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2 Lino Notarantonio

Introduction

The aim of this thesis is the study of Dirichlet problems in domains with a
“fragmented” boundary. More precisely, we are given a relatively compact open
set D C M (with sufficiently smooth boundary 8D), M being R? or a Riemannian
manifold, and a sequence (E}) of closed subsets of D (with smooth boundary); we
want to study, for every f € L?(D), the asymptotic behavior of the sequence (up)
of the solutions to the Dirichlet problems:

—Auy = f, in D\ Ej,
(Pr)

up € Hé(D \ Eh).

If we let A — 400, it is not evident what could be the possible limit of the sequence
(up) (should it exist).

Assume that, for each b € N, the closed set E}, is the disjoint union of A balls
of radius 7, > 0 contained in the unit cube of R%; then it has been proved by J.
Rauch & M. Taylor in [R-T] that the behavior of the sequence (up) is linked with

the behavior of the sequence

d—-2 :
det hry ™%, if d > 3,
ap =

h/|logry|, if d=2;

more precisely, we have the following relation

+o0 0
ah—e{ — uh———>{

ce [01 +OO[, Uc,
where u. is the solution to the Dirichlet problem

~Au,+cu.=f, inD
(Pe)

u. € H{(D).
We remark that the convergence of the sequence (uj) to u. is proved in [R-T, §6]
using probabilistic methods.
Yet in a probabilistic setting, G.C. Papanicolaou & S.R.S. Varadhan studied in
[P-V] the associated problem of diffusion, also when the centers of the balls are
randomly distributed in D.
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In an analytical framework, this kind of problems has been studied by D.
Cioranescu & F. Murat in [C-M, §§1 and 2], arranging periodically the “holes”
Eyin R%, d > 2.

Problems as (P;) have been also studied by E.Ya. Hruslov, A.V. Marchenko
using the orthogonal projection method in [Hrul], and by a capacitary method
in [Hru2], [Ma-Hrul]; we mention also the papers by E.Ya. Hruslov & A.V.
Marchenko, D. Cioranescu & J. Saint Jean Paulin in [Ma-Hrul], [C-SJP1],
and [C-SJP2] for other results on this argument. In a Riemannian framework,
problems similar to (P;) have been studied by I. Chavel & E.A. Feldman in
[Ch, Chapter IX], [Ch-F2]; using probabilistic methods, they prove, among other
results, the convergence of the eigenvalues. We mention, in this framework, several
papers of S. Ozawa [O1]-[O5] in which, using the Green’s function method, the
convergence of the spectrum is analyzed. Still in a Riemannian framework, G.
Dal Maso, R. Gulliver & U. Mosco in [DM-G-M] studied similar problems, also
‘when an increasing number of handles is attached to the manifold. We mention
also the papers of P. Bérard, G. Besson, S. Gallot, I. Chavel, G. Courtois, E.A.
Feldman [Bes], [Be-Ga], [Coul], [Ch-F1], [Ch-F3] in which these authors studied
(with different methods) the case of a Riemannian manifold with a submanifold
of codimension greater than or equal to 2 excised, with particular attention to the
convergence of the eigenvalues.

Again in R, the (sequence of) problems (Py) may be included in the framework
of the Relaxed Dirichlet problems, introduced by G. Dal Maso & U. Mosco in
[DM-M1], [DM-M2]. A typical Relaxed Dirichlet problem can be written as |

—Au+pu=7Ff, inD
(RDP)
v € Hy(D),

where p is a (positive, Borel) measure which belongs to a suitable family My (D)
of measures (cf. Notation below). We point out that the problem (RDP) has to
interpreted in the weak sense: we say that the function u is a (weak) solution to

(RDP) if uw € H}(D) N L*(D, p) and it satisfies

(WF) /Vu-Vvd:z:—{-/uvdpz/fvda:,
D D D

for every v € H}(D) N L*(D, p).
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In this framework we can consider the sequence of problems

—Aup +prup=f, inD
(RDP;)

up € H%(D),
where (u1) is a given sequence of measures in M(D). Given a sequence (Ej) as
above, we can define a sequence (u1,) of measures, denoted by (cog, ) (cf. Notation
below), such that the problem (RDP}), for each h € N, reduces to (Py); cf. [DM-
M1].
Associated with (RDP), there is an energy functional

Fu(v)zLIVU|2 d:c—l—/l.)vz d,u,——2‘/Df'v dz,

for v € HY(D) N L*(D, p).

It is possible to prove (cf. [DM-M2, Theorem 2.4]) that the solution to (RDP)
(exists, is unique and) may be characterized in variational term as the minimum
point of the functional F,(-) on H3(D). So we are led to consider the sequence of
functionals (F,, ), for (us) C Mo(D), and its I-limit: it is not difficult to prove,
indeed, that the solutions of (RDP}) converge to the solution of (RDP), whenever
(Fu,) T-converges to F,.

Following [DM-M1], we may introduce in the space My(D) a notion of
convergence, called y-convergence, in the following way: we say that a sequence
(un) 7y-converges to a measure p € Mg(D) if and only if the sequence of the
corresponding functionals (F, ) I-converges to F,. For D C R? it turns out that
the space My(D), equipped with the topology indiced by the 7y-convergence, is
metrizable and sequentially compact; we refer to [DM-M1], [DM-M2]| for more
details.

With these motivations, we define on a Riemannian manifold M a similar space
M (M); given a sequence (pp) C Mo(M), we introduce the sequence of the energy
functionals F,, : L*(M) — [0, +o0], defined by

/J‘\I[]Vvlg +v?] dV, + /Mvz dpn, ifv e Hi(M)

+00, otherwise in L?(M),

Flih (v) =

and study the I'-limit of this sequence. A general result in I'-convergence says that
any sequence of functionals defined on a separable, metric space, admits a sub-

sequence which I'-converges to a lower semicontinuous functional F. Considering
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the sequence (F), ), we then know that there is a functional F which is the I'-limit
of (a sub-sequence of) (F),, ). Hence our interest shifts to a possible representation
of F on H{(M) as
() Fo) = [ (190l + 9 vy + [ o d,

M M
for a suitable measure p € My(M).
In the second section of the first chapter we prove that there exists a measure
p € My(M) such that (I') holds. This integral representation is a consequence
of an abstract result concerning the representation of bilinear forms defined on
a Riesz space. To prove this abstract result, we used an extension to bilinear
forms of the comnstruction of the Daniell integral. We point out that this method
of representing the limit functional was first used by G. Buttazzo, G. Dal Maso &
U. Mosco in [Bu-DM-M1] in a slight different context.
Let E be a Borel set and, for a measure p € M(M), let us introduce p
p(E N ), the restriction of the measure p to E. In the third section of the

first chapter we prove the continuity of this restriction operator under the «-

()=

convergence, i.e. if (x4 ) is a sequence in Mo (M) which y-converges to u € Mo(M),
then we have that the sequence of the restriction () y-converges to u%, not for
every Borel set E, but for “sufficiently many” sets E, in a sense made precise in
Proposition 3.9 & Theorem 3.10. ’

In the third section we also show that, under suitable assumptions, the measure
p occurring in (I-lim) is absolutely continuous w.r.t. a given Radon measure
v € Mo(M) (cf. Theorem 3.14). An ingredient in the proof is the fact that a
sequence (pp) C Mo(M) ~y-converges to p € Mo(M) if and only if the sequence
of the corresponding p-capacities, cap,,, (), (cf. Notation below) converges weakly
(in a sense introduced by E. De Giorgi & G. Letta in [De G-L]) to cap,(-); cf.
Proposition 3.8 in this respect. We must notice that in the case M = R, Theorem
3.14 has been proved by G. Buttazzo, G. Dal Maso & U. Mosco in [Bu-DM-M2|
and the Proposition 3.8 has been proved by G. Dal Maso in [DMZ2].

In the fourth section we show that the «-convergence of measures is equivalent to
the strong convergence in L?(M) of the resolvent operators. This is sufficient to

establish a convergence result for the spectrum.

The second chapter is devoted to illustrate what we could call “the derivation

method”: it consists in an application of the Theorem 3.14 in the first chapter
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plus a (sort of) super-additivity result for the harmonic capacity (cf. Lemma
4.2). It can be said that this method reduces the proof of the convergence of the
problems (P}) to the study of the asymptotic behavior of the harmonic capacity
of the holes Ej. We use this method to give an explicit example that shows how
to approximate the problem (RDP) by means of a suitable sequence of problems
(Pp); in this framework we also mention the papers by A. Braides, G. Dal Maso
& A. Malusa [Br-Ma|, [DM-Ma].

More precisely, in this chapter we are given a self similar fractal K, asintroduced by
J.E. Hutchinson in [Hu), of (Hausdorff) dimension « and its associated Hausdorff
measure restricted to K, H ﬁ‘( ; we exploit the self similar structure of K in order
to build up the “holes” Ej by an iterating procedure. We show that the sequence
of the solutions (uy) of (Ph) converges to the solution u of (RDP) with

(Frac) p=cH.

In the first section of this chapter we introduce the family of self similar fractals,
and some notation we shall need. In the second section the construction of the
sequence (FEj) is carried out, through an iterative procedure, starting from a
“model set” E. The constant c¢; in (Frac) is explicitely given in term only of
the measure H*(K) and the (harmonic) capacity of E. We conclude this section,
stating the main result (Theorem 3.1) and presenting a pictorial example. The
third section is devoted to the proof of the main result; a crucial step is a (sort of)
“superadditivity” result for the capacity of very fragmented sets: we remark that
in general the capacity, as set function, is not superadditive.

It is interesting to note that in the “trivial” case of the Lebesgue measure (or of
the d — 1-dimensional Hausdorfl measure restricted to an hyperplane) the usual
homogenization technique can be seen as a particular case of this method. Our
construction applies to fractals of dimension larger than d — 2: this limitation is
natural, at least in our framework, since each Borel set E, having finite Hausdorf{f
measure of dimension less than or equal to d—2, has capacity zero (cf. [Z, Theorem

2.6.16]).

In the last chapter we are interested in the asymptotic behavior of the Dirichlet
problems on domains in a Riemannian manifold M, with randomly distributed

small holes. More precisely, given f € L?(M), we consider the sequence of
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problems

—Aup+up=f, inM\F,

(Rn)
up € Hé(M \ Fh),

where (F},) is a sequence of random sets contained in M (cf. Definition 3.4). Note
that in this framework each solution uj is a random variable. In particular, we are
interested in finding conditions which assure that the sequence of solutions (up)
of (R4) converges in probability, as h — o0, to the solution of the deterministic
Relaxed Dirichlet Problem

“Aututpu=7f, inD
(D)
u € Hy(D),

where p is a “deterministic” measure of My(M), that can be explicitly computed
in term of the distribution law of the sets FY,.

We take as “random holes” the following family of closed sets: for each h € N

def i
Fh = U Brh(mh)7
1<y

where I, = {1,2,...,h}, 74 > 0, % € M, for every i € Ij,. The conditions we look
for are given in terms of appropriate assumptions on the family of independent,
identically distributed random variables (zi)icrs,, distributed, for each h € N,
with law B, on the “size” of the sequence of the radii (r,), and on a suitable
assumption on the measure 8 € Mo(M) (cf. Assumptions 3.5). We use also a
result proved by M. Balzano in [Bal, Theorem 3.1] and which can be also applied
in our Riemannian framework. We prove that under qualitative assumptions, that
are weaker than in [Bal] (even in R?, which was the framework in [Bal]), we
have still the convergence in probability of (up) to u.

We mention (besides the aforesaid paper of G. Papanicolaou & S.R.S. Varadhan
[P-V]) also J.R. Baxter, R.V. Chacon, M. Kac, S. Ozawa in [B-Cha-J], [B-J], [K],
[06], [O7], where problems similar to (R}) are studied, with different techniques
(Brownian motion methods the first three papers, and by Green function method
in the latter two). The fluctuations around the solution of the limit problem have

been investigated e.g. by R. Figari, E. Orlandi & S. Teta in [Fi-Or-T|.
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In the first section of this chapter we introduce some notation; in the second
we introduce (besides the meta-harmonic capacity) also the harmonic capacity,
and we show some preliminary results on the harmonic capacity of concentric
balls in Riemannian manifold. In the third section we introduce the problem,
our assumptions, and prove our main result (Theorem 3.6). The method of our
proof follows the lines of that in [Bal]. We use in particular the fact that the
measure v, arising as the v-limit of the sequence (x4 ), can be characterized as the
least superadditive set function greater than or equal to cap,(-); moreover we need
also to analyse the asymptotic behavior of the expectations and the covariances of
certain random variables (cf. Theorem 3.3). Then the proof of the Theorem 3.6

follows essentially from a “superadditive argument” for the harmonic capacity.

This thesis is a collection of papers: more precisely, the first chapter is taken from
[N], the second chapter is taken from a joint paper with A. Braides, [Br-N], and
the third is also a joint paper with M. Balzano, [Ba-IN].
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1. Asymptotic Behavior of Dirichlet Problems
on a Riemannian Manifold

Section 1. Preliminaries & main notation

This section is devoted to a series of definitions, notation and preliminary results,
which will be used in the sequel. For the definition of a Riemannian manifold we
refer e.g. to books [Au], [Ch], [G-H-L].

Let M be an oriented, connected Riemannian manifold of class C?3, with dimension
dim M ¥ d > 2; let g be its metric tensor. Associated to g there is the Laplace-
Beltramt operator A, acting on real valued functions defined on M.

We recall that M is a metric space and the distance d(z,y) between any two points
z,y € M is given by the infimum of all piecewise C* curves joining z and y (see
e.g. [G-H-La, Proposition 2.91]); the diameter of any set E C M is denoted by
diam E & sup{d(z,y) : z,y € E}. We say that E is bounded if diam E < +oo0.
By B,(z) we denote the open geodesic ball of center z € M and radius p.

We derive, from our regularity assumption on M, the following property.

Property 1. The metric components (g;;){—; belong to C%(M) and, for every
relatively compact open set A C M, there exists x > 0 such that:

d d

(11) R E) S gile)EE <n) (€

i=1
for all z € A, and for all £ € RY.

We shall use the Einstein convention over repeated indices, viz. a; b def D a;b.
By (-,-)y we mean the scalar product in T,M, the tangent space of M at z, and
by | - |; we mean the norm induced by this scalar product. If the subscript g is
omitted, it is meant that the metric considered is the standard Euclidean metric
in RA. |

By B(M) we indicate the class of the Borel sets of M.
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The Lebesgue integral of a measurable function f : M — R can be expressed

locally as

[ ravi=[ (/@) o) d,
M #(U)

where (U, ¢) is a local chart of M.

For more details about the Lebesgue integral on a Riemannian manifold, we refer
to the book of Aubin [Au, pp.29-30]. The measure of a Borel set E of M will be
denoted by V(E); sometimes with a little abuse of language, we speak of V(FE) as
the Lebesgue measure of E.

We define L?2(M) as the Hilbert space of all (equivalence classes of) measurable
functions f : M — R for which the integral of f2 is finite; its scalar product is

def
(f,h) = fh dV,
M
and the associated norm is given by

17 4 / £ v,
M

From now on, the term Borel (resp. Radon) measure will always mean positive
Borel (resp. positive Radon) measure. We say that a Borel measure p is a Radon
measure if u(K) < oo for every compact subset K of M. Given a Borel measure
p on M, we denote by L?(M,u) (resp. LY (M,pn)) all (equivalence classes of)

loc
measurable functions defined on M whose p-th power is integrable (resp. locally

integrable) on M, for p > 1. ‘
Let X be a vector field; we say that X is measurable if X op™! : n(U) — R is

a measurable function for every local chart (U,n) of M. Following [Ch], let us
define

LX(M) = {X : / |X|2dV, < 400, X Borel function on ]VI} .
M

Given any two continuous vector fields X and Y, we define the inner product on

L2(M) by
(X,Y) 200y = /J“I(X,Y)ngtq.

Given a function f € L?(M), we say that Y € £?(M) is a weak derivative of f if

(Y, X) = —(f,divX),
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For all C?! vector field X with compact support on M.

Since there exists at most one weak derivative Y, we write in analogy with the
smooth case ¥ = Vf; in local coordinates Vf = (¢*D;f,...,g%D;f), where
D;f = -5@5;. Here and after ¢g*/ will denote the inverse matrix of gij-

The Sobolev space H? (M) consists of those measurable functions f € L2?(M)
possessing weak derivative.

We remark that H'(M) inherits the scalar product

(fsR)mrary = (F,R) L2 any + (V £, VR) 22y,

so that H'(M) is a Hilbert space.
With Hj (M), we shall indicate the closure of C2°(M) with respect to the norm
induced by the scalar product in H*(M).

