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1 Introduction

1.1 Motivation of the work

Consider a regular classical ferroelectric, with all its dipoles ordered and parallel at 7' = 0,

so as to minimize some ferroelectric coupling, e.g. a term
-J Z P+ 7 s (1.1)
(i9)

where p; represents a dipole localized on the site 7. Imagine, next, to turn on quantum
mechanical effects, for example in the form of a finite amplitude ¢, for each dipole to
hop from the present configuration to another. For small ¢, or sufficiently large J/¢, this
process simply adds zero-point fluctuations to the ferroelectric ground state, renormalizing
somewhat its mean polarization <ﬁ), as well as the Curie temperature T.. However,
there will be a critical value J,/t, above which zero-point fluctuations destroy completely,
or "melt”, long-range ferroelectric order even at 7 = 0. The resulting state has been
called a "quantum paraelectric” (QPE) [1], as opposed to a "classical paraelectric”, where
disorder is caused by thermal fluctuations. Quantum paraelectrics characterized by J/t
smaller than, but close to, J,/t, have a very large dielectric response, can be driven into
ferroelectricity very easily, and have therefore been named also incipient ferroelectrics.
The subject of quantum paraelectricity has a long history. Quantum effects in hydrogen-

bonded ferroelectrics were apparently first pointed out by Blinc as early as 1958 [2], and
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modeled by de Gennes [3] as an Ising model in a transverse field

H=-ty s -J) sisi, (1.2)
i (17)

where s¥ and s? are Pauli matrices. This model shows precisely a ferroelectric phase
for J/t > J,/t, and a paraelectric phase for J/t < Jy/t, at T = 0, J,/t having a finite
value, which depends on the dimensionality. Interest renewed in the middle 70’s, when
two groups in Switzerland [4], [5], separately considered the critical behaviour of a general
double-well-plus-spring model displacive ferroelectric, and found anomalous ”quantum”
critical exponents for the purely quantum ferro-para transition at T = 0. The quantum
exponents apply strictly at T = 0, while at finite T’ there is a crossover from quantum to
classical critical behaviour, sufficiently close to T, as later discussed in detail by e.g. Pfeuty
[6]. These exponents were measured by Rytz [7] in the perovskite alloys KTay_Nb,0;.
Realistic self-consistent phonon calculations for displacive models of KTaO3 have also
been performed, which take into account quantum effects in the displacive limit [8], [9].

The present reason for reviving quantum paraelectrics at this time is different, and more
speculative. It is based on trying to pursue a certain analogy that quantum paraelectrics
have with liquid He*. He® remains fluid down to zero temperature, but crystalizes under
pressure, above a critical P =~ 25 atm. As sketched in Fig.1.1, the phase diagram of He*
has strong analogies to that of a quantum paraelectric, with ordered, classical disordered
and quantum disordered (fluid) regions.

However, the quantum fluid region of H e* has in addition very special properties. He'
is superfluid, possesses off-diagonal long-range order (ODLRO), and is separated from the
classical fluid by a phase transition line (the A-line). Clearly, helium exhibits phenomena
of macroscopic quantum coherence. A natural question to ask is therefore: should we
expect something special in the quantum paraelectric systems too, or not ?

A first answer can be given for systems described strictly by the de Gennes hamiltonian
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Figure 1.1: The real phase diagram of *He and a speculative one of SrT303. The region of
expected existence of ODLRO in Sr7%03 is hatched.

(1.2), and is negative. The ground state of (1.2) is for all J/t < J,/t a nondegenerate
rotationally symmetric state (”singlet”), with an excitation gap. There is no broken
symmetry, and in fact there are, unlike in liquid He?, no conserved bosons in an extended

state. Quantum melting in this case is a strictly local affair.

A similar conclusion applies to the displacive limit model, both in its idealized version
considered by Oppermann and Thomas [5], and by Schneider at al. [4], or in the more
detailed version discussed by Bilz et al. [9] for the perovskites. In the displacive limit,
dipoles do not exist until long-range ferroelectric order is established. In other words, the
effective on-site well is parabolic, without any central barrier and side valleys. Quantum
effects simply arise when the quantized level spacing inside this parabolic well gets too
large (due to the well being narrow, or the ion mass being small) in comparison with the
ferroelectric interaction J. Here too, quantum melting is local (rotational, in fact), and a

description by, e.g. self-consistent phonons [9] is probably quite adequate.
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However, real systems are endowed with many interesting additional complications,
which make them richer than the simple de Gennes double-well hamiltonian (1.2), or than
the displacive limit models discussed above. The displacive models, in particular, fail to
include the slow, nearly critical fluctuations, which are known to be crucially present [10]
in KTaOj3 at low temperatures. In simple words, there is in these systems below 40 K or so
a well-defined dipole to each cage, even without long-range ferroelectric order. The dipoles
are coherent enough to form rather large domains, which fluctuate slowly. The displacive
limit models, discussed above, ignore all that. They apply to systems where the standard
mean-field assumption of identifying the locale dipole with the mean dipole (which in
turn is zero), is justified. We will see that a possible remedy in trying to bring these
displacive models to describe better the behaviour of perovskite quantum paraelectrics
is to contemplate the existence of an intermediate incommensurate ferroelectric phase,

whose quantum melting might be substantially more interesting.

The double-well model (1.2) instead probably describes adequately the hydrogen-
bonded ferroelectrics, where each hydrogen is strictly confined to its own double-well,
or even the QPE perovskites, where a dipole is delocalized inside an individual oxygen

cage.

In a perovskite, however, and in SrTi03 in particular, there are additional ingredients
beyond (1.2). First of all, ferroelectricity coexists with antiferrodistortive and elastic
degrees of freedom. Even ignoring coupling to these (which represent a very nontrivial
complication), there are two effects, both due to the corner-sharing property of the oxygen
ions: an effective ice rule, and a quantum mechanical ozygen hopping, which may cause
dipoles to hop from a cage to the next. We will discuss both the ice-rule effects and the

dipole hopping, in this order, the latter being more difficult to treat.

Parallel to these theoretical speculations, and in fact initially stimulated by them,
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there has been a burst of recent experimental activity on SrT¢0;. Miiller et al. [11]
have found Fe>* EPR evidence of a weak but well defined non-structural phase transition
taking place at T, ~ 37 K. Early $rTiO3 — BaTi03 [12] and SrTi03 — PbTi0;3 [13]
alloy studies, and more definitively Ca-doping induced ferroelectricity [14], had clearly
indicated the onset of quantum paraelectricity in pure SrTi0O3 between 35 and 40 K. The
new possibility raised in [11] is that quantum paraelectricity would set in with an abrupt
phase transition. Weak anomalies near 30 K have also been observed in sound velocity and
internal friction [15], as well as in the phonon dispersion curves [16]. In these quantities,
like in the dielectric constant [1], which extrapolates as ¢! ~ (T — Tj) for all T > 60
K with Ty ~ 37 K, no sharp critical behaviour was seen. The precise onset temperature
of quantum paraelectric phenomena seems thus somewhat property-dependent, as well as
slightly sample-dependent [15]. Additional EXAFS evidence is now being proposed [17],
reporting a sudden broadening of 7% — O bond length distribution, indicating a very abrupt
onset of, or more likely a sharp phase‘transition into, the quantum paraelectric phase of

SrT1i03, taking place near 30 K.

Summarizing this evidence, the quantum paraelectric state of SrT:03 may be qual-
itatively described as consisting of large-size ferroelectric domains (¢ ~ 10 + 20 lattice
spacings or so). The domains have extensive, slowly quantum fluctuating boundaries,
which are responsible for the absence of a net static polarization. If we accept the ex-
istence of a phase transition, as first suggested in [11], between the classical paraelectric
and the quantum paraelectric state, then we are left with the task of understanding the

true nature of the new state, symmetry, and possible order, below T,.

In this thesis we will review the present state of understanding of these QPE phenom-
ena, reached so far in Trieste, in the attempt to follow up the effects of at least some of

the additional couplings present in SrT'i03, as discussed earlier. Although these attempts
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are not quite conclusive as yet, also because of the objective difficulty of obtaining quanti-
tative insight for new, complicated quantum models, the physical questions they raise are

quite interesting. Here we will present a detailed discussion of the progress made so far.

The thesis is organized as follows. In the rest of this introductory chapter we review
in more detail the main relevant experiments, and point to some implications of these
for our model building. Chapter 2 is devoted to a general discussion of models to be
treated in subsequent chapters. First we recall the well-known displacive versus order-
disorder regime aspects of the standard classical model for structural phase transitions,
and discuss the extent to which these aspects pertain to the case of QPE perovskites. Cor-
respondingly, we divide the possible models into two classes, those based on continuous
and those based on discrete degrees of freedom. As an example of the former class, we
propose a Landau-Ginzburg-Wilson hamiltonian for §7T303, including elastic couplings,
which leads to discuss the existence of an incommensurate phase. Considering the latter
class of models, we try to identify their most important ingredients, taking as relevant
degrees of freedom the discrete T — O bond variables. In Chapter 3, the classical incom-
mensurate ferroelectricity arising from elastic couplings is investigated in detail, and the
effect of quantum fluctuations is discussed on a heuristic level. In Chapter 4 we then in-
vestigate three idealized 2D quantum discrete lattice models. The first is a plain quantum
four-state clock model, while the second includes an ice-type constraint. Both models are
studied by means of a numerical Path Integral Monte Carlo simulation (PIMC), and the
corresponding phase diagrams are determined with reasonable accuracy. On the technical
side, in order to overcome the pathologically slow 1/m convergence in number of Trot-
ter slices in case of the constrained model, a special method has been invented, which is
described in detail in Appendix A. In the last section of chapter 4 we describe our third

model, which consists of endowing the constrained four-state clock model with an addi-
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tional physical effect, namely the possibility of bond hopping and ‘bond vacancies’. For
this third model we have so far not been able to set up an accurate numerical simulation
technique, allowing us to determine the complete phase diagram in the parameter space at
finite temperatures. Some general considerations are presented, based on analogies with
Andreev and Lifshitz’s work [18] on quantum crystals of He!, whose main idea is briefly
summarized in Appendix B, for the sake of completeness. A particular zero temperature
and zero coupling case of this more complete third model is studied numerically, by means
of a Variational Monte Carlo technique, the details of which are described in Appendix C.

Finally the last, fifth, chapter is devoted to discussion and conclusions.

1.2 Experimental evidence

Before discussing any particular experiments, we find it useful to briefly review the classic
phenomenology of soft modes in SrTi03, both structural and ferroelectric, since these

modes turn out to be of crucial importance in all the following considerations.

The structure of the high temperature phase (T > T, = 105 K) is cubic perovskite
which consists of 5 interpenetrating simple cubic lattices and contains 1 formula unit per
unit cell. Symmetry analysis [19] shows that in the center of the Brillouin zone there
is (apart from 3 acoustic modes with w — 0) one triply degenerate optical mode I'y5 -
and 3 triply degenerate optical modes I';;. Each of these latter triplets is for any finite
wavevector split into a longitudinal mode and a doubly degenerate transverse mode. Upon
cooling, it is the Fy, (T';5-like) zone-boundary mode that softens most and goes unstable
at T, = 105 K [20], [21]. The crystal undergoes a structural antiferrodistortive phase
transition, and the point symmetry group changes from Oy, to Dy, [22] (we shall say more
about the nature of the transition in one of the following subsections devoted to EPR

experiments). Below 7, the soft zone-boundary structural mode folds into a zone-center
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one, and splits, due'to the lowering of symmetry, giving rise to a single 4;, mode and a
doubly degenerate E, mode (wa,, >w Eg)- Both modes then harden by further decreasing
the temperature below T,. Apart from the structural mode, also the zone-center Fi,, or
T'ys mode considerably softens with decreasing temperature. Unlike the structural one,
this mode is dipole-active, and would therefore yield ferroelectricity upon condensation.
At T, this mode splits, too, giving rise to a single Ay, mode and a doubly degenerate E,
mode (w,,, > wg,), both of which continue to soften below Ty, but never condense. The
lower of the modes, the E,, doublet, softens progressively as T' decreases down to T~3K
or so, and then saturates at a finite frequency of about 10 cm~!, being underdamped over
the whole temperature range down to T — 0 [23],[24]. The singlet A;, behaves similarly

and saturates at about 20 cm™" [16].

1.2.1 Incipient ferroelectric behaviour of SrT105

According to the standard soft-mode theory [25], a strong softening of a particular dipole-
active zone-center TO phonon mode brings about a possibility of onset of ferroelectricity
in the system, which is marked by a divergence of the corresponding dielectric constant.
The static, or more precisely, low frequency dielectric constant of S7Ti03 has been
measured several times [26], [27], [1] (Fig.1.2). It was found to develop a tetragonal
anisotropy below T, in-plane ¢, being larger than €., revealing that the dominant polar-
ization fluctuations take place in the XY-plane. For temperatures 7' > 60 K, €4 behaves
according to the Curie-Weiss law with a critical temperature T, ~ 37 K. Below 60 K, how-
ever, considerable deviations from this behaviour are observed and, instead of diverging
at 37 K, ¢, levels off and gradually stabilizes at a very high value of ~ 2 X 10*. The most
striking feature is that for T < 3 K this high value is completely temperature independent,
as Miiller et al. have shown in [1], measuring down to 30 mK (this kind of behaviour has

then been termed as quantum paraelectric behaviour). A very similar kind of behaviour
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was observed in QPE KTaO3 [28, 29, 30].
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Figure 1.2: Dielectric constants €y;0 and €7, of the monodomain SrTi03; samples. (o is the
stress applied by thermal treatment). Inset: 10°/e vs. T. After [1].

In KTaO3, apart from the static measurements, frequency resolved dielectric response
measurements have also been performed. Maglione et al. [10] measured the radio-frequency
dielectric response of KT'aQ3, and found that below ~ 60 K, the dielectric constant ¢

develops in the microwave frequency region a Debye-like additional term,

Ae

fzfi.r.‘f‘m-

(1.3)

The relaxation time 7 increases with decreasing temperature, and below 40 K it saturates
at a value of about 7'0_1 ~ 500 MHz. The saturation of 7, appears to be a specific feature
of QPE’s.  The appearance of the slow Debye relaxations is generally a signal of a crossover

from displacive to order-disorder regime, and we shall come again to the significance of
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this fact in the next chapter. In §rTi03, no evidence for such slow relaxation has been
found in the sub-gigahertz frequency region [31]. However, since there is other evidence
for the existence of the crossover to order-disorder regime in SrTi03 (to be mentioned in
the following subsections), the slow relaxation should be also present here. It would be
highly desirable to search for it, extending measurements to higher frequencies, because
such experiment would provide a direct information about the low temperature cluster
dynamics in SrTi03. At this point, we would like to discuss the link to soft phonon
modes, as it is explicitly expressed in the Lyddane-Sachs-Teller (LST) relation.

The low-frequency Debye-like behaviour of the dielectric constant requires that the

LST relation be written in its general form [32]

2

(1.4)

e(w) _ tyLd tw Il 0F; +ivw-w
2 7
J

€o  IYTd+ W Qsz + iyrjw — w
where € is the high frequency dielectric constant, Qr;,vr; and Qr;,v7; are frequencies
and linewidths of the longitudinal and transverse IR active phonon modes and .4 and y74
are the longitudinal and transverse relaxation frequencies. As is easily seen, for frequencies
below all the phonon resonances this form yields just to a Debye-like behaviour (1.3). To
our knowledge, there has not yet been an attempt to verify the validity of LST relation
in this general form in the case of S7T%03 at low temperatures. However, it is clear that
the LST relation cannot be satisfied in its simpler traditional form, which attributes the
whole static dielectric constant just to the soft mode, neglecting the contribution of the
slow relaxation [23], [24], [16]. This is usually written as

e _ ILiwis

S o Moy (L5)
€ [liwr

where ¢, is the static dielectric constant. The restricted LST relation (1.5) was discussed

in [24] and [23] for the case of the in-plane dielectric constant €,, and in [16] for the case

of e.. In Ref.[24] and [23], surprisingly, it is claimed that (1.5) is well satisfied for ¢, down
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to lowest temperatures, while in [16] a discrepancy was reported for €., by only a factor
of 2 (Fig.1.3). In both places, it was assumed that the frequencies of all modes except for
the soft TO branch were temperature independent. In that case, (1.5) implies a relation

between the temperature dependence of ¢, and that of the soft mode frequency w;

C
where
2
iYL
C= ﬁ%em , (1.7)
1>2 T

and this is the equation actually tested in both cases. We argue that the corresponding
conclusions are just incidental, and probably incorrect. We suspect in particular the
assignment of the frequency of ~ 173 cm™! to the lowest LO mode in Sr7Ti03 [23]. It
would be desirable to perform new accurate measurements of the LO branches in order to
clarify this point.

To end this subsection, we mention that there are several possible ways to remove
experimentally the quantum fluctuations, and drive a QPE to proper, classical ferroelec-
tricity. Bednorz and Miiller [14] observed that in-plane (XY-type) ferroelectricity can be
induced in SrTi0; by doping the material with Ca. The onset of ferroelectricity was
observed at an exceedingly low concentration ¢, = 0.0018. By increasing zc¢a, the Curie
temperature raises fast, and then saturates at Ts ~ 35 K. Uwe and Sakudo [33] applied
external stress normal to the (100) or (110) face of the crystal, and also observed fer-
roelectric transitions. In case of (100) stress, the induced polarization developed in the
XY plane, in the direction perpendicular both to stress, and to the tetragonal axis. With
(110) stress, the crystal polarized along the tetragonal axis. We notice that in both cases
the spontaneous polarization appeared in the direction perpendicular to the siress, along

which the stressed crystal actually ezpanded.
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Figure 1.3: Squared frequencies of the low-lying TO modes versus T in SrT%03. Q is the frequency
of the Ay, mode after [16]. Qy s is the frequency of the F, mode after [24]. Qs is the frequency
of the structural E; mode after [16]. For comparison with the LST relation, C/¢, is also plotted,

where ¢, is taken from [27]. After [16].

1.2.2 Elastic measurements

Based on general thermodynamic arguments [34], one expects the singularities of a phase
transition to reflect in the elastic properties. It has been known for a long time that
the 105 K structural phase transition manifests itself as a strong feature on the elastic
constants of S7Ti03, [35]. When measurements were extended to lower temperatures, a
rather spectacular anomaly was observed in the tetragonal phase at temperature close to
32 K [36], [37]. The elastic compliance si; was observed to increase dramatically, by a
factor of almost four, and this behaviour was interpreted as a possible sign of a phase

transition into an orthorhombic phase, reported previously by Lytle [38] on the basis of
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X-ray diffraction experiment. In both works [36], [37], the sample was made piezoelectric
by application of rather strong dc fields of the order of magnitude of 10 kV/cm. No such
anomaly in the temperature interval from 105 K down to 4 K was instead reported by
Rehwald [39], based on measurements by the pulse-echo method in the frequency range
40 - 200 MHz, with no applied field. Rehwald argued, reasonably, that due to the strong
dc flelds used in [36], [37], the measured elastic constant actually picked up a contribution
from piezoelectric coupling, and claimed that the observed step in s;; could be nearly

quantitatively explained by this contribution.

