0 3 klk:kk, y
[ X J] . i] i]ﬂ:i N (5.33)
[H:, XF| = e X, kXF =g Xk
(X, X5 ] = 6lH],
1—aij; n 1_'(1‘1'_7' - 1—-ai;—n o RN . ,
> (1) (xF) T xF(xF) =0 i,
n==0 n
g
with
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n [nlgn — 1g...[n —m + 1]
m [m]q[m - 1]q con [1]q ’

q

I

a;; is the Cartan matrix of the corresponding simple Lie Algebra, and with the abbrevi-
ations

51-—
2
J

7

In the limit ¢ — 1, the commutation relations (5.33) go over into those of the Lie
algebra G. This algebra can be given a Hopf algebra structure by introducing the so-

called co-product
oo
AH)=H;®1l+10H , AXH)=XFf®q? +¢ 70X, (5.34)

The co—product must satisfy certain consistency rules. They are expressed in terms of

an element R, which is an invertible element of the algebra and satisfies

(A®id)R = RisRs ,
(Zd® A)R = R13R12 3 - (535)
(coA)h = R(AR)R™', Yhe§G .

(o is the permutation map of two spaces). The R-matrix is an object acting in the tensor-
space, l.e. R =73, RM) @ R®, The first two equations in (5.35) give as a consequence the

Yang-Baxter equation

RipRi3Ros = RogRizRaz - (5.36)

For example the R—matrix for U,(sl(2)) is given by [66]

1._. n{n-—1
) ik q ) (P Xt @ ¥ X g5 (5.37)

TL

or explicitly for the fundamental representation

g0 0 0
L 01 —q 1 0

R=gq2 - 9 1q . (5.38)
0 0 0 q
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If we represent the R—matrix as

, (5.39)

, (5.40)

we can draw now a similar picture for the Yang-Baxter equation as in (3.1).
There is another important representation of quantum groups, which we will need. It
is the so—called shadow-world representation. In that case the R-matrix is substituted

by the quantum 67-symbols,

— (_1)]13 +i2—3-01 qu-{—-le —Cjy3 7 Ci1n X
j3 jl j13
. . (5.41)
Je ] T2 .

a b e
{ } N \/[2e+1][2f+1] (—1)ctd+2emab o

They are given as [66)]

d ¢ f

A(abe)A(aqcf)A(dce)A(dbf) YL (=1 [z + 1] X (5.42)
(z—a—b—ellz—a—c—fllz—b—d—flllz—d—c—¢]l x
a+btctd—2z|fa+d+etrf—z)btectetf—zD)7"
wherein we use the conventions that [0]! = 1 and the sum runs only over z such that no

factor [z] is less than zero. Further,

——a+b+c]![a——b—{—c]![a—}—b——c]!)%

_ |
Alabe) = ( la+b+c+1]!
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Note that now the indices are placed in the spaces between the lines. The transition to
this representation has a correspondence in statistical models. It is the analogue of the
change from vertex-models to solid on solid (SOS) models.

Finally let us discuss affine quantum groups. Their R-matrices contain an additional
parameter, called the spectral parameter. Again we just give two basic examples. For the

fundamental representation of AS&), the R-matrix becomes
R(z,q) = qfeRys — ¢ 7z 'Ry . (5.43)

Or for example the R matrix for A(Zz) in the fundamental representation can be written

as

R(z) = (27" = 1)¢*Rus(q) + (1 —2)a *Ry (@) + ¢ *(¢" ~ (@ + DI, (544)

with R, being the R matrix of the spin 1 representation of U,(s1(2)). These spectral
depending R-matrices satisfy now the Yang- Baxter equation (3.6), and can therefore be

used to construct S-matrices for degenerate particles.

5.2.3 Application to Sine-Gordon theory

For the Sine-Gordon model the mapping into the S-matrix is [13, 97, 102]

2

S(B) = So(B)R (iB = elfé,q = -—e*gf_) ) (5.45)

where R(z,q)is given by (5.43). The scalar factor S, is obtained by requiring unitarity
(3.13) and crossing symmetry (3.14). Since the R-matrix (5.43) satisfies

R(z,q)R(z ™", q) = (z7'g—=zg )gz —z7'q"") . (5.46)

We require

1

50(23)50(33—1) = (m—-lq _ mq*l)(qm — Cc-lq—l)

R(z,q) is already crossing invariant, and therefore it must be also S¢ ,

So(e) = Sal—3) -
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The minimal solution to these equations is -

1
sinh (8 — 17) .

So(ﬁ) =

B St JL1G sk ks f
ioo DCEE +1 = )T + £ + )0

which has an integral representation [102]

oo sin kA3 sinh( =)k
So(B) = L o (——z/; fsinh(75) dk) . (5.48)

7 e 2kw 27 13
eI CE+ T+ %)
= B\TY(2kx 4 2z _ 18 ’
1N +E )

2kw
Zm
£

= 5.47
i (547

sinh 2(8 k cosh Z£ sinh &

Let us analyze the bound states of this fundamental particle. Analyzing the poles of
Sy we find that they are located at

B=ir—iné , n>0,

B =1n¢ , n=>0,

in the physical strip. Choosing 8 = iw —inf as s channel pole we find that the R matrix
degenerates into a 1 dimensional projector at these points. This can be interpreted as
teh creation of scalar particles at those rapidity values. The S—matrix of the lightest one
is

sinh(% - % + i;—"—)sinh(g + %) _
k(3 + E )l %)

Recall that this was exactly the type of S—matrices we investigated in section 5.1, just

Sblbl = ff . (549)

that there we had no underlying solitons and the parameter ¢ turned out to be quantized.
In order to make contact with these results we need to analyze the theory for rational
coupling constants.

Let us change to the shadow world representation. For that we substitute in
R(ﬂ:, Q) = mq%RIQ - q—%m—lR;f ’

the R matrix by the shadow-world objects

ab
) — (‘-l)a+c_b—d qccl‘*'cb‘ca“ccl , (5.50)

N N
o
=

and similarly for R

(NI
NI fpme
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This corresponds to a base change also for the particles. We do not have solitons as
a basis any more, but the new objects can be interpreted as kinks interpolating between

different vacua. The bases is written as

1:31;j1la'1|,827j2‘a2‘ ces |an—1|ﬂnkn>

(; are again the rapidities, j; are the U,(sl(2)) spins which also automatically distinguish
‘breathers from kinks and a; are the values assigned to the dual lattice. Then we can

interpret the S-matrix as scattering of kinks. The kink-kink amplitudes can be pictured

as
ag
I Ak-1 Ok
ﬁ , T Qg1 Qg1 °
Akt+1 Qg
ay

In the case that the parameter g appearing in the quantum group becomes a root
of unity the representations can be restricted [2, 95]. Let % = -L-. Then g is a root of
unity, ¢ = 1 and because of periodicity, the values of the spin can be limited to —;—(r —2);
this allows to limit the values ax by jmaz = 5 — 1. Further, from the shadow—world

representation one has the restriction
1
lak — aka| = 5 (5.51)

which indicates that the R-matrix is related to the fundamental representation, where
the values of the spin can be only =+3.

Physically this restriction can be interpreted as a limitation on the kinks, which can
only connect certain vacua. So in some way the other vacua are effectively decoupled
from the theory. This idea was formulated in [46], showing that in the sine-Gordon theory
there exists a BRST symmetry which decouples the higher soliton sectors. The analysis
shows that the S—matrix (5.45) at the values { = -L-m describes the ®15 perturbations
of the minimal models M, .

Let us look at &, 3 perturbations of My sn.3. The scattering matrices become par-

2%
2n+1°

ticularly simple, since ¢ = Because of the restriction a; < ';2, we see that the

solitons completely decouple from the theory and only breathers survive. The resulting
S—matrices are exactly those found in (5.27), where now the result from that section is

explained from an algebraic point of view.
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These are not the only scalar S—matrices which derive from the restricted Sine-Gordon
model. Take £ = —3—_?3_—3-7r, corresponding to the ®;3-perturbed models Mj,. The restriction
allows only two vacua and therefore only one possible kink which behaves like a scalar
particle. The simplest case corresponds to s = 4. In physical terms we are describing the
perturbations of M3 4, the critical Ising model, in the thermal direction. The complicated
expression for the general S-matrix reduces in this restriction to S = —1.

Also the other S-matrices of this series can be described in terms of only scalar

particles [28, 97], though their soliton structure is reflected in the crossing relation, which
reads S(ir — B) = —S5(B).

5.2.4 S—Matrices for restrictions of the Izergin Korepin model

Similar to the previous section we can describe ®;, perturbations of minimal models.
We know from section 2.4 that they correspond to the quantum group A;(f). Therefore
the natural ansatz [101] is to take

2.
1

512(,8) — So(ﬁ)Ru(iB = E%B,q = 8%—) (552)

with the R-matrix (5.44) corresponding to the A§2) quantum group. The parameter

r

v = L corresponds to the model M, , which is perturbed in the ®;, direction, and

2 7wy

£:§27r—7

These parameters are chosen in order to match the R-matrix consistently with the cor-
responding field theory.

The parameter Sy is given by
1 (m+1i8 E—m—1f 2w+ 10 E—32r—18\ _ _
SU =—T 3 3 i 3 .
B =1 ( ¢ )P( ¢ )F( ¢ )F( 3 > B (5:83)

where Z(0) is the following infinite product

_ oo I‘(E + 2kx—18 )I\(Zr + 2Ar+25)r(l + 2kr+2ﬁ )F £t ka:zﬁ
E(B) = H T f— ZkWi-iB T 2k-r 2kx—if\ T Zkr——zﬁ s
o [T+ 2000+ 772) T + )F

'é% + ZkWE-{—iﬁ )I\(:ig_g 2k1r£ 1ﬁ) I\(27’;;:3f + 2kr—zﬁ )F

T kr—1 T kw41, ; :
§Z+2 rE E)I\ %E_{_Q ;—B)F(2r:;:£35+2kr£-+—ﬁ):[w

—
—~|
A/'\A/‘\
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which again has an integral representation

So(B) = (sinh 32-(/3 —in) sinhzg— (ﬁ - %’f))_l

o dg sin Bz sinh ZF cosh (& — §)z
X exp (—Zi/ = i 2 (6 2) ) : (5.55)
0

z cosh 523 sinh %5

In this form the S—matrix does not satisfy unitarity: even if S(8)S(—8) = 1, we do not
necessarily have unitarity, simply because for |¢g| = 1 and z € R, which is a physically
interesting situation, one has that Rj,(z) # Ra1(z™'), so in that case the 5 matrix is not

unitary. The poles of Sy are located at

1w — 1ém, 1€m, m>0
8= , , (5.56)
2—§1—i§m, T4+iém, m=>0

Note that the first line corresponds exactly to the sine-Gordon model pole structure. Also

here the poles iw — iém correspond to the creation of breathers. The S-matrix of the

lightest one is [101]

Soy 0 (B) = F2(B8)f<(B)fe_1(B) - (5.57)

1
T 3

Now consider the second set of poles in (5.56). For the poles ggz — 1ém, we find that
the R matrix degenerates into a 3-dimensional projector at these points. Hence, these
poles can be interpreted as that at those rapidity values higher kinks are formed.

The hope is that the RSOS restriction of the R-matrix yields S-matrices which have a

sensible physical interpretation, i.e. satisfy unitarity. For that we change to the shadow-—

world representation and take ¢" = 1. The RSOS states of the reduced model

l ﬁl?jl)kla l ay l ﬂ27j27k27' .. I An-1 I ,Brnjnakn > (558)

are now characterized by their rapidity B:, by their type & (which distinguishes the kinks
from the breathers), by their U,(sl(2)) spin j and by the variables a; characterizing the

dual lattice, constrained by the limitations

S5 lag—1] < appn < min(ay + 1,7 — 3 —ax) . (5.59)
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The S-matrix of these RSOS states is given by replacing in (5.44) the R-matrix by the
67-symbols [101]

ar-1 Gk
S| Bk — B =

!
Ck+1 Ok

1 a1 ax

o3,

n SO(/Bk - Bk—i—l)

!
apt1 G

* (<P ('Qezwkﬂ - ﬁk)) - 1) g T T Ty (5.60)
2 —{Ca Ca —Ca, —C_1 J—

+q7%(¢® + 1)(g* — 1)bayat

Herein c, are given as ¢, = a(a + 1), v = ag + aj — @41 — Gk and the 6j-symbols are
those of (5.42).

Again let us discuss the cases when this model reduces to only scalar particles. First
there are the theories My gny1, corresponding to ¢ = 7=, which will be described in the
next section, and contain only breather states. From the restriction (5.59) we see that
also in the theories Mj, all kink states drop out of the spectrum, and only breathers
remain. The simplest model is M3 4 + ®; 5. Its S—matrix contains 8 particles and was
found originally in a completly different way [115]. It corresponds to the minimal part
of the S—matrix of the Eg ATFT. The particle content and S—matrices of the theories
M3, s > 4 are still unexplored.

For the series M, , there are two vacua, but only one kink state, which again behaves
as a scalar particle. Also in these models only the first member of the series, M 5 which
corresponds to the tricritical Ising model, is known. Its S-matrix is described by the
minimal part of the E; ATFT [29].

For the other models M, ,, » > 4 kinks are present. The only exception is the model
Mg 7 where an additional symmetry allows a reduction to a scalar S-matrix [101].

As discussed in section 2.4, ®;,-perturbed models can be obtained by an interchange

of the parameters r and s labeling the conformal theory M,.,. That is, the S—matrix
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of M., + &, is given by the formal expression for the S-matrix of M, + ®12. The
only two examples of reductions to scalar S—matries are the Ising model Mj 4 with the

S-matrix S = —1, and the three state Potts model M;g [101].

5.3 S-Matrices of the ®;, perturbed minimal models Mjan.1

The Kac table of the minimal models Moy 2,41 extends along one row. The counting
argument and an explicit computation for the &, , perturbed models show the existence
of a conserved current with spin s = 5 but not that one with spin s = 3 [115]. The fusion
rules of these CFT do not have any internal symmetry. These two facts together allow
the possibility to have the "$37- property in the S-matrices of the 15 perturbed models.

From the analysis made by Smirnov, we know that in these models the kinks play the
role of quarks, in the sense that they form bound states which can occur as asymptotic
states but themselves they cannot [103]. How many breathers are in the spectrum? We
claim that for the models My any1, their number is (n — 1). The reason is the following.
For these models, { = 5 and a very special situation happens at these values (see
appendix). The (n — 1) poles between im and %1 (and the crossing ones), which are

those of the breathers b; (i = 1,2,...n — 1), are now third order poles whereas all other

poles relative to the kinks become fourth order poles ( see figure 5.3). According to the

k ok ok ® ok 3k
* % * sk k ok ok ® k ok ok ok *
% X k% %k Xk k X ) k ok ok X * %k
* % %k % k ok **T** * x%
(I . — — : [
bt S o e o {
iw 271 .
0 3 3 Xy

Figure 5.4: Pole-structure of the kink-kink 5 matrix

interpretation of the odd and even order poles put forward in [18, 29], this precludes the
possibility of creating higher kinks. Therefore, all breathers (which, generally, are bound
states of kinks) are just the (n — 1)’s relative to the third order poles in the amplitude

of the fundamental kink!. This conclusion is further supported by the analysis of the

! Although S;2 is not really sensible of a physical interpretation, as we discuss in the next section, its
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S-matrices of the breathers b; with the fundamental kink: in these amplitudes there
appears only the pole of the fundamental kink and no other singularities.
We now construct the S-matrix in the sector of the (n — 1) breathers b;. Using (5.57)

one finds for the fundamental particle b,

Soni(B) = FL(B)f2(B)f == (B) (5.61)

We identify as the physical poles uj, = 2—;— and uj; = F. The first one is interpreted

as a bound state corresponding to the fusion biby — by — biby. This means that this
S-matrix has the "¢3”- property and therefore we cannot have a spin s = 3 current in
the set of conserved quantities [115]. The second pole we assign to the breather by. Its

mass is given by
my  sin 2E

— = —fn 5.62
my  sin g ( )

Using the bootstrap equations (3.16), we can compute the amplitude Sy,

Sous(B) = o (B)f L (B)fzer (B)f =2n2a(B) - (5.63)
Herein the pole ul, = 23X corresponds to the particle 1. Only if n is larger than 3, we get
a new particle by at the pole u?, = 7. Otherwise, for n = 3, this factor cancels with

the zero f——?enia (B). Treating similarly the scattering of b; and b3, a new bound state b,

appears and so on. By induction we obtain the whole sequence Sp, 5, (k=1,2,...<n—1)
Sty b Zf%&f%—_lfzﬁg_uf—_z%m . (5.64)

The remaining scattering amplitudes are obtained again by induction, applying the boot-
strap equations. Finally the general S-matrix Sy, 5, (for k> p=1,2,...n — 1) is given
by [72, 71]

Sb by — fk+2(fk+e—2 . fk—E-l-‘Z )ka—g
P 6n 6n 6n 6n
X f2n+k+p——2 . f2n+k—p+2 f2n+k—g (565)
6n 6n 6n
X f——-2n+k—p+2 - f—2n+k+p—2 f—2n+k+p
6n 6n 6n

analytic properties enter the structure of singularities in the RSOS physical sector.



56 5 Diagonal S-Matrices

The exact mass spectrum is

. kw
My = 81N —

E=1,2,...n—1 . 5.66
- 2, (5.66)

Postponing the discussion on the analytic structure of these S-matrix elements to the
next section, here we make some general comments. First of all, notice that the first line
of factors in (5.65) corresponds exactly to the structure of the S matrices found for the
&, 5 deformation of these models [24, 51, 89]. Further, these are the poles identified as
physical ones, and therefore also the mass-spectrum has the identical structure as in the
$, 3 case. Secondly, the number of poles in the physical sheet given by the functions in
the second line of (5.65), coincides with the number of zeros given by the functions of the
third lines. Therefore, for what concerns the computation of the effective central charge
in the ultraviolet regime of these scattering theories, the matrix Ny, which enters the
thermodynamical Bethe ansatz (TBA) coincides with that of the deformation ®;3 (see
section 7.1). Then it is not surprising to find also in this case the correct values

2(n — 1)

o(0) = 57 (5.67)

In [71] the TBA and the Truncation space approach have been applied. The truncation
spectrum is in good agreement with the S matrices. Also the scaling region of the system
was examined in the TBA, and the exponents of the theory calculated. We will analyze
one example in section 7.1. All results obtained confirm that the above S matrices

describe perturbations of the models M 5,11 in the direction @4 .

5.3.1 Pole structure of the S-Matrix

Looking at equation (5.65), it seems that the bootstrap program has not been carried out
to the end. In fact, there are still poles in the S—matrix which have not been identified
as particles. This, because above we only analyzed those poles which give rise to the
breathers, corresponding to the first line of the general amplitude (5.65). Besides the
argument we already gave for the truncation of fhe spectrum to the (n — 1) breathers
only, the unphysical origin of these remaining poles émlso shows up in the conservation

laws. If interpreted as singularities due to new particles, these spurious poles would
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not be consistent with conserved quantities of higher spin [115], and therefore the entire
theory would be spoiled.