In a Riemannian manifold we can define in a natural way the following functional
(1.1) s (u) :f (Va2 +u?] dVy, for u € H(M),

M
which, in local coordinates, becomes

Tas(u) = /111 (gij(:E)DiuDju + u?) Vgldz;

we shall use both the notation (cf. Remark 1.1 below), and write
/ (gij(a:)DiuDju +u?) dV, = / HVulg + u?] dVj.
A M

We define the set function c(A4), called the meta-harmonic capacity of A4, for
A € B(M), as

c(4) =inf {@ps(u) : w € H'(M), v > 1 in an open neighbourhood of A} .

1.1 Remark. The notion of capacity is intrinsic, that is, it does not depend on
the choice of the coordinates. We say that a property P(z) holds quasi everywhere
(q.e.) if this property holds for all z € M except for a set Z, with ¢(Z) = 0.

Since each function in H*(RY) (has a representative which) is defined up to a

set of capacity zero (see [Z]), this property continues to hold for the functions in
H'(M), because of the Property 1.
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1.2 Definition. We define My(M) as the family of all Borel measures on M

that vanish on all sets of capacity zero.

1.3 Example. Let A and B two subsets of M, B C B(M). Define

(0, ifc(ANB)=0;
0o 4(B) =

400, otherwise.

Then oo 4(+) belongs to Mo(M).

1.4 Example. The volume form V, belongs to My(M).

Now let us consider u € Mo(M); since every function w € H'(M) defined up to a

set of capacity zero, the following functional

<I>M(u)=/ u?dp
M

is well defined on H*(M) for every p € Mo(M) (possibly ®ar(u) = +o0).

1.5 Notation. Besides ®5; and ¥js, we shall introduce two functionals ¢ and
¥ which take into account the boundary condition "u = 0 on 0M” for both ¥/
and ®p5: we define ®(u) = Par(u) and ¥(u) = ¥pr(u) if u € H3(M) while
®(u) = ¥pr(u) = +oo otherwise in L?(M).

1.6 Definition. We say that a set A C M is quasi open (resp. quasi closed,quasi
compact) if for every € > 0, there exists an open set (resp. closed, compact) U,
such that

c(UAA) <,

where A here denotes the symmetric difference between two sets. A set A is quasi
open if and only if A° is quasi closed, where A° is the complementation w.r.t. M;
moreover countable union (or finite intersection) of quasi open sets is still quasi

open.

A function f : M — R is said to be quasi continuous in M if, for every ¢ > 0 there
exists a set E C M, with ¢(M \ E) < ¢, such that the restriction f, : F — R is

continuous.
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Let us introduce the following set function, called p—capacity: cap, : B(M) —
[0,400] defined by

(1.2) cap,(A4) = inf {\IJM(u) + AI(u —1)%du:u e H&(M)} .

It has been proved (see [DM-M1, Example.5.4]) that in general this set function
is not a Choquet capacity (cf. [Cho, Definition 1.1]), since cap, may be not
continuous along decreasing sequence of compact sets.

Let £ be a family of subsets contained in M; following [De G-L] we say that £ is
dense in P(M) (class of all subsets of M) if for every pair (K,V), K compact, V
open, K C V, there exists E € £, such that

KcECYV.
We say that £ is rich in P(M) if for every chain (E;)ier in P(M), the set

is at most countable.

By chain we mean a family of subsets of M such that T'is a non-empty open
interval of R, E; is compact for every ¢t € T and E, C int(E;) for every s < t,
t,s €T

1.7 Proposition. Every rich family is dense.

Proof. For the proof, we refer to [DM2, Proposition 4.8]. This proof depends
essentially on the Urysohn Lemma, which holds true in any normal topological

space, such as a differentiable manifold. O

1.8 Lemma. Let o : P(M) — [0,+00] be an increasing function. Let E(c) be

the family of all subsets of M such that E is compact in M and o(intE) = o(E).
Then E(a) is rich in P(M).

Proof. For the proof, we refer to [De G-L, Proposition 4.7]. O
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We now show that on a differentiable manifold it is possible to construct suitable
coverings.

Let (W;)ier be an open cover of a (paracompact) differential manifold M, I C N.
For every W; there exists an open set V; such that V; CC W; and (V;)ier is an
open cover. Let ¢; € C°(W;) such that ¢; = 1 on V; and 0 < ¢; < 1 on Wj;
define, for all i € I and for every p € (0,1)

Ui(p) = {= € Wi : ¢i(z) > p}.
We have that, for every 7 € I,
Vi cC Ui(p) CC Wi
hence the family (U;(p))ier is an open cover of M.

1.9 Lemma. Under the above assumptions, for every Borel measure o there exists
a family of pairwise disjoint open sets U = (U;)icr such that U; CC W; for every
1€l

Jvi=m\ {Uav,—]

i€l iel
and o (U;c; 0U;) = 0.

Proof. Let U;(p) as above; let us consider the function fi(p) = o(Ui(p)) for every
i € I. This function is positive and decreasing on (0,1), so it has, at most, a
countable set of discontinuity points (p%), i € I, h € Nj let us assume that p is a

continuity point for each f;, 1 € I and consider

U1 =U1(p) and Uz—:Uz(p)\ lU1U...UUi_1J

for every ¢ > 2. Each U; is open and U; NU; = @ for every ¢ # j. Let us suppose
that ¢ € M \ ;c; 0U;; since (Ui(p)) is an open cover, then z € Uk(p), for some
k € I. By definition of the U;'s, this implies that z € U; for one index j € I; hence
z € J;er Ui The other inclusion is immediate.

Since p is a continuity point for each f;, ¢« € I, we have that o(8U;(p)) = 0 for
every 1 € I. Now it is easy to prove the last assertion: in fact 0U; = 0U1(p) and
forevery1 € 1

6Ui_|_1 =0 [Ui+1(p) \ |U1 u...u U,']] C BU,'.H(p) uaou;...oU;.
This yields, by induction, that ¢(0U;) = 0, for every i € I; hence o(|J;c; U:)
>-icr 7(0U;) = 0. The proof is complete.

Ol IA
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1.10 Lemma. Under the assumptions of the above Lemma and for a finite I, for
every € > 0 and for every Borel measure o, there exists an open cover (U;)icr of
M such that U; CC W; and

o(UiNUj;) <e

for every 1,5 € I, 1+ j.

Proof. Let fi(p) = o(U;i(p)), ¢ € I, as in the above lemma. Let us assume that p
is a continuity point for each f;, 7 € I. For a given ¢; > 0 (which may depends on

1), if p is sufliciently close to p, p < 7, we have

a(9Ui(p)) < o (Ui(p) \ Ui(p)) = o(Ui(p)) — o(Ui(p)) < &i/2.

This implies, in particular, that o(8U;(p)) = 0 for every continuity point p for f;,
for every ¢ € I. Let 0 < p < p and define

Ui = Us(p), Us=Uip)\ [i(p)U--- U Uia(p) |

for every i > 2. It is easily seen thatA(Ui)ie_r is an open cover of M; if U;NU; # O,
then we have that

Ui U; € [Ui(p) \Ti(7)] U [Us(0) \T3)] -

Given € > max{e;,e;} > 0, we have that o(U; N Uj) < € if we take p sufficiently

close to p, since p is a continuity point for both f; and f;.The proof is complete.

O

Section 2. A representation theorem

As we said in the Introduction, this section is devoted to the representation of
the I'-limit functional F'; the main result is the Theorem 2.3 which is stated in
the first part of the section. The second part is devoted to a generalization of the
Daniell’s construction of the integral for the bilinear forms. In the third part, we

prove Theorem 2.3 using the abstract result of the second part.
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2.1 Definition. Let be X a metric space, (Fi)s a sequence of functionals
Fp: X —[0,+0c0] and let F : X — [0, 4o00].

We say that the sequence (F} ), I'-converges to F in X if and only if the following
conditions (a) and (b) hold true:

(a) for every sequence (us)s in X converging to some u € X as h — +oo, we have
F(u) < liminf Fp(up);
h—-+co
(b) for every u € X there exists a sequence (up)s such that

F(u) > lim sup Fp(un).
h

—+ 00

The following compactness result holds (cf. [DG-F, Proposition 3.1]).

2.2 Proposition. Assume that X is a separable metric space. For every sequence
(Fy)1 of functionals there exists a subsequence (Fy, )r which I'-converges in X to

a lower-semicontinuous functional as k — +co.

Let (11)r be a sequence of measures belonging to Mo(M) and for every h € N,
let us consider the functional Fy : L2(M) — [0, +o0], defined by

U(u)+ ®4(u), if ue Hj(M),

Frp(u) =
+ o0, otherwise in L?(M)
where
(2.0) Pp(u) = f u?duy,
M
and

U(u) = /J‘\I [| Vu |2 +u®]dVy.

We stress that F}, takes into account the boundary condition ”"u = 0 on dM™.
By the previous proposition, a subsequence of (F})s, ['-converges in L?(M) to
a functional F' : L?(M) — [0,+o00]. The following result provides an integral

representation of the limit functional F'.
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2.3 Theorem. Suppose that Fy, L Fin L?(M) as h — +oo; then there exists
a measure p € Mo(M), such that

)= [ Va4V, + [ atdu, vue Hi(M),
M M
while F(u) = +oo if u & HY(M).

2.4 Remark. To prove the theorem we define the functional & : Hj(M) —
[0, +o0] by

(2.1) P(u) = F(u) — ¥(u);
we have to show that

B(u) = / Wdp  Vue HY(M)
M

for a suitable measure u € Mo(M). This will be performed through various steps.

2.5 Definition. Before giving the properties of the functional ®, we want to make
precise what we mean by eztended valued quadratic functional F : X — [0,+400],
acting on any real vector space X. We say that F is a quadratic functional if it

satisfies the following conditions

F(0)=0, F(u)>0, F(tu)=1#F(u), Vi€ R

F(u+v)+ F(u —v) = 2[F(u) + F(v)].

Since the functional F' may admit the value +oo, we shall follow hereafter the
following (usual) convention about the algebraic properties of R: 0 -00 =0,

+00 +t =400 and —oco +t = —oo for every t € R.
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2.6 Remark. It is possible to prove that F : X — [0,+4o0] is a quadratic
functional on X if and only if there exist a linear subspace Y of X and a bilinear
form B:Y xY — R such that

B(z,z) ifzeY
F(z) =
4o fzgY.
It is clear that in this case
Y={z€X:F(z) < +oo}

and B(z,y) = 3 [F(z + y) — F(z) — F(y)] (polarization identity), for every z,y €
Y. The proof of this fact is similar to the one given in [Y, Chapter I, p. 39).

2.7 Theorem. Let u,v € H}(M) and let ® be the functional defined by (2.1).
Then:
(i) if 0 <u <wv ae on M, then B(u) < &(v);
(i) B(jul) < B(u);
(111) ®(u+v) < ®(u)+ ®(v), if u Av =0 a.e. on M;
(iv) ®(u) = limp, ®(up), for every increasing sequence of positive functions (up)
such that up, — u g.e. on M;
(v) ®(-) is a real extended quadratic functional.

Proof. (i) Let (vs)n be a sequences in Hj (M) converging to v, such that
U(v) +&(v) = Lim [®(va)+ @a(va)l-

Since v > 0, it is not restrictive to take vy > 0. It is easy to see that for every h
U(uAvg)+ P(uVop) = Y(u)+ ¥(vs)

@h('u, A vh) < @h(vh)

and u A vy tends to u, while u V v, tends to v; by I'-convergence we have

T(u) + ®(u) < limhinf [T(u Ave)+ n(u Avp)l,
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and by the lower semicontinuity of ¥
U(v) < limhinf [@(u Vo).
This two relations together give
T(u)+ T(v) + &(u) < limhinf [T(uAvp)+ @r(uAvn)]+
+ ]imhinf U(uVup) <
< limhinf[\lf(u) + @4(vn) + ¥(vp)] =
= U(u) + B(v) + ¥(v).

This implies that ®(u) < ®(v) and so (i) is proved.
(i) Let u be a function in H§(M) and let (up)r be a sequence in H{ (M)
converging to u in L?(M), such that

T(u) + &(u) = Lm[¥(us) + Bnlua)];

since |up| — |u| in L?(M), @h([u|) = ®p(u) and ¥(|u|) = ¥(u),
U(ful) + &(|u]) < Lminf[¥(jun]) + 2a(funl) <
< Hmhinf[\lf(uh) + @h(uh)] =
= U(u) + ®(u) < +oo.

This gives ®(|u|) < ®(u), since ¥(|u|) = U(u) for every u € Hj(M).
(iil) By definition of I'-convergence, there exist two sequences (x4 ) and (vs)s

of non-negative functions converging in L?(M) respectively to v and v, such that
U(w) + @(u) = im[¥(up) + 2a(un)]

U(v) + &(v) = ]i}rln{ifz(vh) + ®4(vr)).
Since up, V vy converges in L2(M) to Vv = u + v as h — 400, we have
U(u+v) + $(u +v) < Eminf[P(up V on) + Sa(un Vor)] <
< liminf[W(un) + U(vn) + Pa(un) + Pp(vp)] =
= T(u) + ¥(v) + &(u) + &(v).
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Since ¥(u + v) = ¥(u) + ¥(v), and w A v = 0, we have proved that ®(u + v) <
®(u) + ®(v).

(iv) As up > 0, it is possible to prove that there exists a sequence (v4)s in
H;(M) such that 0 < v, < up a.e. and v, converges to u strongly in H(M).
In the case M = R? the proof is given in [DM1, Lemma 1.6]; the general case
can be obtained by a partition of unity subordinate to a given atlas. Since the
functional ®, by definition, is the difference between the limit functional F', which
is lower semicontinuous, and the functional ¥, which is continuous w.r.t. the
strong topology of Hj (M), we get that ® is lower semicontinuous on the strong

topology of H}(M), hence we have, using also (i),
d(u) < ]imhinf P(vp) < limhinf ®(up).

On the other hand, we have from (i) ®(uz) < @®(u) for every h, hence
lim sup;, ®(up) < ®(u), and the conclusion follows.

(v) From Proposition V in [S] we have that for every u,v € Hj(M), t € R, the
limit functional F is quadratic, according to the Definition 2.5; hence we get that
the functional ® itself satisfies the same conditions above, since the functional ¥

is quadratic. The proof of Theorem 2.4 is now complete. , ]

In the remainder of this section, we give an integral representation of the Limit
functional ®, occurring in the Theorem 2.3, by means of a measure p belonging to
the class Mo(M). The methods we use do not depend mostly on the “concrete”
spaces which enter in Theorem 2.2, rather on the structure of such spaces. So
we suppose that a real valued quadratic functional G is given on a Riesz space £
and we assume that G satisfies the Hypotheses 2.10 below. We consider also the
bilinear form @3 associated to this functional; by means of a Daniell’s type extension
result adapted to our situation, the bilinear form £ is extended to L x E, where £
is the monotone class generated by £, and the measure p is constructed by means
of this extension. At this point, we turn to our “concrete” functional & and we

give the required representation.

2.8 Definition. Let £ be a (real) vector space of (real) functions defined on an
arbitrary set . We say that £ is a Riesz space if |f| € £ whenever f € L.

If £ is a Riesz space, we define LT = {f € L : f > 0}, where the order is defined

pointwise.
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2.9 Remark. Since f+‘ = |f| = f, we have that £ is a Riesz space if and only
if it contains ft (or f~) for any f € L. This implies that a Riesz space is
closed under the operations V and A, defined by (f A g)(z) = min{f(z), g(z)} and
(f V g)(z) = max{f(z),g(z)}. Therefore f € LT if and only if f~ = 0.

2.10 Hypotheses. Let G : L — [0,+00o[ be a quadratic functional, according
to Definition 2.4, which satisfies the following properties:
(i) if u,v € £ and 0 < v < v, then G(u) < G(v);
() G(jul) < G(w)
(i1) G(u +v) < G(u) + G(v), if u,v € L such that u Av = 0;
(iv) G(u) = limp G(uy), for every increasing sequence in £ of positive functions
(up)n converging pointwise to u.

(v) G() is a real quadratic functional with finite values.

2.11 Definition. A monotone class S on a set {1 is a class of real valued functions
defined on ) such that:
(1) if (un)p is an increasing sequence in S having a majorant in S, then u =
sup, up € S; '

i) if (u)p is a decreasing sequence having a minorant in S, then v = infp up € S.
g seq g

Let £ be a Riesz space; the monotone class generated by £ (i.e. the smallest
monotone class generated by £) is still a Riesz space which will be denoted by L.
Let us define for f,g € £

8f,0) = £1G( +9) — G(f) — Gls)]

From Remark 2.5 it follows that § is a bilinear form. Since B(f,f) = G(f), 8
is the bilinear form associated to the quadratic functional G. Observe that 3 is

symmetric.