Recent study [15] used a vibrating reed resonant method, in which no large dc field was
applied across the sample. Experiments were performed at the very low frequency of 3.5
kHz (four orders of magnitude lower than that used in [39]), and both the elastic compli-
ance s;; and the corresponding internal friction coefficient Q! were measured (Fig.1.4).
QPE regime related features appear below 50 K. Close to 40 K, there is a pronounced
increase of the internal friction, a structured peak. Inside the peak, Q! rises by a factor
of about four with respect to its values in the flat region with low attenuation between
44 and 55 K. Below 20 K, it decreases again, rejoining the ideal straight extrapolation of
the flat region between 55 and 44 K. In the temperature region 20 < 40 K where the peak
of @~ is present, there is an increase of the compliance s;;, which also disappears again
below 20 K or so. We believe that these observations can be qualitatively interpreted due
to interaction of the acoustic phonon with the (non-critical) ferroelectric domain walls
fluctuations. In a critical case like at T, = 105 K in §rTi03, this coupling gives rise to
a sharp singularity. The onset of QPE, between 20 and 40 K, appears instead more as a

smooth crossover in the elastic properties.
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Figure 1.4: Left: Internal friction Q! (proportional to ultrasonic attenuation) vs. temperature
in SrTiO3 single crystal, measured by a vibrating reed resonance technique at frequencies near
3.5 kHz. The excitation is a flexural mode along the [100] direction, corresponding to the Si;
elastic compliance excitation. Right: Elastic compliance S;; measured simultaneously with the
internal friction. After [15].

1.2.3 Spectroscopy of the phonon modes

There is a considerable amount of experimental material concerning the spectroscopy of
the phonon modes in SrT03, and particularly of the soft modes. In this subsection, we
will not try to give an exhaustive review of all this work. We rather concentrate on some
recent accurate measurements, focusing on the low temperature region (T < 50 K) of our

interest, which have revealed quite interesting anomalies.

We will start with the acoustic branches. In [40], Axe et al. for the first time pointed
out that with decreasing temperature the coupling between the lattice strains and the
softening ferroelectric modes becomes more and more important. Such TA-TO coupling

can lead to a depression of the effective resulting TA dispersion curve for some ky # 0,
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and if sufficiently strong, even to a formation of a minimum in wTA(IZ). We shall consider
this effect in more detail in one of the following chapters. Motivated by the search for
such a minimum, in connection with the proposal of Ref.[11], new measurements of the
acoustic branches were performed in [41] and [16], by means of neutron and Brillouin
spectroscopy, for temperatures below the structural transition at 105 K, with emphasis
on the low temperature range below 40 K. In [41], a polydomain sample was used. The
dispersion curves of TA modes of §7T703 were measured for very low values of ¢ in the
vicinity of (111) reciprocal lattice point and an anomalous loss of the inelastic structure
factor was observed for the [100] branch around a reduced wavevector ¢ = ga/27 ~ 0.03
at T ~ 40 K. No anomaly, however, was observed for the [110] branch. This suggests that
the TA-TO coupling is anisotropic in the g-space, namely maximal for [100] direction and

irrelevant for the [110] direction.

The recent data [16] are particularly reliable since in this work the sample was forced
to be a single tetragonal domain by applying an external uniaxial pressure along a [110]
direction. We will briefly comment the main anomalies observed. Since the doublet
E, TO mode softens much more than the singlet A,,, we might expect the TA modes
polarized in the XY plane to be more depressed then their counterparts polarized parallel
to the tetragonal axis. Contrary to this expectation, just the opposite was found, namely
that the TA phonons polarized along the c-axis and propagating in the XY plane have
considerably lower frequencies than those polarized and propagating in the XY plane. The
former branch is for temperatures below 37 K quite strongly depressed, particularly for
propagation along [100] direction, in a rather narrow q range near ¢ ~ 0.04. No proper

minimum, however, was found.

Brillouin scattering was used to investigate the acoustic branches propagating in the

¢ direction at very low wavevectors, £ ~ 2.6 x 1073. While the LA phonon hardens with



16 § 1. Introduction

decreasing temperature (which is the usual temperature dependence), the TA phonon
softens progressively, and below 30 K its frequency falls down even more rapidly, until it
saturates below 10 K or so. This behaviour is reminiscent of the increase observed for the

elastic compliance s;1, and for the internal friction Q !, discussed above.

In the Brillouin scattering experiment, apart from phonons, a new finite frequency peak
has also been observed in the central peak region, below 37 K, sharper as the temperature
decreases further. It might correspond to first order scattering from a new excitation,

appearing below 37 K, which however, remains to be identified.

Besides these acoustic branches, an anomalous TA branch was also observed by means
of the neutron scattering in [16]. Below 105 K, a new mode was observed, polarized along
the c-axis and propagating in the XY plane ([100] direction), with frequency lower than
that of the corresponding TA phonon. The splitting between the TA phonon and the new
mode increases very rapidly at temperature near 37 K, particularly for the wavevector
£ ~ 0.04. A striking feature of this new mode is that its intensity falls down very rapidly

when its wavevector ¢ is tilted away from the XY plane.

In [16], the structural mode E, was also investigated, by means of neutron scattering,
and an interesting structure factor intensity anomaly was found. In the vicinity of the
reciprocal lattice point (002), only the modes polarized along the tetragonal axis should
be seen. The doublet E, is polarized along the c-axis, however, for its normally accepted
wavevector, this mode should be inactive at ¢ = 0, its intensity proportional to q?, and
therefore for small & this mode should not be easily observable. For low enough temper-
atures, just the contrary was found. The mode is quite strong at ¢ = 0, and at very low
temperature its intensity does not depend on g. In the (£ 02) measurement, a mazimum of

the intensity was observed around £ ~ 0.04 for T = 37 K.

Finally, we mention anomalous hyper-Rayleigh scattering, or second harmonic genera-
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tion, observed in [42]. Since both cubic and tetragonal phases of SrT'i03 preserve inversion
symmetry, and proper ferroelectricity does not set in, no second harmonic generation is
expected at any temperature. Contrary to this, hyper-Rayleigh signal appears below 80 K,
increasing particularly below 40 K (Fig.1.5), with a behaviour rather similar to that of the
static dielectric constant (Fig.1.2). This signal is clearly attributable to scattering from
ferroelectric domains, inside each of which the inversion symmetry is broken. In order for
this to happen it is necessary that a majority of T7 ions should be displaced off-center
below 40 K. This observation therefore represents a strong support for the presence of
dynamic order-disorder ferroelectric fluctuations in Sr703 below 40 K or so. The strong
similarity between the increase of hyper-Rayleigh intensity and of low frequency dielec-
tric response at low temperatures further implies that the same slow domain fluctuations,

which do not freeze out, but remain dynamical all the way to T = 0, are responsible for

both.
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Figure 1.5: Variation of the intensity I, (full points) of hyper-Rayleigh light with temperature.
The inverse quantity Iz_ul (empty points) is also plotted, showing a deviation from a straight line
(dotted) at low temperatures. After [42].
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1.2.4 The EPR anomaly

Before describing the anomaly itself, we recall some basic considerations related to the
EPR measurements and to the way in which these are interpreted. To observe an EPR
spectrum, a paramagnetic ion is substituted into a nonmagnetic crystal. Due to the
presence of the crystal potential, spin levels, which in the free ion are (25 + 1) times
degenerate, become split, and the amount of splitting is related to the strength and the
symmetry of the potential. An external magnetic field is then applied which lifts even
the remaining degeneracy and the resulting levels are a function of the field orientation
relative to the crystal axes. The frequencies corresponding to the transitions between the
levels are usually in the microwave region and therefore can be determined by measuring
the microwave absorption. A convenient way of representing the experimental situation
is to introduce an effective spin hamiltonian, which for our case of tetragonal symmetry

reads [11]

- , 1
M= gfHS + 5(5i+ Sy + 51~ 0)+ DSt 35(S+1)], (18)

where a Tepresents the cubic and D the tetragonal splitting, respectively, and ¢ is parallel
to the tetragonal axis. Because the spin hamiltonian has the point symmetry of the site
on which the host atom is placed, EPR spectroscopy is a useful and very sensitive method
for investigation of structural phase transitions.

Using Fe®t EPR Unoki and Sakudo [22] for the first time clarified the nature of the
105 K phase transition in SrTi03 and concluded that the order parameter is the rotation
angle ¢ of the antiferrodistortive rotation of the corner-sharing oxygen-octahedra. Its tem-
perature dependence ¢(7T') was then determined by Miiller et al. (Fig.1.6) also by EPR. In
order to explain the observed behaviour Pytte and Feder worked out a microscopic mean-
field theory which reproduced ¢(T') very well in the temperature interval 38 K < T < 105

K. For T < 38 K, an additional weak reproducible increase of ¢ was observed (Fig.1.6), as



1.2. Experimental evidence 19

if at T = 38 K there were an onset of some additional order parameter. At the time of the
observation, no explanation was known or given. Because the antiferrodistortive system
has already undergone a phase transition at 105 K, one might think that the additional
feature could be caused by coupling of the order parameter ¢ to some other degree of
freedom, which has its proper phase transition at T,. In other words, ¢(T) would in this
temperature interval act as a secondary order parameter. If such an assurﬁption were true,
then two questions would arise:

1) What might the primary order parameter be ? Is it structural, or of another nature ?
2) Are there possibly other secondary order parameters which exhibit an anomalous be-

haviour near T, ?
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Figure 1.6: Antiferrodistortive rotation-angle measurements in SrT%03 for H || [100] — 32° in a
(001) plane between 4.2 and 50 K at K-band. (After [11].)

Searching for an answer to these questions, a further EPR investigation of §rTiO;
was performed as described in [11]. We shall briefly summarize the results of these mea-
surements, referring for details to the original paper. Attention was concentrated on the
temperature dependence of the spin hamiltonian parameters themselves and an anomalous
behaviour of these was indeed observed both in the tetragonal and in the (111) pressure
induced trigonal phase. First we describe the effect observed in the tetragonal phase. With
the hamiltonian (1.8) and the external magnetic field H parallel to the [112] pseudocubic
direction, five microwave transitions with | AMg| = 1 are observed. For a tetragonal {001}

single domain, the distances between the two outer and the two inner spectral lines should
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Phase Parameter
fa 6| D|
Tetragonal -1.0 -0.5
Trigonal -0.9 -0.6
Table 1.1: Approzimate sizes of EPR parameter anomalies in 107! cm™' = 1.068 Gauss

(g = 2.0037). Accuracy ~ 20%. (After [11].)

be, in first order perturbation theory,

5
AHY = etD (1.9)
and AH = a-2D, (1.10)

respectively. On Fig.1.7 both splittings are plotted as functions of temperature. We see
that at T, ~ 37 K, AH! shows a weak dip, while AH! does not show any anomaly.
From the latter fact and from (1.10) we deduce that §a = 26D holds for the dip, and
from (1.9) it is then possible to calculate the values of éa and 8D. These are given in
Tab.1.1 and we point to the fact that both a and D are reduced at T = Tg, while promptly
recovering for T' < Tj.

Investigation under applied (111) uniaxial stress revealed a similar transition, only
more pronounced. The EPR spin hamiltonian in this case is also characterized by two
splitting parameters, a and Dy, which are both reduced in absolute value (Tab.1.1) at
T,, like in the tetragonal phase (Fig.1.7). Moreover, the pressure dependence of T, was
determined. It is plotted on Fig.1.8, on which the phase boundary between pseudotetrag-
onal and trigonal phase is also shown. We see that as long as the sample remains in the
pseudotetragonal phase, the temperature Ty is hardly pressure dependent at all. On the
other hand, it is strongly pressure dependent in the trigonal phase, T, decreasing with
increasing pressure. Also, the anomaly occurs at about the same temperature on both
sides of the tetragonal-trigonal phase boundary.

In both above mentioned cases, apart from the shift of the outer spectral lines, neither
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Figure 1.7: Left: Outer and inner Fe®* fine-structure magnetic-field splittings with H Il [112)
measured at a [111] stress of 1.97 kg/mm? in the SrT:03 tetragonal phase between 30 and 50 K
due to the {001} domains. The middle splitting H'* is due to {100} and {011} domains, which
is not further discussed, but clearly shows the anomaly as well. Right: Outer M = £5/2 «» £3/2
and inner M = 43/2 « +1/2 fine-structure magnetic resonance field differences with H || [112] at
a [111] stress of 31.4 kg/mm? in the trigonal phase. (After [11].)

their number nor linewidth change at T,. This is a striking feature of the data because
it assures that the spatial symmetry of the lattice (as seen by a T'i site) does not change
at T,. A change of the point symmetry of the T4 site (such as in a regular ferroelectric
state) would be signaled by an additional splitting of the lines. Similarly, the onset of a
static incommensurate or commensurate, spatial modulation would be accompanied by a
characteristic line broadening due to the loss of translational symmetry in the direction of
the modulation. EPR. being perhaps the most sensitive local method to detect structural

phase transitions in solids, both possibilities seem to be ruled out. A natural question thus
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Figure 1.8: Phase diagram of [111] uniaxially pyi1 stressed SrTi03 as a function of temperature,
showing the three-dimensional Potts line between the lower tetragonal and upper trigonal phases,
and the dotted line T, determined in both phases. (After [11].)

is: what does the dip at T, reflect ? In [11], this point is discussed, considering various
possibilities. To ensure that the effect in question is really an intrinsic property of the
SrTi0; lattice, a possible local mode dynamics of the Fe3T impurity has to be excluded
first. EPR measurements of the Fe®* ion in MgO, in which the oxygen environment
of the probe ion is the same (octahedral) as in §7T%03, did not reveal any analogous
phenomenon. Moreover, the sharpness of the dip clearly points to the collective nature of
the effect. Because the concentration of Fe3t ions in the sample was very low, it is highly
improbable that these would be substantially involved in the effect, which therefore has to
be attributed to the host lattice itself. As all the splittings a, Die; and Dirig become smaller
in absolute value at T, the effect mimics a full cubic widening of the lattice. However,

there simply is no such static lattice expansion. Detailed X-ray studies [43] reveal instead
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that ordinary thermal evolution of lattice parameters (contraction with cooling) abruptly

terminates near Ty.

The shape of the EPR dip suggests that this might indeed be a manifestation of
enhanced fluctuations at a phase transition. A suitable candidate for the fluctuating
quantity which is sensed by the EPR parameters of the impurity ion could be the local
strain. This idea is further supported by the observation that the additional feature below
38 K on the ¢(T') curve corresponds to the relative increase of qS by about 5%, which is close
to about 7% observed by Uwe and Sakudo [33] at the onset of stress induced ferroelectricity.
On the other hand, T, is very close to the extrapolated Curie-Weiss temperature of 37 K,
where §7T103 would become ferroelectric, were it not for quantum effects. We are thus led
to an idea of a phase transition in which possibly the lattice strains and the ferroelectric
mode are involved at the same time, even though we are not yet able to specify the actual

primary order parameter.

We extract the following essential message from the experimental evidence reviewed
so far:
L. There is a weak phase transition, or very sharp crossover, at T, ~ 37K in §rTi03, and
although less studied, a presumably similar one at ~ 40 K in K TaO3. It separates the
ordinary paraelectric regime for T > T, from an incipient ferroelectric regime for T < T,.
2. Below T, most Tt ions go off-center inside their own oxygen cage, and large oriented
domains form. However, these domains fail to grow to critical size, hence no long-range
ferroelectric order sets in. The domains can thus be seen as instantaneously forming a
sort of incoherent mosaic, with dipoles pointing along the four (£100), (0+ 10) directions
with equal probabilities.
3. The absence in §rTi0; of any sign of inhomogeneous broadening in EPR. suggests that

the domain mosaic is not static in nature, as one would expect e.g., for an incommensu-
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rate state, or an impurity-driven disordered domain state. The domain boundaries must
remain in motion, even at the lowest temperatures.

4. The persistence of dipole dynamics at T = 0 can only be explained as a quantum effect,
and is expected qualitatively for a quantum melted ferroelectric state. However, quantum
melting in S7Ti03 is ‘gentle’, leaving large ordered domains and slow fluctuations. This
picture is close to that of a classical ferroelectric in its ‘central peak’ state, close to criti-
cality. Only, the slow central peak fluctuations appear to be of quantum nature in § rTi03
at low temperatures.

5. Many properties of the physical QPE state for T < T, are poorly understood, or not

at all. Among them, anomalous phonon-like excitations are at present the most striking.



2 Models

2.1 Some aspects of the standard model for structural
phase transitions

Microscopic models for classical ferroelectricity have been available for a long time [44].
Among them, very popular are soft-mode lattice-dynamical models [45], and ice models
[46]. Ferroelectricity, in fact, represents just a particular case of a more general class of
phenomena, that of structural phase transitions. An extensive and definitive review of
critical phenomena related to classical structural transitions has been provided in Ref.
[44]. Here are a few pertinent points.

A useful starting point for our considerations is a classical single mode hamiltonian,

as it is usually employed for structural phase transitions [44]

H = 21% + ZV )+ = g;(ql - ), (2.1)
. E—Q _E ~2\2 ‘

which consists of a d-dimensional lattice of particles whose displacement is described by
n-component vector g. For A < 0, B > 0, V(¢) has a ‘double-well’ structure, with minima
at ¢> = n|A|/B and a barrier of height V = n42/4B. The particles are localized in the
local double-well potential and are connected by nearest-neighbour harmonic springs. In

the quantum case, p; and § become operators satisfying the canonical commutation rules.

25
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Both classical and quantum version of this model appear to exhibit at most two phases
_ the ferroelectric and the paraelectric [4]. If the parameters are such that the quantum
fluctuations are strong enough to suppress the ferroelectric ordering even at T' = 0, then
this model does not exhibit any phase transition as a function of temperature. In other
words, quantum paraelectricity does not set in with a phase transition. In order to allow
for such possibility, a richer model is clearly needed. Before considering in detail various
possibilities of enriching the above model, we would like to bring attention to those aspects
which are related to the crossover from displacive to order /disorder regime, as these will

be of particular importance for our model building.

Starting with a generic classical model (2.1), a structural transition problem will ap-
proach, depending on parameters, one of two opposite regimes: the displacive or the
order-disorder regime. The criterion which distinguishes between the two regimes is the
value of a parameter g, defined as the ratio of the local potential well depth (or barrier

height) V to the thermal energy at the transition kT, g = V/kT..