The domain of analyticity of an elastic S—-matrix consists of a two-sheet Riemann
surface with square-root singularities at the threshold points of the s and u channel,

respectively at (m; + m,)* and at (m; — m.)?. The mapping

8-l (S — mf - mg + \/((S - (m1 +m2)?)(s — (mq — m2)2))

p— (5.68)
transforms the physical sheet of the s plane into the strip 0 < Im B < 7. The second
sheet is mapped into the strip —7 < Im B < 0, and both repeat with period 2. In
order to understand the origin of the spurious poles in the S-matrices (5.65), it is better
to interpret the singularities in a function f_, not as zeros on the physical strip but as
poles on the second sheet of the Riemann surface. Concerning this inoint, let us observe
the following facts. The expression of the mass of a bound state A, in a scattering state

| Az Ap) is an even function of the resonance angle u,

2

m; = mg + mg + 2mgmy cosuy, . (5.69)

Hence, reversing the sign of ul;, the value of m. does not change. Moreover, suppose we

have given a closed bootstrap system with a generic S matrix of the form?

Sab(/B) - Hf-’fz(ﬁ) ’ (5'70)

where all z; > 0. Let us change all factors f;; into f_,,. If we now apply the bootstrap
equation to the zeros instead of the poles, we again end up with a closed system with the
same spectrum as the original one.

Hence, if one has an S-matrix with poles only in one sheet, the interpretation is the
usual one. All odd-order poles must correspond to bound states. These, according to
the bootstrap-principle, have to be followed and must give rise to conserved quantities of
higher spin. The interesting situation though occurs, when poles appear in both sheets of

the Riemann surface. For special values of their positions, it may happen that, through

2For simplicity, we consider here the case of purely elastic diagonal S-matrices. The argument given

in the text can be easily generalized to the other cases.
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1 4r
u2, = 2= Uig = 75
11 5 u2, = 3%
12 = 75
3 __ 4w
Ugy = 75

Table 5.3: Resonance angles of the Af) model.

the bootstrap, they overlap each other and produce spurious poles. In these cases it is
also possible that expected particles disappear from the spectrum and reappear as zeros °.
In order to understand this mechanism better, let us consider a particularly simple and
illustrative example, 7.e. the second model of the Ag"’n) affine Toda field theories [18, 29].

The whole set of S—matrices of this system is given by

511 = f—bf%fb_g
S12 = f%fb_%f%fb*% (5.71)
S = foofifosfafy2faf 2

The poles corresponding to the bound states are given by the b-independent terms (which

are the minimal S-matrices). The values are in the Table 5.3. The mass spectrum is
™
my =M |, my = 2M cos ¢ - (5.72)

The remaining functions in (5.71) introduce zeros on the physical sheet. For a finite value
of the coupling constant g, the terms containing b(g), given by eq. (5.31), do not modify
the spectrum. But, changing g, the zeros move around and at the self-dual point they

overlap with the poles, producing the following set of S—matrices

S11 = f%(f_%)z , S = f_%f% ,  Son = f—% . (5.73)

If we retained the usual interpretation of the bound states as poles in the physical strip

of the amplitudes, we would conclude, that in the above system the bound state A4, has

3These arguments were recently generalized in [35] in order to explain the simgularity structure of

non-simply laced real coupled ATFT. There the method was called “generalized bootstrap principle”



5.3 S-Matrices of the &, » perturbed minimal models Mo ant 59

disappeared from the amplitude Sip as well as A; from Sos. Actually, as result of the
collision of the zeros with the poles, we see that these particles have been moved onto
the second sheet.

The same pattern is established for all other models of the affine Toda field theories
AD [35]. On the other hand, using the analysis made in [18, 29], it is possible to see that
the S—matrices of the affine Toda field theories of the simply laced algebras (ADE) do
not show this overlapping behaviour. A natural interpretation of the peculiar features
of the series Agi) comes from its group origin. This series is obtained as a folding of
the simply-laced models A(Zln) under the Z, automorphism of their Dynkin diagram. This
folding projects the 2n fields of the original theory onto a n-dimensional subspace. n
particles of the original AE},} theories rearrange themselves as the new particles of the
reduced models Agzn) (and then they appear as poles in the physical strip?), but we may
think of the other m’s of the initial model as particles living on the second sheet of the
Riemann surface of the latter one.

A similar mechanism is responsible for the spurious poles in the S-matrix (5.65) of the
&, , deformation of the My 2,41 models [72, 71]. The only difference is that the locations
of the zeros are now not adjustable parameters, but they are fixed from the beginning.
The first one occurs in the amplitude S5, through the term f___n_a—n_l. If we calculate the

mass of the particle corresponding to it, we find m, = 1 —sin(2=2n). But we also get the
P P g ? 2 6n g

dn-—1
6n

same mass at the spurious pole in Sy, 3,, namely at uf, = 7. Therefore this singularity
can be interpreted as a zero which through the action of the bootstrap appears as a pole
in the physical sheet.

The whole analysis of the analytic structure of the S-matrices is based on some

basic steps which we clarify through the first non trivial model of our system?®, that one

corresponding to M, 7. This model has two physical particles with S-matrices given by

Sblbl - f—éf%f—-% ) SbLbz = f%gfl—.’;- ’ Sbgbg - f%f%f% . (574)

‘Here we also remind that the A(zi) theories are the only non-simply laced theories which seem to be
consistent without inclusion of other fields in the Lagrangian. For instance, the one loop corrections do

not spoil the classical mass ratios [18, 29].
5Notice that for n = 2 we have the Yang-Lee model, in which holds the identification @39 = @3,3.

Therefore, the S-matrix for this system reduces to that one discussed in [24].
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Now follow the above interpretation and calculate the S-matrix relative to the pole at
B = —i%F on the second sheet of the Riemann surface of Sy, . Denoting this spurious

particle by a;, we have

Sblal - (f%)zf-g-f—%f—% 9 szcu = (fé)zf%fif——l— ) Salal = (f§)3(f%)2(f—§)2 .

18 18

(5.75)
In the amplitude Sy 4, We can easily identify the particles b; (relative to uZial = 197) and
by (with ul,;fal = %") The pole at 3 = —% on the second sheet gives rise to a new spurious

particle a and turns up as a pole in the physical sheet of the amplitude Sp,p,, i.e. that
one at ug?, = 3.

Still we have not finished the analysis of this model. There remains one spurious pole
in the amplitude Sy, to be explained. This is the singularity at 8 = 15. But, looking
at the general amplitude, we see that it arose from a cancellation of a zero with a double

pole coming from the multi-scattering graph of the figure 5.5. This is exactly the same

Figure 5.5: Multiscattering process responsible for higher order pole singularities in the S-matrix

mechanism we encountered in the example of ATFT Agi), i.e. fine tuning the value of the

coupling constant to a special value, one can boost a pole from one sheet of the Riemann

surface into the other.

The analysis in the case of ®;, perturbations is much more involved than in the &, 3

case but the basic mechanisms explained in the example above, successfully applied to

all the models defined by (5.65).
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5.4 &;4 deformation of May

Up to now, we have discussed only the general integrable perturbations 3, P12 and $o,.
These are integrable for all minimal models. It might though happen, that for certain
specific models also other additional perturbations turn out to be integrable. These can

be easily determined by the counting argument.

In [85], M. Martins pointed out the connection between the models Mg + $; 4 and
Msgg + @1,. Basically, the argument relies on the identification of the fields & with
the classical exponential operators appearing in the Liouville lagrangian (see section 2.4).
This analysis implies, that the field ®;(7) is related to the field &, 5(7), provided that
v = 4% ©. In the model M3y we have 14 = ®; 5. Hence, it should be possible to
recover the ®; 4 deformation of this model using the analysis of the ®,, deformation of
the unitary model Mggo. The above observation also makes the origin of the integrability
of the ®; 4 deformation less mysterious, which is usually prevented by counting argument

and null-vector considerations.

In [103] it was conjectured, that for the model Msp, the spectrum consists of four

particles: two kinks with the masses

IS
M 2M cos — 5.7
9 cos 15 ? ( 6)

and two breathers with the masses

47 4 3
2M sin I:;— , 4 M sin -1-7; cos —53 . (5.77)

The S-matrices of the fundamental kinks and of the fundamental breather are given by
egs. (5.60) and (5.57) respectively. If we would like to construct the S-matrix proposed
by Martins from the massive theory Mgg + @12, we need to restrict the space of states
such that it contains only particles with scalar behaviour and not kink-like. Hence we
have to find a combination of the kink amplitudes which give rise to the S-matrix of

the fundamental particle of the ones given below (5.80). The combination of the kink

6t is also necessary to make a corresponding rescaling in the exponential term of the Liouville action.
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S-matrices we are looking for is [71]

11 11 T Y T
S@)=5|8 +5|8 :50(ﬁ)sinh—(ﬁ+m)sinh_(ﬁ+?__>
11 2 2 £ 3

Simplifying the expression (5.55) for S, i.e. with { = 82 one obtains

_ F(B)f2(B)f;(B)F- 1 (B)F_2(B)
- sinhg(ﬁ+iw)sinh§(ﬂ+2—§i) '

So(B) (5.79)

Using the above expression (5.79), the expression (5.78) reduces to the S—matrix pro-
posed by Martins for the fundamental particle of My + @14 [85]. It satisfies the usual
requirement of unitarity and it is a crossing symmetric function. Therefore it is breather-
like and a restriction to a subspace of scalar particles is possible. Now we want to analyze
the bootstrap system which comes from (5.78).

The bootstrap closes with four particles and we have clculated the full S-matrix in
[71]. In order to easily identify the appearance of the physical bound states, we have
introduced a compact notation: a factor “f; in a S-matrix element Si.-matrix means

that this pole gives rise to the physical particle a through uj, = z=. The S—matrix is

given by
Snw= *fz *fz 'f2f Lf . Siz= 'fu *fu
Siz= 'fu *fu fif 2 f ((f2)° Siu= *fufi(f)’
Spz= ‘fafr *f Sea= 'fafifsfu
Spa=frfas *fs fu(fu) (5.80)

15

Ssa = (f2)® (f2)* (Ff)* fopxfz  Su= o fif(Fe) (F2)°

Siw=("f2)> (f2) fafz(fi) fr -
The particles A; and Aj correspond respectively to the fundamental and the higher
kink and their masses coincide with those given in (5.76). The other two particles A, and

A, correspond, on the contrary, to the two breathers present in the Mgg + ®1,2 model

and their masses coincide with those in (5.77).
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As before, we realize that in the S-matrix of the fundamental particle poles appear in
both sheets of the Riemann-surface. Hence, we expect spurious poles along the bootstrap
procedure, which appear indeed. The same mechanism we already applied to the previous
systems works successfully also here. We calculate for the zero’s the corresponding fusion-
angles and masses, and see that these ”spurious” particles also appear on the physical
sheet of the Riemann-surface. For example, consider the zero uf; = —7. This turns out
to be exactly the ”spurious” particle appearing in So» at uf, = =m. Other singularities
in (5.80) can be analyzed similarly.

A non trivial check of our conclusions has already been done using the truncation
method and, actually, this was the way how the S—matrix of the fundamental particle

has been conjectured [85]. A further check using the thermodynamic Bethe ansatz (TBA)

will be presented in section 7.1.
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6 Degenerate S—matrices

The set of diagonal S—matrices is rather limited. In fact, many physically interesting
models exhibit a particle spectrum containing also degenerate particles. Especially most
of the perturbed minimal models fall into this class. The main complication which arises
for these models is that additionally to the dynamical structure one needs to treat also

with the degeneracy structure of the particles.

In section 5.2.2 we gave a short introduction of how S-matrices of this type can be
constructed with the use of a quantum group R-matrix. We also discussed that in order to
describe perturbed minimal models, one needs to consider the restricted shadow—world
representation (also called IRF representation). In section 6.1 we give an alternative,
though closely related description of such models based on the notion of graph-state

models.

This construction will be applied to &1, and P53 perturbed minimal models in sec-
tion 6.2. We present there our results [70] on the physical applications of this formalism.
Finally in section 6.3 we carry out the bootstrap for the unitary minimal models My 11
perturbed by the operator ®;,,. We obtain explicitly the higher kink S—matrix elements,
which is a merit of the graph-state formulation since it simplifies considerably the calcu-

lations.

In section 6.4 we discuss scattering theories related to the hard square lattice model
(HSLM) which we analyzed in [69]. We discuss these theories in great detail, since the
HSLM geometry is the simplest non—trivial geometry for describing S—matrices with kink

excitations.

One specific model of this class is described in section 6.5. It is the model M, 5+ @21,
which corresponds to the tricritical Ising model perturbed by the subleading magnetiza-
tion operator. We describe our investigation of the S-matrix of this model [32, 33, 91]

which is a rather subtle question since two alternative proposals exist.
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6.1 Scattering amplitudes based on graph-state models

A necessary requirement for the construction of an S—-matrix for degeneraté particles is
that the amplitudes satisfy the Yang-Baxter equation (3.6). A very simple approach is
to use a transfer-matrix of a critical integrable statistical mechanical model and try to
interpret it as a scattering theory by adjusting unitarity and the crossing-relation.

In order to describe perturbed minimal models the statistical models we will use are
the so—called graph-state models [9, 36, 38]. Let us review their properties: They can be

parameterized in general as

w(a,b,c,dju) = bacsin(A — u) + fpa sin(u)ib—ggq)—;(%)(Elz . (6.1)

The restrictions on the values a,b,c,d, describing a plaquette of a square lattice, are
defined by a two-dimensional graph, where a link between two sites means that these
two values can occur as neighbouring sites on the lattice. The Boltzmann weights (6.1)

satisfy the following properties:

Zc w(badacaa;u) w(a‘7cafag;u+v) w(c,d,e,f;v):

e w(a,bc,g;5v) w(b,dye,ciutv) wlce fgiu) (6.2)

S wle e dya;—u) w(bc e,a;u) =8 plu)p(—u) ; (6.3)

€

()t P(e)t

wla,b,c,d;u) = —=*+ w(d,a,b,c; A —u) 6.4
bt = e | o

E T S N

w(a,b,c,d;u) = w(a,d,c,b;u) = w(e, b,a,d;u) . (6.5)

The crossing point A in (6.1) and the so called crossing parameters 9(a) are determined
[36] by the eigenvalue equation
> (b)) = A(a) with A =2cos(}) . (6.6)
bra
In this equation the symbol ~ means that the sum runs over states admissible from the

geometry of the model, 7.e. those fixed by the corresponding incidence matrix. The
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elegance of these models lies in the fact that the only information needed to construct
them is the associated graph.

We have presented this construction here only in a schematic way in order to summa-
rize the principle features. In the following we will describe it in detail and generalize it,

in order to construct and analyze the scattering amplitudes of perturbed minimal models.

6.1.1 Temperly—Lieb algebras from incidence graphs

The construction above applies to general two-dimensional graphs. We will now con-
centrate ourselves on the specific graphs describing perturbed minimal models. These
graphs are usually picturized fusion algebras of some Wess-Zumino-Witten (WZW) model

[38, 55]. For our purpose, describing perturbations of conformal field theory, we use

graphs based on the fusion-rules of SU(2) WZW-models, which read as

min(j; +j2.k—j1 —Jj2)
¢J’1 X quz = Z (Z)J':s . (6'7)

Ja=|j1~72]
For the fundamental representation (spin _]:%) they coincide with the graph of the A,y
Dynkin-diagrams, where k denotes the level of the underlying Kac-Moody algebra,

(6.8)

[ 4 L4 L2

0 1 2

This coincides with the restrictions imposed on the scattering theories for ; 3 perturbed

models (5.51).

W@
(WO
mlmr

2 |x@

We know that the &, perturbed models are constructed on the spin j = 1 repre-
sentation, which also allows the coupling of a site to itself. Such models are usually
constructed by the fusion-procedure. Since the corresponding S-matrix is built on the
fundamental representation of the algebra A§2) such a method cannot succeed in our case.
Recently there has been an approach to construct so-called ‘dilute’ models [99]. One uses
the same incidence graph (6.8), but generalizes the ansatz (6.1) for the amplitudes.

On the other hand, the fusion rules (6.7) suggest to consider different incidence dia-

grams:




6.1 Scattering amplitudes based on graph-state models 67

where we have indicated also the corresponding level of the Kac-Moody algebra.
Given a graph, one can find a representation of the Temperly-Lieb algebra (TLA),
EiEj = EjE,' for I'L — ]I > 2 y (6.10)
EEw B =FE , E!=o(j)iE , (6.11)

by diagonalizing the incidence matrix of the diagram. The generators E; act in an n-

particle space,

E,':11®12®...®11‘_1®E®1i+1®...®1n 3 (612)

or .
(Ul LB, ) = T 6 B (6.13)

J#

For graph-state models this action can be visualized as

[Ny
) 11 I+1 1+2 | --~Elia (6.14)

and the generators are matrices in the indices ! and . Let us define the parameter
A = ;53. Then thelargest eigenvalue, corresponding to the Perron-Frobenius eigenvector’
for the case (6.8) is o(3) = 2 cos A whereas for the case (6.9) it is o(1) = 142 cos 2A. This
becomes more similar introducing a notion borrowed from the quantum-group language.
Let us define ¢ = ¢ and the quantum-symbol [n] = 9;—:5_—72. Then we find that o(3) = [3]
and o(1) = [1].

Also the eigenvectors have the same structure. They are 9(a) = [2a 4 1], where the
numbers a take the values of the labels on the nodes of the corresponding diagram, that
is half-integers for (6.8) and integers for (6.9) respectively. The indices a are restricted
in both cases by the bound a < % Finally, the generators (6.14) are constructed out of

the eigenvectors [36] as
e [2a+1]
[26 + 1]

[2¢+ 1]
[2d + 1]

=l wap-
| nop—

bd = Obd - (6.15)

[N

"The other eigenvalues lead in general to imaginary Boltzmann weights
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Note that the amplitudes (6.1) can now be constructed as
w(a,b,c,d;u) =sin(A —u)1 +sinu E; (6.16)

Here we encounter an obstacle in our construction. The graph-state amplitudes (6.1)
describe a critical statistical model only if the largest eigenvalue A, of the adjacency
matrix satisfies Age < 2. Above this limit the model undergoes a first order phase
coexistence [10], and cannot be used to construct a scattering matrix for a field theory.
The graphs with Amee < 2 can be classified [94, 96] and coincide with the Dynkin
diagrams of the simply-laced affine and finite Lie-Algebras. The graphs (6.8) are in this
class, but the graphs (6.9) in general not. Therefore the ansatz (6.1) can not be used for
that type of graphs. We will need to generalize the concept of the graph-state models in

order to describe also the @, scattering amplitudes.