2.12 Definition. Let £ be a Riesz space. We say that a bilinear form 3 defined
on L x Lis:

- positive if
B(u,v) >0, for every u,v > 0, u,v € L;

- local if, given u,v € £ with |u| A |v| = 0, we have f(u,v) = 0;
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- continuous on monotone sequences if, given u,v € L, we have
,B('u,,'v) = lim :B(u7vh)7
h~--00
where (vp), is an increasing sequence in £ such that v = SUPpeN Vh-

The following three propositions show that the functional G, satisfying Hypotheses
2.10, fulfills the three properties listed in Definition 2.12.

2.13 Proposition. Assume Hypotheses 2.10 and let us suppose that u,v > 0;
then B(u,v) > 0.

Proof. Since f(-,-) is the bilinear form associated to G, we have

B(u,v) = Jim, Glu+ t;i = G)

?

since u + tv > u; then the proof follows from the property (i) of Hypotheses 2.10.
Ul

2.14 Proposition. Assume Hypotheses 2.10; if f,g € L such that |f| A |g| = 0,
then B(f,g) = 0.

Proof. 1t is not restrictive to assume that both f,g are non-negative; as G is
positive, we have the inequality §(f,g) > 0. To prove the opposite mequahty, by
definition of # (Remark 2.6), we have to prove that

G(u+0) < Gla) + Go);
this follows from the property (iii) of Hypotheses 2.10. O]

2.15 Proposition. Assume Hypotheses 2.10, let f,g € L, f > 0 and let (gn)n be

an increasing sequence in L such that g = supycn gn. Then

ﬁ(f:g) = h—-]iI-{—loo'B(f’gh).

Proof. It is not restrictive to assume g > 0 and g5, > 0. By the Schwarz’s inequality

| B(f, 91 — 9) *< B(F, F)B(gn — 9,91 — g) = G(f)G(gn — 9)-
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From Hypotheses 2.10-(v), we have

G(gn — g) = 2G(g) +2G(gr) — G(gn + 9);

taking Hypotheses 2.10-(iv) into account, we have

Jm Glgn —g) = 4G(g) — G(29) = 0

and the conclusion follows. . ]

Definition 2.16—Condition D;. We say that a functional I : L — R satisfies
the conditions (Dq) if

(1) Iis linear, i.e. I(af + bg) = aI(f) + bI(g), Va,b € R and Vf,g € L;

(2) I is increasing, i.e. I(f) > 0, for every f € LT; '

(3) I is continuous on monotone sequences, i.e. if f € LT, fr, \, 0 as h — +oo0,

then limy I(f) = 0.

A functional I satisfying (D;) is called a Daniell integral.
Definition 2.17—Condition D,. We say that a functional 8 : L x £L — R

satisfles the Daniell’s conditions (D) if for every fixed %, ¥ contained in £, the
functionals B(%,) and fB(-,7) satisfy conditions (D;), that is
(i) B(%,-) and B(-,7) are linear, i.e. B(%, avy + bvy) = aB(T,v1) + bB(T,v2) and
Blavy + bua,v) = af(u1,v) + bB(uz,v), for every a,b € R and for ug, us, vy,
vy in L;
(i) B(w,-) and B(-,) are increasing, i.e. 3(%,v) > 0 and B(u,) > 0, for every u,
v contained in L7
(iii) A(@,-) and B(-,7) are continuous on monotone sequences, i.e. if (up), (vy)
are two sequences contained in £ with up \, 0 and v, \, 0 as h goes to co then
lim B(%@,vs) =0 and ii_inwﬂ(uh,i) =0. '

—+ oo

The following result is classical in the theory of Daniell’s integral (see e.g. [C—W—
S, Chapter III]).

2.18 Proposition. Let £ be a Riesz space and let L be the monotone class
generated by L. Let Iy be a linear form satisfying the Daniell’s condition (D;)

above; then there ezists an unique positive linear form

I:L—R
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still satisfying the conditions (D), such that I = I, on L.
It is possible to prove a similar extension result for bilinear form.

2.19 Theorem. Suppose that (8 is a bilinear form satisfying the conditions (D)

above; then there ezists a unique bilinear form
ﬁ LxL—R
which still satisfies (Dy) and extends (.

Proof. For every v € LT, B(+,v) may be extended to a form E(-,v), defined on Z,
which still satisfies (D1). Set for every v € £, v =vT —v™,

B(-yv) = B(-v+) = B(-,v7).

Hence we have

,’BV:EXE————>R.

" For everyu € L, u > 0, ﬁ(u, -) still continues to satisfy (1) and (2) of (D). In order
“to prove condition (3), we first remark that, as a consequence of the definition of
the monotone class, each element of L is between two elements of L; with this
remark, it is easy to realize that the continuity of E(u, -) holds true.

Therefore the form E(u, -) satisfies (D) for every u € E"‘; by Theorem 2.18 there
exists a unique form ,g(u, -) defined on L that extends E(u, -) and such that B(u, )
satisfies (D1) on L*. For every u € L we define

Blu,) =BT, — Blu~,").

As before, it is possible to prove that E still satisfies the Daniell’s conditions (D)
w.r.t. the first variable. Therefore E satisfies (D3). Let us prove the uniqueness
of the bilinear form ,B\ . Suppose that there exist two extensions of bilinear form
B, let us call them B; and B2, both satisfying the Daniell’s conditions (D3); let us

consider for a fixed u € L,

A= {'U €L: Bi(w,v) :ﬂ2(u7v)} .

Since Bilcxc = B2lecxe = B, A contains £; moreover A is a monotone class,

since B; and P2 both satisfy conditions (D). So A is a monotone class containing
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L and contained in f, hence A = E, by the minimality of L. This shows that
B1(u,v) = B2(u,v) for every v € £ and for every v € L.
Now fix v € £ and consider

B = {u € E:,Bl(u,v) = ,82(11,,’0)} .

Arguing as in the previous step, it may be proved that B coincides with L and
B1(u,v) = Bz2(u,v) for every u € L and for every v € L.
This concludes the proof. ]

2.20 Remark. We stress that if B is local or symmetric, then the same property
holds for .

2.21 Remark. We recall that a family £ of subsets of ) is called é—ring, if the
following three conditions are satisfied:

(1) © € ¢&;

(2) if A and B arein &, then AU B and A \ B belongs to &;

(3) if (Ey) is a sequence of elements of £, then [, cn B is in £.

We say that a family F of subsets of (2 is called a o-ring if it is a é-ring and

(4) if (Fp)s is a sequence of elements in F, then U Fj isin F.
h
If £ is a é-ring, we indicate by &, the o-ring generated by £; it may be proved

that £, consists of all unions of increasing sequences from & (cf. e.g. [C-W-S,
Proposition 2.1.11]).

A set function p defined on a é-ring £ is called measure on £ if the following

conditions are satisfied:

(5) w(Uy Ar) =3, w(An), for any finite or countable family of disjoint elements
of £ whose union is in &;

(6) p(A) >0, for every 4 € &.

2.22 Theorem. Let L be the monotone class generated by L and let B :
L x L — R be a bilinear form which is local, positive, symmetric and continuous

on monotone sequences; let us suppose that L satisfies the Stone condition:

feL=fAleLl.
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Denote by & the class £ = {E C Q : 1g € E} and by u the set function
p & — [0,+00] defined by u(E) = ﬁ(lE,IE), where B is the eztension of B
given by Theorem 2.19. Then £ is a §-ring, p is a measure on &, L is a subset of

L3(Q,&,p) and
(2-2) B(f.9) = /Q fgdp,

for every f,g € L.

Proof. The proof of the theorem is achieved through six steps.
Step 1. weLl,t>0= {u>1t}CE. Infact for every t > 0 we have

h(u—t)*]Al=[h(u—uAt)Al] €L
by the Stone condition. Since 1{,»:} is the limit of the increasing sequence
h[(u —t)*] A1 which is bounded from the above by u/t, we get 1(y5¢) € L.
Step 2. Eec&,ue L = ulg€ L. Itis not restrictive to assume u > 0; in this
case, ulg is the limit of the increasing sequence (u A hlg). Since u A hlg € E,
which is bounded from the above by u for every h , we get ulg € L.
Step 3. E,F €&, EC F implies

(2.3) B(is,1r) = Bl1E,15) = u(E)

This is a consequence of the local property of ﬁ , see Proposition 2.14 and Remark
2.20. Moreover this property implies also

B(le,1p\g) =0, VE,F € E.

Step 4. i is a measure on the é—ring £. £ is a é—ring because L is a monotone
Riesz space. The fact that p is a measure, follows from conditions (D;) and from
the local property of §: in fact, taking Step 3 into account, we have that

o the finite additivity of p comes from the linearity of 3;

e the countable additivity follows from the continuity of § along monotone
sequences.

Step 5. Let v € E, E € &; then

E(U,lE)Z/ulEdpzfudp.
Q E .
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Assume, for a moment, that u is a positive step function

n
U = E a;la;;
=1

then, by Step 3 and by the local property of ﬂ, we can also suppose that 4; C E.
By the linearity,

n

B(u,1p) = aif(l4;,1x) Z a;p(4 Za,,u (4; N E).

=1 i=1

Ifue E, u > 0, there exists a sequence of step function ¢, € L (cf. Step 1)
such that 0 < ¢, ” u; so the conclusion follows from the continuity of 8 along
monotone sequences.

Step 6. Ifu,ve L, then

Blu,v) = /Q wwdp.

We may assume that both uw,v > 0. The equality above is true for every v which
is a step function. The proof is then achieved by a monotone approximation

argument, as above. U

Now we take up again to our concrete functional ® defined by (2.1). In order
to apply the abstract part of this section, we introduce H3 as the class of all
quasi—continuous Borel functions f : M — R for which there exists a function
u € H}(M) such that u = f q.e. on M and ®(u) < +oco. Since every function
v € Hi(M) has a quasi—continuous representative which is unique up to a set of

capacity zero (see [Z]), we can define G on Hg by setting G(f) = ®(u).

2.23 Remark. We stress that G(f) = G(g) if f,g € Hs and f = g up to a set

of capacity zero.

2.24 Remark. From Theorem 2.7-(v), we have that Hg is a vector space of real
functions defined on M. With this definition, G is a finite real valued quadratic

functional on Hg.
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2.25 Remark. From Theorem 2.7-(ii), we find that Hs is a Riesz space.
We define the bilinear form

(23) B(f,9) = F[G(f + ) ~ G(f) ~ Glo)]

which results to be local, positive and continuous on monotone sequences, as it has
been proved in the Propositions 2.13, 2.14, 2.15 above. We apply Theorem 2.19,

which assures the existence of the extensmn B enjoying of the same properties of
B on the monotone class Hg ) generated by Hg. Using Theorem 2.22 we represent B
by means of a measure p. This measure gives, in turn, the required representation

of the limit functional ®, as we prove in the following proposition.

2.26 Proposition. Let ® : H}(M) — [0,+00] be a functional satisfying
conditions (i),...,(v) of Theorem 2.7. Then there ezists a measure p € Mo such
that

(2.4) ®(u) = A{uzd

for every u € Hi(M).

Proof. Let £, be the o-ring generated by €. The measure p of Theorem 2.22
can be extended to a measure defined on the Borel o—field on M, which we still
denote by p, such that u(A) = 400 whenever 4 is not in £; from Remark 2.28
below, it follows that g is in M. :

From Theorem 2.19 and from the formula G(f) = B(f, f), we have that

(2.5) o) = [ s

for every f € Hgp. By definition of G, this implies that (2.4) holds for any
u € Hi (M) with &(u) < +oo.
To complete the proof let u be a function in Hg (M) with ®(u) = 400 and, in

order to get a contradiction, let us suppose that

/ w?dy < +oo.
M

({ful > e}) < &2 / W?dp < +oo,
M

For every € > 0
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so A = {|u| > €} € &,; by a monotone class argument, there exists an increasing

sequence (gp)n in Hg, such that g, — +oco on A and let
fo=gn A (Jul - &)
then f; € Hy and limy, fr = (Ju] — €)7, so that (cf. Theorem 2.7-(iv))
®(ul - e) =l 8(fu) =lim [ fidu= [ (= )" P dp.

h b Jnr M

Since (|u] — €)™, as € goes to zero, converges to |u|, by Theorem 2.7-(iv) we have
S(lul) = [ |Juf'du < +oo.
M
So by theorem 2.7-(i) and (v)
®(u) < 2[®(u™) + &(u7)] < 48(|u|) < +o

and we get the contradiction. 0

2.27 Remark. From Remark 2.6 it is clear that F(u) = 4oco if u ¢ HL(M),
where F'is the I'-limit functional in Theorem 2.3.

Proof of Theorem 2.8. The functional ® defined by (2.1) satisfies the conditions
(1),..., (v) of Theorem 2.7, so it is enough to apply Proposition 2.26 and take into

account the above remark. The proof of Theorem 2.3 is then complete. ]

2.28 Remark. The measure p is absolutely continuous with respect to capacity,
that is u(E) = 0 if E is a Borel set of capacity zero. In fact, by definition, E € &3
if and only if 15 € ﬁ; if E has capacity zero, then 1g coincides q.e. with the
function identically zero. Hence 1g € ﬁ; and (cf. Remark 2.23)

W(E) = B(1g,1g) = G(1E) = G(0) = 0.

2.29 Remark. It may happen that the é-ring &g is not closed under the
complement operation, hence in general A° does not belong to &3 if 4 € &3,

as the following example shows.
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2.29 Example. Let us consider 2 a bounded open set of R? and let C be a
closed subset of 2; let

- U= 00C.
In this situation Hg consists of Hj(Q) functions that are zero on C, up to a set
of capacity zero, and this property still continues to hold for functions in Hs. By
definition, F € £ if and only if 15 € .ﬁ@, i.e. 1g = 0 g.e. on C; so the property to
be zero on C is true if E C 2\ C, then there is no hope to have E° € €.

Section 3. Continuity of the restriction operator

In this section we face the problem of the continuity of the restriction operator u?
w.r.t. the y—convergence. This kind of result was firstly tackled in the euclidean
case in [DM2].

We introduce also the notion of image measure (see [Dell-Me] for more details)
which allows us to extend a previous result of [Bu-DM-M2, Theorem 5.2]
to Riemannian manifolds (Theorem 3.14). Moreover the equivalence stated in
Proposition 3.8, which concerns the equivalence between the y—convergence of
(er) to p and the convergence of the corresponding p-capacities, is essential in
proving Theorem 3.14, as it was in the Euclidean case. For the definition of the
p—capacity, we refer to Section 1 in this chapter.

For every open submanifold D in M and for every v € M, we shall denote
by FP : L*(D) — [0,+00] the functional defined by
|Vu|? +u?] dV, +/ w?dv, if uw € H}(D),
(3.0)  FP(u)= /D [ 4, D (D)
+00, otherwise in L?(D).
Note that w = 0 on 0D.
For ease of notation, when D = M, we shall set FM = F,.

3.1 Definition. With the notations of section 2, we say that the sequence
(pn)n of measures in Mo(M) y—converges to p € Mo(M) if the sequence of the

corresponding functionals (F),, )5 I'—converges in L*(M) to the functional F,.

We have the following result
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3.2 Proposition. Let (u1)n be a sequence in Mo(M) and let p € Mo(M). The

following are equivalent:

(a) (pn)n y-converges to p;
(b) (F:Hl )n I'-converges to Ff in L*(D), for every open submanifold D in M.

3.3 Remark. For every open submanifold D in M, let us define

(3.1) FP(u) = inf {HmsupFﬁ (un) tup —uin Lz(D)} )
h

and

(3.2) FP(u) = inf {limhinf FP2(up) :up — uin LZ(D)} :

If D = M we denote the corresponding functionals by F. and F_. By definition
we have FP(u) > FP(u) for every v € L?(D). By a diagonal argument, it is
easy to see that the infima in (3.1) and (3.2) are achieved by suitable sequences;
moreover F and F2 are lower semicontinuous on L?(D) [DeG-F, Proposition
1.8]. |

It is easy to realize that Ff is the I-limit in L*(D) of Fﬁ if and only if
F f = FP = FP on L?(D); therefore the inequalities

FPu) < F2(w) < FP(u)  on Hy(D),

are equivalent to the ['-convergence in L*(D) of F to F MD .

3.4 Remark. Let D be an open submanifold of M. If u € Hj (D), we can extend
it to the whole manifold M by putting u = 0 outside D; so we get u € H} (M)

and this extension is still denoted by u.

Proof of the Proposition 3.2. (b) = (a) It is trivial, since we can always take
D =M.