In the displacive limit (g < 1), fluctuations are unimportant, whence the local distor-
tion and the global order parameter can be identified. The structural order parameter is
finite below the critical temperature T. and zero above T.. The appropriate description
in this case is the standard soft-mode mean-field theory [44], based on continuous degrees

of freedom.

In the opposite, order-disorder limit (¢ > 1), fluctuations dominate. The local dis-
tortion order parameter is generally large, fluctuating, and very different, as temperature
grows, from the global order parameter. In particular, the former evolves smoothly with
temperature, while the latter of course vanishes critically at T.. If one further assumes that
close to T, the local distortions remain exactly constant as T varies, then the continuous

degrees of freedom can be replaced without harm by a discrete variable.
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For a general classical structural transition, it is well-known that close enough to T, the
critical behaviour for dimension d < 4 is fluctuation-dominated, at least in simple models
with short-range forces. In other words, even a system whose behaviour is displacive well
below and well above T}, will undergo a crossover into an order-disorder regime, close
enough to, and on both sides of, T.. The critical temperature region is characterized by
the appearance of fluctuating ordered domains of large size. Inside the domains the order
parameter is large, and locally coherent. However, different domains are incoherent (47].
The order parameter dynamics shows in this regime none of the softening typical of the
displacive limit. Critical dynamics is instead due to the slow, sluggish relaxation of the
domain walls, leading to the famous ”central peak” well known from Raman scattering

[44].

In a ferroelectric, fluctuating domains give rise to a typical, very slow, Debye-like
contribution to the low-frequency dielectric susceptibility, of the form Ae(T)/(1+iwr(T)).
If the ferroelectric transition is continuous, both Ae and diverge at T,. The critical
exponents of the real system are in the same universality class of a completely discrete
model, provided the two have the same symmetry. A discrete model is therefore sufficient

to capture the basic physics of the classical ferroelectric-paraelectric transition.

What about a quantum paraelectric ? At high enough temperature, the quantum per-
ovskites SrTi03, KTaO3, become just ordinary classical paraelectrics, well described by
the displacive limit. This classical displacive behaviour is confirmed by IR and Raman
spectra showing very well-defined TO modes, hard and narrow. These modes soften down
upon cooling, as expected in the displacive picture [48]. However, just above the extrap-
olated classical Curie temperature 7= (37 K for 5rTi03, 40 K for KTa03), the picture
changes. In SrTi0s3, the enhanced anomalous hyper-Rayleigh scattering [42] indicates

presence of local disorder, or off-center displacement of the ions, which locally breaks the
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inversion symmetry. Various anomalies observed in the spectroscopy of soft and acoustic
modes in SrTi05 point to the existence of large clusters, whose typical size is roughly
equal to the reciprocal of the reduced wavevector for which the anomalies are most pro-
nounced, i.e. £71 = 0.04-! ~ 20 lattice constants at very low T. In KTaO3, NMR data
of Rod, Borsa and van der Klink [49] clearly indicate that off-center displacement of T'a
jons sets up rather abruptly below T* ~ 40 K. In the microwave region, the slow Debye
relaxations typical of the order-disorder regime appear in K TaQOs3, their typical frequency
=1 again decreasing with temperature [10]. These are the usual signals of crossover into
the critical, order-disorder regime of ordinary classical paraelectrics. This crossover there-
fore takes place also in the QPE perovskites. Unlike the classical systems, however, in this
case the critical slowing down, i.e. the divergence of 7 with decreasing T, appears to be
blocked at some finite relaxation time 77, which in KTaQO3 is very long, (r*)~1 <~ 500
MHz [10]. Because of this lack of divergence of 7, long-range ferroelectric order is never
reached, and the system remains paraelectric even at the lowest temperatures. The fail-
ure to order ferroelectrically accompanied by these slow dielectric fluctuations has been
attributed to quantum zero-point motion [1]. There is clear evidence showing that fluctu-
ations can be easily removed, the system correspondingly turning into a regular ordered
ferroelectric, by applying either pressure (33] or impurity doping [14]. We conclude that
when approaching T from above, the QPE perovskites are well inside the order-disorder
regime. A sort of quantum order-disorder regime appears moreover t0 persist all the way
down to T = 0. Between T* and T = 0, we have a sort of "quantum central peak” state —
rather than completing its classical slowing down, and undergoing a regular ferroelectric
critical point transition, the system hangs indefinitely on the verge of criticality, due to

quantum fluctuations.

An important corollary of this discussion is that a discrete lattice model, which lends



2.2. Landau-Ginzburg-Wilson continuous effective hamiltonian 29

itself better to a description of order-disorder critical fluctuations, is more likely to yield,
probably even in the details, a better description of the QPE state, rather than a contin-
uous, displacive model. On the other hand, a continuous model allows a good description
of coupling to other degrees of freedom. In particular, such coupling allows, already in the
classical case, for a well-known precursor to the ferroelectric phase transition — namely the
onset of a modulated incommensurate phase. In the rest of this chapter we shall consider
both kinds of models. In section 2.2, we first construct a Landau-Ginzburg-Wilson effec-
tive hamiltonian for SrT703, including coupling of polarization to elastic strains. This
will allow us to investigate the possibility of onset of an incommensurate phase. In section
2.3 we then discuss the main ingredients of an order-disorder description, basic element of

which are discrete 77 — O bond variables.

2.2 Landau-Ginzburg-Wilson continuous effective hamil-
tonian

In this section we shall construct a Landau-Ginzburg-Wilson effective continuous hamil-
tonian, designed to capture some of the displacive aspects of S7Ti03 at low temperatures,
related to the possibility of onset of an incommensurate (INC) phase, to be discussed in
Chapter 3. We are guided by existing Landau expansion of the free energy of SrTiO3 (no
gradient terms). Several treatments can be found in the literature [50], [23], out of which
the most complete one is that of Uwe and Sakudo [33]. They expanded the Helmholtz
free energy density f as a function of polarization components P;, octahedron rotation
angles ®; and homogeneous lattice strains e;;. Their expression for the free energy density
associated with simultaneous onset of all three uniform order parameters in the otherwise
cubic phase reads

1 1
F(Pi¢ireij) = fo + 5702}’1'2 + DY P + ED??ZPEPJ?
; ; i#)



30 §2. Models
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+3 Z Cijkl€ijeRl  — Z(gijkleijpkpl + bijriei; Bp®y + 5 PiPi3k®),  (2.3)
ikl ikl

where the coefficients g;j account for the electrostrictive coupling between the compo-
nents of polarization and lattice strain and the last term corresponds to the 4-th order
coupling between the components of the two distinct order parameters.

To proceed in practice, we must somehow simplify the above expression. Assuming
the antiferrodistortive mode not to be primarily involved in the relevant physics at low
temperatures, we shall not include the angles &; in the expansion. This assumption is
probably wrong near and at domain walls, where large local strains may act to rotate
$;, but it helps a great deal, and does not seem fatal at this very qualitative stage. We
moreover assume that all the relevant physics takes place in the (001) plane, perpendicular
to the tetragonal axis. This amounts to setting P; = 0 and keeping just the polarization
components P; and P, as well as the strain tensor components ey, ez2 and e;z. To be
consistent, we shall also allow all the continuum variables (or fields) to be spatially depen-
dent only on the coordinates z; and z;. Again, the large softening of the z-propagating
TA mode found by Brillouin scattering speaks against this assumption for actual SrTi03,
however, it is much simpler to deal with strictly 2D gradients.

Now we have to provide the terms containing the spatial gradients of the fields. In spite
of the fact that we have two components Py, P, of polarization, the effective hamiltonian
cannot contain the Lifshitz invariant of the type P,V P, — P,V P, [61], because its presence
is incompatible with the presence of the center of symmetry. We instead have a coupling
between the lattice strains and the components of polarization of the general form
> hijkleij%, (2.4)
ikl !

which is a generalization of the form adopted in [52]. The physics of this term is that
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once polarization P changes as one moves in a given direction, the small but finite lattice
deformation that accompanies polarization will also need to change, in a precisely corre-
lated manner. In particular, the lattice will want to remain locally expanded along }_5,
and locally contracted normal to P. Apart from this coupling, we must also add terms
providing the dispersion of bare optical phonons, at least near ¢ =0 (dispersion of acous-
tical phonons is usually negligible). We therefore introduce a squared gradient term of the

form

O0P; 6P
> M G G ==k, (2.5)
17kl &Z}[

In an INC phase the term (2.5) will become, after renormalization due to the coupling,
negative for some direction in the (001) plane in the Z;—space. To stabilize the dispersion
for large k vectors we must therefore introduce another term quadratic in P and of higher
order than 2 in k. Due to the presence of the center of symmetry this must be of 4-th

order in k and for simplicity we can take it isotropic like
r(V2P)?. (2.6)

The form of the 4-th rank tensors hijn and 5ijki is dictated by the point group of the
symmetry of the crystal. With all the above approximations we can now recast the'eﬁ'ective

LGW hamiltonian of the system in the form

HYGW = gy / F(Pi(7), e;5(7)) &°F
1 1 : 1y, L
fo= ga(P+ P+ 6P + P + 5P2PLP] +
1
+ Ecu(efl + edy) + crzeriesn + 2cgpe2, —

- gu(en PE + e Py — g12(en1 P} + 22 Pl) — gegera P Py +

8P, P oP, _ OP
+  hi(enr + e2) (55 * ?9;22_) ¥ haen = ex) <3—$i - %.2%) "

+ h (Q&.{_@)_}_ (@)2_1_(8_12)2 +
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+ r(V2P)?, (2.7)

where some of the tensor components have been grouped together. As usual we may
assume all the coefficients to be temperature independent except for a. However, since
we are in the region in which the temperature dependence of this coefficient is determined
by quantum effects, we shall not try to specify it more explicitly and just state that for
§7Ti05 under zero stress, a > 0 for allT > 0.

In Chapter 3, we will show how (2.7) can lead to INC phases, which resolve competition
between e and P order parameters. According to [53], the INC phase resulting from
this kind of effective hamiltonian (without the Lifshitz invariant) is called type II INC
phase. Having included only polarization components and lattice strains, the softening
of a phonon branch leading finally to an onset of INC phase results from the mutual
interaction of a polar optical and a non-polar acoustical mode. Actually, this idea was
first expressed in 1970 by Axe et al [40]. They spoke about a ”phase with sinusoidally
modulated spontaneous displacements”, which is just the INC phase. The idea was then
subsequently formalized by Aslanyan and Levanyuk [52], [64], who considered it as a
mechanism of formation of an INC structure in quartz, a type II case, because the order

parameter has only one component.
2.3 Discrete lattice models

As discussed in the introduction, the paradigmatic discrete model for quantum paraelec-
tricity with a scalar order parameter is the Ising model in transverse field (1.2) 3], [55],
which was extensively studied in the 70’s, using a variety of techniques [56]. Its relevance
is particularly direct for the description of hydrogen-bonded ferroelectrics, like K HoPOy.

The order parameters in KTaO3 and § rTi05 are not exactly Ising-like, however. K TaOs3
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remains cubic down to the lowest temperatures and the order parameter has thus three
components. Sr7i03, which acquires a tetragonal structure at low temperatures (below
105 K), can become ferroelectric when doped by Ca and the resulting ferroelectricity is
known to be XY-like [14]. In pure §7Ti03, in particular, if the tetragonal axis z is taken
along (001), so that below 105 K two neighbouring 7403 octahedra rotate by an angle &
and —& around z ((®) ~ 5° well below 105 K), then ferroelectricity shows a tendency to
occur only along either +(100) or +(010), and more generally in the (001) XY-plane. In
the ferroelectric state, the 7% central ion and one of the four coplanar oxygens which sur-
round it in the XY-plane, establish between them a slightly stronger bond than the other
three. Coupling between different cells is not exclusively dipole-dipole, but should have
important electronic contributions (short-range), and elastic contributions (long-range).
The elastic coupling mechanism, in particular, is likely to be very strong, as confirmed by
the fact that even a small pressure along z is sufficient to yield ferroelectric order along y
[33]. Physically, what we believe happens, is that a double-well situation for the central
T4 ion (or equivalently for a bridging oxygen between two T'% ions), say along (100), can
occur only if the lattice is locally expanded along that direction~(spontaneously, or due
to an external factor). Some of the consequences of coupling of ferroelectricity to elastic
modes, leading in particular to incommensurability phenomena, and the possible role of

quantum effects will be discussed in the next chapter.

In the present lattice modelling, we shall however ignore these details, and assume
simply a short-range ferroelectric coupling J, between first neighbour cells. Each cell has
an XY phase variable ¢, representing the 7' displacement, or the dipole direction, sub ject
to a cubic anisotropy, with minima at ¢ = 0,£7/2,7. In the large anisotropy limit,
a minimal lattice model of ferroelectricity in SrTi0j; is therefore a 3D four-state clock

model with first neighbour coupling. This leaves entirely out possible long-range effects
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due to dipole-dipole coupling, and to coupling to elastic modes, as mentioned above, as
well as additional coupling to the antiferrodistortive order parameter. In order to make
quantitative progress, we choose to ignore all these complications for the time being, even
though they will probably have to be reconsidered at a later stage.

By introducing at each site the complex variable
z = e, (2.8)

where ¢; can take the four values 0, +7 /2,7, the ordinary, classical four-state clock model

can be written as

H = Y H}
HY = _J Zcos(d)‘ —¢;) = ———'—]-Re(Zz-z’f) (2.9)
7 - 2 ] 7 J — 2 J 2 J 9 *

where the sum over j runs over nearest neighbours of .

It was shown by Suzuki [57] that the classical four-state clock model is mapped in
full generality, i.e. independently both of dimensionality, and of range of interaction, onto
two decoupled Ising models. Hence, everything is known about the classical behaviour of
model (2.9).

However, we must now introduce quantum mechanical effects, in the form of a kinetic
energy term, not commuting with the potential energy (2.9). In a perovskite ferroelectric,
one can envisage at least two distinct quantum effects, both resulting in dipole tunneling.

The first is quantum hopping of the central positive ion (which will be called T'%, since
it is T4 in §7Ti03), from bonding preferentially one oxygen to bonding the next one,
within the same cage, or cell (Fig.2.1). The kinetic energy for this is, in the continuous

case

2 2
kinl _ Eﬁ_ 12 _ _1__ o _(2_
H == Ej o7 = S Ej ( zﬁa¢j) R (2.10)
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where p and p are effective mass and off-center displacement (a very small quantity, of
order of 0.03 4 [1]) of the T ion. In our discrete case, we shall allow the clock variable z;
to hop, for simplicity, into its two nearest orientations, i.e. from z; into +iz;. If we choose
to describe the system with a wavefunction ¥(z,..., 2,), the corresponding kinetic piece

of hamiltonian reads

Hkinl — ZH;:lnl , (2.11)

J
Hfin]lﬁ(zl,...,q,;..,zn) = —t(¥(z1,.3825, 000y 2n) + B2, 00y =125, .00y 2))

In the last expression, the hopping energy has further been lumped into the constant
t= 2_225?_' This term is an obvious generalization of the ”transverse field” term in the Ising
case. If strong enough, it will cause the dipole in each cell to hop quantum mechanically

from one value of ¢; to the other, irrespective of the state of dipoles in neighbouring cells,

thereby destroying ferroelectric long-range order.

N
]

4\'{
Z = -1 z=1

O o5

O

Figure 2.1: Intra-cage bond hopping, corresponding to kinetic energy H¥"! (2.12).

A second type of quantum effects, which has apparently not been discussed so far,

is ozygen double-well tunneling. When an oxygen is bonded to a given 7% ion, we can
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imagine another energy minimum, more or less equivalent, when that oxygen is bonded
to the other T ion on the opposite side (Fig.2.2). Quantum hopping processes of the
oxygen between these two sites (similar to proton hopping in hydrogen bonds) may play
a role in quantum paraelectrics, both because of a relatively small displacement involved,
and of the small oxygen mass. However, these processes cause the bond to hop from one
cage to the next and therefore, unlike the intra-cage hopping ¢, they do not obey the
(apparently sensible) requirement that the number of bonds per cage should not exceed
one. An adequate prescription is thus necessary to include the oxygen tunneling into our

scheme.

O O

e O
O O

Figure 2.2: Inter-cage bond hopping, due to oxygen tunneling, corresponding to kinetic energy
HFin2e (212), and HF "2 (2.13).

We have considered so far two possible implementations of oxygen tunneling. The
first is one where we force each cage to retain one and only one dipole bond in any given
configuration. This is probably close to what happens at very low temperatures. The
second is a different scheme, where we introduce the possibility of "bond vacancies”, while

still forbidding double bond occupancy of any cage. We discuss both schemes in this order.

If each cage is constrained to retain strictly one and only one bond at any given time,
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bond hopping becomes extremely problematic. For each bond which hops, a suitable "bond
backflow” loop is mandatory, so as to obey the one-bond-per-cage constraint everywhere.
In other words, only concerted rearrangements, such as ring-shaped currents of bonds, are
permitted. The simplest concerted bond hopping loop is shown in Fig.2.3. The associated
kinetic energy is a one-body operator, which for a horizontal link (i,j = 7 + &) can be

symbolically written as
BER = 1 (| i) (o [+ =) D) (2.12)

and analogously for a vertical link. In process (2.12), concerted ring bond hopping takes
place on the elementary plaquette only. Also, it is ineffective if the initial state is a fully
aligned ferroelectric. More general concerted processes should also be interesting, and do
not necessarily have this limitation. However, we do not wish to go into this discussion at

this stage.

The second possibility we envisage, having particularly in mind the situation at not
too low temperatures, is one where we still forbid multiple bond occupancy of a cage,
but we allow for the possibility of bond vacancies, i.e. cages where the T'¢ ion is centrally
located, or else it moves out of plane, so that it has no in-plane dipole bond at all. The
justification for this comes from the necessity to include at temperatures close to T
and higher, elements which link the present discrete model with the displacive picture,
eventually applicable when T > T*. At these very high temperatures, the likeliest 7%
ion location is indeed the cage center, and there are physically no more bonds to speak
of. Imtroduction of some bond vacancies even at lower temperatures allows for a new
bond hopping process, where a vacancy on one cage and a bond on a neighbouring cage
can exchange positions. The link oxygen between two cages can "resonate” between two

adjacent T'¢ ions, both of which are free from other bonds. The corresponding piece of
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Figure 2.3: The simplest concerted bond hopping mechanism, taking place on the elementary
plaquette.

hamiltonian reads symbolically, again for a horizontal link
HikjinQb = —t ([ — 4, Oj>(oi, —; 1 e h,c,) , (2_13)

and analogously for a vertical link, where o; denotes a vacancy on site i. Through processes
(2.13), vacancies and bonds become mobile, and the possibility of condensates may arise
at sufficiently low temperatures.