6.1.2 Braid group

In order to extend the above construction we recall how the amplitudes (6.1) are obtained
from the TLA. The first step is to find a braid-group representation, that is elements b;
satisfying

b,’b]’ = bjb,' ,fOl‘ |1, —j! Z 2 ,

bibi+1 b,’ = bi+1bibi+1 . (617)

For the graphs (6.8), which lead to ®; 3 perturbed models, one defines the braid-group

generators by the linear transformation
by =1—¢e"E, . (6.18)

In that way one obtains a Hecke algebra, that is a braid group satisfying an additional

quadratic relation, which in our case reads
(b — 1)(be + ) =0 . (6.19)

The existence of this relation is a consequence of the TLA algebra.
Let us turn to the graphs (6.9) now. As discussed, the Hecke algebra construction is

of no use, since it will not lead to a critical lattice model. We are therefore looking for
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an algebra which is related to the spin 1 representation. The natural choice [36] is to

construct a representation of the BWM algebra [16], which is defined by the relations

gig; = gjgi , for [i—3j|>2,
9:Gi+19i — Fi+19iGi+1

€;€; = €5€; , for I'I,—]I__>_2 ,

eieiie; =€ , er=(m M (I+17")—1)e ;

(6.20)
gi+gil=m(l+e), gg=mlg+l"e)—1,
Gi+19:i€it1 = €igix10i = €i€ix1
gitr1€iGiz1 = g7 lein1gl |, €ix1€i€inn = G €z
€it1€iJit1 = ei;ug,-_l , giei=eigi=1""e; , egizie; = le;
with e; = —F; and ¢; = —ib;. The parameters appearing in the algebra are m =

—i(g® — ¢7?) and [ = ig*. This algebra implies a third order relation for the braid group

generators [36], which in our notation reads as
(b — g )b+ ") bi+g7) =0 . (6.21)

Not all of the relations in (6.20) are independent [80], but in order to clearly see the

relation of braid group and Temperly-Lieb algebra we listed them anyway.

It is an easy task to construct the Hecke algebra given the TLA algebra, since the
transformation (6.18) between the generators is linear. This is not so for the BWM
algebra, since the relation between b; and e; is a quadratic one, and therefore it 1s not
straight forward to comstruct braid group generators from the TLA ones. This is the

reason, why in general it is unusual to talk about graph-state models based on the BWM

algebra.

We have seen that the TLA expressions can be written in a unified form for the spin
% and the spin 1 representations. Therefore we conjecture that this is also the case for

the braid group generators. We construct the expression for the spin % case, and verify



70 6 Degenerate S—matrices

that it fulfills the BWM algebra for j = 1. The unified expression we have found 1is

b a
bg; — q(cd—Cc—Ca+Cb)(_1)(b+d"a_c) X J } X (——1)(0-1)..17: . (622)
j d ¢
q

These generators (6.22) satisfy a further property: the crossing symmetry,

ac _ (1bd) "t [2a 4 1][2¢ + 1]
bd = (b) <[2b+1][2d+1]> : (6.23)

13—

Here we see the advantage of our comstruction. As in the Hecke case, also here the

crossing parameters are built out of the eigenvectors of the corresponding graph.

6.1.3 Introducing the spectral parameter

In [63] it was shown that given a representation of the braid group which factors either
through the Hecke algebra or through the BWM algebra, one can introduce a spectral
parameter z with a mechanism called universal bazterization. In the Hecke algebra case
one finds

Ri(z) = g 'zb; — gz 7', (6.24)

which is equivalent to (6.1). For the BWM case the spectral parameter depending solution

is written as
Ri(z) = (27" — 1)kgi + m(k + EN 4 (2 — 1)k gt (6.25)

with k = ¢°.
Also the amplitudes (6.25) are constructed on the base of a graph. Even though they
are related to the BWM algebra rather then to the Hecke algebra, they share still all

their properties (6.2)-(6.5), as completeness

> Rhi(z)Rig(=7") =

= b x (z7'¢% + zq )z q* — 2g7 %) (zg’ + 2 g7 ) zg® — 27 g7?) , (6.26)

the crossing relation

ac [2a+1][2c+1] : bd -1.6
Rbd(m) = ([25—}- 1][2d+ 1]) Rac(——q; q ) ) (6'27)
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and PCT symmetry
ba(z) = Ri(z) = Rig(e) . (6.28)

Also in the BWM case the crossing parameters are directly obtained from the Perron-
Frobenius eigenvector, but of the graph (6.9).

Finally we mention the so-called symmetry-breaking transformations [36], which leave
untouched the Yang-Baxter equation and the completeness-relation, but can change the

parameters appearing in the crossing-relation. They are given by

g‘;(eu) - Rgg(eu) = aabcd(u)'ﬁabcd-’ﬁlbcd X R§§(eu) ’ (629)
with
Capea(u) = elTPVPO)-pl)Tp(d
p'(a)
IBabcd )
P(c)

Yabed — ew[(b—-c) (c—d)—(a—d)(b—a)]

Herein p(.) and p'(.) are arbitrary functions, and w an arbitrary parameter.

The so constructed graph state models (6.25) coincide for the BWM case with the
scattering amplitudes conjectured by Smirnov (5.52), if we apply a symmetry breaking
transformation of the type RiS(z) — (—1)~°) Rgs(z).

6.2 Application to scattering theories

Now we want to apply this mathematical formalism to the problem of scattering theories
describing deformations of conformal field theories. Having now at hand a graph-state
formulation also for Smirnov’s amplitudes, we obtain a unified description of @3, &,
and ®,; perturbations. The expressions for braid group and TLA are the same if related
to the corresponding graph. The difference is, that @, 3 models are related to the Hecke
algebra, whereas ®;, and ®,; models are related to the BWM structure.

From now on, we will concentrate mainly onto the R-matrix built on the BWM-

algebra (6.25). The &, ;3 perturbed models have been described in an algebraic way in
13, 97, 102].
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6.2.1 Interpretation of the R-matrix as consistent scattering amplitudes

In order to identify the corresponding scattering theory one needs to relate the spectral
parameter ¢ to the rapidity variable 8. This causes that a whole series of scattering
theories get related to the same R-matrix. Let us explain this mechanism for the R-
matrix (6.25).

Since we have in mind the scattering theories (5.52), we make the ansatz z = et
Crossing symmetry in scattering theories is usually implied in a strict way, i.e. S(8)55 =
S(iw —B)". For the R-matrix we have the relation (6.27), which includes also the crossing
factors given by the Perron-Frobenius eigenvector of the incidence diagram. They can
be eliminated by a gauge transformation, using (6.29). On the other hand one needs to
be aware, that in scattering theory there is another constraint determining the crossing
factors. These are the residues, since for a scattering theory describing a unitary field
theory the signs of the residues are fixed. One can show, that the residues, using the
gauge of the amplitudes (5.52) have the right sign.

Second, in order to achieve crossing symmetry the transformation § — i7 — 8 must

correspond to z — —z~!q®. This implies that

2% Grr .
=i + — +2nwi (6.30)
¢ T
from which we find the relation for the parameter ¢ = }Elgz%r?__a—rv with n € Z and with

r = k + 2. But in order to implement the symmetry of the diagram (6.9) dynamically
we need a bound state at the pole 8 = 2—’35 This requires that at this point the R-matrix
must degenerate into a 3-dimensional projector. In the appendix we have collected some

information on the projectors and the necessary 6j-symbols. We need that

This condition eliminates part of the possible values for the parameter ¢, leaving

5 — 2rr
+6+6nr—3r°

This condition is equivalent to an idea proposed by Zamolodchikov [117] who con-
structed a factorizable scattering theory for the tricritical Ising model perturbed by the
subleading magnetization ( My s+ ®21 ). He required that one of the amplitudes needs
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to become zero at the pole at 2?? In our formulation this amplitude corresponds to R/,

since a kink interpolating the vacuum 0 to the vacuum 0 does not exist (see the graph
(6.9), which has no tadpole at the node 0). This condition is automatically fulfilled if the
amplitudes degenerate into a three-dimensional projector at this point.

Let us show that this is the case: in the previous paragraph the R-matrix was given
in terms of 6j-symbols. Since this R-matrix is an affinization of a quantum group in the
shadow-world representation [66], we can also express the projectors as 67-symbols, that
is

oo IR I S (6.31)
b d a b d ¢

The exact relation for the 3d-projector is

ac : ac;l '
ba(z = q',q) = [2][4] Py : (6.32)
From the expressions given in the appendix, we easily compute the residues at the pole.

The general amplitude needed in order to verify the Zamolodchikov condition 1is

[21][21 + 3]
2 +2)[2l+1]

Ry Mg a) = (4" - q“Q)[2][

which becomes zero for [ = 0.

As a last ingredient for a physical scattering theory one needs unitarity, that is
S(B)S*(B) = 1. Since the elements of the R-matrix are real®, R satisfies also real analyt-
icity, i.e. S*(B) = S(—B). Additionally we have the completeness property (6.26), and
therefore the R-matrix multiplied by a scalar factor So, which eliminates the terms on
the right hand side of (6.26) is unitary. But this factor coincides with (5.52) with the
corresponding parameter £.

Confronting the resulting theories with (5.52), we find that all of the perturbed con-
formal scattering theories M, nr41 + ®1,2 correspond to the same R-matrix (6.25), once
the parameter r is fixed. The parameter m encodes this arbitrariness, and takes the values
m =1,2,.... The formal’ theory M, 1 + &1 should be interpreted as the scattering

theory for M,_;, + ®21. For all of these theories, even those describing non-unitary field

8This is related to the fact, that we used the highest eigenvalue in diagonalizing the incidence matrix

of the diagrams (6.9), whose corresponding eigenvector is the Frobenius-Perron eigenvector.
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theories, the scattering matrix of the fundamental particle is unitary, that is S5* = 1.
Since through the bootstrap this property is preserved also for other particles, all of
these models are consistent scattering theories. This is a larger set of unitary scattering
theories as was realized before.

Let us discuss the consequences of the above calculations. We found that one R-
matrix corresponds to many different scattering theories, according to how one relates
the rapidity variable to the spectral parameter. In the past there was the believe that
there is a unique way to find a physical scattering theory given an R-matrix and fix-
ing the truncation level corresponding to the incidence diagram. It was determined by
the principle of “minimality”. This principle was commonly used in order to eliminate
ambiguities deriving from the fact that the factor Sy can not be derived uniquely, but
has always an ambiguity of so-called CDD-factors. Minimality says, that the physical
scattering theory corrésponding to a given K-matrix is that one, which introduces the
minimal number of poles and zeros in the physical strip. We see now, that this is not
a fundamental principle. We find that the theories belonging to one R-matrix depend
on how the spectral parameter is related to the rapidity variable, and the S-matrix of
the fundamental particle differ from each other by CDD-factors. These factors of course
usually introduce further poles in the physical strip, and therefore generate a completely
different physical scattering theory. Analyzing the allowed parameters ¢ we find that the
theory with the minimal number of poles and zeros corresponds to a deformed unitary
conformal theory. This fact was explicitly discussed for scattering theories of perturbed

minimal models M; , in [69].

6.2.2 Ultraviolet limit

An important information is obtained from the ultraviolet limit of the theory. This,
because the amplitudes (5.52) are supposed to describe deformations of minimal models.
In the ultraviolet limit one should be able to determine the corresponding conformal field
theory. Usually one needs to perform the thermodynamic Bethe ansatz in order to get
information as the central charge and the dimension of the perturbing relevant operator.

We want to discuss here possibilities to read off information of the conformal field theory
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directly from the S-matrix.
For 8 — oo the S-matrix becomes again proportional to the braid-group generators
(6.22), but with the gauge-transformation, that is
ac (ca—cc—catcsp) (b+d—a—c) J b a
o0 = Sp(B — 00) g« T T(~1) X9 . - (6.33)
j d c
q
This expression is valid also for @33 perturbations, which correspond to the spin 7 = %
One notices that these expressions are proportional to the braiding matrices of conformal
blocks of the WZW-models [1]. This is an important fact, since it supports the hope

that also deformed minimal models can be described by similar algebraic structures as
the original CFT.

Now we use the results from section 6.1. Let us view these braid-group generators
as matrices in the indices a and c. Since they satisfy (for spin j = 1) a third order
relation (6.21), there can be only 3 independent eigenvalues. This is strongly related
to the fact that it is built on a BWM algebra. The same fact holds also for the cor-
responding R-matrices, whose non-diagonal components are given by the braid group
generators. By means of diagonalization one finds that the eigenvalues correspond to the
amplitudes SEL(B), Si(B) and S553(B) which define three independent phase-shifts. We

have calculated their asymptotic behaviour, and found that they behave as

m  SH(8) = e

oo
m S3(E) = e (6.:34)
lm S(B) = et

where h3; and h;, are the anomalous dimensions of the corresponding fields of the orig-
inal conformal field theory. These are exactly the dimensions appearing in the operator
product expansion of ¥ = &3, of the original minimal model M, mri1:

1 Cu,v,v

1

Cy,v,05,
- 22h3 1 - zha \P(O) +

Z‘Zh;;,l —h5,1

U(2)¥(0)

$;1(0) + ... (6.35)

Of course if one considers the series of theories M, 1, + $2, one finds that the
corresponding field is ®; 3 instead of ®31,

1 C
14 Qv

z2h1,:1 Zhia

Cyvv,0,,
22h13—hy s

T(2)T(0) = T(0) + ®5.1(0) + ... (6.36)
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This correspondence for ®,, perturbed unitary theories has been found in [33].

Similar one can analyze the asymptotic phase-shifts of the ®, ;- perturbed models.
They satisfy a second order relation (6.19) and therefore the braid group generators as
well as the R-matrix (6.24) have only two eigenvalues. They correspond to the amplitudes
Séoé (8) and 0%1% (B). It is not surprising that their asymptotic phase-shifts determine the
dimensions of the OPE of the field ®, 1,

LL . 11 .
S (8= o) = (B 00) =)L (637)

Note that for deriving these results not only the algebraic structure (braid-group) was
important, but also the dynamical information. This is contained in the factor Sy;. The
phase-shifts in the ultra violet limit can therefore be used to put a further constraint on

the CDD-ambiguity arising in the determination of .S;.

6.2.3 DBootstrap equations

For the use in the next section, let us discuss the Bootstrap equations in this context. For
degenerate particles in the IRF description they were developed in [27]. The equations
are

S¥ifabe = 3 FogaSH(0 +147) SF(0 — 1a) . (6.38)
g

The constants f can be obtained from the scattering matrices [67] as
Reso=iuSpy = tfradfocd (6.39)

where u is the corresponding S-matrix pole. It is useful to exploit the quantum-group
symmetry in order to reformulate the above equations, since the above definition of the
constants f leads to a system of quadratic equations to solve and therefore leaves an
ambiguity of a sign.

Since the S-matrix for ®;, perturbed minimal models is proportional to the Agg)
quantum group K-matrix, one can also rewrite the bootstrap-equations in terms of the

pentagon-identity. This determines the constants f as 67-symbols. Or more explicitly,

11 j
fabc: , (640)

a ¢ b
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where the spin j corresponds to the projector, into which the S-matrix degenerates at

the pole. This correspondence can also be seen from the form of the projectors (6.31).

6.3 Bootstrap for the models My, + @12

The unitary minimal series perturbed by the operator &, was analyzed in [101]. He
established the spectrum of all theories except Mg and wrote down the S-matrix of the
fundamental kink as well as that one of the fundamental breather. We apply now the
bootstrap-equations in the IRF formulation in order to write down the complete explicit
S-matrix of kinks and their bound-states, the breathers. As a byproduct we also establish
the particle content of the model M5 , which contains two kinks and four breathers.
One of the main advantages of the IRF-representation is that the bootstrap equations
become rather simple. They reduce to a set of scalar equations. In the usual vector
representation, the matrix structure of the particles has to be taken in account. This
makes explicit calculations very involved. In our formulation, in principle it is suflicient
to consider only one particular amplitude, in order to carry out the bootstrap, since the
bootstrap equations have become a set of scalar equations. This allows us to calculate
higher kink S-matrices explicitly. They are needed in order to close the bootstrap, since
if they exhibit further poles, they have to be interpreted as further particles and must be

included into the spectrum. Let us use the abbreviations

I‘(2—’2—’5+mii§)

(2)* = 5= i (6.41)
(%= 405 %)
and
tanh(Z + irz)
= = 6.42
{e) tanh(—g —17z) ( )

Then the S-matrices of the kinks are

LT . ¥ o2ri \ !
S, (6) = (simh (6 — im) sish (8 - ) <

ﬁ(I)—(Z_ﬁ)+(l)+(1 + (2 )+(4”r _gq 2 57

ity -3-5) (1+§E)-(1+§E)+x 2 (6.43)

' omi \
Sk, (B) = <c0sh %(ﬁ — 47 cosh %(5 -5 )



6 Degenerate S—matrices

78
© 1 = 1 2= 1 1 =«
Sy G+ )E G )
IG+g) G+ GTe
T T 1 2 1 5
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e Nr € 27 €
bdx<'_3-'“—2_><"§+§> ) (6.44)

where R is the R-matrix with a spectral parameter shifted by a phase-factor of 7. Finally,

Staral) = Srosa (B) o — &)= 1ME) - (6.45)

The analytic structure is exhibited in figures 6.1 and 6.2.

0 0 0
x
X x X x X X
| | I | |
| | 1 | |
—5i —3i —if 2im +i€ +3i 15i€
2 2 i 3 1 2 2
Higher Kinks Double Kink
pole 1
o o 0
x X x x x X
| | I | |
| l R l |
—5i —3i —if . it +3i +5i¢
2 2 2z T3 2 2

< |

Higher Breathers Breajtlther

Figure 6.1: Pole structure of the S-matrix Sk, K,

In both cases we showed only the direct channel poles, the crossed ones being in a one
to one correspondence. The double poles in the kink-kink S-matrices can all be explained
in terms of elementary scattering processes [31]. They are exhibited in figure 6.3.

The S-matrix elements involving the breathers are the following:

SK11B1(IB) = (’g_g>K1(§g_g>Kz ’
Skml8) = V-0l
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Figure 6.2: Pole structure of the S-matrix Sk, k,

Skem(B) = (ZNThalG +O—5+6)
SkaplB) = (24500 - SHE ~ Srtr - -5+ 3 (6.46)
2m T

Sp,.B,(B) = (¢

Sem(B) = (53— g+ 3Ng N5+ +3m

2 6 2 2 2°'2 2 6 2
Soama(8) = (TP )mal (0 + E7(5 + 6T + 26~ +2

The lower indices indicate the bound state corresponding to that pole.
The model M; ¢ exhibits two more breathers, even though no more kinks are gener-
ated. This can be seen from fig 6.1 and 6.2. Since £ < £ new breathers are created. But

2

since { > 7 no new kink poles come into the physical strip. The third breather with the

5 3
M; = 4msin (-2—I7r> sin <?7r>

is a bound state of K; and K5 at the pole U%,Kg = %W. The heaviest breather is a bound

mass

state of K, with itself at rapidity u2! .. = L7 and has mass
K2,K> 21

2
M, = 4m cos (—E) cos (—7E—>
21 42
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Figure 6.3: Multi scattering processes responsible for higher order poles in the S-matrices Sk, k, and

51\'2.1\'—2 .