(a) = (b) Let us assume (a), which is equivalent to suppose Fy = F, = F_ on
L?(M). Let us prove that
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Let w € H}(D) with FP(u) < +oo. By (3.2) there exists a sequence (un)n
converging to u in L?(D) such that

limhinf FP (up) = FP(u);

since FP(u) is finite, we may assume that, up to a subsequence, up € H}(D);
hence up € H (M) and F2 (us) = F, (un), so that

FP(u) = liminf F,0 (us) = liminf Fy, (ua) 2 F-(u) = Fu(u) = FP2(u).

It remains to prove that
D D
Fo<F/.

Let u € H}(D) and such that F?(u) < +o0; it is not restrictive to assume that
the support of u is compact. This is possible since for every u € H}(D) there
exists a sequence v, € H}(D), with suppvs compact in D for every h, such that
vy, — u strongly in H}(D) and vs?2 /" u? q.e. in D; therefore FP(vy) — F2(u).
Now extend the function w by putting u = 0 outside D, so that v € Hj(M) and
Fy(u) = Fy(u) = F_(u). By (3.1) there exists a sequence (up)s converging to u
in L?(M) such that

Fy(u) = F2(u) = lim sup F,, (us) < +o0.
h
This yields that up € Hi (M) for h large enough and

lim sup/ [[Vul? +2?] dV, < limsup F, (un) < +o0
h M h

so that (uy)s converges weakly to u in Hg(M). Let ¢ be a smooth function, with
compact support in D such that ( =1 on suppu; then {uj; belongs to H}(D) and
Cuy, converges strongly in L?(D) to {u = u (by Rellich’s theorem); hence

FP(u) SlimhsupFlﬁ(Cuh) =

— lim sup{ / [1Van[2¢? + 2¢un({Vun, V¢)g + w3 V(] 4V, + / Cuddus} <
h D D

< limsup F,, (us) + 2/ [(u(Vu, V), —I—uz{VC[g] dV, = F,(u),
h D

where in the last equality we have used the fact that V{ = 0 on suppu. The proof
of the proposition is then complete. U
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In order to examine the asymptotic behavior of the cap,, , we need the following
Proposition 3.6, and Proposition 3.7. Before entering into the details, we define

the following functional which is slight different from ¥.

3.5 Definition. Let N be a submanifold of M and let ¥ : L*(D) — [0,+o0]
be the functional defined by '

Un(u) = /D [[Vulg —I—u?] dV, ifue HY(N);

+ o0, otherwise in L?(NV).

We want to stress that ¥ does not take into account any boundary conditions,
unlike ¥ defined by (2.0). Moreover ¥, and ¥ coincide on Hy(M).

3.6 Proposition. Let (ux)n be a sequence in Mo(M) which y-converges to
p € Mo(M). Let A be an open set in M and let N be an open submanifold of M
such that AC N C M. Then

(3.4) U nv(u) —!—f u?dp < ]imhinf [‘I’N(uh) +f uiduh} ,
A A
for every u € H*(N) and for every up € H'(N) converging to u weakly in L?(N).

Proof. First of all we remark that it is not restrictive to assume that the lower
limit at the right hand side of (3.4) is a finite limit; hence uj, is a bounded sequence
in HY(N) converging to u weakly in H*(N). Now let us prove first the case of 4
contained in a single chart (U,w) with coordinate system (z1,...,z4). Let K be
a compact set, K C A, and consider 7 € C°(4), 0 <7< 1,7 =1on K. Since
up € HY(N), Tup, € HE(N), supp (tus) is in A and 7uj converges to Tu strongly
in L?(N), so by condition (@) of I'-convergence (cf. Definition 2.1) we have

(T'u.)2dy, < ]jmhinf [‘I’AI(TQLh) -+ /

(m)zcmh} ,
M

ps(Tu) + /

M
that in local coordinates, using the summation convention, it reads

[ 97 Dstraypitru) + (ur] edde + [ (rufan<
Q

M

(run Vo

< limhinf [/; [ai; Dj(run)Di(run) + (uat)?] b(z)x + /11[
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where b(z) = +/|g(z)] is a function in L=(£), Q == w(U) is a bounded open set
in R? and D; are the distributional derivatives (in R%). We have, expliciting the

computations,

/ (¢ DjrDir) u’b(z)dz + 2 / (6" Djr Diu] urb(e)da+
Q Q
+/ [giijuDiu+u2] sz(m)dw —I—/ T2_u2d/J, <
Q M

Slimhinf [/ (giijTDiT)u%b(a:)d:c+2/ (9" DjTDyup)upmb(z)dz+
Q Q

+/ (giijuhDiuh)'rzb(a:)dm+/(uh'r)2b d:c+/ (uh'r)zdu].
Q Q M

Since uj, converges weakly to u in H'(N), the first and the second term on the
right hand side tend, as h — +o00, to the first and to the second on the left hand

side and [, T*u}bdz — [, 7?u’bde, hence

/ (9" DjuD;u] 2b(z)d= —{—/ u?r?dp <
(3.5) Q M

< Hmhinf [/ [giijuhD,-uh] b(z)dz +/ Tzuidy.}
2 M
By lower semicontinuity w.r.t. the weak topology of H*(N), we have also

/ (¢ DjuD;u)(1 — 7°)bdz <

(3.6) @

< limhinf/ (giijuhDiuh)(l — 7%)bdz;
Q

adding (3.5) and (3.6), we obtain

/ [IVulz +u?] dV, +/ u?dp <
N K

< liminf
h

/ (Va2 + ] 4V, + /
N K

A

and taking K " A, we have the desired result.
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If we have not A contained in a single local chart, then we may consider ANU; where
U = (U;); is a family of open set given in Lemma 1.9, where the Borel measure
o is defined by o(B) = [5 [IV'u,|§ +u?] dVy + [p u?dp, for every B € B(N). We
apply the above argument to A N U; and we get the assertion of the proposition,

since
/ [IVU|§ + 4] dV, + / widy =
N A
= Z [/ [|Vu|§ + u?]dV, +/ uzdp] ,
Ly ANU;
and
Z [limhinf‘/;] [quhlz +u}]dV, +_/A ’ u%d,uh} <
i i ANU;
.. 2, .2 2
< hmhlnf [Z: /;J{ [[V’uhlg +u2]dV, + /;xnU; 'u,hdp,h:I <
< lim inf UN [[Vual? + u}]dV, +/Au§dph] :
The proof is complete. OJ

3.7 Proposition. Let (pn)r be a sequence in Mo(M) which y-converges to
p € Mo(M). Let N be an open submanifold of M, K a compact set and A an
open set such that KCACN. Then for every u € H*(N) there exists a sequence
(wp)h in HY(N) such that uj converges strongly in L*(N) to u, u —up € Hy(N)

and

(3.7) Un(u) +/ u?dp > lim sup [QN(uh) +/ uiduh] .
4 h K

Proof. We may assume that u € L?(N,u); by a diagonal argument it is enough
to show that for every € > 0 there exists a sequence (up); in Hi (N) such that uy
converges to u strongly in L?(N), up —u € Hj(N) and

U n(u) —l—/ u?dp + € > lim sup {‘I’N(uh) +/ uidyh} .
h K

A

It is not restrictive to assume that A is a relatively compact open set.
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Let € be given and let W be an open set of N such that
KCWcCcWcCA

and \Pﬁ-\K(u) < €. We suppose, at first, that A is contained in a local chart (U, w).

Let ¢ € C®(4), ¢ = 1 on (a neighborhood of) W and 0 < { < 1 on A4; define
v = u( that belongs to H}(N) N L?(N, ). From Definition 2.1-(b), there exists a
sequence (vy )y in HE(M) converging to u strongly in L?*(M) and such that

v2dp > lim sup [\I’M(vh) + /
h M

Uar(v) + /

vidﬂhjl .
M

Set E = M \ W; then we have

Usr(u) + /__uzdy +Pg(v) + / vidu >
W E

viduh] —I—Iimhinf [\I’E(vh) —i—/ vidp,h] .

> lim sup [IIIT—V('U;,) + /
h E

W

By Proposition 3.6 we have that

Yg(v) —I—/ vidp < ].imhinf {\I‘E(vh) —i—/ 'U,zzd,uh}
E E
and, by definition, v € L?(E, ), so
(3.8) W (u) + ‘/:__u?‘d,u > 1imhsup [‘I’W(vh) + /__'v,zld,uh] .
W W

Let £ € C°(W), £ =1 in a neighborhood of K, 0 < ¢ < 1. Define
up = €vp + (1 — &y;

then

up = U in a neighbourhood of K
and converges strongly in L?(N) to w. Writing [Vus|? in local coordinates, we
have, for every € € (0,1)

99 DjupDiup < [1—5—} (9 DjvpDiva] +

(3.9)

1-— .. vy — U ..
[1 — ﬁ:‘ [g”Dj'u,Diu] + [ hE } [g”Dijif] .
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12

Since v, converges to u strongly in L*(W), using (3.8) and (3.9), we get

lim sup {\I’N(uh)-l—/ uiduh] <
h K

Vi) <

v,";duh] + 1—e

1
< —— limsup [\Ifw('vh) —I—/
l—e W

1
<t [ew) + [ aant o) <
1—¢ W

1
< — [\IIN(U) —I—/ u2d,u,+s] .
1-¢ W

The proof is then achieved in the case that A is contained in a single chart. If this
does not happen, we consider an atlas (W;);cr, where I is a finite set of indexes;
now, for a given € > 0, we apply the argument of the previous step to ANU;, where
U = (U;); is the open cover given in Lemma 1.10 and the measure considered is
o(B) = fp [|Vu]§ +u?] dV, 4+ [z u?dp for every B Borel set in M. We apply
to A N U; the above arguments and after a summation, we get the proof of the

proposition. In fact,

> [‘I’NnU;(UH / uzdﬂ] =
3 ANU;
- Z]imsup [‘I’Nnu‘.(uh) +/ uid,u,h] >
i h KnU;
> lim sup [Z (‘I’NHU; (un) +/ u%dﬂh):l >
h : KnU;
> lim sup [\I’N(uh) +/ uid,uh} ,
h K
while o
Z [\PNQU{(u) +/ uzdu} = Un(u) +/ uldy + ¢
: ANU; A
since o(U; N U;) < e. | U

Using similar methods to those in [DM2], the following results may be proved

using Propositions 3.6 and 3.7 above.
We recall that P(M) stands for the class of all subsets of M.
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3.8 Proposition. For a given p € My(M), consider the set function cap,. Then
the following are equivalent: ‘
(a) (un)n 18 a sequence in Mo(M) which y-converges to p in Mo(M);
(b) the inequalities )
cap,(K) < limhinf cap,, (U)

cap,(U) > ]imhsup cap,, (K)

hold true for every K, U compact and open sets respectively in M, with
KcU;
(c) for every open set U C M

cap,(U) = sup {limhinf cap,, (K): K CU, K compact} =

= sup {limhsup cap,, (K): KCA, K compact} ;

(d) the family of all E C M such that
cap,(E) = lihmcapml (E)

is dense in P(M).

3.9 Proposition. For every p € Mo(M) let H be the family of all subsets E of
M such that

cap,(V N E)= cap,(V N E)

for every open set V.C M. Then H is rich in P(M) and (,uf)h ~vy-converges to
uE for every E € H and for every (ps)n y—converging to p in Mo(M).

Finally we give the main result of this section.

3.10 Theorem. Let (up)n be a sequence in Mo(M). The following are equivalent:
(a) (un)n y-converges to a measure p € Mo(M);

(b) the sequence of functionals thE, defined by (3.0), T'-converges in L*(D) to
the functional Fﬁ;, for every open submanifold D of M and for every Borel set
EcH,ECD.
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Proof. (b) = (a) It follows by taking D = E = M.

(a) = (b) The y—convergence of uj to p implies that F2 I'-converges in L*(D)
to F,P and this is equivalent to say that uP y—converges to p. The same argument
of Proposition 3.9 applies to p,f , 80 uP y—converges to ¥, for every E € H,
E C D. This concludes the proof. Ol

In this last part we introduce the notion of image measure and prove the Theorem
3.14.

3.11 Definition. Let (Q,F, ) be a measure space and let (E,£) be a measurable
space; let f : ! — E be a F-measurable function. The image measure of A under

[, denoted by f(A), is the measure p on (E, ) defined by
W(4) = M(FH(4)), VA€ £,

Let g be a £~measurable mapping from E into a measurable space (G,G). We

have the equation

g(f(2)) = (g o £

3.12 Remark. With the notations above, let 77 be a real valued £—measurable
function on E; 1 is p—integrable if and only if 7 o f is A-integrable and

(3.10) [E 0 dp = /Q (70 f)dA.

3.13 Remark. Let p € My(M), let (U,f) be a local chart and let L =
— ZZJ":I D;i(+/]g| g D;) the Laplace-Beltrami operator read through (U, f). For

every A C B C f(U), where A € B(R?), B open set, let us define

capﬁ(A,B) = min {/};(giijuDiu\/]_g&[) o ftde + [l(u - 1)2 o f”ldp,} ,

uwEHG(f~1(B))

where i = f(p); then one immediately realizes that capﬁ(A,B) is anything else
but the set function cap,(f~!(4), f~*(B)) read through (U, f).
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3.14 Theorem. Let N = N UON be a d-dimensional compact Riemannian
manifold with boundary, let (pr)n be a sequence in Mo(NV), let v be a Radon
measure in Mo(N) and let h: N — IR be a nonnegative function. Assume that

- forqe. z €N
B.(z), Bar
h(a) = liminf lim inf <2 (Br(2): Bar(2))
r—0 h—oo0 I/(Br(m))
s g cap,,, (B-(z), Bar(z))
v Y eY) R
- he L%oc(Na V);'

- h(z) < +o0 q.e. on N.
Then pp, y-converges to p = fu.

Proof. By compactness of Mo(N) w.r.t the y—convergence, we know that, up to
a subsequence, pp — p, with g € Mo(N). Let (U, f) be a local chart of N; let us
introduce the image measures i = f(pn), & = f(u) of un, p respectively under
f in R%. From formula (1) it is easy to realize that the image measures fis, [i
belongs to Mo(R?) and fin 2 it to realize this fact it is sufficient to write the
functionals F,,, and F, on the coordinate chart (U, f). So if we set v = f(v) and
define h = ho f~1, we have
- for q.e. y € f(U)
cap;, (f(Br(y)), f(Ba2r(y)))

h(y) = liminf lim inf

r—0  h—oco i;(f(Br(y)))
— Liminf lim su capy, (f(Br(y))vf(Bzr(y)))
= limipd i sup 7 (F(B:)) ’

- il’ € L}oc(Rdﬂ;)
- h(y) < +oo g.e. on R,
We can apply now the result in [Bu-DM-M2, Theorem 5.2] and we get i = hi.

Now let us prove that o = hv on U. Let ¢ : R? — R any function in L{ (R?,i);

loc

we have

pdi= | ¢h di.
R4 Rd
Using the formula (3.10) above, the left and the right member of the equality

above are respectively equal to

L¢ofdu=f[](¢0f)(ﬁ°f)dv,
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hence we get p = hv, where h = ho f.

Now we prove that this procedure may be extended to the whole N. Given
p € Mo(N) and € > 0, there exists a cover of N {(Uj, fi)} such that u(U;NU;) <e
(cf. Lemma 1.10); let, moreover, (e;) the partition of unity associated to this cover.

For any p—integrable function g : N — R, we have
[ st = 3 [ awiateuas),

where V; = suppa; C U;. Where V; N V; # @, we have u(V; N V;) < e. So, up to

an arbitrary € > 0, the above procedure can be extended to the whole manifold.[]

Section 4. Convergence of the solutions

As we said in the Introduction, we study in this section the convergence of the

solutions of Dirichlet problems

——Aguh + prup +up = f inM,
(4.1)
up € H&(M))

where pp € Mo(M). We show also a result concerning the convergence of the
eigenvalues (d)(;)),-eN, h € N, of the problem
—Aguh + ppup + Aup =f in M,

(4.2)

Let us consider, for an arbitrary g € My(M) and for a given fe L?(M), the
following Dirichlet problem

—Agu+pu+du=f inM
(4.3)

u € Hy(M),

where Ay is the Laplace-Beltrami operator and A > 0.
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4.1 Definition. We say that u is a (Weal;) solution to the problem (4.3), if
uw € HY(M)N L*(M,p) and

f (Vu,Vz),dV, —}—/ uzdp + A
M M

for evefy z € HY (M) N L*(M,p).

uzdV, =/ fz dV,
M M

4.2 Remark. It may be proved, using variational methods similar to those in
[B-DM-M], that for every A > 0 and for every f € L*(M), there exists a unique
solution u to (4.3); moreover u may be characterized as the minimum point of the

following problem

min {F,\(v) - /A ) fvdVg] ,

vEHL (M)
where Fy : H} (M) — [0 4 oo] is the functional defined by

Fi(v) = ‘/M [[Vo]2 + M?] dV, + Afvzdp.