Besides potential and kinetic energies, we have also found that the problem of ferro-
electricity (both classical and quantum) in a perovskite requires a third, novel ingredient.
That ingredient is an anholonomic constraint, which in hamiltonian terms can be mim-

icked by some infinite repulsion, or attraction. The physical constraint we consider is that
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no éxygen should be bound (i.e. form 5 dipole) simultaneously to both 7% atoms on the
two sides of the link where it belongs. In other words, while a Ti atom has always at
most one bond, similarly an O atom can have either zero or one bond, but not two: the
configuration of Fig.2.4 is physically meaningless, and should not occur. The constraint
can also be included as a hamiltonian term, in the following way. First we introduce for
each link an operator

Pij = 8(zi — 15j)8(z5 + i5) , (2.14)

which acts as a projector on the forbidden states. In this expression, 7;; = 7; —r;, where r;
is the complex number defining the 2D position of site 7. The hamiltonian term equivalent

to the constraint then reads

U—oo

He™ = lim UY P . (2.15)
(17) '

Enforcement of this constraint is analogous to an ice rule”, and has also apparently never
been consi;iered before for the perovskites, or any displacive ferroelectric. It is likely to
yield nontrivial modifications in the physics. At the classical level, for example, we expect
a dramatic reduction of entropy due to the decreased number of available configurations,
and a possible change of the critical point universality class. Related effects are expected
in the quantum paraelectric problem, which is of direct interest to us.

Finally, we have to choose dimensionality. While the physical system is of course in
3D, we see no major harm in restricting our study to a 2D square lattice of cages. This
amounts to treating, so to speak, a single T30, plane, ignoring interplanar coupling. This
seems a particularly plausible approximation in the case of S§rTi03, where ferroelectric
T% - O bonds are strictly planar, and do not involve the interplanar bridging oxygens.

However, similar reservations to those mentioned in Section 2.2 remain valid in this case,

and should not be forgotten, when thinking of real SrTi0;.
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Figure 2.4: Forbidden configuration, with two bonds sharing the same bridging oxygen.



3 The displacive limit model: pos-
sibility of a modulated (incom-
mensurate) phase

In this chapter we shall investigate the possibility of the onset of a static incommensurate
modulated phase in a hypothetically classical §7T305. The reasons for wanting to pursue
this kind of phase are many. First of all, the INC state is a regular mosaic of domains
of size k; ! and no net global ferroelectric order parameter. Secondly, any model for
displacive ferroelectricity which includes — as it is necessary — the centro-symmetric ferro-
elastic coupling (2.4) will inevitably run into an INC instability, which pre-empts the
actual ferroelectric phase. Third, weak phonon anomalies at ko ~ (27 /a)¢ discussed in

Chapter 1 are reminiscent of the ko-phonon softening signaling the onset of an INC phase.

Our starting point will be the LGW hamiltonian (2.7) introduced in section 2.2 of
the last chapter. This represents a local free energy expansion, which is not just function
of components of the ferro-order parameter and the acoustic displacements, but depends
also on their spatial derivatives. The global free energy of the system therefore becomes
a functional of spatially dependent components of the order parameter. The equilibrium
configuration for given values of temperature and external parameters can then be found

as a solution of a variational problem.

41
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3.1 Loss of stability of the high-temperature phase

First we introduce the spatial Fourier transforms of the fields

p(7) = 3. Pgexp(ik.7) (3.1)
3
wu(@ = 3 ugexp(ik.7) (3.2)
3
. i - .
e,'j(”l') = €;F 5 z(kiqu + kjuil_c') eXp(Zk.ﬂ , ] = 1,2 , (3.3)
k#£0

where we expressed the lattice strains e;;(7) through the acoustic displacements () and
separated the contribution of homogeneous strains €;;. Substituting these relations into

(2.7) we obtain a free energy expansion

F = FO+VZfE (3.4)
E
1
fi = P+ 1P +
1 )
+ Zﬂl Z (Pll'c‘Plk‘IPIEIIPlEIH + PZEPZI;’PZE” 21-5/”)6(](2—}— E+k +k )+
TEE
1 bad - = =
+ 5,62 Z PlEPIE'P2E"P2EII' 5(k+k +k +k ) +
TEE"
1 . 1
+ —2-(211(6%1 + 6%2) + ci12€11€22 + 20666%2 + 5611(1":12'“11;]2 + k%‘uzl_‘:‘Z) +
Ll ,‘
+ chklkZulEuéE + 5656(101'[1!,2;;12 + kglulEl2 + lekgu“—éu’zk.) —

- g1 (611|P1,;|2 + 622|P2,;|2> ~ g12 (Gll\Pg,;lz + 622|P1,;\2> — gese12 P pPop —

— gut Z (klull-c‘PlE'PlE” + ngZEPZE: ZEII) 5(E+ I—C” + ’—Cm) —

k’E"
= guai 3 (kuuypPopr Pogr + katigp Py Py ) 8k 4 E+k) -
EIEII
i g b i
_ 9665 Z (kl’U,ZE + k2u1E)P1E’P2i5" 6(k +k + k ) +
kl,;ll

+ ha(Rvugg + kagp) (P + ko Pyg) o+ ho(lvwgg — katgg) (i P = ko Pp) +

h « "
+ —-2%(761'&2,—; + kgu”—‘:) (kgP”—co + klPQl_é) + Sl(kﬂpu—glz + kg‘PzElz) -+
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+ s2(k3| P + kT Pyl®) + (s + ss)kika P pPro + kY|P + [PL]) . (3.5)

Now we can investigate the stability of the homogeneous commensurate phase with
respect to the formation of an INC modulated phase. For this purpose we need to consider
only the quasiharmonic part of the free energy as a function of P Popyugg, U,f, since we

are dealing with infinitesimal order parameters. This reads

f

) 1 1 : :
fE §Q(IP1E12 + ‘Pziz'lz) + —2—611(/6%'11,1];!2 + k§|u2];|2) +

_ «
clzklkgulguﬁ -+ 5666(]6%]712,;'2 + kg]ulgﬁ + 2k1k2ulgu25) ’\L
73 [bka(uy P + g Py) + Ky Py + Ru, P )t

Sl(k%lP“;’z + k%'Py}'lz) + SZ(kgl'PlElz + k‘f)’Pg]}'lz) +

+ o+ + o+ 4+

SgklePIEP;E -+ Tk4('P1E!2 + |P2E12) s (36)

where we denoted v; = hy + hayy2 = hy — hy, y3 = h3/2, s3 = s4 + s5.
It is convenient now to introduce longitudinal and transverse coordinates of Py, Py uy, u,

through the relations

wp = ulEcos(ﬁ)—}—qusin(t?)
up = ~u1Esin(19)+u2];cos(l9) ) (3.7)

and similarly for Py, Pp. The angle 9 is the angle between the wavevector and the
z-axis. If the system were isotropic in the plane, then these rotated coordinates would be
Jjust the eigenvectors of bare longitudinal and transverse phonons. Substituting to (3.6)

we get

' 1 . 2
e = GatrB)(IBgl® + | Pgl’) +

1 1
+ [-z-(cl — co cos 49)|u,z|* + 5(62 + co cos 49)|u z|* +
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1
+ —(7+70cos419) i lk+ (7 — ypcos 4 )u g P +

+ —(s+sucos419)\ k\ + - (5 — socos 49)| P k\

. 1 “
4+ sin4d (cuulk £ 70(”!EPtE +upPr) - Plkpucﬂ k? (3.8)
where we have introduced the following new coefficients
co = —5(2¢66 — €11 + c12) , 8o =81~ 82~ %53 , Yo=71— 72— 273,
cp =¢11— €0 » 5—351+5’)+ is3, 7*3’)’14*’)’0'*'2‘73, (3.9)
cy = 2(011—612)—60, 8 -—51-1—3-92—133 7 == 72+ 27 -

Before proceeding, we have to comment on the longitudinal component P of the
polarization. Our effective hamiltonian (2.7) does not take into account the coupling of
the polarization to the macroscopic electric field resulting from the longitudinal part of
the optical displacement and therefore does not lead to the splitting between TO and
LO phonon frequencies at E = 0. Phenomenologically, we could introduce a splitting
just replacing by hand the stiffness a in (3.8) by another stiffness a; corresponding to
P;. However, at low temperatures we expect the lowest LO phonon frequency to be
several times larger than that of the soft TO phonon. Therefore cy should be considerably
larger than a, which means that the longitudinal component P is hard, and effectively
decoupled from the problem. We shall thus use the free energy in the above form and
from now on set simply Pz = 0.

The stability of the homogeneous commensurate phase will be lost if the frequency of
one of the branches becomes equal to zero for a wavevector k # 0. We shall investigate a
general situation, not restricting ourselves to wavevectors along any particular direction.
Searching for temperature and wavevector at which the frequency of some branch for the

first time goes to zero is equivalent to solving the set of equations

of.

5}% =0 (3.10)
ik

of-

&~ 0. (3.11)

BP;E
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In other words, it is equivalent to minimizing t'he free energy with respect to all variables
and searching for the g-point, where this minimum for the first time corresponds to their
non-zero values.

Substituting for the elastic constants €11, C12, C44 their experimental values for SrTi04
(taken from [33] and converted to SI units these are e = 3.36 X 101, ¢y5 = 1.07 x 1071,
iy = 1.27 x 10" Jm™3) we obtain ¢y = 0.06 x 10! , ¢, = 3.42 x 10! , ¢g = 1.20 x 101!
Jm~3. Because ¢; < ¢, 2, we can clearly neglect the term which is off diagonal in acoustic
displacements in (3.8) (because the elastic properties in the plane are only very slightly

anisotropic) and write

of; 1
E 2 2. _

Bu;‘l; = keiyp - Zk YosinddP,p =0

of; 1,

8uf.. = k2(:2utl; + Zkz('y —Yocosd9)Pr =0 . (3.12)
tk

Substituting for U, u,z from these equations to (3.8) we get the free energy f;; as a function

of P, only
: 1,
fp = selbgl (3.13)
a = a+ <}(sl — sp cos 49%) — —L'yg sin? 499 — —1—(')/ — 7o cos 419)2) E? + rk?
2 16¢y 16¢,

The instability occurs when the expression denoted as o’ becomes equal to zero. There-

fore we search for its minimum as a function of both 9 and k. We obtain
. 1 2 - Yo I
sindd sy — —75cosdd — —(y — yycos49)| = 0. (3.14)
461 462

We see that we have a symmetry-determined extremum if sin4d — 0 or an accidental
extremum if the expression in the square brackets is equal to zero. We shall consider
only symmetry determined extrema which occur for ¥ = 0 or ¥ = 7 /4 and equivalent
directions. The condition for these extrema to be actual minima is

1 e
s — —y? 70(74:‘:2 )

™ 0 (3.15)
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when ¥ = 0 and

L2 2ol T 70) ) < g (3.16)

1
So T g2, 0 ic,

when ¢ = /4.
Now we investigate the behaviour with respect to k for both cases above. For ¢ = 0

(k|| z, i.e. along (100)) we get

! 1 I ]. ! -
fi= |zt (36 - 20) - 555,07 ) okt 1Pl (3.17)

for the free energy. In order to have a minimum as a function of k, the coefficient of k% in

this equation must be negative. This implies

(7 = 70)? > Bea(s' = sv) (3.18)

as the necessary condition for onset of an INC phase. Provided it is satisfied the minimum

of (3.17) occurs for a wavevector ko which is determined by

ko = \/;1— [521';;(7' ) = 2 = ) (3.19)

An INC phase with the modulation wavevector ko sets on at a temperature T7 obeying

the condition

a(Tr) = 51; {‘3—51;;(7' ~70)* ~ %(51 - 50)] - (3.20)

For ¢ = 7 /4 (lz along (110)) the equations (3.18), (3.19) and (3.20) are replaced respec-

tively by
(7 +70)? > Bea(s +50) (3.21)
171 1
— pa— ! 2 _ (4 .
ko = \ﬂr [3262 (Y +70)? = g0 + su)] (3.22)
and

o(Th) = o [ 4 ) - 35 ) (3.23)
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3.2 The INC phase and its properties

Now we can turn to the investigation of the properties of the INC phase. Due to the
tetragonal symmetry, in both cases analyzed, ¥ = 0 and ¥ = 7/4, we may have either one
modulation direction corresponding to freezing of 2 vectors of the star of &y or 2 mutually
perpendicular modulation directions in case when all 4 vectors of the star of & get frozen.
In order to determine which of these possibilities is actually realized it is necessary to go
beyond the quasiharmonic part of the free energy, by taking into account the higher order

terms of (2.7).

Since the effective hamiltonian (2.7) is a functional of the polarization and displace-
ment fields, the INC pattern corresponding to equilibrium is found as a solution of Euler-
Lagrange equations resulting from (2.7). We do not have any particular boundary condi-
tions imposed on the fields and therefore the appropriate solution is the one corresponding
to the absolute minimum of the functional. This means that we should find the general so-
lution of Euler-Lagrange equations containing integration constants and then perform an
additional minimization with respect to all of these. Such approach would not be an easy
one because we would have to solve a system of nonlinear partial differential equations.
We shall adopt a different approach instead. We assume that the equilibrium solution is
a periodically modulated phase with the wavevector k& which is for the moment unknown.
Then it is convenient to make use of the free energy expressed as a function of the Fourier
components of the fields (3.5) because the only non-zero components would be those corre-
sponding to the harmonics of the basic wavevector k. Minimizing with respect to those we
obtain a system of nonlinear algebraic equations which in principle could be easily solved

by a numerical iteration procedure.

To write these equations, it is useful to return to the original cartesian components of

the vectors in terms of which the free energy (3.5) is expressed. The equilibrium condition
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for Pl i reads

oF
0P

= (a—2g11€11 — 2g12€22 T 251 k% + 2s9k3 + 2rk") P g +
+ (—ges€12 + (544 s5)k1k2)Pyp +

h 1
4+ ((h1+ ho)ki + _231“%)“175 + (k1 — ha + —iha)klk‘z%g

M

+ B > PP Pymbk—k —k -k )+

EIEIIEIII
+ ,62 Z PlE'PZE"P2E”' (5(’;—— EI - E” - EI“) -
EIE’IEIN
. ' - = =11
- 2g11’l, Z klu”—Cqu—;u 5(’(! -k —k ) -
EIEII
. ! ad = badls
— 29198 Y kou,p Pypn 6(k—k — k ) -
EIEH
1 . ! ! g padi =1
— 5 0eo Z (K uyp + kot g ) Popn 6(k —k — k) =0, (3.24)
k,i‘;”

and differentiating with respect to P;E we obtain an analogous equation. Equilibrium

conditions for the acoustic displacements read

oF

"
aull?

h 1
= ((hy + ho)k} + —2§k§)PIE + (hy = b + g ha)kika Pyp +
+  (crrk? + cockd)u,p + (12 + cos)krkou,p +

— gk 3 P P 8(k - F — k') —igioks D Py Poe §(E—k —k)—

s

EE" Kk

1 . - = =11 '
- ‘2‘9667'132 PlE'PQE" 6(’0 -k - k ) =0 (3.25)
EI E”
and an analogous equation for the derivative with respect to u;‘E.
The free energy depends also on the homogeneous strains €11, €22 and €32. Determining

the equilibrium conditions with respect to those and solving for the strain components we

obtain

e = ad Pt Pyl
P P
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e = a) |Puyl®+b) [Pl
E E

€2 = cy PP, (3.26)
E
c —c c —c
where we denoted a= M , b= w , €= L . (3.27)
€11 — €12 €11~ €12 4cep

We see that it is impossible to fulfill this system with the basic harmonic only, because
the bilinear terms originating from the electrostrictive coupling and 3"¢ order terms origi-
nating from the quartic terms in the free energy generate respectively the 2”¢ and the 379
harmonic. However, it is actually possible to avoid the numerical iteration procedure, as
Michelson has first shown [58]. The general conclusion is that in case when the free energy
does not contain the Lifshitz invariant and contains rather a term of 4*" order in k, the
amplitudes of the higher harmonics in the equilibrium solution are small and therefore
the INC phase remains practically sinusoidally modulated down to the temperature of the
lock-in transition. We shall therefore investigate just the part of the free energy which is
projected out from (3.5) by the single plane wave ansatz, consisting in including in the
solution just the basic harmonic with the wavevector kq found in the last section.

First we analyze the case when the loss of stability occurs for ¥ = 0, i.e. for direction
[100]. If only a single modulation direction & = (ko, 0) is present, the only non-zero Fourier
components of the polarization will be the transverse components P2, +j which without loss
of generality can be considered as real. We notice that the 3" order electrostrictive terms
in (3.5) give zero contribution, because they conmsist of products of an odd number of
basic harmonics. kThjs implies that the equilibrium values of the acoustic displacements
are equal to those found in the last section considering just the quasiharmonic part of
the free energy. The value of this for the equilibrium acoustic displacements is therefore
given by (3.13). To obtain the total free energy we must add to that the contribution of

the terms of 4 order in polarization components and also the elastic and electrostrictive
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terms containing just the homogeneous strains. For those we substitute the equilibrium

values (3.26). Writing P, ,z = p and substituting to (3.26) and (3.5) we recast the total

2,4k

free energy as a function of p (we set the volume V' = 1)

) 3 ‘
F = Fy+ap’+ (5,61 + d) pt o, (3.28)

where d = 2c11(a2 + b%) 4 4cipab — 4g11a — 4g12b .

The equilibrium value of p is given by

Sy (3.29)
Peq = 301 + 2d )
and the total equilibrium free energy is
[ . (3.30
T Gp v dd 50)

If we assume that two mutually perpendicular modulation directions by = (ky, 0),
1—52 = (0,ky) are present in the system, we can proceed along the same lines in order
to calculate the corresponding equilibrium free energy and compare it with (3.30). The

non-zero Fourier components of polarization are now the 4 transverse components P, I
,

P, .z which can again be taken to be real. Writing Pl,:l:Ez =P,z =pWwe obtain
F = Fy+2p*+(36+260:+d)p , (3.31)
where d = 4(c11 + c12)(a + b)* — 8(g11 + g12)(a+b) .