In [86] the truncation method was performed for this model, and all but the heaviest
particle were conjectured. This is not surprising since for heavy particles the finiteness

of the basis in the truncated Hilbert space causes rather big systematical errors. The
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remaining breather part of the S-matrix of this model is
Sz = (H)2()(ENEHENE)* S = (§):(3)(H)* GG

CIROIGICIN S21 = (B EEE ) |

—

(6.47)
Herein the indices of the S-matrix elements correspond to breathers. This is the complete

breather-part of this S-matrix.

A final confirmation of these S-matrices is expected from the thermodynamic Bethe
ansatz. It involves higher level Bethe ansatz techniques, and gets rather complicated
since there the spectrum consists of two degenerate particles.

Let us summarize the results of this section: We have analyzed the IRF structure
which lies under ®; ; and ®,;-perturbed conformal field theories. As the @, s-perturbed
models, they can be built as graph state models, but using an BWM-algebra instead of
a Hecke-algebra as underlying structure. Using this formulation we have given a unified
way of describing scattering amplitudes of deformed minimal models in the ®;3, ®;,
and @, directions. These exceed in general the integrable perturbations (apart of some
special perturbations for single models, see e.g. section 5.4).

We have obtained the complete set of unitary scattering theories, which are M, ;11 +
®; 5 and M,_q, + ®5,. We have analyzed the ultraviolet limit, which is determined by
the braid group generators of the BWM algebra. They are proportional to the braiding
matrices of the conformal blocks of the corresponding WZW model SU(2). Moreover,
diagonalizing the phase-shifts in the UV-limit one finds that the resulting eigenvalues

describe exactly the dimensions appearing in the OPE of &3, of the original minimal
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model M, 11 (®13 for @o perturbed models). The crossing parameters are determined
from the Frobenius Perron eigenvector of the incidence graph.

Having an explicit expression of the residues in form of 67 symbols, we have rewritten
the bootstrap-equations in a form which allows explicit calculations in a simple way.
We then used that to calculate the S-matrix elements involving the higher kink, which
appears in the unitary series M, ;41 + ®1,. A non-trivial degeneracy structure persists
for the models r > 5. We find the whole S-matrices involving kinks and breathers of
these theories. The S-matrix elements among kinks exhibit double poles which can all be
described by elementary scattering processes of the lightest kink and the lightest breather.
As a byproduct we also determine the spectrum of the model M;¢+ ®, o which was not
known before.

We have calculated these S-matrices ezplicitly. They are the essential input, if one
wants to determine the off-shell structure of these field theoretical models. One possi-
bility is the thermodynamic Bethe ansatz. But, as already mentioned, it seems rather
difficult to be carried out, because of the complicated spectrum. The other important
approach is to calculate the form-factors, since they allow to get an expression for the
correlation-functions. Since now the complete S-matrix is known, it should not be diffi-

cult to calculate at least the two and three particle form factors.
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6.4 Scattering Theories related to the HSLM model

We will apply the formalism of the last section to a specific geometry, the Hard Square
Lattice Model (HSLM) [10] in the critical regime, which means choosing a trigonometric
parameterization of the Boltzmann weights. We will find that every consistent configura-
tion describes the geometry of a @, ; perturbation of the series Ms,. A more restricted
set describes the ®; 5 and ®,; perturbations of these models.

The HSLM in the critical regime can be formulated as a graph state model with a
graph consisting of two sites, labelled by 0 and 1, of which only one can couple to itself
(figure 6.4) [36]. The associated incidence matrix is given by

01
I = : | (6.48)
11

The eigenvalue equation (6.6) has two possible solutions. The first one is given by A =

Figure 6.4: Graph defining the geometry of the HSLM

and the associated eigenvector is the Frobenius-Perron eigenvector of the incidence matrix
(6.48). This solution corresponds to the usual parameterization of the HSLM where the
crossing parameters (a) are all positive. The second solution is given by A = 3?" The
properties (6.2) - (6.5) for the corresponding Boltzmann weights (6.1) are equally fulfilled
but now some of them are imaginary due to the fact that the crossing parameters 7(a)
take also negative values.

We want to interpret the above Boltzmann weights as possible scattering amplitudes
of a (1+1) dimensional relativistic QFT, presenting a set of degenerate vacua associated

to the sites of the graph. These are labelled by the indices a,b,c and d in (6.1) and the

scattering processes occur in terms of kink configurations Ky
]Kchcd> = Sg;IKbaKad> ) (649)

wherein the kinks K, are meant to connect the degenerate vacua of the corresponding

soliton theory. In order to describe a physical scattering theory, one requires a complete
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set of asymptotic states, linked by the S—matrix which has to be unitary,
SSt =1, (6.50)

and crossing symmetric

Sec(im — ) = 52 (6.51)
One can release this second requirement introducing a non-trivial charge conjugation (see
e.g. [92]) which, in terms of the structure of the kink vacua, means that one introduces
an asymmetric basis, because the coupling constants of the theory gape will not any more
be invariant under the rotation of the indices. As long as this asymmetry arises from a

basis change one can equally describe the scattering theory in this asymmetric basis.

The usual ansatz for the S—matrix is to define

S25(8) = 5o(B) w(arbyc, d;ii?) , (6.52)

where S, is determined by the unitarity condition (see below). From the point of view of
the initial IRF model, Sy simply multiplies the Boltzmann weights by an overall factor.
In terms of scattering theory though, it is with this function that one introduces the
dynamics. This, because the Boltzmann weights (6.1) are entire functions, and possible
bound states are introduced only through the poles of Sp.

We start our discussion with the first solution A =

oy

of eq. (6.6). Implementing the
condition of crossing symmetry (6.4) through the correspondence 2{:-2‘— = Z +2nm, n being

integer (we require £ positive), we obtain the following possible values of ¢

5

‘5:10n;:1

(6.53)

By a basis change in the space spanned by the asymptotic states, i.e. a symmetry
breaking transformation (6.29), it is always possible to implement crossing symmetry

with a trivial charge conjugation operator. This transformation acts on the amplitudes

e (BB
b (¢(b)¢(d)> e (6:54)

However, it introduces the unpleasant feature of an oscillating behaviour into the .S5-

as

matrix, and therefore represents an inconvenient basis to compare the S—matrix with an
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underlying CFT reached in the ultraviolet limit (for a discussion of this point see ref.
(32, 33]).

Unitarity links the Hilbert spaces of “in” and “out” states through the S—matrix.
Whenever the amplitudes are real, i.e. the crossing parameters are positive, the unitarity

equations are equivalent to

ZS B)5%(—B) = ba - (6.55)

Therefore, the unitarity equations (6.55) are fulfilled, if one chooses So to cancel the
factor p(u)p(—u) in (6.3). |
In the case A = I, p(u) = sin(Z — u) and So(B) has to satisty

1
A—u)=5 d S —u) = 6.5
SO( u) O(U) an 0(7‘1’)50( ’LL) sin(% ___ ’U;) Sil’l(zsz i 'LL) ( 6)
The simplest solution of this system is given by
3x
s - sl ) 6.57
o sin(Z — u) sm( 3T ) (6.57)

Notice that this expression introduces poles and zeros into the physical strip. Any other
solution differs by CDD-factors [89, 116], that is factors of the kind f. (compare egq.
(3.18)). As we will show, these CDD-factors give rise to two different possible series of
models.

Our parameterization, v = =+ ? , was chosen in order to facilitate the comparison
with RSOS restrictions of the sine-Gordon S-matrix [13, 97]. From the values (6.53),
this would correspond to &, 3 perturbations of conformal field theories M; 10n44, ¢ being
related to the renormalized sine-Gordon coupling v through ¢ = :’g—. To show that this is
really the case, we need to discuss the nature of the vacua and to compare their analytic
structure.

The ®, 3 perturbations of the minimal models M35 10n+1, belong to a class of theories
known as RSOS(4), that is they present four possible degenerate vacua differing con-
secutively by 2, i.e. {0,3,1,2}. On the other hand, the S-matrix with So(B) given in
(6.57) was constructed with only two vacuum states. Therefore, the above mentioned

identification seems problematic. However, due to a Z, symmetry of the RSOS(4) model,
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their amplitudes [13, 97] satisfy
sz5(6) = SEoEE8) (6.58)

that is, the amplitudes effectively reduce to a geometry described by two vacua but
defined on the graph of the HSLM. This is due to the diagrammatic identity [3, 36]

shown in figure 6.5 .

0 1

Figure 6.5: Diagrammatic identity relating RSOS(4) and the HSLM

It remains now to analyze the analytic structure of the two scattering theories we
are comparing. The Sy(8) factor corresponding to RSOS(4) for the two series of the

parameter ¢ are given by

B 5 (SG) B (1) 2n—1 - ot §_ n-—-1 26
gy K7 [ T me+ 21
_ 5 5456) _ g E . é
£ = Tom 1 I l [m&][—mé + = 3 mlzll . (6.59)

As expected, they differ from (6.57) only by CDD-factors. They cancel out all poles and
zeros in the minimal expression of Sc(,l) and introduce the required poles in order to create
the Sine-Gordon breathers. We conclude that for every possible value of £ given in (6.53),
we find one system describing a ®; 3 perturbation of a minimal model.

On the other hand we know that the HSLM naturally arises in ®, , and ®,; perturba-
tions through the RSOS reduction of the Izergin-Korepin model. They have an intrinsic
“Hard Hexagon” geometry, in that also the dynamics exhibits the structure of the graph
of fig. 6.4. Let us explain this point some more in detail. In the theory there exist only
three fundamental kinks Ky, K19 and K;;. What we mean by the dynamical structure
is that the model exhibits a ¢* interaction whose structure is determined by the kinks,
respecting the geometry of the graph in fig. 6.4. That is, in the scattering process S5 we

l‘ﬂ'

can not have a pole at 8 = £%, which would correspond to a bound state Koo. This one

can see stretching the amplitudes as shown in fig.6.6. On the other hand we require a pole
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c
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Figure 6.6: Intermediate states in the s- and t-channel of the scattering amplitudes

in the crossed channel 8 = % since this corresponds to the bound state K;;. Therefore

we derive two conditions we need:

1. The function S; must exhibit a pole at 8 = %’: and at 8 = 135 With this self-
interaction the geometry of the model gets implemented dynamically. Note that
such a pole is forbidden for the RSOS(4) model. In that case, even though the
Boltzmann weights of the amplitudes take the form of those of the HSLM the

vacua carry a different “coloring” which forbids the ¢? interaction.

2. The pole at g = %’3 has to be cancelled by a zero appearing in the Boltzmann
weight of amplitude S3j. Then, because of crossing symmetry, the pole 8 = £ in

SV gets automatically cancelled.

The first requirement we can always fulfill, since we are free to add CDD factors °.

5

Considering the second requirement, we find { = 55

as the consistent set of parameters
¢. We compare this with S-matrices arising from the RSOS restriction of the Izergin-
Korepin model, in which the spectral parameter is identified as v = izg—’ We find that
the amplitudes correspond exactly to those of the models M 5n41+®1 2, withn = 1,2,...
for v = —%‘2 and to Mjsnqa + @12 with n = 1,2,... and the model M4g + &, with

U = -}—%. We again checked that the expression given by Smirnov [101] differs from
(6.57) only by CDD factors, and guarantees the appearance of poles at § = 2—;‘- and at
=3

9This freedom can be restricted by the bootstrap equations [27].
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Let us turn to the sector A = 2F. The obvious problem lies here in the fact, that
some of the amplitudes are imaginary. This causes that real analyticity is violated, and
the relation (6.3) does not coincide any more with the unitarity requirement (6.55). It
is not clear yet, which kind of physics such systems describe. For example for the model
M35 two contrary explanations are given. On the one hand, in [90] it was observed that
scattering matrices of this kind describe well defined massive systems. On the other hand
in [87] the same system was shown to correspond to a massless one. Since both authors
rely on the same technique (the truncation space approach), one needs to wait until other
methods determine the nature of this scattering theory.

Let us observe some facts about these models. Using a symmetry breaking transfor-
mation one can render the amplitudes real. Explicitly this can be done by transforming

the amplitudes into

52¢(8) = So(B) eF (@) w(a,b,c,d;%@-) . (6.60)

This though, causes an explicit breaking of parity, and does not cure the problem of
unitarity.

The interpretation of such a system as a massive model is clearly difficult. Since the
unitarity of the S—matrix is one of the basic axioms of the LSZ formalism, it is not easy to
see how to drop it. A possibility to save unitarity might be to define a new star operation
which guarantees that ST(8) = S(—8). With this assumption these S-matrices could
describe consistently the scattering of the kinks, and would be able to be interpreted as
the physical content of integrable field theories.

If the system is interpreted as a massless theory the situation is less clear. The
unitarity requirement in this case amounts from investigating the axioms of scattering
theory in the limit where the masses of the particles go to zero. Even if the resulting
equations have been applied successfully in order to describe massless flows, from an
axiomatic point of view this procedure is not correct. In this sense for massless models the
‘S.matrix’ might be seen just as an algebraic structure, which describes the symmetry of
the theory. Therefore it is not clear whether real analyticity is a fundamental requirement
in this case. Certainly the completeness relation is necessary, since it derives from the

quantum group symmetry of the model.
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Keeping these problems in mind, we can repeat the analysis of the preceeding section.
Instead of presenting the calculation, which is done straightforward, we will just state the

results. Implementing the crossing symmetry gives again a quantization of the parameter

3
5

T
The factor Sy is determined as before, in order to fulfill (6.55) and we find that the

(6.61)

resulting theories correspond to the expression calculated from the quantum group re-
duction of perturbations of minimal models, but now of the series Mj 10n+2 perturbed by
®; 5. Again we look also for a dyﬁamical implementation of the symmetry of the model,
and find S—matrices resulting from the Izergin-Korepin model, that is Mj sn42, Ms 5013
perturbed by &, ., and M3 perturbed by ®;;. The amplitudes of these models again
differ from the ones of the ®, 3 perturbations only by CDD factors.

We found that all possible HSLM models lie in the class of ®; 3 perturbations of the
models Ms 1on1k, B = 2,4,6,8, with the folding described above. A more restricted set
(by the condition of dynamical symmetry), gives all ®;, and ®;; perturbations of the
series M ,. It is interesting to understand, why we did not find the &, 3 perturbations of
the models M5 10n1k, with k = 1,3,7,9. The reason is that they are not in the usual class
of IRF models, since it turns out that their Boltzmann weights do not satisfy eq.(6.4),

but

(a)? P(e)?
Y(d)? $(b)?
Still their amplitudes are given by (6.1), but the crossing point is shifted, z.e. X' = A+ 7.

Then properties (6.2),(6.3) and (6.5) are again fulfilled. As before one can identify all

w(a,b,c,dju) = — w(d,a,be; N —u) . (6.62)

possible geometries with those of ®, 5 perturbations, now of the models Mj 1pnqs, & =
1,3,7,9. The minus sign in the crossing relation gets fixed by the requirement that the

function Sy satisfies

1
sin(% — u)sin($ + u)

So(N —u)=—Sp(u) and So(u)So(—u)= (6.63)

A

[+3)

One again finds a “simplest” solution similar to (6.57), which differs from the expression
for the RSOS(4) models [97] only by CDD factors. Note that also for this series one could

formulate models with self-interaction. One example is the S—matrix given in [117], which
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we will discuss in detail in section 6.5.2. Even though they are seen to represent consistent
S—matrices, they do not correspond to models arising from the quantum group reduction
of either the Sine-Gordon, nor the Izergin-Korepin model.

Summarizing, we have shown that due to crossing symmetry a quantization of the
parameter ¢, which relates the rapidity with the spectral parameter of the HSLM, occurs.
We found that to every parameter, which gives rise to a consistent configuration, there
exists one model which can be identified as a model M5, perturbed by the operator @, 3.
Imposing the condition of “dynamical symmetry”, i.e. the property of a ¢? interaction,
selects a subset of the above configurations. These include all the ®;, and @, pertur-
bations, again of models Ms, and M, s respectively, but the set of consistent models is

larger.

6.5 The TIM Perturbed with the Subleading Magnetization

Operator

The model M, 5 perturbed by @2 clearly falls in the class discussed above. Nevertheless
it is of a special interest, because there exist two different proposals for the scattering
matrix. This is why we will discuss it here from a more physical point of view, and
present the proposals for the S-matrices explicitly. In section 7.3 we will show, how one
can definitely decide which of the two conjectures is the right one.

The Ising model with vacancies is described at its critical point by the unitary minimal
CFT M,g;s. Its central charge is ¢ = T76 and it has six primary fields appearing in the

Kac-table (table 6.1), four of them relevant. It represents the universality class ¢° of the
Landau-Ginzburg theory

./Dq5 o= [T A+ 0adt 00 0287 4 018) g2 (6.64)

at the tricritical point A; =0, 1=1,...,4. The primary fields in the Kac-table can be

identified with normal ordered Landau-Ginzburg fields. They are collected in table 6.2.
A perturbation of this critical point with the field @9 with anomalous dimension

(h,h) = (i5,15), which is identified with the subleading magnetization, drives the TIM

into a massive regime. The spectrum using the TCSA was computed first in [77]. The
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3 | T
2 16 0
3 | 3L
5 | 80 | 10
L1313
10 {80 | 5
7|3
0 |33

Table 6.1: Kac-table of the minimal model My 5

lowest energy levels for the calculation with periodic boundary conditions are reproduced
in figure 6.8. One reads off that the ground state is double degenerate. This corre-
sponds to the Landau-Ginzburg picture, in which the potential exhibits two asymmetric

degenerate vacua (see fig. 6.7).

V(4)

0 1 ¢

Figure 6.7: Landau-Ginzburg potential for the subleading magnetic perturbation of TIM.

This asymmetry can be understood from the fact that the subleading magnetization
explicitly breaks the Z, symmetry of the theory, since the operator is odd under these
transformations (see table 6.2). For this reason the theory can exhibit the “$*-property”,
i.e., the absence of a conserved current of spin 3 and therefore the possibility to form
a bound state through the process A4 — A — AA. This picture is confirmed
by the counting argument, which shows the existence of conserved currents with spins
s=(1,5,7,11,13) [77, 115].

Looking again at fig. 6.8, we see above the ground state a single excitation at mass m,
below the threshold at mass 2m. This feature is explained qualitatively by the asymmetry

of the Landau-Ginzburg potential, since if the potential was symmetric, also the bound
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Field Identification "\ Zy-symmetry
identity - 1= ®pp even
leading energy e= 9 L= 2 : | even
subleading energy €= @Li_l% =:¢%: | even
irrelevant fleld '=Q;3 = ¢%: | even
leading magnetization o= @;_0,5% =t ¢: odd
subleading magnetization | ¢/ = @ 1= @3 : | odd

Table 6.2: Landau-Ginzburg identification of the primary fields of the model My s

state should be double degenerate. Moreover, the fact that this bound state has the
same mass m as the fundamental excitations was explained by Zamolodchikov [117] as a

consequence of elastic scatiering.

\ 1 T T l

e
S

-850

0 2 4 6 8 10 12
R

Figure 6.8: First energy levels for the subleading magnetic perturbation of TIM with periodic boundary

conditions on the strip.
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This information is sufficient to read off some general features the S-matrix must
possess. First of all, the fundamental S-matrix must be degenerate, giving rise to two
independent kink-configurations. Secondly their S-matrix elements must exhibit a pole

for a value of the rapidity 8 = %&£, so as to generate a single bound state with the same

39
mass m, and no further bound states below the threshold. In the following we will describe

two different conjectures for this S-matrix, both satisfying the above requirements.