4.3 Definition. Let u € M(M); then the resolvent operator for the Dirichlet
problem (4.3) is defined as

(4).4 RY : L*(M) — L*(M)
that associates to every f € L?(M) the solution u to the problem (4.3).

By definition, it follows that Ry f € H3(M) N L*(M,u); since R f is the solution
of (4.3), then the following estimate holds true

“RﬁfHL?(M) < (1/>‘)Hf”L2(z\v1)
for every f € L?(M). Moreover R} is a positive operator.

4.4 Remark. In the space My(M) it is possible to introduce an equivalence

relation ~ in this way: we say that p is equivalent to v (1 =~ v in symbol), if and

/wzd,u:/ w?dy
M M

for every w € H}(M). It is possible to prove that ~~ is actually an equivalence

relation; cf. [DM2], [DM-M1], [B-DM-M] for more details about this topic.

only if
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4.5 Definition. We say that o is an eigenvéiue and v is an eigenfunction of the

quadratic form
Fo(v):/ ;vv|gdvg+/ v2du
M M

if we Hy(M) N L3(M,p), u # 0 and the following equation is satisfied:

(4.5) / (Vu,Vz)ngg—!-/ uzdp:a’/ uz dVy,
M M M
for every z € H} (M) N L*(M, p).

Given A > 0, it follows from the definition that o is an eigenvalue of Fj if and only
if 1/(o + A) is a proper value of the resolvent operator Rj.

The following proposition is a consequence of an abstract result in I'-convergence
(cf. [A, Theorem 3.26]).

4.6 Proposition. Let (uy) be a sequence in Mo(M) and let A > 0; then up
y~-converges to p if and only if Ri" converges strongly in L*(M) to RX.

We may state the following result.

4.7 Theorem. Let (pp) be a sequence in MO(M); then the following are

equivalent:

- (pn) y—converges to u;
- the sequence (uy) of the solutions of the problems ({.2) converges strongly in

L*(M) to the solution u of the problem (4.3).

Proof. Let f € L?*(M) be given; by definition R4*f = up, with A = 1, is the
solution of the problem (4.2). Then the equivalence follows from Proposition 4.6.
]

Before going on, we have to know if Fj has actually infinitely many eigenvalues.

The following result, taken from [DM-G-M)], gives an answer in this direction.

4.8 Proposition. If p is not equivalent to cops, then Ker(RY) has infinite

codimension.

Proof. Since p is not equivalent to cops, then there exists w € H} (M) such that

/ widp + w?dooyy,
A M
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hence w is not identically zero in M; moreover w € L?(M,p). Therefore the set
A ={z € M : w(z) # 0} has positive measure. Let ¢ € CF(M), 0 < ¢ <1 on
M, and take as test function in (4.5) v = w¢ € L2(M,p). If f € Ker(RY), then
we have f = 0 a.e. on 4; so every function which vanishes on M \ A is orthogonal
to Ker(R%). This implies that codim Ker(R)) = co. On the other hand, if p is
equivalent to cops, then the resolvent operator is identically zero as an operator
on L?(M). This means that it has the only proper value zero; in this case we say

that ¢ = +oo is the only eigenvalue of F; with infinite multiplicity. O]

Let p € Mo(M); since R%, for every p mnot equivalent to ocops, is a positive,
compact operator and its kernel has infinite codimension, it has infinitely many
positive proper values. Therefore Fy has infinitely many eigenvalues which can be

rearranged in an increasing sequence:
0<oe® <o < .5 4o,

where each eigenvalue is repeated according to its multiplicity.
Theorem 4.7, together with Proposition 4.8, allow us to state the following result

about the convergence of the eigenvalues.

4.9 Theorem. If (uy)n is a sequence in Mo(M) which y—converges to a measure
[ MU(M), then

O'gi) — 0 as b — +oo,

where ag) is the i—th eigenvalue of the problem ({.2) and o)) is the i-th eigenvalue
of the problem ({.3) (counted according to their multiplicities).

Proof. If u is not equivalent to coas, then from Proposition 4.6 it follows that the
resolvent operator RY" converges strongly to the resolvent operator RS in L*(M).

This strong convergence is sufficient to give the convergence of the eigenvalues (see

[D-S, Lemma XI1.9.5]). O

4.10 Remark. In the pathological case u ~ oopr, we use the convention

o) = 4o for every i € N; using arguments similar to those in [DM-G-M],

it is still possible to prove that 0'5;.) — 400, for every = € N.
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2. Fractal Relaxed Dirichlet Problems

1. Notation. Fractals, Self Similar Sets.

We shall denote by #(E) the cardinality of the set E if E is finite, and +oo
otherwise. If p is a set function defined on the subsets of a set X and E C X, we
shall indicate by pg(A) = (A N E) for every A C X. Moreoverif f: X — Y is
a function, then we define fup(E) = u(f~1(E)).

‘We shall denote by B,(z) the open ball in R¢ with center = and radius r. In
all that follows we shall assume d > 2. If E is a measurable subset of IR", and

7 > 0 we shall denote by H"(E) its r-dimensional Hausdorff measure, defined as

H(E) = sup inf{ Zm r)(diam(E;))" :

el
: E; measurable, E C U E;, diam(E;) < e},
iel
where r(1/2)"
m(r) — 2-—1‘ ( / )

I'((r/2) +1)
and T is Euler’s function. By wg_i1 = H? 1(8B1(0)) we denote the d — 1-
dimensional measure of the unit sphere.

The letter ¢ will denote a strictly positive constant whose value may vary from
line to line, depending only on the fixed parameters of the problem. If F(p), G(p)
are two quantities depending on a parameter p, then by F(p) =~ G(p) as p — P we
mean that the ratio F//G approaches 1 when p — p.

Self Similar Sets.

We introduce now the class of (strictly) self similar fractals, as studied by
Hutchinson in [Hul].

We shall denote with & = {S1,...,5x} a finite family of similitudes on IR"™
with common ratio p < 1. The dimension of similitude of S will be the number
a=—log, N (ie. Np®=1).
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We define the following sets of indices: C(N) ={1,...,N}, and C,(N) =
{1,...,N}?, forevery p € IN. If (i) = (41,12,...) € C(N), then (i), = (i1,...,1p) €
Cp(IN) will denote the projection’ of () on Cp(IV).

For every B = (B1,...,8p) € Cp(N) we define the similitude S5 = Sg,0...0
Sg,, and sg € R? the unique fixed point of S3. Moreover, for every (i) € C(N)

we set
(1.1) sy = Hm s,
and

(1.2) Ks = {s(;) : (i) € C(N)}.

The coordinate map 7w : C(N) — Ks, (i) + s(;) is continuous if we consider the
product topology on C(N).
We will say that a set E C R? is S-invariant if we have Ufil Si(E) = E.

1.1 Theorem. (Hutchinson [Hu|) The set Ks is the unique closed bounded S-

invariant set.

If v is a regular Borel measure with bounded support and finite mass, we

define the measure
N N 1

(1.3) Sv = Zpo‘Si#V = Z —]\7.5',-#1/;
1=1 1=1

ie. SU(E)= Ziil p"‘u(S’fl(E)).
On C(N) we shall consider the product measure induced by the probability

measure with mass 3; on each i € {1,..., N}, and we shall denote it by 7.

1.2 Theorem. (Hutchinson [Hu]) The measure vs = wx(7) is the unique regular

Borel measure verifying:
i) vs has compact support (the support of vs is in fact Ks);
ii) vs is a probability measure (i.e. vs(R%) =1);

i) vs is S-invariant (i.e. Sv=v).
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We will say that a set J C R? is self similar if there exists a family of

similitudes S as above such that
i) J is S-invariant;
ii) J has Hausdorff dimension k > 0, H¥(J) > 0, and H*(S;(J) N S;(J)) = 0 if

i .

We will say that the family of similitudes S satisfies the open set condition
(see [8]), and that Ks is a self similar fractal, if there exists a bounded open set
O C R such that H*(Ks \ O) = 0, S;(0) C O for every 1 € {1,...,N}, and
Si(0O)YNS;(0) =@ ifi# j. For a possible choiche of § and of the set O satisfying
the open set conditionfor the Von Koch curve we refer to [Br-D’A].

With this definition of self similar fractals, we recover most of the well-known
fractals obtained by an iteration construction, such as the Von Koch curve, the
Sierpinski gasket etc. (cf. [M], [F], [Hu] for more details and examples). Let us
remark that in this framework are included also “irivial” fractals such as the cube
[0,1]" in R? or the k-dimensional cube [0,1]* in R?, k < n.

The following theorem is the fundamental result for self similar fractals.

1.3 Theorem. (Hutchinson [Hu]) If the family of similitudes S verifies the open
set condition, then Kg 1s a self similar set, the Hausdorff dimension of Ks s a,
0 < H*(Ks) < +oo, and

1

(14) ) Vs = m?’i |Ks

Capacity.

The main tool for the proof of our results will be a compactness and derivation
lemma (Lemma 1.4 below). Before stating it, we shall need to define the notions
of capacity.

Let F be an open subset of R?, and E a Borel subset of F'; the capacity of F
with respect to F'is

cap(E, F) = inf{ / |Du|? dz :u > 1 on an
(1.5) F
open neighbourhood of E,u € H(l,(F)}
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We say that a property P(z) holds for quast every ¢ € E (or quasi-everywhere in
E)if
cap({z € E : P(z) is not verified}, F) = 0.

Note that the property of being of capacity zero is independent of the set F.
It can be proven (see [Cho]) that for every Borel subset E of F', there exists
a function u € H}(F) such that v € H}(F), u > 1 quasi everywhere on F, and

cap(E,F)z/ |Du|*dz;
F

this function will be called the éapacitary potential of E with respect to F.
For example, if we consider two concentric balls B.(z) C Br(z), 0 <7 < R,

then we have

(rR)d_z

iz i or 423

cap(Br(z), Br(z)) = (d — 2)wa-1

and

-1
cap(Br(z), Br(z)) = 27 (log —?) for d=2.

Notice that from the definition of capacity, we have cap(tE,tF) = t?~2cap(E, F)

for any real number ¢ > 0.

1.4 Lemma. Let (E}) be a sequence of closed subsets of R? and let v be a Radon
measure such that v(B) = 0 on sets B of capacity zero. Let us suppose that the
following hypotheses are satisfied:

(i) for every ¢ € R% and for every T > 0 we have

liminf limsup cap(Bi(z) N Ey, Br(z))
i—0+ k—+co I/(Bt(a:))

(1.6) e fminf Liminf SR (Be(®) 0 By, Br(z))

o0 koo v(Bi(z)) = ¢le);

(i) o(z) < +oo for g.e. z € RY;
(iii) ¢ € L*(R%,v).
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Let us define the measure pn = pv. Then, for éyvery bounded open set ) of RY, and
for every f € L?(Q), the solutions (uy) to the Dirichlet problem

{—Auh=f in Q\ E

up € HY(Q\ Ep)

(1.7)

converge in L*(§)), as h — +oo, to the weak soluiion u of the Dirichlet problem
{ —Au+tup=f in ()

w € HY(Q) N LA(Q, ),

(1.8)

i.e., the unique function v € H}(Q) NL*(Q, 1) such that

/DuD'vdm—l—/uvdy,z/ fvde
Q Q Q

for every v € C*°(Q) with compact support in  (cf. [DM-M1, Proposition 3.8]).

Proof. The existence of a measure & and of a function u which satisfy (1.8) has

been proven in the more general framework of the so-called Relaxed Dirichlet
Problem (cf. Propositions 4.9 and 4.10 in [DM-M1]}). In [Bu-DM-M2, Theorem
5.2] it is proven that g = p = ¢v. [

2. The Main Result

From now on we shall consider as fixed a family of similitudes S verifying the open
set condition, and the corresponding set K = K, as defined in Section 1.
Let us fix z¢p € O, and let us define

(2.1) R= %dist(mo,a(ﬁ).

Let ¢p > 0; for every p € IN we shall set

(2.2) R, = Rp?,
and

co(Rp?)®/(4=2) = ¢o(R,)*/(42) if d >3,
(23)  pp=

(Rp?)exp (— L (Rp?) ™) = (Rp)exp (- L (By) ™) it d=2.
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Moreover let us fix a set E C B1(0), with finite capacity with respect to B;(0),
and define for every 8 € C,(N)

(2.4) zg = Sp(zo),  Bp =2+ pk,
and
(2.5) B, = U{Eg : 8 € Cp(N)}.

Note that we have |z, — zg| > 2R, if 8,7 € Cp(N), and § # «; moreover, if
o > d — 2, we have for large p

(2.6) dist(B?, BS) > R,.

We briefly illustrate the construction in (2.1)—(2.6) with some figures in section
4,

We are now in a position to state the main result.

2.1 Theorem. Let K be a self similar fractal of Hausdorff dimension o > d—2,
R defined by (2.1), co > 0, E C B1(0) a set with finite capacity with respect to
B1(0), and let us set ‘

cg—zRa—ﬁglm—,)cap(E,Rd) : ifd>3
(27) C1 =
coR“W,;I(T{—) \ ligl (logt cap(E,Bt(O))) ifd=2.
Let &, be constructed as in (2.1)-(2.6), let Q be a bounded open subset of R, and
f € L*(Q). Then, the weak solutions u, to the Dirichlet problem

—Aup, = f in O\ B,
(2.8)

up € Hy(Q\ Bp)
(p € IN) converge in L*(f2), as p — +o0, to the weak solution u of the Dirichlet
problem

—Au + clu’)‘-lo’lKrm =f inQ

(2.9)
u € Hj(),
i.e., the unique function u € H{(Q) such that
(2.10) / DuDvdz + ¢ / uvdH® = / fvde
Q KnQ Q

for every v € HY(Q).
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2.2 Remark. 1) If we take E = B;(0), the constant ¢; may be written as

d—2

%a(ﬁ’ cap(B1(0), R%) ifd>3

Cc1 =
ﬁ%aﬂmlo%thBAMJmmn i d =2,

1.e. we have

ﬁﬂﬂ%%ﬁ$ﬁ ifd>3
Ccy = o
co 22l ifd=2.

2) As a particular case of Theorem 2.1, we get the results of D. Cioranescu
& F. Murat [C-M, §2], where they obtain in the limit the Lebesgue measure.
In fact, we can consider {2 as a subset of an d-dimensional cube @ = [T, T4.
The cube Q itself can be seen as a self similar set, by choosing the 2¢ similitudes
which cari*y it into 2¢ sub-cubes of side length T'. In this case, the procedure of
iteration coincides with the usual homogenization technique. In the same way, we
can obtain as a limit the (d — 1)-dimensional Hausdorff measure restricted to an
(d — 1)-hyperplane, as in [C-M].

3) It will be clear from the proof of Theorem 2.1 that the same conclusion
holds true when we consider more general sets B, obtained as in (2.5) where the

Bg C Bg, are not necessarily similar to each other; it suffices that
cap(BS, Br,) ~ c1p°"Ho(K)

uniformly in 3 as p — +o0.
4) If ca.p(Bf,BRp(:cﬁ))p_"‘p tends to +oco as p — +o00, uniformly in f§, then
the limit problem (2.9) becomes
—Au=f in Q\ K

u € HY (0 K).

5) Theorem 2.1 may be interpreted in term of I'-convergence of the energy
functionals related to problems (2.8), (3,9) (cf. the recent book [DM] for an
introduction to the theory of I'-convergence). In fact, let F, : Hj(Q2) — [0,+o0]
be defined as

fQ |Du‘2 de if Ui\B, € H(l,(ﬂ \ Bp)
Fp(u) =

+o0 otherwise;
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then the sequence (F,) I'-converges with respect to the L?(§2)-topology, as p —
+00, to the functional F : H}(Q2) — [0, +oc0] defined by F(u) = fQ\K | Du|*dz +
Jrenq P dH® (see Proposition 4.10 in [DM-M1]).

3. Proof of the main result

We begin by proving two simple results regarding the structure of self similar

fractals.

3.1 Proposition. Let K = Kg be a self similar fractal. Let V be a bounded open
subset of R? such that H*(8V N Ks) = 0. Then

(3.1) H*(VNKs)= pﬁrprp“HQ(Ks) #{B € Cp(N) : Sp(O)NV # O},
and

(82)  HU(VNKs)= lim pH(Ks) #{8 € C(N): BynV # 0}.