The equilibrium polarization and free energy are then, respectively,

'
—Q

= 3.32
Pea 361 +262 +d ( )

1
a2

Fog = Fom o .
? " 38, +26,+d

(3.33)

Actually we do not know the coefficients of the gradient terms in the effective hamilto-

nian (2.7). However, equations (3.30) and (3.33) allow us to decide within the single plane
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wave ansatz which of the two possible modulation patterns yields the lower free energy
knowing only 4** order terms coefficients B1, B2, elastic constants and electrostrictive cou-
plings. The latter are known from [33] to be (converted to SI units) gy; = 1.33 x 101V ,
gi2 = 3.24x10%, g4y = 2.43 x 10° JmC~2. The clamped values of o(T), 81, B3, (which are
the appropriate ones for our free energy expansion) can be found in [23] and for T = 40
K they read (in SI units) a = 15.5 x 108 JmC™2, By = B = 0.9 x 101° Jm®C~*. Accord-
ing to (3.30) and (3.33) the condition to be satisfied in order that the two simultaneous

modulation directions pattern be the one with lower energy is

(911 - 912)2
36, -2 4=— 227 3.34
ﬁl Pz > C11 — Cy12 ( )

For the above values of parameters we obtain 9 x 10° for the left hand side and 1.75 x 109
for the right hand side, which means that the condition is well satisfied. We can therefore
conclude that if the loss of stability really occurs along the [100] direction, then the single
plane wave ansatz predicts the INC phase to be simultaneously modulated in 2 mutually
perpendicular directions.

Proceeding along the same lines we investigate the case when the stability is lost for
¥ =7/4, i.e. along [110] and equivalent directions. We Jjust quote the result for this case.
The condition equivalent to (3.34) is

108, — 64, > 2259 , (3.35)
Ce6
which for §7Ti0; yields 1.8 x 101° > 4.65 x 107 and obviously is well satisfied. The phase
with lower free energy is again modulated in two directions.

It is interesting to inspect visually these modulation patterns. We have plotted in
particular the [100] (¢ = 0) case (Fig.3.1). Dipoles are arranged in a kind of "flux phase”,
with regions of positive and negative ”vorticity” alternating along the [100] and equivalent

directions. Because the vector field is a superposition of frozen transverse optical phonons,
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Figure 3.1: The pattern of the polarization in the INC phase with two perpendicular modulation

directions.

its divergence is zero which implies zero polarization charge density. The INC modulated
phase is also accompanied by non-zero modulated lattice strains. Because the longitudinal
component of the acoustic displacement is decoupled and equal to zero, the pattern of
this field is the same as that of polérization, as follows from (3.12), possibly differing
in sign (determined by the sign of ~' — 7). From the equations (3.26) we see that the
homogeneous strain has no shear component €2 = 0, while the normal components €11, €22
are non-zero and positive, which means that the crystal expands. On the other hand,
due to transversality of the frozen phonons involved, the normal components of the non-
homogeneous strain (3.3) are zero within the single plane wave ansatz, while the shear

component is non-zero and is plotted on Fig.3.2.
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Figure 3.2: The contour plot of the shear strain component e;s.

3.3 Quantum mechanics: a new quantum paraelectric state ?

The theory we developed so far in this chapter is classical and refers to an INC distorted
phase, which, based on entirely classical reasoning, a displacive model of SrTt03 might
want to take at low temperatures. On the other hand, in the introduction we discussed
features of EPR data (lack of inhomogeneous broadening), which are definitely against such
possibility. A simple narrow EPR line might be compatible with dynamically fluctuating
domains, but certainly not with a static INC state as in Fig.3.1. How is it possible to
justify the dynamical picture, and what properties it might be expected to have ?

In this section we shall briefly sketch a possible way to answer these questions. It is
known that in case when a Lifshitz invariant present in the effective hamiltonian gives rise

to an INC phase [51], the phase degree of freedom of the doubly degenerate order parameter
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is governed by the sine-Gordon equation. Adding to the classical effective hamiltonian
a corresponding kinetic energy term and introducing non-commuting operators for the
phase and its conjugate momentum, one obtains a quantum effective hamiltonian. In the
1D case there are exact results for the quantum sine-Gordon problem due to Haldane
[69]. For however small quantum zero fluctuations - i.e. for any finite mass, the ground
state is liquid-like, while classically we obtain a static soliton lattice. Such a liquid-like
phase can be considered as an incommensurate phase which is quantum melted already
at zero temperature by zero-point fluctuations, and suggests, that something similar may
be actually going on in our case.

The quantum effective hamiltonian for our model reads
- 1 1 . .
HLOW = / [imu Ziz?(ﬁ') + 5me Z P2(7)| &7+ HLC (3.36)

and represents a classical ®* field. The quantum analogue of this is a quantum & field
theory. Restricting ourselves to zero temperature, we may try to assign to the ground state
of the system a variational wave function. We may consider for example an approximate

(”Jastrow”) state of the form

T o e (V/2VHECWP(R),8(7)] , (3.37)

where QQ[ﬁ(F),ﬁ(ﬂ] determines the relative probability of different field configurations,
and v plays a role of a variational parameter. Because this function is formally a func-
tional of the fields 13(7"'),'&’(7'-'), it is dependent on an infinite number of some generalized
coordinates and therefore still practically intractable. If we were now able to identify
which field configurations are the most ”important” ones, and introduce for these some
suitable coordinates, it would be possible to simplify (3.37) to a more familiar form. In
any case, having a wave function for the system, it is in principle possible to calculate the

average value of any measurable quantity, provided we know the corresponding operator.
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This can always be expressed as a function of the coordinates 7 ; and momenta py,; of
the atoms of the crystal, which in turn can be expressed in terms of the amplitudes of the
eigenvectors of the lattice dynamical problem. We recall at this point that the meaning
of the variables ﬁ(f’), U(7) is that of amplitudes of the corresponding TO and TA zone-
center mode eigenvectors. Therefore the wave function (3.37) can actually be used to
determine the zero-temperature average values of the quantities of experimental interest,
and particularly of those measured in EPR experiments, like (§¢), (a) and (D).

The very basic advantage which trial functions like (3.37) have, is that the correspond-
ing probability distributions are identical, by construction, to those of a classical system
with hamiltonian HLCW[P(7), @(7)] at temperature T = 1/kpy. Hence, based on our
understanding of classical systems, or on classical simulations, etc., we may hope to learn
about the physics of the purely quantum system which (3.37) is supposed to approximate.

Classically, an INC phase is necessarily "floating” in 2D - it can only have power law
quasi-long-range order due to divergent thermal fluctuations. However, in 3D it will be
ordered and stable, apart from a drift of periodicity, up to some critical temperature 7.
Above T, the INC lattice disappears, and {ﬁ(ﬁ')},{ﬁ(f")} configurations become disor-
dered, or chaotic.

In the previous work [60], it was speculated that the singularity points of the crystalline
INC phase — which form a square lattice in Fig.3.1 — might still survive in the disordered
state, forming a fluid of singularities. In that case, the wavefunction (3.37) would, for
v < 1/kpT,, represent anew kind of quantum fluid - a superfluid of singularities. Although

this seems an interesting route to pursue, it has not been possible so far to do so, and this

line will not be discussed further at this stage, leaving it for future work.




4 Discrete lattice models

This chapter is devoted to study of discrete lattice models, whose main ingredients were
discussed in Chapter 2. Gradually adding these ingredients, one at a time, we obtain
in turn a series of three models of increasing complexity, with correspondingly richer
behaviour. In the first two sections, we shall heavily rely on a Path Integral Monte Carlo
simulation technique. Details of this type of calculation are provided in the Appendix A.
In the last section, we shall use a particular sampling algorithm for a Variational Monte
Carlo technique, which is described in detail in Appendix C. In the same section, we
shall also refer to some ideas related to quantum crystals contained in [18], which are for

convenience briefly summarized in Appendix B.

4.1 Plain Quantum Four-State Clock model

In this section we shall consider the simplest of the models, which is defined by the
hamiltonian

H=H'+ B =5 (Hf + H™), (4.1)

¥
where

Hi = -3 cos(s; - ) = -2 Be(Y 52) (4.2)

is the classical four-state clock model, and

HE™ U9z, 25,000 20) = —t(8(21, .. izjy oy 20) + U2, 00y —i2j, .00, 20)) (4.3)

56
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is the kinetic energy due to hopping of dipole in cell j from one value to another, as

discussed in Section 2.3.

4.1.1 Equivalence of the model to two decoupled Ising models in a trans-
verse field

The model (4.1) can be mapped on two decoupled Ising models in a transverse field,
regardless of dimensionality. In order to construct the mapping, it is convenient to start
from the ¢; representation.

We represent the clock variable ¢; on each site by two discrete variables, s; and o,

defined respectively by

s = \/§cos(¢i+g—)

g,

V/2sin(¢; + %) : (4.4)

It is easily seen that s;,0; = +1, and thus the new variables can be regarded as Ising

¥

variables. The potential energy term can be immediately written as

17
H = “% D cos(di = ¢5) = =5 ) (sisi + 0ic) (4.5)
F J

which is just Suzuki’s classical decoupling [57].
The kinetic energy term can be written as
Hz‘kinllp(slao-l; ooy 85504500 -;Snyo'n) - Hz'kinl‘p(qbla'“aqsiu' . '1¢n) =
T T
-1 ‘fg((ﬁl,...,gb,‘—— ‘2“)"'7¢n)+m(¢la'--,¢i+§a""¢n) =

—t (U(81,015 10y —Si5 e +;SnyOn) + U(81,015 .03 =04, 853+ 23 80, 0n)) « (4.6)

Because s;, 0; = +1, we have always s; = *0;, and the last expression can thus be rewritten

as

kinl . ‘e . . —
HE™ U(51,00;5 058,045 .23 8ny On) =

—t(U(81,005 05 =85, 055+ Sny On) + C(51, 015043 8, =043 02380, 00)) - (4.7)
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We see that the Ising variables s;,0; are decoupled both in H} and in HF™!  and the
latter term corresponds to the well-known transverse field. The quantum four-state clock
model is thus equivalent to two decoupled Ising models in a transverse field equal to the
original hopping parameter ¢, and with a new coupling constant J/2.

The Ising model in a transverse field was intensively studied in the 70’s. An exact
solution for 1D case can be found in [56]. Discussions of higher dimensionalities are given
in several places [61, 62, 63]. Quantum Monte Carlo renormalization group study of 1D and
2D case is available in [64]. In 2D at T' = 0, there is a continuous quantum phase transition
at J,/t between a ferroelectric state and a QPE state. The critical point extends into a
line at finite temperature, where a characteristic pattern of quantum-classical crossover is

realized [6].

4.1.2 Test of the PIMC scheme on the plain quanturﬁ four-state clock
model

In order to test the QMC scheme described in the Appendix A, we chose to perform a

simulation of a limited extent for the simple unconstrained model, which is equivalent to

the quantum Ising model, as discussed in the last subsection. In this subsection we briefly

describe the results, since they will also be of interest for comparison with those obtained

for the constrained model in the next section.

From the Monte Carlo renormalization group study of Kolb [64] it is known that the
limiting valu'e of the ratio ¢t/J for the existence of an ordered state in 2D Ising model in
transverse field is ~ 3.04. Using the mapping from the last subsection then results in a
limiting value of J{ /¢ ~ 0.66 for our model.

As an initial test, we did a numerical diagonalization of a 2 X 2 system with J = 0.5,
and compared the exact canonical results for internal energy and specific heat with those

of a PIMC simulation. In order to obtain a good statistical accuracy, we used 1 x 10°
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MCsteps/site for the simulation, and found excellent agreement (Fig.4.1).

Next, we carried out simulations for three different values of J — 0.5,0.75,1.0. Each
of these three values of J is expected to correspond to a different regime of the system.

The results can be described as follows.

We start with J = 1.0, where we expect the system to approach the classical behaviour.
It should therefore exhibit onset of ferroelectricity with a fully developed critical behaviour
of the 2D Ising universality class, which ought to be visible already for the relatively
small system sizes studied here. The results of the simulation performed for lattice sizes
L = 6,10, 20 are plotted on Fig.4.2. We see that the zero temperature value of the order
parameter | P|is about 0.85, only moderately depressed from its classical value by quantum
fluctuations. The transition is signaled by a drop of the order parameter as well as by
pronounced critical peaks of both the dielectric susceptibility and the specific heat. The
susceptibility peak appears at a slightly higher temperature than the specific heat peak,
and is also considerably more size dependent. All these results are perfectly compatible
with a 2D Ising transition. In order to extrapolate the infinite-size critical temperature we
have analyzed our data using the phenomenological renormalization method [65], which
treats properly the large finite-size corrections (especially evident for the specific heat
peak position). The results of this analysis are given on Fig.4.3 and Fig.4.4. In the case
of susceptibility, Fig.4.3, the three curves are near intersection in the vicinity of the point
(1.,1.75), which suggests the critical temperature 7. = 1.0 and the 2D Ising value of —Z
for the ratio of critical exponents L. The same analysis for the specific heat, Fig.4.4,
however, suggests instead a higher critical temperature close to 7, = 1.2. We consider
this discrepancy to be a consequence of small system sizes used as well as of the statistical
errors in the results. In any case, a critical temperature 7. ~ 1.0 is rather close to its

classical value 7, = 1.1346. .., which further confirms the conclusion that the system for
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Figure 4.1: Test of the PIMC method: specific heat c,, and internal energy FE for a 2 x 2 uncon-
strained system with J = 0.5, as obtained from the simulation, to be compared with the exact

result obtained from the diagonalization.
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Figure 4.2: Unconstrained polarization |P|, dielectric susceptibility X, and specific heat ¢, for
J =1., U = 0. Note the classical ferro-para transition near 7, ~ 1.
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J = 1.0 is in a classical regime.
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Figure 4.3: Finite size scaling determination of Tt, and I from the phenomenological renormal-
ization method [65]. On the vertical axis is L, = In(x(L1, T)/x(L2,T))/In(L1/L2). All the
curves should intersect at the point (T, ). Our best estimate for T, is 1.0, for J = 1., U = 0.

For J = 0.75 the simulation was also done for three different lattice sizes L = 6,10,20
and the corresponding results are on Fig.4.5. The zero temperature value of |P| is now
about 0.65, which reveals the effect of stronger quantum fluctuations. The ferroelectric-
paraelectric transition is seen as a drop of | P| and as a sharp critical peak of the dielectric
susceptibility curve near a new T, ~ 0.5. The same finite size scaling analysis of the
susceptibility as in the preceding case (Fig.4.6) now agrees with a critical temperature of
T. ~ 0.5 and a ratio of critical exponents L still close to % Since the classical transition
temperature for J = 0.75 is T, = 0.851, the effect of quantum fluctuations has been to
reduce T, quite considerably. An interesting feature in this case is the behaviour of the

specific heat. It has a rather flat maximum at temperatures almost twice as high as the

transition temperature, with no strong evidence of critical behaviour at T, itself, for the
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Figure 4.4: Finite size scaling determination of T}, and SyforJ=1,U=0.

system sizes we studied. This is again a sign that the system is in a quantum regime, and
one would have to go to larger sizes to observe the expected crossover (6] from quantum

to classical critical behaviour, sufficiently close to 7.

Finally, for J = 0.5, we ran the simulation for only one lattice size, namely L = 10.
The results are on Fig.4.7. Ferroelectricity seems altogether absent, all the way down to
T = 0. To clarify further this case, we also performed an extrapolation of the dielectric
susceptibility to m — oo and found it to saturate at low temperatures (for comparison
with the classical case, the susceptibility starts to level off at temperature T' ~ 0.25, which
is slightly less then a half of the classical transition temperature 7T, = 0.567). This means
that the paraelectric state persists down to the lowest temperatures and we therefore

conclude that for this value of J the system is in the quantum paraelectric regime.

Apart from the usual long-range order parameter |P|, we can also demonstrate the tem-

perature dependence of the nearest-neighbour ”short-range order parameter” (cos(¢;; —
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Figure 4.5: Polarization |P|, dielectric susceptibility x, and specific heat ¢, for J = 0.75, U = 0.

There still is evidence of a ferro-para transition near T, ~ 0.5. The singularity of ¢, is severely

depressed by quantum effects.
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Figure 4.6: Finite size scaling determination of T¢, and 1, for J = 0.75, U = 0. Our best estimate
is T, ~ 0.5.

¢i/j:)) (Fig.4.8). Since the system is now paraelectric for all temperatures, | P| must scale
to zero with increasing system size L. Its behaviour for a finite L reflects that of the
correlation length £. The polarization |P| is seen to pass through a moderate mazimum
at temperature 7™ ~ 0.6, where the same kind of behaviour is clearly visible also on the
nearest-neighbour order (cos(¢;; — ¢,/ 1)) curve. The correlation length £ of a system in
the quantum paraelectric regime thus has a maximum at a finite 7*. This kind of effect,
in the different context of granular superconductors, was found by Fazekas et al. in [66],
where a continuous XY-model was investigated. Their conclusion as to the existence of a
broad maximum of short range order at 7* ~ J remains therefore valid also in the case of
our diécrete four-state clock model. Qualitatively, the interpretation of this effect is the
following. At zero temperature, the rotors are predominantly in their totally symmetric
ground state |0) + |7/2) + |7) + | — w/2), corresponding to the angular momentum j = 0,

which does not possess a dipole moment. Increasing temperature from T = 0, rotor states
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Figure 4.7: Dielectric susceptibility Xz, and specific heat ¢, for J = 0.5, U = 0. Long-range
ferroelectricity is absent. On cooling, the system evolves from classical paraelectric to QPE.
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with non-zero dipole moment become thermally excited, and the system starts to develop
some kind of short range order due to the coupling J. This order reaches a maximum at fi-
nite temperature, and is then eventually disrupted by thermal fluctuations as temperature

increases further.

4.2 The constrained quantum four-state clock model
In this section we shall consider the constrained model, defined by the hamiltonian
Htot — H4 + Hkinl + Hconstr , (48)
where the constraint
Heonstr — Ulglgo U Z 6(z — Tij)&(zj’ + 7i;) (4.9)
(i4)
eliminates configurations where dipoles on neighbouring cells point towards one another

(section 2.3).
4.2.1 General considerations

First of all we notice that the constraint eliminates very large number of configurations.
To get an insight, let us consider a 1D case for a moment, and for the sake of simplicity let
us force the constraint on each other link only (Fig.4.9). Clearly, the number of allowed
configurations in this simplified case represents an upper limit of the number of allowed
configurations in the actual 2D case.

Let us denote the total number of configurations in the chain of 2N sites as b(N), and
that of forbidden configurations as a(N )- Adding two new sites to the chain (increasing
N by I) amounts to increasing b(NV) by a factor of 42. The sequence b(N) is therefore
defined by the relation 5(N + 1) = 16 b(NV), plus the boundary condition b(1) = 16, which

yields b(N) = 16",
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Figure 4.8: Nearest-neighbour ”short-range order parameter” (cos(¢i; — ¢;;)) and polarization
|P| for J = 0.5, U = 0. Note a mild peak of the short-range order at 7" ~ 0.6.
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Figure 4.9: 1D model chain of cages with constraint on each other link.