6.5.1 The S-Matrices using Smirnov’s approach

Using equation (5.52) we can calculate the amplitudes for the S-matrix conjectured by

Smirnov. They have been computed in [32]: the parameters in (5.52) are r = 4 and

0w

£ = —9—. From eq. (5.59), the only possible values of a; are 0 and 1 and the one-particle
states are the vectors: | Ko1), | K1) and | Ki1). All of them have the same mass m.
Notice that the state | Kyo) is not allowed. A basis for the two-particle asymptotic states
is

I KDIK'lO), l KOlKH)) ] K11K11>7 ! K11K10>7 I KlOKC)l) . (66‘5)

The scattering processes are

| Ko1(B1)K10(B2)) = Soo(Br — B2) | Kor(B2)K10(B1))
)E11(82)) = So1(B1 — B2) | Ka(B2)Kna(Br))
)K10(B2)) = Sio(Br1 —B2) | Ku(B2)Kro(B1)) (6.66)
| Kn(B)En(B:)) = S8 —B2) | Kui(B2)Enn(Br)) + S17(Br — B2) | Kio(B2) K (81))
) (B2) )+

’ Ky ,31)K01(,32) = 5%(51 —ﬁz) \ Ki0(B2 Ko1(,31 511;)(,31 2) i Ku(ﬁz)Ku(ﬁl)) .

9

(8
‘ KUl(ﬁ
I Kll(ﬁ
(
(

Explicitly, the above amplitudes are given by

1 — gl1 _ ¢ i 9 T
0><0 = SMB) = ; SolB) smb (zA-iT)

1

1 = S5 — sin 9 i
0><1 = SH(B) = —% So(B) sinh (36+i%)

1
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The function So(3) is given by

271

5(8) = - (Sinh%(ﬁ - zvr)smh-g— <5 _ __))“1
X w (ﬁ, 1> (B e ) w (ﬁ,—l—()) (6.68)
t<ﬂ’§>t<ﬂ"§)t<ﬂ,g>t(ﬁ,_a ,

sinh (1—96,3 + iwm)
sinh (%ﬁ — iwm)
sinh 1(8 +imz)
sinh 3(8 —imz)

where

w(ﬁ7m) = 3

t(B,z) =

The S-matrix satisfies of course the unitarity relations and also the factorization

equations. The explicit crossing relation is given by

13t~

Sdir—pB) . (6.69)

5§§(ﬁ) — (_l)a—c+d—b ([20’ + 1][26 + 1])

26+ 1][2d + 1]

Let us discuss now some features of this S-matrix. The amplitudes (6.67) are periodic

along the imaginary axis of 8 with period 107i. In figure 6.9 we show the analytic

structure of the S-matrix. Note that the only poles giving rise to a bound state are
27

located at 8 = 2%, and at B = , since all other poles are overlapped by zeros, and do

not give rise to a singularity of the S-matrix. The direct channel corresponds to the pole
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Figure 6.9: Pole structure of So(f3): = are the locations of the poles and o the positions of the zeroes.

at 8 = 2—3:1 Since we require the model to describe a unitary field theory, we expect the

residues at this pole to be imaginary positive. They are given by

T2 = Resﬁzzé-_-' Sa(B) =1 (SE

r3 = Resﬁzz_;.; SHB) =1 w ; (6.70)

01 - S(
7s = Resg_ox S5i(B)=1

s(3)s () s (5)o(3) s (&) (6.71)

Their numerical values are collected in Table 6.3. Indeed the residues are positive, apart
the one of the amplitude S}} in which an additional zero cancels the pole, and therefore
the residue becomes zero. Let us discuss other properties of the scattering theory under
consideration. For real values of 8, the amplitudes S}}(3) and S}!(B) are numbers of

modulus 1. It is therefore convenient to define the following phase shifts

e2i60(,6)

500(8)
So1(8)

i

; (6.72)

RENG



96 6 Degenerate S—matrices

Res at 22 Res at &
3 3

S (B | 0 -0.957340 i
S3(B) | 0.957340 i| 0.591669 i

511(B) | 0.365671 1| -0.365671 i
591(B) | 0.465141 i | 0.752614 i
599(8) | 0.591669 i| 0

Table 6.3: The residues on the poles :‘%i and 1;—’ of the RSOS S-matrix (2.15).

The non-diagonal sector of the scattering processes is characterized by the 2 X 2 symmetric
S-matrix
Si(8) Si(8)

6.73
S9(B) S2(B) e

We can define the corresponding phase shifts by diagonalizing the matrix (6.73). The

eigenvalues turn out to be [32, 33] the same functions as in (6.72)

¢2i60(8) 0
(6.74)
0 £2i61(8)
A basis of eigenvectors is given by
1
| $:(B)¢:(B2)) = D Uij | Kij(B)Kn(B2)) > 1=0,1 (6.75)
1=0
where U is an unitary matrix which does not depend on 3
|t (6.76)
- Vi+a? —a 1 .
The asymptotic behaviour of the phase shifts is the following:
Jim 208 — %, (6.77)
lim 208 — %
B—oc

We can use this nontrivial asymptotic values of the phase-shifts in order to define gener-

alized bilinear commutation relations for the “kinks” ¢y and ¢; [109, 64, 103]

qsi(t?m)qu(tay) - ¢j(tay)¢i(t: :B) BZWiaije(I_y) . (6.78)
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The generalized “spin” s;; is a parameter related to the asymptotic behaviour of the

S-matrix. A consistent assignment is given by

Sp0 — g = T ’

Sp1 = 0 ; (679)
3 bi(o0)

S11 = E = T

Notice that the previous monodromy properties are those of the chiral field ¥ = ¢ 50 of
the original CFT of the TIM. This field occupies the position (1,3) in the Kac-table of

the model. The operator product expansion of ¥ with itself reads

149088 gy (6.80)

U(2)T(0) =

n
m|m| =

where Cy gy is the structure constant of the OPE algebra. Moving 2z around the origin,
z — 2™z, the phase acquired from the first term on the right hand side of (6.80) comes
from the conformal dimension of the operator ¥ itself. In contrast, the phase obtained
from the second term is due to the insertion of an additional operator ¥. A similar
structure appears in the scattering processes of the “kinks” ¢;: in the amplitude of the
kink ¢ there is no bound state in the s-channel (corresponding to the “identity term”
in (6.80)) whereas in the amplitude of ¢; a kink can be created as a bound state for
8= 23’.1’- (corresponding to the “¥ term” in (6.80)). In the ultraviolet limit, the fields ¢;
should give rise to the operator ¥(z), similarly to the case analyzed in [101]. Note that
a rigorous proof of this statement would require the analysis of the form factors.

This fact is a particular case of a general situation of the RSOS S-matrices coming
from Smirnov’s reduction, discussed in section 6.2.2. In the previous case of TIM, with
r = 4, only two independent phase-shifts could appear, since the last channel in (6.36)
could not be opened because @, 5 does not appear in the Kac-table of the primary fields
of the original CFT, and the singular part of the OPE stops after the two first terms.

Now let us finally turn to the spectrum. We first analyze the bound state structure.
In the amplitude S}} there is no bound staté in the direct channel but only the singularity
coming from the state | K;;) exchanged in the t-channel. This is easily seen from fig.

6.6, where we stretch the original amplitudes along the vertical direction (s-channel) and
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along the horizontal one (t-channel). ‘Since the state | Koo) is not physical, the residue
in the direct channel is zero. In the amplitude Si! we have the bound state | Ko;) in
the direct channel and the singularity due to | K;;) in the crossed channel. In Sjj, the
state | K;;) appears as a bound state in both channels. In S¥] the situation is reversed
with respect to that of SiI, as it should be from the crossing symmetry property (6.69):
the state | Ky;) appears in the ¢-channel and | Koy) in the direct channel. Finally, in S
there is the bound state | K1) in the direct channel but the residue on the ¢-channel pole
is zero, again because | Koo) is unphysical. This situation is, of course, that obtained by
applying crossing to S&3-

Let us compare this picture with the data coming from the TCSA. The one-particle
line aof fig.6.8 corresponds to the state | Ky1). This energy level is not doubly degenerate
because the state | Kqo) is forbidden by the RSOS selection rules, eq. (5.59). With peri-
odic boundary conditions, the kink states | Ko1) and | Kio) are projected out and | K1)
is the only one-particle state that can appear in the spectrum. In order to determine the
pattern of the energy levels obtained from TCSA and to relate the scattering processes
to the data of the original unperturbed CFT (along the line suggested in [76]), we would
need a higher-level Bethe ansatz technique. This is because our actual situation deals
with kink-like excitations in contrast to that of ref. [76] which considers only diagonal,
breather-like S—matrices. The Bethe-ansatz technique gets quite complicated in the case
of a S-matrix with kink excitations, and has been carried out only for particular examples

[120], all of them describing ®,,3 perturbations of minimal models.

6.5.2 The Approach of Zamolodchikov

The problem of finding a theoretical explanation for the energy levels of the ®,; perturbed

TIM was first discussed in [117]. In his notation, the one particle states are given by
| K+), |E-), [B), (6.81)

which we can identify with our | Kyo), | Ko1) and | Ky1), respectively. The two-particle

amplitudes of the scattering processes were defined in [117] to be

| B(8)B(B2)) = a(B1—B2) | B(B2)B(B1)) + b(Br — B2) | K+ (B2)K-(B1))
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| K_(1)B(82)) c(Br— B2) | K-(B2)B(B1))

| B(B)E+(B2)) = c(Br—PB2) | B(B2)K+(B1)) (6.82)
)
)

| K_(B1)K+(B2)) = d(Br—B2) | K-(B2)K(B1))
| K+ (B)K_(B2)) = e(B1—B2) | Ki(B2)K-(B1)) +b(B1 — B2) | B(B2)B(B1))

They are in correspondence with those of (6.66) if we make the assignments

a(8) 511(8) ;
b(B) — S1(B) ;
c(B) — S5(B) ; (6.83)

d(B) — Se(B) ;
e(B) — SH(B) -

In order to solve the Yang-Baxter equations which ensure the factorization of the scat-
tering processes, Zamolodchikov noticed that the above amplitudes coincide with the
definitions of the Boltzmann weights of the “Hard Square Lattice Gas”. Therefore, he

borrowed Baxter’s solution [10] in the case where it reduces to a trigonometric form

sin (2& + A
a(f) = “‘(;*(iy@ R(B)
o) = o8 — 2B gy

Nl

[sm (25 ) sin (—g—)]
sin {Z — A
c(B) = e _—;%—(5_)@ R(B) ; (6.84)

dp) = e ff_:f({%_@ R(B)

sin A
“8) = 5 __MSEH (_ﬁ)ﬁ ) me

Here § and ) are arbitrary parameters and R(() is an arbitrary function. In order to fix

completely the amplitudes the following requirements were imposed:

1. the unitarity conditions, eqgs.(3.13);
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9. the absence of a pole in the direct channel of the amplitude d(f);

3. crossing symmetry, implemented in the following form

a(B) = a(ir—pB) ;
b(B) = c(im—p) ; (6.85)
dp) = elir—p) .

The final form of the S-matrices is given by

sin 27— GE 31:+6i6

sl SO ( ) sin (37+6 G) )
o8) ° sin (—gé) sin (2"+6 6) 5
c(f) = e oin (Z%é) i (:}I%%) ; (6.86)

. _ ) - )
sin (————7" f’ﬁ> sin (————2T§6’ﬁ)

3n+6:8

d(ﬂ) — 28 Sin( 5 )

: : i
sin (27r-|;61ﬁ )

st sin (?mJgsiB)
B = T )

Herein § is an imaginary number satisfying

.5}
6—21716 —

(6.87)

All amplitudes but d(3) have a simple pole at 8 = 2'372 Their residues are given by

71 = Resg s a(ﬁ):i% (3 (3))

T = Resﬁzg_g_; b(ﬁ):-i% (S (3))

NO)
T3 = Resﬁ:g_g_; c(ﬁ):z% ( a)) ; (6.88)

i = Resg_2mi dB)=0 ;
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Res at%"'—" Res at%’i
Si(B) | 0.187095 1i|-0.187095 i
519(8) | -0.279395 i | -0.417229 i
SI(B) | 0.417229 i| 0.279395 i
SB) | o -0.417229 i
S59(8)| 0.417229 i| 0

Table 6.4: The residues on the poles

Resﬁ

27
3 an

27
-3

in

3

Their numerical values are collected in Table 6.4.

of the Zamolodchikov S-matrix (2.36).

In the asymptotic imit 8 — oo, all amplitudes but a(8) have an oscillating behaviour

—27ié .
~
H
: 3wl
~ 6—5177 5,3 e—é—' ;
31
~ e_6ﬁ e—_s—l ;
_irm
~ W0
_0g: —47ri
~ e 281w 8265 e 5

(6.89)

This of course is due to the gauge transformation performed in order to insure strict

crossing symmetry.

As for Smirnov’s amplitudes we tried to relate the asymptotic behaviour to the OPE of

some conformal field of the model M, 5. But even not taking in account these oscillatory

factors we were not able to establish such a link. Up to now the link of the asymptotic

phase shifts to the CFT lies on a purely observational basis, i.e., no rigorous theoretical

explanation is available for this fact. Therefore we would like to stress, that the absence

of such a link for Zamolodchikov’s proposal does not imply the inconsistency of his

conjecture.
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6.5.3 Appendix to section 6

Here we collected some necessary information on the projectors. The R-matrix (6.25)

can be written in terms of projectors as

R(z) = (¢o7F —zig ) (g0t +¢%h) R+ (¢af —o77¢7)(q"a% + ¢’ T)P,

+ (¢fz77 — m%q"Q)(q'sa:% + qu"%)Pg . (6.90)

We look for points where R(z) ~ P;, and therefore the other terms must vanish. We find:

Py vanishs if: ¢ =¢q* or z=1g"%,
P ¢ =g z=1ig° , (6.91)
P2 r = q4 r = 'I/qa

This means that B ~ P, at ¢ = 1¢° and R ~ P, at ¢ = ¢'. Note that R never
becomes proportional to Py, and therefore we can not form bound states of spin 2 in an
hypothetical S-matrix based on the R-matrix (6.25).

We give now the 65 symbols which are necessary to carry out the bootstrap. Note
that they correspond to the fusion coeflicient, graphically displayed as

. J3 J2 J23 “ (6.92)
3 iz .

J1 Ja

J23
The only non-zero fusion coefficients for spin 1 are

111 V = (gt 4 g2t d %
{ } = fur = (@ +g™ )(W) ,

1 (R +2])?
{z SN Il ( [4)(21] ) !

1 (e N
{l I+1 l} = fun = ([4][2l+2]) ’

_ (-2
{ I <[m+amw1> ’
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N ( 20+3)2[2] \*
Coorpr [ T T R TR
g
The 67-symbols for spin 0, that is the fusion coefficients for the breathers, are
1
110 (1 )5
coo | \Bl)
q
11 0 B <[21+3] )‘
I 1 1+1 [3][27 + 1] ’
g

1 1 0 B ([21—1])
poasr oz | \Blt+

g

=
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7 Confirmation of Bootstrap Results

In the last two chapters we have shown how S-matrices are constructed. The methods
we discussed were not based on a straightforward calculation, but rather on symmetry
arguments which were used to conjecture the exact form. Especially in section 6.5 we

have discussed two proposals for an S—matrix for the same field theory.

A way in order to calculate the S—matrix would be to perform the Bethe ansatz for
the corresponding field theory. In this way one could derive the S—matrix exactly. Unfor-
tunately such calculations are very involved and have been applied to few models. The
methods we have described can be considered as a “short—cut”, using symmetry consid-
erations and general arguments from quantum field theory in order to give a conjecture

for the exact S-matrix.

If the S—matrix is constructed in this way, it should be confirmed by independent
methods in order to establish its link with the underlying field theory. For this purpose
numerous different methods have been proposed and the subject has grown enormously
during the last years. we will sketch in this chapter the most important methods. That
is, we will just describe the basic ideas and give some simple examples of their application
linked to the theories we have discussed in the previous chapters. Also we will show how
these methods can be used in order to decide between the two conjectured S-matrices

described in section 6.5.

We should note here that all methods we will describe in this chapter have a more
general scope as to confirm bootstrap results. A complete description of them would be
separate topic of research. For that we limit ourselves to discuss them in the connection of
the bootstrap-principle and especially we want to show how they can be used to confirm

conjectured S-matrices.

7.1 The TBA equations

Consider an integrable massive scattering theory on a cylinder. This implies factorized

scattering, and so one can assume that the wave function of the particles is well described
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by a free wave function in the intermediate region of two scattering. Take the ansatz
Y@y ... 2p) = € 2P > A(P)O(zp) ;
P
A(P) are coefficients of the momenta whose ordering is specified by

1 i z, <...<zp,

0 otherwise

Let the permutation P differ from P’ by the exchange of the indices k and 7. Then
A(P') = Ski(Br — B;)A(P) - (7.1)

We impose antiperiodic boundary conditions for our wave functions, which provides that

two particles cannot have equal momenta, leading to the condition

A(k)P27---7pn) - _eipkLA(p%"')pn)k) ’ (72)

L being the length of the strip on which we consider the theory. Permuting one particle
through all others and comparing (7.1) and (7.2), one finds

gL sinh By H Ski(Br —Bj)=—-1 for k=1,2,...n . (7.3)
I#E
We introduce the phase &;(8k — B;) = —11n Sk;(Br — B;). In terms of these the equations

become

Ly Sinhﬂk -+ Z 5kj(,3k — ﬂj) =2rn; for k=1,2,... I (74)

itk
ny being some integers. These coupled transcendental equations for the rapidities are
called the Bethe ansatz equations. One tries to solve these equations in the thermody-

namic limit introducing densities of rapidities for each particle species and transferring

the equations into integral equations. That is, let p§a)(,3) = <%, where we assume that

there are n particles in the small interval Aﬁ, be the particle density and p{®)(8) = =

be the level density corresponding to the particle a, then (7.4) become

mqL cosh B+ i /00 ‘Pab(ﬁ - ﬁl)pgﬂ)(lg’)dﬂl = 27rp(“) : (75)
b=1" "
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with @uu(6) = —555,15(,5). In order to compute the ground state energy one needs to

minimize the free energy

RLf(papl) - RHB(p1)+S(p,p1) ’ (76)

where Hg = Y, m, [ cosh ,Bpga)dﬁ and S denotes the entropy. The extremum condition

for a fermionic system'® takes the form [118]

n Ao dg’
—7M, cosh B + €(B) = Z/ (B — B')log(1l + e"é”(g))—;r— , (7.7)
b=1"">

(a)
where we introduced the so-called pseudo-density e = p(_“?]jpfy’ the scaling length
7 = Rm; and the rescaled masses M, = %; m;y is the lightest particle mass. These
coupled integral equations are called the TBA equations. The extremal free energy

(a)
depends only on the ratios %%7’7 and is given by

f(R) = —5’37; an M, / ” cosh flog(1 + e~=BNdg | (7.8)
a=1 -0

One can extract several physical quantities from the solution of the TBA-equations
([67, 76, 85, 88, 112, 114, 118]). Since very little is known about non-critical systems,
one tries to examine the equations in the ultraviolet limit, which corresponds to r — 0,
where the underlying field theory should become a CFT. The central charge is related to

the vacuum bulk energy, and is given by

c('r) : % Z Ma /Oo coshﬁlog(l -+ 8_€a(ﬂ))d:8 . (79)
a=1 <

Having calculated the central charge one would like to extract the conformal dimension
of the perturbing operator. For small 7, one expects that f(r) reproduces the behaviour
predicted by conformal perturbation theory. For the applications we have in mind this

expnsion reads as

3fo

K

c(r) = ¢(0) —

¢(0) is not really the central charge, but the so-called effective central charge, ¢(0) =

P+ frtt (7.10)
k=1

¢ — 24h,,;, where hpin 1s the lowest dimension of the CFT. This distinction is of course

important in non-unitary theories, which contain also fields with negative dimensions.