Proof. Let I = {f € Cp(N):S55(0O)NV # @}, and let us define
V, = {z € R : dist(z, V) < p?diamO}.
We have
H*(VNEKs)=HY(VNKs)= qgglmﬂa(vq N Ks).
If p > g, then V;, D U{Ss(O) : B € I} so that

HX(Vy N Ks) 2 ) H*(Ks N Sp(0)) = pP*H(Ks) #(I).
pel

Passing to the limit first as p — 400, and then as ¢ — +o0o we have

lim H*(VgN Ks) > limsup p®PH*(Ks) #(I)

g—-+o0 p—r-+00

> liminf p*?H"(Ks) #(I) = H*(V N Ks),

p—rco

and hence the proof of (3.1) is achieved; in the same way we can prove (3.2). [
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3.2 Proposition. Let § satisfy the open set condition. For every R > 0 there
exists Mp > 0 such that, for every p € IN, and for every 8 € Cp(N), we have

(3.3) {7 € Cp(N) : dist(S5(0), 54(0)) < Rp"} < Mp.

Proof. Fixed R > 0, let us consider the set
DI = {z € R%: 0 < dist(z, 55(0)) < diamSs(0) + Rp” <= p?(diamO + R))}.

We have ]D sl = cr(p?)? (with cg a constant depending only on R and O). Let

us consider

Ny ={y € Cp(IN) : dist(53(0), 5,(0)) < Rp®}.

Since O is open, it contains a ball of radius Ry, and hence each S,(0) contains a
ball of radius Ryp?. We have then

Dyl > Nyig(Ro)|B1(0)[p™

so that Nﬁﬁ(Ro)d]Bl(ON < cp. We can take then Mg = cr(Ro)~¢|B1(0)|72. O

We can proceed now in the proof of Theorem 2.1. Let us first notice that, if
o > d — 2, the measure H* ;- belongs to H!(RY) (and hence it is zero on all sets
of capacity zero). In fact, by [Z, Th 4.7.5] it is sufficient to remark that for all

peft 1o (Bo(z) :
[\ LriZ)) dr dr
/0 “7@_—2730/5 darT < Too

The next step will be to estimate the capacity in (1.6) in order to calculate the
limits therein. The estimate from above follows from the (strong) sub-additivity

of the capacity, while the estimate from below is proven using the following result.

3.3 Lemma. LetV be a bounded open subset of R:. There ezists a constant c

depending only on d, R and a such that if we define

c(diamV)*—d+2 ifd>3
(3.4) §=6(V)=
c(diamV)*|log(diamV)| ifd =2




54 Lino Notarantonio

and we have § < 1, then for every T' > 2diam(V') and for every z € V,
cap(V N B, Br(z))
> (1— 67 #{8 € Cy(N) : BNV # O}cap(p, B, B, (0))
for sufficiently large p.

(3.5)

Proof. Let us define I = {8 € Cp(N) : BNV # O} We claim that, if the
capacitary potential u of VN B, with respect to Br(z) satisfies u < § on 0Br,(zg)
for every B € I, then the proof is achieved. In fact, let us assume that v < § on
0BR,(zg) for every B € I; let us define v = (1—}37(” — §)*. By the definition of
the capacitary potential, it is easy to see that v € Hj(Br(z)), v > 1 q.e on VN B,
and v = 0 q.e on 8Bg, (zg), for every B € I, hence we have

cap(B}, Br,(zg)) < /I;R ( )IDdem
p\T8

‘and therefore

(3.6) /BT(I) Dol de > Z/; | Doftde > 3 cap(BY, Br, (24))-

ger?Br,(zs) Ber
By definition of v, we have also

1
|Dv|?dz :—~—-—/ |D(u — 8)"|*dz
»/BT(z) | (1—6)% JBr() ( )
(3.7)
< 1 : / | Duffde = cap(V ﬂBP,?T(m)).
(1—8)? JBr(a) (1-19)
We obtain the assertion by (3.6) and (3.7).
Now it remains to prove that u < § on 0Bg,(zg) for every 8 € I. We start

with the case d = 2.

For every B € I consider the function

e\t e =l
(3.8) uﬁ(m)_(bg ) log

which is the solution to
—Aug =0 in Bor(zg)
(3.9) ug =1 on 0B, (zg)
ug =0 on 8Byr(zs),
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and define

(3.10) () = 3 uple)
Ber

observe that z is superharmonic on IR?, as sum of superharmonic functions. Since,
for every 8 € I, we have Br(z) CC Bar(zg), it follows that ug(y) > 0 for every
y € OBr(z) and for every § € I. Therefore z > 0 on 0Br(z) and z > 1 on
£, NV; hence z > u in Br(z), since the capacitary potential u is characterized to
be smaller than any other positive superharmonic function which is greater than
or equal to 1 on £, N V. To achieve the proof it is sufficient, by the maximum
principle, to consider a fixed y € 0Bg,(zg) and prove that z(y) < 6.

By definition of z, we have

)= Y (1og 22) "0 222

Bel

Let I, ={B € I : RpP™? < |zg — y| < Rp?~97'}; then

(3.11) (y) _gi I)(log )llog <R‘2’;q>,

where § = q(h,p) =p — [logp (%diamV)] . Now we have

I, c{Bel:|eg—yl<Rp"™" 7},
so by Proposition 3.2 we get
B(I,) < NTHH{y € Cpgor(N) : dist(55(0), S,(0)) < RpP~17} < MNTH,

where f € Cp_g—1(NV) is determined by zg € 55(0). Recalling that NV = p™%, we

obtain

(3.12) o) < 2N ilog(zT A );rqa

w(Z) 5

We observe that the function

T p T log(?—g—pz_p) =N* (log (%p"’) + zlog p)
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is increasing in (0,7 + 1) for p large enough. Therefore we can estimate the sum

at the right hand side by an integration as follows

ilog (%pq“ )p‘q"‘ < /Oﬂllog (%p’”””)p"mdw
g=0

= (10g 1/p) - /lp—q—l log(-z%p“py"l)y"“ldy

< cp~Pe (diamV) il 'log (diamV) l .

(3.13)

From (3.12), we obtain (recalling the definition of p,)

(y) < ep7* (diamV') " [log (diamV) i%
og 7;;
(3.14) e
<o p?P (dlamV) log (dlamv)' < ¢(diamV)%|log (diamV)l_

e (Rp?) e — log (42 )

We can take then § = c(diamV)"‘Ilog (diamV) '

In the case d > 3 we may proceed in the same way as in the case d = 2, using
in (3.8) the functions

d—2
_ Pp |z —zg|\27¢
up(z) = Td-2 — pd=2 (( T ) 1)

which verify (3.9), and defining the function z as in (3.10). We get then, as in
(3.11) and (3.12),

[ pd—2 RpP~1y2-d
() <3 #HL) i (77 )

q
Scpg—2 Z #(I,)pr~ D=4 < ¢ pPla—d+2) Z Nip(n=da

=0 q:O

q
____Cpp(cv-—d—i—Z) zp(n—~d——a)q < Cpp(a—d+2)(pd——2-—a)§+1 < C(diamv)a——d+2’
g=0

and we achieve the proof of the Lemma. O
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We can now conclude the proof of Theorem 2.1. It will suffice to compute the
function ¢ as defined in Lemma 1.4, and show that ¢(z) = ¢y q.e. on K.

We choose v = HQIK’ E, = Bp, and T > 0 a fixed real number, and compute
then ¢ for every z € K using (1.6). Notice that H*(B:(z) N K) > 0 for every
t > 0, and we have H*(0B¢(z) N K) = 0, except for at most a countable number
of t. Let I = {B € Cp(N) : Bf N By(z) # D}. From (3.2) we obtain

(3.15) H*(Bi(z)NK) = lirf PPYHE(K) #(1).
p—-+oo
Recall that, from the elementary properties of the capacity (cf. [Cho]), we have
cap(Bu(x) N By Br(s)) < 3" cap(B5, B, (x5))
gel
— (1) cap(pE, B, (0)),
hence by (3.15) we get

cap(By(2) N By, Br(2)) _ 1. cap(py P, B, (0))
@) NEK)  ~p—tec  pPoHA(K)

gt e

By using Lemma 3.3 and (3.2), we obtain also

.. o . o cap(By(z) N By, Br(z))
e (B (@) n K)
E,Bgr (0)) (L—-46(B 2
< fominf o S22 B B, (0) (1= 6(Bu(2))
i Ho (K)o
pmor

B
pE+OO HQ(K) Ca'p(pPE R, (O))

Hence the hypotheses of Lemma 1.4 are established.

If d > 3, we have

—ap

. pP — -
p(z) = lim ,HO,(K)Pﬁ ?cap(E, p, ' Br,(0))
cd—-2. o q
7?{01(}() cap(E,R") = ¢y;
in the case d = 2 we have
, —ap
o) = Im_srryeer(Bipy B, (0)) = e

Finally, we remark that since 1%, € H™ 1(§2), we have that L' (Q, H II‘-) D HY(Q);
therefore formula (2.10) is valid for test functions in H}(Q). U
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4. Figures

We take as O the larger hexagon in Fig. 1 and Sy,..., S; the seven similitudes
with p = 1/3 which carry O into the smaller hexagons. Fig. 2 shows a possible
choice of zg and R.

In Fig. 3 it is shown Bs with E = B, (0) for a proper choice of ¢;.

B
XX

Figure 1 ' Figure 2
[} [}

Figure 3
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3. Dirichlet Problems on a Riemannian
Manifold with Random Holes

1. Notation & Preliminaries

We recall that we are given an oriented, connected Riemannian manifold M of

class C?, with dim M el g > 2.

By B,(z) we denote the open geodesic ball of center z € M and radius p.
We recall here Property 1, introduced in the first section of the first chapter; we

also introduce a second property, concerning the sectional curvature of M. Both

these properties follow from the regularity assumption on M.

Pfoperty 1. The metric components (g;;)%_, belong to C*(M) and, for every
relatively compact open set A C M, there exists £ > 0 such that:

d

d
(1.1) R () < gi(@)EE <) (€

i=1
for all z € 4, and for all ¢ € R4,

Let # € M and let R : M, x M, x M, — M, be the (Riemann) curvature
tensor; given two linear independent vector fields &,7 € M., we introduce

K : M, x M, — R defined by

(R(&,m)€,m) ;
(&, (m,m) - ((€m)’]

K(&m) = [

K(&,n) is the sectional curvature of the 2-dimensional plane determined by £, 7;

(-,+) denotes the scalar product in M, induced by the metric tensor g.
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Property 2. For each z € M there exist X:*”(m), A7 (z), which are bounded on

compact sets, such that
A7 (z) < K(&n) < A7 (a),
for all 2-dimensional plane determined by &,7, as {,n vary in M.

In the following we shall also consider RY, always equipped with the euclidean

1, ifi=j,

0, fi#j,4,j=1,...,d

metric, given by

and we denote the open ball of center z € R? and radius r > 0 by BE(z).
We let wy denote the (d — 1)-dimensional Hausdorff measure of {y € R? :
Zf___l(yi)z = 1}; cf. the first section in the second chapter. The letter ¢ will

denote a strictly positive constant whose value may vary from line to line.

2. Capacities on manifold

2.1 Definition. Let A C M be a relatively compact open set and let E be a
Borel subset of A. The harmonic capacity of E w.r.t. A is

(2.1)

cap(E,A) = %ﬁ( 4){/ gijajuaiu dVy,u > la.e. on a neighborhood of E'}
uE (1)- Ky

Let now E be a Borel subset of M. The meta-harmonic capacity of E is defined
as
(2.2)

¢(E)= inf {/ (gijajuaiuz -+ uz) dV,,u > la.e. on a neighborhood of E}
ue Hl(]\.[) Al
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2.2 Remark. Let A be a relatively compact épen set of M; it can be proven that
the harmonic capacity is a set functions which satisfies the following properties:
(a) if By C E, are two Borel sets, then cap(E1, A) < cap(FEs, 4);

(b) if (E}) is an increasing sequence of Borel sets of A and E = U E;, C A, then
heN

cap( U Ey, A) = sup cap(Ey, A);
hEN heN
(c) if (K4) is an decreasing sequence of compact sets contained in A4 and

K= ﬂ K}, then cap( ﬂ Kp,A) = gglf\Icap(Kh,A);
heEN heN
(d) if E,, B, are two Borel sets of A, then cap(E; U E3, A) < cap(Ei,4) +

cap(Ez, 4).
Analogous properties to (a), (b), (c), (d) hold true for the meta-harmonic capacity;
cf. Proposition 1.4 in [DM1].

2.3 Remark. Using standard variational methods, such those in [K-S, Chapter
I1, §6], it is possible to prove that the infimum both in (2.1) and in (2.2) is attained.
We will call the (unique) function ug € H}(A) which realizes the minimum in (2.1)
the capacitary potential of E w.r.t. A. From Definition 2.1 it follows that

cap(E, A) < o(E) < cap(E, A) + / (up)? dV,.
A
This implies that ¢(E) = 0 if and only if cap(E, A) = 0.

In the sequel we shall need the following result.

2.4 Proposition. Let p € M and consider B.(p) C Br(p), with 0 < r < R.
Denoting by v, the capacitary potential of B.(p) w.r.t. Br(p), we have

. 1 2 _
(2.3) 11‘1_1'{(1) cap(Bo(2). Ba(p)) LR(p)(vr) dv, = 0.

Proof. We prove (2.3) first in R%. The harmonic capacity (in R?) of Bf(p) w.r.t.
Br(p) is

d
cap(Bi(p), B} = min O|* dy:v>1on B(p)) ¢,
(B (o), Bi(r) veﬂé(%(p)){ [y 2o ()
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and let w, be the capacitary potential of BE(p)) w.r.t. B§(p)). It is easy to see

that s s
¢ R~ . . —
oty = | T (g — 1) iV € PR\ Fi(E)

1 if y € B¢(p),

for d > 3, while

(log ?—) B (logR — log lyl) if y € By(p) \ Bi(z)

wr(y) =
1 if ¢ € B¢(p),
for d = 2, and

(d—2)— T fd

wi(ld —2)—r——, ifd>3
€ [ 1 - R d—2 ’ -
cap(B:(p), Ba(p)) = o U
27 (log ———) , if d = 2.
7

Now an easy computation gives

1 |
e / w? dV, = 0.
o0 cap(BE(p), B(0)) Josm) ©°

(2.4)

Now we are given B.(p) C Br(p) in a Riemannian manifold M; it is not restrictive
to assume that Br(p) is contained in a local chart (U, ). The expression of the

Laplace-Beltrami operator in local coordinates is
L= 8i(a(3);),

where a'/(y) = a¥i(y) = v/det g g/(y); moreover there exists & > 0 such that

d d

(2.5) R (6 < @ (et < ey (6

i=1

for every ¢ € R? and for every y € O def #(U) c R%. Let z = ¢(p) and consider,

for every 0 < p < o,
(2.6)

capy(B;(z), B;(z)) o ueH?(]gé(x)){‘/Bg(x) a'B;udju:u > 1 ae. on Bi(z)},
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and let uz(-) be the function which realizes the minimum in (2.6). From (2.5) it
follows that

(2.7)  s7lcap(Bj(z), B;(2)) < capr(B;(z), By (2)) < « cap(Bj(=), By (2));

moreover from Corollary 7.1 in [L-S-W] there exists a constant ¢ = ¢(k, o, O) such
that

(2.8) ¢lwy(y) < ur(y) < ew,(y)

for every y € B&(z). From (2.7) and (2.8) we get

(@)’ . ()
cap(By(), B(2)) = capm(Bj(2), B (2))

and using (2.4) we have

. 1 -
) o BT B oy 20 =0

Noticing that

cap(B.(p), Br(p)) = capy (¢(Br(p)), #(Br(p))),

to get the reéult it is enough to show that

lim !

r—=0 capr (¢(Br(p)), »(Br(P))) /Bx(p)
Let p be such that 0 < p < Lip(y, Br(p))r so we have

B:(z) C ¢(B:(p))

v? dV, =0.

and let 0 < o be such that

¢ (Br(p)) C Be(a).

Then on one hand we have

cap; (¢(Br(p)), p(Br(p))) > capr (Bj(z), B (z)),

while on the other hand we have from the maximum principle that the capacitary

potential v, is less than or equal to ur. So
1 / 9 1 / 9
v, dV < ut dy.
capy (¢(B:(p)), ¢ (Ba(p))) /o cap, (B(2), B5(2) Jos(e)

Now we pass to the limit as » — 0 (hence as p — 0) and we get the result. [
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For the capacitary potential ug which minimizes the functional in (2.1) we give a
representation formula in Proposition 2.7 below by means of the Green function of
the Laplace-Beltrami operator. This result can be proven adapting to our case the
methods developed in [L-S-W, §§ 5& 6]. Before stating the result, we introduce
and give some properties of the Green function for A which are needed in the

following.

2.5 Definition. ([Au, Definition 4.11]) Let W = W U 8W be a compact
manifold with boundary O8W. The Green function gw(z,y) of the Laplace-
Beltrami operator, with Dirichlet boundary condition on 0W, is the function which

satisfies, for z,y € W,
A(y)gﬂ’(way) =b; for z,ye W

in the sense of distribution and which vanishes for z,y € W here §, is the Dirac

mass at ¢. The subscript “(y)” indicates here that the Laplace-Beltrami operator
p

acts on y — gw(z,y).