An analogous recursion formula can be found expressing the number of forbidden
‘conﬁgurations a(N + 1) in the chain of 2(N + 1) sites through the number a(N) in the
chain of 2N sites. To do so, we notice that a configuration of the chain of 2(IV + 1) sites is
forbidden when either the two additional sites are in their single forbidden configuration
while the original 2V sites are in any of the total of their b(N) configurations, or when
the additional sites are in any of their 15 allowed configurations, but the original 2N sites
are in one of their a(NV) forbidden configurations. The sequence a(N) therefore satisfies
the recursion formula a(V + 1) = 15a(N) + b(IV) with boundary condition a(1) = 1. The
explicit expression for a(/V) is therefore a(N)=16N"14+15x 16V-2 4 1 15N~2x 16+

15V-1,

We are interested in the ratio 27(% and its limit as N — oo. Using the above expressions
for a(N) and b(N) we find that %{%)2 =1- (1)Y= 1, as N — oo, which means that in
the thermodynamic limit the constraint eliminates "all” the configurations, except for a
set of zero measure. More precisely, the ratio of dimensionality of the constrained Hilbert

space to that of the unconstrained one goes to zero in the thermodynamic limit, which
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means that the constrained space is orthogonal to the original one. !

To start with, we shall investigate the properties of the constrained four-state clock
model for the specially simple case J = 0. In this limit, it is very easily checked that the
ground state of the unconstrained system (U = 0) is nondegenerate, and is described by
a wavefunction ‘]'!g, which is just a constant. This state can be seen as the product of N
separate identical wavefunctions for each cell, each corresponding to the j = 0 angular
mormentum state of that cell. The corresponding many-body first excited state is infinitely
degenerate. If we choose to label the wavefunctions by a wavevector k , we have for each

k two independent states, described respectively by wavefunctions (unnormalized)

‘Ilgzcl(’;’ Zl?""zﬂ) = ZeikRiRezi‘Pg (410)
0 (B 21y -ey2n) = }:eimflmz,-\pg, (4.11)

where ﬁi is the ordinary (real) vector defining the position of site . In the absence of the
constraint, i.e. for U = 0, the first excited state is separated from the ground state by an
energy gap 2t (in the rest of this subsection we shall always set t = 1).

What about the U = oo constrained model ? Guided by having solved first the two-site
problem, we try as an ansatz for the ground state wavefunction of the constrained system

the following (Jastrow-like) product state

‘I’;o(zl,...,zn)ZH(lzi—rijl—I- lzJ'—JrT'ij |), (4.12)
(i5)

which contains no free parameters. This wavefunction vanishes identically when bond ¢

points towards j and bond j points towards . It is rather close to exact solution for two

sites only.

'This, incidentally, is quite a common outcome for a constrained many-body problem. For exam-
ple, the well-known "non Fermi-liquid” behaviour of the 1D Hubbard model results from a very similar
orthogonality catastrophe. See, e.g., (671
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2x2 3x3
Egract 75.831 12.607
(O H|¥E) “5.827 12.508
(27T ) 0.9997 0.986
Egact -4.903 11.906
(oot [HI2..) -4.866 -11.818
(ReZa T2 + (Bt o ) |- 0.971
(Beaei o) 0.995 :

Table 4.1: Properties of the ansatz wavefunctions (4.12), (4.13) as compared to ezact wavefunctions
for small systems, 2 x 2 and 3 x 3.

We shall also assume that the first excited state of the constrained system corresponds
to k = 0 and can be obtained as the analytic continuation of the corresponding state (4.10)

from U = 0 to U = co. In this way we arrive at the wavefunction

T2 (R =0,21,...,2,) = D RezTP(z1,...,2,), (4.13)

o

and analogously for the degenerate state e ..

To test these guessed wavefunctions in the real 2D case, defined by the constrained
hamiltonian (4.8), we have performed a diagonalization for a 2-site and a 3-site system
with periodic boundary conditions (Lanczqs diagonalization). In Table 4.1 we show the
overlap of trial states (4.12) and (4.13) with the exact wavefunctions, and compare the
corresponding ground state and excitation energies. It turns out that (4.12) is an excellent
approximation for the ground state of these small systems, and the same is true for the
excited state ansatz (4.13). We feel therefore encouraged to adopt (4.12) and (4.13) as
reasonable approximations for larger systems, where diagonalization is impossible.

In order to extract properties, such as ground-state energy and correlations, and the
excitation gap of the system in the thermodynamic limit, we still need to calculate aver-
ages on states (4.12) and (4.13). For a 3 x 3 system with periodic boundary conditions
the constrained Hilbert space contains 57376 states; however for a 4 x 4 system this num-

ber is 284 465 424, and regular sums over the configurations are no longer feasible in a
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straightforward way. We have thus adopted a Monte Carlo sampling procedure for this

purpose. Energy, for example, is evaluated as the average local energy Eioc(J),

_ (ERM ) » H¥"19(4)
E = K3 (@] ¥)” Z!‘I'()l 3G

= (ZI‘P(J') |2) 2 190) P Buocld) (4.14)

J
where j labels the configurations of the whole system (and we recall that we are still
discussing the case J = 0).

We have calculated the average energies of states (4.12) and (4.13) for system sizes up to
30x 36. The relevant information obtained from this calculation is summarized in Fig.4.10
and Fig.4.11. On Fig.4.10 we have plotted the energy gap AFE versus system size L, which
shows that the gap tends to a value close to % as I — oo and U — oo. Comparison with
the unconstrained gap value AE = 2 (for U = J = 0) shows that the constraint, even
though insufficient to make the paraelectric state unstable and restore ferroelectricity, does
all the same act to increase very strongly the tendency to ferroelectricity.

On Fig.4.11 we show a plot of ground state energy per site as a function of L, and
we see that the finite size energy corrections scale exponentially with L. This agrees well
with the existence of an excitation gap. The correlation length obtained from energy
corrections is & ~ 0.72, which agrees with absence of long range order. To clarify this
point, we calculated the correlation function (z7z;) in the ground state, and find that it
falls off very quickly with distance. It was not possible to investigate accurately its large
distance behaviour, because the corresponding values were close to zero and suffered from
large statistical error. For illustration, we present in Table 4.2 some data for the 10 x 10
system. This behaviour of the correlation function supports the conjecture drawn from
finite-size scaling of the ground state energy, and leaves us with very little doubt that

ansatz (4.12) for the J = 0,U = oo state is disordered.
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energy gap AE

Figure 4.10: Size dependence of the variational energy gap AFE for J = 0, U = oo, between ground
state (4.12) and excited state (4.13). :

i ] (2] z)

(1,1) (1,2) 0.149

(1,1) (1,3) 3.x 1072

(1,1) (1,4) (7.2+£25)x 1073

Table 4.2: Correlation function (2{2j) of the ground state ansaiz wavefunction (4.12) for a 10 x 10
system.

Unfortunately, we have not been able to construct simple variational states, yielding
a similar semi-analytical understanding of the constrained quantum model for a general
J # 0. A simple correlated Jastrow form would necessarily overemphasize the disordered
phase, similarly to the case of liquid He*, where such simple wavefunction strongly overes-
timates the crystallization pressure. Zero temperature ordering in d dimensions in Presence
of quantum fluctuations actually corresponds to a classical ordering in d+ 1 dimensions in
presence of thermal fluctuations. In a 3D system, long-range order sets on at much lower

value of short-range order than in a 2D system. A possible way out might be a wave func-
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Figure 4.11: Finite-size scaling to the variational ground state energy Eg° (L) for J =0, U = oo.
Note the clear exponential behaviour, compatible with a gap, as in the Fig.4.10.

tion analogous to the shadow wave functions, commonly used for He*, which takes better
account of the many-body correlations, however, the corresponding calculation might not

be a simple one.

4.2.2 A slave-boson mean field theory

In this subsection we present a mean field theory for the ground state of the constrained
model, at J = 0. From this, we also get indirectly an estimate for the critical value Jg/t.
The main problem is to deal with the rigid constraint which prevents the oxygens from
being doubly bonded. This feature of our model is very similar to that which applies
to electrons in the infinite U Hubbard model, where the repulsion energy also eliminates
double occupancy of a single site. This analogy suggests that we may try to use the
method of introducing auxiliary, slave-boson fields, commonly used in the Hubbard model

studies [68].
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For this purpose it is convenient to work in the occupation number representation.
First of all, for each pair of nearest neighbour sites ¢, j we introduce two Bose operators
bjj, b;i. The operator bfj creates a bond of the central ion on site i, pointing towards site
7, and similarly bj-z- creates a bond of the central ion on site J pointing towards site . We
notice that obviously b: S F bji. Between the central sites i, ], there is a ”bridging” oxygen
ion, which can be unambiguously labeled by the pair of site labels 4, j or 7,i. This oxygen
ion, depending on the states of central jons on sites 7, j, can in fact be in four different
states. In order to describe these states, we introduce new Bose operators ejj,pfj’i,p:-'j’j, djj,
with the following meaning. The oxygen is in the state ejj |0), if none of the central ions is
bonded to it. It is in the state pjj,i |0), if the ion on site 7 is bonded to it, and analogously
for p:tj,j |0). Finally, in the state djj |0), both central ions on sites t,] are bonded to it.
These oxygen operators represent our auxiliary fields, or slave bosons. In our case they
do correspond to real physical states of the oxygen ion. From this point of view, they are

in fact real bosons. From the way we introduced all the operators it is clear that these

satisfy the following constraints:

Dbl =1 (4.15)
i

-i- ]

eljeij + Pl piji + Pij Piig + dijdij = 1 (4.16)
blibij = bl piji + dfid;; (4.17)

Now we express our hamiltonian (4.8) by means of the new operators. First, the
constraint term (2.15) is now easily written as
ir __ 71: T
Herw = lim UZ d}.d;j . (4.18)
(27)
The potential energy term (2.9) is straightforwardly written as

HY = —J Z Z Re(rikr;l)bjkbikb;[bjl , (4.19)
(is) B
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where r;; = 7; — T, Ti being the complex number defining the 2D position of site 1. The
hopping term (2.12) is slightly more involved. We work in an enlarged Hilbert space and
the hopping of central ion is accompanied by a change of state of the surrounding oxygens.

The corresponding expression reads
kin1 Tt 7 i i
H = ‘tz Z b}j(dijpij,j + pij,ieij)bij’(pzjfwjl di,-' + €ierij',,') ) (4-20)
T

where j,j are both nearest neighbours of 7 and such that j is the next-nearest neighbour
of 5.

Next, we shall treat the ozygen operators in the mean-field approximation, replacing
them by c-numbers. Before passing to the actual constrained case U = o0, we consider
the trivial case of U = 0, J = 0. The corresponding operator averages are obviously equal

for all oxygens and we denote them as

(el;) = e (4.21)
) = (L) =7 (4.22)
(di)y =4, (4.23)

where the equation (4.22) expresses the fact that we assume an unbroken symmetry case.
The constraints (4.15),(4.16),(4.17) then read

Yol =1

J
e2+2p2+d2:1

(b].bij) = P + d? (4.24)

Since for U = 0 the sites are indep endent, the numerical values of the above averages follow

just from the statistical distribution of possible mutual orientations of clock variables on

neighbouring sites. It is easily found that in this case (bfjbij) = %, and d* = —11—6, p? = .1%—5,
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e? = -1%. Our mean-field hamiltonian then becomes a sum of on-site terms

BYE = 8% S blb. (4.25)
i

where { = tp*(d +e)? = I—P’ét. We see that in order to recover the original ¢ we have to
renormalize the mean-field { by a factor of %.

Now we pass to U = ©0,J = 0. Obviously, the presence of the constraint Hconsir
amounts to setting d = 0. We shall first search for an unbroken symmetry, paraelectric
ground state. Following the same line of arguments as above, we have p? = %, e? = %, and
we get a renormalized = %t. This corresponds to a ground state energy per site equal
to Eg/N = —2{ = —%t = —1.333¢, which compares very well with the result —1.3668¢
obtained from our ground state wavefunction ansatz (4.12) (Fig.4.11).

Now we show that for U = o0, J = 0 there is also a broken symmetry, ferroelectric
mean-field ground state, whose energy is degenerate with the paraelectric state found
above. First of all we notice that the oxygens actually form two interpenetrating square
sublattices — one formed by oxygens lying on horizontal links and other formed by those
on vertical links. If we want to search for a broken symmetry solution, we have to allow
for different oxygen operator averages on these two sublattices, and also the p defining
equation (4.22) may not be true anymore. Let us assume that the symmetry is broken along
the horizontal axis. Then we shall have nonzero averages ey,py-, defined by (4.21),(4.22)
for oxygens on links 7,7, j = i + ¥, and ey = (ejj), PH+ = <ij,:’> and py_ = (ij,ﬂ for ¢, 5,

—

J =1+ @, where 7, § are unit lattice vectors. As a consequence, the mean-field constraints

(4.24) will also be correspondingly generalized. Instead of (4.25) we have now

HMF _ _ Z {t-l (bg,i+gbl’,i+f + b:{,,'_;_fbi,i—yj') + fz(bj,,'_fbi,i-pg‘ + b}‘,i—gjbi,i“i“) + hc} ,
(4.26)

where £; = tpveveypry, ty = tpveyregpy_. We can now prove that e; = ey =
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PH+ = —\}—;, pyv = %, py- = 0,is a selfconsistent ground state solution of (4.26). We get
renormalized hopping parameters t, = lsﬁt / 44/2, t = 0, and the corresponding normalized

ground state of (4.26) is

1 1 ; 1.
00) = T (gbhe  3thins  3this) 0 (221)

1

The self-consistency condition is easily found to be satisfied, and the solution is clearly
ferroelectric. The corresponding energy per site is Eg/N = —/2t, = —%t, and therefore
this state is ezactly degenerate with the paraelectric state already found. Our mean-field
theory thus predicts a critical value of J,/t = 0, since the slightest positive J will make

the system ferroelectric.

This value of Jg, however, is not compatible with the result obtained in the last sub-
section from the ansatz (4.12). In the following subsection, we shall resolve this issue by
means of a numerical Path Integral Monte Carlo simulation. Before doing so, we present
a simple argument which indicates that J,/t should in fact be finite for the constrained
2D quantum four-state clock model. As can be easily shown, the dielectric susceptibility
of a single four-state rotor at zero temperature is Xo = 1/2t = 1/AE, where AE is the
energy gap. Since each rotor has four nearest neighbours, a simple standard mean field
scheme would suggest a para-ferro transition at 4 xo J; = 1. For a simple, unconstrained
model this yields a critical value of J,/t =1/2, to be compared with the true value 0.66.
Since in the constrained case the gap is smaller roughly by a factor of four, the predicted
critical value correspondingly becomes equal to J,/t = 1/8 = 0.125. As we shall see later,
this value is again reasonably accurate. The basic fact that J,/t remains finite, in spite of
the constraint, will be confirmed. Hence, exact degeneracy of the ferro and para state at

J = 0 is an artefact of the slave boson approximation.
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4.2.3 Accurate simulation of the constrained quantum four-state clock
model

Before coming to the actual results of the accurate PIMC simulation of the constrained
model, we must again recall the limitations of the method used. It is intuitively clear that
already in the classical case, the presence of the constraint acts to reduce very considerably
the acceptance ratio of our simple unbiased MC moves (Appendix A). Moreover, in the
quantum case, the constraint increases the systematic error due to Trotter decomposition,
and a larger number of Trotter slices is needed to approach the true quantum averages.
These problems seriously reduce our possibilities of performing a satisfactory finite-size
scaling analysis of the results. 2

As a test of the code, we simulated first a 2 x 2 constrained four-state clock model, for
J = 0.5, and compared the results with an exact diagonalization, with very satisfactory
agreement (Fig.4.12). The rest of results we present in this section refers to a single system
size, L = 10. The simulation was performed typically for m = 10 Trotter slices in the
temperature interval from 0.1 < 7 < 1. In the low temperature range (7 < 0.4) we also
used m = 20 and m = 40 Trotter slices. All the quantities were averaged over 4 x 10°
MCsteps/site, after discarding the initial 2 x 10* MCsteps/site necessary for equilibration.

In Fig.4.13, we plot the calculated constrained dielectric susceptibility X Versus cou-
pling constant J at low temperatures, T = 0.1 and 7 = 0.2. We see a sharp peak,
signalling a transition, roughly at J, ~ 0.17 for T — 0.2 and at J, ~ 0.15 for T = 0.1.
The limiting quantum critical value may thus be estimated to be Jq/t ~ 0.15, a factor of

about four smaller than that for the unconstrained model.

On Fig.4.14 we plot the order parameter |P|, the dielectric susceptibility ¥ and the

specific heat ¢, versus temperature for J = 0.3. The system is clearly ferroelectric at low

?This will be possible in the future, provided one can construct a suitable algorithm, built to take the
constraint automatically into account.
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Figure 4.12: Test of the PIMC method: dielectric susceptibility Xzz,
2 % 2 constrained system with J = 0.5, U = oo,
with the exact result obtained from the diagonalization.

and internal energy E for a

as obtained from the simulation, to be compared
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Figure 4.13: Constrained model dielectric susceptibility x as a function of coupling J, for 7= 0.1

and T = 0.2, U = co. A ferro-para transition is evident, near J,/t ~ 0.15.
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temperatures. However, the saturation value of the order parameter | P | is ~ 0.5, indicating
a strong quantum fluctuation reduction. The susceptibility x has a peak at T ~ 0.35, for
this value of J. At the same temperature, however, the specific heat ¢, does not show
any apparent singularity for this small size. As also found in the previous section, milder

specific heat singularities are, however, quite typical for quantum transitions [5],[69].

Fig.4.15 and Fig.4.16 present plots of the same quantities Xz, Cv and |P|, plus in
addition the temperature dependence of the nearest-neighbour short range order parameter
(cos(¢ij — )) for J = 0.05. For this value of the coupling constant, which is lower than
Jgy/t, the system should be in the quantum paraelectric regime at 1ow T. Actually, were
it not for the J dependence of X (Fig.4.13), it would be difficult to draw this conclusion
just by inspection of the T-dependence of Xzr- In fact, even at the lowest temperatures
investigated, Xz does not seem to saturate, and continues to grow with decreasing T'.
Further simulation for even lower temperatures in this deeply quantum regime is at the

moment not feasible, since the Trotter error would be too large.

Similarly to the unconstrained case, the polarization |P| is seen to pass through a
moderate maximum at temperature T ~ 0.3, and the same behaviour is now just barely
visible also on the nearest-neighbour order (cos(¢ij — @) We note that the specific
heat ¢, is smooth, with the same broad maximum near T ~ 0.8 present also for the
ferroelectric case J = 0.3. Finally, on Fig.4.17, we show a sketch of phase diagrams for

both the unconstrained and the constrained model, as resulting from our simulations.