10We use the fermionic TBA equations since in diagonal scattering up to now they turned out to be

the relevant ones, see e.g.[118] for the general theory
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The exponent y is related to the perturbing field by y = 2(1 — h) if the theory is
unitary and by y = 4(1 — k) if it is non-unitary. The coefficients f; are related to
correlation functions of the CFT [67, 88, 118], and provide an ultimate important check
of the theory.

A simple check which in many cases can be performed analytically, is the calculation
of the central charge ¢(0). The equations (7.7) take the form

N
€a=—3 Ngyln(l+e™) . (7.11)
= ,

The matrix N in (7.11) is given as

Vo= [ L) = 5-(5u(00) = bl ~c0)) - (7.12)

The effective central charge c(O) can be obtained by integration

T+
. 1
| «(0) = ~ 17r / v (7-13)

The matrix Ny is very simple to determine. Since we deal with diagonal S matrices
we know that the general form is Sep(8) = II; fz;(B). Analyzing (7.12) for this situation
one sees that .(8) = ¥, ¢[f](8) so that one can sum up individual contributions
coming from the single factors f;;(8). Then Nap = 3 N|fz;| which is Ny = 3 sgn( ;) for
~l <z <1

As an example we consider the theories M 9,43, discussed in section 5.3. The solution
of (7.11) can be obtained in closed form. One finds [67]

)Sm(%) . (7.14)

2n+3

sin( 525 2n+3

sin (

ece (M2,2n+3)

To do the summation over the integral one uses the identity

00 T + £ 1
dz =1L 7.15
./0 e“‘e—i—l (1—[~ee) ’ ( )
where L(z) is the so called Roger’s dilogarithmic function, given by

1= Iny In(l-y)
—3 dy[l“y+ ”

L(z) =

] . (7.16)

There exist sum-rules for these functions which allow one to calculate ¢(0) exactly [79].

One finds that ¢(0) = 2% which is the right result.
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Also the scattering theory My g perturbed with @, 4 (see section 5.4) can be confirmed
with the exact calculation of the central charge [71]. Again the ultraviolet limit is taken
solving Egs. (7.7), with the S matrices given in (5.80), for R — 0. In this limit the
scaling function is written in terms of the Rogers dilogarithmic function

4
c(0) = =12 L(=:); (7.17)
i=1

where

()

T3 cos” | T
9 2

z;t = (2 cos <~s—;—r—> -+ 1)

z;' = 4cos® (171-_8) (2 cos (%) + 1) (7.18)
2

z;' = 64cos’ (—91) cos* (%)

Using the properties of the Rogers dilogarithmic function we can exactly perform the
sum of Eq. (7.17) and our final result is ¢ = 2, which agrees with the corresponding
conformal field theory (see Eq.(5.67)).

It is very important to perform the TBA also for finite r, since only in this way the
scaling region can be explored. In [17] we have designed an algorithm which performs
these computations, and becomes powerful especially when one investigates the region
r — 0. Here we give just one simple example of such a calculation. Let us extract the
dimension of the perturbing operator for the conjectured scattering theory of My 7+ ®;
(see section 5.3). The output data of our program is given in table 7.1 and is clearly
compatible with theoretical result. The TBA becomes even more powerful if combined
with the Truncation Space Approach (see section 7.2). There many quantities can be
“measured” and then be confronted with TBA results [67, 76, 85, 112, 114, 118]. In that
way also some of the coefficients f; in eq.(7.10) can be checked. If a thorough analysis
of this kind is performed for a scattering theory (as has been done for example for the
theories My on1a+®12 in [71]), the scattering theory is given a very strong support. Such
an examination can substitute the difficult Bethe ansatz calculations which one would

need to do otherwise in order to prove the correctness of a conjectured S—matrix.
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computed cexact = .57142857D+00

r= .100000000D-01 central charge=  .571388072E+00
r= .200000000D-01 central charge= .571269945E+00
r= .300000000D-01 central charge=  .571077712E+00
r= .400000000D-01 central charge= .570814111ﬁ+00
r= .500000000D-01 central charge=  .570481500E+00

error in extrapolation -.1112E-05

estimated exponent .257142827D+01
theoretical exponent .257142857D+01
estimated dimension of the corresponding operator
for a unitary theory: DELTA= .357143D+00
for a non-unitary theory: DELTA= -.285714D+00

total cpu time (secs) .176E+05

109

Table 7.1: Qutput of the program tha [17] for the conjectured S-matrix for the theory My 7 + @1, 2.
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7.2 The truncation conformal space approach

The TCSA allows us to study the crossover from massless to massive behaviour in a
theory with the space coordinate compactified on a circle of radius R/2m. The method
consists in truncating the infinite-dimensional Hilbert space of the CFT up to a level A
in the Verma modules, diagonalizing the Hamiltonian

9 _ R
H,(\B) == (Lo +Io— -132) to [ B0 do . (7.19)

An efficient algorithm has been developed for performing such a computation [78]. In
our case, the truncation A is fixed at level 5 in the Verma modules. The parameter p
in (7.19) is a dimensionful coupling constant, related to the mass scale of the perturbed
theory

(] = m>~2ne (7.20)

In the following we fix the mass scale putting p = 1.
In a finite geometry the spectrum of the hamiltonian (7.19) is discrete. The energy

eigenvalues take the scaling form

1
Ei(R) = 7 Fip) (7.21)
with the scaling variable p = —?. The correlation length & is defined as the Compton

wave length of the lightest particle in the thermodynamic limit, £ = —17; In the ultraviolet
regime (p < 1), the spectrum is dominated by the conformal part of the Hamiltonian,

and behaves as

2
B(R) ~ 2 (zh,- - -1%) . mR<1, (7.22)

whereas in the infrared region (p > 1) it is characterized by a set of stable particles.

There the scaling functions F; become

1[ R, MR
Fi [ [éo(z) + 5} ) (723)

27 m
so that

E,(R) ~ €0m2R +M; , mE>»1 |, (7.24)

where M; is the mass gap of the ith level. However, the above infrared asymptotic

behaviour holds only in the ideal situation when the truncation parameter A goes to
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infinity. In practice, for finite A, the linear behaviour of eq. (7.24) is realized only within
a finite region of the R axis. The large R behaviour is dictated by truncation effects. In
order to find the physical regions, we make use of the parameter (introduced in ref. [77])

d log Ei(R)
; =2t 7.25
pi(R) = ——- 2 R (7.25)
The parameter p; lies between the values p; = —1 (in the ultraviolet region) and p; = 1 (in

the infrared one). In the limit of large R (the truncation-dominated regime), p; = 1 — 2h.

The “window” in R where the linear infrared behaviour holds depends upon the
perturbing field and, for the case of operators with anomalous dimension & > 1, it can be
completely shrunk away. This phenomenon is related to the divergencies which appear in
a perturbative expansion of the Hamiltonian (7.19), which must be renormalized. Under
these circumstances, it is more convenient to consider the differences of energies, which
are not renormalized.

As an example we will discuss the model M, 5 + @, ;, which we discussed in section
6.5. It is of special interest, since for this perturbation two different proposals for a
scattering matrix exist.

In the case of the subleading magnetic perturbation of TIM, the anomalous dimension
of &y is h = {%, which is near ;. Looking at fig. 6.8, we see that the onset of the infrared
region of the two lowest levels is around R ~ 2 and persists only for few units in R. It
is well known in statistical mechanics, that the largest two eigenvalues of the transfer
matrix of two-dimensional ferromagnetic systems have an exponential energy splitting
for large R [10]. As was shown in [77] this is also the case in TCSA. That is, in the
region of the on-set of the infra-red behaviour, the ground state levels approach each
other exponentially [77]

Ey —Ey~e™F | (7.26)

But this allows us to extract the mass “experimentally” by measuring the splitting of the

first two lines. We find
m = 0.98 +0.02 . (7.27)

From fig. 7.1, we see that for the third level, that of one-particle state, the ultraviolet

behaviour extends till B ~ 0.5. The crossover region is in the interval 0.5 < R < 2.
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Beyond this interval, the infrared regime begins but the “window” of infrared behaviour
is quite narrow, in the neighbourhood of R ~ 3. Considering the differences of energies
with respect to those of the degenerate ground states (fig. 7.2) one can also read off
the mass-gap and see that it is consistent with the value extracted from the exponential

approach of the two lowest levels. In fig. 7.2, the third line defines the threshold, with a

mass-gap 2m.

7 Confirmation of Bootstrap Results
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7.3 TFinite-size effects

We would like to decide between the two proposals for the scattering matrix for M, ;5 +
®,,. One possibility would be to consider the TBA and compare its results with the
truncation data. This is unfortunately very difficult, since we deal with a degenerate
particle and the diagonalization of the transfer-matrix has not been carried out yet for

this model. Therefore we have to think of other possibilities.

In the ideal situation, when the truncation level A — oo, the crossover between the
intermediate region (mR ~ 1) and the infrared one (mR > 1) is controlled by off-mass
shell effects and has an exponential behaviour. The computation of these finite-size
corrections has been put performed by Lischer [81], and we refer the reader to this
reference for a detailed discussion of the subject. Rigorously speaking, this analysis is
valid for the case of only one vacuum in the theory, but the degeneracy of the ground state
gives only subleading contribution (see below), so that we can use Liisher’s results, at
least at leading order. The idea is to consider perturbative corrections to the propagator,
which is known exactly for the infinite volume theory. The leading corrections come from
topologically non-trivial diagrams, which wind around the cylinder exactly once. The

analysis is independent of the details of the interaction, and the above statement is very

general.

Since these corrections involve the scattering matrix it is exactly the method we looked
for. It gives a prediction for the spectrum which we can check from the TCSA data. Let

us discuss it in more detail.

The diagrams contributing to the corrections are shown in fig.7.3. Note that the only
state which can propagate is Ky since Ky is forbidden from the HSLM geometry, and
Ky, and Ky from the boundary conditions.

The diagrams can be computed from the data extracted from the S-matrix. The
first correction involves the on-mass-shell three-particle vertex I', which is extracted from
the residue at 8 = 2%'1 of the amplitudes S}{(8) for the Smirnov and Zamolodchikov S-
matrix respectively. The second correction comes from an integral over the momentum

of the intermediate virtual particle, interacting via the S-matrix S}1(8). The final result
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leading correction:

sub-leading correction:

-,
[SE]

Figure 7.3: Finite volume off-mass-shell corrections to one-particle energy

becomes
AE(R) = Eo(R)— Eo(R)=m+1 ‘/zmrz exp (— ‘/5;"’3) (7.28)
*° df  _Rcos YRR
—m /_mﬂ' g~mR hﬁcoshﬁ(S(ﬁ-F—é—) —1)

In this analysis we have to be aware that the ground state of our potential is degener-
ate, therefore (7.28) is correct up to further subleading corrections of the form O(e™™F).
The problem of comparing the S-matrix with the truncation data, using this approach,
has been addressed to in [32]. There we adopted the following procedure: first we com-
puted numerically the integral on the intermediate particles in both cases of RSOS and
Zamolodchikov’s S-matrix and we subtracted it from the numerical data obtained from
the TCSA. After this subtraction, we made a fit of the data with a function of the form

G(R) = A+ Be~¥mR 4 Q™R | (7.29)
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The first term should correspond to the mass term. The coefficient of the second one is

the quantity we need in order to extract the residue of the S-matrix at 8 = %

2 .
m B =1 Resﬁzz_;_i S%%(/B) . (7.30)
The third term is a subleading one, which takes into account: a) the asymptotic exponen-
tial approach of the lowest levels of our TCSA data to the (unknown) theoretical vacuum

energy Eo(R); b) the possible subleading corrections to (7.28), arising from tunneling

processes. These tunneling processes might not be strictly proportional to ™%, but in

the region in which we are measuring, a term of the order R*e™™% will behave as e~
since the exponential decay will overwhelm the polynomial behaviour.
In the case of RSOS S-matrix, the best fit gives the following values
A = 097+0.02 ;
B = -0.294+0.02 ; (7.31)

¢ = —-0.3640.02 .

The corresponding curve is drawn in fig.7.4, together with the data obtained from TCSA.
The mass term agrees with our previous calculation (eq. (7.27)). The second term gives
for the residue at § = 2—;—‘- the value 0.34 £ 0.02. This is consistent with that of the RSOS
S-matrix. In our fit procedure, the value of the residue we extracted through (7.30) is
stable with respect to small variation of the mass value. Increasing (decreasing) m, B
increases (decreases) as well, in such a way that the residue takes the same value (within
the numerical errors). This a pleasant situation because it allows an iterative procedure
to find the best fit of the data: one can start with a trial value for m (let’s say m = 1)
and plug it into (7.29). From the A-term which comes out from the fit, one gets a new
determination of the mass m that can be again inserted into (7.29) and so on. Continued
iteration does not affect significantly the value we extract for the residue, but converges
to an accurate measurement of the mass. The values in (7.31) were obtained in this way.

With Zamolodchikov’s S-matrix the best fit of the data (with the same iterative

procedure as before) gives the result

A = 0964002 ;
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= —1.10£0.02 ; (7.32)

C = 1.14+£0.02 .

The residue extracted from these data (1.29 4 0.01) is not consistent with that one of the
amplitude S}}(8). The situation does not improve even if we fiz the coefficient of e~ 5
to be that one predicted by Table 7.2, namely B = —0.158 and leave as free parameters
for a best fit A and C. In this case, our best determination of A and C were A = 0.965
and C = —0.046. The curve is plotted in fig.7.4 together with the data obtained from
TCSA. It shows clearly that the S—matrix derived from Smirnov’s approach is consistent
with the truncation data. In [68] the the same question is addressed but with different

numerical methods which are based also on TCSA. The authors confirm our investigation

and draw the same conclusions.
564
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Figure 7.4: Energy difference of the one-particle state with respect to the double degenerate ground
state, AE(R) = E9(R) — Eo(R), compared with off-mass-shell corrections. The dots are the numerical
data obtained from TCSA, a is the curve for the RSOS S-matrix, with 4, B and C given in (3.11), b
is the curve for Zamolodchikov’s S-matrix with the B term equal to the theoretical value and 4 and C

coming from a best fit.
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R | AE(R) | L(R) I(R)
2.5 | 0.95913 | -0.0625322 | -0.0174576

2.55 | 0.658681 | -0.058955 | -0.0164808
2.6 0.9583 -0.0555943 | -0.0155615
2.65 | 0.957983 | -0.0524359 | -0.0146961
2.7 0.957722 | -0.0494667 | -0.0138811
2.75 | 0.957511 | -0.0466744 | -0.0131135
2.8 0.957345 | -0.0440477 | -0.0123902
2.85 | 0.957221 | -0.0415761 | -0.0117085

2.9 0.957132 | -0.0392498 | -0.011066

2.95 | 0.957076 | -0.0370596 | -0.0104601

3. 0.957048 | -0.034997 | -0.00988871
3.05 | 0.957046 | -0.0330542 | -0.00934973
3.1 0.857068 | -0.0312238 | -0.00884121
3.15 | 0.95711 | -0.0294988 | -0.00836133

3.2 0.95717 | -0.0278729 | -0.00790841
3.25 | 0.957247 | -0.02634 -0.00748085
3.3 0.957337 | -0.0248945 | -0.00707716

3.35 | 0.95744 | -0.0235313 | -0.00669595
3.4 | 0.957553 | -0.0222453 | -0.0063359

3.45 | 0.957676 | -0.021032 | -0.00599579
3.5 0.957807 | -0.01988T7 | -0.00567447
3.55 | 0.957945 | -0.0188064 | -0.00537086

3.6 0.958089 | -0.0177864 | -0.00508394

3.65 | 0.958239 | -0.0168233 | -0.00481276

3.7 0.958393 | -0.015914 | -0.00455642

3.75 | 0.958549 | -0.0150553 | -0.00431408

Table 7.2: Difference of energy AE = FE; — Ey compared with the finite volume off-mass-
shell corrections. In the first column, the values of R. In the second column, the numerical
data obtained from TCSA. In the third and fourth columns, the numerical values of the integral
_OOOO % e"mRcoshB cosh B (S (,B—I— ’—2’5) - 1) for the RSOS S-matrix and for the Zamolodchikov’s S-

matrix, respectively. The integral is computed for a value of m, obtained self-consistently from the

best fit of the data.



118

Table 7.2: - continued

R | AE(R) | L(R) I(R)

3.8 0.958709 | -0.0142442 -0.00408495
3.85 | 0.95887 -0.013478 -0.00386828
3.9 0.959033 | -0.0127541 -0.00366337
3.95 | 0.959198 | -0.0120701 -0.00346957
4. 0.959363 | -0.0114238 -0.00328625
4.05 | 0.959528 | -0.0108129 -0.00311283
4.1 0.959693 | -0.0102355 -0.00294875
4.15 | 0.959857 { -0.00968962 | -0.0027935
4.2 0.960021 | -0.00917357 | -0.00264659
4.25 | 0.960183 | -0.00868562 | -0.00250756
4.3 0.960346 | -0.00822421 | -0.00237597
4.35 | 0.960505 | -0.00778784 | -0.00225142
4.4 0.960663 | -0.00737512 | -0.00213352
4.45 | 0.96082 -0.00698473 | -0.00202191
4.5 0.960973 | -0.00661542 | -0.00191624
4.55 | 0.961128 | -0.00626603 | -0.00181618
4.6 0.961279 | -0.00593545 | -0.00172144
4.65 | 0.961426 | -0.00562265 | -0.00163172
4.7 0.96158 -0.00532664 | -0.00154676
4.75 | 0.961718 | -0.0050465 -0.00146629
4.8 0.961862 | -0.00478135 | -0.00139007
4.85 | 0.962 -0.00453039 | -0.00131787
4.9 0.962143 | -0.00429282 | -0.00124948
4.95 | 0.962279 | -0.00406792 | -0.00118469
5. 0.962408 | -0.003855 -0.00112331
5.05 | 0.962541 | -0.0036534 -0.00106515
5.1 0.962667 | -0.00346252 | -0.00101005
5.15 | 0.962795 | -0.00328177 | -0.000957836
5.2 0.962916 | -0.00311059 | -0.000908356
5.25 | 0.963039 | -0.00294848 | -0.000861466
5.3 0.963154 | -0.00279494 | -0.000817027
5.35 | 0.96328 -0.00264952 | -0.00077491
5.4 0.963387 | -0.0025117 -0.00073499

7 Confirmation of Bootstrap Results
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Part IIT

Form-Factor Bootstrap

In the last part we have described extensively the S—matrix bootstrap method for various
models. The S—matrix describes the on—shell properties of a massive quantum theory and
therefore determines completely its infrared properties. Also in the ultraviolet regime a
complete description of the theory is given, since it is determined by some conformal field
theory.