The properties we shall need are listed in the following proposition.

2.6 Proposition. Let W = W U 8W be an oriented compact manifold with
boundary OW. There ezists gw(z,y), the Green function of the Laplace-Beltram:
operator, which has the following properties:

(1) gw(z,y) >0 for z,y € W;

() gw(z,y) = gw(y,);

(iii) we have the following estimate

Cr?—¢, for d > 2,

(2.9) gw(z,y) <
C(llnr|41), ford=2,

where 7 = d(z,y) and C is a constant which depends on the distance of x to the

boundary.

Proof. See Theorem 4.17-(a), (e), (c) in [Au]. O
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2.7 Proposition. Let A be a relatively comﬁact open set in M, let E C A be a
compact set and let ug be the capacitary potential of E w.r.t. A. There ezists a

Radon measure pg for which the integral

L ga(z,y)re(dy)

exists, it is finite almost everywhere (w.r.t. the Lebesgue measure on A) and

up(z) = /‘1 9a(z,y)pe(dy).

The measure pp is called the capacitary distribution of E and pp vanishes on all

Borel sets having harmonic capacity zero. Moreover the measure pg is supported

on OF. ]

Let
pd=2

1—(r/R)%2%’
-1
o (1og -?) , i d=2

wa(d — 2) if d >3

c(r,R) =

we recall that in the particular case of M = R%, we have
¢(r, R) = cap(Bg(z), Bx(z)).

The following result concerns an estimate on the harmonic capacity of two

concentric balls in M in term of ¢(r, R).

2.8 Lemma. For each © € M there emist N (z) < X'(z), which are bounded on

compact sets, such that

(14 X(z)R?* + O(R®))c(r, R) < cap(B,(z), Br(z))

(2.10) < (14 X'(z)R?* + O(R®))¢(r, R),

for any 0 <7 < R < R, where R may depend on z.

Proof. Let us denote by O, the largest open set in M, such that for any £ € O,
the geodesic

7e(t) = exp(#)
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minimizes the distance from z to v¢(¢), for any z € [0,1]. We set exp,(0;) = D,,

and we have that exp : O, — D, is a diffeomorphism. Let

RY sup{p > 0: B(z,p) C D,}.

Note that for any 0 < R < R the ball B(z,R) = exp(Dr(z)), where we have set
Dr(z) def {¢£ € M, : (¢,€)y < R} ([Ch, p.65]). Let R be the Riemann curvature

tensor, and Ric be the Ricci tensor,

(cf. [Ch, p. 60]); let (e;)L, be an orthonormal basis in M,. Using Riemann
normal coordinates on D, it is possible to show ([Ch, p. 318]) that for every
£ € O, we have

99 (Y)ly=exp, ¢ = 67 +1/3(R(¢; €06, e5)g + O(E])

2.11 :
B T Wy, ¢ = 1~ 1/6Ric(E,8) + O(IEE)

as the map

(C, (T) = <R(‘$7 <)€7 0)9

is symmetric ([Ch, p. 59]), we may assume that (R({,e;){,ej)g = 0, for every
7 # 1. Note that we have

d
Da(z) = {¢ € My : (£,8), < R} = {6 = (E'ex,...,E%4) : Z(@-)“’ < R?},

since
d

€2 = (€£,€)g = E1€" (e, ei)g = £ 8 = D (&),

1=1

We want to estimate (R(,e;)¢,e;) and Ric(¢,€) in term of €[>, We recall that

(R(E )6, ) = K(&,e)[[€3 - (6)7],

and from the property 2 we have

A (z) < K(€,e) < AT ().



Capacities on manifold 67

Assume, for simplicity, that A™, AT satisfy 0 S [A~(z)] < At(z). Then
[(R(E, ei)é, )| < XF(2)|€]7;

INOTreover
d

)| = |30 K& e[ — (¢)7]

i=1

— (d—- )N ()lE2.

[Ric(¢,£)| =

Eincone
3 [l - (€]

i=1
Let uw € C'(Bg(z)); from the first formula in (2.11) we have

(2.12)
<A (2)

d d
3 |8suf? [1 TR 4 O(Rﬁ)] < g90udu < 3 |iuf? [1 FATR? 4 0(R3)].
1=1 i=1

Integrating on Br(z)

[1 ~A\TR? + O(RY) ]/ § |8ul? 4V, </ §'18;ubu dV,
Br(z) Br(z)
(2.13) |

[1 + AR + O(R3 f Z |8;ul? dV,.
Br(z) ;=
As

foo et at= [ (3wl vats] ) o)

we obtain from the second formula in (2.11), and from (2.12),
(2.14)

[1 —(d—1)A\*(2)R? + O(R3)] L ] i 185ul? dy < /;B . Y:: 19:ul? 4V,

<[t+@-rte )R2+0R3/D Z]Bulzdy

’l""

Now from (2.13) and (2.14) we have for every u € C*(Bg(z))

Dr(z) =1

[1 — d\T(2)R? + O(R®) ] / Z |0;ul? dy < / 9" 8;ud;u dV,
BR(x)

[1 + d\t(z)R? + Of R3 / Z |8;u|? dy,
Dr(z) ;=

and from this we can conclude. O
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Let us indicate by B the o-algebra of all Borel subsets contained in M , by U the
family of all relatively compact open subsets of M and by K the family of all
compact subset of M.

2.9 Definition. We indicate by M] the class of all Borel measures u on M such
that

(<) w(B) =0 whenever c¢(B) = 0;
(=) w(B) =inf{u(A) : A quasi open , B C A}, for every B € B.

We recall that a Borel set B C M is said to be quas: open (resp. quasi closed) if

for every ¢ > 0 there exists an open set (resp. a closed set) U such that
¢(BAU) < ¢

here A denotes the symmetric difference between B and U. Moreover B is quasi
open if and only if B¢ is quasi closed; the countable union or the finite intersection

of quasi open sets is still quasi open.

The measure u(B) = [ f dV, for f € L*(M), belongs to M, as well the singular

measure

0 ifc¢(ENB)=0
(2.15) cop(B) =

+oco if ¢(ENB) >0,
where E is a (quasi) closed subset of M.

2.10 Definition. Let u € M}. For every B € B, we define the p-capacity of B

as

cap,(B) = inf{/}\[(gijajuaiu +u?) dV, + A(u —1)%du:ue H'Y (M)}

2.11 Remark. If 4 = coF, for a (quasi) closed set F', then cap,,(B) = c(BNF).
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2.12 Proposition. For every p € M} the set function cap,(-) satisfies the
following properties:

() cap,(©) = 0;

(b) if B1,Bs € B, B1 C B3, then capu(Bl) < cap”(Bg);

(¢) if (Bn) is an increasing sequence in B, B = |JBn, then cap,(B) =

sup cap,(Bxr);
(d) if (By) is a sequence in B, B C LTJBn, then cap,(B) < %:capu(Bn);
(e) cap,(B1 U B;) + cap,(B1 N Bz) < cap,(B1) + cap,(B2), for all B, B, € B;
(f) cap,(B) < cap(B), for every B € B;
(g) cap,(B) < u(B), for every B € B;
(k) cap,(K) =inf{cap,(U): K CU,U € U}, for every K € K;
(i) cap,(B) = sup{cap,(K): K C B,K € K}, for every B € B.

Proof. All these properties can be proven as in [DM2, §§2, 3], so we refer to this
paper for the proof. U

We may associate to every pu € M the functional F, : L*(M) — [0, +oc] defined
by
/ (97 8;v0;v + u?) dV, +/ u? dp — 2/ fv dV,, ifu € HY(M),
F, u(”) = M M M
+ o0, otherwise.
We recall that each function u € H'(M) is defined up to a set of capacity zero;
since the measure p does not charge (Borel) sets of capacity zero, it follows that
the functional above is well defined and F), is lower semicontinuous w.r.t. the
strong topology of L2(M).
2.13 Definition. Let (u5) be a sequence in Mj and let p € M]. We say that
() y-converges to p if the following conditions are satisfied:
(a) for every u € Hi(M) and for every sequence (uj) in Hi(M) converging to u
in L?*(M) we have
F,(u) <liminf F},, (up);
h—+co

(b) for every u € H3(M) there exists a sequence (u;) in H}(M) such that uy

converges to u in L?(M) and

F,(u) > imsup F,, (un).

h—+co
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2.14 Remark. It can be proven that there exists a unique metrizable topology 7
on M} which induces the y-convergence. All topological notions we shall consider
are relative to 7, w.r.t. which Mg is also metrizable and compact; see [DM-M,
§4] for more details. U

We recall here the Proposition 3.8 in the first Chapter.

2.15 Proposition. Let (us) be a sequence in M and let p € Mj. Then (un)
v-converges to p if and only if
(a) cap,(U) < liminf cap,(U),
(b) cap,(K) > limsup cap,(K)
h—+oc0

are satisfied for every K € K and for every U € U. Ul

2.16 Remark. By the above proposition it follows that a sub-base for the
topology 7, is given by {u € M} : cap,(U) > t}, {u € M : cap,(K) < s},
fort,s > 0, K € K and U € Y. We therefore may speak about open and closed
sets in M}, hence about Borel sets whose family we denote by B(Mg). U

From the next proposition we get some useful measurability properties of the u-

capacity. By B(M}) we denote the Borel o-field of Mg.

2.17 Proposition. The family B(M}) is the smallest o-algebra for which the
function cap (U) : M} — [0,+c0] is measurable for every U € U (resp. the
function cap (K) : M} — [0,+00] is measurable for every K € K).

Proof. The proof of these results can be obtained adapting the proofs of
Proposition 2.3 and Proposition 2.4 in [B]. L]

From the previous proposition we have the following consequence.

2.18 Corollary. Let (A,%,P) be a measure space and let m : A — Mg be a
function. The following statements are equivalent:
(i) m is £/B(MS)-measurable;
(1) cap,,.)(U) is Z-measurable, for every U € U;
(iii) cap,)(K) is T-measurable, for every K € K. 0l



Dirichlet Problems with Random Holes 71

2.19 Lemma. Let A be a relatively compaét open set; for every compact set
K C AC M, and for every R > 0, the real-valued function, defined on M x---x M

(p-times) by
J
(T1y...y2p) — cap( U Br(z:) ﬂK,A)

=1
15 upper semicontinuous in M X --- x M.
Proof. Adapt the proof of Lemma 3.1 in [B]. O
3. Dirichlet Problems with Random Holes

Let (2,3, P) be a probability space. We shall denote by IE and Cov respectively

the ezpectation and the covariance of a random variable w.r.t. the measure P.
3.1 Definition. A measurable function m : § — M;j will be called a random

measure.

We recall that neceésary and sufficient conditions for the measurability of the
function m : Q@ — M are given in Corollary 2.18.
Let p € M. Let us consider the following Dirichlet problem, formally written for
every f € L*(M) as

—Agu+Adutpu=f inM
(3.1)

We say that v € HY (M) N L?(M, p) is a weak solution of (3.1) if

/ ((Vu,Vv)g + Auv) dv, +/ uv dp = / fv dV,
M M M

for any v € H{(M) N L2(M, u).
Let p € M; the resolvent operator for the Dirichlet problem (3.1)

R" : L3 (M) — L2(M)

is defined as the operator that associates to every f € L?(M) the unique solution

u to (3.1). Observe that R is a positive and linear operator.
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In the sequel we are interested in sequences of Dirichlet problems such as

—Agu+Adu+mpu=f inM
(3.2)
u € H (M),

where (m},) is a séquence of random measures. In particular we want also to study
the asymptotic behavior as h — +o0 of the resolvent operé.tors R associated to
the random measures my. The following theorem gives an answer in this sense;
its proof can be obtained adapting the arguments used in [B, Theorem 4.1].

We recall that & denotes the family of all relatively compact open sets in M.
3.2 Definition. Let us define the following set functions:
a'(U) = %E»l—lklg IE[cap,,, (1 (U)]

o''(U) = lim sup [E[cap,,, (.,(U)]
h—4o00

for every U € U. Next consider the inner regularization of o' and o defined for
every U € U by .
o' (U) = sup{e/(V):V eU,U CV},

o(U) = sup{a(V): V €eU,U CV}.

Then extend o' and o' to arbitrary Borel sets B € B by

(3.3) o/(B) =inf{a/(U): V €U,B C U},

(3.4) o(B) =inf{a"(U):V €U,B CU}.

Finally denote by v/, " the least superadditive set functions defined on B greater
y yv, g

than or equal to o’ and o respectively.

3.3 Theorem. Let (my) be a sequence of random measures. Let o' and o
be defined as in Definition 3.2 above; let v' and v" be the least superadditive set
functions on B greater that or equal to o and o' respectively. Assume that

(i) v'(B) = v"(B) and denote by v(B) their common value, for every B € B;
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(ii) there exist € > 0, a continuous increasing function £ : R x R — R with
£(0,0) = 0 and a Radon measure 8 on B such that

lim sup Cov(capmh(,)(U),ca,pmh(,)(V)) »S ¢ (diam (U),diam (V))B(U)B(V)

h—+co

for every pair U,V € U such that UNV = @ and diam (U) < ¢, diam (V) < e.
Then, for every A > 0, R1*" converges strongly in probability to RY, that is

Jm Plo € 0| BY (@)(F) = BY(Hlvran > n} =0

for every n > 0 and for any f € L?(M). ]

From now on, we shall consider a particular class of random measures, which are
related to Dirichlet problems with random holes.

Let us denote by C the family of closed sets contained in A.

3.4 Definition. A function F : @ — C is called a random set if the function
m :  — M defined by m(w) = cop(,) for each w € () is Y-measurable, where

o0 p(w) is the singular measure defined in (2.15).

Let F': 0 — C be a function; using the notation introduced in §2, it follows from
Corollary 2.18 that the following are equivalent:

a) F'is a random set;

b) capp(.(U) is Z-measurable for every U € U;

c) capp(.)(K) is Z-measurable for every K € K.
Let (F}L) be a sequence of random sets and let (m;(w)) be the sequence of random

measures so defined
mp(w) = 0oF, () for each we Q.

Let f € L?(M) and A > 0 a parameter. We shall consider the weak solutions u

of the following Dirichlet problems on random domains

—Agup+Au=f in M\ Fj
(3.5)
U € Hé(M \ Fh).
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As in [DM-M], it can be shown that the above Dirichlet problem can be written

using the measures cop, as

—~Agup + M+ oop,up = f in M
(3.6)

u € Hy(M);
the resolvent operator is defined as

- RE(F), on M\ Fj
R, ™ (f) =
0, on Fj,

where R is the resolvent operator associated to (3.5).
Let R be the class of Radon measures on M (R class of measures having compact

support whenever d = 2). For § € R, we define

/[M d“”’)yﬂ))dy) ifd>3,

/ /AxA logﬁi%ﬁ B(de)B(dy), ifd=2,

for each relatively compact open set A C M. In analogy with the euclidean case,

we call £(3,A) the energy of § on A.
We say that B € R has finite energy if

£(B,4) =

sup £(8,4) < +oo,
AcelU

where U is the class of all relatively compact open subsets of M.

3.5 Assumptions. Let us assume the following hypotheses:

(i1) let B be a probability law on M of finite energy;

(i) for every h € N weset I, = {1,...,h} and we consider h measurable functions
zi :Q — M, 1 € I, such that (mz)ie_[h is a family of independent, identically
distributed random variables with probability distribution 3, viz.

P(z; € B) = B(B),i € I,

for every Borel set B C M,



Dirichlet Problems with Random Holes 75

(i3) let (rs) be a sequence of strictly positive numbers such that

. Erfco hri=2 if d > 3,

10, +oo[3 £ &

1 —1
lim h(ln——) ,if d=2.
h—+co Th

From now on, we shall consider the sequence of closed set (E}), given by

def Y
(3.7) Ex = | By, (2}).
i€l

By Lemma 2.19 it follows that the sets E} are actually random sets, according to
Definition 3.4.
We will prove the following result.

3.6 Theorem. Let (E;) be the sequence of random seis, as defined by (3.7).
Assume the general hypotheses (i), (iz), (is). Then for any 4 € L*(M) and for
every € > 0

Jm  Plwe Q: [R5 (0) — Ra(w)illuzan > €} =0
where Ry is the resolvent operator associated with the measure
wg(d—2)8, ifd>3,

2B, ifd=2

We set for ease of notation
wi(d—2), ifd> 3,
27, ifd=2.