The two phase diagrams are qualitatively similar. There are only two phases, the ferro
and the para. The T' =0 QPE phase is nondegenerate, and has a gap. It will transform
into a classical paraelectric with temperature, with just a smooth crossover and no phase

transition.
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Figure 4.14: Polarization |P|, dielectric susceptibility x, and specific heat ¢, for J = 0.3, U = .
There is a clear ferro-para transition near T, ~ 0.35.
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Figure 4.15: Dielectric susceptibility Xza,
low-temperature state is a QPE.

and specific heat ¢, for J = 0.05, U = oo. The
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Note the shift of the phase boundary towards lower J/¢ due to the constraint.

4.3 Model with bond vacancies

In this section we shall study the last one of our discrete lattice models, which contains and
generalizes the previous two. It contains a new ingredient, the possibility of bond vacancies,
which at the classical level could just be seen as a way to make connection with the
displacive regime, where there are no more bonds. As we shall show, due to quantum effects
this new ingredient actually allows for an entirely new piece of hamiltonian, corresponding
to the quantum kinetic energy of the oxygen hopping, as discussed in Chapter 2. The

resulting model, however, is rather complicated, and so far we have not yet been able to
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reach a complete understanding of its phase diagram. We shall describe the picture as
we see it at present, and propose a possibility of a new and nontrivial modification to the

scenario of the crossover from displacive to order-disorder regime.

4.3.1 The model

The quantum four-state clock model, considered in preceding sections, resulted essentially
from a discretization of the local multiple-well potential. It implicitly assumed that at low
enough temperatu_res, each T ion is close to one of the minima in its local potential, or,
in other words, that there is a 7% — O bond in each oxygen cage. Imagine now that in
some cage there were no bond, and the T jon were located near the centre of the multiple
well, rather than in a side valley. As suggested in Chapter 2, such configuration could be
denoted as a bond vacancy, and its energy cost would be close to the well depth V. In the
purely classical case and at 7' = 0, each T'7 ion would be located exactly in the potential
minimum, and obviously there will be no bond vacancies.

Now imagine that due to some quantum process, this bond vacancy, once created in
a cage, could become mobile, and hop from a cage to the neighbouring one, exchanging
itself with a bond. Analogously to Andreev and Lifshitz’s considerations related to the
quantum crystal [18] (Appendix B), we may expect that if the amplitude for the bond
vacancy hopping were sufficiently large, the system might spontaneously create a finite
bond vacancy concentration even at T — 0. If moreover the vacancies could be considered
to be bosons, they would be condensed. For conserved bosons, the resulting ground
state would have an off-diagonal long-range order. Even if they were not conserved, the
condensed state, if it had to be arrived at by cooling, might imply a phase transition at
some finite temperature.

Actually, the ozygen hopping discussed in Chapter 2 provides us with a quantum

process which, in principle, might be able to delocalize the bond vacancies. The model we
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are going to consider in this section is obtained from the constrained quantum four-state
clock model of the last section, H'°t (4.8), by adding the kinetic energy term H®™ 2 (2.13),
as well as another term H V which accounts for the energy cost of creating vacancies. The

complete hamiltonian HV%¢ reads
Huac — H4 + Hkinl + Hconstr + Hkin?b 4+ HV . (428)

It is convenient to express all the terms of (4.28) in second quantization, similarly to
subsection 4.2.2. Apart from the operators bfj of the last section, we shall introduce for
each site i a new Bose ® operator hg, creating a state in which the central ion on site 7 has

no bond. The corresponding on-site completeness relation reads
Zbgjbij + hfhi =1, (4.29)
J

and expresses the condition that in each cage there is either a bond vacancy or just one
bond. The term H* remains in the form (4.19), while the terms HFnl and Heo"'" have

to be written as

Fkint — —tzzbgjbz’j’ , (4.30)
©ogd

comns . 1‘ ‘k
H .tr = Uh_]_:goUZbijbijbﬁbﬁ . (4.31)

(i)

The newly added terms are

HFkin2b — —t Z b;ih;rbijhj + h.c., (4.32)
(1)
and
B =V hihi, (4.33)

where the well depth V' > 0.

3Physically, bonds are composite of (electron pair) + (lattice distortion), and can be thought of as
bosons.
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Actually, this hamiltonian conserves the number of bond vacancies. In reality, their
number is determined by the condition of thermodynamic equilibrium, which corresponds
to zero chemical potential. In a real system, there will always be a finite amplitude for a
cage without a vacancy to develop one, and vice versa, and therefore the number of bond
vacancies will not be strictly conserved. We will come back to this point later on, and for

the moment we limit ourselves to the investigation of the hamiltonian (4.28).

4.3.2 The case J =0

To get a certain insight into the model, which, as formulated in its full generality (4.28), is
rather complicated, we first focus on the particular case of J = 0. A configuration of the
system can be pictorially visualized as on Fig.4.18 - on each site of a square lattice there
is either an ‘arrow’, pointing towards one of the nearest neighbouring sites, or a ‘hole’. An
arrow can hop to one of the two neighbouring orientations, and the constraint forbids the
possibility that two arrows on nearest neighbouring sites might point towards each other.
A hole can move, if there is an arrow on a nearest neighbouring site pointing towards it
- in such case the hole can exchange its position with that of the arrow, while the arrow
becomes overturned. One may expect that if the ratio of hopping parameters t'/t is not too
small, being, say, of the order of one, or larger, then in the typical configurations, around
each hole there will very probably be at least one arrow pointing towards it, allowing it
thus to move. Actually, in case of § rT303, to which our model should eventually apply,
we have a good reason to believe that this condition should be well satisfied. The value
of t and t' should depend, first of all, on the masses of the respective ions, T4 and O. The
mass of O is three times lower than that of T, and therefore we expect that t' should be
at least comparable to, or perhaps even larger than ¢.

The picture that emerges is thus that of ‘holes’ moving more or less freely through the

system, overturning the arrows. An instructive, although undoubtedly crude approxima-
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Figure 4.18: A typical configuration of the system containing bond vacancies in the ground state,
corresponding to choice of parameters ¢t = t' =1,J = 0,U = oo. Note arrows pointing towards
holes on neighbouring sites.

tion might be to consider the arrows just as a kind of medium, which renormalizes the
hole hopping parameter ¢ The resulting effective hamiltonian for the holes would then

be that of hard-core lattice bosons, with some new hopping parameter ¢t and a chemical

potential p

meil =~y (rhy + Rihi) + Hpc = 13 AL (4.34)
(1) g

where the term Hp, forbids the double occupancy of each site. The value of —p will be
equal to the energy cost of creation of a hole, which, apart from the well depth V, will
also contain a contribution from ¢, because presence of a hole is equivalent to absence of
a t hopping ion, with its proper contribution to the energy.

A formal mean-field treatment of hard-core lattice bosons is provided in the paper by
Matsubara and Matsuda [70], making use of a mapping on a spin -}9: system. Here we just

quote some important points of their analysis, the main result of which is a possibility
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of a superfluid phase transition. In order to understand the behaviour of the transition
temperature as a function of the chemical potential, it is useful to plot the average number
of bosons versus temperature for different values of }, as shown on Fig.4.19. For chemical
potential lower than a certain critical value He = —zt , where z is the number of near-
est neighbours, the number of bosons monotonously drops with decreasing temperature,
until at 7' = 0 there are no bosons in the ground state. There is no transition at any
temperature. For p slightly larger than Hc, the number of bosons falls with decreasing
temperature, until at some finite 7, the system becomes superfluid. On further decreasing
temperature, the number of bosons remains constant down to T = 0. It is easy to show
that the mean-field condensate fraction in the ground state is just equal to ny/n=1-n.
Increasing the value of u, the transition temperature increases too, until for =0 it
reaches its maximal value T, = zt~'/2k, when the ground state is just half-filled. As js
easily seen, the Fig.4.19 is symmetric with respect to half-filling, which is a consequence

of the particle-hole symmetry.

From the spin system analogy of [70] it is also intuitively clear, in which way would the
above picture be modified by the presence of a term that does not conserve the number
of bosons, as discussed in the end of the last subsection. Such term in the spin system
is equivalent to an external magnetic field in the XY plane, within which the superfluid
ordering takes place. In presence of the field which couples to the order parameter, strictly
speaking, there is no real, sharp phase transition. Depending on how strong the field is,

the transition will be smeared out to some extent.

The above tentative picture, if true for our bond vacancies, suggests a new possible
scenario for the crossover from displacive to order-disorder regime. At high enough tem-
peratures, kT > V, each T'¢ ion will be uniformly distributed among the minima and the

centre of its multiple well. As temperature decreases, some of the ions would go off-center,
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Figure 4.19: Average number of hard-core lattice bosons versus temperature for different values of
chemical potential u, as found by mean-field treatment [70]. The figure is actually symmetric with
respect to the n = 1/2 line, and only the upper half, corresponding to g > 0 is shown.

towards one of the minima, creating bonds and reducing the number of bond vacancies.
This corresponds to the crossover from the displacive to order-disorder regime, and clas-
sically, all the bond vacancies would disappear at T = 0. In our model, however, if t
is strong enough and V' not too large, this process will be blocked at some finite tem-
perature, due to a quantum phase transition. The system will keep some number (in a
mean-field treatment, a constant number) of bond vacancies down to T = 0, and more-
over, these will be superfluid. The transition itself may be accompanied by critical or
non-critical fluctuations of the total number of vacancies. All these ”strong” properties
(ODLRO, superfluidity, sharp phase transition) will be smeared out to some extent by
vacancy non-conserving processes.

In order to provide some quantitative, though still preliminary, basis for the above
considerations, we have studied the ground state of the hamiltonian (4.28) for J = 0,

using a variational ansatz for the wavefunction ¥4, much in the spirit of the last section.
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We shall again use the complex representation, and allow the variable z; to be equal to 0
in case of a bond vacancy. We assume the ansatz in a product form and write
Ty(21y.eny2y) = H bo(zi, 2j,7:5) . (4.35)
(i)
If both sites i, 7 are occupied by vacancies, we set the function Po(zi, 2j,7:5) = dyp. If just
one of the sites is occupied by a bond vacancy, then ¢y(z;, zj,7i;) acquires one of three
different values: ®0(2i, 2, 7i;) = dyq, if the arrow on the other site is perpendicular to the
vector rij; do(2i, 2j, rij) = doo, if the arrow points towards the vacancy and bo(zi, zj,75) =
dy4, if the arrow points from the vacancy. The quantities dyy, dy, dy2, dpy Tepresent our
four variational parameters. Finally, if there is no bond vacancy on the sites i, 7, we take
the function Bo(2:, 2j,7:5) to be equal to the normalized exact solution of the two site
problem for sites 7, j. This choice is different from that adopted in (4.12), where we took
instead ¢y(z;, z;, rij) = (| zi —ri5 | + | 2j + 74 |), since it turned out that with a non-zero
number of bond vacancies the latter choice yielded slightly higher variational energy.

We calculated the average energy of the state described by (4.35), again by means
of a Monte Carlo sampling, as we did in the last section. The details of the sampling
algorithm we used are reported in the Appendix C. We have investigated just one system
size L = 10, and one set of parameters ¢t = ¢ = 1,V = 0. We performed the sampling
for several values of the bond vacancies number, corresponding to different fillings of the
system. For each filling, all four variational parameters dyg, dy1, dpy, dy; were optimized,
typical optimal values being close to dy, = 3.20,dp; = 1.04, dy, = 1.28,dyy = 0.94. The
results of this calculation are shown on Fig.4.20. The energy first decreases, as the number
of bond vacancies grows, until it reaches a minimum for filling equal to 0.2, which would
be the equilibrium filling for V = 0. This behaviour of the energy agrees with (B.24),
and it is clear that for not too large positive V', the energy curve would still develop a

minimum for some smaller filling. For a certain value of V', the minimum will be at zero
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filling, and for this and higher V, the ground state will contain no bond vacancies. The
essential conclusions of our intuitive considerations thus seem to be confirmed, and we
believe that at least for J = 0, the above scenario may in principle be correct.

—-135

—145

-150

0 5 10 15 20 25
# of vacancies

Figure 4.20: Variational ground state energy of the
[ = 10 system with ¢ = t=1,J=0U= 00,V =10, as a function of number of vacancies.

Note the minimum on the curve, which determines the equilibrium number of vacancies.

4.3.3 The general case of J #0

The crucial question in this subsection is how much of the scenario might survive in case
of J # 0, or how it might be modified. As a matter of fact, we know that at temperatures
below 37 K, §rTi03 is already very close to ferroelectricity, and strong, nearly critical
polarization fluctuations are present. The system can order in two different ways; apart
from the off-diagonal long-range order of the bond vacancies, it can develop also a diagonal
long-range order in bond orientation. The question that naturally arises is whether the
two kinds of order can coexist. In other words, this amounts to ask what does the T =0

phase diagram of the system look like in the J, V plane (for some fixed £ ~ t'). Essentially,
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there are three possibilities, as shown on Fig.4.21. In cases a) and b), the two kinds of
ordering exclude each other. If, however, the real phase diagram is that of the case c),
then it is interesting to ask further, what are the properties of the phase with both kinds

of order simultaneously present.

V4 V4 va
QPE FE QPE | FE QPE | FE
ODLRO | ODLRO l ODLRO
?
'» L —p
J J J
a) b) . c)

Figure 4.21: Tentative T = 0 phase diagrams of the system with bond vacancies in the J, V plane,
for U = oo and some fixed ¢ ~ 1 .

We can speculate about the role that the aligned clusters play in the motion of bond
vacancies. As we see it, the clusters would rather tend to frustrate this motion. In the
pictorial description of the last subsection, a hole can only move overturning the arrows,
which, in turn, increases the energy of the ferroelectric coupling. As a result, the holes,
if still present, might tend to become localized on the domain walls, where the same
ferroelectric coupling would favour them. Further work is required to clarify this, probably

subtle interplay.

To summarize, so far we have not been able to provide answers to the questions raised
above. We have no quantitative prediction for the J # 0 case, which would allow us to
decide whether the model considered can for some reasonable values of its parameters ac-

tually exhibit a finite temperature non-ferroelectric phase transition, such as that observed



96

§ 4. Discrete lattice models

in S7Ti03.



5 Discussion, and conclusions

In this thesis, we have studied the physics of the simplest models of QPE systems. The
selection of a meaningful hamiltonian is particularly delicate, and we have been able to
make only some tentative steps towards modeling the real perovskite quantum paraelectrics

SrTi03 and KTaO5. Several main points have emerged in this selection process.

The first is that ferroelectric phenomena are not alone, in these crystals, and experi-
mental facts speak instead clearly of a rich interplay between ferroelectric, strain, and in
case of SrTi03, also antiferrodistortive order parameters. This makes the system rather
complicated to treat. Even restricting, as we did initially, to ferroelectricity and strain
alone, and accepting the mean-field approximations typical of the displacive limit, the re-
sulting quantum field theory is far from transparent, iﬁvolving possible quantum melting

of an incommensurate modulated phase.

The second is that (unfortunately) only models capable of describing order-disorder
fluctuations should be considered really adequate, since experimentally quantum per-
ovskites appear to crossover into an order-disorder regime, before entering a sort of quan-
tum central peak state at low temperatures. Therefore the displacive, mean-field picture is
inadequate to describe this situation. We have therefore done most of our work on discrete
lattice models, and chosen mainly techniques, which can describe adequately fluctuations,

quantum as well as classical. The basic element in our discrete lattice models is the 75— O
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dipole, also called a "bond”.

A third point, which has emerged, is that we might expect in a perovskite ferroelectric
at least two different quantum tunneling processes. The first is bond tunneling between
the n equivalent positions inside the octahedral cage (n =4 in tetragonal S7Ti03, n =06
in cubic KTa03). The second is bond tunneling between one cage and the next. This
second process will occur whenever an oxygen which is bonded to one T hops to bond

the other T'i, as in the Fig.2.2.

A foulth point is that there are two strong constraints which restrict both classical and
quantum mechanical motion, if the model is to make physical sense for real perovskites.
A first constraint, probably valid at low temperatures, is that there should not be more
than one bond per cell. In other words, so long as we are in the order-disorder regime,
and ;che T; atoms are instantaneously off-center, each can engage one and only one of the
surrounding oxygens. The second, more interesting constraint, is that two neighbouring
cages must not simultaneously possess bonds which point towards one another. This con-
straint comes from the physical impossibility of an oxygen to be engaged in two bonds
simultaneously, and constitutes a kind of ice-rule. The necessity of an effective ice-rule
in displacive perovskite ferroelectrics (or, for that matter, in cuprate high T, supercon-
ductors !) does not seem to have been noted and made use of before, and might have

far-reaching consequences.

A fifth point is that it should make sense to include the possibility of bond vacancies,
corresponding to Tt sites which, by sacrificing some potential energy V, will not fall
into a bond with any of the neighbouring oxygens. This potential energy cost might be
overcompensated by a kinetic energy gain, in presence of strong inter-cell bond hopping,
in turn related to oxygen tunnelling. These zero-point vacancies might condense with a

sharp phase transition.
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Guided by these considerations, and after an initial discussion of a fully continuous
free energy model, we have selected a short-range, 2D lattice quantum four-state clock
model, as the simplest toy model of quantum paraelectrics. Of the ingredients mentioned
above, two in particular pose some difficulty, namely the inter-cell bond tunneling, and
the ice-rule constraint. Our strategy has been therefore to start off first without these
two ingredients, with the simple quantum four-state clock model, and then to add the
complications only gradually and successively. Since handling of bond hopping is very
dependent from the presence of the ice constraint, it was necessary to include the latter
first. Thus, the second discrete model considered in this work is an ice-rule constrained

quantum four-state clock model.

The main method adopted for the present study of the unconstrained and constrained
2D quantum four-state clock model is Path Integral Monte Carlo (PIMC), plus finite size
scaling when possible. For the unconstrained case this calculation is meant to reproduce
known results, since, as we show, the model maps onto two uncoupled quantum Ising
models (Ising model in a transverse field), well studied and characterized in the 70’s. The
ice-tule constrained model is instead new and non-trivial. A Monte Carlo strategy has been
devised, in order to eliminate a pathologically slow 1/m convergence with the number of
time slices m, to recover even for the constrained model the usual, more comfortable 1 /m?
convergence. Although we cannot push finite size scaling to produce critical exponents for

this case, we have obtained a reasonably accurate phase diagram.