One would like to understand the full quantum structure of a theory, that is to be
able to study it over the whole range of distances and to describe the cross—over between
ultraviolet and infrared behaviour. For that it is necessary to calculate the off-shell
correlators. A complete description of the theory is given if we know the whole set of its
correlation functions.

In the bootstrap approach this goal can be achieved through the calculation of form-
factors. In section 4 we have already described the basic principles of this method and
discussed the form—factor axioms. Here we will examine a specific example in order
to show the method at work. We will be able to determine the operator-content of
the theory, and give a general expression for the form—factors. All these results are
obtained by solving the constraint equations for the form—factors without any additional
information about the theory, apart from the on—shell data. In this sense one can consider

the results as a pure merit of the bootstrap principle.

8 Form-Factors in the Sinh-Gordon Model

In order to study the form—factor bootstrap method we choose a specific model, the
Sinh—~Gordon model. This because as we saw ih chapter 4, the bootstrap axioms depend
on the nature of the considered theory. Especially one needs the on—shell data of the
theory, the set of asymptotic states and the full S—matrix.

We choose the Sinh-Gordon model for several reasons. First of all it has only one
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particle and no bound states, which simplifies enourmosly the form—factor axioms. Fur-
ther its S-matrix is of a rather simple form. On the other hand the model is highly
non—trivial as a quantum field theory and exhibits a coupling constant dependence. In
the following section 8.1 we will discuss its properties in some more detail.

In section 8.2 we discuss the form—factor equations for this specific model and choose a
convenient parametrization for the form—factors. In section 8.3 we present our results [73]
on the solution of these equations. We obtain the general solution in a closed form and
also determine the operator content of the theory. In section 8.4 we discuss the cluster
property of the form—factors and identify the form—factors for the exponential operators
e®® where ¢ is the field of the Sinh—Gordon action. Finally in section 8.5 we discuss the
construction of correlation functions. We give some examples of their calculation and
confirm our identification of the exponential operators by calculating their anomaolous

dimensions in the scaling limit.

8.1 General properties of the Sinh-Gordon model

The Sinh-Gordon theory is defined by the action

2

S = /d2 [ (8,6)* — ™ cosh gé(z) (8.1)

It is the simplest example of an affine Toda field theory, namely the real coupled Aﬁ”
theory. It possesses a Z; symmetry ¢ — —¢. Though many features of ATFT have
already been discussed in section 2.4 and 5.2, we will summarize the principle properties
here for the special case of the Sinh-Gordoﬁ theory.

There are numerous alternative viewpoints for the Sinh-Gordon model. First, it can
be regarded either as a perturbation of the free massless conformal action by means of
the relevant operator cosh g¢(z). Alternatively, it can bé considered as a perturbation

of the conformal Liouville action

= [ & [-;(a“¢)2—Aeg¢} , (8:2)

by means of the relevant operator e 9% or as a conformal affine A;-Toda theory (7] in

which the conformal symmetry is broken by setting the free field to zero.
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In a perturbative approach to the quantum field theory defined by the action (8.1),
the only ultraviolet divergencies which occur in any order in g come from tadpole graphs
and can be removed by a normal ordering prescription with respect to an arbitrary mass
scale M. All other Feynman graphs are convergent and give rise to finite wave function
and mass renormalisation. The coupling constant g does not renormalise.

An essential feature of the Sinh-Gordon theory is its integrability, which in the classical
case can be established by means of the inverse scattering method [47]. This corresponds

to an infinity series of conservation laws
iaz Tor1 = 60,1 . (8.3)
The corresponding charges Q, are given by
Q, = f [Typ1dz + O, d3] . (8.4)

The integer-valued index s which labels the integrals of motion is the spin of the operators.

Non-trivial conservation laws are obtained for odd values of s
s=1,3,5,7,... (8.5)

In analogy to the Sine-Gordon theory [100], an infinite set of conserved charges Q, with
spin s given in (8.5) also exists for the quantized version of the Sinh-Gordon theory. They

are diagonalised by the asymptotic states with eigenvalues given by

Qslﬂl,---;ﬁn > = Xs Zeﬂﬁi lﬁl)"')ﬁn> ’ (86)
1i=1

where x; is the normalization constant of the charge Q,. The existence of these higher
integrals of motion precludes the possibility of production processes and hence guarantees
that the n-particle scattering amplitudes are purely elastic and factorized into n(n —1)/2

two-particle S-matrices. The exact expression for the Sinh-Gordon theory is given by [5]

tanh (8 — 1125)

tanh 2(8 +1%2) ’

where B is the following function of the coupling constant g

S(IB7B) = (87)

2

(8.8)
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corresponding to eq.(5.31). For real values of g the S-matrix has no poles in the physical
sheet and hence there are no bound states, whereas two zeros are present at the crossing

symmetric positions
B=1 7 (8.9)
An interesting feature of the S-matrix is its invariance under the map [18, 29]
B—2-B (8.10)

i.e. under the strong-weak coupling constant duality
8T

g— —. 8.11
p (8.11)

This duality is a property shared by the unperturbed conformal Liouville theory (8.2)
[84] and it is quite remarkable that it survives even when the conformal symmetry is

broken.

8.2 Form factors of the Sinh-Gordon model

We will consider matrix elements between in-states and out-states of hermitian local
spinless scalar operators O(z). Since we have only one non degenerate particle the form-

factors do not carry any indices and we can simplify the notation used in chapter 4 and

denote them by

Frf)(,Bla,B%- . 7ﬁn) = (0 l 0(070) | Z(/Bl)az(ﬁZ)a' . 'aZ(ﬂn»in' (8'12)

For local scalar operators O(z), relativistic invariance implies that the form-factors F,

are functions of the difference of the rapidities §;;

Fn(ﬁl)ﬁ%"ﬂﬁﬂ) = Fﬂ(ﬁﬂiﬁﬂr")ﬁﬁ)"') 1i<j . (8]‘3)

Let us discuss the axioms for the form-factors (see section 4) for this special case.
Except for the poles corresponding to the one-particle bound states in all sub-channels,
we expect the form—factors F), to be analytic inside the strip 0 < Imf;; < 27. The form—
factors of a hermitian local scalar operator O(z) satisfy a set of equations (see section

4), known as Watson’s equations [111], which for our case assume the simple form
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Fn(ﬁl)‘ . -,ﬁi:lBi+17' .. HBn) = Fn(ﬁla"-' 7:61'-!-17/81')' - '7ﬂn)5(ﬁi "‘,Bi—i-l) s (814)

n

Fn(,Bl + 2777:7 e 7,Bn—1)ﬁn) = Fn(ﬁZ, L] 7,811331) = H S(ﬂz - ,Bl)Fn(ﬁb e 7,Bn) .
1=2
(8.15)

Since we do not have poles in the S—-matrix, we cannot form any bound states. This
implies that for this case the eq.(4.11) does not give any constraint. The only recursive

equation is given by that for the kinematical poles

- z;}__%(é "’IB)FH+2(IB +7:7r7,87ﬁ1)'ﬂ2; s 7:3n) = (1 - ]i[ S(:B - ,Bz)) Fn(IBIa se e 7/Bn)‘
= (8.16)

The general solution of Watson’s equations (8.14),(8.15) can always be brought into the
form [65]

Fa(Bry--30n) = Kn(B1,- -, 08n) Hijn(ﬁ,‘j) , (8.17)
i<j

where Fiin(8) satisfies (8.14) and (8.15) for the case n = 2, is analyticin 0 < Im <=
and has no zeros in 0 < Im 8 < w. These requirements uniquely determine this function,
up to a normalization constant. The remaining factors K,, then satisfy Watson’s equations
with S, = 1, which implies that they are completely symmetric, 27i-periodic functions
of the B;. They must contain all the physical poles expected in the form-factor under
consideration and must satisfy a correct asymptotic behaviour for large value of 8;. Both

requirements depend on the nature of the operator O.
Let us notice that one condition on the asymptotic behaviour of the form-factors is
dictated by relativistic invariance. In fact, a simultaneous shift in the rapidity variables

results in
F,?(/Bl +A,,32+A,,ﬂn+A) = Fr?(ﬁl,ﬁz,...,ﬁn) 3 (818)

For form-factors of an operator O(z) of spin s, the previous equation generalizes to

Fy?(,Bl + Aa:BZ + Av"'ﬂgn +A) = eSA Fr?(ﬁla/@%'--:ﬁn) b (819)
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Secondly, in order to have a power-law bounded ultraviolet behaviour of the two-point
function of the operator O(z) (which is the case we will consider), we have to require
that the form- factors behave asymptotically at most as exp(kf;) in the limit §; — oo,
with & being a constant independent of 1. This means that, once we extract from K,
the denominator which gives rise to the poles, the remaining part has to be a symmetric
function of the variables z; = €%, with a finite number of terms, i.e. a symmetric
polynomial in the z;’s. It is convenient to introduce a basis in this functional space given

by the elementary symmetric polynomaials o‘,(g")(:zzl, ...,T,) which are generated by [82]

n

H(:E-l—:l),) = Zmn—k o*,(cn)(azl,mg,...,a:n). (820)

i=1 k=0

(n)

Conventionally the oy with k > n and with n < 0 are zero. The explicit expressions for

the other cases are

O’Q:]. 3
oy=¢1+To+...4+zp ,

02 =122+ 2123 + ... Tp1Tn (8.21)

Op = 1Ty ... DTy

The 0',(:") are linear in each variable z; and their total degree is k. For later convenience

we state one more of their properties: they satisfy the recursive equation

2_(n)

crl,(cn+2 o (T, Ty oy Tn) (8.22)

)(—m,m,:cl, ceeyTp) = a',(cn)(ml,mg, N

The Z, symmetry of the model is realized by a map o, whose effect on the elemen-
tary field of the theory is o(¢) = —¢. According to this symmetry we can label the
operators by their Z, parity. The simplest representative of the odd sector is given by
the (renormalised) field ¢(z) itself. It creates a one-particle state from the vacuum. Our

normalization is fixed to be (see sect.4.3)

¢(8) = oL
Fl(ﬁ)”<0|¢(0)l/8>m—-\/§- (8.23)

For the even sector, an important operator is given by the energy-momentum tensor

T,(z) = 27 (: 0,90,¢ — guLl(z) :) (8.24)
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where :: denotes the usual normal ordering prescription with respect an arbitrary mass
scale M. Its trace T)/(z) = ©(z) is a spinless operator whose normalization is fixed in

terms of its two-particle form—factor
er(:BH =im) = o < f1| ©(0) | B2 >in= 27m? (8.25)

where m is the physical mass.
An essential step for the computation the form-factors is the determination of Fyin(8)

]

introduced in (8.17). It satisfies the equations

Fmin(ﬁ) = Fmin(_:B) 52(18) ’

(8.26)
Foin(im — B) = Fon(it +8) .

As shown in [65], the easiest way to compute Fiin(8) (up to a normalization A) is to

exploit an integral representation of the S-matrix. For the Sinh-Gordon theory we have

i zB) sinh (£(1 — £)) sinh £ z8
Fmin(ﬁ,B) _ ./\fexp I:S/;oo 5{3511111(4) h(z(l 2)) hz sin2 (_g)] i (8.27)

T sinh? z 2

‘We choose our normalization to be

— [_4 /Ooo de sinh (27) sinh (£(1 - 2)) sinhg] | (5.28)

z sinh? z
The analytic structure of Fyn(8, B) can be easily read from its infinite product repre-

sentation in terms of ' functions

T Sl Ch R G R e o bl Gt )
B = O L (a2 SRR ORI CEREE NS

(8.29)

Frin(B, B) has a simple zero at the threshold 8 = 0 since S(0) = —1 and its asymptotic
behaviour is given by

fim Fun(B,B)=1 . (8.30)
It satisfies the functional equation

sinh 8
sinh 3 + sinh 512& ’

Frain(im + B, B) Fuin(B, B) = (8.31)

which we will use in the next section in order to find a convenient form for the recursive

equations of the form—factors.
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Since the Sinh-Gordon theory has no bound states, the only poles which appear in any
form—factor Fo(fBi,-..,0n) are those occurring in every three-body channel. Additional
poles in the n-body intermediate channel are excluded by the elasticity of the scattering
theory. Using the identity

1 1 1
(P1 + D2 + p3)2 _ m2 — 8m2 COSh ~2—ﬂ12 cosh 5,813 COSh ?2',623 ) (832)

all possible three-particle poles are taken into account by the following parameterization

of the function

Ql (:Bl’ )ﬁn)
TI cosh 1ﬂ,J

i<j

Ku(Bis---1Bn) = (8.33)

where @' is free of any singularity. The second equation in (8.14) implies that @ is
2mi-periodic (anti-periodic) when n is an odd (even) integer. Hence, with a re-definition

of Q' into Q,, the general parameterization of the form—factor F.(B1,...Bx) is chosen to

be
Fu(Br,---3Bn) = (21, [[ = Foninl Bii) (8.34)

ic; TitTj
where z; = €% and H, is a normalization constant. The denominator in (8.34) may be
written more concisely as det ¥ where the entries of the (n — 1) x (n — 1)-matrix X are
given by X;; = crg-'zj(:nl, eeey@n)
The normalization constants for the form—factors of odd and even operators are con-

veniently chosen to be

H2n+1 = H]}LG y Hzn - HQlLZn_z (835)
with .
_ [4sin(wB/2)\?
where H; and H, are the initial conditions, fixed by the nature of the operator.
The functions Q,(z1,-..,Zn) are symmetric polynomials in the variables z;. As con-

sequence of eq.(8.18), for form—factors of spinless operators the total degree should be
n(n — 1)/2 in order to match the total degree of the denominator in (8.34). The order
of the degree of @, in each variable z; is fixed by the nature and by the asymptotic

behaviour of the operator O which is considered.
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Applying the parameterization (8.34), together with the identity (8.31), the recursive
equations (8.16) take on the form

(=) Quiz(—z,z,21,...,2,) = eD,(z,21,22,...,2n) Qn(T1, T2y . ..y T) (8.37)

where we have introduced the function
= W (g [(:1; +wz;)(z — w :c,)] E [(:c wz)(z +wte; )]) (8.38)
with w = exp(im B/2). Using the generating function (8.20) of the symmetric polynomials,
the function D,, can be expressed as
n k
Da(@,21,ren) = 30 3D [m]a¥rPimao) (1 (g.39)
k=1 m=1,odd

We have introduced the symbol [n] defined by

—'—-Q; (8.40)

8.3 Solution of the recursive equations

In this section, we discuss the most general solution of the recursive equations (8.37) in the
space of symmetric polynomials P of total degree n(n —1)/2. Any independent solution
defines the matrix elements of a local scalar operator in the theory. A clarification is in
order here. In the following we will only consider the form—factors of irreducible operators.
Their form~factors have the distinguished property that they cannot be further factorized
in terms of the elementary symmetric polynomial U,(i"). We will not consider for instance

form~factors of derivative scalar operators of the kind (85)*O. The reason for this is that

they can be simply obtained by multiplying the form—factor F° by the term (5"‘7“?‘—)]‘

8.3.1 General solution for @3 and Q4

To understand the structure of the linear space of the form—factors, it is worth considering
the first polynomials @1, .., Q..
By relativistic invariance, J; has to be a constant which we denote by Agl). For the

same reason (), is proportional to oy, since this is the only symmetric polynomial of

degree 1, and we define Q; = Agz)dl.
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At level 3, the most general symmetric polynomial of total degree 3 is given by
P3 A( )0'3 + A( )0'10'2 + A )0'? 3 (841)

and in order to be identified as a form—factor of the theory it should satisfy the recursive
equation

— Pa(—z,z,z1) = eDi(2)Q:(z1) = —2 20{ AL | (8.42)

The solution of (8.42) gives rise to the most general form—factor {3
= (Agl) - Ags))a;; + AgB)O'lo'Q . (843)

Given Agl), the linear space of form-factors at level 3 is a one-dimensional manifold
parameterized by Ags), for instance.

An analogous result holds for @,. Starting with the most general symmetric polyno-
mial of total degree 6

Py = A(4)o' oy + A( )0'3020'1 + A( )0'40'1 + AM 3+ A( )or 0'1
+ A3 5>+ AH)O’?U] A(4)0'2cr1 + A(4)O'1 ) (8.44)

and imposing the recursive equation (8.37) with initial condition A?), the final form of
Q4 is given by ‘
Q.= Ag4)0'30'20'1 + Ag4)(o'4af +o2) (8.45)
with
A+ Al = A7)

Also in this case the linear space of form—factors at level 4 is a one-dimensional manifold.

It is interesting to note that both solutions can be written as a sum of determinants'!

o 2
Qs = Aﬁ‘” 1+ Af’) 7 [les )
-1 0 0 092
(a1 [2]0’3 0 [2]0’1 [3]0’3 0
Q= A" 0 o 2o || +4A | 1 (2o [Blo
0 0 o3 0 01 [2]03

11'We use the notation [|A|| = detA.
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Let us discuss some properties of Qy,...,Q,. First of all at any step of the recursion
process a new free parameter enters the solution. Secondly, the partial degree'? of Q,
(n = 1,...,4) does not exceed n — 1. Hence, all these form—factors will be at the most
constant for 8; — oco. Finally, seeking solutions of the form~factor equations which vanish
as B; — oo, there is only a unique class of polynomials, i.e. §)2 and @, identically zero and

Qs ~ o3. In [54] it has been shown that these are the first form-factors of the elementary
field ¢.

8.3.2 Properties of the general solution @,

Important properties of the polynomials @, can be easily obtained by analyzing the
recursive equations (8.37). As a first step let us show that the partial degree of the
polynomials @), satisfies

deg(Qn) <n—1. (8.46)

We have seen above that this property is true for Q1,..,@4. To prove that this persists
for higher polynomials, the cases (a) @, # 0 and (b) @ = 0 have to be considered

separately.

o In the case (a) the proof is done by induction. Let us assume deg (@) < n—1. Since
D,, is bilinear in (") (see eq.(8.39)), the partial degree of Qni2(—2,z,z1,-..Zx)
in the variables z1,...z, is smaller or equal to » + 1. But the partial degree of
Qni2(Z1, 22, - - - Tnyo) is equal to Qpnio(—, T, @1 ..., Zn), therefore the partial degree

of Q.42 must be less or equal to n -+ 1.

o In the case (b), the space of the solutions is given by the kernel of eq. (8.37), i.e.