By Theorem 3.3, the above result is an immediate consequence of the following

proposition.
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3.7 Proposition. Let (E}) be the sequence of random sets defined in (3.7). Let
o, o' be the set functions as in Definition 3.2. Then if general hypotheses (i1),
(iz), (13) hold, we have

(t;) v'(B) = v"(B) = w(d)£B(B), for every B € B;

(t2) there exist a constant € > 0, an increasing continuous function { : RxR — R
| with £(0,0) = 0 and a Radon measure B such that

]ir_r_l:up lCOV[C(Eh(k-) NU,c(Ex(-) N V]| < &(diam U, diam V)31 (U)B1(V)

for any U,V € U such that U NV = @ with diam (U) < ¢, diam (V) < e.

Notation. Let us consider, for d > 2,

1\ /4
Rh - (E) .

By 1z we shall denote the characteristic function of the set Z.

3.8 Remark. From the assumption (73) it follows that

We have indeed, for d > 3,
T d—2 d—2 -2
(ﬁ) =R T ri? = prd2p T
which goes to zero, as h — +o0; for d = 2 we have the asymptotic estimate

rh /Ry

xp(—h)

as h — +oo.

To achieve the proof of the Proposition 3.7 we need some more notation.
Let A be a relatively compact open subset of M and let (z;)ier be a finite family
of independent, identically distributed random variables, with values in M, and

with distribution given by

P(z; € B) = B(B),VB € B,
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where [ is the probability measure on M introduced in the Assumption 3.5-i;.
Let 6, R and r be positive numbers, 0 < § < 1,0 < r < 2r < R < 1; for every
open set A CC A’ (A CC A’ and diam A < 1 when d = 2), let us introduce the

following random sets of indices:

I(A) ={i € I : Br(=z:) C 4,d(=i,z;) 2 4R, Vj € I, j # i},

( 42 ri—2

) = < >

fiel): (%) "+ > ey <% d>3
JEI(A)
Is(A4) = | _
R 2e 2e

) . - - < =

{i € I(4) (log T) [log =+ j;)log a;) 30| < 5}, d=2,
j#i

and J5(A) € I(4)\ I;(A).

Loosely speaking, the (random) set I(A4) gives a “separating condition” among
the z;’s (2R could play the role of “separating radius”), while if i € Is(A) then we
have an upper bound on the potential at z;.

In the following lemma we prove a sort of “superadditive” result for the harmonic
capacity of UL;(A) B,(z;) w.r.t. A, and we estimate the expectation of the number
of Js(A). This lemma will be essential in the proof of the Proposition 3.7.

3.9 Lemma. Let §, r, and R be positive numbers, 0 < § <1,0<r <2r < R< 1;
let A, A’ be relatively compact open sets, A C A’ C M. With the notation
introduced above, for every C > 2w(d) and for every compact set K C M, there
exists Ry > 0 such that if R < Ri and A C K, then we have
() (1-87 Y cap(Bo(ad), Ba(w:) <cap( | Bule),A),

i€lsc(4) i€l5/c(4)
and

() By < 7 |40 (5) 7 + 2 2e(s, a0 |

Proof. Let C > 2w(d) and let u be the capacitary potential of UieIg/c(A) B (z;)
w.r.t. A;if w < 6 on 8BR(z;), for each i € I5;c(A), we claim that the proof is
achieved. Let us introduce indeed v = (?1 66);, the function v € H}(4), v > 1 q.e.
on Uielg/c(:l) B.(z;) and v = 0 on 0BRg(z;), for every i € I;/c(A). We then have

cap(B,(z:), Br(a:) < fB el
R{T{
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for every i € I5/c(A). Hence
/ |Vo|? dV, > Z / |Vo|? dV, > Z cap(B.(z;), Br(i).
A icl;)c(4) Y Br(zi) i€ls/c(4)
On the other hand we have also

2 _ 1 U — +12 _______}______ ’LLZ
[19of av, = e [ 19— v, < g [ 19

1
= 57 cap( | J Br(z:),4);
telg/c(.‘l)

therefore we have
cap( | J Br(zi),4)>(1-68)° > cap(Br(zi), Br(zi).
i€l;,c(A) i€ls;c{A)

Now we verify that u < &, on 8Bg(z;), for each i € I;;c(A). Consider first the
case d > 3. Let A’ be an open set such that A CC A’ CC M; let

ui(z) = /A 9(z,y)pi(dy),

be the capacitary potential of B,.(z;) w.r.t. A'; g(,) is the Green function (with
Dirichlet boundary condition) on A’ and y; is the capacitary distribution of B, (z;)
w.r.t. A’ (see Proposition 2.7). Define

z(z) = Z ui(z), Ve e A
i€l5,c(A)

Adapting a classical comparison result ([KS, Chapter 6, Sect. 7]) to our case, we
find that for each z € 4
u(z) < z(z).

Let y € 8Bgp(z;), for a fixed ¢ € I5;c(A); we have

(= 3w = [ wom@+ Y [ oo

iels;c(4) ) fGIq;c:(:*-) -
J 1

We recall (see Proposition 2.6-(iii)) that

g(y,z) < e(d(y,z))?7%,
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where ¢ > 0 is uniform for z,y € A. For ¢ e 0B, (z;) we have d(y,¢) > R — r,
while for ¢ € 0B,(z;), j # 1, we have

d(mi,il)j) < d(mi)y) + d(yac) + d(C7$J)
= R+ d(y7C) + T

hence

d(y,¢) > d(z:,z;) — 2R.

Then

1 d—2 , cap(Br(z;), A’
2(y) < <R - ) cep(Br(zi, )+ Z() (d(mi(wj)(— ;R)d)-z'

j##i

As 2r < R, we have R —r > (1/2)R, hence

9\ -2 ! —2 cap(Br(z;), A’
05 (5) oo ,-eggm o) 27

FE

2\%7? 2 cap(Br(z;), Br(z;
<(7) e 3 HEELE

j#Ei

since cap(Br(zr),A') < cap(Br(zk), Br(zr)), for every k € I%(A), and I C
I(4).
Now we recall (cf. Lemma 2.8) that there exists a constant A > 0 such that for

every ¢ € A
2 3 rd?
< -
cap(B1(=), Bn(e)) < w(d)(1 +AF* + O(R)) g ooy,
hence d—2
pd=2 e
< —
Hy)<C (R) +0 Z (d(zj,z:) — 2R)4=2°
iel4)
ji

which is less than §, by definition of I5,c(A).

The proof of (i) in the case d = 2 is similar: we consider, as in the previous case,

ule) = [ ofe,Oilde),
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and for each z € A’ we define

2(z) = Z ui(z).

i€I5(A)
Applying the same comparison principle we have u(z) < 2(z). Using the estimate
for the Green function in (2.9) (recall that diam A < 1),

g(:z:,g) < clog a’(f“‘é_):

where ¢ is uniform for z,£ € A, we find that

R\ !
z(y)Sc(log?) log~—+ Z log d(rz:,,:nj TR |

JEI(A)
i#i

which is less than §, by definition of Is;c(4).
We now prove the inequality in (ii). As before, we consider first the case d > 3.

First of all we note that

,rd—2

Py d-2
Tye) =Gl (5) + X GGy —amee >

i€I(A)
i#i

}.

Ql =

Therefore
#(Js/c(4)) < %‘ Z {(L)d_ + Z (d( q,“m]d—_z 2R)&- 2}’

JEI(A)
J#i

-2 d-—-z
d +IE[ > (A(z:,2;) - 2R)2- ZD

ihZJEI(A)
i#i

Traeeen] Y )

LJET(A) z;17%.7
j#

e ], )

(#00) ()7 +e2ri2eo, AP )

The case d = 2 is proven with similar computations. O]
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3.10 Remark. Since the measure 8 has finite energy, it does not charge sets

of capacity zero; this implies that the measure o, defined on the Borel family of

MxMb
B U R
? (4(2,))

does not charge singletons. This property holds also in the case d = 2.

Now consider a non-atomic, finite measure o on a separable, metric space X. For
every € > 0 there exists § > 0 such that for every A with diam A < 6 we have
o(A) < e. In fact, suppose for the moment that the measure has support in a
compact subset of X and assume, by contradiction, that there exists €, > 0 such
that for every h € N there exists A; with diam (44) < 1/h and o(4h) > €,. Let
zj, € Ap; then z, — z € X and for h sufficiently large we have

Ay C Br(:c).

Then o(Ar) > €, implies o(B,(z)) > €,. If we let r — 0, we have B.(z) — {z},
hence o({z}) > €, > 0, but we have a contradiction, since the measure ¢ is non-
atomic. If the finite measure o is not supported on a compact set, given € > 0,
there exists a compact set K such that (X \ K) < ¢; now we repeat the argument

above in the compact set K.

Proof of the Proposition 3.7. For simplicity we assume d > 3; the case d = 2 is
proved in the same way. Let C > 2w(d).

Let A be a relatively compact open subset of M, with diam A < 1; we recall that
c(oog,,A) = c(AN Ep) (cf. Remark 2.11), and that I, = {1,...,h}, h € N; let

us introduce

Ih(A) = {i € I, : Br(a?) C A,|zi — 2l | > 2Ry, V5 € 1,5 # i},

d—2 d—2
. Th Ty )
s =Gen@: (7)) + % —— PN
‘ R JeI(1) (lz}, — 23| = Rp)?—2 ~ C
I3

and set J%,h(A) = I(4)\ I%’h(A). Denote by E} the random set

o def TN
E;L = U Brh(wh)‘
iEI%,h(A)
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Note that c(E, N A4) > ¢(E, N A4) > cap(E;; N A, A), where the last inequality
follows from Remark 2.3. We apply Lemma 3.9-(i) and find that

cap(By N A4,4) > (1 =8 Y cap(Br,(e}), Br.(z}))
i€lg ,(4)

(3.13) > w(d) [1 + A1 (Rh)z] [1 - 5]2><
d—2

X [#I(A) = #U s ) Ty

From the first line to the second one we have applied Lemma2.8; A\; = inf,c 4 A'(2),
where X'(-) is the function occurring at the left hand side of (2.10); we recall that
A'(+) is bounded on compact sets.

We introduce
AL ¥ (e M:d(z, A) < Ry},

{i € I : Br,(2}) C 4}}; notice that EzNAC | B (z})
€K, (4))

and Kj(4,) <

We have

c(EhnA)Sc( U Brh(m;‘,)nAz)s (B (=)

i€ Ky (AL) i€KL(4})
< B, (z),B t iV2 4V,
< Y |cap(Br,(=}), Br, (2h)) + (uh)" dVy
(3.14) €K (4}) B (23)

d—2

< w(d) [1 + A2 (Rh)z] [#(Kh(A,h))] 1_ (rih/Rh)d"z

+w(d)h/ (ui)? dv,.
BRh (:z:;l)

In the second inequality of the first line we have used the subadditive property
of the meta-harmonic capacity (cf. Remark 2.2-(d)); in the second line we have
applied the inequality stated in Remark 2.3; u} is the capacitary potential of
B..(z}) wrt. Bg,(z}) and finally we have used Lemma 2.8 in the last line;
Az = sup,¢ 4 A"(z), where A"/(-) is the function occurring at the right hand side of
(2.10); we recall that A”(-) is bounded on compact sets.

Incidentally we show that for every w € ) we have

lim h/ ui)? dV, = 0.
B, () 4



Dirichlet Problems with Random Holes 83

Consider indeed the case d > 3. We have frorﬁ Lemma 2.8

d—2
Th

— (Th/Rh)d——z;

cap(Br, (z3), Br, (24)) < w(d)(1+ A2(Ba)* + O(Br))7

hence, there is a constant ¢ > 0 such that for every w € {2, we have

&

h ui)? dV, < : : ui)? dV,
om e M S B ) B ) Jog ey )

and

1 .
lim , . / wh)? dv, =0,
h—-+oco cap(Brh ((U;L), BRh (m;;)) BRh(zi)( h) !

as follows from Proposition 2.4. The case d = 2 is shown in a similar manner.

By the Law of Large Numbers we have, for the random variables #(I;(4)) and
#(Kn(43));

p BEHI(4))

= oo
(3.15) p(4) = ho (A7)
h=Foo h ,

for every A € U with B(84) = 0.
Therefore from (3.13), (3.14), (3.15), Lemma 3.9 and Remark 3.8 we get

(3.16) o'(B) < w(d)¢B(B),

for every B € B and

2d—2£2

5 g(ﬁ7Bl)

(317)  @(B') 2 w(dMB(B)(1 - 6 — Cu(d)
for every B’ € B, Withl diam B’ < 1. From (3.16) we have

V(B) < w(d)e8(B)
for every B € B. To achieve the proof of (t1), we have to prove that

(3.18) J(B) > w(d)e5(B)
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for each B € B. Let us fix B € B; for arbitra.fy 0 < n <1, take a Borel partition
(Br)kekx of B with diam By < 7. Since v' is superadditive, we have

V(B)> Y (Be) > w(d)(1 — 8)28(B) — Culd) 3 2 C-£(8, By
ke K keK
— . B y B " 2d 252 )
~o@i -t -ce L [ s
d—2 92
s - oy tp(m) - Cwie® = [ [ S
= w(d)(1 — 6)*48(B) — cw(d)Zd C e6,D,),

where D, = {(z,y) € M x M : d(z,y) < 71}, so that By x B, C D,, for every
k € K; notice that diam D, < 7. Since (8 is a measure of finite energy, and taking
into account of Remark 3.10, we find that

lim £(8, D,) =0,
n—0

and we get (3.18); letting § — 0 we have v/(B) > w(d){8(B); as v'(B) <
w(d)¢B(B), and v''(-) > V'(-), we get v(B) = w(d){6(B), which proves (t1).
Proof of (t;). First of all we observe that by the Strong Law of Large Numbers

we have

(3.20) hlir_lr_l #HIn(U)) = B(U), forae we
and
I
(3.21) m 20D B(U), in L'(Q)
h—-+o0o h
for any U € U. Actually we have, for any U € U,
I
(3.22) i 2ET)) B(U), in L*(Q)
h—-o0 h
since #(I"(U)) is an equibounded sequence of random variables.

By (3.20), (3.21), (3.22) we have
fim nf I[e( 4 () 1 U)e(Bu( )1 V)]

(3.23) > Cw(d)f(1 — 8)%(1 — 6)° %ig{m[#(b;fff)) #(I;;L(V))}
#(In(U)) #(Js,n(V)) (V) #(Ts n(U))
1E ’;L 5; } _ IE[ f;L 5h ] }
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for any pair U,V € U with diameter less than 1 and U NV = @. From (3.22) we

obtain

(3.24) i | HEEDFBOD) _ paryov),

moreover by Lemma 3.9 and (3.20)

d—2
[#(II;L(U)) #(Js}f(v))} < Cw(d)ﬂ(U)25 2EB,V)

(3.25) lim sup IE
h—+o0

and

2d—2

#(In(V)) #(Jé,h(U))} < CA(V) §

- ; w(DEEP,V)

(3.26) lim supIE[
h—+oo

for any U,V € U. Then by (3.23), (3.24), (3.25), (3.26)

(3.27)

lim infIE{e(B4(-) N U)e(Ba(+) N V)] 2 w(d)(1 - 48)x

[ﬂ(U)ﬂ(V) — Cu(d)p(U)

2d—2 2d—2

E(B,U)

for every U,V € U with diameter less than 1 and TNV = @.
By (3.14) and (3.22), we also deduce
(3.28) lim sup IE[¢(EL(-) N U)e(En(-) N V)] < w(d)B(U)B(V)

h—-+oco
for any U,V € U with B(0U) = B(6V) = 0.
Estimates similar to (3.27) and (3.28) for the upper and lower limit of the sequence
Elc(Er(-) N U)]IE[c(EL(-) N V)] can be obtained in the same way. Therefore we
can deduce, for any § > 0, and for every U,V € U with diameter less than 1 and
unv =0,
(3.29)

fim sup| Cov [6(24(:) 1 1), (Bu(:) 1 V)] | < wld)BBWIB(Y) — (@1 — 48]
2d—2 2d~2

L0,V - wl@p(v)E ~t65,0)

< |p@ev) - ety
<6 {E(U)g(ﬁ, V) +B(V)EB,U) + 525(0')5(1/)}

<5 [E(U)S(ﬂ, V) + BV)EB,U) + E(U)B(V)} ,
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where B(-) is the Radon measure: By = (1/6)8(:) and ¢ =
w(d) max{C,4¢£2,2¢2¢}. Take now § = max{diam U,diam V} and we have

lim sup| Cov[e(Ex(-) N U), c(Ex(-) N V]|

h

— 00

(3.30) _ ~ o
< cl26|B(U)EB, V) +BVIEB,U) +BUIBV)|.

Taking in (3.30)
(V) = B(U) + £(8, V),

for every U € U and &(z,y) def max{z,y}, the item (t2) is proved, and hence the
proof of the proposition is accomplished. Ol
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