There are, both in the constrained and in the unconstrained model, only two phases,
the ferroelectric and the paraelectric states. However, the ice-rule constraint greatly re-
duces the number of excited configurations, and this in turn reinforces ferroelectricity. As
a result, the extrapolated T = 0 critical ratio of potential to kinetic coupling parameters

is Jy/t =~ 0.15, a factor of about four smaller than that Jg/t =~ 0.66 of the unconstrained
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model. The classical critical temperature will also be raised with respect to the uncon-
strained case, although we did not pursue this aspect in detail. We would not be surprised
if a future closer analysis of both classical and quantum critical behaviour should reveal
different universality classes, for the unconstrained and the ice-rule constrained 2D clock

models.

What have we learned on the nature of the QPE state in the constrained and uncon-
strained quantum four-state clock model ? We have found that the state is fully symmetric,
and has an excitation gap in both cases. However, the gap AE is very severely reduced
by the ice-rule constraint. This reduction is at least a factor of four at J = 0, but seems
even stronger for finite J. So long as the ground state is nondegenerate with an excitation
gap, transformation from the classical paraelectric state at high temperatures to the QPE
state at low temperatures is predicted to be a smooth crossover, not a phase transition.
The finding is in line with traditional views on QPE’s [71]. It does not explain, however,
the phase transition phenomena found by Miiller et al. in pure, tetragonal SrTi03, and
also those seen in K Tal‘._xN b,03, at low z, well below the onset of long-range ferroelectric

order (7).

A new, very interesting perspective is finally found by introducing the possibility of
"bond vacancies”. Because of their ability to favor bond hopping and thus to gain the
system kinetic energy, these vacancies might be present even at absolute zero, similar to
Andreev and Lifshitz’s speculations for solid He*. In this modeling, the abrupt onset of
quantum paraelectricity corresponds to condensation of such vacancies, probably physi-
cally tied to the boundary walls between fluctuating ferroelectric domains. This possibility

is appealing, and will be further pursued in the future.

It is clear from the above that although we are gradually building some concrete

understanding for a series of problems and models which have not been studied at all so
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far, we are still a long way from relating to some of the phenomenology of QPE materials
discussed in Chapter 1. It is not obvious what a condensate of bond vacancies might look
like. The role of strain and antiferrodistortive couplings does not really seem marginal,
in the experiments, and we have not yet begun to treat them. Finally, no attempts at
studying excitations — which instead have been shown to be very anomalous — has yet

been possible. All this work is left for the future.



§ 5. Discussion, and conclusions

102




Appendix A
The Path Integral Quantum
Monte Carlo technique

In this appendix we shall describe the Path Integral Quantum Monte Carlo algorithm
implemented for the simulation of the constrained model (4.8). The first problem to be
resolved is the choice of a convenient decomposition of the hamiltonian in order to apply
the Trotter formula.

Since we are interested in the U — co limit of the hamiltonian (4.8), we need to be
especially careful. Splitting naively H® into the sum of a kinetic and potential energy
yields in the limit U — oo a very poor convergence of the Trotter expansion, because the
commutator of the kinetic energy operator and the unbounded potential energy operator
is also unbounded. The error decreases slowly, as 1/m, with the number of Trotter slices
m, analogously to that of Ref. [72]. In order to avoid this problem, we have to get rid
of the unbounded term in the hamiltonian. For this purpose it is useful to introduce a

projector P

P=1[t-P;,)=T]P;, (A.1)
(i3) (i3)

which projects out the forbidden states. The partition function of (4.8) in the limit U — o

then can be written as

Z = Tr Pe~PPHP (A.2)
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where we again denote by H the unconstrained hamiltonian (4.1)
H= g+ g =S (H + HF) =3 Hi (A.3)

Tt is now convenient to use both row and column indices i, j to label the sites of the
square lattice, and write the hamiltonian as
g=Y Hj= », Hj+ S Hij= S A+ Y, B (A.4)
ij (i+7) odd (i+j) even (i+]) odd (i+3) even
where A;; is just 2 re-naming of H;; for the (i+j) odd sublattice, and B;; that for the
even sublattice. Since both H, and P, contain only nearest neighbour interactions, we
have

[PA;P, P4y ;P| = [PBi;P, PBy 7Pl =0, (A.5)

which provides us with a useful decomposition of the hamiltonian for application of the
Trotter formula. The whole lattice is decomposed into two interpenetrating sublattices,
A and B, each sublattice consisting of noninteracting sites in an external field determined
by the configuration of the other sublattice. This scheme is actually a version of the
well-known checkerboard decomposition [73].
To proceed, we write the partition function of the system as
5(2 PAiiP+Yy PBP)m
_ . PA; P+ . ii
7 =TeP e PPHP = Z (zi;|P [e m A\ & T 57 } |zi) » (A.6)
{=i5}

where m is an integer, and |z;;) are eigenstates of the complex coordinates z;; (2.8).

We define the m-th approximant to the partition function by

5 B m
{zi;}
= Z z (Z 1P€ mZUP‘LJ | 2)( ‘PE mZ;]PB'JP‘ ?J>
{z;]} {z 2m}

(e pe e D P gy pe B PP, ()
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where we have inserted a complete set of intermediate states between each two expo-
nentials. Due to (A.5), the matrix elements between the intermediate states in the last
expression factorize, and we get

Zm= Yy ...y (A.8)

{Z}j} {z?jm}

k k k k k —EPAGP k+1 k41 _kt1 k1 k41
H <Zi+1,j’Zz‘,j+1>Zi—l,jazi,j—l’zi,jipe me lzz+1,1’zz1+1’zz Ljr Zig—10 %y )
k,(i+]) odd
k k k k k ZPBiiP| k+1  _k+1  _k+1 ki1 k+1
H (Zi+1,jazi,j+1rzi—1,j’Zi,j-uzi,j'Pe & lzz+1]722]+1’zz 1,50 %510 %5 5 )
k,(i+7) even

k k k k kN |k k k k k : :
where ,zi+1,j7Zi,j+17zz'—1,j7Zi,j~1’zi,j> = lzz‘+1,j>’zi,j+1>lzi-1,j)fzi,j~1>lzi,j>' It is easily seen
that the matrix elements in the last equation are diagonal in the quantum numbers

k k k k :
Zit1,5> #1541 Zi-1,5) % j_1, and can therefore be written as

PH,JP‘Z k+1>

k k k k k k
<Zz+1j’zz]+1’ 2 1]7z1] 1y IJ'PE z-l-ljaz,]—f—l) i— 1]72,) 19 %

k k lc 1
“C(zl—i-l]?zz]-l-l’ 2 1,]72,] 192 1]7 ;_j- ) (Ag)
This diagonality imposes a conservation rule on the 241 D classical system on which our
2D quantum system maps. The mapping now follows from

k
I = Z Z H C(Zz+lj’zu+1’ Zi-1,50 % lkj 12 sz’Z,;H)

{z”} {z ?m}kz-]-j odd

H C( H—l g l,:]+17 fl]’zzkj 17zzj7zk+l)v (A‘]‘O)

k,i+j even

and each term in the above product can be interpreted as a Boltzmann factor of a par-
allelepiped with vertical faces rotated by 45° with respect to the axes of the original 2D
lattice (Fig.A.1). Each of its corner points is a four-state clock rotor. The corresponding
classical system can thus be seen as a (2+1) D lattice of such parallelepipeds. The con-
servation rule restricts the rotors on both sides of the vertical edges of each parallelepiped
to be in the same state. The Boltzmann weight (A.9) of each parallelepiped then depends

on the state of all four rotors at its vertical edges, as well as on the state of both rotors at
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the centers of its horizontal faces. The mutual state of these latter rotors, sitting at the

centers of the horizontal faces, is not restricted in any way.

k k+1

Fozip)is straight-

The calculation of the matrix elements C(Zl+1 9 ,’JH, 2F ' fJ 12
forward. It requires just diagonalization of the 4 x 4 on-site problem of a four-state clock
rotor HF" ! in an external field, represented by H} and the projector P. In our simulation
we performed this diagonalization numerically. All the matrix elements turned out to be
non-negative, and therefore no sign problem was present. !

We proceed to identify the estimators for the thermodynamic quantities. For conve-

nience we write the partition function approximant Zm symbolically as

= Z Z HCM. (A.ll)

{Zf]} {ijm}kﬂd

The internal energy per site of the system then reads
Em=-— 2 = (Eest) (A.12)

where

Eest = — 7 ZC:W aﬂ (A.13)

is the corresponding estimator. For the specific heat per site ¢, we obtain

P 2—.——-———
Com = Nﬁ 0B

1 2\ 2 ___1_3201;1'3 1 3Ck,]
N'B {(Eest> <E63t> +(k§: Ckij 3’32 Ck” 8ﬂ > ,(A.].4:)

s

Il

and we see that it is not just equal to the fluctuation of the internal energy, as in the
classical case. The hamiltonian of our effective classical system is itself temperature de-

pendent.

1Gince bonds cannot interchange in the present model (4.8), there is no question as to their statistics,
which is irrelevant.
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conserved

NSYAYAYEAVAA7AVAVAVAVAVAVEY)

Zk+1

propagating

7k

Figure A.1: The (2+1)D classical system. The imaginary time (Trotter) direction is vertical.
Vertical dark lines connect sites, which must be flipped together, springs connect independent
sites.
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In order to calculate the order parameter, which in our case is the polarization of
the system, and the corresponding susceptibility, we have to consider an external field
F applied on the system. If we choose this to point, e.g. along the z-axis, the matrix

Sk gk ko k1
elements C(zF,; ;s 2 2 g1 B B ) in (A.10) are replaced by

k k k k k+1
C(zH-lJ’ i+l Zielg Fig- 1 2350 %14 )=

P k E ok
C(zH_lJ, ’J+1, 2515 Bt i Z lj'l)exp( FRez”) (A.15)

and we obtain for the equilibrium polarization per site Prm

1 0Zm
Pa:m ﬁNZ —5}"— - <Pa:mest> 9 (A]-G)
where
1
meest = _I—V——’I;'L_ & JRGZ j (A.17)

The static dielectric susceptibility Xzzm then turns out to be

apa:m 2
Xzzm — BF :6N [( mest) (me83t> ] . (AlS)

The last two quantities are suitable to study the system either in the paraelectric phase,
where (Prm est) = 0, 0T in the ferroelectric phase not very close to the transition, when
the order parameter does not undergo the finite-size flipping among the four possible
orientations, and (Pzm est) Temains a well-defined quantity during the simulation time.
For the behaviour of the system right across the phase transition, it is convenient to

monitor the modulus rather than the components of the order parameter. We have

Pm = (ngst> - ( mest + meest> ’ (Alg)

and the corresponding susceptibility is given by

xom = BN [(P2 ) = (Prneat)?] - (A.20)
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Finally, we have sampled a ”short-range order parameter” (cos(¢;j — ¢;57)), where ij and

i'j' are nearest neighbours. This can be calculated as

(sl = ) = g7t 30 (Rl o)+ Reloby ot ). (4.21)
i

Our (2+1) dimensional classical system is simulated in a standard way using the
Metropolis algorithm. The trace operation requires periodic boundary conditions along
the imaginary time direction. We have used periodic boundary conditions for both space
directions as well. In order to satisfy the conservation rule, we must always move the
pairs of i‘otors on both sides of the vertical edges of the parallelepipeds simultaneously.
It is therefore convenient to consider the vertical edges as being a kind of ”rigid rods”,
and take these as new variables, which now can be moved independently (Fig.A.1). One
randomly chosen rod was moved at a time, without any kind of collective moves. Unlike
in simulation of the classical four-state clock model [74], we did not restrict the flips of

the rods and allowed these to flip from present position to each of the remaining three.
We carried out almost all calculations by fixing the value of the ferroelectric coupling
J and of the number of Trotter slices m, and then running a series of simulations for
different temperatures. The final configuration of a simulation at a given temperature
was used as the initial configuration for a run at the next higher temperature, always
heating the system. As the initial configuration at the lowest temperature, we always
took the ferroelectric state, completely ordered both in space and in the imaginary time
directions. The only exception is the data shown on Fig.4.13, where the corresponding
runs were carried out at constant temperature, decreasing the value of J. We typically
used 1+ 2 x 10* MCsteps/site to equilibrate the system and 2 + 4 X 10° MCsteps /site for
calculating averages. The CPU time needed to perform 1 MCstep/site was about 14 us

using an HP720 RISC machine.

In order to estimate the statistical accuracy of our results we measured the MC correla-
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tion time of the chain of values generated for various quantities in course of the simulation.
We did this by using the standard method of dividing the chain in blocks of variable size
described in [75], [76].

Finally, we would like to comment briefly on the convergence of the averaged quantities
as a function of the number of Trotter slices m. It is well-known [73] that the error in
the average value of an operator due to the Trotter decomposition is an even function of
m and therefore the results of a QMC simulation can, in principle, be extrapolated to
m — oo in the form

a b
Am=Aoot —5+ gt (A.22)

This kind of extrapolation, to be meaningful, would require very high accuracy for at least
two values of m (to determine a), or three values of m (to determine b), etc. For most data
presented in this paper such procedure was not needed. Except at the lowest temperatures,
it was generally suflicient to inspect data for m = 5,m = 10 or m = 10, m = 20 (sometimes
for all three values of m) to see that further increasing of m would not change the value of
the quantity under consideration within our statistical accuracy. The values of m we have
used were always a result of a compromise between the requirement of convergence and
that of keeping a reasonable acceptance ratio, since, of course, the acceptance ratio falls

with increasing m and problems with loss of ergodicity of the system begin to appear.



Appendix B
The quantum crystal of Andreev
and Lifshitz

In this appendix we briefly summarize some of the ideas contained in (18], which are
relevant for our considerations in section 4.3.

Imagine a classical crystal at T = 0, in which there is an atom on each site of a regular
periodic lattice. In order to make the number of atoms different from the number of
lattice sites, it is necessary to create a defect, either a vacancy, or an interstitial. Such
process would cost a finite energy €, and classically is not possible at 7' = 0. The perfect
crystalline state is therefore stable.

Now, still at 7 = 0, turn on the quantum fluctuations. The atoms will not be anymore
localized precisely on the lattice sites, which correspond to the points of minimal potential
energy. They will be spread around this points over some characteristic distance, which is
a measure of the strength of the Auctuations. As long as this distance is small compared
to the lattice constant, however, the one-to-one correspondence between an atom and a
site is preserved, and nothing particular happens.

Increasing further the strength of the quantum fluctuations, the wavefunctions of the
atoms on neighbouring sites start to overlap. Imagine that a defect were created now,
and to be specific, let it be a vacancy. There would be a finite amplitude ¢ for a process,

in which one of the nearest neighbouring atoms tunnels over a distance of one lattice
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constant, and fills the vacant site. Due to such mechanism, the vacancy has become
mobile. Although the number of atoms is no more equal to the number of lattice sites, the
crystalis still periodic. The state of the vacancy is thus characterized by a quasimomentum
k, and its energy eigenvalues e(fé) will form a band. The middle of the band will be located
in €., the energy cost of the vacancy in the classical limit, and the width of the band will
be proportional to the tunneling amplitude ¢ . If the bottom of the band is at k=0,in
the vicinity of this point we can expand
- k2

e(k) = €0+ 537 (B.23)
where M is the corresponding effective mass. As long as €o is positive, the perfect crystal
structure is stable, and there are no defects in its ground state.

Clearly, with sufficiently strong quantum fluctuations, € may become negative. At
this point, the ground state ceases to be stable with respect to the spontaneous creation
of the vacancies. A phase transition to a new ground state occurs, and the nature of this
transition depends on the statistics of the defects, as well as on their mutual interaction.
Close to the transition point, the number of the vacancies is low, and therefore these can
be treated as a dilute gas. If the vacancies are bosons, as in the case of He®, the total

energy of the crystal with V vacancies can be written as

2ra

= Negg
E €U+MV

N?, (B.24)

where a is the scattering amplitude for the vacancies, and V is the volume of the crystal.
We shall assume that the interaction between the vacancies is repulsive, and correspond-
ingly a > 0. Under such conditions, the equilibrium density of the vacancies in the crystal

at T = 0 is obtained by minimizing (B.24), and reads

N _ —EoM
= ira (B.25)
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It is easily seen that the phase transition is of the second order, the order parameter being
VN/V. The ground state contains a finite number of zero-point vacancies, a fraction of

which is Bose condensed in the lowest eigenstate at k = 0.
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Appendix C

The Monte Carlo sampling algo-
rithm for the case of bond vacan-
cies

In this appendix, we briefly comment on the algorithm we used for the Monte Carlo
sampling of the wavefunction (4.35). As pointed out in section 4.3, in the important
configurations, holes are mostly surrounded by arrows (on nearest neighbouring sites)
which point towards them (Fig.4.18). If we want our algorithm to produce configurations
which have a good probability to be accepted, these should comply with the last condition
as much as possible. A straightforward way how to implement such sampling would be the
following: we choose a site at random, and first test whether it is occupied by an arrow or
by a hole. In case of an arrow, we just try to flip it to another orientation, if allowed by
the constraint, in the same way as we did in section 4.2. In case of a hole, we further test
the neighbouring sites for presence of arrows pointing towards the hole; if we don’t find
any, no trial move is attempted. If we find Jjust one such arrow, we try to exchange it with
the hole; if we find more arrows, we randomly choose one of them and try to exchange it
with the hole. Such trial move would actually be an elementary transition caused by the

hamiltonian term H*n2b (2.13).

The ergodicity of this procedure is easily seen, since any configuration can be reached
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by a finite sequence of moves. In order to satisfy the detailed balance condition, however,
one has to be careful about the acceptance probabilities. Consider two configurations,
r and s, such that these can be reached from each other by exchanging a hole with an
arrow, and let P, and P, be' the corresponding statistical probabilities. The detailed

balance condition can be expressed as
PrWrsAT—>5 = PsWsrAs——»r ) (026)

where W,, and W, are the ‘a prior:’ transition probabilities, and A,_,, and A, are the
corresponding acceptance probabilities. Let us denote by E, and E, the number of arrows
pointing towards the hole in the respective configurations. Since both configurations are
eligible for the trial move, both numbers E and E, are at least equal to one, or larger.
The ‘a priori’ transition probabilities are then given by Wys = W/E;,,Wg = W/ E,, where
W is the probability that picking a site at random we find a hole; clearly, W is just equal
to the filling of the system. To be specific, suppose that P, > P,. It is now easy to
demonstrate that the condition (C.26) will be satisfied if we adopt the following choice for

A, s and Asr

1 |E
Agr = =4[ == » 2
S\ E, (C.27)
1P, |E,

Ar_;‘g = 5-13’“ -E—; . (C.28)

Since in our case both numbers E, and E, can at most be equal to four, the factors of é
in the last equations guarantee that the resulting expressions are not larger than one, and

thus may be interpreted as probabilities.
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