Qn+2(—m,m, .. .,$n+2) =0 . (847)

In the space of polynomials P of total degree ﬁ"—tg)é—'ﬁ"—ll, there is only one solution

of this equation, i.e.
n+2

Qn+2 = H(:E, -+ :I)j) . (848)

1<J

12Note that the partial degree in each z; determines the asymptotic behaviour of the form-factor and

is fixed by the total number of o(®)’s in each term of the sum.
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This polynomial has partial degree n + 1 and coincides with the denominator of

eq. (8.34).

We have therefore shown that the partial degree of @, must be less or equal to (n—1) for
any spinless irreducible operator. A first consequence of this statement is that the form—
factors of such operators cannot diverge in the limit 8; — oo. Secondly, it is now easy
to understand the appearance of one additional parameter at each step of the recursion
process. This is simply because the total dimension of the space of the polynomials
@n is given by the dimension of the space of the polynomial Q,_,, summed with the
dimension of the kernel. Since the kernel is a one-dimensional manifold, the dimension
of the space of solutions increases exactly by one at each step of the recursion. With the

initial conditions dim (@) = dim (Q,) = 1, we finally obtain

dim (Q2n-1) = dim (Q2n) =7 . (8.49)

Therefore the most general form—factor at level n of irreducible scalar operators span a

finite linear space which can be expressed in terms of a basis QF
QZn(Agzn)’ ] A$1271)) = Z AIE;Z”)QZYI (850)
p=1

Qan-n (AT, Ay = ST gln-ngp
p=1

Each of these polynomials defines the matrix elements of a quantum operator of the Sinh-
Gordon model. Note that the dimension of the linear space of the form-factors grows
exactly as the number of powers of the elementary field #(z), i.e. ¢*, k < n. Therefore
we expect to identify the tower structure of the form—factors with the space of the matrix

elements of the composite operators ¢*.

8.3.3 Elementary solutions

An interesting class of solutions of the recursive equations (8.37) from which we can

extract a basis for the form-factor space is given by!3

Qn(k) = [IM;5(k)]| (8.51)

13For simplicity we suppress the dependance of Q, (k) on the variables z;.
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where M;;(k) is an (n — 1) X (n — 1) matrix with entries

M;ij(k)=09_;[i—7+k] . (8.52)
These polynomials, which we call elementary solutions, depend on an arbitrary integer &
and satisfy

Qu(k) = (=1)""Qu(—k) . (8.53)
Although all @,(k) are solutions of (8.37) not all of them can be linearly independent.
The reason is that the dimension of space of the solutions at level N = 2n (or N = 2n—1)

is n at most. The first non trivial Qn(k) are given by the determinant

Qak) = || Hlor Bt tles (8.54)
(-1} [k]o
Using the trigonometrical identity [n]* — [n — 1][n + 1] = 1, it is easy to see that they
satisfy eq.(8.37) (with A} = 1) for any integer value of k.

The whole set’ of form—factors of the elementary field ¢(z) and the trace of the
energy-momentum tensor ©(z) can be easily expressed in terms of the Q,(k). In fact
the form—factors of the field ¢(z) are given by Q,(0). Note that the form—factors of ¢(z)
are automatically zero for even n, in agreement with the Z, parity of the model. On the
contrary, for odd n they vanish asymptotically when §3; — oo, as follows from the LSZ
reduction formula [54]. Concerning the form—factors of ©(z), these are given by the even
polynomials Q2,(1), which tend to a constant when 3; — co.

We conclude that the most general solution can be written as a linear combination of
the elementary polynomials @,(k). Ounly the first few of them are linearly independent,

and we can write the general solution as

Qan(AP™, . ALY = 3" ARIQu(p) (8.55)
p=1

an_l(Agzn—l)’...,A£12n—1)) _ ZAl(,zn_l)anq(P) )
p=1

This is the same as eq. (8.50), but now with the elementary solutions as base-vectors.

It is interesting to note that that the polynomials contain only terms appearing in the

determinant |o2;_j|.

14The first representatives of them were computed in [54].
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Consider an n-particle form-factor given through the polynomial given by eq. (8.55).
The coefficients in the sum will automatically determine all form-factors 7 < n, because
of the recursion-relations (8.37).

Usually, though one is taking an opposite approach, that is one fixes the 1-particle
form-factor and wants to determine the structure of the more particle form-factors. In
this case, the general structure of the coefficients A} is not known. The first ones can be
obtained through the recursive equations (8.37) starting by fixing the constant A} and
finding the relations between A} and A3, then determining the relations among A? and

so on. Here we give the result of such a procedure:

A
A
A A3 = AL A3 (8.56)
Ay A= A7-[243
A7 A7 =AY - (1] - [B3DA3 A5 = A3+ (3]43

8.3.4 A special class of operators O"

We consider a special class of solutions, which will allow us to understand better the space
of local operators. We define our operators O" through their n-particle form-factor, given

as

F?" = H, fI Frmin
i<j

This is obtained using the special solution to our recursive equations Q,, = |o2i—;|, which
cancels the denominator [[(z; 4 z;) in the form-factor. As a first example let us analyze
the operator @%: We want Q3 = o402 — 03. From (8.43) we see that this automatically
requires A} = 0.

Now we can easily generalize this result to general n. Again require the condition
that F°" = H, [T F™", that is that the corresponding @, = det Ug?lj. Then @, = 0 for
m < n.

To show this consider

Qn(_mamymly . -mn) = ’0'2(;:1_—_72) - mza'g?__jz.)_z (857)
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Now adding —z? times the column z to the column 7 + 1 we find

Qu(~2,2,21,...25) = o) (8.58)

which is identical 0, since the last column is 0. Since D, is not zero we conclude that
Qn_2 = 0. This further implies in general that all F: = 0 for m < n.

We want to find the coeflicients A2(O™) which give us these polynomials, in order
to perform the base-transformation. Up to now we have only well-defined F°". For this

form-factor the polynomial @, is given by the following coeflicients:
Al =0, fori<mn

and

A =aY) - ([”glljljfm)-l for n odd

n—1 -1
Az = qg(g—) = ((2 cos(wB/2))G—1)(med2) H[z]) for n even (8.59)
i=1
In order to construct form-factors FY , with k > n, we simply use the linearity of
our original base and the recursive equations. Therefore we can choose in general the

coeflicients to be
AZ(O™) = bkmaqi(k) (8.60)

In fig. 8.1 we have exhibited the structure of these operators. A similar diagram can
be drawn for the operators with even index. This clarifies the structure of the space of
states. At every level we have one linearly independent solution more, which we have

now constructed explicitly.

8.4 Cluster-property and exponential operators

We can associate a quantum operator ¥,(z) to any elementary solution @.(k) (k # 0).
To identify such operators it is interesting to analyze the cluster property of their form-
factors. By cluster transformation we generally mean the behaviour of a form—factor

under the shift of a subset of the rapidities, i.e.

FO(Bi+ A, ... )Bm + A, BmstysPn) - (8.61)
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or - .
}

or 0 - -
bt

o' 0 ©°

(91 03 (1)5 OT

Figure 8.1: Tower like structure of the operators O™

Taking the limit A — oo, F9* can be decomposed into two functions of m and (n —m)
variables respectively. It is easy to prove that both functions satisfy all the set of axioms

for the form-factors. Therefore they can be considered as form-factors of some operators

Op and O,

AILH;O Fr?a(lgl + Av' . ',:Bm + A7;Brrt+1a'“ . aﬁn) = Frgb(ﬁla' v ,ﬁm)Fr?fm(:Bm+1a-'~7:Bn)

(8.62)
Shortly,

O, = Oy x O .

We will prove that the operators ¥, are mapped onto themselves under the cluster

transformation, i.e.

Ty — T x T . (8.63)

To this aim, let us introduce some notations.

It is useful to define the cluster-operator C,, (acting on the symmetric functions) by

means of

Con (f(@1,- -y 2n)) = F(z18™, 226", e €S Ty, Tn) M T (8.64)

For example,
Cl(a§")) =edzi +24...+ 2, =0l + g (8.65)

where we have defined

A (n—k) _ _(n—k
G, =0, )(:cn._k+1,:z:n_k+2, ey Tp)
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One easily finds that
k
(o) = o350 (8.0

=1
Since the cluster properties are fixed by the leading term of this sum, we have
Cm(al(:)) ~ cr,(nm)emA&,(;:nm) m <k

Cm(a',(cn)) ~ 0',(3"1)6’CA m>k

’ (8.67)
Now let us consider separately the cluster property of each term entering their parametri-

zation

P e1Br) = HE Q) [T 72200 (5.68)
1<_7 J

From eq.(8.30), we have

ﬁFnﬁn(ﬁa) — ﬁan(ﬁg) ﬁ Frin(Bij) - (8.69)

i<y t<j 1<j=m-+1

Using eq.(8.67), the cluster property of the elementary solution Q,(k) is given by

Con(@n(F)) ~ h(n,m) [k] Qm(k) Qn-m(k) (8.70)

where

h(n,m) — eAm(n——Egil—) (0_1(nm))n——m
Concerning the denominator in (8.68), we write it initially as

TT(e: +25) = o210 (8.71)
x<_1

where the index (n — 1) indicates the dimension of the matrix. Applying again eq. (8.67),

we obtain

Con (10§21 ~ B(mym) [Jo§i [0 [l6 G| (8.72)

2i—7

Choosing the normalization constants H¥ and HY as
HY =plk] , Hy =p*[K] (8.73)

and using egs.(8.69), (8.70) and (8.72), we conclude that the form—factors of ¥, are
mapped onto themselves under the cluster transformation. Since this is a distinguished

property of exponential operators [107], it is natural to identify the operators ¥, with
the fields e*9¢
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8.5 Calculation of correlation functions

The form—factor approach was developed in order to calculate correlation functions. Even
if we have now analytic expressions for the form—factors, we still need to do the integrals
and the infinite sum in (4.2). In general it is not clear how to rewrite this in a useful form,
and to possibly extract a simple expression or a differential equation for the correlation

functions. Such results were only obtained for the Ising model [6, 113].

In this sense one can criticize the form—factor approach. However by numerical inves-
tigations it has been found that the form—factor series converges extremely fast [54, 119],
and therefore provides a quantitative good approximation for the correlation functions.
This fact was explained in [26] with the following argument.

At threshold (8 — 0) the minimal two particle form-factor Fy,;n(8) goes linearly to
zero since S(0) = —1. Now consider for example the four particle contribution to the two
point function. If the form—factor was constant, the contribution would be

e—-4]\1r

2

4
/Hdlgle—]\[rzi‘coshﬁi ~
1
1

In momentum space this corresponds to a branch point at ¢> = —16M? of the form
In(q® + 16 M?). But since we know that F;, vanishes at threshold, an additional factor
Tic; ,8121 appears in the integral, which leads to a behaviour of the form E%I—r— Its effect is
that the branch point gets softened to the form (¢ + 16 M?)3.

The same suppression effect exists for all higher contributions. The m—particle branch
cut would be, on grounds of phase-space alone of the form (q2+m2M2)"‘/4_1, but actually
gets softened to (g* + m2]VI2)'"2/4“1. This means that one expects for the whole range
of the coupling constant, that the correlation function is approximated by the lowest

contributions of the form—factor series.

Let us give here one example of such a calculation in the Sinh—Gordon model. The
ultraviolet behaviour of the Sinh-Gordon model is governed by a free massless theory
with ¢ = 1. In the infrared regime on the other hand it is massive and therefore ¢ = 0.
The change of the central charge going from short to long distances is dictated by the

c-theorem and expressed in terms of the spectral representation of the two—point function
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of the trace of the stress-energy tensor [20] as

Ac= /:o dpei(p) (8.74)

with
6
723

6(r") = [ &2 (0(2)0(0))conn

a(p) = 5—5ImGp’ = —p*)

The two-point correlation function of ® can as usual be expressed in terms of the form-

factors, giving

1292 1 1dB,...dby ,
Cl(,u) -3 Z (2TL)' f (2#)2” IFZ(?l(:Bh . 'ﬁ2n)|

[
P 5(stinhﬁi)5(2m‘coshﬂ; —p) . (8.75)
For the Sinh-Gordon theory Ac = 1 and the convergence of this series has been studied
in [564]. It was shown that the sum rule is saturated by the two-particle contribution.
Let us now analyze the anomalous dimensions of the operators ¥; which we conjec-
tured in section 8.4 to be related to the exponential fields e*9¢ [73]. Also this involves the

computation of the correlation functions, since in order to extract the scaling behaviour

we need to analyze

Gr(z) = (T(z) U(0)) = (8.76)
X rdBi...dB, n
- nzzzo / mek(ﬁl e Br)EYE (B ... 1) exp (——mr ; coshﬁ,-)
Let us present the method of how this can be done [102]. In the ultraviolet limit we

expect this correlation function to have the scaling behaviour
G(z) ™0 (mr) e (8.77)

Since the kth term of the series (8.77) behaves as (In mr)* when mr — 0 a straightforward
investigation of the series is not efficient in order to extract the scaling dimensions.

Let us rewrite the series (8.77) in the following form,

Gi(z) = i (=)

n=0

/jo Ho(Bi,... Bu)e ™ s bBigg 43 (8.78)

n!
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where

H, = ((”2:))" F¥(By...0.)F¥(Bn...B) (8.79)

This function has now exactly the form of the grand partition function of a gas [39] with
the coordinate dependent fugacity z;(8) = %ﬁe‘mr coshBi  {Jsing this observation one can
use the standard expansion techniques used in statistical mechanics.

As a first step observe that because of (8.62) also the quantities Hy, fulfill the cluster—

property

Ho(Biy- s By Brar + Aoy B+ A) 2% Hi(Byy oo, B) Hnt(Bria + -, Bn) + O(e74)
(8.80)
This allows us to apply a cluster—expansion (see e.g. [39]) by expanding the logarithm of
Gi(z) as

In Gk(:v) = — i /ﬂk(ﬁl)---,Bn)e—mrszOShﬂjdﬁl,_ c,dBn (8.81)
n=]1

with the coefficients

Ho(Bry- - Bn) = Zn: T (- 1

g=1 n=n; +...+ngq q kl'kz' [P kq'

X Hm (ﬁla s )ﬁm)an (:Bn1+17 s 7/Bn1+n2) ce an (/8711+---nq_1+17 oe- 7:871) (8'82)

H, is a symmetric function of its arguments. Because of (8.80) it has the property
ﬁn((ﬁl’ ree uBlaﬁH—l + A, cre 7ﬂn + A) t’_°)° O(e—A) ) ! # 07 ! '7_lé k (883)

This is why the integrals in (8.81) behave as

/ﬂn(ﬁl,. .. ,ﬂn)e_mrzc"swidﬂl ...dBn mr0 2In(mr) / ﬂn(O,ﬂg, ey Bn)dBs ... dB,
(8.84)

This integral is convergent due to (8.83). It follows that one can write
In Gi(z) ~ —41n(mr)hs (8.85)

where

hi = %;fdﬁz,..dﬁnfln((),ﬁz,...,ﬂn) . (8.86)
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With this formula at hand it is a simple calculation to extract the scaling dimension
of the operators ¥y at lowest order. We find hi(g) = —k?g?/8w. This coincides with the
anomalous dimensions of the exponential operators e¥9%(#) calculated in the free massless
bosonic theory which governs the ultraviolet limit. This confirms the identification of

these operators with the exponentials, as we have conjectured in section 8.4.
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Conclusions

In this thesis we have presented our results on the application of the bootstrap principle in
two dimensional massive integrable field theories. We have applied this method at verious
levels. We started out with the investigation of the on—shell data, i.e. the S—matrix, then

turned to the calculation of the form—factors and finally constructed correlation functions.

The space we have dedicated to the various subjects reflects the situation in those
fields of research. While the S—matrix bootstrap is well understood and has been widely
applied, the form—factor bootstrap method is still at the beginnings of its development.
Ounly for few models the complete set of form—factors has been determined in a closed

form.

The final goal of the bootstrap method is to determine the off-shell correlation func-
tions. Even though one has a closed expression given by the form—factor expansion which
gives an extraordinary good quantitative approximation, the goal is to express them in
some form which allow analytical calculations. It is a general hope that the correlators
should satisfy some differential equation as it is the case in the few known examples of
massive models and also in conformal field theory. To achieve this goal is a topic of future

research.

Let us resume the major new results which have been obtained in this thesis. We
started out by investigating S—matrices containing only scalar particles. Since in this case
the form of the single S-matrix elements is constraint severely, it is possible to use an
axiomatic approach in order to classify all consistent bootstrap systems. We have shown
how the method works, introducing the concept of the ‘bootstrap tree’. For a simple class
of models we have also obtained the result, that the only consistent S-matrices originate

from some kind of affine Toda field theory.

After reviewing some results on S-matrices for affine Toda theories we concentrated
on a specific series of models: My 5,13+ @ 5. These models have also a spectrum of only
scalar particles, but the S—matrix element of the fundamental particle exhibits zeros in
the physical strip besides the poles which generate the bound states. This causes some

pathologies in the S—matrix as ‘spurious’ poles which cannot be explained by the usual
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bootstrap mechanism. We showed how the bootstrap principle has to be enlarged for
these cases and how then the S—matrices become consistent. Finally we discuss the

model Mj g+ @, 4, which exhibits similar features.

In order to describe degenerate particles one needs to take care of the internal sym-
metry in addition to the dynamical structure prescribed by the bootstrap equations. We
discussed a fruitful approach for perturbed minimal models in section 6. It was based on
the idea to formulate the S—matrices in the language of graph-state models. This gives
a very simple interpretation for the crossing symmetry, ultraviolet limit and the boot-
strap equations. We have shown some specific applications of these methods. Using the
bootstrap equations we have calculated the full S-matrix for the models M, 13 + &,
for 7 > 4, which is the case when they contain degenerate particles. Also we have shown

that the bootstrap closes on those particles.

As a specific example we have discussed the hard square lattice model. It is one of
the simplest geometries for scattering theories exhibiting non—trivial degenerate particles.
We have classified all consistent scattering theories in this geometry. Finally we have
focused our attention on a model of particular interest in this class. It is the tricritical
Ising model perturbed by the subleading magnetization operator (My s+ @, ). For this

specific theory two different proposals for the scattering theory exist.

This ambiguity lead us to review the methods which can be used to confirm a proposed
S-matrix. We sketched in simple terms the TBA and TCSA, applying them to models
discussed before. We then concentrated specifically on the problem to decide, which of
the two scattering matrices for My s+ @, ; is the right one. Using the theory of finite-size

corrections we find the consistent one.

In order to describe the off-shell properties of a massive integrable field theory it is
useful to calculate the form-factors. These can be used to get a quantitative approxima-
tion for the correlation-function. In the last part of the thesis we showed that they can
be also used to determine the operator content of the field theory. We have carried out a
detailed analysis for the Sinh-Gordon model, and showed how the local operators of the

theory are organized in a tower like structure.

In the field of the application of the bootstrap method there are still many open
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quesions. It is my believe that especially the off-critical properties of the theory deserve
more attention. As shown in chapter 8 the form—factor bootstrap approach has turned
out to be a very powerful means in order to classify the operator content of a theory and
calculate the full set of form—factors. I hope to be able to dedicate my future research to

the generalization of this method.
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